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ABSTRACT 
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tioning, face emotion detection, sentiment analysis.  
 
The social networking environment goes beyond connecting friends. It also con-
nects customers with companies and vice versa. Customers share their experi-
ence with friends, followers, and companies and these experiences carry senti-
ments and emotions thereby creating big data. There is an ocean of data that is 
available for companies to extract and make meaning out of it by applying to 
different business contexts such as consumer feedback analysis and marketing 
& communications. For companies to benefit from consumer emotion data, they 
must make use of computational methods that can save time and work consumed 
by traditional consumer research methods such as questionnaires and inter-
views.  
 
The objective of this research is to explore existing literatures on detecting con-
sumer emotions from social networking data. The author carried out a systematic 
literature review on research articles from three bibliographic databases with the 
intent to find out social networking data extraction process, dataset sizes, com-
putational methods used, consumer sentiments, emotions studied, limitations 
and its application in a managerial context. To further understand consumer emo-
tion detection, a case study in the form of a Twitter marketing campaign was 
conducted to emulate the process of consumer emotion detection on a company 
that is selling stress management products and services.  
 
The results indicate that most companies use Twitter networking platform to carry 
out consumer emotion analysis. The dataset sizes range from small to very large. 
The studies have used variety of computational methods, some with accuracies 
to measure the performance. These methods have been applied in various in-
dustries such as travel, restaurant, healthcare, and finance to name a few. Man-
agerial applications include marketing, supply chain, feedback analysis, product 
development, and customer satisfaction. There are few limitations that were iden-
tified from using these methods. The case study results and discussion with the 
case company CIO communicated the potential for the use of some of the meth-
ods for consumer behavior research. The valuable feedback from the CIO re-
vealed that by customizing existing methods, their company can create new tools 
and methods to understand their customers by providing better recommendations 
and customize their offerings to individual customers.  
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1. INTRODUCTION 

1.1 Social Media 

According to Kaplan and Haenlein (2010), social media can be defined as a collection 

of internet-based applications that support the basis of Web 2.0 (both ideological and 

technological), thereby enabling the production and exchange of User Generated Con-

tent (UGC). Social media is a communication medium that facilitates intercommuni-

cation and interaction between billions of individuals on a global scale; and has af-

fected the way consumers perceive marketing messages directed at them. Social Media 

platforms and their providers create many opportunities for influence that did not exist 

previously (Williams et al., 2012). 

YouTube (video sharing), Flickr (image sharing), Twitter (micro blogging), LinkedIn 

(business networking), Facebook (social networking) are some of the examples of So-

cial Media (Whiting and Williams, 2013). Social media is used for variety of reasons. 

For example, Whiting and Williams (2013) researched and concluded ten uses and 

gratification themes when investigating the motive behind people using social media; 

the ten themes concluded by the authors are shown in the following table.  

Table 1. Uses and gratification themes concluded by Whiting and Williams (2013). 

No Theme Explanation 

1 Social Interaction In their study, 88 percent of the study respondents 

used social media for social interaction. For ex-

ample, they connect with their family and friends 

using social media. This is further extended to 

make new friends.  

2 Information seeking 80% of the study respondents seek out infor-

mation with the help of social media. For exam-

ple: Information regarding sales, products, events, 

birthdays, and businesses.  

3 Pass time As many as 76% of the respondents used social 

media to pass time when they are at work or at 

school, or if they are bored.  

4 Entertainment 64% of the respondents considered social media 

as a source of entertainment. For example, watch-

ing various videos, listening to music, and playing 

games.  
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5 Relaxation 60% percent of the respondents used social media 

to relax. For example, as a buffer to get away from 

real world.  

6 Expression of opinions 56% of the respondents saw social media as a me-

dium for expressing their thoughts and opinions, 

and to condemn others.  

7 Communicatory utility 50% of the respondents mentioned that social me-

dia gives them something to talk about. For exam-

ple, their friend, or something that happened on 

Facebook. 

8 Convenience utility 52% of the respondents said that social media is 

convenient. For instance, it is very easy to use an-

ytime because of its easy availability.    

9 Information sharing 40% of the respondents stated that they used so-

cial media to share information. For example. To 

advertise their business, share pictures or updates.  

10 Surveillance 32% of the study respondents mentioned surveil-

lance. For example, to look at what’s happening 

in other people’s lives.  

Table 1 talks about the uses and gratification themes of social media concluded by 

Whiting and Williams (2013) in their study “why people use social media: a uses and 

gratifications approach”. The table shows various themes where social media has 

been used by people. The emergence of social media has significantly altered the way 

in which people, communities and organizations communicate, which has attracted 

attention from industry and academia (Ngai, Tao and Moon, 2015).  

Inclusiveness (ability to be a part of a community without any difficulty), easy partic-

ipation (allows an individual to share opinions with ease), and availability of 

knowledge are some of the benefits of social media (Uren et al.,2016). The benefits 

not only involve social interaction/exchange but also for establishing reputation, op-

portunities in career, and generating revenue (Tang, Gu and Whinston, 2012). Social 

media serves as a utility for communications and activities within the organizations 

(Mangold and Faulds, 2009), for creation of online knowledge sharing communities 

(Fernando, 2010), and brand management (Jin, 2012). For companies, the methods of 

interacting with customers has significantly changed with the advent of social media 

where customers educate other customers about products, brands, problems, and ser-

vices; the explosion of internet communication through social media has a major role 

in influencing consumers in various aspects such as creating awareness, information 

acquisition, opinions, behaviors with regards to purchase and post-purchase, and eval-

uation; when companies like Proctor and Gamble, General Electric entered the social 

media sphere, they carefully aligned their communications to repeatedly convey their 

organizational values to the online market (Mangold and Faulds, 2009).  
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1.2 Emotions 

Emotions are a central feature in a human being’s life. Emotions contain many aspects 

such as behavior and physiology, experience and feelings, they also include perception 

and conceptualization; emotions emerge as a result to a situation perceived by the ex-

periencer; a wide variety of emotions occur in an individual when something good or 

bad occurs (Ortony, Clore and Collins, 1988). According to Ekman (1992), each emo-

tion is unique that it has signals, preceding event, and physiology. They also have 

similar characteristics with other emotions such as rapid onset or quick beginning, 

short interval, spontaneous occurrence, automatic evaluation, coherence among re-

plies; these extraordinary traits are a result of our evolution and are distinguishable 

from other affective events. Ekman (1992) also defined six basic emotion namely an-

ger, fear, sadness, disgust, enjoyment, and surprise. He coined these basic emotions 

based on similar facial expressions of each emotions prevalent across human cultures.  

Emotions are bioregulatory reactions that focus on advocating physiological states ei-

ther directly or indirectly to ensure survival and survival that promotes well-being; 

emotions are accompanied by behaviors that is carried out by certain type of mental 

function or operation (Manstead, Frijda and Fischer, 2004). Positive emotions (for ex-

ample: Happiness) are expressed by individuals when they experience something that 

is fair or just and negative emotions (for example: Anger) when they experience an 

unjust event (Lewis, Haviland-Jones and Barrett, 2008). Emotions can be witnessed as 

a result of other psychological phenomenon such as perception, alertness or concen-

tration, and memory; an untrained person or a scientist is convinced or know what 

anger, fear, or sadness when they notice it (Barrett, 2006).  

According to Nussbaum (2001), emotions make the core of our mental and social lives;  

they are very complex aspects that form an integral part of a thinking creature’s psy-

chological mechanism; emotions involve judgements where external objects (and 

events) are evaluated because of its importance to an individual’s well-being. Emo-

tions are expressed when positive or negative events happen to an individual or to a 

person that the individual relates to; sometimes emotions are triggered without an in-

dividual’s involvement. For instance, by looking at a photograph of a child in distress 

can trigger emotions such as anger and sympathy; different events trigger different 

emotions in an individual (Haidt, 2003). People vary with respect to their awareness 

and knowledge regarding events, people, and various circumstances that generate 

emotions; presence of significant emotional intelligence could possibly assist in effi-

cient leadership in human beings (George, 2000). According to Scherer (2005), there 

are five components of emotion namely cognitive (assessment or appraisal) – evaluat-

ing situations and objects; neurophysiological (physical symptoms); motivational (ac-

tion tendencies) – formulation and direction of action; motor expression (oral and fa-

cial) – response communication ,and intention with regards to behavior; subjective 

feeling (experience of emotion) – interaction with environment and keeping a watch 
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on inner state. Emotions which developed during the process of human evolutions are 

responsible for new action propensities, new types of motivation, wide variety of be-

haviors required to handle or manage the environment and life’s needs (Izard, 1991).  

1.3 Consumer Business 

Laitamäki and Kordupleski (1997) say that the purpose of an organization is to create 

products and services which the customer deems valuable and further adds that an 

organization’s success is guaranteed only if they provide competitive customer added 

value; the value is determined by the satisfaction of the products purchased to the price 

paid. According to the service centered dominant logic by Vargo and Lusch (2014), a 

customer’s role is that of a coproducer of service; as a result, marketing process is a 

direct result of customer interaction and customer acts as fundamental resource during 

this process; the value of a product or a service is determined by the consumer based 

on his/her perception of value, and a company only has the control of creating value 

propositions; co-production and relational exchanges are a result of active consumer 

participation. The benefits achieved through cost models, service quality and market 

share do not ensure success as the fundamental aspect of a successful business is de-

termined by its value creation process (Reichheld, Robert Jr and Hopton, 2000).  

According to Lemke, Clark and Wilson (2011), a consumer’s personal encounter with 

a firm either directly or in-directly can be conceptualized as consumer experience and 

the perception of superiority of the consumer experience as customer experience qual-

ity. The authors introduce a model of customer experience quality where the con-

sumer’s idea of value is of four types namely utilitarian (functional), hedonic (pleas-

ure), relational, and cost/sacrifice (economical) that produces several outcomes where 

customers involve in purchase, customers are committed and can be retained, custom-

ers engage in word of mouth; however, other dimensions that make up the model in-

clude communication encounter (communication), and service encounter (quality of 

product, quality of service – value for time, attitudes towards customer, customization, 

etc.).  

Application of customer equity to marketing and organization strategy puts customer 

and customer value as the fundamental aspect of organizational activities. A firm’s 

current customers become responsible for the inflow of revenue and profits in the fu-

ture, therefore this should be the spotlight for marketing activities; there are three key 

factors that support customer equity and they are value equity (price, convenience, and 

quality), brand equity (subjective and abstract evaluation of the company), and rela-

tionship equity (loyalty programs and affinity programs); in value equity, companies 

must look to provide high quality service, reduce customer’s time, effort and cost in 

relation with the product or service; in brand equity, companies must make emotional 

connection with the customers. for example: either through campaigns or direct mar-
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keting, by showcasing high standard of corporate ethical behavior; in relationship eq-

uity, companies must reward customers according to their behaviors with material ben-

efits (loyalty programs), or affinity programs and knowledge building programs where 

companies can track and under consumer preferences while saving costs (Lemon, Rust 

and Zeithaml, 2001).  

1.4 Research background 

Social Media and Consumers 

The use of social networking websites allows users to express their views with others 

and in this way, social media acts as a valuable source of data for getting insights about 

consumers. The expression of views through online medium has also paved various 

avenues for research in social media data, primarily in marketing sector to enhance 

customer satisfaction (Abirami and Askarunisa, 2017). Social media content includes 

emotional experiences, opinions regarding everyday situations including products con-

sumed and life experiences (Li and Li, 2013). Consumers seek opinion of their friends 

or family members in the online platform when buying new products or seeking new 

services (Kumar, 2014). Results from Petz et al. (2015) convey that microblogs con-

tain mostly subjective information and as such consumers write about product percep-

tions (e.g. feelings and reactions) which are outlined with facts. Therefore, product 

reviews are being posted online by consumers who bought and experienced the prod-

uct, these reviews are found to be helpful for others (M. et al., 2017a). Apart from 

sharing experiences with other consumers, some offer their views directly to the firms 

about products and services; few consumers post negative reviews to help communi-

cate the short-comings of a product to the company while others who are angry and 

dissatisfied post in a negative manner to harm company’s reputation in an attempt to 

seek revenge for mistreatment (Bougie, Pieters and Zeelenberg, 2003; Grégoire, 

Laufer and Tripp, 2010; Kähr et al., 2016; Obeidat et al., 2017).  

A meaningful amount of time is spent on social media by users who form a big per-

centage of consumers that involve in the act of consumption of online services (Trusov, 

Bucklin and Pauwels, 2008; Hollenbeck and Kaikati, 2012; Ashley and Tuten, 2015). 

Consumers use social media applications such as Facebook, Twitter and Instagram to 

share among friends and colleagues about their lifestyle related to products they con-

sume, their political orientation, places they travel and to keep themselves informed 

regarding up-to-date information of their preferred brands (Dimitriu and Gueslaga, 

2017). Social media allows companies to engage with customers online to form rela-

tionships and create customer experiences (Mollen and Wilson, 2010). Consumers 

show their brand orientation by liking or following (Kabadayi and Price, 2014). For 

instance, F.C. Barcelona’s Facebook page generates content which is liked, com-

mented and shared by consumers where it could mean that consumers have personal 

affiliation towards a particular player of the football team, political orientation towards 
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pro-independent parties of Catalonia and even brand association with respect to the 

football club’s corporate sponsors or promotors (Vatrapu, Mukkamala, Hussain and 

Flesch, 2016). Some research also points that engagement between social media 

brands have an effect on purchases (Goh, Heng and Lin, 2013).  

Social Media and Big Data 

Large population of customers and their generated data are analyzed using big data 

and social media is a platform for generating big data because it facilitates information 

diffusion and opinion sharing; however, analyzing such high volumes data requires 

sophisticated analytical technology (Li, Li and Zhu, 2016). Big data is created through 

many sources such as traffic from the internet, mobile transactions, user generated 

content (UGC), finance, healthcare, purchases and social media. This also includes 

intentionally generated data from sensors and business transactions (George, Haas and 

Pentland, 2014). The adoption of social media by organizations and society has led to 

generation of massive volumes of data which are unstructured and is termed as Big 

Social Data (Vatrapu, Mukkamala, Hussain and Flesch, 2016). The study of social 

media data allows firms to achieve successful communication with its customers and 

also helps to understand consumer’s opinion about company’s products and services 

(Lusch, Liu and Chen, 2010; Doan, Ramakrishnan and Halevy, 2011).  

Social Media, Emotions, and Consumers 

Jussila et al. (2017) introduced a novel marketing analytics tool for measuring affec-

tive phenomenon which could replace conventional consumer satisfaction measure-

ment systems like surveys, they measured consumer experience in pleasure, arousal 

and dominance (PAD) dimensions. As consumers communicate in social media plat-

forms, they express emotions which are recorded in the social media history in the 

form of emotional chronicle (Bernabé-Moreno et al., 2015). Denecke and Nejdl (2009) 

approached their study in a way that allowed them to differentiate between posts that 

fall into two categories such as informative and affective which can further be charac-

terized into positive and negative. According to Li and Xu (2014), emotion rich data 

can be found in the microblogging sites where opinions are shared and discussed; mi-

croblogs also facilitate big amount of data that contain emotions and events that evoke 

these emotions. It can be argued that social media contains wealth of human generated 

input comprising opinions, views, criticism and reaction towards products, issues and 

services with sentiments which are further categorized into positive, negative and neu-

tral (Z. Wang et al., 2016a). Following customer’s conversations on social media can 

help companies react to positive and negative feedback (Lee, 2018). A number of man-

agers are keen on decoding consumer’s sentiment statements from social media com-

ments and reviews for the sake of investigating product and assessing their services 

(He et al., 2015) 
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The accelerated growth of social media has stimulated a moving and prominent area 

of research called sentiment analysis to extract valuable information from opinions of 

people on social and business problems (Ghiassi, Skinner and Zimbra, 2013a). Lee 

(2018) states an example where companies may monitor customer’s frequency of post-

ings about a competitor and the related sentiments on different social media platforms 

to create benchmarks for comparisons; conducting trend analysis of customer’s senti-

ment and deriving product perceptions of competitor’s products for improved product 

designs from these sentiments. Wang et al. (2016b) proposed a conference paper titled 

‘Fine-Grained Sentiment Analysis of Social Media with Emotion Sensing’ where sen-

timents have further been classified into emotion categories; positive sentiment clas-

sified into satisfaction, happiness and excitement whereas negative sentiment classi-

fied into anger, sadness and anxiety. Davalos et al. (2015) implied that advertisements 

can be targeted at consumers who post nostalgic Facebook posts; in his study, he found 

that major percentage of nostalgic posts contained affective content (positive and neg-

ative). 

1.5 Research questions  

From the research background, it is evident that everyday life experiences and mo-

ments are shared on various social media platforms. Consumers use products and ser-

vices daily and they feel the need to share their experience with friends and family 

members. Social media is a progressive platform that facilitates this activity of opinion 

sharing where consumers reveal sentiments and emotions when expressing their views 

related to politics, products, services and other topics. Additionally, these sentiments 

have positive and negative polarity. When carefully examined, positive and negative 

sentiments can be further classified into various emotions. Companies and academics 

see this unstructured raw data as an important and useful resource that can be mined 

for aggregate level information which can provide key business metrics for under-

standing consumer behavior. Analyzing these emotions can help companies study con-

sumer behavior and its impact on different areas. Emotion analysis could help compa-

nies tailor their marketing campaign towards customers which can complement mar-

keting intelligence. At the same time, this process of sharing creates massive amount 

of social media data called as Big Social Data. Analyzing big data requires other com-

putational information and technology. It is important for organizations to base their 

business operations on big data. According to Fosso Wamba et al. (2015), big data has 

the ability and potential to alter current business processes and the management pro-

fession caused by the diffusion of ‘Internet of things’ concepts and social media plat-

forms such as Twitter and Facebook.  

Earlier works in similar area of analysis is mentioned. Sheng et al. (2017) reviewed 

various literatures on big data in management research and found various topic and 

application areas of big data where consumer behavior and consumer sentiment are 
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studied in marketing sector. Poria et al. (2017), wrote a comprehensive literature re-

view about state-of-the-art methods used for audio, video and text modalities, for de-

tecting emotions and sentiments; the author also discussed different computational 

models used in multi-modal analysis; however, the datasets mentioned in the study are 

existing datasets and were not extracted in real time. Kumar and Ravi (2016) reviewed 

research studies on applications of text mining in financial domain such as stock mar-

ket prediction and FOREX rate forecasting. Ravi and Ravi (2015) produced a literature 

review on distribution of articles based on sentiment, tasks and applications, accura-

cies, and computational methods. Piryani et al. (2017) reviewed various studies in 

opinion mining and sentiment analysis in various application areas and different da-

taset types. Bravo-Marquez et al. (2014) offers intuition into different resource com-

ponents for identifying human emotion and opinion using existing datasets as empiri-

cal data. Medhat et al. (2014) reviewed different algorithms and approaches in senti-

ment analysis. H. Wang et al. (2016) reviewed recent literature on social big data, it’s 

methods and area of focus. Facebook with 2 billion users, Instagram and Twitter with 

700 million and 328 million users respectively in 2017 (Chaykowski, 2017; Constine, 

2017) convince the volume of consumer data available in the social networking web-

sites and in this study, the focus is only on social networking platforms due to its pop-

ulation size. Therefore, our scope is towards answering the following question: 

What are the different managerial applications resulting from detection of con-

sumer emotions in social networking data?  

The above question arises from the discussion in the previous paragraph about the 

work that had already been done and through this study we aim to answer the following 

questions regarding social networking, consumer and their emotions in social network-

ing context.   

Q1: How are the current consumer emotion social networking data extracted in the 

current literature and from which social networking platform? 

Q2: What are the different consumer sentiments and consumer emotions that are in-

vestigated in the current literature?  

Q3: What are the dataset sizes that are extracted for consumer emotion analysis in 

existing studies?  

Q4: What are the different computational methods used in studying consumer emo-

tions and how are they evaluated in the current literature?  

Q5: What are the limitations while detecting consumer emotions in social networking 

sites in the current literature?   

Q6: Where can consumer emotions be applied in a managerial context?    
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1.6 Structure of thesis 

The overall structure of the thesis has the following sections: Introduction, research 

methodology, results and findings, discussion and conclusions. The Introduction pro-

vides an overall description of background of social media, emotions and consumer 

business. Major discussion involves how consumers express emotions openly in social 

networks and how social networking websites facilitate generation of large amounts 

of UGC. Narratives leading to the scope of this research and selection of research 

questions are also mentioned in this chapter.  

In the second chapter, research methodology is explained. The type of research meth-

odology that is used is explained in chapter 2.1 and the application of the type of re-

search methodology is thoroughly explained in chapter 2.2. Chapter 2.3 focuses on the 

research methodology that was used to carry out empirical research and evaluation. It 

is also in this section that research question 6 is further subdivided into 5 parts or sub 

questions and ends with the evaluation criteria. Results of the thesis is elaborated in 

chapter 3. Results overview is explained in Chapter 3.1 in tabular format. Empirical 

evaluation to the thesis is presented in chapter 3.2. Chapter 4 discusses the summary 

of the results, scientific contributions as a result of this study, managerial contribu-

tions, evaluation of the study and future research in the application of consumer emo-

tion detection.  
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2. RESEARCH METHODOLOGY 

2.1 Literature Review 

The literature review in this thesis study is based on Fink (2014)’s ‘Conducting Re-

search Literature Reviews’. According to her, research literature review is a system-

atic, explicit, accurate and reproducible method used for the purpose of identifying, 

assessing and combining existing body of completed and documented works by re-

searchers, scholars and practitioners. 

A research literature review can be performed based on an individual’s work in diverse 

fields of specializations such as health, education, psychology, finance, law, social 

services and business. The conclusion of a systematic research literature review is 

based on the authentic works of scholars and researchers. The idea is to focus on great 

quality authentic research instead of interpreting the findings; this is one way to assure 

that the results are under reviewer’s supervision and correctly carried out. There are 

several steps on how to perform Fink’s research literature review. It can be divided 

into seven tasks and is shown in Figure 1. 

1. Selecting research 

questions. 

2. Selecting article 

database or 

bibliographic 

database

3. Choosing search 

terms

4. Applying practical 

screening criteria. 

5. Applying 

methodological 

screening criteria.

6. Conducting the 

review. 
7. Synthesizing the 

result. 

 

Figure 1. Seven steps in conducting Fink (2014) model of research literature review. 

In the Figure 1 is a depiction of research literature review adapted from Fink (2014). 

There are seven tasks that are carried out to achieve Fink’s model of conducting a 

review and can be explained as follows in Table 2.  
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Table 2. Tasks and explanation of steps involved in conducting a literature review. 

Tasks Explanation 

Selecting research ques-

tions 

The review is lead or carried out after stating a precise 

research question. 

Selecting bibliographic or 

article databases, Web 

sites, and other sources 

A bibliographic database, which is accessed online is an 

accumulation of research articles, books and reports that 

can contribute data to answer research questions.  

Complete reports of original studies can be found in bib-

liographic databases.  

Literature reviews can also be referred from other sources 

such as experts from the field of interest, the web, list of 

references contained in the articles.  

Choosing search terms Search terms which are words and phrases are used to get 

the relevant articles, books and reports. The search terms 

are based on research concepts that are linked to the re-

search questions. Appropriate grammar and logic are re-

quired to conduct the search.  

Applying practical 

screening criteria 

Once search terms are entered, the results return many 

articles. Among these, not all are relevant. The relevant 

articles are retrieved by screening the literatures; this is 

done by setting a criterion for inclusion and exclusion.  

Practical screening criteria consists of elements such as 

language, type of article, publication data and source of 

funding. 

Applying methodological 

screening criteria 

Methodological screening criteria is about including cri-

teria for the purpose of evaluating scientific quality. 

Doing the review Reliable and authentic reviews hold adopting a standard-

ized form for extracting data from articles and training 

reviewers to summarize and supervise the quality of the 

review, additionally pilot testing the procedure. 

Synthesizing the results Results of the literature review could be combined de-

scriptively.  

Descriptive syntheses are clarification or analysis of the 

literature review’s findings based on the experience of the 

reviewer, quality and substance of the available literature.  

The review can include also meta-analysis which in-

volves employing statistical techniques to merge more 

studies.  

 

Various tasks and explanation of Fink’s methodology of performing a research litera-

ture review is explained in Table 2. A research literature review is conducted for many 
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reasons. For example, to understand what is presently known in a specific topic of 

interest. Sometimes, it is asked to include a research literature review in a master’s 

thesis or honor’s thesis, dissertation and to obtain funds for planning a program, de-

veloping and evaluating it.  

2.2 Application of literature review 

The research literature review methods outlined in the previous section are explained 

in the context of the thesis study in this section. Task 1 is selecting research questions: 

The research statement question and the research questions are mentioned in Chapter 

1.5. There are 6 research questions that is aimed to be answered through this study. 

For task 2, article databases or bibliographic database chosen were IEEE Xplore: 

which provides access to high standards of technical literature in engineering and tech-

nology, second, ScienceDirect: ScienceDirect contains engineering and physical sci-

ence publications and third, Web of Science: provides access to multiple databases that 

reference cross disciplinary research. The research databases that were selected for this 

study can provide the relevant information which is needed for conducting the thesis 

study.  

In task 3, search terms are chosen. The search terms are used to find the appropriate 

articles in all the bibliographic databases and similar search terms were used, which 

are “social media” emotion* consumer (see Appendix A). Task 4 is about applying 

practical screening criteria. Here, research studies for the review are selected based on 

inclusion and exclusion criteria. From all the databases only journal articles, research 

reviews and research articles were selected. The inclusion and exclusion criteria are 

mentioned as follows:   

Inclusion criteria: 

1) Include studies that are published in English language 

2) Include only journal and research articles 

3) Include studies that talk about consumer emotions in social media context 

4) Include articles that mention data extraction methods 

Exclusion criteria: 

1) Exclusion of duplicates 

2) Exclude articles without automated data extraction methods 

3) Exclude articles that are not specifically talking about social networking plat-

forms 

4) Exclude articles that perform analysis on existing datasets. The following im-

age displays the inclusion and exclusion criteria.  
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IEEE Xplore 

key word search

ScienceDirect 

key word search

Web of Science 

key word search

Inclusion criteria

filter

No of articles: 27 No of articles: 566 No of articles: 76

Exclusion criteria

filter

No of articles: 5 No of articles: 20 No of articles: 4

Total articles: 29

 

Figure 2. Flow diagram of articles’ inclusion and exclusion criteria. 

Figure 2 shows the flow diagram of article’s inclusion and exclusion criteria. In the 

beginning, inclusion criteria were based on research article abstracts that talk about 

consumer emotions in social media context; this did not yield practical results and 

therefore we included articles based on paper content. The papers that resulted in the 

final inclusion and exclusion were 5 from IEEE Xplore (out of 86 articles), 4 from 

Web of Science (out of 145 articles), 20 from ScienceDirect (out of 1457 articles). In 

total, the papers add up to 29.  

2.3 Mixed Methods Methodology 

According to Creswell (2012), if the research contains data that is both qualitative and 

quantitative in nature, then both quantitative and qualitative data can be used to study 

the research problem that is placed. The mixed methods research design approach or 

technique is used for gathering, analyzing, and combining both qualitative methodol-

ogy and quantitative methodology to perceive a research problem (Creswell and Plano 

Clark, 2011). Mixed methods research design is used when either of the research de-

sign, for instance: qualitative or quantitative is not enough for gathering insight into a 

problem (Creswell, 2012). A complicated understanding or a ‘picture’ can be devel-

oped by evaluating both outcome (Green and Caracelli, 1997). This allows the re-

searcher to produce an alternate perspective in a study (Creswell, 2012).  

Jick (1979) provides an example that a leader’s effectiveness can be judged by inter-

viewing, witness his/her behavior, and execution of one’s task; The focus is on the 
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effectiveness and irrespective of the modes of evaluation. Similarly, in this study to 

understand the research questions formulated in chapter 1.5, first a systematic litera-

ture review is conducted to gather articles relevant to the study. After careful analysis, 

to get a different perspective of the research problem. A case study methodology is 

conducted to gather multiple perspectives.   

2.3.1 Case Study Methodology 

A case study methodology was conducted to understand several perspectives of the 

research questions. According to Zainal (2007), a case study allows a researcher to 

inspect or investigate a data under a certain circumstance. For instance, it can be lim-

ited to a small geographical location or small number of subjects. According to 

Bonoma (1985), a case study involves not only qualitative, but also quantitative data 

sources. Various sources of data support ‘perceptual triangulation’ that aids in under-

standing the business unit which is under observation.  

In relation to the previous chapter, a case study was conducted. The primary data 

source for the case study was Twitter, a social networking platform. This is also be-

cause of its rise in popularity and adoption by various companies to communicate with 

their stakeholders (Rybalko and Seltzer, 2010). The case study was conducted in the 

form of a marketing campaign for a stress management company who sell products 

and services. The time duration of the campaign was 22 days between the months of 

August 2018 and September 2018. The campaign tweet was posted in Finnish lan-

guage where the company asked its followers to join the campaign in exchange for a 

lucky draw prize. The participants were required to tweet a message with an image to 

convey how they manage or cope with stress.  

The campaign tweet posted for the campaign was “Syyskuu tuo mukanaan arjen monet 

haasteet. On kiirettä, mutta myös intoa! Mikä on sinun paras stressinhallintakeinosi? 

Osallistu Moodmetricin Twitter-kampanjaan - voit voittaa @Moodmetric-

älysormuksen. Kampanjan ohjeet: http://www.moodmetric.com/fi/uutiset/  

#moodmetricstressinhallintakeino”. 

The above tweet translates to “September brings many challenges to everyday life. 

There is haste, but also enthusiasm! What is your best stress management tool? Take 

part in Moodmetric's Twitter campaign - you can win the @ Moodmetric ring. Cam-

paign Guidelines: http://www.moodmetric.com/en/news/ #moodmetricstressmanage-

ment”. A screenshot of the tweet is shown in the following image.  
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Figure 3. Marketing campaign tweet which translates to “What is your best stress 

coping habit?”. 

Figure 3. shows the initial tweet of the campaign. It was also tweeted with the hashtag 

“#moodmetricstressinhallintakeino” which translates to “moodmetric stress manage-

ment tool”. The hashtag was used to encourage more participation in the twitter cam-

paign.  

Data Collection 

Quantitative Data 

The tweets were gathered with many tools such as Twitter API credentials, a library 

called twitter library 1.18.01 from Python Package Index (PyPI) and Python program-

ming language. The PyPI2 is a software depository for Python Programming Lan-

guage. With these tools, up to 100 tweets can be extracted with one request and within 

1-week time window from a single request.  

An integrated development environment for python called Spyder3 is utilized for cod-

ing purposes. The total number of unique tweets and images were 47, retweets and any 

                                                 
1 https://pypi.org/project/twitter/ 
2 https://pypi.org/ 
3 https://www.spyder-ide.org/ 
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other duplicates were excluded from the data analysis. Every tweet has many compo-

nents such as text, tweet ID, and media to name a few. The images were extracted from 

the media component using the tweet URL that is present inside the media component 

of the tweet. The following image shows the information regarding APIs, libraries and 

algorithms used for the case study.   

1. Data

Twitter (API),

Twitter Library from PyPI 

(1.18.0),

Python programming 

language

2. Image caption detection 

and face detection

Microsoft s Image 

Processing with the 

Computer Vision API and 

Microsoft Face API Facial 

Recognition Software

3. Translation

Googletrans library from 

PyPI

4. Sentiment detection

VADER sentiment 

analysis and 

SentiStrength 

5. Emotion analysis

IBM Watson tone analyzer

Tweets were gathered in 

the months of August 

2018 and September 2018

Image captions and face 

emotions were extracted 

from tweet images using 

the above API

Finnish language tweets 

are translated into English 

language using the MIT 

licensed library from 

PyPI

Sentiment for the tweets 

are calculated using two 

sentiment detection 

algorithms. The 

sentiments are classified 

into  positive ,  negative , 

and  neutral 

Tweets are also analysed 

for its emotional content. 

The content was analysed 

for emotions such as 

 anger ,  disgust ,  fear , 

 joy , and  sadness .

 

Figure 4. Algorithms, libraries and APIs used in the analysis of the tweet content. 

As seen from Figure 4, different APIs, libraries and algorithms are necessary in order 

to analyze the tweet for its sentiment, emotion and image captions. Without the Twitter 

API credentials it is not possible to gather tweets on our own. The availability of Twit-

ter libraries for different applications eases the process of data collection. To detect 

captions from the tweet images, Microsoft’s Image Processing with the Computer Vi-

sion API4 was used. The API has the capacity of handling or processing 20 images per 

minute. The API returns several attributes for the image. The tags and description (cap-

tion) are among such attributes and is also the focus of this study. For instance, the 

description can be ‘man in a red shirt taking a photo at the beach’ and tags for the 

description can be (‘man’, ‘beach’, ‘holding’, ‘camera’, ‘shirt’, ‘red’, ‘sun glasses’, 

‘camera’, ‘water’, ‘sand’). Microsoft Face API5 – Facial Recognition Software was 

used to detect consumer faces and their emotions from the images. Like the Image 

Processing API, the Face API process up to 20 images per minute and returns various 

attributes with regards to the face. For the purpose of this study, only the emotion 

attribute is considered. The emotion attribute returns emotions such as ‘anger’, ‘con-

tempt’, ‘disgust’, ‘fear’, ‘happiness’, ‘neutral’, ‘sadness’, and ‘surprise’ with values 

attributed to it between 0 and 1.  

The tweets must be converted into English language before they are analyzed for their 

sentiment. The translation was achieved with the help of MIT licensed PyPI library 

called Googletrans6 version 2.4.0. The text component of the tweet was analyzed with 

the help of SentiStrength7, a sentiment detection algorithm and VADER (Valence 

                                                 
4 https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/ 
5 https://azure.microsoft.com/en-us/services/cognitive-services/face/ 
6 https://pypi.org/project/googletrans/ 
7 http://sentistrength.wlv.ac.uk/ 
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Aware Dictionary and sEntiment Reasoner)8 sentiment detection algorithm. The no-

tion behind using two different sentiment detection algorithms is to gather multiple 

perspectives and to understand if they are similar or different in the process of detect-

ing sentiments. In SentiStrength, a text like 'I love the weather at the beach today’ 

would yield a positive strength of +3 and a negative strength of -1. The overall scale 

of the text is +2 (‘positive’). This basis is used for calculating the sentiment for the 

tweets. VADER classifies tweet into pos (positive), neg (negative), neu (neutral) and 

compound. The scores calculated using VADER are normalized between -1 (most ex-

treme negative) and +1 (most extreme positive). Therefore, the text ‘I love the weather 

at the beach today' would return ‘pos’: 0.412, ‘neu’: 0.588, ‘neg’: 0.0, and ‘com-

pound’: 0.6369. Therefore, the sentiment is ‘positive’.  

In addition to the sentiment detection, the text component of the tweet is analyzed for 

its emotions using IBM Watson’s Tone Analyzer API9. The Tone Analyzer provides 

scores for each emotion that is detected in the text. The text ‘I love the weather at the 

beach today’ returns the emotion ‘Joy’. The tweet image contained several tags as 

mentioned earlier and to extract the sentiment and emotion associated with each tag, a 

‘for’ loop was created using Python programming language to count the sentiments 

and emotions that occur for each unique tag. For instance, over the course of analysis, 

an activity like ‘Running’, if present in multiple tweets would have sentiment and emo-

tion attributed to it due to its presence in the tweet.  

Qualitative Data 

Due to fewer number of tweets, qualitative assessment was performed manually. The 

tweets containing the text and images were manually evaluated/annotated for two cat-

egories namely ‘Valence’ and ‘Arousal’. The two attributes were annotated based on 

the understanding gathered from Zimmerman et al. (2015). The case company has its 

own categories of activity in its product’s mobile application. Hence, the manual an-

notation considered the same activity categories (case company) in its evaluation. The 

activities are ‘Work’, ‘Relax’, ‘Dining’, ‘Travel’, ‘Sport’, ‘Family’, ‘TV/Web’, ‘Art’, 

‘Sleep’, and ‘Other’ (Jussila et al., 2018). The qualitative assessment for both valence 

and arousal dimension was performed on a scale between -5 to +5 by looking at the 

tweet text and image. The above-mentioned activities were mapped for its valence and 

arousal attributes based on this scale. For example, if the participant tweet is related to 

sporting activities then the tweet is assigned to the ‘Sport’ activity. Similarly, tweets 

were also screened for other activity categories. For further assessment of all the re-

sults, a qualitative semi-structured interview was conducted with the case company’s 

CIO. The focus was on the application of consumer emotions in managerial context 

and the following questions were asked. 

1) How is the company currently making use of consumer emotions? 

                                                 
8 https://github.com/cjhutto/vaderSentiment 
9 https://www.ibm.com/watson/services/tone-analyzer/ 
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2) What challenges does the company have in collecting data and analyzing con-

sumer emotions? 

3) How could the quantitative results, qualitative content + quantitative results 

and qualitative results is made use of in the company? 

4) What is most valuable method for making use of consumer emotions?  

5) How can the company implement the introduced methods in their business?  

2.4 Evaluation Criteria 

The methodology for evaluating the study was referred from Shenton (2004) which is 

based on criteria used for finding the authenticity of qualitative research methodology 

established by Guba (1981). The research methodology follows four different criteria.  

a) Credibility: The criteria address the researchers’ internal validity, where they 

attempt to confirm if their study investigates what it is intended for. Several 

factors make up credibility of the study. For example: the use of research meth-

odology and data gathering techniques for conducting the study; establishing 

familiarity with the case-study organization; random sampling to eliminate re-

searcher bias in selecting the participants for genuine representation of the 

whole population; triangulation where multiple methods such as observation 

and interviews are used and has its own benefits for qualitative research.  

 

b) Transferability: This criterion is about the external validity which deals with 

how the findings of a study can be implemented in other conditions. For exam-

ple: to a wider population or a similar context; other factors include the number 

of participants, restrictions related to the type of people that produced the data, 

data collection methods, length and duration of the data collection.  

 

c) Dependability: The researcher makes use of techniques to demonstrate the out-

come of attaining similar results if they repeated the same work under similar 

circumstances using the same methods. For example: Using overlapping meth-

ods. In other words, the processes that were employed in the study should be 

reported at length. This is to help the future researcher to carry out the work.  

 

d) Confirmability: In this criterion, a researcher should admit the limitations of 

their own study and the resulting effect of those limitations. The researcher 

must use triangulation to reduce the effect of one’s own bias. Researcher must 

admit his/her own beliefs and assumptions.  
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3. R ESULTS AND FINDINGS 

3.1 Overview 

After screening the articles for inclusion and exclusion criteria, the final count reduced 

to 29 research articles from the three databases. The overview of the research articles 

is in displayed Table 3, which shows author, title and publication of the research arti-

cle.   

Table 3. Overview of reviewed empirical research studies. 

No Author Title Publication 

1 (Nguyen et al., 

2017) 

Event-Driven Trust Refreshment 

on Ambient Services 

IEEE Access 

2 (Zhang et al., 2016) A semi-supervised topic model in-

corporating sentiment and dy-

namic characteristic 

China Communica-

tions 

3 (Vatrapu, 

Mukkamala, 

Hussain, Flesch, et 

al., 2016) 

Social Set Analysis: A Set Theo-

retical Approach to Big Data Ana-

lytics 

IEEE Access 

4 (Mehmood et al., 

2017) 

UTiLearn: A Personalised Ubiqui-

tous Teaching and Learning Sys-

tem for Smart Societies 

IEEE Access 

5 (Nan Cao et al., 

2012) 

Whisper: Tracing the Spatiotem-

poral Process of Information Dif-

fusion in Real Time 

IEEE Transactions 

on Visualization and 

Computer Graphics 

6 (Jabreel, Moreno 

and Huertas, 2017) 

Semantic comparison of the emo-

tional values communicated by 

destinations and tourists on social 

media 

Journal of Destina-

tion Marketing & 

Management 

7 (D’Avanzo, Pilato 

and Lytras, 2017) 

Using Twitter sentiment and emo-

tions analysis of Google Trends for 

decisions making 

Program-Electronic 

Library and Infor-

mation Systems 

8 (Abirami and 

Askarunisa, 2017) 

Sentiment analysis model to em-

phasize the impact of online re-

views in healthcare industry 

Online Information 

Review 

9 (Park, Jang and Ok, 

2016) 

Analyzing Twitter to explore per-

ceptions of Asian restaurants  

Journal of Hospital-

ity and Tourism 

Technology 
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10 (Sun et al., 2018) Detecting users’ anomalous emo-

tion using social media for busi-

ness intelligence 

Journal of Computa-

tional Science 

11 (Singh, Shukla and 

Mishra, 2017) 

Social media data analytics to im-

prove supply chain management in 

food industries 

Transportation Re-

search Part E: Logis-

tics and Transporta-

tion Review 

12 (Benthaus, Risius 

and Beck, 2016) 

Social media management strate-

gies for organizational impression 

management and their effect on 

public perception 

The Journal of Stra-

tegic Information 

Systems 

13 (He et al., 2015) A novel social media competitive 

analytics framework with senti-

ment benchmarks  

Information & Man-

agement 

14 (Xu, Yang and 

Wang, 2015) 

Hierarchical emotion classifica-

tion and emotion component anal-

ysis on Chinese micro-blog posts 

Expert Systems with 

Applications 

15 (Gao, Xu and 

Wang, 2015) 

A rule-based approach to emotion 

cause detection for Chinese micro-

blogs 

Expert Systems with 

Applications 

16 (M. et al., 2017b) Consumer insight mining: Aspect 

based Twitter opinion mining of 

mobile phone reviews 

Applied Soft Compu-

ting 

17 (Aswani et al., 

2018) 

Search engine marketing is not all 

gold: Insights from Twitter and 

SEOClerks 

International Journal 

of Information Man-

agement 

18 (Vidal, Ares and 

Jaeger, 2016) 

Use of emoticon and emoji in 

tweets for food-related emotional 

expression  

Food Quality and 

Preference 

19 (Davalos et al., 

2015) 

‘The good old days’: An examina-

tion of nostalgia in Facebook posts 

International Journal 

of Human-Computer 

Studies 

20 (Ibrahim, Wang and 

Bourne, 2017) 

Exploring the effect of user en-

gagement in online brand commu-

nities: Evidence from Twitter 

Computers in Human 

Behavior 

21 (Mostafa, 2013) More than words: Social networks’ 

text mining for consumer brand 

sentiments 

Expert Systems with 

Applications 

22 (Tombleson and 

Wolf, 2017) 

Rethinking the circuit of culture: 

How participatory culture has 

transformed cross-cultural com-

munication 

Public Relations Re-

view 
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23 (Chae, 2015) Insights from hashtag #supply-

chain and Twitter Analytics: Con-

sidering Twitter and Twitter data 

for supply chain practice and re-

search 

International Journal 

of Production Eco-

nomics 

24 (Leek, Houghton 

and Canning, 2017) 

Twitter and behavioral engage-

ment in the healthcare sector: An 

examination of product and service 

companies 

Industrial Marketing 

Management 

25 (Li and Li, 2013) Deriving market intelligence from 

microblogs 

Decision Support 

Systems 

26 (Philander and 

Zhong, 2016) 

Twitter sentiment analysis: Cap-

turing sentiment from integrated 

resort tweets 

International Journal 

of Hospitality Man-

agement 

27 (Nisar and Yeung, 

2018) 

Twitter as a Tool for Forecasting 

Stock Market Movements: A 

Short-window Event Study 

The Journal of Fi-

nance and Data Sci-

ence 

28 (Ghiassi, Skinner 

and Zimbra, 2013b) 

Twitter brand sentiment analysis: 

A hybrid system using n-gram 

analysis and dynamic artificial 

neural network 

Expert Systems with 

Applications 

29 (Daniel, Neves and 

Horta, 2017) 

Company event popularity for fi-

nancial markets using Twitter and 

sentiment analysis 

Expert Systems with 

Applications 

 

In Table 3, information regarding the selected author, articles and name of the publi-

cation is mentioned. As mentioned earlier in chapter 2.2, all the research articles cho-

sen to study were published in journals, where earliest article is from the year 2012 

and latest from the year 2018. This study aims to seek understanding into the data 

collection methods, dataset features, different social networking platforms and the type 

of emotions examined in different articles. Table 4 describes the important variables 

for each study. The following table shows results based on sentiment categories less 

than three.  

Table 4. Social networking platforms, methods of data extraction, and dataset sizes 

based on sentiment categories (less than 3).  

Article 

No. 

Social Networking Plat-

form 

Data Extraction 

Method 

Dataset Size 

7 Twitter API 1700 tweets 

8 Twitter API 1941 tweets 

9 Twitter API 86015 tweets 

10 Sina Weibo Internet Crawler 10275 microblogs 
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11 Twitter API 1338638 tweets 

13 Twitter, Facebook API, HTML Pars-

ing, RSS 

Not described 

14 Sina Weibo Crawling 9960 microblogs 

19 Facebook Open graph API 375 857 posts 

21 Twitter QDA Miner 3516 tweets 

23 Twitter API 22 399 tweets 

25 Twitter API 2358477 tweets 

26 Twitter API 34315 tweets 

In Table 4, studies than contain fewer sentiment categories of two or less in displayed 

along with the SNS platform, data extraction method, and dataset sizes. In the follow-

ing table studies with three sentiment categories are displayed.  

Table 5. Social networking platforms, methods of data extraction, and dataset sizes 

based on 3 sentiment categories.  

Article 

No. 

Social Networking Plat-

form 

Data Extraction 

Method 

Dataset Size 

2 Sina Weibo API 25838961 posts 

3 Facebook SODATO 11384 posts and 

comments 

4 Twitter API 4221 tweets 

5 Twitter API 10275 microblogs 

16 Twitter twitteR package 2685 tweets 

17 Twitter API 61 456 tweets 

18 Twitter twitteR package 20 490 tweets 

20 Twitter API 76 166 tweets 

27 Twitter API 60944 tweets 

In Table 5, studies than contain three sentiment categories are displayed along with the 

SNS platform, data extraction method, and dataset sizes. In the following table studies 

with more than three sentiment categories are displayed.  

Table 6. Social networking platforms, methods of data extraction, and dataset sizes 

based on more than 3 sentiment categories.  

Article 

No. 

Social Networking Plat-

form 

Data Extraction 

Method 

Dataset Size 

12 Twitter API 17 million user gen-

erated tweets, 

200000 company 

generated tweets 

22 Facebook, Twitter Radian 6 16 005 posts 
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28 Twitter API 10345184 tweets 

29 Twitter API 192935 tweets 

Table 6 shows studies more than three sentiment categories with the respective social 

networking platforms, data extraction methods, and dataset size. The following table 

shows articles by emotion categories.  

Table 7. Social networking platforms, methods of data extraction, dataset size sorted 

under emotion categories (up to 10). 

Article 

No. 

Social Net-

working 

Platform 

Data Ex-

traction 

Method 

Dataset Size Emotion Categories 

1 Not explic-

itly men-

tioned 

SocioScope Not mentioned 1 category 

7 Twitter API 1700 tweets 6 categories 

10 Sina Weibo Internet 

Crawler 

10275 microblogs 5 categories 

17 Twitter API 61 456 tweets 6 categories 

18 Twitter twitteR 

package 

20 490 tweets 3 categories 

19 Facebook Open graph 

API 

375 857 posts 9 categories 

Information regarding various social networking platforms, data extraction methods, 

dataset size and emotion categories (less than 10) for different articles is shown in 

Table 7. The following table shows article information classified under more than 10 

emotion categories.   

Table 8. Social networking platforms, methods of data extraction, dataset size sorted 

under emotion categories (Above 10). 

Article 

No. 

Social Net-

working 

Platform 

Data Ex-

traction 

Method 

Dataset Size Emotion Categories 

6 Twitter Crawler 60000 tweets 289 categories 

14 Sina Weibo Crawling 9960 microblogs 19 categories 

15 Sina Weibo API 18000 posts 22 categories 

24 Twitter API 838 tweets 37 word categories 

Information regarding various social networking platforms, data extraction methods, 

dataset size and emotion categories (more than 10) for different articles is displayed in 

the above table. Information regarding limitations and evaluation of computational 
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methods for articles grouped under a common computational method is displayed in 

the following table.  

Table 9. Articles grouped under a common computational method (Sentiment analy-

sis). 

Arti-

cle No 

Computational 

Methods 

Evaluation of Computational 

Methods 

Primary Limita-

tions 

2 Dynamic senti-

ment-topic 

model (DST), 

Gibbs sampling 

method, Topic 

detection and 

tracking (TDT), 

Sentiment ap-

proaches 

DST model achieves best perplex-

ity outperforming DTM and LDA 

models.  

DST model outperforms other 

models with regards to classifying 

sentiments (positive or negative or 

neutral) 

Not described 

3 Fuzzy-set based 

sentiment anal-

ysis with α- cuts 

With α- cuts > 0.9 (0-1), 7.18 % of 

the Facebook user group ex-

pressed negative sentiment and 

19.9% expressed positive senti-

ment.  

Not described 

4 Sentiment anal-

ysis: Naïve 

bayes algorithm 

Results from the analyzed data 

show that 78% of the consumers 

show positive sentiment for dis-

tance and eLearning. 

Not described 

7 Sentiment de-

tection module 

and Emotion 

detection mod-

ule  

Case Study 1: ‘Motorola’ and 

‘moto x’ has highest % of oriented 

tweets - 42.9% and 39.4% resp.   

‘moto g’, ‘moto x’, ‘motorola’, 

‘oneplus’ search queries provide 

with tweets with emotion - 10.1%, 

10%, 9.1%, 8.1%. Tweets contain 

avg of 48.3% ‘joy’, 24.3% ‘sur-

prise’ emotions. All queries had 

strong positive orientation (aver-

age 86.3%) 

Case Study 2: Tweets contain 

74.5% negative sentiment, 94.1% 

no emotions (both globally), 50% 

contain ‘fear’ emotion in NY.    

Case Study 3 – ‘Trump’ query: 

prevalent emotion – ‘joy’, ‘Ted 

Not described 
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Cruz’ query - prevalent emotion 

‘joy’, 300 ‘Ben Carson’ - preva-

lent emotion ‘joy’, ‘Scott walker’- 

mixture of prevalent emotions on 

each analyzed day.   

8 Technique for 

Order Prefer-

ence by Simi-

larity to Ideal 

Solution (TOP-

SIS), Multi-cri-

teria decision 

making 

(MCDM), Sen-

timent Analysis 

and Natural 

Language Pro-

cessing (NLP).  

Ranking based evaluation - Senti-

ment scores indicate which hospi-

tal ranked number one in different 

areas for ‘infrastructure’, ‘cost’, 

‘time’ – Hospital 10. ‘Medicare’ 

and ‘nursing’ – Hospital 6.  

Ranking by TOPSIS – Hospital 3, 

Simple additive weighting – Hos-

pital 10, Website – Hospital 3. 

Based on hypothesis, TOPSIS is 

the most preferred method.  

Review bias. It 

means not all the 

people give genu-

ine reviews.  

9 Text mining, 

Sentiment anal-

ysis, Statistical 

computation 

with ANOVA 

High percentage of positive senti-

ment found in Thai restaurant, 

34.96%. High percentage of Neg-

ative sentiment – Chinese, 

15.76%, High percentage of neu-

tral sentiment – Japanese, 57.83% 

Short data collec-

tion period. Data 

collected includes 

tweets from com-

mercial organiza-

tions which may 

cause skewed re-

sults for example, 

advertisement 

tweets can impact 

quality of the anal-

ysis.  

12 SentiStrength 2, 

Naïve Bayes, 

Data analysis 

User generated positive tweets in-

creased by 4.3% and negative 

tweets decreases by 3.5%, suc-

cessful deployment of social me-

dia management tools.  

Analysis was 

based on 

companies that 

have success with 

social media 

management tools 

and unconscious 

interviewer bias.  

19 Sentiment anal-

ysis 

82.1% of the posts contained both 

positive and negative words. 

76.3% of the posts expressed pos-

itive emotions. 45.2% of the posts 

Study was per-

formed only on one 

social networking 

platform. The 
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describing negative emotions. 

36.7% contained only positive 

emotions and 5.6% contained neg-

ative emotions. The summary of 

the findings was that Facebook 

posts primarily comprise of posi-

tive sentiment. Nostalgia is a sig-

nificant factor on Facebook.  

study does not 

have access to us-

er's network 

(friends and fam-

ily).  

20 Sentiment anal-

ysis and data 

analysis 

15350 tweets contain sentiment of 

which 12% are positive, 8% are 

negative.  ‘AmazonHelp’ tweets 

are 2.1% negative sentiment and 

6.2% positive sentiment.  

AmazonHelp to customers tweets 

comprised 6.2% positive senti-

ment, 2.1% negative sentiment. 

Customers to AmazonHelp tweets 

contained 4.2% positive senti-

ment, 7.2% negative sentiment.  

4.8% decrease in negative senti-

ment between beginning and final 

stage.  

Through high levels of consumer 

engagement negative customer 

sentiments were converted into 

neutral sentiments.  Significant de-

crease of negative sentiments (-

10%) for lengthy tweets and those 

with short tweets (-3%). 

One limitation of 

this study is it only 

focused on five re-

tail brands that are 

based in the United 

Kingdom. 

29 Sentiment anal-

ysis 

During the days where there are 

special events the tweets have pri-

marily positive or very positive 

sentiment. The most remarkable 

event in Microsoft case study is 

event number 2, Where the event 

attracted much agitation by users 

because it is related to the presen-

tation of the new Microsoft CEO, 

Satya Nadella.  

Also for event number 4 was char-

acterized by the announcement 

that the company made regarding 

Not described 
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the largest amount of displace-

ments. The company displaced 

more than 18,000 employees. 

Event number 7 also showcases 

the same displeasure as that the 

event 4, more than 7800 job cuts 

producing negative comments 

from the users. 

In Walmart case study there are 

only three main events. The most 

defining event was marked by the 

announcement made by the 

Walmart on the action to increase 

the wages of its employees This 

announcement generated great sat-

isfaction.  

 

Table 9 discusses about the evaluation of computational methods with regards to the 

studies that used sentiment analysis methods to understand consumers emotions in so-

cial networking context. The limitations are also displayed. The following table shows 

second common method used in the studies. 

Table 10. Articles grouped under a common computational method (Machine learn-

ing methods). 

Arti-

cle No 

Computational 

Methods 

Evaluation of Computational 

Methods 

Primary Limita-

tions 

11 Content analy-

sis, Word and 

hashtag analy-

sis, Sentiment 

analysis based 

on SVM, Hier-

archical cluster-

ing with p-val-

ues using mul-

tiscale bootstrap 

resampling 

8560 positive and 2104 negative 

messages overall, Binary repre-

sentation scheme – unigram fea-

ture - 12, 257 (features) > SVM 

classifier with 90.80% accuracy 

on test data, Bigram feature – 44, 

485 (features) with 74.46% accu-

racy.  

Term frequency – unigram feature 

- 12, 257 (features) > SVM Classi-

fier with 86.27% accuracy on test 

data, Bigram feature – 44, 485 

(features) with 71.68% accuracy.   

Limited data col-

lection pe-

riod/time, Ap-

proach does not 

consider user's pro-

file or basic infor-

mation to increase 

the credibility of 

the analysis 

14 Emotion com-

ponent analysis, 

ECA (based on 

Group 4 (G4, which are fine 

grained emotions) is optimized 

The Chinese word 

segmentation is not 

very good due to 
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hierarchy), Fea-

ture extraction, 

Feature selec-

tion and classi-

fication (Sup-

port vector re-

gression, SVR) 

with psychological emotion dic-

tionary (in combination with hier-

archical classification and feature 

selection) scores a highest preci-

sion of 76.1%, highest recall of 

69.5%, highest F-Measure 72.7%.  

the presence of oral 

expressions in the 

Chinese blog. ECA 

algorithm is de-

signed with limited 

factors with certain 

rationality.  

The complicate na-

ture of feature clas-

sification requires 

perfecting the al-

gorithm while im-

plementing.  

16 SVM classifier, 

Rating based 

sentiment de-

tection (RBSD), 

Emoji detection 

‘One Plus5’ query accuracy = 

74.31%, ‘Samsung S8’ query ac-

curacy = 86.01%. Model accuracy 

for battery = 80.68%, camera = 

85.18%, display attribute = 

74.23%.  

Not described 

25 Sentiment anal-

ysis - SVM 

classifier, Naïve 

Bayes. Subjec-

tivity analysis 

Out of 11 929 posts, 7510 were 

positive and 3947 were negative. 

SVM provides better accuracy 

over Naïve Bayes classifier. Rep-

resentation scheme - binary = 

88.1% vs 71.7%, TF = 87.7% vs 

70.3%, TF*IDF = 79.4% vs 

67.4%.  

First, with regards 

to the API call lim-

itation of the ex-

perimental plat-

form, the number 

of opinions em-

ployed in system 

evaluation is finite.  

Current reliability 

measurement does 

not consider a us-

er's profile or basic 

information. Com-

plete profile and 

other basic infor-

mation could be a 

factor in credibil-

ity. 

28 Supervised ma-

chine learning 

algorithm - 

DAN2, Support 

Accuracy for strong positive emo-

tions using DAN2 – 96%. Accu-

racy for mildly negative and 

strongly negative emotions – 

89.9% and 95.1%  

Analysis was 

performed only on 

a single corpus 

(single brand). 
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vector machine 

(SVM). 

 

Table 10 shows results from the studies that used machine learning methods for anal-

ysis and calculations in addition to the limitations. The following table shows studies 

that performed content analysis in combination with other methods.  

Table 11. Articles grouped under a common computational method (Content analy-

sis). 

Arti-

cle No 

Computational 

Methods 

Evaluation of Computational 

Methods 

Primary Limita-

tions 

6 Semantic Con-

tent Analysis 

Destination Management Organi-

zations (DMOs) – use average 

(170 different emotional adjec-

tives 1344 times in their tweets).  

There are some values for which 

there is a huge difference of use, 

especially 'fresh', 'honest', 'calm' 

and 'unique'. ‘sincerity’ is the most 

heavily communicated emo value 

(more by tourists). 

London account employed more 

emotional adjectives (289) com-

pared to Budapest which is the 

lowest (143). This also indicates 

that London is putting more effort 

into attracting tourism consumers. 

The method in 

place analyzes 

only tweets that are 

in English lan-

guage.  

The method only 

considers emo-

tional adjectives. 

There is no syntac-

tic or sentiment 

analysis, which 

leads to no distinc-

tion among other 

words in the 

tweets.  

17 Descriptive an-

alytics, Content 

analytics, Net-

work analytics, 

Space-time ana-

lytics 

48% of original tweets = positive, 

20% = neutral, 32% = negative. 

Emotions – ‘sadness’, ‘fear’, ‘an-

ger’ and ‘disgust’ in 29% of total 

tweets, ‘joyful’ in 24% of the 

tweets, 47% of tweets have no spe-

cific emotion.  

Only 1 social net-

working platform 

used. Study lacks 

empirical result 

validation. Valida-

tion of users is an-

other problem.  

18 Content analy-

sis, Data analy-

sis 

Proportion of tweets that have ei-

ther emoji or emoticon = 24%. The 

use of emoji characters are more 

than emoticons (68.1% vs 30.9%). 

The use of multiple (either emoji 

or emoticons) is more for emoji 

Details about users 

are not available 

and the analysis is 

representative of 

general population 
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(31.1% vs 4.8%). Maximum num-

ber of different emoticons used in 

a tweet = 4, emoji = 16.  

Different number of emoticons 

found in tweets = 50, different 

number of emoji characters found 

in the tweets = 254. Emoticons and 

emojis intended to be used to ex-

press positive and negative reac-

tion is 66.7% vs 14.8% respec-

tively.  

In tweets with content relating to 

food consumption, positive emo-

tional expression was dominant. 

On the other hand, tweets not re-

lated to food consisted negative 

emotional reactions.  Tweets 

posted in the context of special oc-

casions, in presence of others, late 

hours and unhealthy habits often 

contained emoticon and emoji 

characters.    

23 Descriptive an-

alytics, Content 

analytics, Net-

work analytics 

67% tweets score 0. 28% tweets 

have either positive or negative 

sentiment. Sentiment analysis of 

clustered tweets show that risk-as-

sociated tweets looks to be more 

negative than other groups of 

tweets. 

Short duration of 

data collection. Us-

ing only a single 

hashtag #supply-

chain limits the 

volume of data col-

lected 

 

Table 11 discussed about studies that used content analysis in combination with other 

data analysis methods to perform calculations. The following table shows studies that 

used lexicon-based approach to understand consumer emotions.  

Table 12. Articles grouped under a common computational method (Lexicon based). 

Arti-

cle No 

Computational 

Methods 

Evaluation of Computational 

Methods 

Primary Limita-

tions 

15 Emotion cause 

analysis, Emo-

tion classifica-

The methods employed helped to 

find ‘happiness’ - 504 posts and 

with causes - 354, ‘anger’ – 472 

and with causes - 452, ‘disgust’ – 

Not described 
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tion, Construc-

tion of the emo-

tional lexicon 

and multi-lan-

guage features 

extraction.  

150 and with causes - 137, ‘fear’ – 

140 and with causes - 131, ‘sad-

ness’ – 304 and with causes - 255, 

‘neutral’ – 14801. With all fea-

tures, precision = 82.50%, recall = 

69.53%, F-score = 75.46%  

21 Hu and Liu 

Lexicon 

T-Mobile brand has highest nega-

tive sentiment of 72%, DHL has 

highest positive sentiment of 60%. 

Mean sentiment score is high for 

Nokia and Mobinil. Overall senti-

ment score for Nokia is generally 

better than the sentiment score for 

Pfizer.  

Analysis does not 

reveal the reason 

behind consumers’ 

expression of 

sentiment, 

meaning that it 

fails to identify the 

sentiment topic.  

26 Sentiment anal-

ysis - dictionary 

based approach 

Average sentiment score is highest 

for Aria Las Vegas resort = 0.69, 

lowest for Bally’s Las Vegas re-

sort = 0.30. High positive/negative 

ratio score for Tropicana Las Ve-

gas resort = 11.10, lowest for The 

Quad Las Vegas resort = 2.57. All 

firms had positive average senti-

ment score.  

Results indicate positive sentiment 

outweighing negative sentiment in 

general as all the firms had posi-

tive average sentiment score and 

ratios. 

Twitter API pro-

vides limited 

search capacity, 

Study is focused 

within single mar-

ket (Las Vegas) 

and unique cate-

gory of hospitality 

firms which is inte-

grated resorts cate-

gory.  

With regards to the 

lexicon used in this 

research study the 

measurement is 

valid across many 

large sample of 

tweets, smaller 

samples or individ-

ual comments 

could be misunder-

stood.  

27 Sentiment anal-

ysis - lexicon 

based approach 

21.44% positive tweets, 14.30% 

negative tweets, 64.27% neutral 

indicating a balance in opinions. 

The null hypothesis is accepted 

based on the results found. Null 

One limitation 

with regards to 

Umigon30 as the 

sentiment classifier 

is its poor precision 

when looking to 
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Hypothesis1: There is no signifi-

cant relationship/correlation be-

tween Twitter sentiment and vol-

ume statistics and stock market in-

dicators for a particular day. Null 

Hypothesis 2: There is no statisti-

cally significant predictive rela-

tionship between Twitter senti-

ment statistics and stock market 

indicators. 

find negative senti-

ment.  

In a formal accu-

racy test its ability 

to precisely find 

negative tweets 

was below 50%. 

The accuracy was 

better while per-

forming the posi-

tive and neutral 

sentiment classifi-

cation. The study 

was limited to lo-

calized election 

event. 

 

Table 12 shows results and analysis from studies that did content analysis along with 

the limitations of those studies. Many articles performed analysis with other methods. 

These other methods are grouped together in the following table.  

Table 13. Articles grouped under a common computational method (Other methods). 

Arti-

cle No 

Computational 

Methods 

Evaluation of Computational 

Methods 

Primary Limita-

tions 

1 Trust ontology, 

Theory of con-

cept drift, 

Event-driven 

trust refresh-

ment 

Methods indicate that Donald 

Trump gets a higher proportion of 

votes in time. Which leads to the 

degree of trust (DoT) of a trustor 

towards Hilary Clinton to reduce 

gradually.  

Not described 

5 Radial layout 

scheme, Sun-

flower meta-

phor. 

Case Study 1: Negative sentiments 

expressed in Australia because of 

the earthquake, partially in Indo-

nesia, Taiwan, Japan.  

Case Study 2: Mitt Romney's vic-

tory is seen to have positive reac-

tions in Mary Land, New York, 

Pennsylvania, Indiana, California 

and Virginia.  

Not described 
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10 Anomaly detec-

tion:  single and 

multivariate 

Gaussian distri-

bution 

Accuracy of abnormal user emo-

tion detection = 83.49% 

Sparseness of mi-

cro-blog data of in-

dividual user, ab-

normal user reac-

tion can only be de-

tected in a week or 

in a month. 

13 Modified Chi-

square feature 

selection, modi-

fied N-Gram 

model 

N-Gram correctly recognized 79% 

of the comments. The values of ac-

curacy showed that the N-Gram 

correctly marked positive message 

and negative messages at a success 

rate of 82.42%. 

Not described 

22 Case study ap-

proach, Induc-

tive reasoning 

Discussions using the #SCOTUS 

#LGBT hashtag comprised in the 

majority between neutral senti-

ment to positive sentiment. This 

finding is arguably not surprising 

given the reason that there was a 

rapidly increasing support for the 

campaign.  

The software Ra-

dian6 provides 

some interpretation 

of ‘sentiment’. 

However, it does 

not provide a true 

circumstances or 

context of tone and 

meaning. 

24 Computational 

linguistic ap-

proach 

For information sharing – Industry 

tweets: Decreased use of overall 

affect words is correlated with in-

crease in the number of likes. In-

creased likes are also a significant 

relationship to positive emotion. 

Increased use of informal words is 

also significantly related to in-

creased number of likes. 

For problem solving – Generic 

tweets: Increased use of affect and 

reward words has a significant re-

lationship to the increase in num-

ber of likes. Increase in engage-

ment is connected to the use of 

emotion and reward words irre-

spective of the type of company. 

Neutral emotion words tend to in-

crease the number of likes.  

Not described 
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For Information sharing – Events: 

Increase in affect words is related 

to increase in number of likes for 

service companies. For product 

companies, increase in use of in-

formal words lead to increase in 

number of likes.  

Several studies used different computational methods as witness from the above table. 

However, all the studies found in Table 8, 9, 10, 11,12 used computational methods 

individually or combinedly. The computational methods include machine learning (su-

pervised, Naïve Bayes, Support Vector Machine), Dynamic sentiment-topic model 

(DST), Gibbs sampling method, topic detection and tracking (TDT), sentiment analy-

sis, semantic content analysis, sentiment detection and emotion detection module, nat-

ural language processing, multicriteria decision making (MCDM), text mining, anom-

aly detection: single and multivariate gaussian distribution, content analysis, emotion 

component analysis (ECA), emotion cause analysis and computational linguistic ap-

proach. In few studies, the limitations of the computational methods were not de-

scribed. Managerial applications found in each of the studies is mentioned in the fol-

lowing table.  

Table 14. Managerial applications found in the research articles. 

Article No Managerial Applications 

1 Citing the argument that ‘trust’ is a dynamic concept 

which is subject to change based on some reasoning, 

the author communicates the importance of detecting 

complex and single events that impact the changes of 

‘trust’ over time.  

The author proposes that the degree of trust (DoT) on 

the entity that is measured requires to be monitored 

based on events concerning that entity. In the same 

way, companies can build strategies to study the ‘trust’ 

of their consumers to answer questions related to when 

and how consumer’s ‘trust’ is refreshed over several 

events.  

2 In real time social media data analytics, large amounts 

of user generated data are created. In order, to analyze 

what kind of abstracts topics is being discussed, the au-

thor’s proposed model helps in detecting the ‘topic’ and 

the ‘sentiment’ polarity associated with the topic.    
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3 Fuzzy-Set based social sentiment analysis is used in an-

alyzing marketing campaigns where crisp sets of senti-

ment categories are created for artefacts, actors and dif-

ferent time periods such as before, during and after 

events.  

This leads to monitoring consumer behavior during 

several events for sentiment categories. Crisis manage-

ment for product specific context is also another area 

where such an approach could be used.s 

4 In the UTiLearn teaching system or Distance eTeach-

ing and eLearning (DTL), their approach allows to 

monitor the behavior of its users/consumer regarding 

the effect of the learning system in a particular region, 

which allows to customize the different courses, study 

programs and topics according to that region.  

Applying eLearning at different contexts driven by 

area-specific and job market specific needs. Basically, 

this allows for improved scalability and resource plan-

ning in the eLearning sector.  

5 Collective responses of a community can be analyzed 

for consumer sentiments based on a given event. The 

proposed ‘Whisper’ tool facilitates analytical process 

of events occurring at various locations.  

It can be used to compare user opinions between differ-

ent locations on various subjects either products or po-

litical. 

6 The author encourages destination management organ-

izations (DMOs) to make use of emotions for creating 

destination brand value and new ways of marketing for 

companies in the tourism industries to endorse destina-

tions based on emotional values found in social media.  

This indicates that destination management organiza-

tions can create new marketing strategy by analyzing 

tourists’ reactions in social media and attract visitors to 

destinations that match their emotional values.   

7 The authors propose a framework to experiment social 

phenomenon using social data by looking at search 

queries from Google trends. When there is a launch of 

a product into the consumer market or during an event, 

there are always reactions to the product features. In 

other words, In the event of a new product launch, con-

sumers want to know about the product and its features.  
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Therefore, it could trigger maximum searches that 

would make it most searched in the Google trends; 

Consumer reactions/sentiment of the event can be ana-

lyzed based on a customized framework introduced in 

this study.  

8 The author proposed a sentiment analysis model in this 

study that helps hospital management to understand the 

user’s opinion on different indicators of service quality 

in the healthcare industry for example Infrastructure, 

Quality care, attitude, cost and equipment & services 

which helps to build customer satisfaction metrics.  

This allows hospital management in business intelli-

gence in assessing the ranking of the hospital among 

other hospitals further helping decision-making pro-

cess.   

9 The study analyzes customer perceptions and emo-

tional states on restaurants. By employing the right 

tools, customer satisfaction can be studied along with 

the what type of themes that are being said about a res-

taurant. Themes related to hospitality in restaurant con-

text can be examined deeply. For example: Environ-

ment, service quality, employee presentation, food 

taste.  

This provides insight into perception of consumers 

with regards to restaurant and understanding what type 

of value proposition can be communicated to achieve 

the optimum customer satisfaction. This can also allow 

restaurant managers to explore the different trends in 

the food industry and how consumers feel about it.  

10 The study proposes a model to detect normal and ab-

normal emotions. What this means to managers is that 

negative emotion like ‘anger’ can have an abnormal ef-

fect to the company, this may affect profits during the 

period and if not checked, the effect can be long term. 

Companies must analyze consumer feedback in real-

time and mitigate the effects of negative word-of-

mouth in social networking websites.  

A revival strategy can be formed based on real-time 

analysis to fight the negative effects. For example, a 

specific user who is displaced with regards to emotion 

can be approached by the company to be served in a 

better way.  
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11 In this study, focus is on supply chain management by 

studying consumer behavior attributed to food indus-

try. Feedback from the consumers helped to find the is-

sues faced by them while purchasing beef and can be 

highlighted at different operational points in the supply 

chain.  

This assists companies to find the root cause for con-

sumer dissatisfaction with regards to a product and take 

steps to locate where the fault occurs in the supply 

chain of the product. Coordination of stakeholders in 

this type of planning can help save time and cost 

thereby creating a customer-centric supply chain.  

12 Companies are involved with social media manage-

ment tools for communication, marketing, human re-

sources and customer care reasons. Main applications 

found in the study include customer satisfaction, cus-

tomer engagement, marketing campaigns and overall 

business strategy.  

Creating marketing mix based on target groups to in-

crease attitudinal loyalty among consumers and posi-

tive word-of-mouth. Other application is organizational 

impression management among consumers. Implica-

tions include competitor analysis.  

13 In this study, managerial applications range from com-

petitor analysis, industry-specific sentiment bench-

marking for the purpose of marketing intelligence and 

business decision-making. Benchmarking of Key per-

formance metrics using sentiment, customer perception 

of a brand leading to analysis of brand popularity in 

comparison to competitors. Analysis of media distribu-

tion, voice and category of operational clusters.  

14 By proposing an algorithm to detect emotions in social 

networking context, the authors recommend using their 

algorithm for consumer behavior analysis. By studying 

the emotion, characteristics of consumers can lead to 

other areas such as consumer trends and psychological 

states. Improving marketing techniques and tracking 

consumer’s happiness index based on location.  

15 In this study, the authors provide means to discover the 

causes of emotion that drive consumer behavior by an-

alyzing the results, actions of agents and aspects of ob-

jects. Therefore, managers can extract the emotion-
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cause components to understand what the reason for 

consumer’s emotions is.  

Other applications could be precision marketing for 

product recommendations, tailoring products to spe-

cific consumers and for decision-making.  

16 Social networking blogs allow limited character entry, 

especially in microblogs, which is why use emoji and 

emoticons to express their feelings in a compact way.  

This study contributes to improvement in understand-

ing consumers concerning the above-mentioned online 

linguistic opinion expression.  

17 Study provides insight into how to improve search en-

gine marketing and improved guidelines for digital 

marketing practitioners.  

18 The study talks about consumer behavior in food con-

text. Managerial applications include studying consum-

ers in food related context for the purpose of product 

development, marketing, service feedback analysis and 

target marketing.  

19 This study focused on nostalgic posts generated 

through Facebook. Managers can focus on marketing 

which involves nostalgia-based advertisement cam-

paigns. Targeting consumers based on their nostalgic 

content such as posts and communication.  

20 The study explored online retailer’s customer engage-

ment in microblogging sphere. Provides insight into 

key managerial applications such as customer engage-

ment, customer perception management, customer ser-

vice, marketing, company brand management and cus-

tomer complaint management.  

21 In this study, consumer sentiment towards popular 

brands was analyzed. Based on the results, manager ap-

plications range from improved marketing intelligence, 

brand perception management, customer relationship 

management and market research 

22 In this study, cross-cultural campaigning was the cen-

tral focus. Managerial applications include cross-cul-

tural marketing,  

23 Managerial applications include analyzing consumer’s 

perception on products and service quality. Improve-

ment in managing supply chain management activities 
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such as analyzing market demand, complementing de-

mand forecasting methods and operation planning. 

Other areas of management are risk management in 

supply chain.  

24 Managerial applications include studying the levels of 

behavioral engagement of consumers, public relations 

management, for the purpose of information sharing 

among consumers about products and events.   

25 Different components of marketing intelligence are dis-

cussed in this study. Real time consumer monitoring, 

Consumer emotion analysis over time, consumer en-

gagement and competitor analysis are some of the ap-

plications in this study. 

26 This research focuses on the practicality of employing 

sentiment analysis in analyzing consumers in hospital-

ity context. Applications range from marketing intelli-

gence, real-time analysis of a marketing campaign, 

brand perception analysis. 

27 Real time consumer monitoring for the purpose of 

stock market prediction.   

28 Applications range from brand perception analysis, 

marketing analysis and customer engagement.  

29 Main application from this study is event popularity 

analysis. 

In Table 14, detailed description and of various types of managerial applications found 

in all the research articles is presented. Several managerial themes emerge as a result 

of studying consumer emotions.  

3.2 Empirical Results 

The results from the analysis can be divided into three sections namely quantitative, 

qualitative content + quantitative, and qualitative content. The quantitative results 

were obtained by means of quantitative methods, the quantitative + qualitative content 

is a result of qualitative evaluation and combining quantitative methods with qualita-

tive data. Finally, the qualitative as mentioned in the methodology is results presented 

by semi-structured interview with the company representative.  

3.2.1 Quantitative Results 

The tweets were analyzed using SentiStrength sentiment detection algorithm and 

VADER sentiment algorithm. The following image shows the positive, negative and 
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neutral sentiment of the activity extracted from the images and represented in descend-

ing order of sentiment score and is indicated by green, red and dark grey respectively.  

 

Figure 5. Sentiment of activity using SentiStrength algorithm. 

Figure 5 illustrates three different sentiments detected using SentiStrength algorithm 

namely positive, negative and neutral for the activity tags extracted from the images. 

However, by further breaking down into individual sentiments the results extracted are 

displayed in the following image. 
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Figure 6. Positive, negative and neutral sentiment of activity in descending order. 

 

In Figure 6, sentiment for each activity is plotted in descending order of score. For 

positive sentiment, ‘sitting’, ‘standing’, ‘man’, ‘red’, ‘outdoor’, ‘white’, ‘holding’, 

‘large’, ‘old’, ‘table’ are some of the activities with highest score. For negative senti-

ment chart, ‘sitting’, ‘man’, ‘table’, ‘white’, ‘standing’, ‘old’, ‘red’, ‘large’, ‘woman’, 

‘holding’, ‘indoor’ are few activities with large score. Whereas in neutral sentiment 

category, ‘man’, ‘sitting’, ‘standing’, ‘table’, ‘holding’, ‘old’, ‘outdoor’, ‘riding’, 

‘white’ are some of the activities with high score. The following table displays the 

activity tags with highest score for each sentiment.  

Table 15. Score for activity tags under each sentiment category (SentiStrength). 

Positive Negative Neutral 

sitting – 13 sitting – 12 man – 9 

standing – 12 man – 11 sitting – 8 

man – 11 table – 11 standing – 6 

red – 11 white – 9 table – 6 

outdoor – 10 standing – 8 holding – 5 

white – 9 old – 7 old – 5 

holding – 8 red – 7 outdoor – 5 

large – 8 large – 7 riding – 5 

old – 8 woman – 6 white – 5 

table – 8 holding – 5 air – 5 

indoor – 7 indoor – 5 computer – 4 
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black – 6 plate – 5 laying – 4 

computer – 6 young – 5 bag – 3 

field – 6 black – 4 black – 3 

water – 6 front – 4 clock – 3 

bed – 5 green – 4 large – 3 

covered – 5 outdoor – 4 pair – 3 

front – 5 people – 4 phone – 3 

grass – 5 person – 4 small – 3 

laptop – 5 yellow – 4 water – 3 

room – 5 computer – 3 bench – 2 

screen – 5 food – 3 bird – 2 

small – 5 hot – 3 blanket – 2 

young – 5 laptop – 3 board – 2 

desk – 4 room – 3 boat – 2 

green – 4 small – 3 body – 2 

laying – 4 tree – 3 box – 2 

looking – 4 water – 3 bridge – 2 

ocean – 4 wearing – 3 field – 2 

people – 4 bear – 2 food – 2 

person – 4 bed – 2 forest – 2 

rock – 4 blanket – 2 front – 2 

snow – 4 boat – 2 grass – 2 

wearing – 4 body – 2 green – 2 

woman – 4 cake – 2 group – 2 

bear – 3 cat – 2 horse – 2 

eating – 3 clothing – 2 indoor – 2 

glass – 3 clouds – 2 lake – 2 

little – 3 coffee – 2 laptop – 2 

park – 3 colorful – 2 paper – 2 

riding – 3 cup – 2 people – 2 

river – 3 filled – 2 person – 2 

rocky – 3 fruit – 2 posing – 2 

sign – 3 glass – 2 red – 2 

train – 3 grass – 2 river – 2 

tree – 3 group – 2 screen – 2 

yellow – 3 kitchen – 2 sign – 2 

beach – 2 laying – 2 thing – 2 

board – 2 looking – 2 tree – 2 

body – 2 motorcycle - 2 umbrella – 2 
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Table 15 lists the Top 50 tags. ‘sitting’ is highest in positive and negative. ‘man’ has 

the highest neutral sentiment. Similarly, sentiment for activity tags were calculated 

with VADER sentiment algorithm and the results are as follows.  

 

Figure 7. Sentiment of activity using VADER Sentiment Analysis. 

Figure 7 illustrates three different sentiments detected using VADER sentiment anal-

ysis algorithm. Positive, negative and neutral sentiment for activity tags extracted from 

the images. The analysis of activity under each sentiment is shown in Figure 8.  
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Figure 8. Positive, negative and neutral sentiment of activity in descending order 

(VADER). 

 

In the above figure, sentiment for each activity is plotted in descending order of score. 

For positive sentiment, ‘man’, ‘sitting’, ‘standing’, ‘man’, ‘large’, ‘outdoor’, ‘red’, 

‘white’, ‘holding’, ‘old’, ‘table’, ‘black’ are some of the activities with highest score. 

For negative sentiment chart, ‘man’, ‘table’, ‘sitting’, ‘old’, ‘standing’, ‘computer’, 

‘holding’, ‘black’, ‘outdoor’, ‘front’, ‘green’, ‘indoor’ are few activities with large 

score. Whereas in neutral sentiment category, ‘sitting’, ‘white’, ‘table’, ‘man’, ‘red’, 

‘small’, ‘standing’, ‘old’, ‘air’, ‘holding’, ‘large’, ‘laying’, ‘outdoor’ are some of the 

activities with high score. The following table displays the activity tags with highest 

score for each sentiment.  

Table 16. Score for activity tags under each sentiment category (VADER Sentiment). 

Positive Negative Neutral 

man – 14 man – 10 sitting – 11 

sitting – 14 table – 9 white – 10 

standing – 13 sitting – 8 table – 8 

large – 11 old – 7 man – 7 

outdoor – 10 standing – 7 red – 7 

red – 10 computer – 6 small – 6 

white – 10 holding – 6 standing – 6 

holding – 8 black – 5 old – 5 

old – 8 outdoor – 5 air – 4 

table – 8 front – 4 holding – 4 

black – 7 green – 4 large – 4 

indoor – 7 indoor – 4 laying – 4 

water – 7 laptop – 4 outdoor – 4 

Field – 6 Riding – 4 plate – 4 

People – 6 Woman – 4 bag – 3 

Young – 6 Yellow – 4 blanket – 3 

Bed – 5 Clock – 3 board – 3 
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Computer – 5 Food – 3 food – 3 

Front – 5 Grass – 3 indoor – 3 

Grass – 5 Group – 3 pair – 3 

Looking – 5 People – 3 phone – 3 

Ocean – 5 Person – 3 riding – 3 

Person – 5 Red – 3 tree – 3 

Room – 5 Room – 3 water – 3 

Snow – 5 White – 3 woman – 3 

Wearing – 5 Young – 3 bench – 2 

Woman – 5 Bed – 2 brown – 2 

Body – 4 Boat – 2 cat -2 

Covered – 4 Body – 2 city – 2 

Glass – 4 Box – 2 clothing – 2 

Green – 4 Hot – 2 coffee – 2 

Laptop – 4 Lake – 2 computer – 2 

Laying – 4 Large – 2 counter – 2 

Park – 4 Laying – 2 covered – 2 

Rock – 4 Phone – 2 cup – 2 

Screen – 4 Posing – 2 desk – 2 

Beach – 3 Screen – 2 field – 2 

Bear – 3 Small – 2 forest – 2 

Boat – 3 Thing – 2 front – 2 

Desk – 3 Tree – 2 girl – 2 

Eating – 3 Walking – 2 green – 2 

Glasses – 3 Water – 2 hot – 2 

Lake – 3 Air – 1 keyboard – 2 

Little – 3 Airplane – 1 kitchen – 2 

Riding – 3 Apple – 1 laptop – 2 

River – 3 Area – 1 little – 2 

Rocky – 3 Background – 1 lying – 2 

Small – 3 Beach – 1 mouse – 2 

Tree – 3 Bear – 1 paper – 2 

Yellow – 3 Bedroom – 1 person - 2 

 

Table 16 lists the highest activity score under each sentiment with maximum positive 

score of 14, maximum negative score of 10 and maximum neutral score of 11. ‘man’ 

is highest in positive and negative. ‘sitting’ has the highest neutral sentiment. Emotion 

analysis for activity tags were calculated with IBM Watson emotions and the results 

are as follows.  
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Figure 9. Overall IBM Watson emotions for activity tags. 

 

Figure 9 illustrates the overall emotions of the activity tags in descending order of 

score. Individual emotions such as ‘Anger’, ‘Disgust’, ‘Fear’, ‘Joy’ and ‘Sadness’ are 

mapped for activity tags in the following image.  
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Figure 10. Individual emotion score for activity tags (IBM Watson). 

 

In Figure 10, emotions for each activity is plotted in descending order of score. 23 

activity tags were fall under ‘Anger’ emotion. Only 10 activity tags come under ‘Dis-

gust’ emotion category. ‘Fear’ with 102 activity tags, ‘Joy’ with 191 activity tags and 

‘Sadness’ with 60 activity tags. ‘Joy’ is the most common emotion found during the 

analysis. The following table displays the activity tags with highest score for each 

emotion category. 
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Table 17. Highest emotion scores for activity tags under each emotion (IBM Wat-

son). 

Anger Disgust Fear Joy Sadness 

bed – 1 air – 1 man – 6 sitting – 22 man – 3 

black – 1 bag – 1 old – 6 man – 21 sitting – 3 

board – 1 blanket – 1 sitting – 6 standing – 21 small – 3 

clock – 1 laying – 1 holding -5 red – 16 table – 3 

computer – 1 pair – 1 standing- 5 white – 16 bird – 2 

dark – 1 paper – 1 table – 5 large – 15 cat – 2 

desk – 1 phone – 1 computer – 4 outdoor – 15 computer – 2 

front – 1 sitting – 1 front – 4 table – 15 indoor – 2 

holding – 1 table – 1 bench – 3 old – 12 water – 2 

indoor – 1 white - 1 black – 3 holding – 11 white – 2 

Keyboard – 1  food – 3 people – 9 background – 

1 

Laptop – 1  hot – 3 water – 9 bear – 1 

Laying – 1  indoor – 3 woman – 9 black – 1 

Man – 1  laptop – 3 young – 9 board – 1 

Monitor – 1  outdoor – 3 black – 8 boat – 1 

Old – 1  person – 3 field – 8 body – 1 

Piano – 1  red – 3 green – 8 bridge – 1 

Room – 1  small – 3 indoor- 8 brown – 1 

Screen – 1  white – 3 bed – 7 cake – 1 

Sitting – 1  woman – 3 grass – 7 clock – 1 

Table 17 lists different activity tags under each emotion. The score for ‘Anger’ and 

‘Disgust’ tags are all the same with 1. ‘man’ is highest in ‘Fear’ and ‘Sadness’ emo-

tions. ‘sitting’, ‘man’ and ‘standing’ are the highest emotions with ‘Joy’.  

 

Face emotion results 

The face emotions that were detected using Microsoft Face API – Facial Recognition 

software is given below. The consumer faces were analyzed for emotional attributes 

such as ‘anger’, ‘contempt’, ‘disgust’, ‘fear’, ‘happiness’, ‘neutral’, ‘sadness’, and 

‘surprise’. The following table shows the results.  
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Table 18. Face emotion results from the tweets. 

Tweet Gender Primary 

Emotion 

All Emo-

tions 

Original tweet: “Palautumista arjessa 

uppoutumalla hyvän kirjan vietäväksi. Tämä 

kirjan lukeminen on lasten syntymien myötä 

jäänyt taustalle, mut nyt palautuu yhtenä 

rentoutumiskeinona. 

@moodmetric #moodmetricstressinhallintak

eino https://t.co/4QqzyevWkE” 

 

English translation: “Returning to everyday 

life by immersing in a good book. Reading 

this book has been left behind by the birth of 

children, but is now being restored as one of 

the means of relaxation. 

@moodmetric #moodmetricstress manage-

ment tool https://t.co/4QqzyevWkE”  

face 1: 

male 

face 1 - 

‘neutral’: 

0.987 

'face1': 

{'anger': 

0.002, 

'contempt': 

0.001, 'dis-

gust': 0.0, 

'fear': 0.0, 

'happi-

ness': 0.0, 

'neutral': 

0.987, 

'sadness': 

0.01, 'sur-

prise': 0.0} 

Original tweet: “Hitting the gym relieves 

stress 

@Moodmetric #moodmetriccampaign 

@jjussila 

#moodmetricstressinhallintakeino 

https://t.co/Ymbht3wYIM” 

face 1: 

male 

face 1 - 

‘neutral’: 

0.997 

'face1': 

{'anger': 

0.0, 'con-

tempt': 0.0, 

'disgust': 

0.0, 'fear': 

0.0, 'happi-

ness': 0.0, 

'neutral': 

0.997, 

'sadness': 

0.002, 'sur-

prise': 0.0} 

Original tweet: “Mindful breathing keeps my 

anxiety and stress out while I'm working...so 

just inhale and exhale...#moodmetricstress-

inhallintakeino https://t.co/SDczQ0Gz17”  

face 1: 

female 

face 1 - 

'neutral': 

0.566 

'face1': 

{'anger': 

0.005, 

'contempt': 

0.197, 'dis-

gust': 

0.005, 

'fear': 

0.001, 

'happi-

ness': 0.17, 

https://t.co/4QqzyevWkE
https://t.co/4QqzyevWkE
https://t.co/Ymbht3wYIM
https://t.co/SDczQ0Gz17


50 

'neutral': 

0.566, 

'sadness': 

0.056, 'sur-

prise': 0.0} 

Original tweet: “Mindful breathing keeps my 

anxiety and stress out while I'm working...so 

just inhale and exhale...#moodmetricstress-

inhallintakeino https://t.co/SDczQ0Gz17”  

face 1: 

male 

face 1 - 

‘neutral’: 

0.926 

'face1': 

{'anger': 

0.0, 'con-

tempt': 

0.054, 'dis-

gust': 0.0, 

'fear': 0.0, 

'happi-

ness': 

0.017, 

'neutral': 

0.926, 

'sadness': 

0.003, 'sur-

prise': 0.0} 

Original tweet: “Work and hobby are almost 

same, but when stress, I build and tweak 

gadgets and consumer electronics ?, #hard-

warehack @Hacksterio @hackadayio and 

some fun coding. #moodmetricstressinhallin-

takeino https://t.co/shOI4fOdSp” 

face 1: 

male 

face 1 - 

'neutral': 

0.942 

'face1': 

{'anger': 

0.0, 'con-

tempt': 

0.004, 'dis-

gust': 0.0, 

'fear': 0.0, 

'happi-

ness': 

0.001, 

'neutral': 

0.942, 

'sadness': 

0.052, 'sur-

prise': 0.0} 

Original tweet: “Työkiireen keskellä hyvä 

tapa nollata päätä on järjestää hetkiä 

työkaverien kanssa ja oppia uutta yhdessä 

#moodmetricstressinhallintakeino 

@Moodmetric @GoforeGroup 

#palvelumuotoilu #muotoilupeli 

face 1: 

male, 

face 2: 

female, 

face 3: 

female 

face 1 - 

'happiness': 

1.0, face 2 – 

‘happi-

ness’: 1.0, 

face 3 - 

'face 1': 

{'anger': 

0.0, 'con-

tempt': 0.0, 

'disgust': 

0.0, 'fear': 

https://t.co/SDczQ0Gz17
https://t.co/shOI4fOdSp
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#neukkarinseinä kin hymyilee! kiitos 

@annakaisa_b https://t.co/ic6EmvtIRu”  

 

English translation: “In the middle of the 

work circle, a good way to reset the head is 

to have moments with coworkers and to learn 

new together #moodmetricstress manage-

ment mode @Moodmetric @GoforeGroup 

#serviceforming #showoutgame #children 

wall even smiles! thanks @annakaisa_b 

https://t.co/ic6EmvtIRu”  

'happiness': 

0.999 

0.0, 'happi-

ness': 1.0, 

'neutral': 

0.0, 'sad-

ness': 0.0, 

'surprise': 

0.0}, 'face 

2': {'an-

ger': 0.0, 

'contempt': 

0.0, 'dis-

gust': 0.0, 

'fear': 0.0, 

'happi-

ness': 1.0, 

'neutral': 

0.0, 'sad-

ness': 0.0, 

'surprise': 

0.0}, 'face 

3': {'an-

ger': 0.0, 

'contempt': 

0.0, 'dis-

gust': 0.0, 

'fear': 0.0, 

'happi-

ness': 

0.999, 

'neutral': 

0.001, 

'sadness': 

0.0, 'sur-

prise': 0.0} 

Original tweet: “Työkiireen keskellä hyvä 

tapa nollata päätä on järjestää hetkiä 

työkaverien kanssa ja oppia uutta yhdessä 

#moodmetricstressinhallintakeino 

@Moodmetric @GoforeGroup 

#palvelumuotoilu #muotoilupeli 

#neukkarinseinä kin hymyilee! kiitos 

@annakaisa_b https://t.co/ic6EmvtIRu”  

 

face 1: 

female 

face 1 -  

'neutral': 

0.999 

'face 1': 

{'anger': 

0.0, 'con-

tempt': 0.0, 

'disgust': 

0.0, 'fear': 

0.0, 'happi-

ness': 0.0, 

'neutral': 

https://t.co/ic6EmvtIRu
https://t.co/ic6EmvtIRu
https://t.co/ic6EmvtIRu
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English translation: “In the middle of the 

work circle, a good way to reset the head is 

to have moments with coworkers and to learn 

new together #moodmetricstress manage-

ment mode @Moodmetric @GoforeGroup 

#serviceforming #showoutgame #children 

wall even smiles! thanks @annakaisa_b 

https://t.co/ic6EmvtIRu”  

0.999, 

'sadness': 

0.001, 'sur-

prise': 0.0 

Original tweet: “When stressed, I play 

@PUBG #gameofgames #moodmetricstress-

inhallintakeino https://t.co/o4SyEHIn5N” 

face 1: 

male 

face 1 - 

'neutral': 

0.953 

'face 1': 

{'anger': 

0.0, 'con-

tempt': 0.0, 

'disgust': 

0.0, 'fear': 

0.0, 'happi-

ness': 

0.047, 

'neutral': 

0.953, 

'sadness': 

0.0, 'sur-

prise': 0.0} 

 

The above table shows the tweets, genders found, primary emotion and all emotional 

values detected from the faces. Out of 47 tweets, only 7 tweets contained images with 

faces. Only six participants tweeted with a combination of image and a text. Following 

table shows the combination of sentiment and emotion for tweets with identified 

face(s).  

 

Table 19. Sentiment and emotions of tweets with face. 

Tweet Sentiment 

(SentiS-

trength) 

Sentiment 

(VADER) 

Emotion (Face API) 

Original tweet: “Palautumista 

arjessa uppoutumalla hyvän 

kirjan vietäväksi. Tämä kirjan 

lukeminen on lasten syntymien 

myötä jäänyt taustalle, mut nyt 

palautuu yhtenä 

rentoutumiskeinona. 

Positive Positive face 1 - ‘neutral’: 

0.987 

https://t.co/ic6EmvtIRu
https://t.co/o4SyEHIn5N
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@moodmetric #moodmetricstr

essinhallintakeino 

https://t.co/4QqzyevWkE” 

 

English translation: “Returning 

to everyday life by immersing in 

a good book. Reading this book 

has been left behind by the birth 

of children, but is now being re-

stored as one of the means of re-

laxation. 

@moodmetric #moodmet-

ricstress management tool 

https://t.co/4QqzyevWkE”  

Original tweet: “Hitting the 

gym relieves stress 

@Moodmetric #moodmetric-

campaign @jjussila 

#moodmetricstressinhallin-

takeino 

https://t.co/Ymbht3wYIM”  

Neutral Negative face 1 - ‘neutral’: 

0.997 

Original tweet: “Talvella 

laskettelu on mulle parasta 

rentoutumista ?? #moodmet-

ricstressinhallintakeino 

@Moodmetric #parastate-

kemistä 

https://t.co/Kq6W9Jtz7v”  

 

English translation: “In winter, 

downhill skiing is the best re-

laxation for me ?? #moodmet-

ricstressinvestmentmodel 

@Moodmetric #healthy 

https://t.co/Kq6W9Jtz7v”  

Positive Positive face 1 - 'neutral': 0.566 

Original tweet: “Mindful 

breathing keeps my anxiety and 

stress out while I'm working...so 

just inhale and exhale...#mood-

metricstressinhallintakeino 

https://t.co/SDczQ0Gz17”  

negative negative face 1 - ‘neutral’: 

0.926 

https://t.co/4QqzyevWkE
https://t.co/4QqzyevWkE
https://t.co/Ymbht3wYIM
https://t.co/Kq6W9Jtz7v
https://t.co/Kq6W9Jtz7v
https://t.co/SDczQ0Gz17
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Original tweet: “Work and 

hobby are almost same, but 

when stress, I build and tweak 

gadgets and consumer elec-

tronics ?, #hardwarehack 

@Hacksterio @hackadayio 

and some fun coding. #mood-

metricstressinhallintakeino 

https://t.co/shOI4fOdSp”  

Negative Positive face 1 - 'neutral': 0.942 

Original tweet: “Työkiireen 

keskellä hyvä tapa nollata 

päätä on järjestää hetkiä 

työkaverien kanssa ja oppia 

uutta yhdessä 

#moodmetricstressinhallintakei

no @Moodmetric 

@GoforeGroup 

#palvelumuotoilu 

#muotoilupeli #neukkarinseinä 

kin hymyilee! kiitos 

@annakaisa_b 

https://t.co/ic6EmvtIRu”  

 

English translation: “In the 

middle of the work circle, a 

good way to reset the head is to 

have moments with coworkers 

and to learn new together 

#moodmetricstress manage-

ment mode @Moodmetric 

@GoforeGroup #serviceform-

ing #showoutgame #children 

wall even smiles! thanks @an-

nakaisa_b 

https://t.co/ic6EmvtIRu”  

Positive Positive face 1 - 'happiness': 

1.0, face 2 – ‘happi-

ness’: 1.0, face 3 - 

'happiness': 0.999 

Original tweet: “Työkiireen 

keskellä hyvä tapa nollata 

päätä on järjestää hetkiä 

työkaverien kanssa ja oppia 

uutta yhdessä 

#moodmetricstressinhallintakei

no @Moodmetric 

@GoforeGroup 

Positive Positive face 1 -  'neutral': 

0.999 

https://t.co/shOI4fOdSp
https://t.co/ic6EmvtIRu
https://t.co/ic6EmvtIRu
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#palvelumuotoilu 

#muotoilupeli #neukkarinseinä 

kin hymyilee! kiitos 

@annakaisa_b 

https://t.co/ic6EmvtIRu”  

 

English translation: “In the 

middle of the work circle, a 

good way to reset the head is to 

have moments with coworkers 

and to learn new together 

#moodmetricstress manage-

ment mode @Moodmetric 

@GoforeGroup #serviceform-

ing #showoutgame #children 

wall even smiles! thanks @an-

nakaisa_b 

https://t.co/ic6EmvtIRu”  

Original tweet: “When stressed, 

I play @PUBG #gameofgames 

#moodmetricstressinhallin-

takeino https://t.co/o4SyE-

HIn5N”  

Negative Neutral face 1 - 'neutral': 0.953 

 

The above table shows the original tweet from the participants, it’s translated version, 

sentiment results from SentiStrength and Vader sentiment analysis, and emotion with 

its associated value. 

3.2.2 Qualitative content + Quantitative Results 

The tweets containing both the text and images were manually annotated for its va-

lence and arousal dimensions. Simultaneously, activity tags were also manually anno-

tated. The following image depicts the valence and arousal dimension of tweets.  

https://t.co/ic6EmvtIRu
https://t.co/ic6EmvtIRu
https://t.co/o4SyEHIn5N
https://t.co/o4SyEHIn5N
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Figure 11. Activity tags mapped in the valence and arousal dimensions. 

 

In Figure 11, the activity categories are mapped in the valence and arousal dimension. 

The activity is market between -5 to +5 on both the valence and arousal dimensions. 

The following image represents the same points with IBM Watson emotions.  

 

Figure 12. Activity tags mapped in the valence and arousal dimensions with quanti-

tative emotions. 
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In Figure 12, the activity categories are mapped in the valence and arousal dimension 

with quantitative emotions such as ‘Anger’, ‘Disgust’, ‘Fear’, ‘Joy’ and ‘Sadness’. 

The activity is market between -5 to +5 on both the valence and arousal dimensions.  

3.2.3 Qualitative Results 

After the analysis of the quantitative results, and qualitative content + quantitative re-

sults, the research question 6 and its sub questions need to be answered. To gather 

answers for these questions, the CIO of the case company was interviewed. The results 

are as follows.  

RQ 6. Where can consumer emotions be applied in a managerial context? 

Answer: Vigofere Oy (Moodmetric) provides services that help organizations and in-

dividuals to better manage stress. For the company, it is valuable to understand cus-

tomers emotions towards their and products, services and stress management in gen-

eral. The services of the company help customers to keep track of their daily activities 

and gain insight on which activities increase recovery and stress. By providing bio-

feedback to customers, the customers can learn what works best for them, and adjust 

their behavior, habits, and activities accordingly. 

RQ 6.1 How is the company currently making use of consumer emotions? 

Answer: Moodmetric smart ring measures electrodermal activity of the wearer, which 

is a psychophysiological measure of stress (arousal). In addition, the Moodmetric App 

contains a diary function that allows customers to record their emotions on valence 

scale (of Happy, Neutral and Unhappy) about their activities. However, customer in-

putted data to diary is not transferred to Moodmetric Cloud and hence Moodmetric 

gets to know about their consumers emotions only when they share them, e.g. in social 

media. The company has collected user stories for marketing in the form of tweets, 

blog posts and YouTube videos, which are mostly self-reported emotions or experi-

ences of using the product. The company is interested to know about their customers 

stress management and recovery activities and experiences also in terms of valence 

and arousal dimension. Therefore, they were interested in experimenting with Twitter 

marketing campaign by which emotions could be analysed from user posts. 

RQ 6.2 What challenges does the company have in collecting data and analyzing 

consumer emotions? 

Answer: Consumers express their emotions about Moodmetric products and services 

on several social media platforms, such as Instagram, Facebook, Twitter and YouTube. 

It’s challenging to collect data from multiple social media platforms and, for example, 

data on Facebook is available only from Moodmetric Page comments and from those 

closed groups that Moodmetric is moderating. The company does not employ auto-

matic omni-channel social media monitoring tools, so practically all data needs to be 

collected manually. Furthermore, there is a lack of sentiment and emotion algorithms 
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that could be used to detect consumer emotions from Finnish language, which was the 

main market of the product during the time the study was conducted. 

RQ 6.3 How could the quantitative, qualitative content + quantitative results and 

qualitative results be made use of in the company? 

Answer: Quantitative results related to activity tags provide information what things 

have a more positive, neutral or negative association in the images posted by users. 

This information can be used e.g. in designing marketing messages of the company. 

 

Activity tags associated with positive sentiment can be assumed to describe situations 

and activities that users find more positive. First of all, an inventory of positively as-

sociated activity tags is interesting. Tags like ‘outdoor’, ‘water’, ‘grass’, ‘ocean’, 

‘park’ that have often been associated with positive sentiment are something that can 

be used as image features when the intention is to convey positive messages. However, 

some recognized activity tags like ‘man’, ‘sitting’, ‘standing’ that are often featured 

and associated with positive sentiment are less informative and taken out of context do 

not make sense. 

 

Activity tags that have been classified as neutral do not as such help in designing mar-

keting messages. Negative activity tags give some indication of features in images that 

have been perceived as negative by users. To some degree these could be used “Don'ts” 

when adding illustrations to social media posts. With a larger sample of tweets by users 

this could be informative.  

 

Tables 15 and 16 provide condensed results of what users perceive as positive, neutral 

or negative aspects. The tables actually reveal that many often used activity tags can 

be found both from the positive, neutral and negative sides. SentiStrength and VADER 

provide similar results. By comparing the results of Computer Vision API and the two 

sentiment detection algorithms some support is given to the most positively and nega-

tively associated tags. For instance, outdoors have been largely positive by all detec-

tion methods and computers negative by all detection methods. Especially, outdoors, 

nature, forests are often mentioned in research reports, as well as, Moodmetric users 

as something that help them to recover from stress. The identification of computers as 

negatively associated is also not a surprise. Long hours sitting with a computer, espe-

cially if no breaks are taken, are not beneficial for health and feature also often as 

problems mentioned by knowledge workers in their daily life. In terms of marketing 

and communications, people sitting with computers can be used to communicate the 

need for recovery. A larger sample of tweet analysis might reveal a more comprehen-

sive dictionary that can be used in connection with stress management and recovery as 

used by customers and enable the company to talk in a more similar language with its 

customers. 
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Activity tags with emotions from the images (Figure 10) provides the company addi-

tional information. Especially are interesting such tags that have been associated with 

‘anger’, ‘disgust’ or ‘joy’. Typically, ‘anger’ and ‘disgust’ are indicative of stressful 

situations - and is more valuable to understand than just valence dimension (from neg-

ative to positive). Also, ‘joy’ is important as it typically indicates situations and activ-

ities where the person has a better mood and can help to recover from stressful situa-

tions. Emotions thus provide more valuable information for the company. 

 

This visualization (Figure 11) is the most useful for the company, as it provides the 

mapping of activities in terms of arousal and valence dimensions that is also supported 

by the Moodmetric application. The categorization by activity provides the most val-

uable information as it helps to describe and communicate situations that have been 

found important for recovery. The qualitative analysis also reveals that in contrast to 

the sentiment detection algorithms applied in the previous analysis - the users did not 

actually report any activities they considered negative. This was expected, as the idea 

of the marketing campaign was to source practices and activities that the users have 

found beneficial for stress management and recovery.  

 

This visualization (Figure 11) could be done also at an individual level, which could 

help the user to increase self-awareness and better understand how each activity impact 

him or her in arousal and valence dimension. Such information and visualization could 

be used to see the impacts of small changes and new ways of working that the user 

tries in daily life. For instance, if the user would start practicing some stress manage-

ment method, the impact of this could be visualized in daily, weekly and monthly ba-

sis. 

 

Information about emotions added to the visualization (Figure 12) have potential to 

increase the value of the visualization. However, it is difficult to determine the accu-

racy of Watson emotion detection based on the visualization. For example, without 

knowing the actual tweets, it is not possible to say which are those situations that have 

been detected to include anger or fear. Therefore, this visualization would need addi-

tional views, or e.g. function as a user interface to investigate in more detail the tweets 

that are interesting or surprising based on the visualization. If this visualization would 

be about tweets of an individual person, it would likely serve as an interesting view to 

different activities and their emotions as experienced by the user. The combined view 

of tweets from all users on the other hand can be informative for the company in rec-

ognizing emotionally loaded activities 

RQ 6.4 What is most valuable method for making use of consumer emotions? 

Answer: The most valuable method for the company would include the activities and 

their positioning in the arousal and valence space. The study clearly points out two 

distinct use cases how consumer emotions on social media could be utilized by the 
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company. First, similarly to the Moodmetric App, an activity compass could be devel-

oped that visualizes the user’s behavior based on his or her social media activity. This 

could provide interesting insights for the user. Secondly, a similar application could 

be developed that analyzes all the discussions related to the company’s products and 

services in real-time. This could be used to monitor social media discussions and adjust 

communications accordingly 

RQ 6.5 How can the company implement the introduced methods in their busi-

ness? 

Answer: The introduced methods function as a proof of concept of something that the 

company could develop and implement in its own business. For organizations such 

methods could be used to develop a real-time organizational climate and wellbeing 

measures that could be displayed e.g. on company wall or intranet. In addition, to the 

compass that visualizes the social media discussion around the company or all its em-

ployees in arousal and valence space, trend views could be developed that display daily 

and weekly trends from social media data. This kind of data could be used to augment 

data that is received from employee wellbeing and organizational climate surveys. The 

introduced methods can be also used to increase customer understanding and experi-

ences related to the company's products and services. One next step to explore would 

be also to see how the methods would perform and the visualizations look like when 

data is collected from several social media sources, such as Facebook and Instagram, 

in addition to Twitter. Overall, the study provides several new opportunities for social 

media analytics that need to be further investigated. 
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4. DISCUSSION AND CONCLUSIONS 

The study was initiated to gather understanding and to answer the subject matter con-

cerning the primary research question “What are the different managerial applications 

resulting from detection of consumer emotions in social networking data?”, a system-

atic literature review methodology was applied in this study. The literature review was 

conducted using Fink (2014)’s ‘Conducting Research Literature Reviews’. The appli-

cation of the literature review follows 7 systematic actions. First step is selecting the 

research questions. A total of six research questions were formulated, the focus of 

which is to answer how the current social networking data are extracted and from 

which social networking platform?, what are the different consumer sentiment and 

consumer emotions that are studied in their analysis?, what are the sizes of the datasets 

that are extracted for analysis?, what are the different computational methods used in 

studying consumer emotions (and sentiments) and how are they evaluated?, what are 

the limitations while detecting consumer emotions in social networking sites?, and fi-

nally, where can consumer emotions (and sentiments) be applied in a managerial con-

text?.  

Second step of the process is selecting the bibliographic or article databases/websites, 

and other sources. The selection includes IEEE Xplore, ScienceDirect, and Web of 

Science. Third step is to choose the search terms for gathering the articles. The search 

terms used for this study are “social media” emotion* consumer. After this, the prac-

tical screening criteria comprising inclusion and exclusion criteria for the article was 

applied. For the inclusion criteria, only studies that are published in English language 

was considered, only journals and research articles were included, only studies that 

discussed consumer emotions in social media context were included, and articles that 

mentioned data extraction methods were taken in to consideration. For the exclusion 

criteria, duplicates were excluded, articles were excluded if the data extraction meth-

ods are manual and are not automated, articles were excluded if they were not specif-

ically talking about social networking platforms, and articles were excluded if the anal-

ysis was performed on existing datasets.  

Initially, the total number of articles that were returned for the search terms were 86, 

1457 and 145 for IEEE Xplore, ScienceDirect and Web of Science respectively. After 

the inclusion criteria and exclusion criteria, total number of articles for final analysis 

were reduced to just 29 in number (IEEE – 5, Web of Science – 4, ScienceDirect – 

20).  
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4.1 Summary of the Results 

The results of the systematic literature review are synthesized and presented in Table 

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14. The final articles were gathered from publi-

cations such as China Communications, IEEE  Access, IEEE Transactions on Visual-

ization and Computer Graphics, Journal of Destination Marketing & Management, 

Program-Electronic Library and Information Systems, Online Information Review, 

Journal of Hospitality and Tourism Technology, Journal of Computational Science, 

Transportation Research Part E: Logistics and Transportation Review, The Journal of 

Strategic Information Systems, Information and Management, Expert Systems with 

Applications, Applied Soft Computing, International Journal of Information Manage-

ment, Food Quality and Preference, International Journal of Human-Computer Stud-

ies, Computers in Human Behavior, Public Relations Review, International Journal of 

Production Economics, Industrial Marketing Management, Decision Support Systems, 

International Journal of Hospitality Management, and The Journal of Finance and Data 

Science. The earliest article chosen is from the year 2012 and the latest article is from 

2018.  

Research Question 1 – How are the current consumer emotion social networking data 

extracted in the current literature and from which social networking platform? 

Majority of the articles gathered data using APIs (18 articles). Other data extraction 

methods include SocioScope (custom-made), SODATO, Crawler (2 articles), Internet 

Crawler, HTML Parsing, twitteR package (2 articles), Open Graph API, QDA Miner, 

and Radian 6. With regards to the social networking platforms, majority of the studies 

were conducted based on Twitter platform, as many as 20 articles. Two articles per-

formed their analysis on both Twitter and Facebook. Other social networking plat-

forms include Sina Weibo (4 articles) and Facebook (2 articles). One study did not 

mention any social networking platform. Therefore, it is evident that most of the stud-

ies that tried to understand consumer emotions were conducted on data which was 

gathered from Twitter platform.  

Research Question 2 – What are the different consumer sentiments and consumer emo-

tions that are investigated in the current literature? 

Many research articles classified emotions into 2-5 different types of sentiment clas-

ses. Twelve studies classified sentiment into positive and negative classes as seen in 

Table 4. Nine studies classified sentiments into positive, negative and neutral classes 

as seen in Table 5. Four studies classified sentiments into more than three categories 

as seen in Table 6, out of which three studies classified sentiments into five categories; 

Benthaus et al. (2016) classified sentiments into average, positive, negative, ambiva-

lent and neutral categories; Ghiassi et al. (2013b) differentiated sentiments into 

strongly positive, mildly positive, neutral, mildly negative and strongly negative. Da-
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vid et al. (2017) classified sentiments into positive, negative, neutral, extremely posi-

tive and extremely negative. In Tombleson and Wolf (2017), six different sentiment 

categories were used namely neutral, mixed, somewhat positive, somewhat negative, 

negative and positive.  

With regards to articles that studied emotions. Nguyen et al. (2017) investigated only 

one emotion, ‘trust’ (Table 7). The study is based on ‘trust’ refreshment during several 

events. D’Avanzo, Pilato and Lytras (2017) studied emotions such as ‘anger’, ‘dis-

gust’, ‘fear’, ‘joy’, ‘sadness’ and ‘surprise’. Sun et al. (2018) studied ‘neutral’, 

‘happy’, ‘surprised’, ‘sad’, and ‘angry’ emotions. Aswani et al. (2018) studies emo-

tions such as ‘joy’, ‘sadness’, ‘surprise’, ‘anger’, ‘fear’ and ‘disgust’. Vidal, Ares and 

Jaeger (2016) investigated emoticons and categorized several emoticons into three dif-

ferent emotional categories namely ‘positive emotional expression’, ‘negative emo-

tional expression’, and ‘neither positive nor negative emotional expression’. Davalos 

et al.(2015) studied nostalgic posts for positive and negative emotions on Facebook 

and found nine word categories that were frequently used. The nine-word categories 

are ‘happy’, ‘cried’, ‘love’, ‘hurt’, ‘annoyed’, ‘kill’, ‘hate’, ‘grief’, and ‘sad’.  

More than four studies (Table 8) contained more than 19 categories of emotional ad-

jectives. Jabreel et al. (2017) analyzed emotional adjectives used by destination mar-

keting organizations (DMOs). All the emotions were classified based on 5 emotional 

values and 16 categories and 60 sub-categories. The emotional values are ‘Sincerity’, 

‘Excitement’, ‘Competence’, ‘Sophistication’, and ‘Ruggedness’. 16 categories are 

‘Down-to-earth’, ‘Honest’, ‘Wholesome’, ‘Cheerful’, ‘Dating’, ‘Spirited’, ‘Imagina-

tive’, ‘Up-to-date’, ‘Cosmopolitan’, ‘Reliable’, ‘Intelligent’, ‘Successful’, ‘Luxuri-

ous’, ‘Charming’, ‘Outdoorsy’, and ‘Tough’. The subcategories are as follows: ‘Fam-

ily-oriented’, ‘Down-to-earth’, ‘Sustainable’, ‘Calm’, ‘Real’, ‘Traditional’, ‘Honest’, 

‘Original’, ‘Wholesome’, ‘Quality of life’, ‘Happiness’, ‘Sentimental’, ‘Friendly’, 

‘Trendy’, ‘Daring’, ‘Exciting’, ‘Exotic’, ‘Fashionable’, ‘Cool’, ‘Spirited’, ‘Dynamic’, 

‘Vital’, ‘Fresh’, ‘Young’, ‘Sensorial’, ‘Unique’, ‘Imaginative’, ‘Creative’, ‘Up-to-

date’, ‘Independent’, ‘Contemporary’, ‘Cosmopolitan’, ‘Tolerant’, ‘Hospitable’, ‘Re-

liable’, ‘Hard-working’, ‘Safe’, ‘Rigorous’, ‘Intelligent’, ‘Technical’, ‘Corporate’, 

‘Innovative’, ‘Successful’, ‘Leader’, ‘Ambitious’, ‘Powerful’, ‘Glamorous’, ‘Luxuri-

ous’, ‘Seductive’, ‘Smooth’, ‘Romantic’, ‘Magical’, ‘Outdoorsy’, ‘Get-away’, ‘Recre-

ational’, ‘Tough’, ‘Rugged’, and ‘Non-conformist’. In their study, London expressed 

the most emotional adjectives 289. In Gao, Xu and Wang (2015), twenty two fine 

grained emotions are placed into four branches based on actions causing emotions; in 

the branch of ‘results of events’: ‘hope’, ‘fear’, ‘joy’ and ‘distress’; In the second 

branch, which is ‘actions of agents’: ‘pride’. ‘shame’, ‘admiration’ and ‘reproach’; 

In the third branch, which is ‘aspects of objects’: ‘liking’ and ‘disliking’; The fourth 

branch make up the extended emotions which are ‘satisfaction’, ‘fears-confirmed’, 

‘relief’, ‘disappointment’, ‘happy-for’, ‘resentment’, ‘gloating’, and ‘pity’. Leek, 

Houghton and Canning (2017) did statistical analysis on 37-word categories.  
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Not all studies that mentioned emotions backed the use with any emotional theories. 

However, some authors based their research on emotion theories. D’Avanzo et al. 

(2017) relied on Ekman (1992)’s theory of basic emotions such as ‘anger’, ‘disgust’, 

‘fear’, ‘joy’, ‘sadness’, and ‘surprise’. Xu, Yang and Wang (2015) developed four 

levels of hierarchy containing in total nineteen fine grained emotions namely ‘sad’, 

‘disappointed’, ‘guilty’, ‘missed’, ‘surprised’, ‘panic’, ‘frightened’, ‘shy’, ‘angry’, 

‘dissatisfied’, ‘annoyed’, ‘doubtful’, ‘hateful’, ‘favoured’, ‘trustful’, ‘praiseful’, ‘wish-

ful’, ‘calm’, and ‘happy’ based on seven basic emotions prosed by Ekman (1971). In 

Aswani et al. (2018), the emotions are classified based on Chaumartin (2007) who 

conducted analysis on emotions such as ‘joy’, ‘sadness’, ‘surprise’, ‘anger’, ‘fear’, 

and ‘disgust’ using study from Strapparava and Valitutti (2004).  

Research Question 3 – What are the dataset sizes that are extracted for consumer 

emotion analysis in existing studies? 

From as few as 838 tweets to massive amounts containing 25 million records were 

analyzed to detect consumer emotions in social networking sites. The maximum da-

taset size was found in Sina Weibo platform where the authors introduce a Dynamic 

Sentiment-Topic model that can detect sentiment, track dynamic topics and analyze 

the shift of sentiment towards a specific topic.   

Several software was used in the process of understanding consumer emotions in so-

cial networking sites. In some of the articles, there were no explicit mention of what 

type of software tools were used. QDA WORDSTAT (Davalos et al), R programming 

language with several libraries such as twitteR, RCurl, R tm package, the plyr, stringr, 

ggplot2 were used (Mostafa, 2013; Vidal, Ares and Jaeger, 2016; Mehmood et al., 

2017). Custom-built software VOZIQ for social media analytics was used by He et al. 

(2015). For visualizing sentiment, Sentiment Viz is employed by Park et al. (2016), 

LIWC sentiment software by both Davalos et al. (2015) and Leek et al. (2017). Visu-

alization software include ‘Whisper’ by Nan Cao et al. (2012) and StreamGraph by 

Mostafa (2013). For data mining and analytics, RapidMiner 5.3 was used by Park et 

al. (2016). Other software include Radian6 by Tombleson and Wolf (2017), twiQuery 

by Jabreel et al. (2017). For graphical representation of data, MATLAB was used by 

Sun et al. (2018).  

Research Question 4 – What are the different computational methods used in studying 

consumer emotions and how are they evaluated in the current literature? 

All the articles are categorized according to the computational methods in Table 9, 10, 

11, 12, and 13. As seen from Table 9, ten studies used sentiment analysis computation 

method either individually or by combining other methods. Zhang et al. (2016) intro-

duces dynamic sentiment-topic model (DST), that can classify sentiments into posi-

tive, negative and neutral; the authors also used Gibbs sampling method, and topic 
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detection and tracking. Vatrapu et al. (2016) introduced α cut approach towards senti-

ment analysis methods that allows marketing professionals or academics to determine 

probability levels for different sentiment categories on their own. In addition to that, it 

can help them to identify the intersection of sentiments at a given α cut, further allow-

ing them to classify strong-weak expressions of sentiment. Mehmood et al. (2017) 

used sentiment analysis in their study to conclude that 78% of the customers expressed 

positive sentiment for distance and eLearning. Abirami and Askarunisa (2017) em-

ployed TOPSIS, multi-criteria decision making (MCDM), sentiment analysis and nat-

ural language processing (NLP) to rank hospitals for different attributes such as ‘in-

frastructure’, ‘cost’, ‘time’, ‘medicare’, and ‘nursing’. Park, Jang and Ok (2016) ana-

lyzed which restaurants contained high positive, negative and neutral sentiments using 

text mining, sentiment analysis and statistical computation using ANOVA. Benthaus, 

Risius and Beck (2016) used SentiStrength2, Naïve Bayes and data analysis to study 

consumer sentiment and deploy social media management tools using which they dis-

covered a significant rise in positive tweets by 4.3% and decrease in  negative tweets 

by 3.5%. Davalos et al. (2015) used sentiment analysis technique on Facebook posts 

to investigate nostalgic posts and concluded that Facebook platform contains primarily 

positive content. Ibrahim, Wang and Bourne (2017) explored the effect of user engage-

ment by companies using sentiment analysis; the results showed that when Amzo-

nHelp engaged with consumers with response that were lengthier and with positive 

sentiment lead to significant decrease in negative sentiments and becoming neutral in 

polarity. Daniel, Neves and Horta (2017) used sentiment analysis to study the impact 

of consumers on major announcements from major corporate companies like Mi-

crosoft and Walmart.  

Four studies (Table 10) have made use of machine learning algorithms and methods 

in their study. Xu, Yang and Wang (2015) used feature extraction, feature selection 

and classification with support vector regression to categorize emotions; the authors 

achieved an accuracy of 76.1%. M et al.(2017b) reported accuracies of 74.31%, 

86.01%, 80.68%, 74.23% for different features of a mobile phone for different com-

panies using SVM classifier. Li and Li (2013) compared two computational methods 

- SVM and Naïve Bayes, the accuracies are 88.1% vs 71.7% (binary), 87.7% vs 70.3% 

(term frequency), 79.4% vs 67.4% (term frequency-inverse document frequency). 

However, Ghiassi, Skinner and Zimbra (2013b) reported the highest accuracy of 96% 

by using customized algorithm for positive sentiment, 89.9% - mildly negative, 95.1% 

for negative emotions. Singh, Shukla and Mishra (2017) reported the highest accuracy 

which are 90.80% (unigram feature), 74.46% (bigram feature), 86.27% (term fre-

quency unigram feature) and 71.68% (term frequency bigram feature) with SVM clas-

sifier to classify positive and negative messages. 

In Table 11, studies that used content analysis are displayed. Jabreel, Moreno and 

Huertas (2017) inferred using semantic content analysis that many destination man-

agement organizations (DMOs) on average use 170 different emotional adjectives 
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1344 times in their tweets. The more a DMO uses emotional adjectives, the more was 

their effort to attract tourists. Aswani et al. (2018) used content analytics with descrip-

tive, network, and space-time analytics to find sentiments and emotions from tweets. 

Vidal, Ares and Jaeger (2016) used content analysis to study the use of emoticons and 

it’s occurrence in positive and negative emotional expression.  

Table 12 shows studies that were conducted using lexicon-based methods. Gao, Xu 

and Wang (2015) used emotion cause analysis, emotion classification, emotion lexi-

con, and multi-language features extraction; these methods helped to find emotions 

and their causes. Mostafa (2013) made use of Hu and Liu lexicon to find sentiment 

scores for mobile brands. Philander and Zhong (2016) used dictionary or lexicon based 

approach to study sentiments for the resorts in Las Vegas. Nisar and Yeung (2018) 

used lexicon based approach for stock market sentiment and prediction.  

Table 13 shows other computational methods used by the articles. Nguyen et al. (2017) 

used trust ontology, event-driven trust refreshment methods. Radial layout scheme to 

study the sentiments during earthquakes and elections by (Nan Cao et al., 2012). Sun 

et al. (2018) used single and multivariate Gaussian distribution for abnormal user emo-

tion detection. He et al. (2015) used modified Chi-square feature selection and modi-

fied N-Gram model to correctly mark positive and negative messages. Computational 

linguistic approach for social media engagement in relation to sentiment and emotions 

(Leek, Houghton and Canning, 2017).  

Research Question 5 – What are the limitations while detecting consumer emotions in 

social networking sites in the current literature?   

As seen from Table 9, 10, 11, 12, and 13. Out of all the studies only 18 studies reported 

limitations. Abirami and Askarunisa (2017) reported that sometimes reviews were not 

genuine and that it created a bias with the results. Park, Jang and Ok (2016) reported 

that short data collection period and tweets containing advertisement affects the re-

sults. Singh, Shukla and Mishra (2017) and Chae (2015) also reported limitations re-

garding short data collection period in addition to the missing information regarding 

tweeting users. Li and Li (2013) argued that profile information or other information 

regarding the users were not considered similar to Vidal, Ares and Jaeger (2016). Ben-

thaus, Risius and Beck (2016) analyzed companies that already has success with social 

media management tools and also reported unconscious reviewer bias. Davalos et al. 

(2015) mentioned that their study contains limitations because the study was per-

formed only on one social networking platform similar to Aswani et al. (2018). One 

study performed analysis on retail brands within UK (Ibrahim, Wang and Bourne, 

2017). Xu, Yang and Wang (2015) had problems with their own computational method 

stating that the algorithm used had limited in its ability. Failure to identify the senti-

ment topic (Mostafa, 2013) and failure to identify the true circumstances behind the 

tone and meaning of sentiment expressed (Tombleson and Wolf, 2017). Nisar and 
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Yeung (2018) used a classifier (computational method) with poor precision; accuracy 

was better when detecting only positive and neutral sentiment. 

Research Question 6 – Where can consumer emotions be applied in a managerial con-

text?    

In the following image, several managerial applications gathered from the study are 

mentioned. Many of the studies contribute to various managerial themes that can be 

applied by understanding consumer sentiments and emotions from social networking 

sites.  

Sentiment event detection/emotion cause component 

detection, marketing campaign and crisis managment

Product customization, product development and 

resource planning

Geographically tailored marketing, marketing and 

new product launch analytics

Customer satisfaction, customer engagement and 

customer relationship management

Business intelligence, marketing intelligence, target 

marketing and marketing mix

Risk detection, risk aversion and risk analysis

Hospitality management, supply chain management, 

organizational impression management and brand 

perception management

Competitor analysis, after sales services and service 

feedback analysis

Search engine & digital marketing and event 

popularity analysis

Real time consumer monitoring and real time 

monitoring of marketing campaign

Figure 13. Several managerial themes that can be applied by studying consumer 

emotions in social networking websites. 

From figure 13 and Table 13, several studies facilitate the study on consumer emotions 

in various managerial contexts. There are more than thirty themes in which managers 

made use of different computational techniques to identify consumer emotions for 

business benefits and understanding. Nguyen et al. (2017) proposed degree of trust 

(DoT) to study the ‘trust’ of their consumers over several events due to its dynamic 

nature; it can be used a basis for customer trust measurement over several events. 

Zhang et al. (2016) proposed model to detect the ‘topic’ and sentiment behind the 

topic. Vatrapu et al. (2016) proposed fuzzy-set based social sentiment analysis which 

can be used for marketing campaigns and conveyed that it can be used in crisis man-

agement for product specific context; applications include monitoring consumer be-

havior during marketing campaigns and crisis management. Mehmood et al. (2017) 

proposes understanding consumer emotions in distance eTeaching and eLearning to 

monitor the behavior of consumers with regards to the effect of a particular learning 

system which can enable the companies to customize their offering. Community re-

sponses at different locations were analyzed for a similar product which falls under 

community response management category as done by Nan Cao et al. (2012). It can 
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be used in tourism industry as done by Jabreel, Moreno and Huertas (2017) who em-

ployed consumer emotion detection to find new ways of marketing for firms in tourism 

industry to promote tourist destinations based on emotional values in social media. 

Product launch feedback or consumer feedback analysis (D’Avanzo, Pilato and Lytras, 

2017).  

Service quality analysis by Abirami and Askarunisa (2017) who studied the use of 

consumer emotion in the context of healthcare industry to understand user opinion on 

various indicators of service quality. This would enable the hospital management to 

perform business intelligence and advanced decision making. Study of consumer emo-

tion detection can be applied in restaurant industry as done by Park, Jang and Ok 

(2016) to analyze consumer perception and customer satisfaction of Asian restaurants. 

Different attributes such as restaurant environment, service quality, employee presen-

tation and food taste can be studied. Sun et al. (2018) proposed a model to detect con-

sumer emotions which can be used for consumer feedback analysis in real-time and in 

turn help companies to form revival strategy to neutralize negative effects by attending 

to the customer with displaced emotion. In supply chain analytics, consumer emotion 

analysis can be employed in supply chain management related problems as examined 

by Singh, Shukla and Mishra (2017) where several issues related to food products can 

be traced back to different points in the supply chain by analyzing consumer feedback; 

according to the authors, this could allow companies to find the root cause for customer 

displeasure which can lead to better use of company’s time and resources. Target mar-

keting, customer satisfaction, and customer engagement (Benthaus, Risius and Beck, 

2016).  

He et al. (2015) argued that consumer emotion analysis/study can be used in many 

applications such as competitor analysis, industry-specific sentiment benchmarking 

which can be used for decision-making, marketing intelligence and key performance 

metrics. Xu, Yang and Wang (2015) proposed an algorithm to detect consumer emo-

tions in social networking context and recommend that it can be used to understand 

consumer trends and consumer behavior analysis. Gao, Xu and Wang (2015) provide 

a means to extract the cause of consumer emotions and further predicts that it could be 

used in precision marketing for product recommendations and tailoring products to 

particular customers. M et al. (2017b) studied consumer opinion expression in social 

media. According to Aswani et al. (2018) consumer emotion study can help to improve 

search engine marketing and enhanced strategy for digital marketing. Understanding 

consumer behavior by their emotions can help in product development, marketing, 

service feedback analysis and target marketing (Vidal, Ares and Jaeger, 2016).  

Nostalgia-based advertisement campaign could help managers in improved marketing 

(target marketing) where consumers are targeted based on their social media posts and 

communication (Davalos et al., 2015). Understanding consumer sentiment and emo-

tions can help managers in applications such as customer engagement, customer per-
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ception management, customer complaint management, customer relationship man-

agement and brand perception management (Mostafa, 2013; Ibrahim, Wang and 

Bourne, 2017). Tombleson and Wolf (2017) analyzed consumer emotions in a cross 

cultural context and argued that it can be very helpful for cross cultural marketing, 

demand forecasting, product and service quality; they also think that it could be used 

for risk management. The concepts such as demand forecasting, product and service 

quality, supply chain management and operations management was discussed by Chae 

(2015). Public relations management and customer engagement (Leek, Houghton and 

Canning, 2017). Li and Li (2013) also make use of consumer emotion analysis for 

competitor analysis and real time consumer monitoring. Philander and Zhong (2016) 

employ consumer behavior, marketing intelligence and brand perception with regards 

to consumers in hospitality context. Nisar and Yeung (2018) also study real time con-

sumer monitoring for stock market prediction. Other applications include stock market 

prediction by Ghiassi, Skinner and Zimbra (2013b) and analysis of popular events or 

event popularity by Daniel, Neves and Horta (2017).   

Summary of the quantitative results 

Two algorithms were used in detecting the sentiments. With SentiStrength, activities 

‘sitting’ scored highest in positive (13) and negative sentiment (12) category and ‘man’ 

(9) has the highest neutral sentiment (Table 15). In VADER sentiment, ‘man’ is the 

highest in positive (14) and negative (10) sentiment category. Whereas, ‘sitting’ (11) 

has the neutral sentiment (Table 16). For emotions, 23 activities fall under ‘Anger’ 

emotion and they are ‘bed’, ‘black’, ‘board’, ‘clock’, ‘computer’, ‘dark’, ‘desk’, 

‘front’, ‘holding’, ‘indoor’, ‘keyboard’, ‘laptop’, ‘man’, ‘monitor’, ‘old’, ‘piano’, 

‘room’, ‘screen’, ‘sitting’, ‘table’, ‘television’, and ‘white’. Ten emotions under ‘Dis-

gust’ category namely ‘air’, ‘bag’, ‘blanket’, ‘laying’, ‘pair’, ‘paper’, ‘phone’, ‘sit-

ting’, ‘table’, and ‘white’. For ‘Fear’ category, ‘man’, ‘old’, and ‘sitting’ scored the 

highest with 6 points each and 102 activity tags were recorded under this category. 

‘Joy’ emotion recorded the highest with 191 tags, ‘sitting’ ranked highest with 22 

points followed by ‘man’ and ‘standing’ with 21 points. ‘Sadness’ emotion with 60 

tags and it’s activities ‘man’, ‘sitting’, ‘small’, ‘table’ were all ranked highest with 3 

points each followed by ‘bird’, ‘cat’, ‘computer’, ‘indoor’, ‘water’, ‘white’, and ‘back-

ground’ with 2 points each.  

Under face emotion results, only 7 tweets contained images with faces and in total 10 

faces were recorded. Out of the 10 faces, 7 faces showed ‘neutral’ emotions and 3 

faces showed ‘happiness’. 6 faces were identified as ‘male’ and 4 were identified as 

‘female’.  

 

Summary of the qualitative content + quantitative results 
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All the activities were recorded with positive valence. For arousal, many activities fall 

under both positive and negative arousal. Activity ‘Travel’ scored the highest valence 

(4.12) and arousal (4.31); both these values coming from the same tweet  

“Veden lipsatus, metsän raukeus ja iholla tuntuva tuulenvire johdattelevat 

meditatiiviseen olotilaan aina kun olen luonnossa! #moodmetricstressinhallintakeino 

@Moodmetric https://t.co/amnFTBootF” which can be translated as  

“Lipsatus water, forest and listlessness appreciable breeze on the skin lead the medi-

tative state of being always when I'm in nature! #moodmetricstressinhallintakeino 

@Moodmetric https://t.co/amnFTBootF”.  

14 images were attributed to ‘Travel’ category, ‘Art’ and ‘Relax’ came second with 7 

images; followed by ‘Work’ and ‘Other’ with 6 images, ‘Sport’ with 5 images, 

‘TV/Web’ and ‘Dining’ with an image each. Most ‘Relax’ categories were low arousal 

having values over as low as -4.89. ‘Art’ category contained mostly neutral arousal 

values with only 1 outlier (2.61). ‘Work’ categories contained medium arousal values 

with maximum of 2.61. ‘Other’ category contained mostly neutral arousal values fall-

ing in positive and negative scale, but also contained one low arousal value of -4.4. 

‘Sport’ also scored neutral to medium arousal values with a maximum of 2.61. Only 

image under the ‘Dining’ category also scored low arousal value of -0.148.  

With regards to the attributing IBM Watson emotions to the valence and arousal di-

mensions. 1 image under ‘Anger’ (FP) emotion and falls under ‘Art’ category. 1 image 

under ‘Disgust’ emotion and falls under ‘Art’ category. 9 images under ‘Fear’ emotion 

(‘Relax’ – 2, ‘Dining’ - 1, ‘Art’ – 1, ‘Travel’ – 2, ‘Sport’ – 2, ‘Other’ – 1). 32 images 

under ‘Joy’ emotion (‘Relax’ – 5, ‘Work’ -5, ‘TV/Web’ - 1, ‘Art’ – 4, ‘Travel’ – 10, 

‘Sport’ – 3, ‘Other’ – 4). 4 images under ‘Sadness’ emotion (‘Work’ – 1, ‘Travel’ – 2, 

‘Other’ – 1).  As seen from Figure 12 and above stated information ‘Joy’ is the highest 

occurring emotion. Most participants tweeted images that fall under the ‘Travel’ ac-

tivity category.  

Summary of the qualitative results (Section 3.2.3) 

The CIO outlined the desire to understand consumer emotions to their product and 

services. The value of consumer emotions can be linked to the context that is causing 

this emotion which can allow to gather insight into the type of activity that causes a 

specific emotion. Currently, the company’s app allows the users to record their emo-

tions and activities manually. The company can only know if the consumers share it 

on the social media. However, there are challenges on collecting data from different 

social networking platforms due to arduous data collection process. On the other hand, 

Twitter allows for easier sharing and collection of data in comparison to other SNS. 

Therefore, it is convenient for the company to collect data using Twitter.  

https://t.co/amnFTBootF
https://t.co/amnFTBootF
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The CIO mentioned that the quantitative, qualitative content + quantitative evaluation 

can be helpful in designing marketing messages for the company. The positive senti-

ment communicated by outer world elements such as ‘outdoor’, ‘water’, ‘park’, 

‘grass’, ‘ocean’ can be used to convey positive messages over other tags that are very 

general like ‘standing’ and ‘sitting’. Neutral and negative tags could not be of much 

use when creating marketing messages and implied that analysis on larger samples can 

be informative. The CIO expressed the affirmation that both the algorithms have quite 

similar results and indicated that both positive and negative tags can be used for mar-

keting messages. For instance, ‘Computers’ was negatively presented and that it be 

used to communicate the necessity for users to concentrate on recovery.  

The CIO mentioned that attributing emotions to tags is valuable to their company be-

cause the consumer emotions such as ‘Anger’ and ‘Joy’ can now be placed into differ-

ent dimensions and could help understand them better. However, the most important 

value for the empirical evaluation according to the CIO was plotting of activities in 

the valence and arousal dimensions which was similar to their own application. Addi-

tionally, the map allows user to individually witness and analyze their own situation 

and progress in a timely manner.  

Based on the analysis and visualizations, the CIO expressed two use cases for con-

sumer emotions. First is the development of an activity compass that can help visualize 

the behavior of the user, and second, a real time assessment of the discussions relating 

to the company which can help in matters related to communication. Similarly, this 

analysis is a proof of concept that the company could customize according to their 

business needs, foster an enhanced use in different applications such as employee well-

being analysis and organizational climate surveys. Finally, CIO stated that a possibility 

of further understanding is possible if the same evaluation is conducted using different 

social media platforms.   

4.2 Scientific Contribution 

The systematic literature review showed the presence of consumer emotions in a social 

networking context. The evidence of studying consumer emotions in smaller to larger 

datasets, using several computational methods, software, and in different managerial 

contexts. Few studies measured their performance using accuracy of the computation 

method, which is very important to evaluate future performance and to compare bench-

marks. Some studies reported limitations with regards to their study.  

Out of these, there were few limitations which must be avoided when understanding 

consumers such as problems with the use of computational technique or method with 

limited features, failure to identify the topic behind the sentiment, circumstances be-

hind the expression of a certain sentiment, and missing information about the users. 

Therefore, to be able to understand consumers, a certain set of important parameters 
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like “who?”, “why?”, and “what?” must be identified. “who?” is the general infor-

mation regarding the users, for example: Gender. “why?” is the reason behind (cause) 

the sentiment. for example: activity or a situation that caused the sentiment, and 

“what?” is the emotion or sentiment itself.  

To address this gap, an empirical evaluation is necessary. In this case, a company that 

provides stress management products and services is chosen. It is an ideal selection 

since the important parameters to identify here is information regarding the person 

experiencing, battling or coping with stress (“who?”); the reason behind their emotions 

related to stress management (“why?”), and to identify the sentiment or emotion 

(“what?”). With regards to the choice of computational method, the idea is to bypass 

the shortcomings of lower accuracy computational problems, any sarcasm and other 

text limitations like language barrier; which is the reason why a face emotion detection 

tool is used in this empirical study along with image captioning tool to understand the 

“who?”, “why?” and “what?” 

As understood from the summary, only 7 tweets were tweeted with a face image and 

10 faces were identified. Information like gender and emotions were gathered from 

these face images. The positive aspect about face detection is that it provided the emo-

tions for the faces with great accuracy. However, there was one false positive where a 

participant tweeted an image of a book, the detected emotion was from the face that 

was displayed on the book cover and not of the participant who posted the tweet. With 

regards to the description (captioning) or a circumstance, the image captioning algo-

rithm provided a decent accuracy. For the images with faces, the descriptions were 

accurate for 5 out of 10 images.  

For remaining images with no face, there were descriptions which were almost correct. 

For example: in the tweet, 

“Hitting the gym relieves stress @Moodmetric #moodmetriccampaign @jjussila 

#moodmetricstressinhallintakeino https://t.co/Ymbht3wYIM” The image shows a man 

holding a camera and posing, but the description from the algorithm returned “a man 

holding a bottle posing for the camera”. Similarly,  

“Rentoutumista mökillä, aivojen (melkein) nollausta. @moodmetric #moodmet-

ricstressinhallintakeino https://t.co/SWg1TrAQtF” shows an image where two dogs 

are sitting on a person on a grass covered field to which the algorithm returned “a dog 

sitting on top of a grass covered field”. Another tweet,  

“Miten hallitsen stressiäni? Metsä. Luontokuvaus. Käsityöt. Polkujuoksu eritoten 

pikkuisten kanssa. Aikataulutta, hitaasti ja 12 000 solmua ryijyyn ommellen. #mood-

metricstressinhallintakeino https://t.co/chloX6O21u” shows a little child running 

down a dirt path in a wooded area, the algorithm returned “a person riding a bike down 

a dirt path in a wooded area”. These descriptions are partially correct.  

https://t.co/Ymbht3wYIM
https://twitter.com/Moodmetric
https://twitter.com/hashtag/moodmetricstressinhallintakeino?src=hash
https://twitter.com/hashtag/moodmetricstressinhallintakeino?src=hash
https://t.co/SWg1TrAQtF
https://t.co/chloX6O21u
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Some of the other correct descriptions identified were “a glass of beer on a table”, “a 

man standing next to a body of water”, “a close up of a bicycle”, “a dirt path in a 

forest”, “a sunset over a body of water”, “a person holding a guitar”, “a pair of 

shoes”, “an open laptop computer sitting on top of a table”, “a man smiling for the 

camera”, “a group of people sitting at a table”, “a person sitting at a table”.  

There are many descriptions that are not correct, For instance, the tweet  

“Palautumista arjessa uppoutumalla hyvän kirjan vietäväksi. Tämä kirjan lukeminen 

on lasten syntymien myötä jäänyt taustalle, mut nyt palautuu yhtenä 

rentoutumiskeinona. @moodmetric #moodmetricstressinhallintakeino 

https://t.co/4QqzyevWkE” contains an image with a book; however, the API returned 

“a close up of a sign”. Another tweet,   

“Syyskuu tuo mukanaan arjen monet haasteet. On kiirettä, mutta myös intoa! Mikä on 

sinun paras stressinhallintakeinosi? Osallistu Moodmetricin Twitter-kampanjaan - 

voit voittaa @Moodmetric-älysormuksen. Kampanjan ohjeet: 

http://www.moodmetric.com/fi/uutiset/  #moodmetricstressinhallintakeino 

https://t.co/sfUNyirjjF” 

shows an image where a woman is looking over a forest, however the tool returned “a 

person sitting on the grass”.  

In this tweet, “Soita Paranoid #moodmetricstressinhallintakeino #moodmetricsmuus-

ikot @moodmetric @Larjovuori https://t.co/bFWF7AXKvY” shows an image where a 

person is playing a piano, the returned description was different “a person sitting in 

front of a computer screen”. Likewise, there are in total 14 images that had wrong 

descriptions. 4 images did not return any descriptions.  

With regards to the face emotion, almost 90% of the detected faces showed emotions 

(“what?”) and gender information (“who?”). Therefore, it is beneficial for the compa-

nies to understand consumer emotions more accurately from their faces. For the de-

scription (captioning) part, further improvement with the algorithms or computational 

methods can ensure more accurate caption detection (“why?” or the cause of an emo-

tion). In this scenario, it can be argued that the description or situation detection is 50% 

accurate and 50% not accurate. However, the above set of arguments show that the 

gender information, description of an image, emotions and associated sentiments can 

be obtained provided that these images contain faces. Further strong recommendation 

for using face emotion detection is explained in the following paragraphs.  

Comparison of results from the two sentiment algorithms and Face API is shown in 

Table 19. The Face API was successful than the sentiment algorithms in many occa-

sions to accurately describe the emotions. For example, the tweet: “Mindful breathing 

keeps my anxiety and stress out while I'm working...so just inhale and exhale...#mood-

metricstressinhallintakeino https://t.co/SDczQ0Gz17” returned neutral for Face API, 

https://twitter.com/Moodmetric
https://twitter.com/hashtag/moodmetricstressinhallintakeino?src=hash
https://t.co/4QqzyevWkE
https://twitter.com/Moodmetric
https://t.co/Qaxfig2dC4
https://twitter.com/hashtag/moodmetricstressinhallintakeino?src=hash
https://t.co/sfUNyirjjF
https://twitter.com/hashtag/moodmetricstressinhallintakeino?src=hash
https://twitter.com/hashtag/moodmetricsmuusikot?src=hash
https://twitter.com/hashtag/moodmetricsmuusikot?src=hash
https://twitter.com/Moodmetric
https://twitter.com/Larjovuori
https://t.co/bFWF7AXKvY
https://t.co/SDczQ0Gz17
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whereas both the sentiment algorithms returned negative emotion. This can be ex-

plained because of the word ‘stress’ in the tweet which inclines more towards negative 

polarity or sentiment. Two other tweets also contained the word ‘stress’ to which one 

of the algorithms returned negative. However, the tweets are not negative in nature 

and the Face API accurately returned neutral.   

 

In Original tweet: “Työkiireen keskellä hyvä tapa nollata päätä on järjestää hetkiä 

työkaverien kanssa ja oppia uutta yhdessä #moodmetricstressinhallintakeino 

@Moodmetric @GoforeGroup #palvelumuotoilu #muotoilupeli #neukkarinseinä kin 

hymyilee! kiitos @annakaisa_b https://t.co/ic6EmvtIRu” the algorithms and the Face 

API were in agreement as it returned positive.  

 

In this study, the images were broken down for activity tags and the sentiment for these 

tags were calculated. As seen from the results in Tables 14 most tags related to nature 

and outdoor activities contain more positive scores. Tags related to the external envi-

ronment such as ‘outdoor’, ‘field’, ‘water’, ‘grass’, ‘green’, ‘ocean’, ‘rock’, ‘snow’, 

‘park’, ‘riding’, ‘river’, ‘rocky’, ‘tree’, ‘beach’ can be found with higher scores. In the 

negative column, external environment related tags occur less frequently (low scores), 

and some tags like “cloud”, “boat”, “colourful” have very low scores. In table 15, 

negative column shows external environment related activity tags such as ‘walking’, 

‘beach’, ‘water’, ‘Airplane’, and ‘Tree’ having low scores. Whereas, tags like ‘table’, 

‘computer’, ‘laptop’ have high negative scores. From this we may conclude that that 

tags related to external environment provide much positive outlook on an individual’s 

life and work life related tags may have negative effect on the participants’ lives which 

is also backed by the CIO’s interview statement  

“For instance, outdoors have been largely positive by all detection methods and com-

puters negative by all detection methods. Especially, outdoors, nature, forests are of-

ten mentioned in research reports, as well as, Moodmetric users as something that 

help them to recover from stress. The identification of computers as negatively asso-

ciated is also not a surprise. Long hours sitting with a computer, especially if no breaks 

are taken, are not beneficial for health and feature also often as problems mentioned 

by knowledge workers in their daily life” 

However, there is a problem in analysing just the activity tags because it may yield 

wrong results. For example, the tweet that showed a man playing a piano with an iPad 

in front of him returned a description ‘a person sitting in front of a computer screen’ 

but the detected tags were ‘indoor’, ‘computer’, ‘sitting’, ‘laptop’, ‘table’, ‘desk’, 

‘screen’, ‘monitor’, ‘front’, ‘room’, ‘piano’, ‘man’, ‘bed’, ‘keyboard’, ‘black’, ‘dark’, 

‘laying’, ‘television’, ‘holding’, ‘clock’, ‘white’. This shows that the computational 

method with tags only component returns a combination of both right and wrong tags. 

Some tags occurred both in positive, negative and neutral columns which makes it 

https://t.co/ic6EmvtIRu
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much difficult to take the activity tag analysis seriously. The qualitative interview with 

the CIO only strengthened this argument. 

“However, some recognized activity tags like man, sitting, standing that are often fea-

tured and associated with positive sentiment are less informative and taken out of con-

text do not make sense.” 

To find further understand of this problem, the qualitative assessment can be referred. 

In Figure 11, many activities that were identified in the tweets and tweet images were 

related to ‘Travel’; meaning that majority of the participants involved in outdoor ac-

tivities like travelling and sports to manage stress. Under closer examination, it is 

found that 3 out of 7 participants under ‘Relax’ categories spent time outdoors to man-

age stress. 1 participant who was attributed to ‘Art’, also spent time outdoors picking 

berries and hiking. The qualitative assessment proves that majority of the participants 

prefer outdoor activities to manage stress and the quantitative assessment of the tags 

also show higher percentage of tags related to external environment have high positive 

scores. The CIO pointed out that Figure 11 provided significant insight as the tags 

were mapped under valence and arousal dimensions. As mentioned earlier, ‘Travel’ 

and ‘Relax’ activities that include visiting forests, and spending time near water and 

seas can act as recommendation to their users for stress management. With the help of 

their mobile application, feedbacks from the users with regards to activity, arousal and 

valence states over a long duration can help in customized recommendation for the 

users who can refer back to their ideal stress management mechanisms.  

The emotion detection from the text using IBM Watson Tone Analyzer did not yield 

significantly accurate results. The tweet  

“Hitting the gym relieves stress @Moodmetric #moodmetriccampaign @jjussila 

#moodmetricstressinhallintakeino https://t.co/Ymbht3wYIM” returned ‘Fear’ emo-

tion. However, there is nothing fearful about going to the gym, because it is a good 

feeling to work out. Similarly,  

“Soita Paranoid #moodmetricstressinhallintakeino #moodmetricsmuusikot @mood-

metric @Larjovuori https://t.co/bFWF7AXKvY” returned ‘Anger’ emotion. The par-

ticipant likes to play piano to relax. These are some of the examples which strengthen 

the case for accurate emotion detection because it works better for photos with faces 

over text aspect. Therefore, when using this type of tool can lead to false positives with 

regards to emotions and lead to wrong recommendations for the users.  

The CIO also stated that “The categorization by activity provides the most valuable 

information as it helps to describe and communicate situations that have been found 

important for recovery”  

https://t.co/Ymbht3wYIM
https://t.co/bFWF7AXKvY
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This analysis helps the company to understand their consumers better as evident from 

the discussion with the CIO. Due to the strict data privacy laws followed by the com-

pany which inhibits the direct access to the consumer data, only social networking data 

can help provide better understanding of their consumers. However, this could change 

in the future if the company decides to create suitable guidelines for the consumers to 

provide data to the company directly. In that case, companies can facilitate favourable 

data collection by guiding the users to record their own activity during a significant 

stress level (either good or bad) or by taking a photograph of that situation and pinning 

emotions to the situation, and additionally allow customers to create custom activity 

tags. This type of mechanism allows customers to further enhance the quality of the 

data and will help the company to bypass the limitations from the existing methods.  

4.3 Managerial Contributions 

The most important contribution provided by this study is the evidence that consumer 

information, sentiments and emotions, and reason behind the expressed sentiment can 

be detected given the favourable data collection and analysis using Social Networking 

Websites. Text sentiment detection is a significant methodology and has three distinct 

parts (positive, negative and neutral); a manager must use the accurate algorithms 

(with high accuracy) to detect text sentiment. The partially correct detection of de-

scription (captions) may not be that reliant in its present condition. If a manager tries 

to analyse consumer emotions with the faces or text sentiments, then he/she may not 

have problems analysing big amounts of data. However, if any attempt to include the 

caption detection in its current state, then the amount of data to qualitatively analyse 

would be resource and time consuming.  

At the same time, this study successfully demonstrated the detection of consumer emo-

tion through an image and its advantages of understanding consumers from 8 different 

emotional aspects and three different sentiments. Managers must consider the above-

mentioned factors when performing consumer emotion detection. They can use one 

method where they either analyze texts or images or can combine both these methods 

to understand consumers. For a company to perform such an analysis, it should identify 

the major source of their customer feedback for favorable data collection. These meth-

ods can be applied to different settings/industries where consumers are actively pro-

ducing feedback to a product or service on SNS.  

Companies related to stress management can create similar methodologies to under-

stand their consumers. Industries in the food service can use methods in this study to 

create feedback analysis or complaints where consumers can provide image and text 

feedback for a food order on a social networking website. In this case, the “why?” 

factor or what causes the expression (feedback) is automatically attributed to the food, 

and the company can assess the emotions using the tools used in this study. Companies 

that have big follower bases, can use these techniques to understand their consumer 



77 

opinion on new product ideas. This is a great tool among many others in a managerial 

tool box that would allow the company to understand their consumers’ behavior. Most 

consumers would not be that interested in tweeting their images but in order to do so 

companies must enable reward systems to encourage consumers to tweet. To encour-

age consumers to participate in image feedback, companies must include private con-

sumer feedback mechanisms through social networking websites which would enable 

consumer emotion detection.  

4.4 Evaluation of the Study  

Based on the evaluation criteria mentioned in chapter 2.4, the evaluation of this study 

is as follows.  

a) Credibility: In this study, the credibility was assessed based on the above-men-

tioned criteria. Two methodologies were used, systematic literature review to 

discover methods for analyzing the sentiment and emotions, and the qualitative 

study to improve the usability and credibility of the study where the author 

worked with a person inside the case-study organization to evaluate the data; 

The author familiarized with the company about their social media data to get 

an understanding beforehand about the study; and triangulation of the qualita-

tive results with the company representative.  

 

b) Transferability: In this study, the transferability factors can be applied to busi-

ness to consumer companies that market their products to consumers where 

these companies have products and services which they can track from social 

media.  

 

c) Dependability: In this study, the author used overlapping methods. For exam-

ple: in the analysis, several algorithms were used. These were assessed both 

quantitatively and qualitatively. This research did not rely on any one sentiment 

algorithm. In addition, the author went through the results of the quantitative 

and qualitative study with the CIO and another expert from the company. In 

some cases, when the results were questionable, the tweets were referred di-

rectly to address the problem. For example: In Figure 11, the company experts 

noticed that there was negative valence for three tweets. Given the nature of 

the campaign, it was expected that coping mechanisms would be positive and 

therefore by taking a further look at the negative tweets and the corresponding 

image. It was found that the tweets were indeed positive and that there was a 

mistake with the interpretation of the English translation. The results were then 

changed. Simultaneously, this was also applied to the quantitative results with 

regards to the emotion detection for the text component.  
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d) Confirmability: In this study, one major limitation is the small dataset size is 

used in this study. The use of sentiment algorithms would’ve favored signifi-

cantly if the tweets were tweeted in English language directly because this 

study relied on a translator tool and this shortcoming could affect the reliability 

of the quantitative results of the study. The data collection could’ve been de-

signed in a better way where the campaign tweet should’ve mentioned the im-

portance of participants tweeting an image with their face. Due to this limita-

tion, it only provides a small picture about consumer emotion detection despite 

its accuracy.  

4.5 Future Research 

Future research must be driven towards accurate caption detection from images. In this 

study, there were no dictionaries or sentiment detection algorithms that were readily 

available for Finnish language. Therefore, future research must create a natural lan-

guage algorithm that can support Finnish language sentiment detection. Simultane-

ously, more computational methods must be aimed at segregating texts based on emo-

tions in both Finnish and English language. Companies must include image-based 

feedback in addition to text-based feedback. With regards to the APIs and other tools, 

future research can evaluate different APIs and compare their usability for different 

contexts.  
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APPENDIX A: SEARCH TERMS USED FOR SYSTEMATIC LIT-

ERATURE REVIEW 

When conducting a systematic literature review, the search terms are used to search 

and gather articles in different databases. The search terms used in different databases 

are shown below.  

Figure 14. Search terms used in the all the databases 14 (a), 14 (b), 14 (c).   

The above image shows the search terms used in all three databases to gather research 

articles. The search terms are “social media” emotion* consumer. The search terms 

were used in this order at the same time.  

 

(a) IEEE Explore search term.   

 

(b) ScienceDirect search term 

 

(c) Web of Science search term 


