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ABSTRACT 
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Master’s Degree Programme in Mechanical Engineering 
PELTOLA, JUHO : Dynamics in a Circulating Fluidized Bed: Experimental and 
Numerical Study 
Master of Science Thesis, 95 pages 
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Examiners: Docent Pentti Saarenrinne, D.Tech Markus Honkanen 
Keywords: fluidized bed, CFB, experimental, numerical, CFD, multiphase, 
Euler-Euler, PIV, high-speed imaging, shadowgraphy   
 
The introduction of particles to create a fluidized bed combustor increases mixing and 
reduces temperature fluctuations, allowing emission reduction and a wider range of 
fuels. The particles and combustion air create a complicated gas-solid multiphase flow. 
Mathematical modelling of such flows is very challenging and the simulations require 
considerable computational capacity. Improving the performance of fluidized bed 
combustors requires knowledge of the particle motion in the reactor. As a result there is 
a need for a quick, time-averaged simulation method that could be used as a design tool 
in the industry. 

 
This thesis concentrates on the particle dynamics of a non-reacting, pilot-scale 
Circulating Fluidized Bed (CFB). The particle motion was studied by applying image 
based measurements and transient computer simulations with the Eulerian two-fluid 
approach. The goal for the measurements was to provide detailed information about the 
particle behaviour for the validation of transient and time-averaged simulations, and for 
modelling parameter definition. 

 
For the simulations, the goal was to evaluate the feasibility of using a solver based on 
the OpenFOAM open source code library to simulate circulating fluidized beds. 
Meaningful simulation of the pilot-scale CFB required modification of the Eulerian 
multiphase solver included in the public OpenFOAM release. The results, speed, 
stability and parallel efficiency of the modified solver were found to be competitive. 

 
Shadowgraphy was the illumination method of choice for the measurements. Local and 
instantaneous particle volume fractions were determined by correlating the grey-scale 
values of the recorded images. Particle velocities were measured with the Particle Image 
Velocimetry (PIV) method based on a statistical determination of the particle 
displacement from the images. For the particle small-scale random motion a method 
based on change in the PIV-correlation peak width was used. The method was 
implemented – together with a PIV algorithm – in MATLAB. Particle Tracking 
Velocimetry (PTV) methods for the measurement of individual particle properties were 
reviewed, developed and validated, but were only applied to the measurement of 
particle size distribution from a separate sample. 

 
Results are presented for simulated and measured particle mean velocities and volume 
fractions, as well as for the measured standard deviation values, the volume fraction 
weighted mean particle velocities, the Reynolds stresses and the particle small-scale 
random motion.   
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Leijupetikattila on erityisesti biopolttoaineiden polttoon kehitetty lämpövoimaloiden 
kattilatyyppi. Leijupetikattilan palotilassa on kiinteitä partikkeleja, joita leijutetaan 
alapuolelta pumpatulla polttoilmalla. Reaktorissa olevat partikkelit tehostavat 
sekoittumista ja tasaavat lämpötilan vaihteluja. Tämä mahdollistaa päästöjen 
alentamisen ja laajemman polttoainevalikoiman. Tämä on erityisen tärkeää käytettäessä 
biopolttoaineita, joiden laatu voi olla hyvin vaihteleva.  

 
Partikkelit ja polttoilma muodostavat leijupetikattilaan fysikaalisesti huomattavan 
monimutkaisen kaksifaasivirtauksen, jonka mallintaminen on hyvin vaativaa. Nykyään 
leijupetejä simuloidaan ajasta riippuvilla simulaatioilla, mutta laskennallisesti ne ovat 
hyvin raskaita virtauksen epävakaan luonteen vaatimista pitkistä keskiarvotusajoista 
johtuen. Kattiloiden suorituskyvyn parantaminen vaatii tietoa partikkelien liikkeestä ja 
jakautumisesta. Täten on olemassa tarve nopealle, aikakeskiarvotetulle 
simulointimenetelmälle, joka soveltuisi teollisuuden suunnittelukäyttöön.   
 
Työ keskittyy partikkelien dynamiikkaan reagoimattomassa pilottikoon kiertoleiju- 
pedissä, mitä tarkastellaan sekä mittausten että numeerisen mallinnuksen avulla. 
Tutkittavan laitteen koko sallii nopeiden kaksiulotteisten simulointien ja kehittyneiden 
kuvaan perustuvien mittausmenetelmien käytön, joka ei olisi mahdollista teollisen 
mittakaavan laitteessa. Mittausten tavoitteena on tuottaa yksityiskohtaista tietoa 
partikkelien liikkeestä ajasta riippuvien ja aikakeskiarvotettujen simulointien 
validointiin ja malliparametrien määrittämiseksi. 

 
Virtaussimuloinneissa on käytetty ajasta riippuvaa Euler-Euler -kaksinestemallia. 
Tavoitteena on ollut selvittää OpenFOAM-nimiseen vapaan lähdekoodin kirjastoon 
perustuvan virtausratkaisijan soveltuvuutta leijupetien mallinnukseen. Ohjelman 
julkinen levitysversio sisältää tarkoitukseen mahdollisesti soveltuvan ratkaisijan ja lähes 
kaikki tarvittavat mallit. Ratkaisijaa testattaessa kuitenkin paljastui, että 
merkityksellinen kiertoleijun simulointi vaatii OpenFOAMin ratkaisijan muokkaamista. 
Ongelmat liittyivät pääasiassa ratkaisijan käyttäytymiseen suurilla partikkelien 
tilavuusosuuksilla, erityisesti käytettäessä kineettiseen teoriaan perustuvaa partikkeli-
partikkeli -vuorovaikutusmallia. Ongelmat ilmenivät ratkaisujen epäfysikaalisina 
tilavuusosuuksina sekä ratkaisijan yleisenä epävakautena.  

 
Ongelmien poistamiseksi ratkaisijaan on tehty muutoksia. Kineettisen teorian 
partikkelien tilavuusosuutta rajoittavan termin, kitkapaineen (engl. frictional pressure), 
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käsittely on muutettu implisiittisemmäksi. Partikkelien tilavuusosuuden siirtoyhtälölle 
on lisätty adaptiivinen alirelaksointi sekä sen ajasta riippuvassa ratkaisijassa vaatimat 
lisäiteraatiot. Näillä muutoksilla ratkaisijan vakaus parantui, mutta käytetty kitkapaineen 
käsittely mahdollisti sen toimimisen epäfysikaalisena liikemäärälähteenä. Tästä johtuen 
ratkaisija ei ollut edelleenkään kyllin vakaa. Ongelman ratkaisemiseksi on kehitetty 
algoritmi rajoittamaan kitkapaineen suuruutta hetkellisesti ja laskentaelementeittäin. 
Rajoitin perustuu kitkapaineen tuottaman vuon ja muun virtauskentän vertailuun. 
Muutosten jälkeen ratkaisija on osoittautunut tulosten, nopeuden, vakauden ja 
rinnakkaistumisen osalta kilpailukykyiseksi.  

 
Numeeriseen vakauden parannuttua oli mahdollista keskittyä tarvittaviin fysikaalisiin 
malleihin. Niiden osalta ratkaisijaan on lisätty suodatettuihin liikemääräyhtälöihin 
perustuva alihilaturbulenssimalli, kaksi partikkelivirtausmallinnuksessa yleisesti 
käytettyä reunaehtoa sekä muutamia alimalleja kineettiseen teoriaan.  

 
Sakean suspension mittauksissa valon läpäisykyky on usein rajoittava tekijä. Siten 
laitteen litteästä, lähes kaksiulotteisesta geometriasta johtuen kuvausmenetelmäksi on 
valittu varjokuvantaminen. Tällöin partikkelivirtausta kuvataan vastavaloon ja 
partikkelit näkyvät kuvissa varjoina. Kuvaan tallennettu valon intensiteetti kuvaa 
suspension läpäisemän valon määrää. Tällöin partikkelien paikallista ja hetkellistä 
tilavuusosuutta voidaan arvioida korreloimalla kuvan harmaasävyjä tilavuusosuuksien 
kanssa.  Menetelmän heikkoutena on tarkkuus suurilla partikkelien tilavuusosuuksilla, 
jolloin valo ei juuri läpäise suspensiota. 

 
Työssä tarkastellaan kahta partikkelien nopeuksien määritykseen soveltuvaa menetelmä. 
Particle Image Velocimetry (PIV) on partikkelikuvien tilastolliseen korrelointiin 
perustuva menetelmä, joka antaa partikkelien todennäköisimmän nopeuden 
mittaustilavuudessa. Menetelmän hyviä puolia ovat varmatoimisuus ja soveltuvuus 
laajalle skaalalle suspension tiheyksiä. Toinen tarkasteltu menetelmä on Particle 
Tracking Velocimetry (PTV), jossa tunnistetaan kuvista yksittäisiä partikkeleita ja 
määritetään niiden nopeudet. Menetelmän vahvuuksia ovat paras mahdollinen 
paikkaresoluutio, mahdollisuus partikkelien koon ja muodon määrittämiseen sekä se, 
että jokainen nopeus vastaa todellista partikkelia. Partikkelien tunnistaminen on 
kuitenkin algoritmisesti haastavaa, joten nopeuksien määritys on laskennallisesti hidasta 
verrattuna PIV:iin. Tämä korostuu erityisesti kiertoleijun kaltaisissa sakeissa 
suspensioissa. Tästä johtuen menetelmä soveltuu vain harvan suspension alueille. Tässä 
diplomityössä partikkelien nopeuksien määritykseen on käytetty PIV-menetelmää. 
PTV-menetelmiä on kehitetty ja validoitu, mutta sovellettu ainoastaan partikkelien 
kokojakauman määritykseen erillisestä näytteestä.   

 
Mittauksia suoritettiin kahdella eri mittausalalla, jotta sekä suuren että pienen skaalan 
ilmiöt saatiin mitattua. Suurempi mittausikkuna kattoi koko nousuputken leveyden. 
Tällöin on mahdollista tutkia partikkeliklusterien kehitystä ja vuorovaikutusta, mutta 
yksittäisten partikkelien havainnoiminen on mahdotonta eikä nopeuden määrityksen 
paikkaresoluutio riitä jyrkimpien nopeusgradienttien mittaamiseen. Suuri mittausalue 
sallii nousuputken nopeuksien ja tilavuusosuuksien määrityksen laajalta alalta, antaen 
hyvän yleiskuvan virtauksesta. Suuresta mittausalasta johtuen valaisuun on käytetty 
loisteputkia. 
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Pienempi mittausalue oli kooltaan 40x30 mm, joka salli valaisemisen pulssitetulla 
diodilaserilla. Tällöin yksittäiset partikkelit erottuvat selvästi, eikä liike-epätarkkuutta 
esiinny. Näistä hyvälaatuisista kuvista nopeuden 1,65 mm suuremmat skaalat voidaan 
mitata tarkasti, lukuun ottamatta sakeimpia alueita, joilla valo ei mitattavasti läpäise 
suspensiota. Tarkka nopeuksien määritys ja kuvan harmaasävystä korreloitu, 
yhtäaikainen tilavuusosuuden määritys sallii tilavuusosuuspainotettujen keskiarvojen ja 
Reynoldsin jännitysten laskennan. Kyseiset suureet ovat tärkeitä aikakeskiarvotetulle 
mallinnukselle.  

 
Kuvausmenetelmä, jossa yksittäiset partikkelit ovat eroteltavissa, sallii myös 
partikkelien mittaustilavuutta pienemmän skaalan satunnaisen liikkeen tilastollisen 
määrityksen PIV-korrelaation tulosten perusteella. Dijkhuizen et al.  (2007) ehdottamaa 
menetelmää sovellettiin partikkelien varjokuviin. Menetelmä implementoitiin 
MATLAB-ympäristöön yhdessä PIV-algoritmin kanssa ja validoitiin synteettisillä 
partikkelikuvilla. 

 
Mittaukset ja simuloinnit suoritettiin kahdella eri leijutusnopeudella. Partikkelien 
keskinopeuksille ja -tilavuusosuuksille esitetään simuloituja ja mitattuja tuloksia. 
Lisäksi esitetään mittaustuloksista lasketut arvot tilavuusosuuspainotetulle partikkelien 
keskinopeudelle, Reynoldsin jännityksille sekä partikkelien pienen skaalan satunnaisen 
liikkeen energialle.  



VIII   
 

  



IX 
 

PREFACE 
 
This Master of Science thesis was written at Tampere University of Technology (TUT) 
in the Department of Energy and Process Engineering. The measurement portion of the 
thesis is part of the research project Time-Averaged CFD Modelling of Circulating 
Fluidized Beds (TAveCFD_CFB) funded by Tekes, the Finnish Funding Agency for 
Technology and Innovation. The simulation and CFD-solver development portions of 
the thesis have been carried out on my spare time, although they are partially based on 
my work at VTT, the Technical Research Institute of Finland, during the summer of 
2008. 
 
Firstly, I would like to thank my supervisor Pentti Saarenrinne for opportunity and 
encouragement to take part in interesting research during the last two and a half years, 
and most recently in the TAveCFD_CFB project. The expertise of the whole TUT 
experimental fluid dynamics team in image-based measurements – built over several 
years – has enabled the measurements of this thesis to be carried out. My examiner, 
Markus Honkanen deserves special thanks for his wide knowledge of multiphase flow 
measurements and his willingness to share his knowledge. The shadowgraphy PTV 
method discussed in Sections 6.3.1 and 6.3.2 owes a lot to his research. 
 
The knowledge and guidance of Sirpa Kallio (VTT) and Veikko Taivassalo (VTT) on 
all things fluidized and Eulerian multiphase modelling have also been vital for my work. 
Alf Hermanson (Åbo Akademi University), who supervised the construction of the 
experimental device, constructed much of the measurement setup and operated the CFB 
during the measurements, has also been indispensable for the experimental research. I 
would also like to thank Ville Tossavainen (TUT), for introducing me to OpenFOAM, 
discussion and help with the TUT computational cluster, and Alberto Passalacqua (Iowa 
State University), for discussion and provision of material related to the 
twoPhaseEulerFoam solver, including the source code used in his PhD thesis. 
 
Finally, I would like to thank my friends and family, for bringing balance to work and 
leisure, and Essi, for her patience, love and support. 
 
 
 
 
 
 
           Tampere, September 22nd 2009 
 

      ________________________________ 
           Juho Peltola 



X   
 

  



XI 
 

 

TABLE OF CONTENTS 
 

1. Introduction ............................................................................................................... 1 
2. Fluidization and Gas-Solid Flow .............................................................................. 2 

2.1. Fluid-particle interaction ................................................................................... 5 
2.2. Particle-Particle Interaction ............................................................................. 11 

3. 2D Pilot-Scale CFB ................................................................................................. 13 
4. Eulerian CFD Modelling of CFB ............................................................................ 15 

4.1. Conditional averaging and the Euler-Euler approach ..................................... 16 

4.2. Continuity and Momentum Conservation ....................................................... 17 

4.3. Particle-Fluid Momentum Transfer................................................................. 18 

4.4. Particle-Particle Interaction and Kinetic Theory for Granular Flow .............. 19 

4.4.1. Powder Modulus ................................................................................ 19 

4.4.2. Kinetic Theory Approach and Granular Temperature ....................... 20 
4.4.3. Frictional Stresses .............................................................................. 24 

4.4.4. Wall Boundary Conditions ................................................................ 26 

4.5. Turbulence Models.......................................................................................... 27 
5. Numerical Method .................................................................................................. 30 

5.1. Open Source CFD: OpenFOAM ..................................................................... 31 

5.2. Solver: twoPhaseEulerFoam ........................................................................... 31 

5.2.1. Solution Algorithm ............................................................................ 32 

5.2.2. Initial Testing ..................................................................................... 36 

5.3. Modified Solver .............................................................................................. 38 
5.3.1. Adaptive Under-Relaxation and Iterations within a Time Step ......... 39 
5.3.2. Handling of the Frictional Pressure ................................................... 39 

5.3.3. Kinetic Theory ................................................................................... 42 

5.3.4. SGS-Models for Continuous Phase Turbulence ................................ 42 
5.4. Parallel Efficiency ........................................................................................... 42 
5.5. CFD-Modelling Setup ..................................................................................... 44 

6. Image-based Measurement Methods....................................................................... 47 

6.1. Grey-Scale Volume Fraction Estimate ........................................................... 47 

6.1.1. Light Intensity Correction .................................................................. 49 

6.1.2. Measurement of Cluster Size Distribution......................................... 51 

6.2. Particle Image Velocimetry............................................................................. 51 

6.2.1. Cross-Correlation and Vector Calculation ......................................... 52 

6.2.2. Vector Field Validation and Post-processing .................................... 53 

6.3. Particle Tracking Velocimetry ........................................................................ 54 

6.3.1. Particle Detection in Shadowgraphy.................................................. 55 

6.3.2. PTV algorithm ................................................................................... 56 

6.3.3. Application to the Pilot Scale CFB .................................................... 56 

 



XII  TABLE OF CONTENTS 
 

6.4. Measurement of Small-Scale Random Motion ............................................... 59 

6.4.1. Implementation in MATLAB ............................................................ 61 

6.4.2. Testing and validation ........................................................................ 64 

6.5. Measurement Setup and Sampling .................................................................. 68 

6.5.1. Continuous Light Source ................................................................... 69 

6.5.2. Pulsed Light Source ........................................................................... 70 

7. Results and Discussion............................................................................................ 73 
7.1. Simulations...................................................................................................... 73 
7.2. Measurements, Comparison and Discussion .................................................. 75 

7.2.1. Large-Scale Behaviour ...................................................................... 76 

7.2.2. Simulated and Measured Mean Cross-Sections ................................ 79 
7.2.3. Favre-averages and Reynolds Stresses .............................................. 81 

7.2.4. Small-scale Particle Random Motion ................................................ 84 

8. Conclusions ............................................................................................................. 87 
References ....................................................................................................................... 91 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



XIII 
 

ABBREVIATIONS AND SYMBOLS 
 
     
 

Abbreviations 
 
AC Auto-Correlation 
CC Cross-Correlation 
CCD Charge Coupled Device 
CFB Circulating Fluidized Bed 
CFD Computational Fluid Dynamics 
CMOS Complementary Metal Oxide Semiconductor 
DOF Depth of Field 
FDM Finite Difference Method 
FEM Finite Element Method 
FFT Fast Fourier Transform 
FVM Finite Volume Method 
GPVS Glare Point Velocimetry and Sizing 
IPI Interferometric Particle Imaging  
KTGF Kinetic Theory for Granular Flow 
LES Large-Eddy Simulation 
PIV Particle Image Velocimetry  
PTV Particle Tracking Velocimetry 
RANS Reynolds-Averaged Navier-Stokes 
RMS Root Mean Square 
SGS Sub-Grid Scale 

 
 

Mathematical symbols 
 
Normal typeface denotes a scalar variable. 
Bold typeface denotes a vector, tensor or matrix variable. 

 
Roman symbols 
 � Surface area �  Coefficient matrix �� Momentum transfer coefficient, drag �� Momentum transfer coefficient, lift ��� Momentum transfer coefficient, virtual mass 



XIV  ABBREVIATIONS AND SYMBOLS 
 �� Coefficient matrix of discretized momentum equation for 

phase  	 
� A constant related to 	  
� Drag coefficient  
� Lift coefficient  
�� Virtual mass coefficient  
� Smagorinsky coefficient  
�  Particle diameter  � Coefficient of restitution  �  Force � Drag factor,    or friction coefficient  �� Number frequency distribution �� Maxwellian distribution  �  Relative velocity ��� Powder Modulus   ��� Frictional pressure Modulus   �   Gravitational acceleration ��   Radial distribution �� Indicator step function for phase  	 � Measured light intensity � Light intensity matrix,   or identity matrix    � Impulsive force  ���� Granular temperature dissipation due to fluid viscosity  ����� Granular temperature production due to fluid turbulence  � Momentum transfer coefficient, drag  ! Turbulent kinetic energy  "  A characteristic length # Mass  $ Surface normal unit vector  %  Pressure &�  Solids pressure &�  Frictional solids pressure &'(  Kinetic solids pressure )* Granular temperature flux  + Correlation matrix  ,�� Reynolds number with characteristic length "  - Rate of deformation tensor  ./ Cell face surface area vector  



XV 
 01 Stokes Number  2�  Velocity of phase 	 23  Relative velocity 2�  Mixture velocity 4 Volume  5� Critical velocity, speed of wave propagation  
 
 
Greek symbols  
 6�  Phase volume fraction of phase 	 6�,�89 Maximum particle volume fraction  :  Momentum transfer coefficient, drag ;� Granular temperature dissipation due to inelastic collisions  Δ  SGS-filter size Δ= Image scale  > Dissipation of turbulent kinetic energy,   or a small tolerance ? Residual @  Dynamic viscosity A Kinematic viscosity  B Statistical standard deviation  BC Statistical variance B� Surface normal stress  D   Density Θ  Granular temperature F� Granular temperature conductivity  G� Solids bulk viscosity  H Deviatoric stress tensor  HIJ  Reynolds stress tensor H3 Residual stress tensor HKLK SGS-stress tensor   M� Time-scale of continuous phase turbulent eddies  MN Particle relaxation time M� Time-scale of the system MO Kolmogorov time-scale     	�    Angle of internal friction  P Volume flux  PQ  Sphericity P��J� Specularity coefficient  

 



XVI  ABBREVIATIONS AND SYMBOLS 
 

Subscripts, superscripts and oversymbols 
 R is a scalar, vector, tensor or matrix variable. 
 R� Value of  S in phase 	 R� Value of  S in solids phase RT Value of  S in gas phase R( Turbulent RU Transpose RV Fluctuation with respect to average RVV Fluctuation with respect to density weighted average RW Modified or corrected RX  Rate of change RY  Average RYZ Conditional average R[  Density weighted average R[� Density weighted conditional average 



1 
 

1. INTRODUCTION 

An efficient and environmentally friendly energy source is vital for a modern society. 
Although there is a strong push for development of alternative energy sources – such as 
wind and solar power – today, and in future decades different kinds of combustion 
processes are responsible for the majority of global energy production. The increasing 
pressure towards non-fossil fuels adds to the challenges of combustion related research 
and the design of reactors: the properties of such fuels differ from traditional fuels, and 
their quality is more varied. 
 
The introduction of fluidized particles to the combustor has advantages over traditional 
combustors. Firstly, fluidized bed combustors are less sensitive to the choice of fuel, 
and secondly, the nitrous and sulphur oxide emissions can be reduced. Mixing is greatly 
enhanced by the presence of the particle phase, allowing combustion at lower 
temperatures, while the improved mixing, together with the heat capacity of the 
particles, smoothes out the temperature field. In addition, emission absorbent particles 
may be inserted directly into the reactor. Fluidized beds are also used in other types of 
chemical processes, such as catalytic cracking in oil refining, where it enhances mixing 
and provides a large surface area contact between the phases. 
 
Even if chemical reactions and heat transfer are ignored, the physics of the multiphase 
flow in fluidized beds is very complex. In current practice, fluidized beds are always 
simulated with time dependent, transient simulations with reasonably fine 
computational meshes to capture the complicated physical phenomena. In industrial 
applications the fluidized beds are large and their size, together with long averaging 
times necessitated by the unsteady nature of the flow leads to unfeasibly large 
computational costs. These computational costs have created the demand for an 
efficient, time-averaged simulation method that could be used as a design tool in 
industry.  
 
The aim of this thesis is to provide detailed experimental data about the dynamics of the 
particle phase in a pilot scale Circulating Fluidized Bed (CFB) by applying image-based 
measurement methods. Such data is needed for the validation and model parameter 
definition of transient and time-averaged simulations.  In addition, a feasibility study 
has been carried out on the use of an OpenFOAM based Eulerian two-phase solver for 
transient simulations of a CFB, together with parallelization to offset the computational 
cost of the time-dependent simulations. 
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2. FLUIDIZATION AND GAS-SOLID FLOW 

This chapter introduces the physical phenomena of fluidization and gas-solid flow to 
give the reader adequate background information for the later chapters. Much of the 
detailed analysis is omitted.  More information on fluidization can be found in books by 
Kunii  and Levenspiel (1991), Gidaspow (1994) and Grace et al. (1997)  among others, 
and on general particle-fluid flow in books by Crowe et al. (1998) and Michaelides 
(2006). 
 
A basic example of a fluidized bed is a vertical pipe partially filled with spherical 
particles as shown in Figure 2.1. A porous distributor plate which allows the fluid 
pumped from below to flow through it while stopping the particles is located at the 
bottom of the pipe.  For good quality fluidization the distributor plate should produce a 
sufficient pressure drop, for the incoming fluid flow to be distributed evenly across the 
bottom of the pipe. (Gidaspow, 1994, p. 97.)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1.  Schematic of a basic fluidized bed  
 
The gas or liquid flow upward through the particle bed causes a pressure drop. As the 
inlet gas or liquid mean velocity, i.e. fluidization velocity is increased the pressure drop 
increases until it is great enough to support the weight of the particles. At this point the 
pressure drop stabilises and the particles begin to move. This point is called the 
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minimum fluidization state and the corresponding mean inlet velocity the minimum 

fluidization velocity. (Gidaspow, 1994, p. 97.) 
 
If the wall friction and the friction between the particles is ignored, the balance between 
the pressure drop and the buoyancy can be written as  
 

 \1 ^ 6T_\D� ^ DT_� ` :6T \aT ^ a�_ (2.1) 

 

In a dense bed : is obtained from the Ergun (1952) Equation (2.2).  
 

 : ` 150 d1 ^ 6TeC@T6T\
�P_C f 1.75 ρjk2T ^ 2�k\1 ^ 6T_
�PQ  (2.2) 

 6T is the gas volume fraction, D� and DT solid and gas densities respectively, � the 

gravitational acceleration, and aT and a� the respective gas and solid velocities. @T is 

the gas viscosity, 
� the particle diameter and the particle sphericity is PQ, Equation 2.3. 

(Gidaspow, 1994, pp.100-101.) 
 

 PQ ` lm n⁄ \64�_C n⁄
��  (2.3) 

 
Sphericity is defined as the ratio of the surface area of a sphere with the same volume as 

the particle, 4� and the surface area of the particle, ��.  

 
Geldart (1973) suggested classification of uniform size powders into four groups based 
on their behaviour in a fluidized bed. The classification is valid for air fluidized beds in 
ambient conditions. The parameters used for the classification are the density difference 
between the particles and air, and the mean size of the particles. Geldart’s diagram is 
shown in Figure 2.2. (Gidaspow, 1994, p. 105.) 
 
The particles used in the circulating fluidized bed examined in this thesis belong to 
group B (bubbling). These particles are characterized by a mean diameter of between 40 
µm and 500 µm and a density from 1400 kg/m3 to 4000 kg/m3. These powders start 
bubbling at the minimum fluidization velocity and the expansion of the bed is small at 
atmospheric pressure. With a steady fluidization velocity, the rise velocity of the 
bubbles is lower than the velocity of the gas inlet jet. (Gidaspow, 1994, p. 105.) 
 
The other groups are: small or low density particles, group A (Aerated), large and very 
dense particles, group D, and particles that are difficult to fluidize, group C (Cohesive), 
because of their tendency to lift as a plug, rat-hole and agglomerate on the furnace 
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walls. For group C particles the inter-particle forces are larger than the forces exerted by 
the fluid on the particles. (Gidaspow, 1994, p. 105.) 
 

  
Figure 2.2. Geldart’s classification of fluidized particles (Gidaspow, 1994, p. 103.) 

 
 
Fluidization has distinct flow regimes which are visualized in Figure 2.3. At the 
minimum fluidization state, the particles lie at the bottom of the pipe in fully packed 
state and reorganize according to the minimum energy principle. With Geldart class B 
particles bubbles begin to appear as the fluidization velocity is increased and the system 
enters the bubbling regime. If the riser is narrow and the bed is sufficiently tall, the 
bubbles will coalesce and form slugs that cover almost the whole cross-section of the 
riser. This is called the slugging regime. (Gidaspow, 1994. p. 97.)  
 
At even higher velocities the bubble and slug structures break and the bed becomes 
turbulent. In a turbulent bed, dilute and dense areas alternate rapidly and neither state 
dominates the behaviour. The pressure fluctuations reach their highest standard 
deviation values in the turbulent regime (Grace and Bi, 1997). Above the turbulent 
region is the fast fluidization regime. Li and Kwauk (1980) and Takeuchi et al. (1986) 
defined fast fluidization as a state where dilute and dense areas coexist. Horio (1991, 
1997) added that the bed is in the fast fluidization state, if the superficial gas velocity is 
higher than the transport velocity, even if the system doesn’t have dilute areas. Fast 
fluidization systems often have dense regions on the walls moving downwards, while 
the main part of the suspension, mostly dilute, moves upwards in the middle. With a 
further increase in fluidization velocity the system moves into the pneumatic conveying 

regime, which is characterized by the disappearance of dense regions and by a vertically 
uniform particle distribution.  (Passalacqua, 2008, p. xii.) 
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In fast fluidization and pneumatic conveying regimes, with fluidization velocities above 
the terminal velocity of the particles, some particles are blown out of the riser.  The 
continuous operation of such a system requires an inflow of particles into the system. In 
a Circulating Fluidized Bed (CFB) the particles are separated, most commonly with a 
cyclone, from the gas outflow and returned to the bottom of the bed. (Gidaspow, 1994. 
pp. 97-98.) CFBs usually operate in the fast fluidization regime, as was the case with the 
CFB examined in this thesis.  
 

 
Figure 2.3.  Flow regimes of a fluidized bed in Grace et al. (1997) according to 

Passalacqua (2008, p. xi). 

 

 

2.1. Fluid-particle interaction 

The study of the interaction between a solid sphere and a fluid flow has a long history. 
The first pioneers in the field were Sir Isaac Newton (1642-1727) and Jean le Rond 
d’Alembert (1717-1783). During the intervening centuries of study several mechanisms 
of momentum transfer between the sphere and the fluid have been identified. The most 
intuitive, and often the most important, of these is the steady-state drag force, which is 
the force felt while holding a beach ball in a steady breeze. The drag force affecting a 

solid, spherical particle can be quantified with Equation 2.4, where �� is the drag force 

vector affecting the particle. 2T and 2� are velocity vectors for the fluid and the particle.  DT is the density of the flowing, continuous medium and � is the frontal area of the 

particle. As the particle is spherical the frontal area � is 
qr 
�C, where 
� is the diameter 

of the particle. 
 

 �� ` 12 DT
��k2� ^ 2Tk\2� ^ 2T_ (2.4) 
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Drag coefficients, 
�, have been defined for bodies of various shapes with analytical, 
experimental and numerical methods. The commonly accepted drag coefficient of a 
sphere in a steady, uniform flow is described by the standard drag curve, Figure 2.4, as 
a function of the Reynolds number, Equation 2.5, based on the diameter of the sphere, 
�. |a| is the magnitude of (relative) velocity of mean flow and A ` @ D⁄  is kinematic 

viscosity of the flowing medium. 
 

 ,�� ` |2|
�A  (2.5) 

 
The Reynolds number describes the ratio of viscous and convective effects in the flow. 
At a low Reynolds number, drag is caused solely by the friction between fluid and the 

surface of the sphere. This is called Stokes drag and it is valid for ,�� u 1. As the 
Reynolds number increases the flow begins to detach from the surface and an increasing 
proportion of the drag is caused by the low pressure in the detached wake of the sphere. 
This is known as pressure or shape drag.  Above Reynolds number 103 practically all of 

the drag is pressure drag. At the critical Reynolds number, ~5 w 10x the boundary layer 
on the sphere becomes turbulent and the flow reattaches as a result of increased mixing, 
i.e. apparent increase in viscosity, due to the turbulent eddies. The drag coefficient 
drops sharply as the transition from laminar to turbulent boundary layer occurs due to 
reduced pressure drag. 
 

 
Figure 2.4. Drag coefficient of a sphere by Reynolds number. (Crowe et al., 1998, p. 

68.) 

 
If the flow experienced by the sphere is not uniform an additional Faxen force (Happel 
and Brenner, 1973) is created. The ratio between Faxen force and Stokes drag is 
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proportional to \
� "⁄ _C
, where " is the characteristic length related to the flow field 

curvature. In a laminar flow through a bent pipe the curvature would be the radius of the 
bend. In a turbulent flow the characteristic curvature can also be the scale of turbulent 
eddies. At higher Reynolds numbers the Stokes drag represents increasingly small 
proportion of the drag, reducing the effect of the Faxen force relative to the uniform 
flow drag. (Crowe et al., 1998, p. 69.) 
 

 |�y89Jz||�K(Q'J�| ~ {
�" |C
 (2.6) 

 
Gravity creates a pressure gradient in the fluid that creates a force in a direction opposed 
to the gravity on the particle which is equal to the weight of the fluid displaced by the 
particle. The gravity also affects the particle, creating a force equal to the weight of the 
particle in the direction of the gravity. The net buoyant force from combining these two 

forces can be described with Equation 2.7, where � is the gravitational acceleration, 4� 

the volume of the particle and D� and DTare the particle and fluid densities respectively.  

 
 � ` �4�dD� ^ DTe (2.7) 

 
The equation for the motion of a particle including drag and buoyancy effects is 
 

 # �2}�( ` 3l@T
��\2T ^ 2�_ f #� ^ DT�4�  (2.8) 

 
or 
 

 
2�
1 ` �MN \2T ^ 2�_ f � {1 ^ DTD� | (2.9) 

 
 � ` 
�
�K(Q'J� ` 
�,�324  (2.10) 

 
 MN ` D�
�C18@� (2.11) 

 

Where � is the drag factor describing the ratio of drag coefficient to Stokes drag and MN is the particle relaxation time. The particle relaxation time describes a characteristic 
time scale it takes for the particle to react to changes in the surrounding flow. If the 

density ratio DT D�⁄  is small, as it is in the case of a CFB combustor, the equation for 

motion can be approximated with Equation 2.12. (Crowe et al., 1998, p. 77.) 
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�
1 ` �MN \2T ^ 2�_ f � (2.12) 

 
Unsteady flow creates additional forces that affect the particles. Virtual or apparent 
mass force represents the force needed to accelerate the fluid surrounding the particle, 
as the velocity of the particle changes relative to the fluid. Another force is the Basset, 
or “history”, force. This force is caused by temporal development of the boundary layer 
surrounding the particle as the velocity of the particle changes. (Crowe et al., 1998, pp. 
81-86.) Vojir and Michaelides (1994) and Liang and Michaelides (1992) showed that 

the Basset force is negligible for gas-particle flows if DT D�⁄ u 0.002 and 
� � 1 µm 

(Enwald et al. 1996, p. 45). Including the Basset and virtual mass terms in the equation 
of motion with Stokes drag for a particle, we get the Basset-Boussinesq-Oseen (BBO) 

equation which can be written as Equation 2.13. If the density ratio DT D�⁄  is small the 

Equation 2.13 simplifies to Equation  2.12 with � ` 1. (Crowe et al., 1998, pp. 86-87.)  
 
 

 �1 ^ mC ���}� �2}�( ` m�� \2T ^ 2�_ f nC ���} 2X  f� �1 ^ ���}� 

f� ��� {DTD� |mC 1�MN �� 2X T ^ 2X �√1 ^ 1V 
1� f \2T ^ 2�_��MN
(

� � (2.13) 

 
Rotation of the particle causes a lift force. Rotation can be caused by interaction with 
walls, other particles, or by a velocity gradient in the flow. The pressure force created 
by the velocity gradient induced rotation is called the Saffman lift force. The lift caused 
by particle rotation imposed by other sources is called the Magnus force. (Crowe et al., 
1998, pp. 95-99.) Similarly to virtual mass force, the Saffman and Magnus forces are 
proportional to the density ratio when included in the BBO-equation, and can be 
considered insignificant if the density ratio is small. 
 
The effect of continuous phase turbulence on particle movement depends on the time 
and length scales of the turbulent flow and the particle relaxation time, Equation 2.11, 
as well as size. The Stokes number, Equation 2.14, is the ratio between the particle 
relaxation time and the characteristic time scale of the surrounding flow, Equation 2.15, 

where �� and �� are the characteristic length and velocity of the flow respectively. If the 

Stokes number is small, 01 � 1, the particles follow turbulent velocity fluctuations 

obediently. If the Stokes number is large, 01 � 1, the continuous phase turbulence has 
little effect on the particle movement.   
 

 01 ` MNM�  (2.14) 
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 M� ` ���� (2.15) 

 
Continuous phase turbulence tends to increase the drag coefficient of a sphere at sub 
critical Reynolds numbers and lower the critical point, but there’s a lot of variation in 
the results presented in literature (Crowe et al., 1998, pp. 88-91). The presence of 
particles also affects the turbulence in the continuous phase. This is often called 
modulation of turbulence. Michaelides (2006, p. 233) lists six mechanisms for 
turbulence modulation due to the presence of a discrete phase, which are applicable to 
solid particles: 
 a) Vortex breaking and dissipation of turbulent kinetic energy on the surface of the 
immersed objects. 
b) Modification of the effective viscosity of the fluid. 
c) Eddy energy dissipated on the acceleration and deceleration of the elements of the 
dispersed phase. 
d) Wakes and shedding of vortices behind the immersed objects. 
e) Fluid moving with the immersed objects or being displaced by them. 
f) Enhancement of fluid velocity gradients between two neighbouring immersed objects. 
The first three mechanisms increase the dissipation and last three the production of the 
turbulent kinetic energy. Peirano and Leckner (1998, p. 264) state that b) and f) may not 
be significant in dilute suspensions. 
 
According to Peirano and Leckner (1998, p. 263), Elgobashi (1991) classified the 
coupling between the particles and the turbulence of the surrounding flow into three 
categories based on the volume fraction of the particles or the relative distance between 
the particles, and the ratio of the flow and particle time scales. Figure 2.5 is a diagram of 

this classification. Here M� , Equation 2.16, is the characteristic time scale of the 

turbulent eddies in the continuous phase according to the commonly used k-> turbulence 

model, and MO is the Kolmogorov time scale, Equation 2.17, that describes the smallest 
timescales of turbulence in the continuous phase. The kinetic energy of the turbulence is 

k and > is the dissipation of the turbulent energy. The third timescale in the diagram, MN, 
is the particle relaxation time described above. (Peirano and Leckner,1998, p. 263-264.) 
 

 M� ` 
� '� , 
� ` 0.09  (2.16) 

 
 MO ` ��>�mC

 (2.17) 

 
With a very low particle phase volume fraction, the inertia of the discrete phase is low 
and has little effect on the turbulence of the carrying fluid. This is called a “one-way 
coupling” by Elgobashi (1991). As the volume fraction of the particles increases to 
around 10-6, the discrete phase begins to modulate the turbulence through the six 
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mechanism listed earlier, creating a “two-way coupling” between the phases.  With high 
Stokes numbers the particles enhance the turbulence and at low Stokes numbers the 

dissipation is enhanced. The region of increasingly dense suspension, 6� � 10�n, where 
the collisions between the particles become important is characterized by “four-way 
coupling” with increasing complexity. (Peirano and Leckner, 1998, p. 264.) The part of 
the diagram that describes the area of interest in conventional chemical engineering 
applications is shaded (Passalacqua, 2008, p. 45). According to Peirano and Leckner 
(1998, p. 282.) the effects of particle presence on dissipation and production of 
turbulence are governed by redistribution of the turbulent kinetic energy spectrum, 
rather than uniform mechanisms over the whole spectrum. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5. Elgobashi’s (1991) classification of particle-turbulence coupling according 

to Peirano and Leckner (1998, p. 263). 
 
 
Tsuji et al. (1984) conducted experiments with a dilute vertical pipe flow with particles 
in isotropic turbulence and found that small particles, 200 µm, reduced turbulence 
intensity everywhere, while large particles, 3 mm, increased it. With medium sized 
particles, 500 µm and 1000 µm –the smaller of which is similar in size to the particles 
used in the pilot scale CFB studied in this thesis – increased the intensity of turbulence 
in the core section of the pipe but reduced it near the walls. These results have been 
theoretically predicted by Derevich (1988) since then. (Peirano and Leckner 1998, pp. 
281-282.) 
 
In a gas-solid flow, with particle volume fractions such as are found in a CFB, the 
presence of other nearby particles affects the fluid forces exerted on a particle. The 
development of drag models for particle clouds is challenging. Analytical modelling is 
difficult as all of the particles’ contribution to flow has to be considered, and flow 
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measurements inside a particle cloud are often obstructed by the particle cloud itself. 
Ergun (1952) conducted a classic study of flow through a packed particle bed which 
resulted in Equation 2.2 mentioned above. The correlation is valid for a packed bed up 
to minimum fluidization, but Gidaspow (1994) suggested that it works quite well as 

long as the particle volume fraction is more that 6� � 0.2 and as such it should be used 
in dense regions. (Crowe et al., 1998, pp. 78-79.) 
 
Wen and Yu (1966) correlated both their own and Richardson and Zaki’s (1954) 

fluidization experiments with Equation 2.18, where ��is the single particle drag factor. 

For �\6T_ they suggested Equation 2.19, which approaches single particle drag as the 

particle volume fraction approaches zero. (Crowe et al., 1998, p. 80.) 
 

 �� ` �\6T_3l@T
���d2 ^ �e  (2.18) 

 
 �\6T_ ` 6T�n.� (2.19) 

 
In fluidized bed simulations, a combination of Ergun (1952) and Wen-Yu (1966) drag 
models as suggested by Gidaspow (1994, p. 315) is often used, the Ergun model being 

used when local particle volume fraction is above 6� � 0.2 and the Wen-Yu in other 
cases.  
 
 

2.2. Particle-Particle Interaction 

At low particle phase volume fractions the probability of particle-particle collisions is 
low and such rare collisions can be ignored in calculations. However in many 
applications, such as fluidized beds, particle concentrations are so high that the particle-
particle interaction has to be accounted for. Often two basic approaches are commonly 
used to model particle collisions, the hard-sphere and soft-sphere models. The hard 
sphere model is written as integral equations and ignores particle deformation, while the 
soft-sphere model is written as a differential equation and uses an overlapping 
displacement variable to describe the deformation. Both models assume that the 
Coulomb friction law is valid for sliding particles and once sliding stops the particles 
won’t slide any more. (Crowe et al., 1998, pp.128-135.) 
 
For a basic example of a particle-particle collision, let’s consider a collision of two 
spherical, inelastic particles as described in Figure 2.6. The colliding particles 1 and 2 
have initial translational velocities u1 and u2, as well as rotational velocities ω1 and ω2 
respectively. According to the hard-sphere model the momentum transfer between the 
particles occurs at contact point and can be described by writing impulsive force, J, 
balance for the particles. The impulsive force can be divided into two components: 
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tangential and normal to the surfaces of the sphere. From this balance it is possible to 
calculate the translational and rotational velocities after the collision, if the coefficients 

of friction, �, and restitution, �, are known for the collision. (Crowe et al., 1998, pp.128-
135.) 
 
 
 
 
 
 
 
 
 
 
Figure 2.6. Diagram of a collision between two spherical particles. 

 
The coefficient of restitution, Equation 2.20, is defined as the ratio of the pre- and post-

collisional relative velocities, �� and � respectively, inner product with the particle 

surface normal unit vector,  $, i.e. it describes the loss of translational momentum in the 
collision and elasticity of the particles. Depending on collisional velocities and the 
coefficients of friction and restitution, the particles either continue or stop sliding 
relative to each other during the collision, resulting in two different solutions for the 
post-collisional velocities.  (Crowe et al., 1998, pp. 130-131.) 
 

 � ` ^ $·�$·�   (2.20) 

 
In the soft-sphere model the collision is modelled as a system of springs and dampers. 
The model requires definitions for the coefficient of friction, the stiffness and the 
damping coefficient. The friction can be measured, the stiffness determined from 
material properties and the damping coefficient can be derived from the stiffness. 
However these stiffness values can rarely be used in numerical simulation because of 
short time steps demanded by the natural oscillation periods of the particles. For this 
reason, a conveniently small stiffness and a damping coefficient derived by relating it to 
the coefficient of restitution are often used to facilitate the numerics. (Crowe et al., 
1998, pp.136-138.) 
 
The same modelling approaches can be applied to particle-wall collisions. It should be 
remembered, that in real life applications particles are rarely perfectly spherical, and this 
has a significant effect on the post-collisional velocities. Shen et al. (1989) calculated 
trajectories for a particle with a sphericity of 1.043 in a two dimensional channel and 
demonstrated that even such a nearly spherical particle has a significantly irregular 
trajectory. (Crowe et al., 1998, pp. 123-124.) 
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3. 2D PILOT-SCALE CFB 

A pilot-scale CFB has been built at Åbo Akademi University. The design and 
construction of the CFB is presented in detail in Matias Guldén’s Master of Science 
thesis (2008). The device has also been described by Kallio et al. (2009a, 2009b). The 
objective was to create a reasonably large but relatively two-dimensional fluidized bed. 
Reasonably large to facilitate the scaling of the results to industrial scale and two-
dimensional to allow quick simulation and image based velocity and volume fraction 
measurements. 
 
The riser section of the CFB is 3.0 m high and 0.4 m wide. The distance between the 
front and back walls of the riser is 0.015 m. The wall material is clear, 10 mm thick, 
hardened polycarbonate. The fluidization air is injected from eight equally spaced 0.013 
x 0.013 m injectors at the bottom of the bed. For adequate pressure loss in the injectors, 
4 mm diameter restrictors are placed below the injector nozzles. The device has been 
designed for fluidization velocities of up to 4.0 m/s. Instead of a cyclone the CFB has a 
simple separator to separate the particles from the gas outflow. A schematic and pictures 
of the CFB are shown in Figure 3.1. 
 

 
Figure 3.1. A schematic and pictures of the 2D pilot scale CFB and the lower portion 

with the windbox and the loop seal. Picture Matias Guldén (2008). 
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To eliminate static electricity, water was injected into the fluidization air so that a 
relative humidity of 40-50% was maintained at the gas outlet. To further reduce the 
static electricity a dose of 0.08%mass of Larostat 519 antistatic powder was mixed with 
the particles. 
 
Approximately 3.8 kg of spherical glass particles with a density of 2480 kg were used as 
the bed material. With the fluidization velocities used, 3.25 m/s and 3.75 m/s, the riser 
section of the CFB had 3.2 and 3.1 kg of the particles respectively. They were sieved 
and the diameter distribution was measured from a sample of 11443 particles with 
shadowgraphy, as shown in Figure 3.2. Particle detection was carried out using the two-
step algorithm described in chapter 6.3. Only particles with an aspect ratio smaller than 
1.3 were included in the results. The bed material also includes a minor portion of 
deformed, non-spherical particles.  The diameter was defined as the diameter of circle 
with equivalent projected area. The sauter mean diameter of the particles is 442 µm. The 
terminal velocity of such a particle is 3.125 m/s with a Reynolds number of 88, and it 
belongs in Geldart’s group B (Figure 2.3). The bulk density of the packed particle bed is 
1554 kg and thus maximum volume fraction of the particles is 0.625. 
 
 
 
 

 
 
Figure 3.2. A sample of the particles used and their diameter distribution as measured 

with shadowgraphy. 
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4. EULERIAN CFD MODELLING OF CFB 

Computational Fluid Dynamics (CFD) means modelling fluid flow using computers to 
numerically solve the equations that describe the flow. The equations are based on 
principles of mass, momentum and energy conservation. In CFD, they are usually based 
on the classic Navier-Stokes equations that are believed to describe any single-phase 
flow.  The equations are the work of Claude-Louis Navier (1785-1836) and Sir George 
Stokes (1819-1903). 
 
In principle, it is possible to solve these equations directly provided there is enough 
spatial and time resolution. In practice, with the current computers, this is impossible in 
most practical applications and the equations have to be simplified. Common practices 
for simplification are leaving out less important terms and averaging the equation in 
time and space. The averaging creates additional fluctuation terms that require 
modelling. In single phase flows these are called Reynolds Stresses while the averaged 
equations are called Reynolds Averaged Navier-Stokes (RANS) equations. They are 
named after Osborne Reynolds (1842-1912) who proposed the method.   
 
There are two main approaches to the numerical simulation of fluid-particle flows: 
Lagrangian and Eulerian. In the Lagrangian approach each individual particle is tracked 
and its interaction with fluid, walls and other particles is modelled with the single 
particle models described in chapter 2, or similar. The fluid phase is modelled in the 
same way as the single phase flows, but with the addition of fluid-particle interactions. 
The advantages of the Lagrangian approach are that the interactions of a single particle 
are relatively well known and have good mathematical formulations, and that the effects 
of particle history can be included. The commonly used Lagrangian multiphase models 
are, however, only valid at low particle volume fractions and as such are not applicable 
to fluidization. 
 
The Lagrangian model that is suitable for dense applications, such as fluidization, is 
called the Discrete Element Method (DEM, see e.g. Tsuji, 2007). Here the 
computational particle trajectories are calculated and single particle models are used for 
the particle interactions, including particle-particle interaction. The problem with the 
model is that in dense flows the number of particles is necessarily high, and thus the 
number of equations and computational costs are correspondingly high. Another reason 
for the high computational cost is the short time step required by the soft-sphere 
collision model. Currently, DEM models are not usable for industrial scale applications 
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although they have been applied to small risers. Zhang et al. (2008) used a periodic 
computational domain to simulate a long riser with a small computational domain. 
 
In the Eulerian approach, the particle phase is also modelled as a fluid and the equations 
describe the local average properties of the flow and particle clouds. The major 
advantage of the method is that the number of equations only depends on the number of 
phases, instead of the number of particles as in the Lagrangian approach. Additionally, 
the forms of the equations are similar to those used in single-fluid simulation, thereby 
easing the implementation of the method as a lot of the existing framework can be 
utilized. The disadvantages are that in reality the particles don’t always behave like a 
fluid and modelling of the particle cloud interactions is challenging. Complex statistical 
models such as the Kinetic Theory for Granular Flow (KTGF, see e.g. Gidaspow, 1994) 
are often used to describe the particle-particle interaction. The Euler-Euler method is 
currently the standard method for simulation of fluidized beds. 
 
The following Sections 4.2-4.5 present incompressible Eulerian equations for the 
simulation of fluidized beds and common closure models used in this thesis. Section 4.1 
takes a look into the averaging procedure on which the two-fluid method is based. 
 
 

4.1. Conditional averaging and the Euler-Euler appr oach 

This section is based on and uses similar notation to Weller’s (2005) report, where he 
describes the algorithm employed in the OpenFOAM based Euler-Euler two-phase CFD 
solver. A description of averaging procedures can also be found in Enwald et al. (1996, 
pp. 26-31) and Crowe et al. (1998, Appendix B).  
 
To derive the equations for the Euler-Euler (two-fluid) method, the instantaneous 
momentum, mass and energy balance equations are conditionally averaged by first 

multiplying them with the indicator step function, ��d¡, 1e. The indicator function is one 

in phase 	 and zero otherwise. Ensemble averaging is then applied to the equations.  
 

The volume fraction for phase 	, 6�d¡, 1e, is defined as the ensemble average of  ��d¡, 1e i.e. the probability of finding phase  	 at point d¡, 1e.  

 
 

 6� ` �¢�d¡, 1e  (4.1) 

 

The ensemble average is denoted here with an overbar. For any fluid property Rd¡, 1e, 

be it scalar, vector or tensor, the conditional ensemble average, RY�, is defined as    
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 ��R£££££ ` 6�RY� . (4.2) 

 

The conditional density weighted average i.e. Favre-average, R[� is defined as   

 
 ��DR£££££££ ` 6�D¢�R[�.  (4.3) 

 
With fluctuations around the R[�  are defined as 

 
 RVV� ¤ R ^ R[� . (4.4) 

 
Then, the conditional average of the product of two fluid properties, such as the 
convection terms of the momentum equation used here as an example, becomes 
 

 ��D22£££££££££ ` 6�D¢�2¥Z2¥Z f 6�D¢�\2VV�2VV�_¦ , (4.5) 

 

where 6�D¢�\2VV�2VV�_¦  is analogous with Reynolds stresses in single phase flows and 

requires modelling. Similar relations hold for non-mass weighted averaging, but without 
the density variable. These stresses are commonly neglected in transient CFB 
simulations but are vital for time-averaged simulations. 
 
 

4.2. Continuity and Momentum Conservation 

The continuity equation (4.6) dictates the conservation of mass for phase 	, while the 
conservation of momentum produces equations for both the gas and particle phase 
momentum, Equations 4.7-4.8 and Equations 4.9-4.10, respectively. Both phases are 
considered incompressible.  In the momentum equations, the virtual mass, history and 

lift forces have been ignored. The terms M� and MT are the viscous stresses, � is gravity 

and  � is a momentum transfer coefficient for the drag force. P̈  is the solids pressure 
arising from particle-particle interaction and it requires a closure model, as do drag, 

solids bulk viscosity G� and turbulent stresses. The bulk viscosity represents the solids 
resistance to compression. (Gidaspow, 1994; Weller, 2005.) 

 
 

 ©6�D¢�©1 f ª · \6�D¢�2¥�_ ` 0 (4.6) 
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 ©6TD¢T2¥T©1 f ª · \6TD¢T2¥T2¥T_ ` ª · MT ^ 6Tª% f 6TD¢T� ^  �\2¥T ^ 2¥�_ 
(4.7) 

 
 MT ` @T «\ª2¥T f ª¬2¥T_ ^ 23 \ª · 2¥T_­® (4.8) 

 
 ©6�D¢�2¥�©1 f ª · d6�D¢�2¥�2¥�e ` ª · M� ^ 6�ª% ^ ªP̈ f 6�D¢�� ^  �\2¥� ^ 2¥T_ 

(4.9) 

 
 M� ` @�dª2¥� f ª¬2¥�e f �G� ^ Cn @�� dª · 2¥�e­  (4.10) 

 
 
 

4.3. Particle-Fluid Momentum Transfer 

For the drag term, the treatment suggested by Gidaspow (1994, p. 151, Model A) as 

described in section 2.1 was chosen. Two different equations are used for the  � 

depending on the volume fraction of the particle phase. In dilute regions, 6� u 0.2, the 
drag formulation Equation 4.11  is used based on a model suggested by Wen and Yu 
(1966). In denser regions the Ergun (1959) Equation (4.15) is used. The drag coefficient 
� for the Wen and Yu (1966) model is given by Equations 4.12 and 4.13 – as 
suggested by Schiller and Naumann (1935) – depending on the particle diameter based 
Reynolds number, Equation 4.14. (Gidaspow, 1994; Enwald et al., 1996, pp. 40-41.) 
 
 

  � ` 34 
�6�6TDTk2¥��2¥}k
� 6T�C.¯x, 6� u 0.2  (4.11) 

 
 
� ` 24,�� \1 f 0.15,���.¯°�_.    ,�� u 1000 (4.12) 

 
 
� ` 0.44 , ,�� ± 1000 (4.13) 

 
 ,�� ` 
�k2¥T ^ 2¥�kAT  (4.14) 

 
  � ` 150 �}²}³²�³�³́ f 1.75 ��²}²��´ k2¥T ^ 2¥�k, 6� � 0.2  (4.15) 
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4.4. Particle-Particle Interaction and Kinetic Theo ry for 
Granular Flow 

As the particle phase is modelled as a fluid in the Euler-Euler method, it is necessary to 
introduce a model for particle-particle interactions. These models usually appear either 
as additional source term, solids pressure, in the momentum equations or they are 
included in the viscosity. Two approaches are introduced in this section. Firstly, the 
powder modulus, or particle normal force model, which only affects the solids pressure, 
and secondly, Kinetic Theory for Granular Flow (KTGF) which is analogous with 
kinetic theory for dense gases. KTGF gives values for the shear and bulk viscosity of 
the particle phase, as well as for solids pressure. 
 

4.4.1. Powder Modulus 

The solids pressure can be modelled by introducing a powder modulus term (Equation 

4.16) to the momentum equation. This describes the particle normal stress, Bz, caused 
by particle collisions. The powder modulus is defined as Equation 4.17 and is strongly 
dependent on the volume fraction of the particle phase. The powder modulus is related 

to the speed of wave propagation, 5�, in a granular medium by Equation 4.18. 
(Gidaspow, 1994, p. 81.) 
 

 ª&� ` ª6���� (4.16) 

 
  

 ��� ` �µ¶�²}  (4.17) 

 
 

 5� ` ·���/D� (4.18) 

 
Models for the particle-particle interaction should vanish in dilute flow while rapidly 
increasing at high solids volume fractions. Rietma and Mutsers (1973) correlated 
experimental data from a tilted fluidized bed with Equation 4.19. However, in numerical 

simulations Bouillard et al. (1989) found out that the �² had to be adjusted to prevent 
unphysically high particle volume fractions and suggested Equation 4.20 for the powder 

modulus, with typical values of �� ` 1 Pa, F ` 600 and 6�,� ` 0.624 (Gidaspow, 

1994, p. 82). According to Enwald et al. (1997), Gidaspow and Ettediah (1983) had 

earlier suggested a similar model with parameters F ` 20 and 6�,� ` 0.38, and 

Gidaspow and Syamlal (1985) with F ` 500 and 6�,� ` 0.598. Gidaspow (1994, p. 

138) also notes that the powder modulus approach has a tendency to cause unexpected 
numerical problems in transient simulations. 
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 ��� ` 10�°.�¯²�ºx.rn N/m2 (4.19) 

 
 

 ��� ` ���»d²}�²}, e (4.20) 

 
 

4.4.2. Kinetic Theory Approach and Granular Tempera ture 

A more complicated but physically more complete model for particle-particle 
interaction is given by the kinetic theory for granular flow. It is based on a suggestion 
by Ogawa, Unemura and Oshima (1980), that the mechanical energy is first transformed 
into random particle motion, instead of dissipating directly to heat. They also derived a 
conservation equation to describe the transport of the small scale random particle 
motion. An expression for the repulsive force of the particles in shear flow by Bagnold 
(1954) is generally regarded as the origin of the kinetic theory approach for granular 
flows. Since then, several different authors have contributed significantly to the 
development of the models and some of those will be mentioned later in this chapter. In 
kinetic theory the hard-sphere model is used for particle collisions and the particles are 
assumed to be smooth and the collisions binary. (Gidaspow, 1994, pp. 239-240.) 
 

If it is assumed that the oscillations of instantaneous particle velocity, 2’, with a mean 
velocity of zero behave in chaotic manner, the velocity distribution follows the normal 

distribution, Equation 4.21. Here @ is the mean value and BC is the variance as defined 
in Equation 4.22.  Assuming that the energy of the small scale random motion is divided 
equally between the coordinate directions in three-dimensional space, the variance is 

related to the instantaneous velocities through Equation 4.23, where 2’C ` a’9C f a’½C fa’¾C. (Gidaspow, 1994, p. 241.) 
 

 ��d¿e ` 1√2lBC �«�d9��e³Cµ³ ®
 (4.21) 

 
 BC ` Àd¿ ^ @eCÁ ` � d¿ ^ @eC��
¿Â

�Â  (4.22) 

    
 BÃC ` ÄÀ2’CÁ ` � � � 2’C �9�½�¾
Ã (4.23) 

 



21 
 

The concept of conserved energy of random particle motion is analogous to temperature 
and random motion of molecules in dense gases. Jenkins and Savage labelled the energy 

of random particle motion in granular flow as granular temperature, with Θ as the 
symbol.  It is defined as one third of the mean square of the particle velocity, Equation 
4.24. The normal distribution for the particle velocities, called Maxwellian distribution, 

can now be written as Equation 4.25, with 2Y being the mean velocity. (Gidapow,1994, 
p. 242.) 
 

 Θ ` 13 À2’CÁ (4.24) 

 
 �Ã ` Äd2lΘen C� �«�d2’�2Ye³C* ®

 (4.25) 

 
A common approach is to assume a local equilibrium between the production and 
dissipation of granular temperature. The granular temperature can then be described 
with an algebraic model. A more general approach is to solve a transport equation for 
the granular temperature, Equation 4.26 (Gidaspow, 1994, p. 315). It is derived by 
writing the Boltzmann integral-differential conservation equation for the probability 
distribution of random particle motion. Descriptions of the derivation can be found in 
Gidaspow (1994, pp. 256-294) and Passalacqua (2008, pp. 17-31). 
 

 32 « ©©1 dα¨ρ¨Θe f ª · dα¨ρ¨2¥¨Θe® ` d^&�� f M�e Æ ª2¥¨ f ª · dF�ªΘe ^ ;� ^ ���� f ����� 

 

Production                                            d^&�� f M�e Æ ª2¥¨                 
Granular energy diffusion flux             fª · dF�ªΘe 

Dissipation due to inelastic collisions  ^;� 

Dissipation due to fluid viscosity         ^���� 

Production due to fluid turbulence       f����� 

(4.26) 

 

The solids shear viscosity, @�, includes both the collisional and kinetic components, 
Equation 4.27. The collisional part is described by Equation 4.28 and the kinetic by 
Equation 4.29 (Gidaspow, 1994, p. 303, 314). The Equation  4.31 for the bulk viscosity 
of the solids phase closely resembles the collisional shear viscosity equation.  
 

 @� ` @�,�Q� f @�,'�z 
 

(4.27) 

 @�,�Q� ` 45 6�CD�
���d1 f ��e�Θl (4.28) 
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 @�,'�z ` 2@�,���Ç(J��d1 f ��e «1 f 45 d1 f ��e6���®C

 (4.29) 

 
 @�,���Ç(J ` 5√lΘ96 D�
� (4.30) 

 
 G� ` 43 6�CD�
���d1 f ��e�Θl (4.31) 

 
In these equations �� is the coefficient of restitution for the solids and �� is the radial 
distribution function. The radial distribution function describes the probability of 
particle collisions and becomes infinite at the packing limit.  This behaviour limits the 
maximum volume fraction of the particle phase as the last term of solids pressure, 

Equation 4.34, as proposed by Lun et al. (1984) is proportional to ��. Ogawa et al. 
(1980) suggested Equation 4.32 for the radial distribution function, but Equation 4.33 
suggested by Lun and Savage (1986) is used in the CFD simulations of this thesis. 
Gidaspow (1990) suggested multiplying Equation 4.32 by 0.6 for a better fit with 
numerical data, but Peirano and Leckner (1998) consider the suggestion invalid. 
(Peirano and Leckner, 1997, p. 273.) 
 

 g� ` 1
1 ^ { 6�6�,�89|m n�  

(4.32) 

 
 g� ` 1

{1 ^ 6�6�,�89|C.x²},ÉÊË 
(4.33) 

 
 

 P̈ ` D�6�Θ f 2αC̈g�Θd1 f e¨e (4.34) 
 
The diffusion of the granular energy flux term is analogous to the conduction of heat. 

The diffusion coefficient, F�, is called the conductivity of the granular energy and is 
defined as Equations  4.35-36  (Gidaspow, 1994, p.315). 
 
 

 F���Ç(J ` 75384 √lΘD�
� (4.35) 

 
 F� ` 2d1 f ��e�� «1 f 65 d1 f ��e��6�®C F���Ç(J (4.36) 



23 
 

f26�CD�
���d1 f ��e�Θl 

 
The inelasticity of collisions is included in the models using the coefficient of 
restitution.  The dissipation of the granular energy due to inelastic collisions is modelled 
with Equation 4.37 (Gidaspow, 1994, p. 315). The dissipation caused by viscous fluid 
effects is modelled with the simple Equation 4.38. 
 

 ;� ` 3d1 ^ ��Ce6�CD���Θ Í 4
� �Θl ^ ª · 2¥¨Î (4.37) 

 
 ���� ` 3 �Θ (4.38) 

 
Many authors, including Gidaspow (1994), neglect the fluid turbulence, or particle-fluid 
velocity correlation, production term, but Koch (1990) derived Equation 4.39 to 
describe it in a monodispersed, dilute, gas-solid suspension of elastic particles. The 
equation has been used since by Agrawal et al. (2001) and Huilin et al. (2003; 2006).  It 
was later extended by Koch and Sangani (1999) to form Equation 4.40. (Passalacqua, 
2008, p. 33-34.) 
 

 ����� ` 
�D�4√lΘ Ï18@T
�CD� ÐC k2¥T ^ 2¥�kC
 (4.39) 

 
 

 ����� ` 816�@T��
�nD�√lΘ k2¥T ^ 2¥�k	 

 

	 ` ,�C1 f 3.5�6� f 5.96� 

 

,� `
ÑÒÓ
ÒÔ1 f 3·6�2 f 13564 6�"Äd6�e f 17.46�1 f 0.6816� ^ 8.486�C f 8.166�n ,     6� u 0.4  106�d1 ^ 6�en f 0.7,                                          6� ± 0.4

Õ 
 

(4.40) 
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4.4.3. Frictional Stresses 

In the derivation of the kinetic theory for granular flow, it was assumed that collisions 
between the particles are binary and instantaneous. While these are reasonable 
assumptions at low particle volume fractions, they do not apply in densely packed 
regions where particles are in extended contact with several particles. In these regions, 
most of the particle energy is dissipated by the surface friction between sliding particles, 
instead of in inelastic collisions. (Tardos, 1997, p. 61.)  
 
Coulomb suggested a simple model where powder is modelled as a rigid, totally plastic 

continuum flowing on a plane by yielding with a critical shear stress, M�, as given by 

Equation 4.41. Here the normal stress, B�, and the angle of internal friction, 	�, are 

material properties, and !� is the cohesive force between the particles. For non-cohesive 

powders !� is zero. When the shear stress exceeds the critical value, the material 

becomes infinitely deformable. In effect, the model describes simple sliding friction that 
is proportional to the normal force and the coefficient of friction represented by 1ÖÄ\	�_. (Tardos, 1997, p.62.)  

 M� ` B�tan\	�_ f !� (4.41) 

 

Johnson and Jackson (1987) suggested frictional, M�,�, and kinetic, M�,'(, stresses can be 

considered as additive, Equation 4.42, with the frictional stress defined by Equation 

4.43. &�,� is the normal force, called frictional pressure, and @�,� is the frictional 

viscosity representing the sliding friction between the particles. They proposed that the 
frictional pressure is zero below an experimental threshold solids volume fraction value, 6�,�,��z, and calculated by a correlation above it, Equation 4.44. Here Ù, Ú and Û  are 

experimental parameters. Johnson and Jackson (1987) suggested values: 6�,�,��z ` 0.5,  Ù ` 0.05 Ú ` 2 and Û ` 5. For the frictional viscosity they used the simple Equation 
4.45, which is valid for their chute application.  
 

 M� ` M�,'( f M�,� (4.42) 

 
 M�,� ` &�,�� f @�,�dª2¥� f dª2¥�eUe (4.43) 

 
 &�,� ` Ü0,                                                6�, u 6�,�,��z

Ù \6� ^ 6�,�,��z_3
\6�,�89 ^ 6�_� ,                6�, ± 6�,�,��z Õ 

 
 

(4.44) 

  
 @�,� ` &�,�sin(	�e (4.45) 
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A similar, but more general, model was proposed by Schaeffer (1987), Equation 4.46. 

Here - is the rate of deformation tensor, Equation 4.47. Equation 4.46 reduces to 
Equation 4.41 in two-dimensional cases (Tardos, 1997, Appendix B), and also satisfies 
both the von Mises yield condition (Tardos, 1997, Appendix C) and the co-axiality 
condition, which states that directions of stress and deformation are parallel (Tardos, 
1997, Appendix A). Like the Johnson and Jackson (1987) model, Schaeffer uses a 
threshold solids volume fraction below which the frictional stresses are zero. (Tardos, 
1997, p. 63; Srivastava and Sundaresan, 2003, pp. 74-75.) 
 

 &�,� ` Ý0,                                                6�, u 6�,�,��z10Cx6�\6� ^ 6�,�,��z_m�,     6�, ± 6�,�,��z Õ 
 

@�,� ` &�,� √2ÛÞÄd	�e2√-: -  

(4.46) 

 
 - ` 12 àdª2¥� f dª2¥�eUeá ^ 13 dª · 2¥�e (4.47) 

 
Syamlal et al. (1993) proposed a sharp switch between the kinetic and frictional stresses 
at a threshold solids volume fraction value, Equation 4.48, instead of the additive 
approach of Johnson and Jackson (1987), Equation 4.42. 
 

 M� ` â&�,'(� f @�,'(,   6�, u 6�,�,��z&�,�� f @�,�,      6�, ± 6�,�,��z Õ (4.48) 

 
Srivastava and Sundaresan (2003) combined the frictional pressure model and additive 
approach of Johnson and Jackson (1987) with the frictional viscosity model of Schaeffer 
(1987). Following Savage’s (1998) findings, they included the stress reducing effect of 
particle fluctuations as a granular temperature term in the frictional viscosity model. 
The result is the model of equation set 4.49. As this is the physically most complete of 
the models in this chapter, it has been used in the CFD simulations of this thesis. 
(Srivastava and Sundaresan, 2003, pp. 74-75.) 
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4.4.4. Wall Boundary Conditions 

Johnson and Jackson (1987) derived equations for the stresses and dissipation of 
granular temperature caused by particle-wall interaction. They equated the frictional, &�,� tan\	�_, and collisional, .ãä, stresses on the wall to the bulk stress of the particle 

phase in the direction of the slip velocity between the particles and the wall, 2¥����. For 

the granular temperature, they wrote an energy balance, Equation 4.51, between the 

granular energy flux, )*, the dissipation, γ¨,æ, and the collisional stress in the direction 

of the slip velocity. The relations they found are described by Equations 4.50-53. 
(Passalacqua, 2008, pp. 38-40.) 
 

 2¥���� · \M� f M�_ · $çk2¥����k f .ãä f &�,� tan\	�_ ` 0 (4.50) 

 
 $ç · )*,æ ` γ¨,æ f 2���� · .ãä (4.51) 

 
 .ãä ` lP��J�D�k2¥����k√3ΘC

66�,�89 è1 ^ �6�,�896� �m n� é (4.52) 

 
 γ¨,æ ` 14 πρ¨Θd1 ^ eæC e √3Θ

�6�,�896� �C n� è�6�,�896� �m n� ^ 1é (4.53) 

 
 

 M� ` M�,'( f M�,� 

M�,� ` &�,�� f @�,�dª2¥� f dª2¥�eUe 

&�,� ` Ü0,                                     6�, u 6�,�,��z
Ù \6� ^ 6�,�,��z_3

\6�,�89 ^ 6�_� ,     6�, ± 6�,�,��z Õ 
@�,� ` &�,� √2ÛÞÄd	�e

2�-: - f Θ
�C
 

 

 

 

 

(4.49) 
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Here P��J� is a specularity coefficient that describes the diffuseness of the particle 

collisions caused by the roughness of surfaces.  Its value is 1 for perfectly diffuse 
collisions and 0 for perfectly specular ones.  In practice, the specularity coefficient is 
often used in CFD simulations as a fitting parameter to get the correct wall velocities. If 
the frictional contribution to the wall stress is ignored, the relations can be written in the 

form of Equations 4.54-55 with g� from Equation 4.32. (Passalacqua, 2008, pp. 38-40.) 
These are the forms which are used as boundary conditions in the CFD simulations 
carried out in this thesis.  
 

 τ¨,æ ` ^ π6 6�6�,�89 P��J�ρ¨g�√3Θ2¥���� (4.54) 

 
 )*,æ ` π6 6�6�,�89  P��J�ρ¨g�√3Θk2¥����kC

 

^ l4 6�6�,�89 d1 ^ eæC eρ¨g��3Θn 
(4.55) 

 
Peirano and Leckner (1997, pp. 287-288) dispute Johnson and Jackson’s boundary 
conditions for the use of the specularity coefficient, and prefer models based on work by 
Jenkins and Louge (Jenkins, 1992; Louge, 1994; Jenkins and Louge, 1997).  
 
 

4.5. Turbulence Models 

The standard method for turbulence modelling in single-phase flows is the Reynolds 

decomposition. Here the fluid velocity, ì, is divided into mean, ìY, and fluctuating, ìV, 
components, Equation 4.56. When the decomposed velocity is placed into Navier-
Stokes equations and averaged over time, the results are the Reynolds Averaged Navier-
Stokes (RANS) equations, Equation 4.57 for the momentum of incompressible 

Newtonian flow. These differ from the original by including an additional stress, HIJ, 
the Reynolds stress, which has to be modelled. Descriptions of common turbulence 
modelling approaches and their background can be found, for example, in the book by 
Pope (2000). 
 

 ì ` ìY f ìV (4.56) 
 

 ρ ∂ìY∂t f ρìY · ªìY ` ^ªp f ª · dH f H+ïe f ð 

H ` @ «dªìY f dªìYe¬e ^ 23 dª · ìYe­® HIJ ` ρìVìV£££££ 
 

(4.57) 
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Several different models have been suggested for the Reynolds stress. Most common 
approaches are similar to what Launder and Spalding (1974) proposed. Here, transport 

equations are solved for the kinetic energy of turbulence, !, and the dissipation of the 

turbulent kinetic energy, >.  The Reynolds stress is assumed to be isotropic and is 

modelled as increased effective viscosity. The effective viscosity, @J��, is the sum of 

the molecular, @, and turbulent (i.e. eddy), @(, viscosities. The turbulent viscosity is 

related to the turbulent kinetic energy and dissipation by Equation 4.59, where 
� is a 

model constant. 
 @J�� ` µ f @( (4.58) 

 
 @( ` D
� !Cε  (4.59) 

 H f HIJ ` d@ f @(e «dªìY f dªìYe¬e ^ 23 dª · ìYe­® (4.60) 

 
Another approach is to solve filtered Navier-Stokes equations with transient 
simulations. Here the turbulent motion in scales larger than the filter size is resolved 
directly, and only the smaller scales have to be modelled. Hence, the method is 
commonly referred to as Large Eddy Simulation (LES). A residual [or Sub-Grid Scale 
(SGS)] stress tensor similar to the Reynolds stress in the RANS is also present in the 
filtered momentum equations and requires modelling. Otherwise the equations are of the 

standard form. The SGS stress, HKLK, can be divided into isotropic and anisotropic, H3, 
components. Residual kinetic energy is the trace of the SGS stress tensor divided by 
two, Equation 4.61. The anisotropic stress component can be obtained by subtracting 
the isotropic component, Equation 4.62. (Pope, 2000, pp. 581; 558-559.)  
 !3 ` 12 trdHKLKe (4.61) 

 H3 ` HKLK ^ 23 !3� (4.62) 

 
Approaches similar to single phase flows, RANS and LES, are used for multiphase 
flows to describe the continuous phase turbulence. Several authors (including 
Samuelsberg and Hjertager (1996), Huilin and Gidaspow (2003), Huilin et al. (2006) 
Ibsen et al. (2000; 2004)  and Passalacqua (2008)) have used models based on algebraic 

the closure suggested by Smagorinsky (1963) for H¡ in simulations of gas-solid risers 

(Passalacqua, 2008, p.44). In the model, H3 is proportional to the rate of strain tensor 

through the kinematic eddy viscosity, A3 This is modelled with Equation 4.64, where -Y 
is the filtered rate of strain tensor and  "� is the Smagorinsky length scale. It is assumed 
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to be proportional to the filter size, Δ, and the Smagorinsky coefficient, 
�. Filter size is 
calculated by taking a cube root of the product of the computational cell dimensions, 
Equation 4.65. (Pope, 2000, pp. 587.) 
 H3 ` ^2A3-Y (4.63) 
 A3 ` "�C-Y ` d
�Δe�C-Y (4.64) 
 Δ ` �Δ¿ΔôΔzö  (4.65) 

 
In the CFD simulations for this thesis the Smagorinsky SGS stress closure was used for 

continuous phase turbulence with 
� ` 0.16. It should be noted that the physical 
background of LES turbulence modelling is not valid in 2D simulations as carried out in 
this thesis. However,  it does serve to demonstrate the effects of including a turbulent 
viscosity for the fluid. In addition, the model neglects the turbulence modulation effects 
caused by the presence of the particles. 
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5. NUMERICAL METHOD 

The three most common methods for numerically solving partial differential equations 
are the Finite Difference (FDM), Finite Element (FEM) and Finite Volume (FVM) 
Methods. Common to all of these is that the computational domain is divided into 
smaller regions with a computational grid, and the differential equations are 
approximated at discrete points using algebraic equations. Different schemes can be 
used for approximation and interpolation, usually trading complexity and computational 
costsfor accuracy. (Ferziger and Peric, 2002, pp. 31; 35-37.) Discretization schemes are 
often classified as being nth order. This implies that the scheme includes n first terms of 
the Taylor series expansion, which can be used to express any continuous differentiable 
function. 
 
FDM is the oldest and simplest method, but still perfectly usable for simple geometries. 
Its development is credited to Leonhard Euler (1707-1783) in the 18th century. The 
higher order discretization schemes are easiest to implement with FDM, but the 
enforcement of conservation requires special care. FEM is the standard method in 
structural analysis and many other fields. The major advantage of FEM is its easy and 
flexible mesh generation, making it suitable for deformations and other such 
phenomena. It differs from the other methods by using weight functions. (Ferziger and 
Peric, 2002, pp. 35-37.) 
 
For CFD the standard method is FVM, which is rarely used for other purposes. In FVM 
the domain is divided into control volumes (CV) and the integral form of the 
conservation equations are applied to each of them. The variables are defined at the 
centres of the CVs and are interpolated to the CV boundaries. Importantly for CFD, 
conservation is built into the method. Other reasons for its popularity are that it can be 
applied to any kind of computational mesh, as the mesh only defines the boundaries of 
the CVs – instead of the computational nodes as in FDM –  and all the variables have a 
clear physical meaning.  (Ferziger and Peric, 2002, p. 36, 70.) 
 
Once the chosen discretization has been applied to the Navier-Stokes equations, the 
result is a coefficient matrix, describing a system of non-linear algebraic equations. 
Because of the non-linearity of the equations an iterative solution method is used, where 
the equations are successively linearized with the results of the previous iteration. Once 
the equations are linearized they can be solved either directly or iteratively. There are 
several mathematical methods for both approaches. With the iterative methods, the 
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convergence of the solution has to be verified. As the exact solutions are not known in 
CFD, the convergence has to be checked by numerical experiments i.e. by comparing 

successive iterative solutions. A common practice is to monitor the residual, ÷, of the 
iterative solution. This is defined as the imbalance in the algebraic equation system, 

Equation 5.1, where � is the coefficient matrix, ø the variable vector and ù the source 
term vector.  
 �ø ` ù ÷ ` �ø ^ ù 

(5.1) 

 
It should be noted that the residual may not be a reliable indicator of convergence and it 
is often useful to monitor some integrated variables as well. Often the residual is scaled 
with some algorithm in an attempt to make it more representative. 
 

5.1. Open Source CFD: OpenFOAM 

Open source software is an attractive tool for academic and research purposes. 
Unrestricted access allows detailed insight into the algorithms used and limitless 
customization for specific purposes. In CFD applications, the lack of licensing fees 
makes massively parallel computations economically feasible, provided that the 
parallelization of the solver is efficient. For these reasons a feasibility study using 
OpenFOAM (OpenCFD Ltd., 2003-2009) to simulate the pilot-scale CFB was 
conducted.  
 
OpenFOAM is an open source code library for the solution of field problems found in 
mathematics, physics and engineering. It uses the finite volume method, with 
unstructured mesh, and comes with a wide variety of pre-built solvers and model 
libraries. The main application for OpenFOAM has been CFD. Recent OpenFOAM 
releases include a solver called twoPhaseEulerFoam, which provides a promising 
starting point for the simulation of a CFB. 
 

5.2. Solver: twoPhaseEulerFoam  

TwoPhaseEulerFoam is a two-fluid, Euler-Euler method solver for incompressible two-
phase turbulent flows. It has been included in OpenFOAM releases since verion 1.3 
with small variations. This thesis concentrates on the version in release 1.5, but is also 
largely applicable to the current release, 1.6. 
 
The twoPhaseEulerFoam is based on a solver called bubbleFoam, which is a result of 
Henrik Rusche’s work for his PhD thesis “Computational Fluid Dynamics of Dispersed 
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Two-Phase Flows at High Phase Fractions” (2002) and on further development (Weller, 
2002, 2005) of the algorithm developed for the BRITE II project at Imperial College. 
TwoPhaseEulerFoam differs from bubbleFoam by the addition of models for particle-
particle interaction. Two alternative approaches are included. Firstly, with a particle 
normal force, i.e. a powder modulus model as suggested by Gidaspow et al. (1983; 
1985) and Bouillard et al. (1989) and secondly, using the kinetic theory for granular 
flow (KTGF) model.  
 
On initial inspection the solver provides most of the sub-models commonly used in 
Eulerian simulation of gas-solid flows. A notable shortcoming is the lack of a 
turbulence model that would include the turbulence modulation caused by the presence 
of the particle phase. The models included are listed in Table 5.1. 
 

5.2.1. Solution Algorithm 

In the equations of this chapter the phases are distinguished by the letters Ö and ú in the 
same way that they are used in the twoPhaseEulerFoam solver. In gas-solid simulation, 

phase Ö is the solid phase and phase ú the gas phase. Velocities and pressures in this 
chapter are ensemble averaged, unless stated otherwise. 
 
To avoid singularities at zero volume fractions, twoPhaseEulerFoam employs phase-
intensive momentum Equations 5.2-3, as suggested by Weller (2002; 2005 pp. 15-16), 
where the momentum equations are divided by the volume fraction and density. Thus, ��, �� and ��� are momentum transfer coefficients for the drag, lift and virtual mass 
forces respectively. The formulations of the coefficients are presented in Equations 5.6-
5.9. For gas-solid simulations, Equation 5.7 is used for drag instead of the blended 
Equation 5.6. For the pilot-scale CFB the lift and virtual mass terms are neglected. 
 

 û2üû( f 2ýþ · ª2ý ^ ª · \AJ��,ýª2ý_ f ª · Mý f ª²ü²ü · Mý `  

^ ª%Dý f � ^ 68Dý ���d2ý ^ 28e f �� f ��� {
2ý
1 ^ 
28
1 |� 
(5.2) 

 
 û2Êû( f 28þ · ª2� ^ ª · \AJ��,8ª28_ f ª · M8 f ª²Ê²Ê · M8 `  

^ ª%D8 f � ^ 6ýD8 ���d28 ^ 2ýe f �� f ��� {
28
1 ^ 
2ý
1 |� 
(5.3) 

 
 2� ` 6828 f 6ý2ý (5.4) 

 
 23 ` 2ý ^ 28 (5.5) 
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Table 5.1. Sub models included in the twoPhaseEulerFoam solver, OpenFOAM 1.5. 

Turbulence Two-equation, k-ε continuous phase 
turbulence model, with transfer of 
turbulence kinetic energy to the dispersed 
phase by coefficient 
(. 

Drag Gibilaro (1985) 

Ergun (1952) 

Shciller, Naumann (1935) 

Wen, Yu (1966) 

Gidaspow (1994)   

Syamlal, O’Brien (1988) 

Particle normal force  As proposed by Gidaspow (1983; 1985) 
and  Bouillard et al. (1989) 

Kinetic Theory for Granular flow, KTGF:  

KTGF: Granular pressure Lun et al. (1984) 

Syamlal, Rogers, O’Brien (1993) 

KTGF: Radial Distribution Gidaspow (1990) 

Lun-Savage (1986) 

“Sinclair-Jackson” (Ogawa et al. 1980) 

Carnahan-Starling (1969) 

KTGF:  Bulk Viscosity Lun et al. (1984) 

KTGF:  Viscosity Gidaspow (1994) 

Syamlal (1993) 

Hrenya-Sinclair (1997) 

KTGF:  Frictional Stress Johnson-Jackson (1987) 

Schaeffer  (1987) 

KTGF:  Granular Temperature  Local equilibrium 

Transport equation 
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 �� ` 34 {6ý 
�,8Dý
8 f 68 
�,ýD8
ý | |23| (5.6) 

 

 �� ` 34 
�,8Dý
8 |23| (5.7) 

 
 �� ` \6ý
�,8Dý f 68
�,ýD8_23 w ª w 2� , 	 ` Ö, ú (5.8) 

 
 ��� ` 6ý
��,8Dý f 68
ç�,ýD8 (5.9) 

 
The continuity equation is written for the conservation of volume instead of mass, in 
order to improve the conservation in simulations with large density ratios. In the 

continuity equation, the velocity is decomposed into the mixture velocity, 2�, and the 

relative velocity, 23, between the phases as shown in Equations (5.4-5; 5.10-11). In this 

form, all the terms are in conservative form; 6 can be bounded at both ends and the 
coupling of the phase fluxes is more implicit due to the presence of the relative flux. 
The problem with the formulation is that the equation is non-linear in FVM and, as 
such, the boundedness can only be guaranteed if the equation is solved fully implicitly. 
(Rusche, 2002, p. 108, 118; Weller, 2005, pp. 16-17.) 
 

 ©68©1 f ª · d2�68e f ª · d23686ýe ` 0 (5.10) 

 
 6ý ` 1 ^ 68 (5.11) 

 
OpenFOAM uses a collocated variable arrangement, which means that special care has 
to be taken with the pressure-velocity coupling. To avoid the problem, Weller (2002, 
2005) formulated a solution method that mimics a staggered variable arrangement. The 
solution algorithm uses a momentum predictor, pressure correction loop (Pressure-
Implicit Split-Operator, PISO) and a correction of momentum based on the change in 
pressure. The difference is that the velocities are obtained from the pressure corrected 
flux fields through a reconstruction method. With this method the flux is the primary 
variable instead of the velocity, and the pressure-velocity decoupling is not possible. 
The flux field is defined on the cell boundaries, resembling a staggered variable 
arrangement.  (Weller, 2005, pp. 17-22; Rusche, 2002, p. 126.) 
 
The flux predictor is the discretized momentum equation, with the difference that the 
buoyancy and the explicit part of the drag terms are included on the cell-faces, with the 
values determined by interpolation with central differencing. (Rusche, 2002, p. 126.) 

The coefficient matrix of the linear equations system, ��, does not include these terms. 
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In twoPhaseEulerFoam the same treatment is used for particle normal force, granular 
pressure and frictional pressure terms. All these terms appear as apparent pressure in the 
particle phase momentum equation. The semi-discretized momentum equation for phase 

“a” is shown in Equations 5.12-13. The operators d�8e�and d�8e� are respectively the 

diagonal and off-diagonal elements of the coefficient matrix �8. A detailed description 
of the method can be found in Rusche’s PhD thesis (2002, p. 95, 96, 126) and in 
Weller’s (2005) report. 
 

 d�8e�28 ` d�8e� ^ ª%D8 ^ G��ª6868D8 ^ ª&�68D8 f ��2ý68D8  (5.12) 

 
 28 ` d�8e�d�8e� ^ ª%D8d�8e� ^ G��ª6868D8d�8e� 

^ ª&�68D8d�8e� f ��2ý68D8d�8e� 

(5.13) 

 
 
For the particle normal force model, an approach suggested by Weller (2002) for the 

turbulent stress term is adopted, as both terms are proportional to ª6�. Again, a detailed 

description of the approach  can be found in Rusche’s PhD thesis (2002, pp. 118-120). 
The turbulent stress term itself is neglected both in bubbleFoam and 
twoPhaseEulerFoam.  
 

In this approach, the term proportional to ª6� is treated as a diffusion term in the 

transport equation for dispersed phase volume fraction. Before adding the diffusion term 
to the equation, the mixture and relative velocities are corrected for the contribution of 
the term to be added. The treatment of the particle normal force term in 
twoPhaseEulerFoam and the turbulent drag term treatment suggested by Weller differ 
slightly, as the particle normal force only applies to the dispersed phase velocity field. 
The treatment as found in the twoPhaseEulerFoam is presented in Equations 5.14-23. 

The Equation 5.14 for powder modulus, ���, has the form suggested by Gidaspow et al. 

(1983; 1985) and  Bouillard et al. (1989) that was presented earlier, in Equation 4.20.  
 
 

 ��� ` ���»d²Ê�² e (5.14) 

 
 2�W ` 2� f ���D\��_� ª6� (5.15) 

 
 23W ` 28W ^ 2ý  (5.16) 
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 2�W ` 28W f 2ý  (5.17) 

 
 

 ©68©1 f ª · d2�W68e f ª · \23W 68d1 ^ 68e_ 

^ª · � L´´�Êd�Êe� ª68� ` 0  
(5.18) 

 
 
In semi-discretized form, evaluated on the cell faces and written with the flux field 

variable, P, instead of velocities, the equations are of the form 
 

 ©68©1 f ª · dP�W68e f ª · \P3W68d1 ^ 68e_ ^ª · \���ª68_ ` 0 
(5.19) 

 

where the diffusion coefficient ��� is defined as 

 
 ��� ` { ���D8d�8e�|� (5.20) 

 
and the corrected fluxes are 
 

 P8W ` P8 f ���68� f 	 |./|ª/
68 (5.21) 

 
 P3W ` P8W ^ Pý  (5.22) 

 
 P�W ` 68P8W f 6ýPý  (5.23) 

 
The solution procedure as used in twoPhaseEulerFoam is described in Figure 5.1. The 
solver employs the Weller pressure-velocity coupling with optional corrections for the 
dispersed phase volume fraction transport equation, or α-equation, within the PISO-
loop. The equations of turbulence and the kinetic theory models are solved at the end of 
a time step as shown in Figure 5.1. 
 

5.2.2. Initial Testing 

There are number of tutorials in the official release of OpenFOAM. Promisingly for 
twoPhaseEulerFoam, two of these tutorials represent a small bubbling bed.  The first 
tutorial, named “bed”, uses the particle normal force model and the second one, “bed2”, 
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the kinetic theory model for the particle-particle interaction. The packing limit is set 6�,�89 ` 0.62 in the kinetic theory.  

 
In the tutorial “bed2” with the kinetic theory, the dispersed phase volume fraction 
quickly reaches unphysical, large values with the default parameters. This situation can 

be improved by setting 6�,��zy3��(�Qz to 0.5 as suggested by Johnson and Jackson 

(1987) in the frictional stress model. With this change the behaviour of the volume 

fraction is more stable, but the peak volume fraction, max d6�e, is consistently above 

0.64 with values reaching up to 0.73. Reducing the time step to 5·10-7 s did not 
eliminate the problem, but it did lengthen the simulation time considerably. Switching 
to the particle normal force model with a time step of 10-4 s eliminated the overpacking. 
 

 
Figure 5.1. Diagram of the Weller (2002; 2005) solution procedure as found in 

twoPhaseEulerFoam. 

 
 
Similar results were obtained when attempting to simulate the pilot-scale CFB with the 
kinetic theory approach: The volume fraction exceeds the maximum packing limit set in 
the kinetic theory model. With the particle normal force model enabled – using 
parameters suggested by Gidaspow and Syamlal (1985) – and a short time step, ~10-6 s, 
the over-packing was avoided. 
 
The reason the kinetic theory model fails to prevent over-packing is found in the 
implementation of the model. The volume fractions given as the input for the radial 

distribution model (Equations 4.32-3) are limited to 6 � 6�,�89 ^ 0.01 and the 

Johnson-Jackson (1987) frictional pressure model (Equation 4.44) implementation has a 

 
1. Solve the dispersed phase continuity equation (α-equation) 

2. Construct the flux predictor, �� 

3. PISO-loop 
a. Predict fluxes 

i. Flux predictor, �� 

ii.  Buoyancy, explicit drag and granular phase apparent pressure 
b. Construct and solve pressure equation 
c. Correct fluxes 
d. Reconstruct velocities 
e. Correct α-equation 

4. Correct substantive derivatives 
5. Solve turbulence equations 
6. Solve kinetic theory equations  
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built-in limiter for volume fractions higher than 6 � 6�,�89 ^ 0.05 in the denominator. 

The reason for the addition of these limiters is the explicit handling of the kinetic theory 
model. The radial distribution and frictional pressure models have a singularity at 6 ` 6�,�89 and they rise extremely rapidly near the packing limit. As the kinetic theory 

is only updated at the end of each time step, very short time steps are needed to avoid 
decoupling the kinetic theory and momentum equations. The strict limiters eliminate the 
excessive frictional and granular pressure values caused by the decoupling, but with 
limiters as strict as those implemented, the forces generated by the models are 
inadequate to prevent over-packing. 
 
In contrast to the kinetic theory, the particle normal force is included as a diffusion term 
in the α-equation and  is updated after every solution of the α-equation, instead of only 
once per time step. This more implicit implementation and non-singular behaviour of 

the model at 6 ` 6�,�89 allows longer time steps without the decoupling of the 

equations. However, the particle normal force model is very simple and is inadequate to 
model the complex particle-particle interactions in a CFB. In addition, even with the 
longer time step length achieved with the model, the computational times required for 
valid averages were still unfeasibly long.  
 
Less strict limiters and linearization of the granular and frictional pressure models near 
the packing limit were experimented with, together with various adaptive time stepping 
schemes, but no satisfactory combination was found. The solids pressure’s 
proportionality to the gradient of the particle phase volume fraction makes setting 
appropriate limiters difficult. The particle normal force has to be large enough to limit 
packing, regardless of the local gradient of the particle volume fraction. In the case of 

the pilot-scale CFB, even a time step of 2·10-7 s was found to be too large and the 
computational time unfeasibly long. Clearly a better solution was needed. 
 

 

5.3. Modified Solver 

A number of modifications were introduced to the solver: firstly to eliminate the over-
packing discussed in the previous section and to improve the general stability of the 
solver near the packing limit, and, secondly, to introduce additional physical sub models 
for the simulation of a CFB. Sections 5.3.1 and 5.3.2 concentrate on the handling of the 
packing limit and related stability issues, while sections 5.3.3-5 concentrate on the 
addition of new sub models. 
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5.3.1. Adaptive Under-Relaxation and Iterations wit hin a Time Step 

The first attempt to stabilize the solution of the 6-equation was to introduce under-
relaxation and iterations within a time step needed by an under-relaxed transient solver 
for converged, time-accurate results. The under-relaxation was implemented by 
weighting the coefficient matrix with a built-in OpenFOAM function. An adequate 
number of iterations is ensured by re-solving the equation on each correction loop, until 
the residual reaches a set limit. This limit has been set at 10-5 in most cases. If the 

residual is still below the set limit after a pressure-velocity correction, no further 6-
equation corrections are carried out on that time step. 
 
As the level of under-relaxation required for convergence varies depending on the 
instantaneous flow field, an adaptive scheme was adopted for the under-relaxation 

factor. If – on each solution of the 6-equation and within the same correction loop – the 
residual increases compared to the previous solution of the equation, the under-
relaxation factor is reduced by 20 %. The factor is reset to the value chosen by the user 
at the beginning of each time step. 
 
The under-relaxation improved the stability and the handling of the packing limit. 
However, uninterrupted simulation runs which were long enough for representative 
average fields still proved impossible with the kinetic theory model. 

 

5.3.2. Handling of the Frictional Pressure 

As the implementation of the particle normal force model offered benefits compared to 
the implementation of the kinetic theory, the obvious choice was to use a similar 
approach for the kinetic theory. The kinetic theory is a complicated model and updating 
the whole model after each solution of the α-equation would take too much 
computational time. Two kinetic theory sub-models are responsible for limiting the 
packing: the granular and frictional pressures. Of these, the frictional pressure only 
depends on the volume fraction field and it can be updated with a low computational 
cost. The granular pressure also depends on the granular temperature. At high volume 
fractions the dissipation of the granular temperature is high, which leads to low granular 
temperature values and makes frictional pressure the dominant term near the packing 
limit. 
 
The flux corrections for frictional and granular pressure were separated from each other 
and the frictional pressure was added to the α-equation as a diffusion term as described 
in Equations 5.14-23. The only difference in implementation compared to the particle 

normal force model is that the powder modulus, ���, is replaced with frictional pressure 

modulus, ���, which is defined as  
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 ��� ` 
&�
6� (5.24) 

 
In practice, the equations used in particle normal force and frictional pressure models 
are quite similar being functions of the dispersed phase volume fraction which grow 

quickly as the volume fraction approaches the packing limit. A comparison plot of ��� 

and ��� , with different models suggested in literature, is shown in Figure 5.2. The 

major difference between the particle normal force model and the frictional pressure 
models similar to Johnson and Jackson (1987) is the existence of a singularity at the 
packing limit.  
 
Together with the adaptive under-relaxation  the modification reduced the tendency of 
the solver to over-pack, but at the same time it introduced a new problem: while the 
packing limit held for most of the time, the occasional decoupling of the equations 
caused “explosions” in the dispersed phase velocity field. Close to the packing limit, 
even small changes in the volume fraction field can cause very large increases in 

frictional pressure, which – due to the explicit treatment of the ��� – can create 

extremely large instantaneous velocities once the frictional pressure model is updated 
and applied.  
 
 

 
Figure 5.2. Comparison of ��� as suggested by Gidaspow and Syamlal (1985) and 

Bouillard et al. (1989) and ��� as suggested by Johnson and Jackson (1987) and with 

modified minimum frictional volume fraction parameter.  
 
 
Depending on the magnitude of the unphysical velocities, the time step length and the 
under-relaxation factors used, the result is either a divergence of the solution due to 
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excessively large Courant numbers or an unphysical source of momentum. The problem 
is especially severe in tight geometries, because – with no room for the particle phase to 
expand into – even a slightly too large frictional pressure value may cause a chain 
reaction. The overestimated local frictional pressure pushes the volume fraction into 
adjacent cells which are already close to the packing limit, thus creating even higher 
frictional pressure values. Although the same problems apply to the particle normal 

force model, it is less sensitive to them because of the models used for the ���. 
 

To eliminate the problem, a correction coefficient, 
��, was introduced to the frictional 

pressure term. The 
�� is defined as the ratio (Equation 5.26) of the net flux of 68 into 

the cell caused by the corrected flux field (Equation 5.27) and the net flux of 68out of 
the cell due to the flux caused by the frictional pressure (Equation 5.28). The net flux in 
this case is defined as the sum of the cell face fluxes (Equation 5.29). 
 

 ���W ` 
�����  (5.25) 

 
 
�� ` P8,zJ(,�J��,�zWP��,zJ(,�J��,QÇ( (5.26) 

 
 P8W ` P8 f A��68� f 	 |./|ª/
68 (5.27) 

 
 P�� ` A��68� f 	 |./|ª/
68 (5.28) 

 
 PzJ(,�J�� ` 
 P�J�� �8�J�  (5.29) 

 
The 
�� is calculated for each cell separately based on the volume fraction field of the 

previous iteration and its magnitude is limited to 0.001...1. This treatment effectively 
limits the magnitude of the frictional pressure to such an extent, that it can prevent any 
additional packing but without causing a net flux out of the cell. Assuming the particles 
are hard this limitation is physically sound for frictional pressure. For granular pressure 
this would not be the case. 
 
The introduction of the correction coefficient greatly improved the stability of the solver 
and eliminated the over-packing, as long as an appropriately chosen combination of the 
frictional pressure model and the under-relaxation factor are used. An adaptive time 
stepping set to maintain a maximum Courant number of 0.6-0.9 and α-equation under-
relaxation factors in the range 0.2–0.4 – depending on the frictional stress model – have 
been used with good success. The modest increase in computational cost per solution 
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for the 6-equation is easily outweighed by the faster convergence, longer time steps and 
uninterrupted simulation runs afforded by the improved stability. 
 

5.3.3. Kinetic Theory 

In addition to modifications needed to improve the speed and stability of the solution, 
small changes were made in other parts of the kinetic theory model. alternative Koch 
(1990) and Koch-Sangani (1999) models were added to the granular temperature 
transport equation (4.26) for the fluid turbulence production term. The divergence of 

particle velocity, ^ª · �� , was added to the term for the granular temperature 
dissipation arising from inelastic collisions, according to Equation 4.37. For frictional 
stresses, the Srivastava-Sundaresan (2003) model was added. For particle phase velocity 
field and granular temperature field, Johnson and Jackson (1987) boundary conditions 
were added. The additions in this section are mostly based on the source code of 
Passalacqua (2008). 
 

5.3.4. SGS-Models for Continuous Phase Turbulence  

For the continuous phase turbulence, a filtered SGS-closure was introduced. The 
OpenFOAM 1.4 based source code of Passalacqua (2008) was used as an example while 
implementing the models. The models are implemented as a separate model library and 
can be added to any OpenFOAM solver. The library is very similar to the OpenFOAM 
built-in single phase SGS-model library, with only small differences in code structure 
and variable definitions. 
 

5.4. Parallel Efficiency 

To evaluate the feasibility of strong parallelization of the solver, a test of parallel 
efficiency was conducted. For the testing, a 3D mesh with 292542 elements of the pilot 
scale CFB geometry was created. The testing was done with two sets of computers: 5 x 
4 processor core (5 x ProLiant DL145G2, 2 x 2.6 GHz, AMD Opteron) and 3 x 8 
processor core (3 x ProLiant DL145G5 2 x 3 GHz, Intel Quad-Core Xeon) with gigabit 
Ethernet interconnects. For each datapoint, 0.05 s of simulated time was calculated with 
the same initial field, boundary conditions and solver settings. 
 
OpenFOAM uses domain decomposition method for parallelization. The mesh is 
geometrically divided into smaller portions and each processor solves one of these 
portions. The adjacent portions, i.e. processor cores, are seen as boundary conditions. In 
the case of the pilot scale CFB, the domain was decomposed vertically into the required 
number of spaced portions. 
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The results of the tests are listed in Table 5.2. In the first set of 5 x 4 core 2.6 GHz 
AMD processors, reasonably good scaling was achieved using up to 16 cores, but 
almost no speed-up was gained by increasing the number of cores from 16 to 20. The 
probable cause of this is that the bandwidth of the gigabit Ethernet connecting each of 
the 4 core nodes became the limiting factor. The second set of 3 x 8 core 3 GHz Intel 
cores proved significantly faster overall and parallelization efficiency remained good 
over the whole tested range. These nodes are also connected with gigabit Ethernet but, 
as each node contains 8 cores, fewer Ethernet connections are needed. One interesting 
result is that a single 8 core node running only 4 threads is almost as fast as the same 
node running 8 threads, with much better performance per core. This suggests that the 
performance of the processors is limited by memory access bandwidth on the 
motherboard. 
 
Overall the parallel efficiency was good and the results demonstrate the importance of 
memory and interconnect bandwidth for computational clusters used for CFD.  
 
 

Table 5.2. Parallel efficiency test results  

Processor cores Efficiency Speed-up 
Clock time for 1s 
of simulated time 

 

5 x ProLiant DL145G2, 2 x 2.6 GHz, AMD Opteron 

Ref.    1 x 4  = 4 100% 4 62 h 
2 x 4  = 8 99.0% 7.92 31.3 h 
3 x 4  = 12 89.3% 10.7 23.3 h 
4 x 4  = 16 85.2% 13.6 18.33 h 
5 x 4  = 20 70.5% 14.1 18.05 h 

 

3 x ProLiant DL145G5, 2 x 3 GHz, Intel Quad-Core Xeon 

1 x 4/8  = 4 166% 6.6 21.4 h 
Ref.     1 x 8  = 8 100% 8 17.6 h 

2 x 8  = 16 97.2 % 15.6 9.1 h 
3 x 8  = 24 84.5 % 20.3 7.0 h 

 
  



44  5. NUMERICAL METHOD 
 

5.5. CFD-Modelling Setup 

The pseudo-2D geometry of the pilot-scale CFB was partly chosen to enable 
comparison with two-dimensional simulations. The 2D-simulation allows for variations 
in of several model parameters without unreasonable computational costs, which would 
not be the case with 3D-simulations.  However, the long averaging periods required 
mean that even the 2D-simulations take several days, even for simple averages.  
 
The two-dimensional computational domain for simulation of the pilot scale CFB 
consists of a 0.4 x 3.0 m rectangle, representing the riser section, and a 0.3 m long tilted 
section of the solids return tube. The rest of the solids recirculation system – from the 
top of the riser to the loop seal – is not included in the domain.  The computational 
domain together with the mesh is shown in Figure 5.3.  
 
 
 

              
Figure 5.3. Computational domain and mesh, together with the initial volume fraction 

field used to initialize the simulations. The initial field is obtained from earlier 

simulations. 
 
The solids return is modelled with a transient inlet boundary condition. It varies the 
particle phase inlet velocity magnitude between 0 and 0.7 m/s, trying to maintain a 

mean solids volume fraction of 6� ` 0.069 in the domain. This corresponds to 3.08 kg 
of glass beads in the riser section of the experimental device. The solids return inlet 

3.0 m 

0.4 m 

0.6 m 

6� 
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volume fraction was set to 0.5, with zero velocity magnitude for air. The fluidization air 
injectors were modelled with a non-uniform velocity profile, Figure 5.4, for the 
fluidization air inlet. The profile was scaled to match the desired fluidization velocity. 
Ambient air properties were used. 
 
For the simulations, a two-dimensional computational mesh with 48757 elements was 
created. The riser section has a hexahedral mesh, with square elements of 5 x 5 mm 
size, and the solids return tube has a quadrilateral unstructured mesh of similar 
resolution. A detail picture of the mesh at the connection point of the riser and solids 
return tube is shown in Figure 5.3. The models, parameters and boundary conditions 
used are listed in Table 5.3. Limited central differencing was used for all the convection 
terms, least-squares interpolation for the gradients and the implicit-Euler scheme was 
adopted for the time derivatives. All the selected schemes are – at least conditionally – 
second order accurate. More information on limited convection schemes can be found in 
the PhD thesis of Jasak (1996). Convergence criteria were set at a residual below 10-7 
for pressure and 10-6 for other equations. An under-relaxation factor of 0.25 was used 
for the particle phase transport equation. The other equations were not under-relaxed. 
 

 
Figure 5.4. The non-uniform velocity profile used to model the fluidization air injectors.  
 
 
Simulations were carried out in four different cases: with fluidization velocities of 3.25 
m/s and 3.75 m/s and both with and without the Smagorinsky SGS turbulence model. 
Each of the simulations was initialized with variable fields from an earlier simulation 
and ran for 5 seconds of simulated time before the averaging was started. The initial 
volume fraction field is shown in Figure 5.3. The simulations were then run for a further 
30 seconds to generate the average fields. 
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Table 5.3. Physical models and boundary condition for the CFD-simulations 

Fluidization 
velocity 

3.25 m/s 3.75 m/s 

Mean particle 
VOF, ��   6,9% 

Particle  
diameter, ��  

442 µm 

Particle 
 density, �� 2480 kg 

Drag model Gidaspow (1994), Ergun, Wen & Yu 

Gas turbulence 
model 

none 
Smagorinsky 

SGS, 
� ` 0.16 
none 

Smagorinsky 

SGS, 
� ` 0.16 

 

Kinetic theory for granular flow: Transport equatio n ��,�,��ø 0.625 Conductivity, �� Gidaspow 

Coefficient of restitution, ï� 0.9 Viscosity, ��,�� Gidaspow 

Granular pressure, ��,�� Lun Radial distribution, �� 
Lun & 
Savage 

 

Frictional stress: 

Model 
Srivastava & 
Sundaresan 

��,�,��$ 0.61 

Angle of internal 
friction, Z� 

28º ¡ 2 

� 0.05 � 5 

 

Boundary conditions: 

 2� 2� �� � � 

Walls [0,0,0] 

Johnson & 
Jackson,  �ç ` 0.8,  P��J� ` 0.2 

ª6� ` 0 ª% ` 0 

Johnson & 
Jackson,  �ç ` 0.8,  P��J� ` 0.2 

Outlet ªaT ` 0 ªa� ` 0 ª6� ` 0 % ` 0 ªΘ ` 0 

Air inlet 
Non-uniform 
fixed value 

slip 6� ` 0 ª% ` 0 ªΘ ` 0 

Solids return 
inlet 

[0,0,0] 
Transient 

fixed value 
6� ` 0.5 ª% ` 0 Θ ` 0.001 
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6. IMAGE-BASED MEASUREMENT METHODS 

The easy optical access provided by the pilot scale CFB enables the use of image based 
measurement methods. High-speed imaging gives an excellent visualization of the 
structures of the particle phase and their interaction. Furthermore, if the recorded image 
frames have a short enough time delay between them, it is possible to calculate a two 
dimensional displacement field for the solid particles using Particle Image Velocimetry, 
PIV. PIV is a commonly used method in flow measurements. As the time delay between 
the frames is known, the velocity is easily calculated from the displacement. With 
adequate spatial and time resolution, as well as visibility, it is possible to use Particle 

Tracking Velocimetry, PTV, where individual particles can be detected and their 
velocity determined, possibly together with the size and other properties of the particles. 
The local void fraction can be estimated by correlating the recorded light intensity with 
the volume fraction of the particles. 
 

6.1. Grey-Scale Volume Fraction Estimate 

When particles in the riser are illuminated from behind and the light penetrating the 
suspension is recorded with a digital camera, it is possible to estimate the volume 
fraction of the particles from the intensity of the recorded light. Grasa and Abanades 
(2001) compared several correlation functions, and their calibration, and found out that 
a logarithmic function as presented in Equation 6.1 gives a good quality estimate, 

without the need for any fitting constants. In the Equation 6.1 � is the local mean light 

intensity, ��89 and ���z are the light intensities obtained from calibration reference 

images and 
 is the concentration of the particles. 
 

 
 ` "�� ����z"�� ��89���z
 (6.1) 

 
When this equation is applied to the backlit CFB images to determine the volume 

fraction of the particles it is written as Equation  6.2, where 6�,3J� is the volume fraction 

of the particles at the minimum intensity reference, �²},���and �²},  is the light intensity 

corresponding with the zero particle volume fraction. 
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 6� ` 6�,3J� �QT !},��� �QT  !},  !},���
  (6.2) 

 
Figure 6.1 shows a digital image of the CFB riser cross-section and the particle volume 
fraction field calculated by applying the Equation 6.2. The zero volume fraction 
reference intensity was determined from a time-averaged picture of the empty riser and 
the fully packed reference from the minimum intensities found in recorded datasets 
along with variations in the zero volume fraction reference. The local average intensity 
was calculated from a 64 x 64 pixel sample. 
 

 
Figure 6.1. Sample of a raw image of a section of the CFB riser and the volume 

fraction field calculated from it with Equation 6.2. The minimum intensity reference 

volume fraction is  6�,3J� ` 0.63 in this example. 

 

The problems with this method are: the generation of an adequately powerful, evenly 
distributed backlight, the determination of the correct reference intensities with 
corresponding volume fractions and the inability to resolve volume fractions above the 
lowest volume fraction where the light penetrating the suspension can be reliably 
detected by the camera. In the case of the pilot-scale CFB, the highest measurable 
volume fraction was approximately 0.35 with fluorescent lighting. This limit is based on 
a comparison of the integrated grey-scale estimated particle mass with the actual mass 
of the bed material and comparison of results between the two light sources. As a result, 

the reference volume fraction was set at α¨,"#/ ` 0.35. These limitations should be kept 

in mind when interpreting the results. The absolute values may not be very accurate, but 
the results are useful for qualitative comparison between different portions of the riser 
and different fluidization velocities. 
 
There is a significant underestimation of mean volume fraction at the bottom of the riser 
– where packed regions are commonly found – as the maximum measurable volume 

fraction is the reference α¨,"#/ ` 0.35. The maximum underestimation error in the mean 

volume fraction field can be evaluated by replacing all measured volume fractions 
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exceeding a limit set for reliable measurement, α¨,$#%¨ � α¨,&%'() ` α¨,"#/ ^ >, where > 

is a tolerance from the reference value. In the results, a tolerance of > ` 0.02 was used. 
A mean volume fraction field calculated from the modified volume fraction field 
represents what the mean volume fraction would be if all areas where the measured light 
intensity is less than the limit of reliable measurement are assumed to be fully packed, 
instead of having a volume fraction close to the reference value. 
 
The major benefit of this method is that the volume fraction fields are recorded 
simultaneously with the velocity fields, which is vital for the calculation of volume 
fraction weighted averages, i.e. Favre averages, and Reynolds stresses in a multiphase 
flow. It would be beneficial to combine the grey-scale VOF estimate with another – 
more accurate – method to measure the mean volume fraction. The non-time resolved 
mean VOF-field could then be used to calibrate and validate the grey-scale estimate, 
and the VOF values given by the grey-scale estimate could be used as a weighting 
factor in the calculation of the derived quantities. 
 

6.1.1. Light Intensity Correction 

Any suitable light source can be used for the back lighting. However, common light 
sources connected to the alternating current electrical grid have tendency to pulse at the 
grid’s frequency. If a pulsing light source, such as halogen or fluorescent is used the 
varying light intensity has to be compensated for. If uncorrected, the pulsing light 
source creates unphysical fluctuations in the calculated volume fraction field. The 
optimal solution would be to use matching reference images for each frame. However it 
proved difficult to consistently match the frequency and phase of the measurement and 
reference images.  
 
In the mean light intensity graph in figure 6.2 of the whole frame, with a time resolution 
of 1/300 s, the high frequency fluctuations caused by the pulsing backlight can be seen 
clearly. If it is assumed that the mean light intensity, i.e. the bulk density, of the whole 
measurement window doesn’t change much over a time period of 1/100 s the lighting 
related fluctuations can be removed by applying a 100Hz low-pass filter to the recorded 
intensity fields. With the measurement window over the whole width of the pilot scale 
CFB riser, this is a very reasonable assumption.  
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Figure 6.2. Uncorrected and 100Hz low-pass filtered graph of whole frame mean light 
intensity with a time resolution of 1/300s. 

 
The low pass filter removes the unphysical fluctuation, but also reduces the time 
resolution of the measurement. The lost time resolution can be recovered by scaling the 
light intensity of individual frames so that the mean intensity of the whole frame 
matches the low-pass filtered mean intensity, and calculating the VOF-field from the 
scaled, unfiltered images. The unphysical fluctuations of the uncorrected images can be 
seen in the sample profiles of Figure 6.3. The variation between the frames is reduced in 
the corrected profiles and importantly, in the areas where there are differences, the 
changes are consistent with the order of the imaging sequence. 
 
 

 
Figure 6.3. A sample sequence of volume fraction profiles calculated from five 

consecutive uncorrected, 100Hz low-pass filtered and frame-by-frame intensity 

corrected images.  
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6.1.2. Measurement of Cluster Size Distribution 

As the glass beads appear as shadows in the recorded grey-scale image, it is possible to 
determine the sizes of the clusters and flow structures from the images. One way to do 
this would be to apply a grey-scale threshold value and gradient based segmentation to 
the image to detect and track the flow structures. While this is definitely possible to 
realize, problems may arise in the definition of cluster boundaries and tracking of the 
continuously deforming, string-like, structures. Another method for characterization of 
the local cluster size distribution would be to calculate a frequency power spectrum 
from horizontal and vertical cross-sections of the recorded images. However, the 
calculation of cluster sizes is beyond the scope of this thesis although it would be an 
interesting subject for further investigation. 
 

6.2. Particle Image Velocimetry 

When PIV is applied to the measurement of fluid flow, images of a flow seeded with 
small particles are recorded with a short time delay between individual frames. The 
images are then divided into smaller interrogation areas, and the interrogation area 
intensity fields are cross-correlated between the consequent frames. The displacement 
of the particles can be calculated from the displacement of the correlation peak. In fluid 
velocity measurements small seeding particles, with a small Stokes number, that 
consistently follow the fluid flow are used. 
 
In gas-solid flow the solid particles are visible to the camera and their velocity can be 
measured similarly to the seeding particles used in traditional PIV measurements. In this 
case the measured velocities don’t represent the fluid velocity, but the local expected, 
most probable velocity of the particle phase in the measurement volume.  
 
One problem with applying PIV to the particle phase velocities in a device such as the 
CFB is that the large particles do not travel with the surrounding fluid and, as such, 
don’t behave like a continuum. In dilute shear layers the particles occupying the same 
measurement volume may have large velocity differences – or even opposite velocities 
– without affecting each other significantly. In such areas, the statistical analysis of 
cross-correlation cannot determine a consistent particle velocity. Another limitation is 
the penetration of light in dense regions, which makes the use of a sideways light sheet 
impossible and also limits the maximum volume fraction where velocities can be 
determined with backlighting. 
 
Interrogation areas used for the cross-correlation (CC) are typically squares with sizes 
ranging from 32 to 256 pixels, although other choices are possible. The choice of 
interrogation area size depends on the number of particles in the measurement volume, 
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the camera resolution and the desired spatial resolution. Overlapping interrogation area 
can be used to provide a denser results vector field but results still only represent the 
velocities in scales larger than the interrogation area size. The adjacent data points share 
a portion of the intensity field and thus are not independent from each other. The 
increased vector density however, helps with validation of the results. 
 
Often some level of image pre-processing is applied to the particle images before the 
correlation. In the case of the backlit particle shadow images, they were inverted so that 
the particle shadows are seen as the intensity peaks, and locally normalized to even out 
the differences between the different particle volume fractions. 
 
 

6.2.1. Cross-Correlation and Vector Calculation 

Cross-Correlation (CC) is a commonly used method in signal processing in order to 
compare the similarity of two signals. When evaluating the similarity, it can be useful to 
compare the CC-result to the result of correlating the signal with itself. This is called 
Auto-Correlation (AC).  
 
In PIV cross-correlation the intensity profiles, i.e. the signal of the corresponding K x L 
pixel interrogation areas of consequent image frames are correlated with each other, 
Equation 6.3. The displacement with the strongest correlation represents the most 
probable displacement for the particles in the measurement volume. In practice the 
correlation is calculated by applying Fast Fourier Transforms (FFT) with Equation 6.4 
to speed up the calculation. 
 

 +d¿, ôe ` 
 
 �mdÞ, *e�CdÞ f ¿, * f ôe+
,-�+

O
�-�O  (6.3) 

 
 + ` ÙÙ.�màÙÙ.d�me°ÙÙ.d�CeWá (6.4) 

 
The correlation weakens towards the edges of the interrogation area, as smaller and 
smaller portion of the interrogation areas overlap. Thus, if the real displacement of the 
particles is large compared to the interrogation area, the correlation function will 
underestimate the displacement. This effect can be corrected by applying a weighting 
factor to the correlation field. Excessively large particle displacement can be 
compensated by offsetting the placement of the interrogation areas either by a known 
displacement, a known velocity, or by applying a multi-pass correlation algorithm. 
Multi-pass means the correlation is repeated multiple times and the results of the 
previous correlation are used to offset the interrogation areas for the next correlation. 
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With high speed imaging, the final result of the previous image pair can be used to 
provide the initial offset for the interrogation areas. 
 
The accuracy of the displacement measurement can exceed the pixel resolution of the 
source images by fitting an interpolation function on the detected correlation maximum. 
This is called peak fitting. Usually the normal distribution, or a simplified parabolic 
approximation of it, is used as the fitting function. Most commercial PIV software use a 
three point fit, where only the points adjacent to the maximum are utilized for the fit. 
This method works well if the particles are small, i.e. in the range of 2-5 pixels, but 
accuracy reduces as the particle size increases because of the wider correlation peak of 
the larger particles. In fluidization experiments with modern digital cameras, particle 
images larger than this are commonly found. Dijkhuizen et al. (2007, p. 111-112) 
demonstrated how the accuracy with large particles can be improved utilizing more of 
the correlation field by applying a least squares fit. They found that with the least-
squares fit, the accuracy of the peak detection only improved with increasing particle 
size. 
 

 

6.2.2. Vector Field Validation and Post-processing 

While the cross correlation algorithm used on PIV is generally quite robust, it can find 
non-valid correlation peaks due to camera sensor noise, lighting variation, out-of-plane 
particle movement and particle rotation, too long a time delay between the pictures or 
other problems in the imaging. These non-valid correlation peaks result in erroneous 
velocity vectors that have to be filtered from the results. 
 
In this thesis four postprocessing steps were applied to the velocity fields calculated 
with the high speed PIV. Firstly the velocity vectors were validated by requiring that if 
the magnitude of the vector exceeds 0.1 m/s, its direction, Equation 6.5, has to be within 
± 60º of the local  median direction, Equation 6.6. This median is calculated from a 
3x3x3 (x-direction, y-direction and time) 3D-sample.  
 

 	 ` 1ÖÄ�m Ïa9a½Ð (6.5) 

 
 |	 ^ 	�J��8z| u  qn  or    |	 ^ 	�J��8z| � 2l ^ qn  (6.6) 

 
Secondly, the change in the velocity magnitude between consecutive temporal 
measurement points had to be less than 3 m/s, Equation 6.7.   
 

 |2(-� ^ 2(-�º0| u 3 m/s (6.7) 
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Thirdly, the deviation of the velocity vector had to be less than 1.6 times the local 
standard deviation from the local median velocity. The standard deviation and the local 
median velocity, Equation 6.8, were also calculated with a 3x3x3 3D-sample from the 
velocity field validated with the two previous steps.  
 

 |2 ^ 2�J��8z| u 1.62I1K (6.8) 
 
As the last post-processing step, the disqualified velocity vectors were interpolated by 
replacing them with a 3D local median velocity to preserve the correct velocity 
distribution in the results. If the local median sample included less than 9 valid velocity 
vectors, the interpolation was not carried out. Without this interpolation, the highest 
velocities would be under-represented in the velocity distribution as they are more prone 
to non-valid correlation results due to the larger displacements.  
 
In the small scale, laser lit, non-high-speed measurements the quality of the raw vector 
fields was such that the vector validation and interpolation were considered 
unnecessary.  
 

6.3. Particle Tracking Velocimetry 

As particle tracking velocimetry concentrates on measuring the properties of individual 
particles, it not only has the highest possible spatial resolution but also all the measured 
quantities correspond with an actual particle, as opposed to the statistical approach 
adopted by PIV. In addition to velocity, simultaneous measurement of particle size, 
shape and the orientation of individual particles is possible, allowing multivariate 
analysis of the results. The viability of PTV as a measurement method depends on the 
reliable and accurate detection of particles and reliable matching of particle pairs in 
consecutive image frames.  
 
Three basic approaches for image based particle size and velocity measurements are 
glare point velocimetry and sizing, GPVS; interferometric particle imaging, IPI; and 
shadowgraphy. Of these GPVS and IPI rely on the scattering of parallel coherent light 
beams from the surfaces of a transparent spherical particle. For both these methods the 
light has to be directed from the side at a non-orthogonal angle compared to the 
direction of the imaging. The main difference between the methods is that in GPVS the 
camera is focused on the measurement volume, while in IPI the camera is out-of-focus. 
With GPVS, the particle is seen as two light intensity peaks (glare points) and with IPI 
as an interference pattern. The spacing of the glare points and the interference pattern 
depend on the angle between the light source and the camera, as well as the size of the 
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particle. GPVS and IPI represent indirect imaging of particles, while shadowgraphy is a 
form of direct imaging. (Putkiranta 2007. p. 44.) 
 
In shadowgraphy, the light is directed to the measurement volume from behind, and the 
particles create a shadow image on the camera sensor. The recorded images are then 
processed with an algorithm that can detect the particles and their edges from the 
recorded images. The strengths of shadowgraphy are its spatial resolution, its capacity 
to study transient phenomena and its applicability to a wide range of particle sizes and 
shapes (Putkiranta, 2007, p. 39). The density of particle suspension in the pilot scale 
CFB means that penetration of light is often the limiting factor for image based 
methods. Given the pseudo-2D geometry of the device and the non-uniformity of the 
particle suspension, the shortest suspension penetration depth for light is achieved with 
backlighting. This – together with limited transparency of the glass beads – makes 
shadowgraphy the method of choice.  
 

6.3.1. Particle Detection in Shadowgraphy 

For the backlit grey-scale shadowgraphy images, two basic particle detection 
approaches can be used. If it is possible to define a typical intensity profile, i.e. a 
particle mask for the particle to be detected, the intensity profile can be correlated with 
the recorded images, and the correlation peaks are detected as particles. This method is 
called particle mask correlation, PMC. The benefits of this method are that it is 
algorithmically simple and robust. The downside is that unless the particles are 
uniformly shaped and sized, multiple masks have to be used, which increases the 
computational cost of the analysis. Size distribution measurements also require a 
number of masks to be used, as the size measurement requires a mask for each 
measured particle size range.  
 
The other method is based on the detection of particle edges from the images. The edges 
can be detected by thresholding the grey scale values of the image or by detecting the 
peak grey-scale gradient magnitudes. The maxima of grey-scale gradient magnitude in 
shadowgraphy is located on the edge of the particle shadow, although there are still 
uncertainties in the sub pixel location of the edge. For the particle size distribution 
measurement, a two-step algorithm similar to the one used by Putkiranta (2007) for 
spray characterization was chosen. In this algorithm, the image is first segmented with a 
constant grey-scale threshold. Then the segmented area is enlarged by 4 pixels and the 
magnitude of the grey-scale gradient is calculated for the segmented area. A threshold 
with a chosen value in then applied to the gradient magnitude values, thus isolating the 
focused edges of the particle. The mean grey-scale value of the focused area is set as the 
new threshold value, optimized individually for each particle, and the area is re-
segmented. (Putkiranta 2007. p. 44.) 
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Sub-pixel accuracy for the edge detection is achieved by an interpolation routine in the 
form of ellipse fitting. The sub-pixel location of the perimeter is found with a low-pass 
FFT-filter as shown by Honkanen and Marjanen (2007). Overlapping object recognition 
to eliminate ellipses fitted over several near-by particles is carried out based on the 
perimeter curvature as described by Honkanen and Marjanen (2007).  
 

6.3.2. PTV algorithm 

While the measurements for the results shown in Figure 2.3 were obtained with 
stationary particles, the same particle detection algorithm can be applied to images 
recorded in the dilute areas of the pilot scale CFB riser. To determine the velocity of the 
particles, the detected particles from consecutive frames have to be matched correctly. 
Such matching is achieved by comparing particle sizes and locations based on an initial 
guess for the velocity. In the case of the water jet measurements conducted by 
Putkiranta (2007), determination of the initial guess velocity is relatively 
straightforward, as the flow has a clear mean flow direction i.e. temporal velocity 
fluctuations are small compared to the droplet mean velocity.  In a CFB riser it is 
impossible to define a constant initial velocity guess which would be valid for particle 
matching, as the magnitude of instantaneous velocity fluctuations is often larger than 
the magnitude of the flow mean velocity. However, a very good initial guess for the 
particle velocities can be obtained by first calculating a PIV velocity field for each 
image pair and then using that result as the initial guess for the PTV particle matching. 
The good initial guess also acts as an efficient validation step, as only detection pairs 
closely following the PIV velocity field are accepted as valid. However, the validation 
fails if the random motion of particles is large compared to the local mean displacement 
given by PIV. 
 

6.3.3. Application to the Pilot Scale CFB 

The major limitation of shadowgraphy PTV when applied to the pilot scale CFB is that 
it can only be used in the dilute areas. As the volume fraction of the particle phase 
increases, the detection of individual particles quickly becomes challenging, or even 
impossible. Another issue concerns the particle size measurements. To penetrate as 
dense a suspension as possible, a powerful light source has to be used, which – with the 
cameras used in this thesis – inevitably leads to overexposure in areas with no particles. 
The overexposure causes an underestimation of the particle diameter as this depends on 
the focal sharpness of the particle.  
 
If absolute measurement of particle sizes is needed – instead of just comparing the 
particle size in different portions of the CFB – a correction function for the measured 
particle diameter is required. A calibration study was conducted using calibration plate 
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PS20 (manufactured by PYSER-SGI) which has circular dot sizes from 3.5 µm to 
1.2699 mm. Reasonably good results were achieved by correcting the measured 

diameter based on the mean grey-scale gradient of the particle perimeter, kª��k. The 

correction function is of the form presented in Equation 6.9, where 
W is the uncorrected 

particle diameter, kª�3J�k is a reference grey-scale gradient for a perfectly focused 

particle, ∆9 is the image scale (length unit per pixel) and 
�, 
� and Ä are constants that 

have to be determined by calibration for each measurement setup.  
  

 
� ` �kª�3J�k£££££££££kª��k££££££ �z 
�∆9 f 
�
W (6.9) 

 

The results of applying the Equation 6.9 with 
� ` 2.4, 
� ` 1.003 and Ä ` 0.5 to the 

calibration plate dot size measurements are shown in Figure 6.4. The large depth of field 
(15 mm) needed to cover the depth of the riser causes a projection error that depends on 
the size of the measurement window, the focal length of the lens used and the size of the 
camera sensor. With a 34mm measurement window and 105mm focal length lens on the 
ImperX Lynx 2M30 with a 11.8 x 8.9mm CCD-sensor, the projection error is ±3%. If a 
symmetrical distribution of particles in the riser is assumed, the projection error does 
not affect the measured mean diameter, but it does widen the measured size distribution. 
Sub-pixel accuracy is generally achieved, but the relative error increases for particles of 
less than 20 pixels in diameter. 
 

 
Figure 6.4.  The measured diameter correction function, Equation 6.9, applied to 

measurement of calibration plate dot size. 
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The measured particle diameter and grey-scale gradient values can also be used to 
determine the location of the particles in direction normal to the measurement plane by 
comparing them with the depth-of-field (DOF) of the imaging setup. The DOF based 
segmentation of particle location will not be nearly accurate enough for the 
determination of the third velocity component, but it should allow statistical separation 
of particles located near the walls and in the middle of the channel. Such study would be 
important to determine how much the three-dimensionality of the flow in the pilot scale 
CFB affects the measurement results. The segmentation could also be used to isolate the 
projection error from the measured size distributions. The problem with both the the 
diameter correction and DOF segmentation is that a careful calibration is needed for 
each measurement setup, and they are still only applicable in the dilute regions of the 
CFB riser. 
 
In principle PTV is the most accurate and detailed method for the measurement of 
particle properties. It allows direct simultaneous measurement and matching of several 
particle qualities: velocity, location (in three dimensions with focus segmentation), size, 
shape and orientation (rotation) for non-spherical particles. However, successful 
detection and matching of particles places great demands on image quality and detection 
algorithms. The complex algorithms mean that the computational cost of the analysis 
can be significant, especially with the long unsteady timescales of the CFB. The 
unsteady behaviour and wide range of volume fractions further complicates application 
PTV to CFBs. Despite these challenges, accurate measurement of particle velocities and 
sizes in the dilute regions of the pilot scale CFB is possible with the algorithms and 
methods presented in this chapter.  
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6.4. Measurement of Small-Scale Random Motion 

As explained in section 4.3, Granular temperature, Θ, is defined as the energy of small-
scale random velocity fluctuations of the particle phase, or one third of the mean square 
of the particle velocity, Equation 4.19.  This random movement is an important 
parameter in kinetic theory based particle-particle interaction models. 
 
The direct method of measuring the granular temperature is to measure the velocity of 
individual particles in the measurement volume in the same way as with the PTV-
method described in section 6.3; and then use the results to calculate the granular 
temperature. If reliable PTV has been accomplished, this direct calculation of the 
granular temperature is obviously the best method. However, the same limitations as 
with the PTV velocity measurement apply: the method requires high spatial resolution; 
it is computationally relatively slow; and reliable detection and tracking of the particles 
is algorithmically challenging – especially when dealing with non-dilute suspensions. 
 
Another option is to apply a cross-correlation based, statistical approach as suggested by 
Dijkhuizen et al. (2007). With this method a statistical variance of the particle 
movement in scales smaller than the PIV interrogation area is directly calculated from 
the variation in the PIV correlation peak width between auto- and cross-correlations. 
This method allows measurement of the random motion of particles on scales below the 
spatial resolution of PIV. The results can be combined with velocity variance calculated 
from a suitably filtered velocity field to describe the energy of the random motion below 
a desired spatial scale. 
 

If all the particles in the measurement volume have the same uniform velocity, ��, the 
position of a particle relative to the other particles will be exactly the same in 

consecutive image frames recorded with a small time delay, ∆1. The whole particle 

pattern however, will shift a distance, ∆¿ ` ∆1��, corresponding with the velocity of 
the particles and the length of the time delay. When two of these images are cross-

correlated, the correlated peak is displaced by ∆¿ and the width – or the variance of the 
normal distribution function fitted on the correlation peak – is the same as it would be if 
one of the frames were to be auto-correlated i.e. correlated with itself.  
 
The vertical and horizontal component of random particle displacement in the 

interrogation area can be evaluated with Equation 6.10, where B� is the standard 

deviation of particle displacement. B33, B43 are the standard deviations of the Gaussian 
distribution function fitted on the correlation peaks. As the width of the auto-correlation 

peak can be different for the first and second frames, B43 is defined as the mean of the 
first and second frame values, Equation 6.11. (Dijkhuizen at al., 2007, p.110)  
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 B�,�C ` B33,�C ^ B43,�C   ,     Þ ` ¿, ô (6.10) 

 
 B43 ` B43,m f B43,C2  (6.11) 

 
Dijkhuizen at al. used white spherical particles on a black background, which create an 
approximately Gaussian intensity profile in the recorded images. When an image of 

particles with Gaussian intensity distribution with standard deviation B5 is correlated the 

result is a Gaussian correlation field with a standard deviation of √2B5. (Dijkhuizen at 
al., 2007, p.112.) In the case of the shadow images of the glass beads used in the pilot 
scale CFB, their intensity profile is obviously not Gaussian, as can be seen in Figure 
6.5, but more of a toroidal shape. However, the profile from the centre to the edge of the 

particle shadow is approximately Gaussian and the √2B5 relation can be regarded as a 
reasonable assumption. Thus the Equation 6.12 is used to calculate the standard 
deviation of the particles in the interrogation area. However, it should be noted that for 
overlapping particles the assumption of Gaussian intensity profile no longer holds good. 
 

 B�,� ` �ÏB33,�√2 ÐC ^ ÏB43,�√2 ÐC ,    Þ ` ¿, ô (6.12) 

 
 
 
 

 
Figure 6.5.  Typical single particle intensity profiles with pulsed light imaging and a 

comparison with Gaussian function.  

 
 
The correlation calculations were carried out in the frequency domain by applying 
FFTs. Samples of auto- and cross-correlation fields, as well as the fitted normal 
distribution functions are shown in Figure 6.7. 
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6.4.1. Implementation in MATLAB 

For use with the pilot scale CFB the correlation peak width based method was 
implemented in MATLAB (The MathWorks, Inc), together with PIV interrogation area 
mean displacement calculation. The basic procedure for the calculation is: 

 
1. Load an image pair. 
2. Parse the images to interrogation areas with a given initial shift. 
3. Load an interrogation area pair 
4. Invert and normalize the interrogation areas. 
5. Calculate AC for both frames and CC. 
6. Find the CC-field maximum. 
7. Least-squares fit normal distribution on CC and AC maximum to locate the 

peak. 
8. Validate the fitting. 
9. Calculate mean displacement. 
10. Calculated random displacement, Equation 6.11. 
11. Repeat from 3. 
12. Repeat from 1. 

 
The Initial shift can be an expected mean velocity profile or an earlier PIV velocity field 
in multi-pass calculation. In this thesis, a velocity field calculated with LaVision Davis 
7.2 (LaVision GmbH, Göttingen, Germany), a commercial PIV-software, was used to 
provide the initial shift.  
 
The inversion and normalization of the images was carried out by consecutive 

application of Equations 6.13-16, where � is the intensity matrix and ��Q�8�1J8z is the 
local mean intensity – calculated by resizing the image twice with bicubic interpolation. 
Thresholding with the local mean intensity is used to improve the correlation at high 
volume fractions, where very little light penetrates the suspension. Although the source 
images had very little noise, median filtering with a 3x3 kernel was carried out as a 
noise-reduction procedure. A sample of an interrogation area before and after inversion 
and normalization are shown in Figure 6.6. As can be seen from the sample B, the 
normalization and thresholding can reveal a signal in quite dark regions. The correlation 
results and the fitted normal distribution functions in Figure 6.7 show that the darkness 
of the source image has little effect on the cross-correlation. Of course, if the signal is 
completely non-existent, as is the case in fully packed areas of the pilot scale CFB and 
areas with no particles, the correlation cannot work.  
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 � ` ��89 ^ � (6.13) 
 

 � ` � ^ ���z (6.14) 
 

 � ` maxd�, ��Q�8�1J8ze ^ ��Q�8�1J8z (6.15) 
 

 �d¿, ôe ` �d¿, ôe��89 ^ ��Q�8�1J8zd¿, ôe (6.16) 

 
 
 
 

      
 

      
Figure 6.6.  Samples of original and inverted and normalized interrogation areas at 

different particle volume fractions. 
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Figure 6.7.  Auto- and cross-correlation fields and the fitted normal distribution 

functions for the interrogation areas A and B shown in Figure 6.6. 
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6.4.2. Testing and validation 

For testing and validation of the method and implementation, a MATLAB function to 
generate synthetic particle images was written. The function generates a grey-scale 
image with the desired resolution, particle count, particle mean displacement and a 
random displacement along with normal probability distribution and a desired standard 
deviation. 20 different single particle intensity profiles which were isolated from actual 
measurement data are used to simulate the particles.  Samples of the generated synthetic 
particle images with differing particle counts are shown in Figure 6.8. The profile and 
location of each particle is chosen randomly and independently of each other. Particles 
were added one-by-one by multiplying the chosen location of the existing intensity 
matrix by the ratio of the particle profile and the maximum intensity. With such a 
method, overlapping particles affect the measured intensity profiles, as is the case in the 
real measurement images. 
 
 
 

      
 

   
Figure 6.8.  Samples of synthetic 1000 by 1000 pixel particle images with particle 

counts of 3000, 18000 and 36000.  
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Synthetic images of 1000x1000 pixels were generated with a particle mean 
displacement of 10 pixels both vertically and horizontally, and varying particle counts, 
3000-36000, and particle displacement standard deviations of 0-6 pixels. The image sets 
were first analyzed with DaVis 7.2 using two correlation passes and an interrogation 
area of 128x128 pixels with a 50% overlap. A third correlation pass was carried out 
with the Matlab implemented PIV function that includes sub-interrogation-area scale 
particle random motion calculation based on the correlation peak width. 
 
The results in Figure 6.9 show that the accuracy of the mean displacement proved to be 
excellent, even with the three-point peak fitting algorithm employed by DaVis, while 
the MATLAB implemented PIV function showed a slight improvement both in mean 
and standard deviation values. The improvement is explained by the additional 
correlation pass, the least-squares peak fit and differences in particle image inversion 
and normalization. Overall these differences are minor. 
 
Of course the interesting part of the results is the sub-interrogation-scale motion results. 
With particle standard deviations of less than two pixels the measured values match the 
reference values closely. At a standard deviation of three pixels the measured value is 
slightly below the reference value. However, as the random component of the particle 
displacement is increased up to six pixels, the measured values level off at 3.6 pixels. At 
the same time, the standard deviation of the PIV displacement field – which represents 
the motion of particles in scales larger than the interrogation area size – increases, 
despite the measured mean displacement remaining correct and unchanged.  
 

    
Figure 6.9.  Comparison of measured mean displacement and standard deviation 

values with reference values of the synthetic images. Includes PIV velocity fields 

calculated in DaVis 7.2 and Matlab, together with sub-interrogation-area scale random 

motion calculated from the MATLAB PIV-correlation results.  
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There are at least two different mechanisms that can explain the above behaviour. 
Firstly, as the standard deviation of the particles increases, an increasing portion of the 
random particle motion can be seen in scales larger than the interrogation area size. This 
mechanism represents the physical scale difference of the motion and the 
measurements. Secondly, as the random particle motion increases it becomes 
increasingly difficult for the PIV-algorithm to detect the correct correlation peak, and 
the number of detected displacements decreases, the random error of the method 
increases, which explains the increase in the standard deviation of the measurements. 
The PIV-algorithm tries to find the displacement that has the best correlation, meaning 
the sharpest correlation peak, so it naturally favours areas with lowest levels small scale 
random movement, explaining the lowest levels of small scale random motion.  
 
Which – if either – of these mechanisms dominates the behaviour is unknown. If it is 
the first one, the method can be said to be valid as long as the mean displacement 
calculation succeeds. If it’s the second one, the method is only valid up to standard 
deviation of less than three pixels. The strong correlation between the sum of the 
standard deviations of PIV and the sub-interrogation-area scale displacements with the 
reference values suggests the first option is the dominant mechanism. 
 
The effect of the possible rotation of asymmetrical particles and a velocity component 
in the direction normal to the measurement plane was evaluated by randomly choosing 
the particle profile for each particle in the second frame of the synthetic image pair. 
These images represent a situation where non-spherical particles are randomly displaced 
over the whole depth, 15 mm, of the riser. As a result, the PIV displacement 
measurement was not significantly affected, but the correlation peak method gave a 
standard deviation of ~0.9 pixels with no random motion. At reference std. deviation of 
one and above pixels, the values were overestimated by 0.4 and 0.2 pixels respectively. 
In reality this is a worst case scenario. Typically, the vertical displacement of particles 
between the consequent image frames is less than 1.5 mm, and the horizontal one less 
than 0.5 mm. It is reasonable to assume that displacements in the riser in the direction 
normal to the measurement plane are even less. That would mean that the displacement 
is much smaller than the ~7 mm in the synthetic images and that the effect of the third 
velocity component on the standard deviation measurement is insignificant. 
 
The method also displayed significant variations around the measured mean value, and 
it is recommended that a degree of local averaging or median filtering is applied to the 
results. The variations increase as the particle density decreases and as the statistical 
sample becomes smaller. It is recommended that the method is only applied to 
interrogation areas with more than ten particles, depending on the level of randomness 
in the motion of the particles. For these low particle-density areas PTV and direct 
calculation of particle random motion could be applied. It would be possible to write an 
algorithm that automatically chooses between CC-peak based and direct measurement 
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methods based on the particle density and the quality of the cross-correlation. 
Implementation of such an algorithm is however outside the scope of this thesis, but has 
potential for further research. 
 
It should also be remembered that the measured particle standard deviation includes all 
the particles in the measurement volume and the results include both the small scale 
random motion and possible mean velocity gradients. With shadowgraphy the 
measurement volume covers the whole depth of the riser and it is very possible that 
overwhelming proportion of the measured particle standard deviation is caused by mean 
velocity gradient across the depth of the riser. In this case the measured value is more 
representative of the three dimensionality of the flow, instead of the random particle 
fluctuations as defined in kinetic theory. 
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6.5. Measurement Setup and Sampling 

For comprehensive results, the measurements were divided into two categories with 
differing imaging setups. The first setup used high-speed single frame imaging, a 
measurement window over the whole width of the rise and a continuous fluorescent 
backlight illumination. These measurements provide time-resolved visualization, and 
with the application of PIV and grey-scale VOF estimate, provide a good overall 
characterization of the flow in the CFB riser. Nevertheless, there is room for 
improvement in the spatial resolution, the quality of lighting and the sampling. The 
amount of data generated by the high speed imaging places constraints on what can be 
analyzed with reasonable time and computational costs.  
 
More accurate and detailed data is captured with the second setup. Here the illumination 
is provided by a pulsed laser and time-resolution is sacrificed in exchange for longer 
sampling periods. With this setup the measurement window size is limited to 
approximately 40 mm. This means that only a small portion of the riser can be covered 
with reasonable effort. The sampling positions and periods are presented in Figure 6.10. 
At the height of 155-160 cm a structural support prevents optical access.  
 
 

 
 

   
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 6.10. Measurement windows and sampling periods used for each fluidization 

velocity in continuous and pulsed light source measurements. 

 
 

Continuous Light 
Height 
[cm] 

Sampling 
period [s] 

6-38 28 

25-57 28 

50-82 28 

75-107 28 

100-132 28 

125-157 28 

160-192 28 

Pulsed Light 
Height 
[cm] 

Sampling 
period [s] 

20 3 x 200 

40 10 x 200 

80 10 x 200 

120 10 x 200 
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6.5.1. Continuous Light Source 

To get a larger measurement area than the available laser could provide, high frequency 
fluorescent tubes were used to provide the backlight. The fluorescent tube stack and 
diffuser can be seen behind the CFB riser section in Figure 6.11 and a sample frame 
recorded with this setup is shown in figure 6.12, together with the corresponding 
particle velocity vector field. A continuous light source means that the single frame 
imaging mode has to be used to achieve a controlled exposure with the camera used. As 
the minimum time delay between the images is now limited by the maximum recording 
frequency of the camera, the measurement window size has to be scaled according to 
the relative displacement of the particles in the images.  
 

 
Figure 6.11. Continuous lighting setup. The CFB riser and loop seal lit by a pack of 

high frequency fluorescent tubes. 

 
 
For good average fields, the data has to be collected over a long period of time owing to 
the unsteady nature of the CFB. Based on preliminary measurements and CFD 
calculations, it was estimated that ~30 s worth of data would be needed for adequate 
average fields. The camera, LaVision ImagerPro HS, is capable of recording up to 638 
single frame images per second, but it was decided that 300 Hz imaging frequency gives 
a reasonable compromise between a sufficiently small relative displacement of the 
particles, the sampling period and the amount of data to be analyzed. 8400 images with 
a resolution of 1280x1024 pixels were recorded per riser height and fluidization 
velocity, which gives a sampling period of 28s. A Nikkor 50mm f/1.2 lens was used on 
the camera. 
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Figure 6.12. Sample image recorded with continuous backlight and velocity vectors 

calculated with PIV. 

 
 

6.5.2. Pulsed Light Source 

To control the exposure in the double frame mode of the camera, a pulsed light source is 
needed. For PIV, a pulsed laser is normally used to create a laser sheet perpendicular to 
the imaging direction. However, in the case of the CFB this is impossible, as the light 
sheet wouldn't penetrate the suspension deeply enough, and - in the case of the current 
experimental CFB - the access from the side is blocked by the CFB frame structure. Due 
to these limitations, the light can only be directed from the front or the behind. 
 

 
Figure 6.13. The measurement setup for the pulsed light measurements. 
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Backlighting, i.e. directing the light from behind, creates a shadow image with the 
particles in the focus plane appearing sharp while those outside of it appear blurred. The 
cross-correlation algorithm of PIV displacement measurement weights the sharpest 
particles, as they create the highest intensity peaks in the inverted image. However, the 
velocities can only be determined if the light can penetrate the suspension. In the CFB 
this is does not happen at the lowest void fractions, which locally affects even the 
average fields. With the non-dilute suspensions found in the CFB, it is vital that the 
focal plane is as thick (Depth-Of-Field, DOF) as the riser, so that unfocused particle 
shadows don’t drown out the measurement signal. Figure 6.14 shows a sample of the 
recorded images and Figure 6.15 shows the velocity vector field, the volume fraction 
and the sub-3.3mm scale particle random motion energy calculated from it based on the 
PIV correlation peak widths.  

 
 

 
Figure 6.14. Sample image recorded with pulsed diode-laser backlight. 

 
 
For the backlit image, the grey-scale volume fraction estimate is used to determine the 
local particle volume fraction. Because it is important to penetrate as dense suspensions 
as possible, an overexposed image background in areas with no particles is unavoidable 
given the cameras used. In this case, the large DOF mentioned earlier also helps with 
the volume fraction estimate: as all the particles are in reasonable focus they create a 
sharp shadow image, and are visible even against the overexposed background.  
 
If front lighting were to be used, the light would be directed from the direction of the 
camera. In this type of lighting, the intensity peaks are generated by the particles closest 
to the front wall. The velocities of these particles can be determined at any void 
fraction, but these velocities only represent the particles right next to the wall. Another 
drawback is that there is no easy way to estimate the void fraction. The front-lit method 
could be used to study those regions where the backlighting fails, because of low void 
fractions. In the present study front-lighting was merely tested and no valid 
measurements were carried out. Even for backlight illuminated images it might be 
beneficial to add a low-powered light source to the front. This light could be used to 
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provide just enough light to extend PIV velocity measurement to the densely packed 
regions. However, this would slightly further compromise the grey-scale volume 
fraction estimate. Testing of the setup is outside the scope of this thesis, but further 
investigation of the approach might be useful. 
 
 

 
 
Figure 6.15. Particle volume fraction, PIV velocity vectors and sub 3.3 mm scale particle 

random motion energy calculated from the sample image shown in Figure 6.13. 
 
 
In this study, a Cavitar CaviLux Smart diode-laser was used because of its portability. 
The laser and optics were connected with an optical fibre and an aluminium stand was 
constructed to support the camera and laser optics. The power of the laser limits the size 
of the usable measurement window to around 40 mm, owing to the small lens aperture 
needed for the large DOF. The smaller the window, the shorter the time delay between 
the images has to be, while the displacement of the particles relative to the measurement 
window increases. This image size necessitates the use of double frame imaging in 
order to achieve a sufficiently brief time delay. The maximum pulse length of the laser 
also decreases as the triggering frequency increases. These limitations make it 
impossible to achieve time resolution with the equipment used, and the calculated fields 
have to be considered as discrete samples. The spatial resolution of the method is 
around 1.65 mm with the 40 mm measurement window used. 
 
As time resolution cannot be achieved – and is not required for statistical results – the 
imaging frequency can be chosen freely. Thus, the sampling can be spread over a long 
period of time, without collecting an unwieldy amount of data, making the calculation 
of a representative average field more convenient. With a suitably low triggering 
frequency, the number of recorded frames is only limited by the hard drive capacity, 
instead of the camera buffer. At least 1000 double frame 1600x1200 pixel images were 
recorded with a Sigma 105mm f/2.8 lens and ImperX Lynx 2M30 CCD-camera set at 
animaging frequency of 5 Hz and aperture of f/16, giving a minimum sampling period 
of 200 s for each measurement point. 
 
 

Gray scale volume fraction estimate.
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7. RESULTS AND DISCUSSION 

In the measurements, a considerable amount – over 500 GB – of image data was 
recorded. Because of time constraints and computational cost of the data analysis, the 
small-scale measurement results presented in this thesis include only the riser cross-
section profiles at heights of 0.8 m and 1.2 m. The application of PTV to measure 
particle velocities and size distributions in dilute regions has also been left outside the 
scope of this thesis, although the algorithmic framework for the purpose exists. 
 
In this chapter the simulation results are briefly presented in section 7.1, and in section 
7.2 they are compared to the measurements. The measurement results and their 
interpretation are also discussed in this section. In all plotted graphs of this chapter, red 
and black marker colours are used to denote the fluidization velocities 3.25 m/s and 3.75 
m/s respectively.  
 

7.1. Simulations 

The instantaneous sample fields of Figure 7.1 have similar, complicated flow structures 
as the experimental device. The particles collect on the walls as clusters and fall down. 
However, the smallest clusters seen in the experimental device are missing because of 
the 5x5 mm control volume size used. Also, there are large particle clusters in the top 
portion of the riser that are not commonly found in the experimental device. The low 
granular temperatures in dense regions are caused by strong dissipation at high particle 
volume fractions. At the bottom a large cluster forces the fluidization air up along the 
left wall as a high speed jet. The highly unsteady nature of the CFB means that 
quantitative comparison of instantaneous fields is difficult and average fields are better 
suited for quantitative comparison. 
 
The simulated average fields in Figures 7.2 and 7.3 display physically correct 
behaviour, but it is evident from the mean velocity and volume fraction fields, that the 
30 second averaging period is inadequate to generate stable average fields. This makes 
detailed comparison between the results inappropriate, although they are adequate for 
qualitative comparison in the context of a feasibility study.   
 
 In the mean results, particles travel upwards in the middle of the riser, downwards on 
the walls and move outwards from the middle towards the walls, as expected. Particles 
falling down by the walls move back to the middle of the riser at the bottom and are 
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blown up again by the air inlet. The solids return tube at the height of 0.6 m on the right 
side creates an asymmetrical flow field in the lower portion of the riser. This is most 
evident in horizontal velocities above the solids return where the particles move towards 
the wake of the returning solids on the right.  
 
 
 

                 
Figure 7.1. Instantaneous samples of simulated granular temperature, particle volume 

fraction and vertical velocity and gas vertical velocity fields. Fluidization velocity is 

3.75 m/s and without a turbulence model. 

 

 

An increase in fluidization velocity increases vertical particle velocities as expected. 
The introduction of the SGS-turbulence model has the expected smoothing effect on the 
average fields, caused by the increased diffusion. The turbulence model also decreases 
the particles’ upwards velocity at the fluidization velocity of 3.75 m/s. In the mean 
volume fraction fields of Figure 7.3 the turbulence model has little effect. Overall the 
volume fraction fields appear physically correct, with particles collecting on the walls 
and at the bottom. Increased fluidization velocity also has the expected effect: increased 
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circulation with particles spreading out more vertically i.e. with more solids at the top 
and less at the bottom. 

 

 

 
Figure 7.2. Simulated vertical and horizontal particle mean velocity fields for 

fluidization velocities 3.25 m/s and 3.75 m/s, both with and without the Smagorinsky 

sub-grid scale turbulence model. Simulated time period is 30 s. 

 
 

 
Figure 7.3. Simulated particle mean volume fraction fields for fluidization velocities 

3.25 m/s and 3.75 m/s, both with and without the Smagorinsky sub-grid scale turbulence 

model. The averaged time period is 30 s. 

 

7.2. Measurements, Comparison and Discussion 

This section begins with an analysis of the large-scale behaviour of the pilot-scale CFB, 
based on the results of time-resolved PIV measurements and comparison with the 
simulations. In section 7.2.2 a more detailed comparison of the large-scale time resolved 
PIV measurements and simulations with riser cross-section profiles measured with 
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pulsed laser illumination is carried out. The good resolution and long sampling period of 
these pulsed light measurements allow calculation of meaningful derived quantities. 
Section 7.2.3 presents the results for volume-fraction-weighted i.e. Favre-averages and 
Reynolds stresses. These quantities are important for time-averaged modelling of a 
CFB. In the last section, 7.2.4, particle small scale random motion results are presented 
and their interpretation is discussed.    
 

7.2.1. Large-Scale Behaviour 

As was the case with the CFD-simulation results, it is evident from Figure 7.4 that the 
28 second sampling period used in the continuous light (i.e. large scale, time-resolved) 
measurements is inadequate for averaging. A positive note is that the simulations and 
the experimental device seem to have similar chaotic time-scales. At the violent and 
rapidly changing bottom these time-scales are shorter than in the rest of the riser, 
resulting in smoother average fields with the sampling period used. 
 
 

        
 

 
Figure 7.4. Experimental mean horizontal, a9, and vertical, a½, velocities and mean 

particle volume fraction, 6�, fields measured with time-resolved PIV at fluidization 

velocities of 3.25 m/s and 3.75 m/s. The whole cross-section of the riser is included in 

the fields and areas with no measurement data are padded with zeros. 

 

However – again from a qualitative perspective – there are clear differences between the 
measured and simulated mean flow fields. In the experimental device, large chunks of 
packed or almost-packed particles collect on the side walls at heights below 0.5 m. 
These chunks are not present in the simulated mean fields. The packed particles 
effectively funnel the fluidization air up through the middle of the riser as a high speed 
jet, as shown by the instantaneous samples in Figure 7.6, with the rapid acceleration of 
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particles caught in the jet. The effects of the chunks and central air jet continue up the 
riser with wide, descending wall layers. 
 
The difference in particle distributions is also clearly demonstrated in the graph of the 
horizontal mean particle volume fraction over the height of the riser in Figure 7.5. In the 
experimental device, a large portion of the particles are in the lowest 0.7 m of the riser, 
meaning there are less of them higher up.  
 
The differences between the simulations and measurement could be explained by 
several uncertainties and approximations in the modelling, but one possible cause for 
the differing behaviour is friction on the front and back walls of the pseudo-2D 
experimental device. This friction is not present in the 2D-simulations. In the lower 0.7 
m of the riser, packed clusters often extend wall-to-wall across the riser depth. For these 
clusters, it is reasonable to assume that the friction on the front and back walls is 
significant. The effect should be evaluated with measurements using less bed material 
and with 3D-simulations that include the wall friction.  
 
 

 
Figure 7.5. Measured and simulated vertical mean volume fraction profiles. For the 

measurements an estimate of the highest possible mean volume fraction is included 

owing to the limitations of the grey-scale volume fraction estimate at high particle 

volume fractions. 

 
The densely packed clusters at the bottom also highlight the limitations of the grey-scale 
volume fraction estimate. As the highest reliably measurable volume fraction is 0.35, 
the mean volume fraction is underestimated in these regions. The upper limit for the 
possible mean particle volume fraction was calculated – as explained in section 6.1– and  
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  3.25 m/s     3.75 m/s  
 
Height: 1.00 – 1.32 m: 

     
Height: 0.50 – 0.82 m: 

    
Height: 0.06 – 0.38 m: 

    
 
Figure 7.6. Sample frames recorded with high speed camera of the CFB riser at heights 

0.06-0.38m, 0.50-0.82m and 1.0-1.32m. The recorded images are overlaid with particle 

velocity vectors calculated with time-resolved PIV. 25% of the calculated vectors are 

shown. The dark regions on left and right edges of the 0.06-0.38 m and 3.75 m/s 0.50-

0.82 m pictures are glass beads packed wall-to-wall. 
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is included in Figure 7.5 as the highest possible measured volume fraction.  At heights 
below 0.5 m, the actual values are probably closer to the upper limit and above 0.5 m 
closer to the unmodified measurement. Further up, the difference between the two 
vanishes, as packed clusters no longer occur.   

 

7.2.2. Simulated and Measured Mean Cross-Sections 

While the large scale, time-resolved measurements provide a good overall view for 
qualitative analysis, their resolution and accuracy – as well as the sampling period 
mentioned earlier – leave room for improvement. This is particularly so close to the 
walls, where the velocity gradients are sharp. Figures 7.7 and 7.8 display the mean 
volume fraction and mean vertical velocity profiles across the riser cross-section at 
heights of 0.8 and 1.2 m. Results are included from pulsed light (small scale) 
measurements, continuous light measurements and CFD-simulations.   
 
 

 

 
Figure 7.7. Measured and simulated horizontal mean volume fraction profiles at 

heights of 0.8 m and 1.2 m, and fluidization velocities of 3.25 m/s and 3.75 m/s. 
 
The pulsed light measurements have a sampling period of 3 min 20 s as opposed to the 
periods of 28 s and 30 s in the continuous light measurements and CFD-simulations 
respectively. The longer sampling period produces more stable average fields, as 
demonstrated by the largely good match between the individual small scale 
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measurement windows. In large scale measurements and CFD the profiles are drawn 
from a single averaging window, but the inadequacies of sampling cause uneven and 
asymmetric profiles.  
 
The velocity profiles in Figure 7.8 clearly show how the sharp velocity gradient close to 
the wall, seen in the small scale measurements, cannot be captured by the large scale 
measurements. The simulated and measured velocities also differ, but comparison is 
mostly meaningless because of the different bottom bed behaviour mentioned earlier. 
Here the good overall look provided by the large scale measurements shows its value: it 
would have been difficult to notice the differences in the large scale behaviour of the 
experimental device and the simulations from the few cross-section profiles gained from 
the small scale measurements. Large scale measurements provide general qualitative 
(and quantitative to a degree) information, while the small scale ones provide accurate 
numerical data in limited areas. 
 

 
Figure 7.8. Measured and simulated horizontal particle mean vertical velocity profiles 

at heights of 0.8 m and 1.2 m, and at fluidization velocities of 3.25 m/s and 3.75 m/s. 

 
 
The velocity standard deviation, a�,I1K Þ ` ¿, ô, profiles in Figure 7.9 were calculated 

according to Equation 7.1 over time period . with time step of Δ1. They display strong 
anisotropy between the vertical and horizontal components, and an increase in the 
vertical component which is roughly proportional to the increase in fluidization 
velocity. There is no change in the horizontal component. Overall the velocity 
fluctuations decrease slightly between the heights of 0.8 and 1.2 meters. The fluctuation 
quantities have only been calculated from the small-scale measurements, as the 28 s and 
30 s sampling periods of CFD simulations and time-resolved PIV measurements are not 
long enough to generate valid results.    
 
 
 

0 50 100 150 200 250 300 350 400
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x-position [mm]

V
el

oc
ity

 [
m

/s
]

Mean vertical velocities, y = 0.8 m

 

 

3.25 m/s, measured, pulsed light

3.75 m/s, measured, pulsed light
3.25 m/s, measured, continuous light

3.75 m/s, measured, continuous light

3.25 m/s, simulated, laminar

3.75 m/s, simulated, laminar
3.25 m/s, simulated, SGS-model

3.75 m/s, simulated, SGS-model

0 50 100 150 200 250 300 350 400
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x-position [mm]

V
el

oc
ity

 [
m

/s
]

Mean vertical velocities, y = 1.2 m

 

 

3.25 m/s, measured, pulsed light

3.75 m/s, measured, pulsed light
3.25 m/s, measured, continuous light

3.75 m/s, measured, continuous light

3.25 m/s, simulated, laminar

3.75 m/s, simulated, laminar
3.25 m/s, simulated, SGS-model

3.75 m/s, simulated, SGS-model



81 
 

 a£� ` 1.
 a�
U

(-� Δ1,    Þ ` ¿, ô 

a�,I1K ` 71.
àa� ^ a£�á�U
(-� Δ1,    Þ ` ¿, ô 

(7.1) 

 
 

 
Figure 7.9.  Measured velocity standard deviations across the riser at heights of 0.8 

and 1.2 m, and fluidization velocities of 3.25 m/s and 3.75 m/s. 
 
 

7.2.3. Favre-averages and Reynolds Stresses 

The simultaneous velocity and volume fraction measurements allow calculation of 

derived quantities such as Favre-averaged velocities, a8� , Þ ` ¿, ô, and Reynolds 

stresses, ,0�,, Þ ` ¿, ô, as defined in Equation 4.5. From the discrete measurement data 

they were calculated with Equations 8.2-8.4. Figures 7.10 - 7.12 show these averaged 
over a time period of 3 min 20 s at heights of 0.8 and 1.2 meters. The uneven profiles 
mean that an even longer sampling period would be beneficial. The volume fraction 
weighting of the Favre-averages reduces the magnitude of particle velocities, as the 
particle clusters with the slower response times are weighted more and dilute areas 
where the peak velocities occur less.  
 

 a8� ` 1.
 a�6�6£�
U

(-� Δ1,    Þ ` ¿, ô (7.2) 

 
The Reynolds stresses in Figures 7.11 and 7.12 are strongly anisotropic. The vertical 
component is of an order of magnitude larger than the horizontal and cross components. 
The non-normalized stresses in Figure 7.11 show similar changes in magnitude to the 
velocity standard deviations: they increase with fluidization velocity and decrease with 
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height. Close to the walls, the vertical stress component grows rapidly, while the 
horizontal component decreases. The maxima of the vertical component of the Reynolds 
stress roughly coincides with the minimum vertical particle mean velocity close to the 
wall. 
 

 
Figure 7.10.  Measured Favre-averaged particle velocities across the riser at heights of 

0.8 and 1.2 m, and fluidization velocities of 3.25 m/s and 3.75 m/s. 
 
 

 
 ,0££££�, ` D� 1.
96�a�a, ^ 6£�a8�a8,:U

(-� Δ1,    Þ, * ` ¿, ô (7.3) 

 
 ,0; �, ` ,0££££�, 6£�D�< ,    Þ, * ` ¿, ô (7.4) 

 
In Figure 7.12 the Reynolds stresses are normalized by dividing them with mean 
particle volume fraction and particle density, as per Equation 7.4, to eliminate the effect 
of mean volume fraction. At the height of 0.8 m, the stresses are fairly similar at both 
fluidization velocities. The vertical components are highest in the middle of the riser 
and large values are also found in the 20 mm closest to the walls. As the fluidization 
velocity increases, the vertical stress component shows a slight increase, and the minima 
and maxima of the cross component move closer to the walls. At a riser height of 1.2 m, 
the stresses are generally lower and the wall regions are thinner. There is a larger 
difference in the vertical components between the fluidization velocities: at the higher 
fluidization velocity the low vertical component regions near the walls disappear.  The 
magnitude of the cross component is roughly halved. 
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Figure 7.11. Particle phase Reynolds stresses across the riser calculated with Equation 

7.3 from measurements with pulsed laser illumination at heights of 0.8 and 1.2 m, and 

fluidization velocities of 3.25 m/s and 3.75 m/s.  

 
 

 
Figure 7.12. Normalized particle phase Reynolds stresses, Equation 7.4, across the 

riser cross-section calculated from measurements with pulsed laser illumination at 

heights of 0.8 and 1.2 m, and fluidization velocities of 3.25 m/s and 3.75 m/s.  
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7.2.4. Small-scale Particle Random Motion  

Based on the testing described in Section 6.4.2, it can be said that the PIV correlation 
peak based method gives reliable results for particle random motion in a measurement 
volume. Relating the measurement results from the pilot scale CFB to granular 
temperature in the kinetic theory for granular flow is troublesome though, as the 
measurement volume (3.3x3.3x15.0 mm) includes the whole depth of the riser. As a 
result, the measurement of random particle motion includes any possible velocity 
gradients in the depth direction. In the case of the pilot scale CFB, these gradients 
probably represent the majority of the measured sub-3.3 mm random particle motion. 
As such, the highly anisotropic results of Figure 7.13 most likely tell more about the 
three dimensionality of the particle motion in the experimental device, than they do 
about the granular temperature as defined in the kinetic theory for granular flow. In the 
same Figure 7.13, the length scales used in the measurements of this section are 
illustrated by overlaying them on an instantaneous particle image and a corresponding 
PIV velocity vector field.  
 

 

      
 
Figure 7.13. Particle random motion energy in a measurement volume of 3.3x3.3x15 

mm (HxWxD) calculated from the PIV correlation peak width. Fluidization velocities 

are 3.25 m/s and 3.75 m/s, and riser height is 1.2 meters. Length scales 1.65, 3.3 and 

6.6 mm are illustrated with a sample picture. Particle velocity vectors measured with 

PIV are drawn in red. 1.65x1.65 mm interrogation area and 50% overlap was used for 

the correlation.  
 
 
The three-dimensionality shouldn’t affect the PIV velocity measurements as much. The 
PIV gives a mean, or most probable, particle velocity for the whole measurement 
volume, subsuming any gradient inside the measurement volume. However, in dilute 
areas, where the measurement volume only includes a few particles, the three-
dimensionality still has an effect. This effect can be seen in the erratic vector field of the 
top portion of the sample image in figure 7.14. In this dilute area, many of the 1.65x1.65 
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mm interrogation areas only include one or two particles. As the depth-wise location of 
the particle is unknown, possible depth-wise velocity differences appear as random 
particle motion in the measurement results. 
 

The mean values for instantaneous particle random motion energy, aV�,¯.¯��,=C££££££££££££££, Þ ` ¿, ô, 

in scales from 1.65 to 6.6 mm of Figure 7.14 also display significantly anisotropic 
behaviour. The results are calculated with Equation set 8.4 from PIV results. The PIV 
correlation used a 1.65x1.65 mm interrogation area and a 50% overlap. In Equation set 

7.5, the ±3 spatial coordinates cover a 6.6x6.6 mm measurement area with 7C ` 49 
datapoints. These results should be more comparable to the granular temperature, but 
they lack the smallest flow scales, and the upper limit of 6.6 mm is large enough to 
include a portion of large-scale particle fluctuations. This can also be seen in the scale 
illustration of Figure 7.13. 
 

a£�,¯.¯��,� ` 149 
 
 a�
½ºn

½-½�n
9ºn

9-9�n ,    Þ ` ¿, ô 

aV�,¯.¯��,�C ` 149 
 
 9a�,� ^ a£�,¯.¯��,�:�½ºn
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9ºn
9-9�n ,    Þ ` ¿, ô 

aV�,¯.¯��,=C££££££££££££££ ` 1.
 aV�,¯.¯��,�CU
(-� ∆1,    Þ ` ¿, ô 

(7.5) 

 

 

 
Figure 7.14. Particle random motion energy in scale between 1.65 and 6.6 mm. 

Calculated from instantaneous PIV velocity fields. Riser heights are 0.8 and 1.2 m, and 

fluidization velocities are 3.25 m/s and 3.75 m/s. 

 
 
The effect of depth-wise velocity gradients on both the above measurement methods 
could – in dilute areas – be evaluated by applying PTV and depth-wise focus 
segmentation to the image data. Limiting the evaluation to dilute suspension could be 
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justified by the reduction of velocity differences in a dense suspension because of 
increased particle-particle friction. The PIV velocity measurement is also insensitive to 
depth-wise velocity gradients in which there is a large number of particles in the 
measurement volume. All in all, relating the measured small-scale random motion to the 
modelling parameters still requires further work. 
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8. CONCLUSIONS 

The thesis concentrates on a pilot scale CFB located at Åbo Akademi, Turku, Finland. 
This device and its operating parameters are presented in Chapter 3, while the basic 
theoretical background of gas-solid flow and fluidization were reviewed in Chapter 2 to 
familiarize the reader with the concepts and principles discussed later in the thesis. The 
behaviour of the gas and particles in the CFB was studied both with simulations and 
experiments. The reduced pilot scale of the experimental device allows the application 
of refined methods that would not be feasible in an industrial scale CFB. 
 
The Eulerian two-fluid method was used for the numerical simulations and they were 
carried out with an OpenFOAM based solver. The main objective of the simulations 
was to evaluate the feasibility of using OpenFOAM for CFB simulations. OpenFOAM 
is open source and, as such, an attractive platform for research, especially in an 
academic environment. While the public OpenFOAM release offers a pre-built solver as 
well as most of the required models, the stability and speed of the solution proved 
disappointing to the point that meaningful simulation of the pilot scale CFB was 
impossible. 
 
To rectify the situation, a modified solver was written. To improve the stability and 
speed, a solution algorithm with adaptive under-relaxation and iterations within the time 
step was adopted. A more implicit treatment was used for the frictional pressure, and an 
algorithm was developed to eliminate the tendency of frictional pressure to act as an 
unphysical momentum source. The algorithm works by limiting the instantaneous 
frictional pressure magnitude in individual computational cells, based on in- and out-
fluxes caused by the frictional pressure and the rest of the flow. This limiter proved to 
be the key feature for the stability of the solution. With these modifications, good speed 
of solution – also in parallel – and stability were achieved, making OpenFOAM a viable 
platform for transient CFB simulations. Attention could then be shifted to the physical 
modelling. The most significant additions to the physical models were adaptation of a 
filtered approach for turbulence modelling, with the Smagorinsky (1966) SGS-model, 
and the addition of Johnson and Jackson (1987) boundary conditions for the particle 
phase. The simulation results appear physically consistent, but they do differ from the 
behaviour of the experimental device.  
 
Image-based measurement methods were used for the experimental work. For imaging 
the CFB riser was illuminated from behind owing to the limitations of device geometry 
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and light penetration.  Several different methods, each with their strengths and 
weaknesses, were reviewed and some of them applied to the pilot scale CFB. The 
methods applicable to the pilot-scale CFB are listed in Table 8.1. Imaging was carried 
out with two sizes of measurement window: over the whole width of the riser for a 
general overview and with a small enough window to allow the detection of individual 
particles.  
 
The grey-scale volume fraction estimate applied to the images has the major advantage 
of simultaneous volume fraction and velocity measurement, which allows the 
calculation of derived quantities useful for modelling, such as volume fraction weighted 
averages and Reynolds stresses. The method however, requires good lighting and the 
definition of correct reference values can be challenging. The method is also incapable 
of resolving volume fractions where the light does not measurably penetrate the 
suspension. These limitations mean that while the results are useful for qualitative 
analysis and the calculation of the derived quantities, the quantitative accuracy leaves 
much room for improvement. 
  
For both image sizes the particle velocities were calculated with PIV, which on the 
small scale proved accurate and capable of resolving velocities at a wide range of 
volume fractions. However, the velocities cannot be determined with backlight 
illumination if no light penetrates the suspension, as is the case with the fully packed 
regions of the pilot scale CFB. With the larger imaging area PIV proved incapable of 
capturing the sharpest velocity gradients, but – even with the sub-optimal accuracy – the 
results provide a valuable overall picture of the flow and time-resolved visualization and 
data. A comparison of these whole-field results with the simulations shows a clear 
qualitative difference in the large-scale behaviour of the flow, possibly caused by 
friction at high particle volume fractions on front and back walls of the experimental 
device. 
 
The high accuracy and long sampling periods of the small imaging area measurements 
allow meaningful calculation of particle fluctuation quantities: Reynolds stresses and 
small-scale particle random motion energy. The Reynolds stresses were measured to be 
highly anisotropic – by an order of magnitude. The small-scale random motion was 
measured with two different methods, in the first of which it was calculated as local 
instantaneous fluctuations in PIV velocity fields. This method is only capable of 
capturing particle motion in scales larger than the PIV interrogation area. The second 
method utilized the change in the PIV correlation peak width and is able to measure the 
random motion in scales smaller than the PIV-interrogation area. However, both of the 
methods are affected – at least to a degree – by the possible three-dimensionality of the 
pseudo two-dimensional experimental device. Interpretation of these results requires 
further study. Most of the anisotropy in the measured small-scale random motion is 
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probably caused by the velocity gradients across the riser depth, instead of describing 
the particle fluctuations as defined in the kinetic theory.  
 
Table 8.1. Strengths and weaknesses of the reviewed measurement methods applicable 

to the pilot-scale CFB. 

Method Strengths Weaknesses 

Grey-scale 
VOF estimate 

- Simultaneous 
measurement of volume 
fraction and velocities 

- Good spatial and temporal 
resolution 

- Definition of reference 
values is challenging 

- Incapable of resolving 
high particle volume 
fractions 

- Sensitive to lighting 
conditions 

Time-resolved 
PIV with 

fluorescent 
backlight 

illumination 

- Time-resolved data 
- Large measurement area 
- Excellent visualization of 

the physical phenomena 
- Analysis of large scale 

behaviour 

- Spatial resolution 
- Long sampling periods 

require large datasets 
- Incapable of determining 

velocities at volume 
fractions close to the 
packing limit 

 

PIV with 
pulsed laser 
backlight 

illumination 

- Excellent spatial 
resolution 

- Possibility to extend  with 
the correlation peak width 
based calculations 

- Reasonably sized datasets 
- Applicable to wider range 

of  volume fractions 

- Not time-resolved 
- Incapable of determining 

velocities at volume 
fractions close to the 
packing limit 

Shadowgraphy 
PTV 

- Best possible spatial 
resolution 

- Measurement of particle 
size, shape etc. 

- Possibility of depth-wise 
focus segmentation 

- Only applicable in dilute 
regions 

- Higher computational 
cost than with PIV 

- Careful calibration 
needed for accurate size 
measurements and depth-
wise focus segmentation 

 
 
The two measurement scales complement each other, and neither could 
comprehensively characterize the particle flow on their own. Together they provide both 
detailed numerical data and cover the large portions of the riser needed to analyze the 
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large-scale behaviour of the CFB. Although a lot has been covered, more work is still 
needed. Possible directions for future research are listed below. 
 
Recommendations for future work: 
 

- Evaluation of the effects of wall friction on the large scale behaviour of the 
experimental device, with experiments using low particle loads and 3D-
simulations to include the front and back wall friction. 

 
- Application of PTV in dilute regions to compare particle size distribution in 

different locations. 
 

- Evaluation of the effect of flow three-dimensionality on the small scale particle 
random motion measurements, by applying PTV with depth-wise focus 
segmentation. 
 

- Cluster size measurements from existing image data. 
 

- Further statistical analysis of the data. For instance, segmentation of velocity 
measurements based on volume fraction or cluster size. 

 
- Experimentation with simultaneous front- and backlighting to enable PIV 

particle velocity measurements at all volume fractions. 
 

- Combining the grey-scale volume fraction estimate with a more reliable, non-
time-resolved volume fraction method in order to obtain more accurate mean 
volume fraction values and calibration of the grey-scale estimate.  
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