
SANTTU LAKKALA

PROGRAM-LEVEL INTERFACE FOR THEWORMHOLE FUNC-

TIONALITY

Master of Science Thesis

Examiner: Tommi Mikkonen

Examiner and topic approved in

the Faculty of Computing and Electrical

Engineering Council

meeting on 9 December 2009

II

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan koulutusohjelma

SANTTU LAKKALA: Ohjelmallinen rajapinta madonreikä-ominaisuuden käyt-

töön

Diplomityö, 45 sivua

Kesäkuu 2010

Pääaine: Ohjelmistotuotanto

Tarkastajat: Tommi Mikkonen

Avainsanat: vertaisverkot, mobiiliohjelmointi, madonreikä

Kilpailu modernien mobiililaitteiden markkinoilla on kovaa ja käyttäjät odotta-

vat jatkuvasti enemmän laitteiltaan. Eräs merkittävimmistä tekijöistä on lait-

teen alustalle saatavien sovellusten määrä ja laatu. Viime aikojen huolet sosiaa-

listen verkostoitumispalveluiden yksityisyydensuojasta, yhdessä nousevien mobiili-

Internet -nopeuksien ja laskevien hintojen kanssa, luovat mobiililaitteista houkut-

televan kilpailijan keskitetyille sosiaalisille verkostoitumispalveluille.

Vertaisverkkotiedonsiirto-ominaisuudet ovat hankalia toteuttaa, erityisesti mobii-

lilaitteilla. Kehittäjiä voidaan houkutella tekemällä tiedonsiirto-ominaisuuksista

helppoja toteuttaa ja käyttää. Kehittäjät voivat myös toteuttaa sovelluksia, joita ei

muille alustoille ole olemassa.

Tässä diplomityössä suunniteltiin madonreikäjärjestelmä helpottamaan sisällön ja-

kamista tukevia sovelluksia. Suunnittelun paino oli ohjelmallisen rajapinnan help-

pokäyttöisyydessä. Suunniteltu järjestelmä piilottaa vertaisyhteyksien luonnin mo-

nimutkaisuuden yhden yksinkertaisen rajapinnan, joka tukee useita sisältömuotoja,

taakse.

Suunniteltu rajapinta ja sen toteuttavat komponentit tekevät vertaistiedonsiirroista

olennaisesti helpompia toteuttaa. Työssä rakennetun toteutuksen avulla tietoa

voidaan siirtää useiden protokollien kautta, joista automaattisesti valitaan tehtävään

sopivin.

III

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master's Degree Programme in Computer Science

SANTTU LAKKALA: Program-level interface for the wormhole functionality

Master of Science Thesis, 45 pages

June 2010

Major: Software Engineering

Examiner: Tommi Mikkonen

Keywords: peer to peer networking, mobile devices programming, wormhole

Modern mobile device market is highly competetive, and people are expecting more

and more from their devices. One of the crucial factors is the number and quality of

applications for the platform. Recent privacy concerns with social networking sites,

coupled with the rising mobile Internet speeds at reasonable prices, are making

mobile devices an attractive competitor to centered social networking sites.

Peer to peer data transfer connections are complex to use in general, and even

more so on mobile devices. By making the data transfers easier and easier to adopt,

developers can be attracted to the platform. Developers are also able to easily create

applications not found on competing platforms.

In this thesis, a wormhole system was designed to ease the development of content

sharing applications. The focus of the design was on the ease of use of the program

level interface. The developed system hides the complexity of peer to peer con-

nections under one simple interface, which supports a number of di�erent content

types.

The designed interface and implemented infrastructure successfully make data trans-

fers easy to accomplish. The implementation supports initiating and transfering the

data over multiple protocols, automatically choosing one that is best suited for the

task.

IV

PREFACE

I would like to thank Kari Oinonen and Mikko Terho from Nokia Devices for the

possibility to make this thesis and for their valuable input in the design process.

I would also like to thank the examiner of the thesis, Tommi Mikkonen, for his

suggestions, corrections and especially for the pushing me through the writing on

time.

Last, but not least, I would like to thank my wife for her support, understanding

and encouragement, especially during the last year of my studies; and my family for

their support throughout my studies.

Tampere June 3, 2010

Santtu Lakkala

santtu.lakkala@nomovok.com

V

CONTENTS

1. Introduction . 1

2. Concept of wormhole . 2

2.1 Overview . 2

2.2 Device to device wormholes . 5

2.3 Program to program wormholes . 6

2.4 Wormhole API . 8

3. Starting points . 9

3.1 Programming framework . 9

3.1.1 Qt . 9

3.1.2 D-Bus . 10

3.2 The communication framework . 11

3.2.1 Telepathy . 12

3.2.2 Mission Control . 12

3.2.3 Supported protocols . 13

3.2.4 MONSN . 13

3.3 Contact storage . 14

4. Methods . 15

4.1 Use cases . 15

4.2 Architecture . 19

4.2.1 Manager . 19

4.2.2 Client library . 20

4.3 Security considerations . 20

4.4 Con�guration . 21

5. Implementation . 23

5.1 Program-level interface . 23

5.1.1 Wormhole class . 23

5.1.2 WormholeFile class . 28

5.1.3 WormholeServer class . 32

5.2 D-Bus Interfaces . 34

5.2.1 com.nokia.Wormhole.Manager interface 34

5.2.2 com.nokia.Wormhole.Wormhole 35

5.2.3 com.nokia.Wormhole.Server . 36

5.2.4 com.nokia.Wormhole.File . 37

5.2.5 com.nokia.Wormhole.Stream . 38

5.2.6 com.nokia.Wormhole.Object . 39

5.3 Implementation of the client library 39

5.4 Implementation of the manager . 40

VI

6. Conclusions . 42

Bibliography . 45

1

1. INTRODUCTION

With the spreading of the Internet, collaboration and sharing have evolved into one

of the main features of computer systems. Unfortunately most applications do not

implement collaborative functions and the user is required to use other applications

to establish this, like instant messengers or email. In the mobile realm switching

between applications is often hard, making collaboration a lot harder.

Applications rarely implement these functions, because creating them is quite

complex. It requires usage of contact book and protocol implementations, checking

contact availability and lots of other things. It may also cause trouble with other

applications that are trying to use the same accounts for other purposes.

In this thesis, we have designed and implemented a data transfer system for a

mobile platform. The main goal of the design was the ease of use of the program

level interface.

The goal of the thesis is to create an easy to use interface for programmers that

need peer-to-peer data transfers. This will allow application developers to quickly

and e�ortlessly create programs that communicate with the contacts of the end

user. The communication can occur in real peer-to-peer manner, provided that a

suitable transfer channel, like Zeroconf. They may also use centralized services to

aid in creating a peer-to-peer connection, or all of the data may be transferred via

a server. The important part is, that the application programmer does not need to

care about it.

The problem with the existing interfaces is that they are complex to use and

hard to understand. The complexity is reduced by making the wormhole system

do as much of the work normally involved, leaving only the bare minimum to the

application developer. The system will do service routing, i.e. choosing the best

carrier; connection validation; and contact selection.

As a technical contribution, we have designed an API for the data transfers. Also

a library implementing the API was implemented, together with a backend service

that the library uses. In Chapter 2 we explain the concept in detail. In Chapter

3 we introduce the components that the implemented system interfaces with. In

Chapter 4 we explain the reasons and methods for the API design. In Chapter 5 we

present the results of the API design and explain the architecture of the implemented

system. In Chapter 6 we evaluate the results.

2

2. CONCEPT OF WORMHOLE

In popular culture, a wormhole is a portal between two, usually distant places.

Anything going in at one end appears at the other end nearly instantaneously.

Anything going into the wormhole does not need to understand how it works, or

where it goes.

A wormhole, in this context, is a tunnel for transferring data. The user of worm-

holes does not need to know the method of transport. Nor do they need to know

the destination. Thus the analogy to the wormholes from popular culture.

The analogy is also used as the representation in the user interface (UI). Whenever

wormholes are used to transfer data to a contact shown in the UI, a wormhole symbol

appears on top of the contact. Additionally some kind of zoom e�ect to further

illustrate the e�ect could be used.

2.1 Overview

The general idea of wormholes is shown in Figure 2.1. In the �gure, there are three

mobile devices, and the middle one has wormhole connections to the devices at the

sides. The wormhole connections are denoted with the dark tubes; this is how the

application sees the connection. The actual data transfer channel used underneath

the wormhole connections are represented by the yellow lightnings. The connection

between the device on the left hand side and the device in the middle is established

directly using peer to peer connection. Sometimes it is not possible to establish a

direct connection, and the data needs to be proxied through a relay. A relay server

is represented by the black tower case at the top. Now the data transfer between

the device in the middle and the device on the right hand side goes via the server, as

shown by the yellow lightnings. The wormhole connection, however, does not show

this, and it is virtually indistinguishable from the direct connection.

While in the �gure, the endpoints of a wormhole are shown as devices, the end-

points are actually people, or contacts, not devices. A contact may be reachable

through multiple protocols or accounts. A contact may even have multiple devices

reachable at the same time. This exposes a limitation in the system, as a certain de-

vice cannot be targeted, even if wanted. However this is relatively rare requirement

and a relatively small de�ciency.

While peer to peer connections are always the preferred mode of transport, some

2. Concept of wormhole 3

Figure 2.1: Wormhole enabled mobile devices communicating over the Internet

protocols or networks may prevent direct connections. That is why it is important

to be able to do the transfer also in indirect ways. The wormhole system takes care

of the path �nding problems. It will use the transport channel most appropriate

for the data at hand. The decision is based on details of the destination contact

and the characteristics of certain protocols. The system uses details like presence

information and estimated transfer speed.

In Figure 2.2 a typical home screen scenario is shown, where a note is being sent

to a contact via a wormhole. Once the user releases the drag, the note is sent and

will appear on the device of the contact. This kind of use case clearly shows the

graphical representation and how it is used.

In this kind of use case, the application developer needs to know where the

wormhole points to, or more precisely need to be able to indicate the target upon

the creation of the wormhole. While this does break the name analogy and idealism

behind the idea, it does give versatility to the system.

The contact viewer and wormhole UI application is not part of this thesis. The

application is quite simple, and shows few most frequently used or user selectable

contacts. When the user drags anything from the system onto the contact, the

wormhole indicator appears, and on drop, the data transfer is initiated.

Another example is shown in Figure 2.3. A social media main screen widget that

shares status updates over wormholes to pre-de�ned set of contacts. Implementation

could be done by passing simple XML �les over the wormholes. The XML �les would

be sent to a set of contacts de�ned in the widget con�guration. Upon reception, the

XML �les would be parsed, and contents drawn to the widget.

A third example of a collaborative text editor is shown in 2.4. It allows end users

to share a piece of text over wormholes. The users can then edit the �le and all

changes will be immediately visible at the other end. The users can also make notes

2. Concept of wormhole 4

24:12

Remember

the

milk

Figure 2.2: Wormhole usage on home screen on a touch screen device.

on any line in the �le. In the image the text editor is used to �nd a problem in a

source code �le.

In general, wormholes should work in a peer-to-peer manner, transferring any data

straight through the Internet. However, in certain situations it may be necessary to

do the transfer through a server that proxies the data. This should not be apparent

to the user of the API.

All data transfers between nodes should be encrypted, but in the scope of this

thesis, the encryption is left to the underlying protocol(s). Most protocols do not

2. Concept of wormhole 5

What are you doing?

Walking the fishies |

Running a percent marathon; phooey...

Today at 12:34

Tanning in moonlight

Today at 12:34

Figure 2.3: Wormhole based status sharing widget

encrypt the transfers.

2.2 Device to device wormholes

There are two main types of wormholes. In device to device wormholes, on which

type this thesis concentrates on, the wormhole is opened to a contact. Any �le or

stream may be sent through the wormhole, no additional information is needed.

When a �le or stream is sent, the wormhole system decides the best action for the

data based on its type. The receiving end then uses the meta data provided by the

2. Concept of wormhole 6

I'm having some trouble with my code, could you help me debug
it?

#include <stdio.h>

int main(int argc, char **argv)
{
 if (argc = 1) {
 printf("Usage: %s <nimi>\n", argv[0]);
 return 1;
 }
 printf("Hello, %s!\n", argv[1]);

 return 0;
}

Here seems to be your problem,
the comparison operator is
two =-characters. |

Share

Figure 2.4: Wormhole based collaborative text editor

sender to determine the action for the received data.

The device to device wormholes can be considered as representations of the con-

tact, not actually the data transfer channel. The channel is only established once

the data is known. This means that any data transfer through a device to device

wormhole may fail if no means of transport can be established.

The note sharing, as shown in Figure 2.2, can be done using device to device

wormholes. The note is serialized using JavaScript for example, and the serialized

data is sent as a �le. The whole widget, including its code, may be shared. The

platform also contains an automatic installer and code injector, so that a JavaScript

�le may only contain the basic program logic, and the rest is automatically installed

in the receiving end.

2.3 Program to program wormholes

The device to device wormholes are somewhat limited for certain uses. The streams

are limited to unidirectional transfer, and the streams should have constant �ow of

2. Concept of wormhole 7

data. Program to program wormholes allow almost any kind of transport. They are

quite similar to normal sockets.

The main di�erence between program to program and device to device wormholes

is that upon creation, the creator of a program to program wormhole needs to specify

some program identi�er in addition to the contact. The identi�er can identify either

the program, or an instance of it. Upon creation, the data channel is established

right away. A program can presume that sending data through a program to program

wormhole is unlikely to fail.

Program to program wormholes enable bidirectional data transfer. Either end of

the wormhole may transmit data through the wormhole. In addition the wormhole

may be used for signaling. Both ends may keep the channel silent and only send

data when there is something to send.

24:12

Figure 2.5: Wormhole usage on home screen on a touch screen device.

2. Concept of wormhole 8

In Figure 2.5 a map widget that is being shared is shown. The sharing of the

widget, including the current position can, and should, be implemented using device

to device wormholes. If the location is wanted to be kept up to date over a longer

period of time, the device to device wormholes are no longer a good �t. The infor-

mation consists of small packages sent at unpredictable intervals. Even though it

could be implemented as a stream, this kind of data transfer is better handled with

program to program wormholes.

2.4 Wormhole API

The wormhole API is the interface for an application programmer through which

he can send and receive �les and streams. The goal is to make it possible for the

programmer to not need to know what the system does, or how it works. They can

just drop a �le in, or broadcast a stream, and it will magically appear at the other

end; much like wormholes in sci-� movies.

From the perspective of the application developer using the API, the wormhole

looks as illustrated in Figure 2.6. In the �gure the Wormhole API is represtented

by the Wormhole image. The Wormhole is a pipe, into which �les and streams can

be thrown, and they appear from a wormhole in some other place. There is nothing

else for the developer to worry.

Wormhole

Wormhole

Stream

Figure 2.6: The concept of wormhole: �les and streams are transferred between two end-

points.

9

3. STARTING POINTS

Our target platform is an operating system for mobile devices ranging from phones

to small laptop computers. The operating system is based on Linux kernel and GNU

userland tools, with Qt as the target framework for GUI applications.

As mobile platforms are usually limited in resources, they imply some require-

ments to the implementation. First, and most importantly, the system should allow

the operating system to do power management by keeping activity at minimum

when nothing is happening. In implementation terms this means that the system

should never poll for changes, but rather use methods provided by the operating

system to wait for events in idle state. Polling has dramatic impact on battery life,

even at relatively low intervals.

The second scarce resource is memory. The importance of memory handling is

even higher for long running processes. Memory management must be done well

to avoid memory leaks. All memory should be freed immediately when no longer

needed. Also processes should be kept down to minimum, they take up some memory

just by themselves.

The third, by importance, is processor time. In terms of processing power, pro-

cessors used in mobile devices are quite underpowered when compared to modern

desktop computer processors. While saving processor cycles is not quite important

enough to justify optimizations, certain precautions should be taken in design phase

to ensure smooth operation.

3.1 Programming framework

The API is designed for Qt programs, which makes it sensible to write the imple-

mentation in Qt also. The implementation is written in C++, so bindings can be

created for other languages that have bindings for the Qt framework.

3.1.1 Qt

Qt is a cross-platform application and UI framework written in C++ [11]. Qt has

many useful features built into it that are bene�cial for the implementation of the

wormhole system.

The most important one is the Qt mainloop. The mainloop makes it possible

to build asynchronous systems without the added complexity of threads, without

3. Starting points 10

creating own implementation of such multiplexing system. The mainloop is a system

that sleeps until there is an event that requires attention, and then calls appropriate

handlers for the event [12]. Using the mainloops for all processing is also good for

power consumption, as the sleeping state is handled by operating system, which may

use power saving methods when there are no processes actively using the processor.

The wormhole system also uses Qt's signal and slot system. Signals and slots

provide an easy way to implement the observer design pattern, eliminating the need

of listener interfaces. Signals are noti�cations that objects can emit, and other

objects may register their slots to be run when a signal is emitted. [14]

Qt also includes support for D-Bus, a message bus system. It is integrated with

the event system and receiving messages is possible whenever the control is in the Qt

mainloop. Qt also provides adaptor classes created from XML-based instrospection

data, which makes exporting objects for remote calling easy. Also Qt signals can be

automatically emitted over D-Bus also.

Also included is a shared pointer implementation, QSharedPointer. Shared point-

ers are in concept similar to the auto_ptr of the C++ standard template library, but

implement sharing the data with reference counting. Shared pointers automatically

destroy the contained data when all pointer instances, or references, are gone [13].

Similar data structure is also planned for C++0x. [20]

3.1.2 D-Bus

D-Bus is a message bus system, a way for doing inter-process communication [5].

D-Bus is widely used in modern Linux distributions for communication of the core

programs, as well as the applications the user uses. Unlike many other similar

systems, D-Bus is binary protocol, and all data is sent using a binary representation,

not readable text or XML.

Programs connecting to D-Bus have a service name. Each client is automatically

assigned a unique name of the form �:1.23�, which is unique in the lifetime of the

bus. Programs may additionally request well-known service names. Each name may

only have one owner at any given time, but one name may be owned by di�erent

clients at di�erent times. The names are separated using dots, with similar naming

convention as Java packages.

Exported objects in D-Bus are identi�ed by an object path. The object path looks

like a �le path. Each object can have one or more interfaces, and each interface can

have methods and signals. The methods and signals have a signature, which tells

the argument and return value types of the methods and signals. A D-Bus method

call may have multiple return values. An object path needs only be unique in the

service, not in the bus.

The methods are remote calls to certain object. When doing a method call, the

3. Starting points 11

caller needs to know the service where the wanted object is running, and the path

where it is located. In addition it needs to know the interface, method name and

the argument types for the method. If any one of them is not known, the message

will not be delivered. Signals, on the other hand, are messages that are sent to any

client that has registered itself to listen for the signal. A signal has an object path

and interface. The object path should be the same object path as where the sender

of the signal is listening for method calls.

It is customary that the root object of a service is at object path �/�. Using an

interface name speci�ed in the D-Bus speci�cation, any object can be introspected,

and they provide details of all implemented interfaces.

D-Bus only supports a set of primitive types and three types of collections. The

primitive types include unsigned and signed integers in di�erent sizes, �oating point

number, strings, object path and boolean. The �rst collection is an array, which

can contain arbitary number of items. The second collection is a dictionary entry,

which has a key and a value. An array of dictionary entries forms a map. The third

collection is a struct, which can have a �xed number of members. There is also a

variant type, which may include anything mentioned above. There are no NULL

values in D-Bus; a variant must have a type and a value, and strings must have a

value. Empty strings are allowed.

D-Bus has two busses. First one, the system bus, is usually started quite early in

the operating system boot process. Hardware managers and the init process use it

to communicate with each other. Access to the system bus is usually quite limited,

allowing only certain users access certain interfaces and object paths. The services

in system bus are run as privileged user rights, usually the administrator.

The second bus, session bus, is started whenever the user starts their session,

usually when they log in. The address of the session bus is only known by programs

in the session, and all services in session bus are running with the same privileges.

The access to the session bus is usually not restricted, and one can do anything in

the bus, given they have the address.

Both busses include an auto start mechanism. Whenever a message is sent to a

service that is not running, and a meta �le exists for the service, the bus daemon

automatically starts the program. Then when the program starts up and registers

to the bus, the message is delivered. This can be disabled when constructing the

message, if automatic start of the recipient is not desired.

3.2 The communication framework

The platform has many components that the system must cooperate with. They

are discussed in the following subsections.

3. Starting points 12

3.2.1 Telepathy

Telepathy is a collection of well-de�ned D-Bus interfaces for protocol independent

communication. The project also provides helper libraries to use and implement

these interfaces for di�erent programming languages and frameworks, and some

protocol implementations using the aforementioned libraries.

The design makes the system quite robust. Di�erent parts run in di�erent pro-

cesses and one process crashing does not take the whole system with it. It also gives

high independence of speci�c programming language, parts can be implemented in

any language that has D-Bus bindings. [9, section 1.1]

Originally the project aimed at supporting instant messaging and voice and video

calls, but later evolved to include generic data streams, dubbed Tubes, and �le

transfers. However, due to the goals of the project, the usage of the framework is

rather complicated thus the need for a simplifying layer.

Major users of telepathy framework are the Nokia Internet Tablet products [10],

GNOME's Empathy [7] and OLPC's Sugar [15]. Telepathy is usable in the Qt

framework via the Telepathy-Qt4 bindings provided by the Telepathy project.

Telepathy's APIs are very versatile, but also very complex. A �le transfer example

using telepathy-qt4 bindings [1] is about 500 lines of code. Most of the code goes to

many di�erent slots for asynchronous events.

By using standard Telepathy tubes, we gain compatibility with all other systems

using Telepathy, but it is up to the receiving end to decide the action. It likely means

that the receiving end will simply save the �le after asking the user. As Telepathy

uses standard �le transfer metchanisms, the �le transfer system is also compatible

with other clients that implement �le transfers. This, unfortunately, does not apply

to streams, which are speci�c to the Wormhole system.

3.2.2 Mission Control

The centerpoint in the Telepathy system is the telepathy mission control daemon.

It stores the accounts of the user, and handles bringing up the connections when

requested. Usually this request comes from an instant messenger client, like empathy

in GNOME. On the target platform, the best solution is to have a dedicated status

setter, so the instant messenger client needs not be running.

The platform also needs a program that listens for contact status and avatar

changes, and updates them to the address book. This is out of the scope of this

work, and is assumed to already exist.

Unfortunately the TelepathyQt4-bindings do not yet provide any support for the

mission control. This means that some kind of bindings need to be created or

generated.

3. Starting points 13

3.2.3 Supported protocols

The Telepathy framework is a multi-protocol system. It is extensible by writing

connection managers for new protocols. At the time of writing there are connection

managers for

• XMPP,

• Windows Live Messenger,

• Internet Relay Chat,

• Link-local XMPP,

• Skype and

• SIP.

There is also a connection manager that brings all protocols supported by libpur-

ple [17], the protocol support library of Pidgin [16], a multi protocol instant mes-

saging client. [6]

All of the protocols above can support �le transfers: XMPP via the XEP-0096,

IRC via DCC �le transfers, SIP with MSRP and MSN has built in �le transfer

support. Only XMPP and SIP support data streams in a standard way. IRC DCC

connections can be used, but it would be a proprietary extension.

The connection manager implementations vary in maturity. The XMPP manager,

dubbed �Gabble� is the one getting most updates. The updates are moved to the

Link-local version at somewhat slower pace. These two managers are the only ones

currently supporting all features that the wormhole system needs.

3.2.4 MONSN

One of the goals of the work is to make usage of MONSN networking system as

easy as possible. [21] This is achieved through the implementation of a telepathy

connection manager using the MONSN network.

MONSN is very generic networking system, basing itself on one of the original

ideas of the Internet: each and every node can access each and every other node in

the network. This is achieved through tunnels to a server that assigns each node a

public, reachable IP address. It also add methods for controlling incoming tra�c on

network level, which is needed on mobile pay-by-tra�c subscriptions.

MONSN client software also implements a local �rewall, and incoming connec-

tions must be started with the MONSN protocol. The protocol veri�es the identity

of the connecting party, and the client software then opens ports, if the incoming

request is accepted.

3. Starting points 14

MONSN does not specify application protocols to be used. Instead, normal Inter-

net protocols should be used. TCPv6 and UDPv6 are supported, and the Telepathy

connection manager needs to implement the application level protocol for instant

messaging, calls and �le transfer and stream tubes.

3.3 Contact storage

The actual contact storage for the platform is an open issue at this point. It will

most likely be semantic storage.

Semantic storage is somewhat unlike traditional content storage systems. It pro-

vides many di�erent kinds of relations between people. This allows for a contact

chooser, that is not a traditional list, but rather a map, or a graph, in which the con-

tacts are linked using named connections. The semantic contact storage is queried

using SparQL query language. [18]

Advantages of a semantic backend is that it is designed to be extendable. Any

information of the contacts can be trivially added to the database. While in this

scope it is not needed, it may prove to be useful in further re�nements of the system.

15

4. METHODS

The design goal of the API was to be as easy to use as possible. That goal is

best achieved by streamlining the API for a selected set of functionalities, and

leaving everything unnecessary out. Having both the device to device, and program

to program functionalities was making the API too complex, and the program to

program functionality was removed.

As the address book for the platform has not been decided on, the contacts are

only referenced via string identi�ers in the API. The string identi�ers are platform

dependent, and must be the same as used by the contact address book used.

Proper API usability assessment would require evaluating the API with exam-

ples and testing it on programmers, but in the scope of this study, the usability is

measured by lines of code in certain use-cases.

A study on API learnability [19] suggests that the biggest obstacle for learning

is poor documentation, especially missing examples. The second biggest obstacle is

the structure of the API. The documentation should have rationale for the design,

so the programmers would understand the design choices taken, and also include

examples for most of the functionality.

4.1 Use cases

There are four major use-cases for the API: sending �les and streams, and receiving

them. All incoming streams and �le transfers are pre-approved by the manager; so

the API will only give noti�cations about them using Qt signals. There are also

signals about the state of a �le transfer. The noti�cations on streams are handled

via normal QIODevice-controls.

Image viewer � sending �le

A user is browsing through their collection of images. As he stumbles upon an

image from a holiday, it reminds him of a friend that he was travelling with. He

decides to send the image to the friend to share the memory. By tapping the toolbar

item �Share� he initiates the transfer and a contact selector appears on the screen.

Quickly browsing through the network of contacts, he �nds the friend and taps on

him to con�rm. The picture transfer begins.

The use case is illustrated in Figures 4.1, 4.2 and 4.3 as mock-ups. The �rst

4. Methods 16

Figure 4.1: A screenshot mock-up of an image viewer

Figure 4.2: A screenshot mock-up of an image viewer contact selection

�gure shows the image browser with the wanted picture visible. The toolbar at the

bottom of the screen has a �Share� item. After tapping the item, the contact selector

is shown, like in the second �gure. The selector can be used to browse through the

4. Methods 17

contact network. By tapping a contact at the edge, the contact is moved to the

center. Choosing a contact is achieved by tapping the contact at the center. After

choosing the contact the application returns to the main view with a progress bar

in the toolbar, as shown in the third �gure.

Figure 4.3: A screenshot mock-up of an image viewer sending a �le

Media player � receiving stream

A friend has a cat that is acting funny. He �gures that someone else might enjoy

the display, and decides to share a video stream of the cat. When he chooses a share

stream option in his video recorder and chooses the contact, the receiving end shows

a noti�cation. As the friend is up for a good laugh, he accepts the stream and the

video player is launched showing the stream just as the cat runs into the dog.

The dialog that con�rms the launch of the media player is shown in Figure 4.4.

The dialog contains the name and picture of the contact that is sending the stream.

It also states the program that will be used to handle the stream.

After con�rming the request media player is launched. The media player auto-

matically starts showing the stream, as seen in Figure 4.5. The user may stop the

stream at any time by pressing stop or by closing the window.

4. Methods 18

24:12

Remember
the
milk

Con Tact wants to share a
video stream with you.
The stream is opened in
Media Player

Do you wish to accept?
Con Tact

Yes

No

Figure 4.4: A screenshot mock-up of incoming stream

Figure 4.5: A screenshot mock-up of media player playing a video stream

4. Methods 19

4.2 Architecture

The implementation consists of two components, the Wormhole manager, that talks

to the Telepathy framework and handles incoming requests; and the Wormhole client

library, providing the API. The high level architecture is shown in Figure 4.6.

D-Bus

Wormhole manager

Wormhole API

Telepathy Mission Control

Wormhole API

Client 1 Client 2

Connection Manager Connection Manager

Protocol 1 Protocol 2

Client library Client library

Figure 4.6: Architecture of the system, components with bold names and blue background

are to be implemented

4.2.1 Manager

The Wormhole manager is a daemon-like entity, automatically started upon request

using D-Bus autostart functionality. The manager exports objects over D-Bus, that

represent the wormholes, the wormhole services and wormhole transfers. When the

manager no longer has clients, it should terminate.

The D-Bus interfaces closely resemble the programming API. All additional func-

tionality, like querying the contact from the user, is done in the manager process.

The manager class keeps track of clients that request wormholes, and closes all

wormholes and associated transfers of a client if one dies. By doing this it prevents

4. Methods 20

resource leaking. Otherwise all wormholes created by a client would live inde�nitely

if the client exits uncleanly.

The manager is responsible for querying the user for contact when a wormhole is

created without a target. It must also ask the user when a �le or stream is received

and a veri�cation is needed for certain handler program.

The manager is responsible for resolving an action for the data being transferred.

When sending it means choosing the correct protocol and transfer mode. When

receiving, the manager needs to decide the correct application to handle the incoming

data using the data type and possibly some other details.

4.2.2 Client library

The client library implements the Wormhole API. It acts as a simplifying layer

between the D-Bus API of the manager and the client program. It takes care of

proxy object creation for objects exported by the manager, and hides all details of

the D-Bus usage.

The client library uses a singleton object that keeps track of all objects created

by and for the application. Upon destroying them the object noti�es the manager

over D-Bus, so the manager knows that the resource is no longer needed. It also

communicates with the manager to request new wormholes and to register new

wormhole enabled service.

The client library uses QSharedPointers in the implementation of the API and

QSharedPointers and QWeakPointers internally. QWeakPointers are used to refer-

ence objects that should be destroyed when the application no longer needs them.

4.3 Security considerations

Incoming �les may launch almost any program, and even cause installation of one,

so the trustworthiness of the source needs to be properly evaluated. The evaluation

can be done using three factors: how well is the sender known, how well does the

protocol iden�ty the sender and what is the potential impact of the action.

Security is most important for �le types that contain program code, that is run

automatically. This type of action is planned at least for JavaScript �les. For

executable �les, the wormhole system should require strongly trusted sender or query

from the user.

Some protocols provide high level of identi�cation through cryptographic certi�-

cates. Currently only protocol that provides this is MONSN. In other protocols, the

trustworthiness is that of the server relaying the messages.

In Table 4.1 we describe how a level of trust can be approximated from the trust

level of the contact and that of the protocol. When protocol provides some level of

4. Methods 21

trust, even unknown contacts can have some trust.

Table 4.1: Table of trust levels

Protocol provided trust

U
se
r
tr
u
st strong weak none

friend 5 4 3
acquaintance 4 3 2
unknown 3 2 1

In the table, strong protocol trust refers to cryptographic identi�cation. The

cryptography is not enough by itself, but the certi�cate used must be signed by some

trusted party. For centralized networks this means that the network operator signs

the certi�cates. Even completely distributed peer-to-peer protocols may provide

strong trust via a certi�cate web of trust as used in with PGP [2]. While in PGP web

of trust keyservers are used to �nd a path from a trusted party to the certi�cate being

evaluated, distributed systems have no keyserver, and all the middle certi�cates need

to be known.

None refers to protocols where any user may claim to be anyone. An example

of such network is the link local XMPP, where any node on the local network may

claim a name, and no other details are provided. IRC [8] can also be considered to

provide no trust, if only the nickname is known.

All protocols should be carefully evaluated on a much �ner scale. The protocol

trust level can also be dynamic; for example depending on the length of the certi�cate

path.

The user trust level could be calculated from the semantic contact storage. Pos-

sible factors could be amount of common friends or type of relation. A spouse and

other immediate family could be ultimately trusted, and others scaled down from

that. As with protocol, the contact trust should also be much more granular.

For further improvements in the security, the data should also be passed to the ap-

plication. This way received scripts could be run with di�erent privileges depending

on the identi�cation factors.

4.4 Con�guration

The system needs to know what program some type of �le or stream should be

passed to. The �les are identi�ed by mime types [3], and a mapping from a mime

type to a program is needed. Normally, on GNU/Linux systems, this is done using

.desktop �les. These are plain text �les containing key-value pairs, with certain

well known, pre-de�ned keys for certain uses, but the set of keys can be extended.

The simples solution is to add an extension �eld to these �les for identifying the

4. Methods 22

wormhole-aware programs.

For further con�guration, additional metadata should be added. In the scope

of this thesis, all wormhole programs are treated exactly the same. The program

should be able to state the risk factor of running it, so this data should be added.

The user should be able to control what kind of actions are run automatically,

what are con�rmed from the user, and what are rejected. This data can not live in

the .desktop �les, as they are not user �les, so another data storage is needed. This

decision is not made at this point, as no user tuning is implemented.

23

5. IMPLEMENTATION

As the result of the interface design, the wormhole API was created. The wormhole

API enables an application developer to use the wormhole system. The API is

provided by the client library, which is a thin wrapper on top of the D-Bus API

provided by the wormhole manager. The D-Bus API can also be used by itself,

should the developer require higher control of the application �ow during the calls

to API methods.

5.1 Program-level interface

The overall design of the program-level interface is shown in Figure 5.1. The interface

consist of the three classes, Wormhole, WormholeServer and WormholeFile in the

Client library package.

Client library

Wormhole manager

<<private, singleton>>
WormholeManager

+getInstance()
+requestWormhole(): QDBusObjectPath

Wormhole
+create(contactId:QString=NULl): QSharedPointer<Wormhole>
+<<signal>> incomingFile(file:QSharedPointer<WormholeFile>)
+<<signal>> fileReceived(file:QSharedPointer<WormholeFile>)
+<<signal>> incomingStream(stream:QSharedPointer<QIODevice>,
mimeType:QString)
+sendFile(fileName:QString,mimeType:QString=NULL): QSharedPointer<WormholeFile>
+sendFile(file:QFile
+sendStream(mimeType:QString): QIODevice

WormholeManager
+requestWormhole(): QDBusObjectPath

Wormhole

ContactChooser
+getContact(): TpHandle

FileTransfer DataStream

<<represents, uses>>

<<manages>>

<<manages>> <<uses>>

WormholeServer
+create(identifier:QString): QSharedPointer<WormholeServer>
+<<signal>> newWormhole(wormhole:QSharedPointer<Wormhole>)

WormholeFile
+getName(): QString
+getTmpPath(): QString
+getTransferred(): quint64
+getSize(): quint64
+getRate(): quint
+cancel()
+<<signal>> progress()
+<<signal>> error()

<<represents>>

<<manages>>

<<manages>>

<<uses>>

WormholeServer
+<<signal>> newWormhole(path:QDBusObjectPath)

Figure 5.1: Class diagram of the architecture of the system.

5.1.1 Wormhole class

The wormhole class is the main class of the API. The class is used for sending �les

and streams and receiving them. Only wormholes received from a WormholeServer

5. Implementation 24

Wormhole
+create(contactId:QString=NULl): QSharedPointer<Wormhole>
+<<signal>> incomingFile(file:QSharedPointer<WormholeFile>)
+<<signal>> fileReceived(file:QSharedPointer<WormholeFile>)
+<<signal>> incomingStream(stream:QSharedPointer<QIODevice>,
mimeType:QString)
+sendFile(fileName:QString,mimeType:QString=NULL): QSharedPointer<WormholeFile>
+sendFile(file:QFile
+sendStream(mimeType:QString): QIODevice

Figure 5.2: Details of the Wormhole class

signal can receive. The methods and signals are shown in Figure 5.2.

The API consists of one static method for creating wormholes, three signals for

incoming �les and streams and three methods for sending �les and streams.

create method

Wormhole is an abstract class, and cannot be instantiated with the new keyword. It

can only be instantiated via the create() method, which uses the WormholeManager

class to request a wormhole object. The method is described in Table 5.1. The

ownership of the returned object should be handled using shared pointers. Successive

calls to the create() method may return the same object, if the user selects the same

contact and the previous one was not destroyed.

Table 5.1: Arguments and return value of the create() method

create()
Arguments 1

contactId (Optional) A string identi�er of the contact to which the
wormhole will be connected to. If not speci�ed or NULL,
the manager will query contact from the user.

Return value A shared pointer to the wormhole object, or NULL pointer
if the user did not select a contact, or the given contact
identi�er was not valid.

Errors May fail if no connection to D-Bus, not enough memory,
or some internal error in manager. In error cases returns
NULL pointer.

Notes The Qt main loop will be executed during the call to this
method.

If the optional contactId argument is given, the wormhole is connected to the

contact identi�ed by the identi�er. Support for this is included for use cases, where

the application wants to handle contact selection itself, like in the home screen

scenario (Figure 2.2, page 4).

5. Implementation 25

sendFile method

The sendFile() method prepares for sending the passed �le to the other end of the

wormhole. If passed, the mime-type is used to determine the proper action for the

�le. The method has two versions, one that takes in a QFile reference (Table 5.2),

and another that takes in a �le name (Table 5.3). The former will resolve the �le

name and call the latter.

Table 5.2: Arguments and return value of the sendFile() method

sendFile()
Arguments 2

�le A reference to an open QFile. The ownership of the QFile
is moved to the returned WormholeFile object, and will be
closed once the object is destroyed.

mimeType (Optional) A string specifying the mime-type of the sent
�le. If not speci�ed, determined from the �le name re-
turned by the �leName() method of passed �le.

Return value A shared pointer to the wormhole �le object, or NULL
pointer on error.

Errors If the �le is not open, or the manager could not determine
transfer channel for the �le, returns NULL pointer.

Table 5.3: Arguments and return value of the overloaded sendFile() method

sendFile()
Arguments 2

�leName The name of the �le to be sent. May be relative to current
working directory, or a absolute path.

mimeType As in 5.2.
Return value A shared pointer to the wormhole �le object, or NULL

pointer on error.
Errors If the �le could not be opened or the manager could not de-

termine transfer channel for the �le, returns NULL pointer.
Notes The Qt main loop may be executed during the call to this

method.

The method will seek the passed �le to the beginning before sending. The �le

will be transferred even if the caller drops its reference to the WormholeFile and

Wormhole objects. Only way to cancel the transfer is by using the cancel() method

of the WormholeFile (see 5.1.2).

The �le sent must be a regular �le, and its size must be known at the time the

transfer starts, and it must not be changed during the transfer.

5. Implementation 26

sendStream method

The sendStream() method will open a stream to the other end of the wormhole and

return a QIODevice object. The method is described in Table 5.4. All data written

into the QIODevice is passed through the stream.

Table 5.4: Arguments and return value of the sendFile() method

sendStream()
Arguments 1

mimeType A mime type for the data being sent. Must be de�ned to
determine correct application at receiving end.

Return value A QIODevice that can be used to transfer data. On errors
a closed QIODevice is returned.

Errors If the manager could not determine transfer channel for the
stream, a closed QIODevice is returned.

Notes The QIODevice refers to a QIODevice object owned by the
Wormhole, and all streams are closed when the Wormhole
object is destroyed.

For easier handling, the QIODevice may be used through the Qt wrappers like

QDataStream.

incomingFile signal

The incomingFile signal is emitted whenever a �le transfer request is received from

the other end of the wormhole. The signal is described in Table 5.5. The signal is

only emitted by the wormholes that are created by a WormholeServer object that

is handling the mime type of the �le.

Table 5.5: Parameters of the incomingFile signals

incomingFile
Parameters 1

�le A shared pointer to object representing the �le being re-
ceived.

If the pointer is not shared, the transfer will be continued, and �leReceived signal

is emitted once the transfer is complete. The transfer can be cancelled at any point

using the cancel() method of the WormholeFile (see 5.1.2).

receivedFile signal

The receivedFile signal is emitted whenever a �le transfer is completed. The signal

is described in Table 5.6. The signal is only emitted by the wormholes that are

5. Implementation 27

created by a WormholeServer object that is handling the mime type of the �le.

Table 5.6: Parameters of the receivedFile signal

receivedFile
Parameters 1

�le A shared pointer to object representing the received �le.

If the pointer is not shared, the WormholeFile is destroyed and the �le will be

deleted. If the �le should persist, it should be moved to another place before releasing

the WormholeFile.

Code example

In Program 5.1 is a listing of choosing a �le to send and then requesting a Wormhole

to send the �le to. The code �rst creates a �le open dialog, requesting the user to

select a �le. It then creates a Wormhole, which causes the Wormhole manager to

query a contact from the user. Then it calls the sendFile method, which is shown

in Program 5.2.

void SomeClass::beginSending()

{

QString file = QFileDialog::getOpenFileName();

if (file.isNull())

{

// User pressed cancel.

return;

}

this.wormhole = Wormhole::create();

if (this.wormhole.isNull())

{

// User pressed cancel.

return;

}

sendFile(file);

}

Program 5.1: Simple code example of usage of Wormhole class

5. Implementation 28

5.1.2 WormholeFile class

The WormholeFile class is used for following the progress of �le transfers. It can

be queried for details of the �le, and used to cancel the transfer. The methods and

signals are shown in Figure 5.3.

WormholeFile
+getName(): QString
+getTmpPath(): QString
+getTransferred(): quint64
+getSize(): quint64
+getRate(): quint
+cancel()
+<<signal>> progress()
+<<signal>> error()

Figure 5.3: Details of the WormholeFile class

The wormhole will keep a strong reference (a QSharedPointer) to the object until

the transfer is complete or aborted. After emitting the �leReceived or error signal,

Wormhole drops the reference, and if no one else has a reference, the WormholeFile

is destroyed.

When a WormholeFile is destroyed, the temporary �le is unlinked. Before drop-

ping its reference on the object, the user should move the �le to another location.

Special care should be taken when using the object from multiple locations, because

only one should move the �le. On platforms that support it, hard links may be used

to �ght this problem, but they should only be used if really needed.

getName method

The getName() method returns the �le name reported by the sending end. The name

can be used to determine the �le name onto which the transferred �le is saved, or

as a hint in a �Save as� dialog. The getName() method is described in Table 5.7.

The returned name is just as reported by the sending end, the extension used

might not match the mime type of the �le. When determining the action on

the �le, the mime type should be used. Only if the mime type is reported as

�application/octet-stream�, should the �le name be taken into account.

getTmpPath method

The getTmpPath() method returns the temporary �le used for saving the �le being

transferred. The getTmpPath() method is described in Table 5.8.

On destruction of the object, the returned �le is unlinked.

5. Implementation 29

Table 5.7: Arguments and return value of the getName() method

getName()
Arguments None.
Return value A string containing the name of the �le being transferred.

This is just the �le name reported by the sending end, no
path information.

Errors If the sending end did not report a name, may return
NULL.

Notes The �le extension of the �le should not be used to deter-
mine the action, but rather the mime type.

Table 5.8: Arguments and return value of the getTmpPath() method

getTmpPath()
Arguments None.
Return value A string containing the temporary name of the �le being

transferred with full path. When transfer is complete, the
user should move the �le.

Errors Returns NULL for �les being sent.
Notes The returned �le name may not have correct �le extension,

for naming purposes use the getName().

getTransferred method

The getTransferred() method returns the amount of bytes that have already been

transferred. The getTransferred() method is described in Table 5.9.

Table 5.9: Arguments and return value of the getTransferred() method

getTransferred()
Arguments None.
Return value An integer containing the amount of bytes already trans-

ferred of the �le.
Errors None.
Notes The returned value may be lower than the actual amount

of data. The value returned is from the same time as the
previous progress signal.

A call to the getTransferred() method does not cause a round-trip over D-Bus,

but rather returns the local value received from the daemon process in last progress

update. More accurate �gure might be obtainable using the stat() system function

on the temporary �le.

If a percentage number is needed, it can be obtained using the following snippet:

5. Implementation 30

qdouble percentage = file.getTransferred() * 100 / file.getSize();

getSize method

The getSize() method returns the total amount of bytes in the �le being transferred.

The getSize() method is described in Table 5.10.

Table 5.10: Arguments and return value of the getSize() method

getProgress()
Arguments None.
Return value An integer containing the total bytes of the �le.
Errors None.

The value returned by getSize is always valid. If the size of the �le changes during

transfer, the transfer is cancelled once noticed.

getRate method

The getRate() method returns the average transfer rate for the last ten seconds.

The value is given in bytes per second. The getRate() method is described in Table

5.11.

Table 5.11: Arguments and return value of the getRate() method

getRate()
Arguments None.
Return value An integer containing the average number of bytes trans-

ferred in a second over the last 10 seconds.
Errors None.
Notes The returned value may di�er from the current transfer

rate. The value returned is from the same time as the
previous progress signal.

The remaining transfer time can be calculated with following code:

qdouble seconds = (file.getSize() - file.getTransferred()) /

file.getRate();

cancel method

The cancel() method will cancel a �le transfer. Received data is no explicitly de-

stroyed, the cancelled object will stay usable. Calling cancel() will cause the error

signal to be emitted, and getRate() method will return 0 for subsequent calls. The

cancel() method is described in Table 5.12.

5. Implementation 31

Table 5.12: Arguments and return value of the cancel() method

cancel()
Arguments None.
Return value None.
Errors None.
Notes It is safe to call the function multiple times. Any subse-

quent calls are silently ignored.

Once a �le transfer is cancelled, the connection is closed, and no data is added to

the �le anymore. The getTransferred() will return the actual amount of bytes that

were transferred up to the cancellation point.

progress signal

The progress signal is emitted periodically during a �le transfer. The signal is

described in Table 5.13. When the WormholeFile receives a noti�cation from the

daemon, it will update the transferred byte count and transfer rate and emit progress

signal.

Table 5.13: Parameters of the progress signal

progress
Parameters None.

The delay between progress signal emissions is the minimum of the following three

values:

• 10 seconds,

• duration of 1% of total transfer, but minimum of 5 seconds and

• 1 second, if remaining transfer time is less than 10 seconds.

These rules should allow decent interactivity for the user without �ooding the D-Bus

message bus.

error signal

The error signal is emitted when a �le transfer is stopped for some reason. The

signal is described in Table 5.14.

5. Implementation 32

Table 5.14: Parameters of the error signal

error
Parameters None.

Code example

In Program 5.2 is a simple example of sending a �le and following the progress until

the transfer is complete.

void SomeClass::onProgress()

{

quint64 total = file->getSize();

quint64 bytesTransferred = file->getTransferred();

if (bytesTransferred == total)

{

qDebug() << "Transfer complete.";

file = NULL;

}

}

void SomeClass::sendFile(QString &file)

{

QSharedPointer<WormholeFile> file = this.wormhole.SendFile(file);

if (file.isNull())

{

// Something failed.

return;

}

this.file = file;

connect(file.data(), SIGNAL(progress()),

this, SLOT(onProgress()));

}

Program 5.2: Simple code example of usage of WormholeFile class

5.1.3 WormholeServer class

The server class is for receiving incoming wormhole requests. All wormholes coming

from the server object are validated by the manage and no user interaction is needed.

5. Implementation 33

The methods and signals are shown in Figure 5.4.

WormholeServer
+create(identifier:QString): QSharedPointer<WormholeServer>
+<<signal>> newWormhole(wormhole:QSharedPointer<Wormhole>)

Figure 5.4: Details of the WormholeServer class

Once a WormholeServer class is instantiated with the create() method, the signal

must be connected to before allowing the Qt main loop be run. The object will

register itself with the daemon, and may immediately receive incoming wormhole

noti�cations when entering the Qt main loop.

create method

WormholeServer is an abstract class, and cannot be instantiated with the new key-

word. It can only be instantiated via the create() method, which uses the Worm-

holeManager class to request a wormhole server object. The method is described

in Table 5.15. The ownership of the returned object must be handled using shared

pointers. Successive calls to the create() method may return the same object, if the

identi�er is the same.

Table 5.15: Arguments and return value of the create() method

create()
Arguments 1

identi�er A string identi�er for the program being run. The identi�er
must be the same as the .desktop �le name (see 4.4).

Return value A shared pointer to the wormholeserver object, or NULL
pointer if the program identi�er was not valid.

Errors May fail if no connection to D-Bus, not enough memory,
or some internal error in manager. In error cases returns
NULL pointer.

Notes The Qt main loop will be executed during the call to this
method.

newWormhole signal

The newWormhole signal is emitted whenever a request is received from a contact

to the program. The signal is described in Table 5.16.

If the pointer is not shared, all transfer are cancelled, including �le transfers. The

receiver should connect to all signals of the wormhole object before returning.

5. Implementation 34

Table 5.16: Parameters of the newWormhole signal

newWormhole
Parameters 1

wormhole A shared pointer to an incoming wormhole object.

Code example

In Program 5.3 is an example of creating a WormholeServer and reading all data from

an incoming stream. The program �rst creates the WormholeServer instance and

connects the newWormhole signal to the gotWormhole handler. Whenever the signal

is received, the handler connects the incomingStream handler to the incomingStream

signal of the new Wormhole got as the argument of the signal.

5.2 D-Bus Interfaces

The interfaces for the communication between client and manager are important.

The di�erent interfaces are described in the following subsections. In the tables

describing the D-Bus methods and signals, the signature and return values �elds

contain the D-Bus signature. The signature contains the type identi�ers of all ar-

guments joined together. For example, signature �ss� means two string arguments.

The used data types are shown in Table 5.17.

The user of any of the methods in any of the D-Bus interfaces should prepare for

the D-Bus set of standard errors [4] in addition to the ones mentioned in descriptions.

These standard errors are used where appropriate. They are described in method

details, except for insu�cient memory and no network situations, these standard

errors are common for all methods.

Table 5.17: D-Bus datatypes

Identi�er Data type
s String
o Object path
t 64-bit unsigned integer
u 32-bit unsigned integer

5.2.1 com.nokia.Wormhole.Manager interface

The com.nokia.Wormhole.Manager interface is used to register clients. The interface

is implemented by a manager object, that is exported to D-Bus object path �/�.

5. Implementation 35

MyClass::MyClass()

{

...

this.wormholeServer = WormholeServer::create("MyApplication");

connect(this.wormholeServer.data(),

SIGNAL(newWormhole(QSharedPointer<Wormhole>)),

this,

SLOT(gotWormhole(QSharedPointer<Wormhole>)));

}

void MyClass::gotWormhole(QSharedPointer<Wormhole> wormhole)

{

this.wormhole = wormhole;

connect(wormhole.data(),

SIGNAL(incomingStream(QSharedPointer<QIODevice>)),

this,

SLOT(incomingStream(QSharedPointer<QIODevice>)));

}

void MyClass::incomingStream(QSharedPointer<QIODevice> stream)

{

this.stream = stream;

connect(stream.data(), readyRead(),

this, incomingData());

}

void MyClass::incomingData()

{

QByteArray data = this.stream->readAll();

qDebug() << "Read " << data.size() < " bytes of data.";

}

Program 5.3: Simple code example of usage of WormholeServer class

The interface has two methods. One for requesting a wormhole object, and one

for requesting a wormholeserver object. The details of the former are in Table 5.18

and the latter in Table 5.19.

5.2.2 com.nokia.Wormhole.Wormhole

The com.nokia.Wormhole.Wormhole interface is implemented by the Wormhole ob-

jects in the manager. Any object returned by RequestWormhole in the com.nokia.

Wormhole.Manager, or received in a NewWormhole signal in the com.nokia. Worm-

5. Implementation 36

Table 5.18: Details of the RequestWormhole method

RequestWormhole
Description The RequestWormhole method creates a Wormhole object

to the contact identi�ed by contact argument, or to a con-
tact queried from the user.

Signature s
contact A string identi�er of the contact to which the wormhole is

requested. Empty string if not known.
Return values o

path The object path of the created Wormhole object.
Errors If the end user does not select any contact, or the pro-

vided contact does not match any in the, returns error
�com.nokia.Wormhole.Error.NoContact.�

Table 5.19: Details of the RegisterServer method

RegisterServer
Description The RegisterServer creates a WormholeServer object for

the client application identi�ed by identi�er argument.
Signature s

identi�er A string identi�er for the program being run. The identi�er
must be the same as the .desktop �le name (see 4.4).

Return values o
path The object path of the created WormholeServer object.

Errors If the provided identi�er cannot be used
to identify a program, returns error
�com.nokia.Wormhole.Error.NoSuchClient.�

hole.Server must implement this interface.

The Interface has two methods: one for sending a �le and one for starting an

outgoing stream. The methods are described in Tables 5.20 and 5.21 respectively.

It also has two signals: one for notifying on incoming �les, and one for notifying on

incoming streams. The signals are described in Tables 5.22 and 5.23 respectively.

5.2.3 com.nokia.Wormhole.Server

The com.nokia.Wormhole.Server interface provides the signalling for incomng worm-

holes. The interface only has one signal, the NewWormhole signal. The details of

the signal can be found in Table 5.24.

5. Implementation 37

Table 5.20: Details of the SendFile method

SendFile
Description The SendFile method begins transfer of the �le given in

the path argument.
Signature sss

path The absolute �le path at which the �le can be found; must
be a local �le.

�lename The name for the �le that is reported to the recipient.
mimeType The mime type of the �le being sent.

Return values o
path The object path of the created WormholeFile object.

Errors If no �le transfer to the contact of the
Wormhole object can be made, returns error
�com.nokia.Wormhole.Error.NoRoute.�

Table 5.21: Details of the SendStream method

SendStream
Description The SendStream method opens a stream over the wormhole

passing through any data written into the named pipe.
Signature ss

path The �le path of the named pipe.
mimeType The mime type of the stream being sent.

Return values o
path The object path of the created WormholeStream object.

Errors If no stream transfer to the contact of the
Wormhole object can be made, returns error
�com.nokia.Wormhole.Error.NoRoute.�

Table 5.22: Details of the IncomingFile signal

IncomingFile
Description The IncomingFile signal is sent whenever there is an in-

coming �le request from the contact.
Signature o

path The object path of the WormholeFile object created for the
incoming �le.

5.2.4 com.nokia.Wormhole.File

The com.nokia.Wormhole.File interface is implemented by objects at paths returned

by the SendFile in com.nokia.Wormhole.Wormhole, or those received as parameter

for IncomingFile signal from the same interface. The interface has one method and

5. Implementation 38

Table 5.23: Details of the IncomingStream signal

IncomingStream
Description The IncomingStream signal is sent whenever there is an

incoming stream request from the contact.
Signature o

path The object path of the WormholeStream object created for
the incoming stream.

Table 5.24: Details of the NewWormhole signal

NewWormhole
Description The NewWormhole signal is sent whenever a request for

a �le or stream is received and there was no Wormhole
instance to handle the request.

Signature o
path The object path of the Wormhole object created for the

incoming wormhole.

one signal.

The GetDetails method is described in Table 5.27 and the Progress signal in Table

5.26. The Progress signal is emitted at intervals as described in progress signal under

subsection 5.1.2.

Table 5.25: Details of the GetDetails method

GetDetails
Description The GetDetails method fetches information of the �le

transfer.
Signature
Return values ssstt

�lename The name for the �le being transferred.
path The name of the �le being sent, or the temporary path

where the �le is being saved.
mimeType The mime type of the �le being transferred.
size The size of the �le being transferred.
transferred The amount of bytes already transferred.

Errors Common errors apply.

5.2.5 com.nokia.Wormhole.Stream

The com.nokia.Wormhole.Stream interface is implemented by objects at paths re-

turned by the SendStream method in the com.nokia.Wormhole.Wormhole interface,

5. Implementation 39

Table 5.26: Details of the Progress signal

Progress
Description The Progress signal noti�es on updates on the transfer.
Signature tu

transferred The amount of bytes already transferred.
rate The transfer rate in bytes per second.

or those received as parameter for IncomingStream signal on the same interface.

The Stream interface only has one method for getting basic details of the stream.

Actual data transfer is done via the named pipe.

Table 5.27: Details of the GetDetails method

GetDetails
Description The GetDetails method fetches information of the stream.
Signature
Return values ss

path The �le path of the named pipe.
mimeType The mime type of the �le being transferred.

Errors Common errors apply.

5.2.6 com.nokia.Wormhole.Object

All wormhole objects implement the com.nokia.Wormhole.Object interface. The

interface has only one method, UnRef. Calling the method will drop the reference

of the calling service to the object. All remote references are named, so calling this

method more than once from one service has no e�ect. The client library should

always call the UnRef method when a representing instance is destroyed.

Table 5.28: Details of the UnRef method

GetDetails
Description Drops the callers reference to the object.
Signature
Return values

5.3 Implementation of the client library

The client library is mostly a thin convenience wrapper for the D-Bus API of the

manager. It hides complexity of asynchronous calls from the application and also

all the trouble of proxy object creation from the returned object paths.

5. Implementation 40

The WormholeManager class connects to the D-Bus session bus upon creation

and the same connection is used for all created objects. Each remote object class

has an autogenerated interface class that is a subclass of QDBusAbstractInterface.

The interface classes are used to do the D-Bus calls.

The library contains the abstract public classes introduced in the API section,

and also the private actual implementations, that inherit the public ones. This

is to further hide any implementation details from the programmer, they only see

things they need to care about. Each public class, Wormhole, WormholeFile and

WormholeServer has a private counterpart, WormholeImpl, WormholeFileImpl and

WormholeServerImpl. The main reason for the need of these is that in Qt signals

can only be listened to by QObjects, and signals can only be emitted by the object

itself.

For streams, the library creates a named pipe, and the name of the pipe is passed

to the manager. The returned QIODevice object points to this pipe. This way,

the data will be passed straight through from the client to the manager, without

having D-Bus in between; it will save a process switch, which is important on mobile

devices.

For �les, the library will pass the �le name with full path. The �le must be

accessible using the standard QFile class.

5.4 Implementation of the manager

The manager is implemented in the standard D-Bus manner. The actual manager

object is exported into D-Bus object path �/�. Upon request, the manager creates

wormhole objects and server objects.

Each wormhole instance is generated a unique object path, which is then passed

to the client that requested the instance. The path starts with �/wormhole/�, then

the contact id stripped of disallowed characters (only alphanumerics and underscore

are allowed), and �nally a running number. Even though it would be possible to

use a shared instance for all requests for sending, each request will be served with a

newly created instance. For servers the path should start with �/server/�, and the

name of the program is appended. This is enough to uniquely identify the server

object, and no further data is needed.

When a new wormhole instance is created, the D-Bus service that requested it

is monitored and if it goes away during the lifetime of the wormhole, the wormhole

is destroyed, and all associated transfers are closed. The following is implemented

using the NameOwnerChanged-signal from the D-Bus bus. The manager only lis-

tens for the unique names of the processes that have registered a wormhole. The

WormholeServer instances are handled in a similar manner.

The architecture of the manager is as alread presented in Figure 5.1 on page

5. Implementation 41

23. It contains counterparts for all the public classes in the API. In addition, it

also contains a ContactChooser class, that is a dialog for choosing a contact, and

a DataStream object, that is the counterpart for the streams of type QIODevice in

the API.

42

6. CONCLUSIONS

The resulting API can be evaluated using the de�ned use-cases. For the image

viewer to be able to send a �le, it will need to

• request a wormhole using the Wormhole::create()-method,

• check the return value,

• send the �le using the Wormhole::sendFile()-method,

• connect to two signals of the returned WormholeFile object and

• implement handler slots for the signals.

This sums up to about 10 lines of code, including the update of the progress meter

in the toolbar.

In the other use-case, the video player, the player needs to

• register itself to receive data using the WormholeServer::create() method,

• connect to the newWormhole signal,

• implement handler slot for the newWormhole signal,

• register to the Wormhole::incomingStream-signal and

• implement handler slot for incomingStream signal.

This adds, again, about 10 lines of extra code. The incomingStream signal gives

a standard QIODevice, and the player is expected to already know how to handle

such.

All in all, the amount of code lines goes quite low. Mostly this is due to not having

to choose the contact, or assess the trustworthiness of the incoming request. Even

the Wormhole class could be skipped, but it might not be a good design decision as

then the program would not have any pointer to the contact it is interacting with.

The Wormhole class could use a SendMessage() method for sending normal IM

messages. This way the same interface could be used to quickly comment on trans-

mitted data.

6. Conclusions 43

In the future, it might be useful to be able to query all ongoing transfers, and

allow creating persistent �le transfers. That way the system could have a single UI

for all �le transfers, and the applications could ignore all details of the progress.

This would also allow sending �les to contacts that are not available for �le transfer

during the lifetime of the application.

44

BIBLIOGRAPHY

[1] Collabora. telepathy-qt4 source. http://git.collabora.co.uk/?p=

telepathy-qt4.git;a=summary. Read 22.4.2010.

[2] Patrick Feisthammel. Pgp: Explanation of the web of trust of pgp. http:

//www.rubin.ch/pgp/weboftrust.en.html. Read 21.5.2010.

[3] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME)

Part Two: Media Types. RFC 2046 (Draft Standard), November 1996. Updated

by RFCs 2646, 3798, 5147.

[4] freedesktop.org. D-bus: Protocol constants. http://dbus.freedesktop.org/

doc/api/html/group__DBusProtocol.html. Read 31.5.2010.

[5] freedesktop.org. freedesktop.org - Software/dbus. http://www.freedesktop.

org/wiki/Software/dbus. Read 28.5.2010.

[6] freedesktop.org. Telepathy Wiki - Components. http://telepathy.

freedesktop.org/wiki/Components. Read 28.5.2010.

[7] GNOME Foundation. Empathy - gnome live! http://live.gnome.org/

Empathy. Read 2.6.2010.

[8] C. Kalt. Internet Relay Chat: Architecture. RFC 2810 (Informational), April

2000.

[9] Danielle Madeley and Murray Cumming. Telepathy Developer's Manual. http:

//people.collabora.co.uk/~danni/telepathy-book/. Read 22.4.2010.

[10] Nokia. Maemo Software | Nokia > The software behind your mobile computer.

http://maemo.nokia.com/. Read 2.6.2010.

[11] Nokia. Qt - A cross-platform application and UI framework. http://qt.nokia.

com/. Read 28.5.2010.

[12] Nokia. Qt 4.6 Events and Filters. http://doc.qt.nokia.com/4.6/

eventsandfilters.html. Read 22.4.2010.

[13] Nokia. Qt 4.6: QSharedPointer Class Reference. http://doc.qt.nokia.com/

4.6/qsharedpointer.html. Read 22.4.2010.

[14] Nokia. Qt 4.6 Signals and Slots. http://doc.qt.nokia.com/4.6/

signalsandslots.html. Read 22.4.2010.

http://git.collabora.co.uk/?p=telepathy-qt4.git;a=summary
http://git.collabora.co.uk/?p=telepathy-qt4.git;a=summary
http://www.rubin.ch/pgp/weboftrust.en.html
http://www.rubin.ch/pgp/weboftrust.en.html
http://dbus.freedesktop.org/doc/api/html/group__DBusProtocol.html
http://dbus.freedesktop.org/doc/api/html/group__DBusProtocol.html
http://www.freedesktop.org/wiki/Software/dbus
http://www.freedesktop.org/wiki/Software/dbus
http://telepathy.freedesktop.org/wiki/Components
http://telepathy.freedesktop.org/wiki/Components
http://live.gnome.org/Empathy
http://live.gnome.org/Empathy
http://people.collabora.co.uk/~danni/telepathy-book/
http://people.collabora.co.uk/~danni/telepathy-book/
http://maemo.nokia.com/
http://qt.nokia.com/
http://qt.nokia.com/
http://doc.qt.nokia.com/4.6/eventsandfilters.html
http://doc.qt.nokia.com/4.6/eventsandfilters.html
http://doc.qt.nokia.com/4.6/qsharedpointer.html
http://doc.qt.nokia.com/4.6/qsharedpointer.html
http://doc.qt.nokia.com/4.6/signalsandslots.html
http://doc.qt.nokia.com/4.6/signalsandslots.html

BIBLIOGRAPHY 45

[15] One Laptop Per Child association. OLPC. http://wiki.laptop.org/go/The_

OLPC_Wiki. Read 2.6.2010.

[16] Pidgin developer team. Pidgin, the universal chat client. http://pidgin.im/.

Read 28.5.2010.

[17] Pidgin developer team. WhatIsLibpurple - Pidgin. http://developer.

pidgin.im/wiki/WhatIsLibpurple. Read 28.5.2010.

[18] Eric Prud'hommeaux and Andy Seaborne. Sparql query language for rdf. http:

//www.w3.org/TR/rdf-sparql-query/. Read 22.4.2010.

[19] M.P. Robillard. What Makes APIs Hard to Learn? Answers from Developers.

IEEE Software, 26(6):27�34, 2009.

[20] Bjarne Stroustrup. C++0x faq. http://www2.research.att.com/~bs/C+

+0xFAQ.html. Read 22.4.2010.

[21] Timo Strömmer. Tiedon siirto MONSN-verkossa. Master's thesis, University

of Oulu, 2010.

http://wiki.laptop.org/go/The_OLPC_Wiki
http://wiki.laptop.org/go/The_OLPC_Wiki
http://pidgin.im/
http://developer.pidgin.im/wiki/WhatIsLibpurple
http://developer.pidgin.im/wiki/WhatIsLibpurple
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www2.research.att.com/~bs/C++0xFAQ.html
http://www2.research.att.com/~bs/C++0xFAQ.html

	Introduction
	Concept of wormhole
	Overview
	Device to device wormholes
	Program to program wormholes
	Wormhole API

	Starting points
	Programming framework
	Qt
	D-Bus

	The communication framework
	Telepathy
	Mission Control
	Supported protocols
	MONSN

	Contact storage

	Methods
	Use cases
	Architecture
	Manager
	Client library

	Security considerations
	Configuration

	Implementation
	Program-level interface
	Wormhole class
	WormholeFile class
	WormholeServer class

	D-Bus Interfaces
	com.nokia.Wormhole.Manager interface
	com.nokia.Wormhole.Wormhole
	com.nokia.Wormhole.Server
	com.nokia.Wormhole.File
	com.nokia.Wormhole.Stream
	com.nokia.Wormhole.Object

	Implementation of the client library
	Implementation of the manager

	Conclusions
	Bibliography

