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Scattering is a physical phenomenon which can be modeled with a boundary value

problem for a partial differential equation. This boundary value problem gives rise

to two kind of problems: direct scattering problem and inverse scattering problem.

In the former one tries to find the solution of the boundary value problem while in

the latter the aim is to determine the boundary (of the scatterer) given information

about the solution of the boundary value problem. The main goal of this thesis is

to analyze the direct scattering problem to an extent that is necessary in order to

study the inverse scattering problem both theoretically and numerically.

This thesis establishes that the boundary value problem arising from two-dimen-

sional acoustic obstacle scattering of time-harmonic plane waves has a unique so-

lution. In particular, the so-called far field pattern for the solution is derived; the

far field pattern is a central concept in view of the corresponding inverse problem.

The inverse problem is briefly considered together with the factorization method

for solving the inverse problem. Computational methods both for solving the di-

rect problem and the inverse problem are developed and illustrated with numerical

examples.
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TAMPEREEN TEKNILLINEN YLIOPISTO

Teknis-luonnontieteellinen koulutusohjelma

ESA NIEMI: Akustinen obstaakkelisironta ja faktorisaatiomenetelmä
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Sironta on fysikaalinen ilmiö, jota voidaan mallintaa osittaisdifferentiaaliyhtälön

reuna-arvo-ongelmalla. Tähän reuna-arvo-ongelmaan pohjautuu sekä suora että

käänteinen sirontaongelma. Suorassa sirontaongelmassa etsitään ratkaisua reuna-

arvo-ongelmaan kun taas käänteisessä sirontaongelmassa tavoitteena on määrätä

(sirottajan) reuna kun reuna-arvo-ongelman ratkaisu tunnetaan kaukana sirotta-

jasta. Tämän diplomityön päätavoitteena on analysoida suoraa sirontaongelmaa si-

inä määrin kuin on vastaavaan käänteiseen ongelmaan perehtymisen kannalta tarpeel-

lista.

Tässä diplomityössä tarkastellaan aika-harmonisten akustisten tasoaaltojen kak-

siulotteista obstaakkelisirontaa. Erityisesti näytetään että kyseistä suoraa sirontaon-

gelmaa mallintavalla reuna-arvo-ongelmalla on yksikäsitteinen ratkaisu ja johdetaan

sille niin kutsuttu kaukokenttäkuvio, joka on keskeinen käsite vastaavan käänteisen

ongelman kannalta. Vastaavaa käänteistä ongelmaa ja faktorisaatiomenetelmää sen

ratkaisemiseksi tarkastellaan lyhyesti. Lisäksi kehitetään ja havainnollistetaan nu-

meerisin esimerkein laskennallisia menetelmiä sekä suoran että käänteisen ongelman

ratkaisemista varten.
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MATHEMATICAL NOTATION

Rn n-dimensional Euclidean space

x · y Euclidean inner product of vectors x and y

|x| Euclidean norm of vector x

Ω closure of set Ω

∂Ω boundary of set Ω

C(Ω) set of continuous functions on Ω

Ck(Ω) set of k times continuously differentiable functions on Ω

L2(Ω) set of square-integrable functions on Ω

z̄ complex conjugate of number z ∈ C

‖f‖∞,Ω = ‖f‖∞ supremum norm of function f : Ω → C

S1 unit circle {x ∈ R2 : |x| = 1}
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1. INTRODUCTION

Acoustic wave motion in homogeneous inviscid fluid propagates“unchangingly”until

it encounters an obstacle. Then the incident wave undergoes reflections, that is,

the wave is forced to deviate from a straight trajectory. This phenomenon is called

scattering, and the wave field caused by reflections is known as scattered field. Figure

1.1 illustrates these concepts.

An interesting question arises: given an incident field and the corresponding scat-

tered field at a large distance from the unknown obstacle, is it possible to determine

the shape of the obstacle and if so, how to find the shape? In order to answer this

question, several concepts and tools both from physics and mathematics are neces-

sary. This thesis is concerned with the mathematical ones and therefore the starting

point is the physical model of acoustic obstacle scattering written in mathematical

form.

Because of the large number of different kind of scattering problems, it is not

possible to discuss all of them in one thesis. Therefore this work was restricted to

consider the case of

(i) two spatial dimensions,

(ii) time-harmonic acoustic plane waves, and

(iii) impenetrable sound-hard obstacles.

Omitting all the details, which will be discussed in Chapter 2, the formulation of

the physical scattering model in the case of (i)–(iii) leads to the exterior boundary

value problem

∆w(x) + k2w(x) = 0, x ∈ R
2 \D,

∂w

∂ν
(x) = g(x), x ∈ ∂D,

lim
r→∞

√
r

(
∂w

∂r
− ikw

)

= 0, r = |x|,

(1.1)

where the mapping w : R2 \ D → C represents the scattered field, the function

g is defined by g(x) = −(∂/∂ν)eikd·x, the set D ⊂ R2 depicts an obstacle with a

sufficiently smooth boundary ∂D, the vector ν = ν(x) denotes the outward unit
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(a) Incident field (plane wave). (b) Scattered field. (c) Total field.

Figure 1.1: Illustration of incident, scattered and total fields. Total field is the sum of
incident and scattered fields. The black disks depict the obstacle.

normal to ∂D at x ∈ ∂D, and k > 0 and d ∈ S1 are the wave number and the

direction of propagation of the incident plane wave, respectively.

The basic problem regarding the boundary value problem (1.1) is to answer to

the questions of uniqueness and existence of solution w, and to find a solution if it

exists. This problem is known as the direct scattering problem, and physically it

corresponds to the problem of determining the scattered field w for a given incident

field and obstacle.

A more interesting problem, both from practical and mathematical point of view,

is the corresponding inverse problem, in which the aim is to find information about

the obstacle D ⊂ R
2 given the incident field and the scattered field at a large

distance from the obstacle. The solution of this problem provides an answer to the

question addressed in the beginning of this chapter hence being of great interest in

terms of applications such as medical imaging, material science, radar, sonar, and

nondestructive testing.

This thesis considers both the direct and inverse problem. In terms of the direct

problem the uniqueness and existence of its solution are established. The existence

proof is based on the method of boundary integral equations and provides us the

solution in a form that can be used in numerical computations. The inverse problem

is not treated as thoroughly but the uniqueness of its solution is established as well.

The main motivation of this work is twofold. First, despite the fact that most

of this thesis is devoted to studying the direct scattering problem, the work aims

at studying the inverse scattering problem. It is essential to understand the direct

problem in order to understand the inverse problem, since the solution of the inverse

problem is also based on the model of the direct problem. The second goal is to de-

velop numerical methods for solving direct scattering problems. These methods can

then be used to generate test data for testing the inversion methods computationally.

In addition to the analysis of direct and inverse problems, a relatively new and



1. Introduction 3

promising method, known as factorization method, for solving the inverse problem

is studied both theoretically and numerically. The motivation is to demonstrate an

approach to the inverse scattering problem and illustrate its numerical performance

as well as to verify the computational methods developed for the direct problem.

The standard modern monograph on inverse scattering problems is [5] by David

Colton and Rainer Kress. Also their earlier monograph [4] is essential in order to get

a thorough analysis of direct scattering problems. The analysis in these monographs

is carried out in three dimensions as opposed to the two-dimensional case treated in

this thesis. Although the analysis is quite similar in two and three dimensions, there

are some differences. The direct problem in two dimensions is treated for example

in [13], and two-dimensional inverse scattering problems are considered for example

in [2] and [3]. A more explanatory treatment on inverse scattering can be found in

[7], where most proofs are omitted but a large number of appropriate references is

given.

The factorization method was developed by Andreas Kirsch and Natalia Grinberg

in four publications between 1998 to 2004. In 2008 they published a monograph [9]

on the method. This monograph presents the theoretical basis of the method and

applications to inverse scattering problems and to electrical impedance tomography.

The structure of this thesis is as follows. Chapter 2 is the core of this work. It

presents the theory of acoustic obstacle scattering ranging from the physical back-

ground of the problem to the uniqueness and existence of its solution. In addition,

it introduces the concept of far field pattern which is of central importance in terms

of the inverse scattering problem. Chapter 3 briefly discusses the inverse scatter-

ing problem, establishes the uniqueness of its solution, and studies the factorization

method. Chapter 4 deals with computational methods for solving direct scattering

problems as well as a computational implementation of the factorization method.

Finally, Chapter 5 presents the numerical results obtained by using the methods

developed in Chapter 4, and Chapter 6 is devoted to conclusions.
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2. DIRECT ACOUSTIC OBSTACLE SCATTERING

PROBLEM

This chapter is devoted to analyzing the boundary value problem arising from acous-

tic scattering. We begin with a brief discussion on the physical background of the

problem. After that we recall some preliminary results needed in the analysis. Then,

in the next two sections we establish uniqueness and existence of the solution of the

boundary value problem. The existence proof is based on boundary integral equa-

tion method and provides us the solution as a single-layer potential representation

that can be used to compute the solution numerically. Finally, in the last section

we introduce the concept of far field pattern which is of great importance in terms

of the inverse scattering problem.

2.1 Physical background

This section deals with the physical background of acoustic obstacle scattering prob-

lem in two spatial dimensions. The goal is to explain how the boundary value

problem for acoustic obstacle scattering of time-harmonic plane waves is obtained.

Acoustic wave motion in homogeneous isotropic inviscid fluid can be modeled

with the partial differential equation

∆W − 1

c2
∂2W

∂t2
= 0, (2.1)

where W is a scalar valued function modeling the wave (field), and c is the speed

of sound in the fluid. This is a wave equation that can be derived from more

fundamental equations of fluid dynamics, see [5], [8], or [9] for details. In two spatial

dimensions (2.1) can be written in the form

∂2W

∂x 2
1

+
∂2W

∂x 2
2

− 1

c2
∂2W

∂t2
= 0. (2.2)

Physically W corresponds to the velocity potential, that is, the flow velocity of the

fluid is given by the gradient of W .

We will consider only time-harmonic waves, so using the convenient way of writing
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waves in the complex form, W can be represented as

W (x1, x2, t) = Re
{
w(x1, x2)e

−iωt
}
, (2.3)

where w : R2 → C is the space dependent part, ω is the angular frequency of

the wave motion, and t denotes time. Since the operation of taking the real part

commutes with differentiation, the solution of (2.2) can be sought in the complex

form w(x1, x2)e
−iωt. Substituting this expression into (2.2) yields

∂2w

∂x 2
1

e−iωt +
∂2w

∂x 2
2

e−iωt +
ω2

c2
we−iωt = 0,

which gives for w a Helmholtz equation

∆w + k2w = 0, (2.4)

where the wave number k = ω/c is assumed to be real and positive. To summarize,

the space dependent part w : Ω ⊂ R2 → C of any time-harmonic wave has to satisfy

the Helmholtz equation (2.4) at every point of its open domain Ω.

In the case of scattering problems, the total wave field W can be viewed as the

sum of the incident field W i and the scattered field W s as illustrated in Figure

REF. Since the angular frequency ω of the scattered wave will be equal to that of

the incident field, we can write

W i = Re
{
wi(x1, x2)e

−iωt
}

and W s = Re
{
ws(x1, x2)e

−iωt
}
,

which yields

W = W i +W s = Re
{(
wi(x1, x2) + ws(x1, x2)

)
e−iωt

}
.

Hence the space dependent part wi(x1, x2)+ws(x1, x2) has to satisfy the Helmholtz

equation,

∆(wi + ws) + k2(wi + ws) = 0.

The linearity of the Laplace operator ∆ allows us to write this as

(
∆wi + k2wi

)
+
(
∆ws + k2ws

)
= 0.

Since W i is a wave, its space dependent part wi satisfies the Helmholtz equation,

and thus

∆ws + k2ws = 0.

In other words, ws also is a solution to the Helmholtz equation.
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In obstacle scattering we need to impose conditions for the solution of the Helmholtz

equation on the boundary of the obstacle. Therefore, assume that the obstacle

D ⊂ R2 is a bounded open subset such that R2 \ D is connected and that the

boundary ∂D is sufficiently smooth. Let ν be a unit normal vector to ∂D directing

to the exterior of D, and d ∈ S1 the direction of propagation of the incident wave,

see Figure 2.1 for an illustration. In the case of so-called sound-hard obstacles the

boundary condition is of the form

∂W

∂ν
=
∂(W i +W s)

∂ν
= 0 on ∂D. (2.5)

This type of boundary condition is called Neumann boundary condition, and phys-

ically it requires that the normal velocity of the wave vanishes on the boundary

∂D.

We notice that the condition (2.5) holds at every instant only if the space depen-

dent part of W is zero on ∂D. Therefore we can write the condition as follows:

∂ws

∂ν
= −∂w

i

∂ν
on ∂D.

In other words, the scattered field can be considered as a wave field whose normal

derivative cancels the normal derivative of the incident field on ∂D.

Finally, we require that the scattered field satisfies the Sommerfeld radiation

condition

lim
r→∞

√
r

(
∂ws

∂ν
− ikws

)

= 0, r = |x|,

where the limit is assumed to hold uniformly in all directions x/|x|. This condition

was introduced by Sommerfeld [14] in 1912, and it ensures the uniqueness of the

scattered field ws and thus also the uniqueness of the total field. Physically it is

related to the fact that the scattered radiation (wave motion) is emitted from the

source to infinity, not from infinity to the source.

To summarize, our model for the acoustic obstacle scattering of time-harmonic

incident plane waves (wi = eikx·d) is the exterior Neumann problem

∆ws + k2ws = 0 in R
2 \D,

∂ws

∂ν
= g on ∂D,

lim
r→∞

√
r

(
∂ws

∂r
− ikws

)

= 0, r = |x|,

(2.6)

where the function g is defined by g(x) = −(∂/∂ν)eikd·x. Essentially all of what

follows is motivated by or directly related to this boundary value problem. In the

analysis we will make some assumptions related for example to the smoothness of
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rAAK
ν(z)

z
D

∂D

R2 \D

Figure 2.1: Open bounded subset D ⊂ R
2 and its boundary ∂D. The vector ν(z) denotes

the outward unit normal to ∂D at z ∈ ∂D.

∂D. These assumptions will be formulated in the forthcoming sections and sepa-

rately for each result.

2.2 Preliminaries

Advanced mathematical analysis typically assumes some preliminary knowledge and

results. This work is no exception. The aim of this section is to present the most

important preliminary results and definitions that will be needed in the analysis of

the boundary value problem (2.6). Most of the results are well known and hence we

will not prove them but refer to existing literature.

2.2.1 Jordan arcs and curves in plane

To motivate the discussion of this subsection, consider an open bounded subset

D ⊂ R2 and its boundary ∂D as illustrated in Figure 2.1. In terms of direct obstacle

scattering D can be interpreted to model the impenetrable obstacle, the goal being

to solve the scattered field in R
2 \D. The approach of this thesis reduces the solving

process to the computation of a line integral over the boundary curve ∂D. In order

to compute this line integral we need a parametrization for the boundary curve.

First we define the parametrization for general arc in R2 and the concept of a simple

closed curve, a Jordan curve, which is of special interest in scattering theory; notice

that the boundary ∂D is a Jordan curve.

Definition 2.2.1. The image Γ ⊂ R2 of a continuous one-to-one mapping x :

[a, b] ⊂ R → Γ or x : (a, b) ⊂ R → Γ is an arc, and the mapping x is a parametriza-

tion of this arc. In particular, Γ ⊂ R2 is a Jordan curve if there exists a parametriza-

tion x such that the mapping t 7→ x(t) is one-to-one on [a, b) and x(a) = x(b).

It is often convenient to set smoothness conditions for a curve, for example, in

order to apply Green’s integral identities. Therefore, we define a concept of Ck-

smooth arcs and curves.

Definition 2.2.2. An arc is said to be Ck-smooth if it has a (Ck) parametrization

x(·) = (x1(·), x2(·)), where x1, x2 ∈ Ck
(
(a, b)

)
and |x′(t)| > 0 for all t ∈ (a, b). In
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the case of a Ck-smooth Jordan curve we additionally require that x(n)(a) = x(n)(b)

for all n ∈ {0, 1, . . . k}.

Consider then a line integral over an arc or a Jordan curve Γ. Assume that Γ is

C1-smooth with a C1 parametrization x : [a, b] → Γ. Then the line integral of an

integrable function f : Γ → R over Γ is

∫

Γ

f(x)ds(x) :=

∫ b

a

f(x(t))|x′(t)|dt. (2.7)

This is well-defined, since the value of the integral is independent of the choice of

the C1 parametrization x (proof is based on the chain rule and change of variables

and can be found in most calculus textbooks, for example [6]). The definiton (2.7)

can also be applied to the case of piecewise C1-smooth boundary by first integrating

over the smooth parts of the boundary and then summing these.

Denoting x(t) = (x1(t), x2(t)) the unit tangent vector at x(t) is

τ(x(t)) :=
1

|x′(t)|(x
′
1(t), x

′
2(t)) (2.8)

provided that x is C1. We notice that by choosing the parametrization appropriately

the outward unit normal at x(t) is given by

ν(x(t)) =
1

|x′(t)|(x
′
2(t),−x′1(t)), (2.9)

since
(
x′1(t), x

′
2(t)
)
·
(
x′2(t),−x′1(t)

)
= 0. Throughout this report ν will denote the

outward unit normal to the Jordan curve in question.

Finally, we define the length of a C1-smooth arc Γ with a C1 parametrization

x : [a, b] ⊂ R → Γ as

l(Γ) :=

∫ b

a

|x′(t)|dt, (2.10)

which again is independent of the choice of x.

When establishing the existence of a solution of (2.6) we will analyze the behavior

of certain line integrals at the vicinity of the boundary ∂D. More specifically, given

z ∈ ∂D we will have to estimate the line integral over the subarc of ∂D in the neigh-

borhood of z. Therefore an appropriate parametrization for this subarc is necessary.

The following lemma guarantees the existence of this kind of parametrization.

Lemma 2.2.3. Assume that ∂D is a C1-smooth Jordan curve and z ∈ ∂D. Then

there exists R > 0 and a parametrization y : (−δ, δ) → Γ(z, δ) given by

y(α) = z + ατ(z) + gz(α)ν(z),
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where Γ(z, δ) = {x ∈ ∂D : x = y(α) with some α ∈ (−δ, δ)}, 0 < δ < R, and

gz ∈ C1
(
(−δ, δ)

)
.

Proof. Let z ∈ ∂D. Without loss of generality we choose for ∂D a C1 parametriza-

tion x : [a, b] → ∂D satisfying z = x(0). Then for any y ∈ ∂D we can write

y − z = ατ(z) + βν(z),

where

α = (y − z) · τ(z) = (x(s) − x(0)) · τ(z) = α(s), and

β = (y − z) · ν(z) = (x(s) − x(0)) · ν(z) = β(s).

In order to see that β can be represented as a function of α = α(s) on some open

interval, we show that the function α has an inverse α−1 on this interval, which then

implies that β can be written as β(α−1(α(s))) = β ◦ α−1(α(s)) =: gz(α). Since

dα

ds
(s) = x′(s) · τ(z) = x′(s) · x

′(0)

|x′(0)| ,

and x′ is continuous, there exists r > 0 such that x′(s) · x′(0) > 0 for s ∈ (−r, r).
Hence dα

ds
(s) > 0 on (−r, r) and the inverse function theorem implies that α has a

C1 inverse α−1 on (−r, r). We have now established that there exists a subarc of

∂D that contains z as its interior point and has a parametrization of the form

y(α(s)) = z + α(s)τ(z) + gz(α(s))ν(z), s ∈ (−r, r),

where gz is a C1 function since β and α−1 are C1 functions. Since α is an increasing

function on (−r, r), we can omit the argument and write

y(α) = z + ατ(z) + gz(α)ν(z), α ∈ (α(−r), α(r)).

The result follows by choosing R = min
{
|α(−r)|, |α(r)|

}
.

2.2.2 Green’s integral identity and unique continuation

Green’s integral identities form a set of three equations that can be derived from

the divergence theorem. They provide a valuable tool when analyzing, for example,

solutions of Laplace and Helmholtz equations. We will need the first one of these

identities in order to show that the exterior Neumann problem (2.6) has at most one

solution.

Green’s first identity in two dimensions is frequently formulated as follows.
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Theorem 2.2.4. (Green’s first identity) Assume that Ω ⊂ R2 is a bounded open

set with C1-smooth boundary ∂Ω, u ∈ C1(Ω), and v ∈ C2(Ω). Then

∫

Ω

v∆wdx = −
∫

Ω

grad v · gradw dx+

∫

∂Ω

v
∂w

∂ν
ds. (2.11)

The set Ck(Ω) denotes a set of functions that belong to Ck(Ω) and whose derivatives

up to order k can be continuously extended from Ω to Ω.

The above formulation of Green’s first identity is not very useful in terms of our

analysis. More precisely, we would like to apply the identity to functions u and w

that both belong to1 C2(Ω) ∩C(Ω) and have normal derivatives on ∂Ω in the sense

that the one-sided limits

lim
h→0+

∂u

∂ν(x)
(x− hν(x)) = lim

h→0+
ν(x) · grad (u(x− hν(x)), and similarly

lim
h→0+

∂v

∂ν(x)
(x− hν(x)) = lim

h→0+
ν(x) · grad (v(x− hν(x))

(2.12)

exist uniformly. It can be shown, indeed, that Green’s first identity (2.11) is ap-

plicable to these functions also. However, this requires that ∂Ω is assumed to be

C2-smooth.

The following theorem will be needed in establishing the uniqueness of the solu-

tion of (2.6). Notice that a function satisfying the Helmholtz equation meets the

conditions of the theorem.

Theorem 2.2.5. (Unique Continuation Principle) Let Ω ⊂ Rn be an open

connected set and u : Ω → R a twice continuously differentiable function satisfying

|∆u(x)| ≤ C
(
|u(x)| + |gradu(x)|

)
, x ∈ Ω

with some constant C > 0. Then, if u vanishes in some open ball contained in Ω, it

vanishes in the whole Ω.

Proof. For a proof, see e.g. [5, Lemma 8.5].

1The set C2(Ω)∩C(Ω) denotes the set of functions that belong to C2(Ω) and can be continuously
extended from Ω to Ω.
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2.3 Uniqueness of the scattering solution

We begin our analysis of the boundary value problem

∆w + k2w = 0 in R
2 \D,

∂w

∂ν
= g on ∂D,

lim
r→∞

√
r

(
∂w

∂r
− ikw

)

= 0, r = |x|,

(2.13)

by establishing the uniqueness of its solution, or, to be precise, we actually show

that the problem has at most one solution. To do this we have to specify in which

set we search for the solutions.

Since the solution w of (2.13) has to satisfy the Helmholtz equation, we require

it to be twice continuously differentiable in R2 \ D, that is, w ∈ C2(R2 \D). Fur-

thermore, because of the boundary condition we require that w possesses a normal

derivative on ∂D in the sense that the limit

lim
h→0+

∂w

∂ν(x)
(x+ hν(x)) = lim

h→0+
ν(x) · grad (w(x+ hν(x)), x ∈ ∂D (2.14)

exists uniformly. Finally, since we wish to apply Green’s integral identity, we assume

that ∂D is C2-smooth and w ∈ C(R2\D), i.e., w can be continuously extended from

R2\D to R2\D (see discussion in section 2.2.2). With these assumptions the solution

w of (2.13) is unique as we shall show in this section.

The uniqueness of the solution is a reasonable property from the physical point

of view and, on the other hand, it allows us to search for the solution by using any

strategy or method; if we find a solution w of (2.13) that belongs to C2(R2 \D) ∩
C(R2 \ D) and has a normal derivative on ∂D in the sense of uniformly existing

limit (2.14), then we know that it is the unique solution of the problem.

Remark : The limit of the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂w

∂r
− ikw

)

= 0 (2.15)

is assumed to hold uniformly for all directions x/|x|.
The essential ingredients of the uniqueness proof are Rellich’s lemma, Green’s

first identity (2.11), and the unique continuation principle (Theorem 2.2.5). We

start with proving Rellich’s lemma.

Lemma 2.3.1. (Rellich) Denote Ωr = {y ∈ R
2 : |y| = r}. If w ∈ C2(R2 \D) is a
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solution to the Helmholtz equation, and

lim
r→∞

∫

Ωr

|w(x)|2ds(x) = 0, r = |x|, (2.16)

then w = 0 in R2 \D.

Proof. The first thing to notice is that w can be expressed as a Fourier series ex-

pansion on Ωr with sufficiently large r. Indeed, consider w in polar coordinates

(r, θ) and notice that according to (2.16) there exists a constant R > 0 such that

w(r, ·) ∈ L2([0, 2π]) for r > R. Hence, for any r > R

w(r, θ) =

∞∑

n=−∞

cn(r)einθ, (2.17)

where

cn(r) =
1

2π

∫ 2π

0

w(r, φ)e−inφdφ.

Using the convenient way of parametrizing Ωr with the complex-valued function

x = x(φ) = reiφ we obtain

∫

Ωr

|w(x)|2ds(x) =

∫ 2π

0

|w(x(φ))|2|x′(φ)|dφ

= r

∫ 2π

0

|w(x(φ))|2dφ.
(2.18)

According to Parseval’s theorem

∫ 2π

0

|w(x(φ))|2dφ = 2π
∞∑

n=−∞

|cn(r)|2. (2.19)

Combining (2.18) and (2.19) we have

∫

Ωr

|w(x)|2ds(x) = 2πr
∞∑

n=−∞

|cn(r)|2.

Our assumption (2.16) now implies that

lim
r→∞

r|cn(r)|2 = 0 (2.20)

for all n ∈ Z.

The second step of the proof is to show that the coefficients cn(r) must be zero

for each n. This will follow from (2.20) and the fact that w is a solution of the

Helmholtz equation.
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Recall that the Laplace operator ∆ in polar coordinates is given by

∆(w(r, φ)) =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

)

w(r, φ).

Differentiating the Fourier series (2.17) term-by-term we obtain

∞∑

n=−∞

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
+ k2

)
(
cn(r)einθ

)
= 0,

which yields

∞∑

n=−∞

(

c′′n(r) +
1

r
c′n(r) +

(

k2 − n2

r2

)

cn(r)

)

einθ = 0.

The functions einθ (n = 0,±1,±2, . . . ) form an orthonormal basis of L2([0, 2π]), and

thus each coefficient has to be individually zero, that is,

c′′n(r) +
1

r
c′n(r) +

(

k2 − n2

r2

)

cn(r) = 0

for all n ∈ Z. This is almost a Bessel equation, and setting an(s) = cn(s/k) we in

fact obtain a Bessel equation

a′′n(s) +
1

s
a′n(s) +

(

1 − n2

s2

)

an(s) = 0,

whose solutions are of the form

an(s) = αnJn(s) + βnYn(s),

where αn and βn are constants, and Jn and Yn are Bessel and Neumann functions

of order n, respectively. Functions Jn and Yn have asymptotic expansions [1]

Jn(s) =

√

2

πs
cos
(

s− nπ

2
− π

4

)

+O

(
1

s

)

, and

Yn(s) =

√

2

πs
cos
(

s− nπ

2
− π

4

)

+O

(
1

s

)

,

as s→ ∞. From these expansions and equation (2.20) we conclude that

lim
r→∞

∣
∣
∣
∣
∣

√

2

πk

(

αn cos
(

kr − nπ

2
− π

4

)

+ βn sin
(

kr − nπ

2
− π

4

))
∣
∣
∣
∣
∣

2

= 0.
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This implies that αn = βn = 0, i.e., an = cn = 0 for each n ∈ Z. Hence, w = 0

outside ΩR.

Finally, according to the unique continuation principle, Theorem 2.2.5, applied

to the real and imaginary parts of w respectively, it now follows that w = 0 in

R2 \D.

We are now in a position to prove that the boundary value problem (2.13) has at

most one solution. The proof is based on Rellich’s lemma and Green’s first identity.

Notice that we have to assume that ∂D is C2-smooth in order to apply Green’s first

identity.

Theorem 2.3.2. (Uniqueness) Assume that the boundary ∂D of the obstacle D is

C2-smooth. Let u, v ∈ C2(R2 \D)∩C(R2 \D), having normal derivatives on ∂D in

the sense of uniformly existing limits (2.12), be solutions to the exterior Neumann

problem (2.13). Then u = v.

Proof. The strategy of the proof is to show that function u − v satisfies all the

assumptions of Lemma 2.3.1, which then implies that u−v = 0, i.e., u = v. In order

to verify condition (2.16) for w = u− v we will need Green’s first identity.

Define w = u− v. Then w belongs to C2(R2 \D). In addition, it is a solution to

the Helmholtz equation, since

∆w + k2w = ∆(u− v) + k2(u− v)

= ∆u+ k2u− (∆v + k2v)

= 0 − 0

= 0,

and it satisfies the Sommerfeld radiation condition:

lim
r→∞

√
r

(
∂w

∂r
− ikw

)

= lim
r→∞

√
r

(
∂(u − v)

∂r
− ik(u− v)

)

= lim
r→∞

√
r

(
∂u

∂r
− iku

)

− lim
r→∞

√
r

(
∂v

∂r
− ikv

)

= 0 − 0

= 0.

Moreover, for the normal derivative of w on ∂D we have

∂w

∂ν

∣
∣
∣
∣
∂D

=
∂u

∂ν

∣
∣
∣
∣
∂D

− ∂v

∂ν

∣
∣
∣
∣
∂D

= g − g = 0. (2.21)
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Now for the harder part, that is, to show that w satisfies (2.16). Using the fact that

|a− b|2 = |a|2 + |b|2 − 2Re(bā) for all a, b ∈ C yields

∣
∣
∣
∣

∂w

∂ν
− ikw

∣
∣
∣
∣

2

=

∣
∣
∣
∣

∂w

∂ν

∣
∣
∣
∣

2

+ k2|w|2 + 2kIm

(

w
∂w̄

∂ν

)

. (2.22)

Define a circle Ωr = {y ∈ R2 : |y| = r} and let ν denote its unit normal directed

outwards. Since w satisfies the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂w

∂ν
− ikw

)

= 0,

where the limit holds uniformly, we have for any ǫ > 0 a number R > 0 (not

depending on x) such that

∣
∣
∣
∣

√
r

(
∂w

∂ν
(x) − ikw(x)

)∣
∣
∣
∣
< ǫ

whenever r > R. Hence, for r > R,

0 ≤
∫

Ωr

∣
∣
∣
∣

∂w

∂ν
− ikw

∣
∣
∣
∣

2

ds ≤ 2πr sup
x∈Ωr

∣
∣
∣
∣

∂w

∂ν
(x) − ikw(x)

∣
∣
∣
∣

2

= 2π sup
x∈Ωr

∣
∣
∣
∣

√
r
∂w

∂ν
(x) − ikw(x)

∣
∣
∣
∣

2

≤ 2πǫ2.

Since ǫ > 0 was arbitrary, we have

lim
r→∞

∫

Ωr

∣
∣
∣
∣

∂w

∂ν
− ikw

∣
∣
∣
∣

2

ds = 0,

which, by (2.22), is equivalent to

lim
r→∞

∫

Ωr

[∣
∣
∣
∣

∂w

∂ν

∣
∣
∣
∣

2

+ k2|w|2 + 2kIm

(

w
∂w̄

∂ν

)]

ds = 0.

Using properties of integrals and limits this can be written as

lim
r→∞

∫

Ωr

(∣
∣
∣
∣

∂w

∂ν

∣
∣
∣
∣

2

+ k2|w|2
)

ds = −2k lim
r→∞

Im

(∫

Ωr

w
∂w̄

∂ν
ds

)

. (2.23)

Next, choose r so large that D is contained inside the circle Ωr, that is |z| < r for

all z ∈ D, and apply Green’s first identity (2.11) in the region Dr = {y ∈ R
2 \D :
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|y| < r} to obtain

∫

Ωr∪∂D

w
∂w̄

∂ν
ds =

∫

Dr

(w∆w̄ + gradw · grad w̄)dS,

which is equivalent to

∫

Ωr

w
∂w̄

∂ν
ds = −

∫

∂D

w
∂w̄

∂ν
ds+

∫

Dr

(
−k2|w|2 + |gradw|2

)
dS

since ∆w̄ = −k2w̄. We notice that the last term in this equation is real and,

moreover, equation (2.21) implies that (∂w̄/∂ν) = 0 on ∂D. Hence

Im

(∫

Ωr

w
∂w̄

∂ν
ds

)

= 0.

Inserting this into (2.23) yields

lim
r→∞

∫

Ωr

(∣
∣
∣
∣

∂w

∂ν

∣
∣
∣
∣

2

+ k2|w|2
)

ds = 0.

From this we conclude that

lim
r→∞

∫

Ωr

|w|2ds = 0.

We have now established that w satisfies all the assumptions of Lemma 2.3.1 and

hence w = 0, i.e., u = v.

2.4 Existence of the scattering solution

Having established in the previous section that the exterior Neumann problem

∆w + k2w = 0 in R
2 \D,

∂w

∂ν
= g on ∂D,

lim
r→∞

√
r

(
∂w

∂r
− ikw

)

= 0, r = |x|,

(2.24)

has at most one solution, it remains to show that there exists some function w ∈
C2(R2\D)∩C(R2 \D) that has a normal derivative on ∂D in the sense of uniformly

existing limit

lim
h→0+

∂w

∂ν(x)
(x+ hν(x)) = lim

h→0+
ν(x) · grad (w(x+ hν(x)), x ∈ ∂D
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and satisfies (2.24). We will do this by using a method that belongs to the class

of boundary integral equation methods. Using this method reduces our problem to

finding a function f ∈ C(∂D) such that the so-called single-layer potential w defined

by

w(x) =

∫

∂D

Φ(x− y)f(y)ds(y)

satisfies the boundary condition ∂w/∂ν = g on ∂D. Here Φ is the fundamental

solution of the Helmholtz equation.

We begin this section by proving the essential properties of the single-layer po-

tential regarding its continuity and differentiability as well as its behavior on the

boundary ∂D. Then in the second subsection we show that it solves the exterior

Neumann problem (2.24).

2.4.1 The single-layer potential

In this subsection we will study regularity properties of the single-layer potential.

The treatment is quite technical but the motivation becomes apparent in the fol-

lowing subsection, where we show that the single-layer potential solves the exterior

Neumann problem (2.24).

Definition

The single-layer potential of interest in this work is based on the fundamental solu-

tion of the Helmholtz equation given by

Φ(x) =
i

4
H

(1)
0 (k|x|), x ∈ R

2 \ {0}, (2.25)

where H
(1)
0 is the Hankel function of the first kind and order zero. We now define

the single-layer potential w : R
2 \ ∂D → C as

w(x) :=

∫

∂D

Φ(x− y)f(y)ds(y), x ∈ R
2 \ ∂D, (2.26)

where f ∈ C(∂D) is called density. The set D ⊂ R2 denotes an open bounded set.

Some of the following results further assume the boundary ∂D to be either C1- or

C2-smooth. These assumptions are stated separately for each result.

Our first aim is to show that the single-layer potential w belongs to C2(R2 \D)∩
C(R2 \D). In order to do this, we have to define what it means that w is continuous

at x ∈ ∂D, since the integral in (2.26) is not even defined on ∂D. However, the

integral exists in the sense of improper integral because of the logarithmic singularity
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of Φ at the vicinity of zero. Thus we can define

w(x) = lim
l(Γ)→0

∫

∂D\Γ

Φ(x− y)f(y)ds(y), x ∈ ∂D, (2.27)

where Γ is a subarc of ∂D containing x as its interior point, and l(Γ) is the length

of Γ. The second aim is to investigate how the one-sided directional derivative of

the single-layer potential behaves on the boundary ∂D.

In the analysis we will need some results concerning the asymptotic behavior of

the Hankel functions. Hence we state these results which can be found for example

in [1] or with a more rigorous analysis in [11].

H
(1)
0 (z) =

√

2

πz
ei(z−π/4)

[

1 +O

(
1

z

)]

as z → ∞, (2.28)

H
(1)
0

′
(z) =

√

2

πz
ei(z+π/4)

[

1 +O

(
1

z

)]

as z → ∞, (2.29)

H
(1)
0 (z) =

2i

π
log z +O(1) as z → 0, (2.30)

H
(1)
1 (z) =

2i

πz
+O(1) as z → 0. (2.31)

In addition to these asymptotic expansions, the equality

d

dz
H

(1)
0 (z) = −H(1)

1 (z) (2.32)

will be used occasionally.

Regularity properties

We start with proving that the single-layer potential belongs to C2(R2 \D)∩C(R2 \
D). In fact, it even belongs to C2(R2 \ ∂D) ∩ C(R2) and proving this requires no

extra effort so we formulate and prove the following result in this more general form.

Theorem 2.4.1. Assume that ∂D is a C1-smooth Jordan curve. The single-layer

potential w is continuous in R2 and twice continuously differentiable in R2 \ ∂D.

Proof. The continuity of w in R
2 \ ∂D follows from the continuity of Φ in R

2 \ {0},
which is seen as follows. Let x ∈ R2 \ ∂D. Then for each ǫ > 0 there exists δ > 0
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such that

|w(x) − w(x̂)| =

∣
∣
∣
∣

∫

∂D

Φ(x− y)f(y)ds(y)−
∫

∂D

Φ(x̂− y)f(y)ds(y)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

∂D

(Φ(x− y) − Φ(x̂− y))f(y)ds(y)

∣
∣
∣
∣

≤
∫

∂D

|Φ(x− y) − Φ(x̂− y)||f(y)|ds(y)

≤ ‖f‖∞
∫

∂D

|Φ(x− y) − Φ(x̂− y)|ds(y)

< ‖f‖∞
∫

∂D

ǫ

‖f‖∞l(∂D)
ds(y)

= ǫ,

if |x− x̂| < δ. This implies the continuity of w in R2 \ ∂D.

Consider then the more difficult case x ∈ ∂D. To prove the continuity of w at x

we define Γ(x, δ) as in Lemma 2.2.3 and

Bδ(x) = {z ∈ R
2 : z = x+ tτ(x) + tν(x), where |t| ≤ δ} (2.33)

and show that for any ǫ > 0 there exists a δ > 0 such that |w(x) −w(x̂)| < ǫ for all

x̂ ∈ Bδ(x). We have for each x̂ ∈ Bδ(x)

|w(x) − w(x̂)| =

∣
∣
∣
∣

∫

Γ(x,δ)

Φ(x− y)f(y)ds(y)−
∫

Γ(x,δ)

Φ(x̂− y)f(y)ds(y)

+

∫

∂D\Γ(x,δ)

(Φ(x− y) − Φ(x̂− y))f(y)ds(y)

∣
∣
∣
∣

≤
∫

Γ(x,δ)

|Φ(x− y)f(y)| ds(y) +

∫

Γ(x,δ)

|Φ(x̂− y)f(y)|ds(y)

+

∫

∂D\Γ(x,δ)

|(Φ(x− y) − Φ(x̂− y))f(y)|ds(y).

(2.34)

Our aim is to show that by choosing a sufficiently small δ > 0 each of the integrals in

the last expression becomes arbitrarily small. We consider first the second integral

over Γ(x, δ). We write x̂ and y as

x̂ = x+ α̂τ(x) + β̂ν(x) and y = x+ ατ(x) + gx(α)ν(x),

where τ(x) is the tangential unit vector of ∂D at x and the representation of y is
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based on Lemma 2.2.3. Then, by using the Pythagorean theorem, we obtain

|x̂− y|2 = |(α̂− α)τ(x) + (β̂ − gx(α))ν(x)|2

= |α̂− α|2 + |β̂ − gx(α)|2

≥ |α̂− α|2,

that is, |x̂− y| ≥ |α̂− α|. Choosing δ so small that |x̂− y| < 1 yields

| log |x̂− y|| ≤ | log |α̂− α||

for all x̂, y ∈ Bδ(x). From the asymptotic form (2.30) we conclude that for δ suffi-

ciently small, there exists a constant c1 > 0 such that

|Φ(x̂− y)| ≤ c1| log |x̂− y|| ≤ c1| log |α̂− α||

for all x̂ ∈ Bδ(x). Thus

∫

Γ(x,δ)

|Φ(x̂− y)f(y)|ds(y) ≤ ‖f‖∞
∫

Γ(x,δ)

|Φ(x̂− y)|ds(y)

≤ c1‖f‖∞
∫ δ

−δ

| log |α̂− α||dα.

Since the logarithmic singularity is integrable in the sense of improper integral,

taking δ sufficiently small yields

∫

Γ(x,δ)

|Φ(x̂− y)f(y)|ds(y) ≤ c1‖f‖∞
∫ δ

−δ

| log |α̂− α||dα < ǫ/3. (2.35)

The first integral over Γ(x, δ) in (2.34) can be made arbitrarily small by choosing a

sufficiently small δ > 0, since, as already pointed out, the integral in (2.26) exists in

the sense of improper integral according to (2.27). This implies that

∫

Γ(x,δ)

|Φ(x− y)f(y)|ds(y) < ǫ/3 (2.36)

for δ > 0 sufficiently small. Moreover, since Φ is continuous in ∂D \ Γ(x, δ) for any

δ > 0, we have

∫

∂D\Γ(x,δ)

|(Φ(x− y) − Φ(x̂− y))f(y)|ds(y) < ǫ/3 (2.37)

for δ sufficiently small. Hence, choosing δ such that inequalities (2.35)-(2.37) are
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satisfied we see from (2.34) that

|w(x) − w(x̂)| < ǫ if |x− x̂| < δ.

Thus w is continuous in R2.

To establish that w is twice continuously differentiable in R
2 \D, we notice that

Φ is twice (or even infinitely) continuously differentiable in R2 \ {0} and therefore

we can differentiate under the integral to get

∂2

∂x2
j

w(x) =

∫

∂D

∂2

∂x2
j

Φ(x− y)f(y)ds(y), x ∈ R
2 \D,

for j = 1, 2. These integrals exist and define continuous functions of x, since Φ is

infinitely differentiable in R2 \ {0}.

In addition to the single-layer potential the so-called double-layer potential v :

R2 → C, defined by

v(x) =

∫

∂D

∂Φ(x − y)

∂ν(y)
f(y)ds(y), (2.38)

where f ∈ C(∂D), is of special interest in scattering theory. Despite this fact the

double-layer potential is not very essential in terms of our purposes. However, the

well-known result of discontinuity, or “jump relation”, of the double-layer potential

on ∂D, is useful in proving the result concerning the normal derivative of the single-

layer potential on ∂D. Hence we state this jump relation.

Lemma 2.4.2. Assume that ∂D is a C2-smooth Jordan curve. Then

lim
h→0+

v(x+ hν(x)) =

∫

∂D

∂Φ(x − y)

∂ν(y)
f(y)ds(y) +

1

2
f(x), x ∈ ∂D. (2.39)

Proof. For a proof, see e.g. [13, Theorem 2.5.2].

It has been shown that the single-layer potential w with merely continuous density

f has not necessarily a derivative on ∂D ([4] and references therein). However, as

shown in the following theorem, w has a normal derivative on ∂D in the sense that

the limit

∂w+

∂ν
(x) := lim

h→0+

∂w

∂ν(x)
(x+ hν(x)) = lim

h→0+
ν(x) · grad (w(x+ hν(x)), x ∈ ∂D

exists uniformly. Notice that there is a same type of “jump” in the normal derivative

of w as is in the double-layer potential on ∂D.

Theorem 2.4.3. Assume that ∂D is a C2-smooth Jordan curve and f ∈ C(∂D).
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Then the normal derivative ∂w+

∂ν
of the single-layer potential w exists on ∂D and

∂w+

∂ν
(x) =

∫

∂D

∂Φ(x − y)

∂ν(x)
f(y)ds(y)− 1

2
f(x), x ∈ ∂D. (2.40)

Proof. Let x ∈ ∂D and define

g(x̂) =

∫

∂D

(
∂

∂ν(y)
+

∂

∂ν(x)

)

Φ(x̂− y)f(y)ds(y), x̂ ∈ R
2.

The integral exists for x̂ ∈ ∂D also, since the functions

∂

∂ν(y)
Φ(x̂− y) and

∂

∂ν(x)
Φ(x̂− y)

are continuous for x̂, y ∈ ∂D, see [13, Section 2.5] for details. Now we have

∂w+

∂ν(x)
(x̂) = −v(x̂) + g(x̂), x̂ ∈ R

2 \D,

where v is the double-layer potential given by (2.38). The strategy of the proof is

to show that g is continuous at x along the normal line x+ hν(x), h > 0, and then

apply the jump relation of v, Lemma 2.4.2.

To establish the continuity of g at x along the normal line we write x̂ = x+hν(x)

and show that for each ǫ > 0 there exists δ > 0 such that

|g(x̂) − g(x)| < ǫ, if 0 < h < δ.

Using the notations of Lemma 2.2.3 we have that

|g(x̂) − g(x)| ≤
∣
∣
∣
∣

∫

∂D\Γ(x,δ)

[(
∂

∂ν(y)
+

∂

∂ν(x)

)

Φ(x̂− y)

−
(

∂

∂ν(y)
+

∂

∂ν(x)

)

Φ(x− y)

]

f(y)ds(y)

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

Γ(x,δ)

(
∂

∂ν(y)
+

∂

∂ν(x)

)

Φ(x̂− y)f(y)ds(y)

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

Γ(x,δ)

(
∂

∂ν(y)
+

∂

∂ν(x)

)

Φ(x− y)f(y)ds(y)

∣
∣
∣
∣

(2.41)

The first term on the right side will be less than ǫ/3 if δ > 0 is taken small enough,

since

(
∂

∂ν(y)
+

∂

∂ν(x)

)

Φ(x̂− y) =
ik

4
H

(1)
1 (k|x̂− y|)(ν(y)− ν(x)) · (x̂− y)

|x̂− y|
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defines a continuous function on Bδ(x) × ∂D \ Γ(x, δ), where Bδ(x) is defined

analogously to (2.33). To estimate the second term we notice from (2.31) that

tH
(1)
1 (t) = 2i

π
+ O(t) as t → 0, which means that there exist c > 0 and δ > 0 such

that ∣
∣
∣
∣

(
∂

∂ν(y)
+

∂

∂ν(x)

)

Φ(x̂− y)

∣
∣
∣
∣
≤ c

|(ν(y) − ν(x)) · (x̂− y)|
|x̂− y|2

if |x̂−y| < δ. Hence, writing y as y(α) = x+ατ(x)+gx(α)ν(x) according to Lemma

2.2.3 we have

|x̂− y| = |(h− gx(α))ν(x) − ατ(x)| =
√

(h− gx(α))2 + α2 ≥ |α|,

and |ν(y) − ν(x)| < c′|α| for all |α| < δ with some c′, δ > 0. Hence

∣
∣
∣
∣

∫

Γ(x,δ)

(
∂

∂ν(y)
+

∂

∂ν(x)

)

Φ(x̂− y)f(y)ds(y)

∣
∣
∣
∣

≤ cc′‖f‖∞,∂D

∫

Γ(x,δ)

|ν(y) − ν(x)|
|x̂− y| ds(y)

≤ cc′‖f‖∞,∂D

∫ δ

−δ

|α|
|α|dα

≤ 2δcc′‖f‖∞,∂D

< ǫ/3,

if δ is sufficiently small. Finally, the last term in (2.41) is also less than ǫ/3 if δ is

sufficiently small since, provided that ∂D is C2-smooth,

∂Φ(x − y)

∂ν(y)
and

∂Φ(x − y)

∂ν(x)

are continuous functions of x and y on ∂D (for details, see [13, Section 2.5]). Thus

we have established the continuity of g at x along the normal line. Now the theorem

follows by applying the jump relation to the double-layer potential v, Lemma 2.4.2:

∂w+

∂ν
(x) = lim

h→0+

∂w

∂ν(x)
(x+ hν(x))

= lim
h→0+

(
− v(x+ hν(x)) + g(x+ hν(x))

)

= −
(∫

∂D

∂Φ(x− y)

∂ν(y)
+

1

2
f(x)

)

+

∫

∂D

(
∂

∂ν(y)
+

∂

∂ν(x)

)

Φ(x− y)f(y)ds(y)

=

∫

∂D

∂Φ(x − y)

∂ν(x)
f(y)ds(y)− 1

2
f(x).
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2.4.2 Solution as a single-layer potential representation

Next we shall show that the unique solution of the boundary value problem (2.24)

can be determined by an integral over the boundary ∂D, that is, by the single-

layer potential introduced in the previous subsection. This is a remarkable result

especially from the numerical point of view since it both reduces the dimension of

the problem and enables us to determine the function defined on an infinite domain

as an integral over a compact set.

Although the fundamental solution Φ solves the Helmholtz equation and satisfies

Sommerfeld radiation condition, it is not (necessarily) a solution to the exterior

Neumann problem (2.24). However, the single-layer potential of the form

w(x) =

∫

∂D

Φ(x− y)f(y)ds(y), x ∈ R
2 \D

can be modified to satisfy the exterior Neumann problem by choosing the density

f ∈ C(∂D) appropriately.

It is rather straightforward to show that the single-layer potential with any con-

tinuous density f ∈ C(∂D) satisfies the Helmholtz equation and the Sommerfeld

radiation condition.

Theorem 2.4.4. The single-layer potential w solves the Helmholtz equation in R2 \
D.

Proof. Since Φ is two times continuously differentiable in R2 \ {0}, we can differen-

tiate under the integral sign to get

∆w(x) + k2w(x) =

∫

∂D

∆Φ(x − y)f(y)ds(y) +

∫

∂D

k2Φ(x− y)f(y)ds(y)

=

∫

∂D

(∆Φ(x− y) + k2Φ(x− y))
︸ ︷︷ ︸

=0, if x 6=y

f(y)ds(y)

= 0

for all x ∈ R2 \D.

Theorem 2.4.5. The single-layer potential w satisfies the Sommerfeld radiation

condition.

Proof. We show first that Φ satisfies the Sommerfeld radiation condition. Denoting
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r = |x| and using the asymptotic expansions (2.28) and (2.29) we have

√
r

(
∂Φ

∂r
(x) − ikΦ(x)

)

=
√
r

(

k

4

√

2

πkr
iei(kr+π/4)

[

1 +O

(
1

r

)]

+
k

4

√

2

πkr
ei(kr−π/4)

[

1 +O

(
1

r

)])

=

√
2k

4π
ei(kr−π/4)O

(
1

r

)

, as r → ∞,

where we have used the fact that iei(kr+π/4) = −ei(kr−π/4). From this we conclude

that the limit

lim
r→∞

√
r

(
∂Φ

∂r
− ikΦ

)

= 0, r = |x|, (2.42)

exists uniformly in all directions x/|x| and hence Φ satisfies the Sommerfeld radiation

condition.

It follows that

lim
r→∞

√
r

(
∂w

∂r
(x) − ikw(x)

)

= lim
r→∞

(∫

∂D

√
r
∂Φ

∂r
(x− y)f(y)ds(y)−

∫

∂D

ik
√
rΦ(x− y)f(y)ds(y)

)

= lim
r→∞

(∫

∂D

[√
r

(
∂Φ

∂r
(x− y) − ikΦ(x− y)

)]

f(y)ds(y)

)

= 0

since r = |x| → ∞ implies |x − y| → ∞ and (2.42) holds uniformly and the

continuous function f ∈ C(∂D) has a maximum in the compact set ∂D.

In the preceding results we assumed the density f only to be continuous. This

clearly is not sufficient if we want the single-layer potential w to satisfy the Neumann

boundary condition. Theorem 2.4.3 gives us essential information in terms of how

to set the boundary condition using the single-layer potential. With the aid of that

result we can finally establish that the single-layer potential with appropriately cho-

sen density f solves the exterior Neumann problem (2.24). It is worth emphasizing,

however, that the following result gives no information regarding the existence and

uniqueness of the density.

Theorem 2.4.6. Assume that ∂D is C2-smooth. The single-layer potential w de-
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fined by

w(x) =

∫

∂D

Φ(x− y)f(y)ds(y), x ∈ R
2 \D (2.43)

is a solution to the exterior Neumann problem (2.24) if f ∈ C(∂D) satisfies the

integral equation (
1

2
I −A

)

f = −g, (2.44)

where the operator A : C(∂D) → C(∂D) is given by

(Af)(x) =

∫

∂D

∂Φ(x − y)

∂ν(x)
f(y)ds(y), x ∈ ∂D. (2.45)

Proof. We already know from Theorems 2.4.4 and 2.4.5 that w is a solution to the

Helmholtz equation and satisfies the Sommerfeld radiation condition. Using (2.40)

the Neumann boundary condition can be written as

∫

∂D

∂Φ(x − y)

∂ν(x)
f(y)ds(y)− 1

2
f(x) = g.

But this is equivalent to (2.44) and the theorem follows.

As already mentioned, the above result gives no information about the existence

of a density f ∈ C(∂D) satisfying (2.44). The existence can be established using

the theory of compact operators including the Riesz-Fredholm theory. We will not

go into details of this theory, but give a sketch of a proof.

Theorem 2.4.7. Assume that ∂D is C2-smooth. Then the integral equation (2.44)

is solvable (not necessarily uniquely).

Proof. To be consistent with the standard formulation of the Riesz-Fredholm theory,

we consider the solvability of equation

(I − 2A)f = −2g, (2.46)

which clearly is equivalent to (2.44).

The strategy of the proof is to show that the operator 2A is compact and then

apply the Riesz-Fredholm theory to (2.46). The compactness of A, and hence the

compactness of 2A, follows from the fact that any operator K : C[a, b] → C[c, d]

defined by

(Kh)(t) =

∫ b

a

k(t, s)h(s)ds, t ∈ [c, d],

with kernel k ∈ C([c, d] × [a, b]) is compact. This well-known result is immediately

applicable to the operator A, since the integral over ∂D reduces to an integral over
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a real interval [a, b] and the kernel of A is given by

φ(t, s) :=
∂Φ(x(t) − x(s))

∂ν(x(t))
, s, t ∈ [a, b],

which is continuous provided that ∂D is C2-smooth.

Now the Riesz-Fredholm theory implies that (2.46) is solvable. The details can

be found for example in [4], where the analysis is carried out in R3 but is almost

directly applicable to R2 also.

2.5 The far field pattern

We conclude this section with an important result regarding the scattered field. This

result tells us how the amplitude of the scattered wave asymptotically depends on the

observation direction and it is of special interest in the inverse scattering problem,

where the aim is to reconstruct the obstacle (or the boundary value problem) from

the knowledge of the so-called far field pattern, or scattering amplitude. We first

state the well-known Green’s representation formula and prove two lemmas needed

in the proof of the main result.

Theorem 2.5.1. Assume that ∂D is C2-smooth, and w ∈ C2(R2 \D) ∩ C(R2 \D)

satisfies the Sommerfeld radiation condition and the Helmholtz equation in R2 \D.

Moreover assume that w has a normal derivative on ∂D in the sense that the limit

lim
h→0+

∂w

∂ν(x)
(x+ hν(x)) = lim

h→0+
ν(x) · grad (w(x+ hν(x))), x ∈ ∂D

exists uniformly. Then Green’s representation formula

w(x) =

∫

∂D

(

w(y)
∂Φ(x− y)

∂ν(y)
− ∂w

∂ν
(y)Φ(x− y)

)

ds(y), x ∈ R
2 \D (2.47)

is valid.

Proof. We refer to [3, Theorem 2.4.1].

Lemma 2.5.2. Assume that x ∈ R2 and y ∈ ∂D, where D ⊂ R2 is a bounded set.

Then |x− y| has an asymptotic form

|x− y| = |x| − x̂ · y − O

(
1

|x|

)

as |x| → ∞, (2.48)

where x̂ = x/|x|.

Proof. According to Taylor’s theorem the function t 7→
√

1 + t can be written as



2. Direct acoustic obstacle scattering problem 28

the convergent series

√
1 + t = 1 +

1

2
t− 1

8
t2 +

1

16
t3 − 5

128
t4 + . . . (2.49)

for all t ∈ (−1, 1). Writing

|x− y| =
√

|x|2 − 2x · y + |y|2 = |x|
√

1 +

( |y|2
|x|2 − 2

|x| x̂ · y
)

, (2.50)

we can apply (2.49) to the square root expression provided that

∣
∣
∣
∣

|y|2
|x|2 − 2

|x| x̂ · y
∣
∣
∣
∣
< 1.

This is indeed satisfied by taking |x| sufficiently large, since

∣
∣
∣
∣

|y|2
|x|2 − 2

|x| x̂ · y
∣
∣
∣
∣
=

1

|x|

∣
∣
∣
∣

|y|2
|x| − 2x̂ · y

∣
∣
∣
∣

≤ 1

|x|

( |y|2
|x| + 2|y|

)

→ 0 as |x| → ∞,

where we have used the Cauchy-Schwarz inequality |x̂ · y| ≤ |x̂||y| = |y| and the fact

that |y| is bounded for y ∈ ∂D. Thus we can write the square root in (2.50) with

the aid of (2.49) as

|x|
√

1 +

( |y|2
|x|2 − 2

|x| x̂ · y
)

= |x|
[

1 +
1

2

( |y|2
|x|2 − 2

|x| x̂ · y
)

− 1

8

( |y|2
|x|2 − 2

|x| x̂ · y
)2

+ · · ·
]

= |x| − x̂ · y +
1

2

|y|2
|x| +O

(
1

|x|

)

= |x| − x̂ · y +O

(
1

|x|

)

, as |x| → ∞.

Lemma 2.5.3. Assume that x ∈ R2 and y ∈ ∂D, where D ⊂ R2 is a bounded set.

Then we have the asymptotic form

eik|x−y|

√

|x− y|
=
eik|x|

√

|x|

(

e−ikx̂·y +O

(
1

|x|

))

(2.51)

as |x| → ∞. Here x̂ = x/|x|.
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Proof. The strategy of the proof is to show that there exists a constant M > 0 such

that ∣
∣
∣
∣
∣

eik|x−y|

√

|x− y|
− eik(|x|−x̂·y)

√

|x|

∣
∣
∣
∣
∣
≤ M

|x|3/2

whenever |x| is sufficiently large. From the previous lemma we see that

∣
∣
∣
∣
∣

eik|x−y|

√

|x− y|
− eik(|x|−x̂·y)

√

|x|

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

eik(|x|−x̂·y+O(1/|x|))

√

|x− y|
− eik(|x|−x̂·y)

√

|x|

∣
∣
∣
∣
∣

=
∣
∣eik(|x|−x̂·y)

∣
∣

∣
∣
∣
∣
∣

eO(1/|x|)

√

|x− y|
− 1
√

|x|

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

√

|x|eO(1/|x|) −
√

|x− y|
√

|x|
√

|x− y|

∣
∣
∣
∣
∣

as |x| → ∞. Again, from the previous lemma and the Taylor series (2.49) we have

that

√

|x− y| =
√

|x| − x̂ · y +O(1/|x|)

=
√

|x|
√

1 +

(

O

(
1

|x|2
)

− x̂ · y
|x|

)

=
√

|x|
(

1 +
1

2

(

O

(
1

|x|2
)

− x̂ · y
|x|

)

− 1

8

(

O

(
1

|x|2
)

− x̂ · y
|x|

)2

+ · · ·
)

=
√

|x|
(

1 +O

(
1

|x|

))

=
√

|x| +O

(

1
√

|x|

)

as |x| → ∞. Moreover,

eO(1/|x|) =

∞∑

n=0

O(1/|x|)n

n!

= 1 +O

(
1

|x|

)

+O

(
1

|x|2
)

+ · · ·

= 1 +O

(
1

|x|

)
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as |x| → ∞. Thus

∣
∣
∣
∣
∣

√

|x|eO(1/|x|) −
√

|x− y|
√

|x|
√

|x− y|

∣
∣
∣
∣
∣
=

∣
∣
∣

√

|x| +O(1/
√

|x|) −
√

|x| +O(1/
√

|x|)
∣
∣
∣

∣
∣|x| +O(1)

∣
∣

=

∣
∣
∣O(1/

√

|x|)
∣
∣
∣

∣
∣|x| +O(1)

∣
∣

≤ M1/
√

|x|
|x| −M2

=
M1

|x|3/2 −
√

|x|M2

=
1

|x|3/2

M1

1 −M2/|x|

for some constants M1,M2 > 0 and |x| sufficiently large. The assertion now follows

since |x| ≥ 2M2 implies
1

|x|3/2

M1

1 −M2/|x|
≤ 2M1

|x|3/2
.

Now we are ready to introduce the concept of far field pattern. The proof is

somewhat technical but the essential idea and interpretation of the far field pattern

is illustrated in Figure 2.2.

Theorem 2.5.4. Under the assumptions of Theorem 2.5.1 we have: given a direc-

tion ϕ ∈ S1 of observation, the solution w of the exterior Neumann problem (2.24)

has an asymptotic form

w(rϕ) =
eikr

√
r
FD(ϕ; d, k) +O

(
1

r3/2

)

, r → ∞, (2.52)

where the coefficient FD, called the far field pattern of D, is given by

eiπ/4

√
8kπ

∫

∂D

(

w(y)
∂e−ikϕ·y

∂ν(y)
− ∂w

∂ν
(y)e−ikϕ·y

)

ds(y). (2.53)

Proof. Since |x| → ∞ implies |x − y| → ∞ for any y ∈ ∂D, we can use (2.28) and



2. Direct acoustic obstacle scattering problem 31

the preceding lemma to obtain

Φ(x− y) =
i

4
H

(1)
0 (k|x− y|)

=
i

4

√

2

kπ

ei(k|x−y|−π/4)

√

|x− y|

(

1 +O

(
1

|x|

))

=
ie−iπ/4

√
8kπ

eik|x|

√

|x|

(

e−ikx̂·y +O

(
1

|x|

))(

1 +O

(
1

|x|

))

=
eiπ/4

√
8kπ

eik|x|

√

|x|

(

e−ikx̂·y +O

(
1

|x|

))

as |x| → ∞, (2.54)

where we have used the fact that ie−iπ/4 = eiπ/4. Furthermore, the preceding lemma

implies that

∂Φ(x − y)

∂ν(y)
=

eiπ/4

√
8kπ

eik|x|

√

|x|

(
∂e−ikx̂·y

∂ν(y)
+O

(
1

|x|

))

as |x| → ∞.

Inserting these two expressions into the Green’s representation formula (2.47) yields

w(x) =
eik|x|

√

|x|
eiπ/4

√
8kπ

∫

∂D

(

w(y)
∂e−ikx̂·y

∂ν(y)
− ∂w

∂ν
(y)e−ikx̂·y

)

ds(y)

+
ei(k|x|+π/4)

√
8kπ

∫

∂D

(

w(y)O

(
1

|x|3/2

)

− ∂w

∂ν
(y)O

(
1

|x|3/2

))

ds(y)

as |x| → ∞. Since w and ∂w/∂ν are continuous on ∂D, they have maxima on ∂D.

Hence,

w(x) =
eik|x|

√

|x|

[
eiπ/4

√
8kπ

∫

∂D

(

w(y)
∂e−ikx̂·y

∂ν(y)
− ∂w

∂ν
(y)e−ikx̂·y

)

ds(y)

]

+O

(
1

|x|3/2

)

as |x| → ∞.
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Figure 2.2: A time-harmonic incident plane wave with direction d ∈ S1 of propagation
(and wave number k), and a scattering obstacle D. The far field pattern FD (together with
r) determines the amplitude of the scattered field on the circle Ωr := {x ∈ R

2 : |x| = r}
as r tends to infinity.
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3. THE INVERSE PROBLEM AND THE

FACTORIZATION METHOD

In this chapter we turn to the inverse scattering problem. There are in fact several

possible inverse problems, but this thesis is only concerned with the following one:

given far field patterns for all incident directions with a fixed wavenumber, find the

shape of the sound-hard obstacle. This problem turns out to be nonlinear and ill-

posed. The ill-posedness makes it a challenging problem especially from a numerical

point of view. We begin this chapter with a brief review of the properties of this

inverse problem. Then in the second section we study a relatively new method for

solving inverse scattering problems. The method is known as factorization method.

3.1 The inverse problem

In addition to being inverse to a problem called direct problem, an inverse problem

is (typically) ill-posed. According to Hadamard’s classical definition a problem is

well-posed if

(i) it has a solution,

(ii) the solution is unique, and

(iii) the solution is stable, i.e., it depends continuously on the data.

A problem that fails to satisfy at least one of these conditions is said to be ill-posed.

The inverse scattering problem is ill-posed because it does not satisfy condition (iii)

and in practical applications there may be problems with condition (i) also.

Let us now precisely formulate the inverse problem considered in this work:

The inverse problem: Given the far field pattern FD(ϕ; d, k) for all ϕ, d ∈ S1 and

fixed k > 0, determine the shape of the sound-hard obstacle D.

The rest of this section is devoted to considering this problem with respect to con-

ditions (i)–(iii).

Assuming that the given data represents far field patterns of some obstacle, there

clearly exists a solution. However, real-world measurements as well as numerical

computations always contain errors, and hence it may happen that the given mea-

surement data does not represent far field patterns, in which case the existence

condition (i) is violated.
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There are many uniqueness results for inverse scattering problems. The following

theorem guarantees existence of a unique solution to our inverse problem.

Theorem 3.1.1. Let D1 andD2 be two sound-hard scatterers whose far field patterns

coincide for all incident directions and a fixed wave number. Then D1 = D2.

Proof. See [12, Theorem 3.1.1].

This result verifies, at least in theory, that the knowledge of the far field patterns for

all incident plane waves with a fixed wave number suffices to determine the obstacle

uniquely, and in this sense the inverse problem is a reasonable problem from practical

point of view.

Finally we consider the stability condition (iii). The inverse scattering problem

begins from the knowledge of the far field patterns. To see the ill-posedness of the

inverse problem we have to consider the mapping ws 7→ FD from the scattered field

ws to the far field pattern FD defined by (2.53). This is due to the fact that the aim

in the inverse problem is, in a sense, to recover the scattered field from the knowledge

of the far field patterns: reconstructing the obstacle is equivalent to determining the

zeros of the normal derivative ∂w/∂ν of total field w = wi + ws where the incident

field wi is known.

To rigorously verify the ill-posedness of the inverse problem we could use func-

tion series representations for scattered fields and for far field patterns or exploit

functional analytic results for compact operators. Here we just state that the ill-

posedness is caused by the smoothing effect of the integration in (2.53).

3.2 The factorization method

The factorization method is a relatively new method for solving shape identifica-

tion problems related to inverse problems such as inverse scattering problems and

electrical impedance tomography. It was developed by Andreas Kirsch and Natalia

Grinberg. Detailed information and analysis, as well as references to the original

publications, can be found in their recent monograph [9]. Here we just briefly outline

the derivation of the method.

The factorization method (and its name) is based on a factorization of the far

field operator F : L2(S1) → L2(S1) defined by

(Fg)(ϕ) =

∫

S1

FD(ϕ; d, k)g(d)ds(d), ϕ ∈ S1.

Notice that this operator contains all the information given in the far field patterns.

The operator F is compact and has a factorization of the form

F = GTG∗,
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where G andG∗ are compact operators and T is an isomorphism between appropriate

spaces. The fundamental result is that a point z ∈ R
2 belongs to the obstacle D if

and only if the function φz ∈ L2(S1), given by

φz(ϕ) = e−ikϕ·z,

belongs to the range of G. This result is not very useful from computational point of

view; however, a computationally attractive formulation can be achieved as follows.

In the case of sound-hard obstacles (Neumann boundary conditions) the far field

operator F can be shown to be normal, that is,

F ∗F = FF ∗,

where the operator F ∗ is the L2-adjoint of F . Hence, from the spectral theory of

normal operators we know that F can be represented as

Fg =
∞∑

j=1

λj(g, ψj)ψj ,

where (·, ·) denotes the L2 inner product, and λj ∈ C, j = 1, 2, . . . are the eigenvalues

of F with the corresponding eigenfunctions ψj , j = 1, 2, . . .. Moreover, it can be

shown that the ranges of operators G and (F ∗F )1/4 coincide, where

(F ∗F )1/4g =

∞∑

j=1

√

|λj|(g, ψj)ψj .

Thus z ∈ R2 belongs to D if and only if there exists g ∈ L2(S1) such that

(F ∗F )1/4g = φz. (3.1)

Writing φz =
∑∞

j=1(φz, ψj)ψj and applying Picard’s criterion we conclude that (3.1)

is solvable if and only if
∞∑

j=1

|(φz, ψj)|2
|λj|

(3.2)

converges. The main result can now be formulated as follows.

Theorem 3.2.1. Assume that k2 is not a Neumann eigenvalue of −∆ in D, i.e.,

there exists no nontrivial solution w ∈ C2(D)∩C1(D) to the Helmholtz equation such

that ∂w/∂ν = 0 on ∂D. Then z ∈ R2 belongs to D if and only if (3.2) converges,
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that is,

W (z) :=

(
∞∑

j=1

|(φz, ψj)|2
|λj|

)−1

> 0. (3.3)
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4. COMPUTATIONAL METHODS

We begin this chapter by developing a computational method for solving direct

scattering problems including the determination of far field pattern. After that in

the last section we create a numerical implementation of the factorization method.

These computational methods will be illustrated with several numerical examples in

the following chapter.

Finally a note on the mathematical notation. In this chapter we identify a point

(x1, x2) ∈ R2 with the complex number x1 + ix2.

4.1 Direct problem

We consider the solution of the exterior Neumann problem

∆w + k2w = 0 in R
2 \D,

∂w

∂ν
= g on ∂D,

lim
r→∞

√
r

(
∂w

∂r
− ikw

)

= 0, r = |x|,

(4.1)

where D is assumed to have a piecewise C1-smooth boundary ∂D and the function

g is defined by

g(x) = − ∂

∂ν
eikx·d.

As shown in Chapter 2, the solution of this problem can be sought in the form of a

single-layer potential representation

w(x) =

∫

∂D

Φ(x− y)f(y)ds(y), x ∈ R
2 \D, (4.2)

where the continuous density f ∈ C(∂D) is a solution (not necessarily unique) of

the integral equation (
1

2
I −A

)

f = −g. (4.3)

Here I is the identity operator and A : C(∂D) → C(∂D) is given by

(Af)(x) =

∫

∂D

∂Φ(x − y)

∂ν(x)
f(y)ds(y), x ∈ ∂D.
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In other words we have to first find a density f such that (4.3) is satisfied. Therefore,

we begin by introducing a numerical method for solving (4.3).

We choose a 1-periodic piecewise C1-smooth parametrization of the boundary

curve ∂D as x(t) = (x1(t), x2(t)), t ∈ [−1/2, 1/2]. Denoting f(t) = f(x(t)) and

g(t) = g(x(t)) equation (4.3) is equivalent to

1

2
f(t) − (Af)(t) = −g(t), (4.4)

where the integral operator A can be written in the following form using (2.32) and

the chain rule:

(Af)(t) =
i

4

∫ 1/2

−1/2

∂H
(1)
0

∂ν(x(t))
f(s)|x′(s)|ds

= −ik
4

∫ 1/2

−1/2

H
(1)
1 (k|x(t) − x(s)|)ν(x(t)) · (x(t) − x(s))

|x(t) − x(s)| f(s)|x′(s)|ds.

To compute the integral in this expression we discretize the interval [−1/2, 1/2] by

choosing some N ∈ N and setting

sj = jh, j = −N
2
,−N

2
+ 1, . . . ,

N

2
− 1, h =

1

N
.

Then the integral can be approximated by the following sum:

h

N/2−1
∑

j=−N/2

H
(1)
1 (k|x(t) − x(sj)|)

ν(x(t)) · (x(t) − x(sj))

|x(t) − x(sj)|
f(sj)|x′(sj)|. (4.5)

It is worth emphasizing that for t = sj there is a problem with the singularity of

H
(1)
1 (z) at z = 0. We overcome this problem by omitting the corresponding term in

the sum. Because of the weakly integrable nature of the singularity, the error caused

by the omission becomes arbitrarily small as N grows.

Now that we have an approximate numerical implementation of the operator A,

we can use some iterative solver (e.g. GMRES) to solve the Fredholm equation (4.4).

Having solved the density f we can approximately compute the actual solution

(4.2) at any point z ∈ R2 \D using the following expression:

h
i

4

N/2−1
∑

j=−N/2

H
(1)
0 (k|z − x(sj)|)f(sj)|x′(sj)|.

Finally, we consider the computation of the far field pattern FD. This could be

done using (2.53) but there is a more efficient way that does not require the solution

w of the exterior Neumann problem, as shown in the following. Combining equations
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(2.52) and (4.2), and using the asymptotic form (2.54) we obtain

eikr

√
r
FD(ϕ; d, k) =

∫

∂D

Φ(rϕ− y)f(y)ds(y) +O

(
1

r3/2

)

=
eiπ/4

√
8kπ

eikr

√
r

∫

∂D

e−ikϕ·yf(y)ds(y) +O

(
1

r3/2

)

, r → ∞

and hence the far field pattern FD can be approximated as follows:

FD(ϕ; d, k) ≈ eiπ/4

√
8kπ

∫

∂D

e−ikϕ·yf(y)ds(y). (4.6)

Approximating the integral over ∂D in the same manner as above, we can now

compute the far field pattern using the expression

h
eiπ/4

√
8kπ

N/2−1
∑

j=−N/2

e−ikϕ·x(sj)f(sj)|x′(sj)|

for any ϕ ∈ S1. To compute the far field patterns we choose n ∈ N evenly distributed

directions ϕ1, . . . , ϕn, where ϕj = ei2jπ/n.

4.2 The factorization method

Next we consider a numerical implementation of the factorization method. The

implementation is based on the indicator functionW defined in (3.3). We notice that

computing values of W requires the knowledge of the eigenvalues and eigenfunctions

of the far field operator F . Hence we start from the computation of this eigensystem

using singular value decomposition.

Assume that the far field pattern FD(ϕ; d, k) is given at points

ϕj = dj = eisj for j = 1, . . . , n,

where sj = 2jπ/n. Then the integral operator F ,

(Fg)(ϕ) =

∫

S1

FD(ϕ; d, k)g(d)ds(d),

can be approximately computed at points ϕ1, . . . , ϕn as

(Fg)(ϕl) ≈
n∑

j=1

FD(ϕl; dj, k)g(dj),

and hence the operator F can be represented as the matrix A ∈ Cn×n with elements

Alj = FD(ϕl; dj, k). To get an approximation for the eigenvalues and eigenvectors
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of F we compute the singular value decomposition

A = UDV ∗,

where D is a diagonal matrix with the singular values σ1, . . . , σn > 0 of A on its

diagonal. We approximate the eigenvalues |λj| in (3.3) with the singular values σj

and the corresponding eigenfunctions ψj with the column vectors Vj = [v1j , . . . , vnj ]
T

of matrix V . The indicator function W given by (3.3) can then be approximately

computed as follows:

W (z) ≈
(

n∑

j=1

∣
∣
∑n

l=1 exp(−ikϕl · z)vlj

∣
∣
2

σj

)−1

. (4.7)

The value of W is smaller for points z ∈ D than for z /∈ D. Hence we can approxi-

mately reconstruct the obstacle by choosing some R > 0 such that any z ∈ R2 with

W (z) ≥ R is considered to lie in D whereas W (z) < R implies z /∈ D.
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5. NUMERICAL RESULTS

This chapter illustrates with numerical examples the scattering problems and com-

putational methods presented in the preceding chapters. The first section presents

solutions to several direct problems, i.e., the scattered fields and their far field pat-

terns for several different obstacles and incident fields. The results of the corre-

sponding inverse problems solved with the factorization method are presented in

the second section.

The following note on the wave number is worth emphasizing. As pointed out

in [5, Section 1.1], the mathematical methods for solving scattering problems are

dependent on the wave number k. More precisely, the methods presented in this

thesis are physically reasonable only in the so-called resonance region in which ka .

1, where a is the diameter of the scattering obstacle. This fact was taken into

account when choosing the wave numbers for the numerical examples presented in

this chapter.

In addition to visual illustrations some numerical values provide useful infor-

mation about the results. In this chapter we measure the difference between two

matrices A and B by

diff :=
‖A−B‖F

(1/2)
(
‖A‖F + ‖B‖F

) , (5.1)

where ‖ · ‖F denotes the Frobenius norm. This value is used to measure differences

between two far field patterns and between two reconstructions of obstacles.

5.1 Direct problem

The numerical examples were chosen such that they illustrate

(1) a difference between scattered fields and far field patterns for two somewhat

similar obstacles,

(2) that the mapping from the obstacle to the far field pattern is nonlinear1, and

(3) scattered fields and their far field patterns for obstacles with corners.

1The nonlinearity here is somewhat unclear concept, since we have no linear structure in the set
of obstacles D ⊂ R2, but the idea of the example hopefully becomes clear when seeing the results.
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We remark that (2) is an interesting fact with respect to the corresponding inverse

problem, since it implies that the inverse problem is not merely ill-posed but also

nonlinear. In cases (1) and (2) the following are presented:

(i) the scattered field caused by a plane wave of the form eikx·d, where d = (1, 0),

and

(ii) the far field pattern

with three different wave numbers k. In all the examples the number of discretiza-

tion points for the boundary of the obstacle is N = 256 and for the incident and

observation directions in far field patterns n = 256.

The far field patterns are plotted such that the horizontal and vertical axes cor-

respond to the observation direction d and to the incident direction ϕ, respectively.

Both axes range from 0 to 2π.

5.1.1 Comparison between two obstacles

Consider the two obstacles shown in Figure 5.1 with their scattered fields. Notice

the similarities and differences between these obstacles. The corresponding far field

patterns are shown in Figure 5.2.
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Figure 5.1: Scattered fields with different wave numbers k for two somewhat similar ob-
stacles. The black areas depict the obstacles. The diameter of both obstacles is 5/8.
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Figure 5.2: Far field patterns for the two obstacles shown in Figure 5.1. The relative
differences (diff) defined by (5.1) are 74% between (a) and (d), 65% between (b) and (e),
and 66% between (c) and (f).

5.1.2 Illustration of nonlinearity

The aim of this example is to illustrate the nonlinearity of the mapping from the

obstacle to the far field pattern. Consider the obstacles 1, 2 and 3 in Figure 5.3.

The obstacle 3 can be viewed, in a sense, as the sum of obstacles 1 and 2. However,

as can be seen from Figure 5.4, the sum of the far field patterns of obstacles 1 and

2 is not equal to the far field pattern of obstacle 3.
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Figure 5.3: Obstacles 1 and 2 together form obstacle 3.
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(a) The sum of the far field pat-
terns of obstacles 1 and 2

(b) The far field pattern of ob-
stacle 3

(c) The difference of the far field
patterns (a) and (b)

Figure 5.4: The difference of the two far field patterns was computed as in Figure 5.2. The
difference was computed by first subtracting the two far field patterns (i.e., matrices) and
then taking the componentwise absolute value of the difference matrix. The wave number
k = 5. Color scale ranges from -0.65 (red) to 0.65 (yellow).

5.1.3 Obstacles with corners

Despite the fact that most of the theoretical results in scattering theory have been

derived for obstacles with C2-smooth boundaries, it presents no difficulties to com-

pute the scattered fields and their far field patterns for obstacles having piecewise

C1-smooth boundaries only. In terms of real-world obstacles it is not even reasonable

to assume that some obstacle would have a C2-smooth boundary. Hence the theory

requiring C2-smooth boundaries can be seen as a model which approximates the

reality accurately enough to be a valuable tool in analyzing and predicting natural

phenomena. Next we consider obstacles with piecewise C1-smooth boundaries, that

is, obstacles with corners.

To illustrate the effect of a corner in the scattering obstacle, we present scattered

fields and their far field patterns for two obstacles with corners and for two otherwise

similar obstacles but with the corner “smoothened”, see Figures 5.5 and 5.7. The far

field patterns and their differences are shown in Figures 5.6 and 5.8. The differences

of two far field patterns, i.e. matrices, was computed by first subtracting the matrices

and then taking the componentwise absolute value.
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Figure 5.5: The scattered fields with different wave numbers k for an obstacle with a
corner (upper row), and for the “smoothened” version of the same obstacle (lower row).
The black areas depict the obstacles. The diameter of both obstacles is approximately 1.5.
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Figure 5.6: Far field patterns and their differences for the two obstacles shown in Figure
5.5: the far field patterns on the first row correspond to the obstacle on the upper row
in Figure 5.5, and similarly the far field patterns on the second row correspond to the
obstacle on the lower row in Figure 5.5. The last row shows the differences of the far field
patterns on the first and second rows.
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Figure 5.7: The scattered fields with different wave numbers k for an obstacle with a
corner (upper row), and for the “smoothened” version of the same obstacle (lower row).
The black areas depict the obstacles. The diameter of both obstacles is approximately 1.



5. Numerical results 48

 

 

−0.4

−0.3

−0.2

−0.1

0

(a) k = 2

 

 

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) k = 5

 

 

−0.5

0

0.5

(c) k = 8

 

 

−0.4

−0.3

−0.2

−0.1

0

(d) k = 2

 

 

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(e) k = 5

 

 

−0.5

0

0.5

(f) k = 8

 

 

0.005

0.01

0.015

0.02

(g) k = 2, diff=4%

 

 

0.02

0.04

0.06

0.08

0.1

0.12

(h) k = 5, diff=13%

 

 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(i) k = 8, diff=39%

Figure 5.8: Far field patterns and their differences for the two obstacles shown in Figure
5.7. The representation is similar to Figure 5.6.
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5.2 Inverse problem

Next we turn to the results obtained by applying the factorization method to the far

field patterns (of the obstacles) presented in the preceding section. We present the

reconstructions both from ideal noise-free data and from data with 1% white noise.

The term reconstruction here refers in fact to the plot of the indicator function W

computed using (4.7). In order to precisely answer to the problem “find the shape

of the obstacle” we have to choose some number R > 0 such that W (z) ≥ R implies

z ∈ D and W (z) < R implies z /∈ D. However, the plots of the indicator function

contain more information than the actual reconstructions and hence we present these

plots and refer to them as reconstructions.

5.2.1 Reconstructions from ideal and noisy data

We begin with the reconstructions from ideal data and from data with 1% white

noise added. The reconstructions of each obstacle are presented for a wave number

that approximately produced the best reconstruction by visual inspection. To get

insight into the effect of the choice of the wave number see the following section.

The reconstructions with original obstacles are shown in Figures 5.9, 5.10 and 5.11.

(a) The obstacle (b) Ideal data (c) Noisy data

(d) The obstacle (e) Ideal data (f) Noisy data

Figure 5.9: Reconstructions from ideal and noisy data, and the original obstacles (left
column). The noisy data was created by adding 1% white noise to the ideal data. The
wave number for the obstacle on the upper row is k = 6, and for the obstacle on the lower
row k = 4. The color scale ranges from 0 (dark blue) to 0.2 (dark red).
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(a) The obstacle (b) Ideal data (c) Noisy data

(d) The obstacle (e) Ideal data (f) Noisy data

Figure 5.10: Reconstructions from ideal and noisy data, and the original obstacles (left
column). The noisy data was created by adding 1% white noise to the ideal data. The
obstacle on the first row has a corner that is smoothened in the obstacle on the lower row.
The wave number for both obstacles is k = 1. The difference (diff) of the reconstructions
(b) and (e) is 5%. The color scale ranges from 0 (dark blue) to 0.15 (dark red).
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(a) The obstacle (b) Ideal data (c) Noisy data

(d) The obstacle (e) Ideal data (f) Noisy data

Figure 5.11: Reconstructions from ideal and noisy data, and the original obstacles (left
column). The noisy data was created by adding 1% white noise to the ideal data. The
obstacle on the first row has a corner that is smoothened in the obstacle on the lower row.
The wave number for both obstacles is k = 1. The difference (diff) of the reconstructions
(b) and (e) is 3%. The color scale ranges from 0 (dark blue) to 0.11 (dark red).
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5.2.2 Dependence on the wave number

To illustrate how the results of the factorization method depend on the choice of the

wave number, we present reconstructions from ideal data for two obstacles with five

different wave numbers. The reconstructions are shown in Figure 5.12.

(a) k = 2 (b) k = 4 (c) k = 6 (d) k = 8 (e) k = 10

(f) k = 0.1 (g) k = 0.5 (h) k = 1 (i) k = 5 (j) k = 10

Figure 5.12: Reconstructions from ideal data for two obstacles with five different wave
numbers k. The obstacles are the one on the upper row in Figure 5.9 and the one on the
upper row in Figure 5.10. The color scale is not the same in all reconstructions but chosen
individually for each plot.
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6. CONCLUSION

The theory of direct scattering problems makes use of a large variety of mathematical

tools such as real, complex and functional analysis, and the theory of boundary value

problems of partial differential equations. Especially establishing the existence of a

solution to the direct scattering problem by using the method of boundary integral

equations is a lengthy process that requires technical regularity results for the single-

layer potential as well as abstract results for compact operators.

There are certain differences between two- and three-dimensional scattering the-

ory and most of them arise from the fact that the fundamental solution of the

Helmholtz equation is different in two and three dimensions. The differences be-

come apparent in analyzing the regularity properties of the single-layer potential

as well as in the formulation of the Sommerfeld radiation condition and in the far

field pattern. Most of the literature on scattering theory deals with the practically

more interesting three-dimensional case but the two-dimensional scattering problem

serves as useful test problem especially in terms of numerical experiments.

The solution of the exterior Neumann problem arising from the direct scatter-

ing problem can easily be computed numerically by solving a boundary integral

equation and using the corresponding single-layer potential representation of the

solution. The computational methods and their numerical results presented in this

work apparently seem to be correct since the reconstructions computed with the

factorization method from the numerical results of the direct problem are excellent.

As can be seen from the numerical results, the factorization method is a promising

qualitative method for solving inverse scattering problems, i.e., it can be used not

only to detect but also to find information about the obstacle such as the number of

the separate components of the obstacle. It gives a sufficient and necessary condition

for a point to belong in the scattering obstacle, and the condition is easily and simply

computable. The major drawback of the factorization method is that it needs a large

amount of data for the inversion. Moreover, there are still many important scattering

problems for which the factorization method has not been established.



54

REFERENCES

[1] Abramowitz M and Stegun I A (1965), Handbook of Mathematical Functions

with Formulas, Graphs and Mathematical Tables, Dover.

[2] Cakoni F and Colton D (2006), Qualitative Methods in Inverse Scattering The-

ory, Springer.
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