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Machine learning has achieved an important role in research, business and everyday life in 
the form of, for example, automatic aviation, face and speech recognition and virtual reality 
games. Visy Oy, a company in Tampere, Finland, is developing various tools for automatic traffic 
control. The tools include an access gate consisting of an inductive loop or a laser scanner, a 
barrier and a camera. The purpose of a loop or a scanner is to trigger a camera to take an image 
when a vehicle is in the correct spot to which the camera is zoomed and focused. The image is 
fed to a license plate recognition software and a permit decision is made according to the recog-
nized plate. If the access is accepted, the barrier will open.  

This Thesis has two aims regarding machine learning combined with automatic traffic control. 
The first aim is to search, study and test high-image-quality cameras and decide, whether they 
are suitable for Visy projects or not. The high image quality is motivated by the customers’ need 
for recognizing small details, such as seals and dangerous goods labels, from an image that is 
taken of a whole container. The current cameras that Visy Oy is using are not sufficient for this 
purpose.  

Three cameras are chosen for the camera tests including Sony’s video surveillance camera, 
Canon’s digital single-lens reflex camera and the current camera used in the projects, Basler’s 
video surveillance camera. Only Sony and Basler are included in the final tests because of a 
problem in software support in Canon’s camera. The tests are performed in Visy Oy’s perspective 
and for Visy Oy’s needs in the office of Visy Oy, and the results are observed and estimated 
visually. In the tests, the cameras shoot images every 15 minutes during the night also and the 
images are saved to a folder on a computer. 

Sony is found to have significantly higher image quality, especially at night, compared to 
Basler. Sony fulfils Visy’s requirements and is found to be suitable for Visy’s projects. It has al-
ready been proposed to a potential project where small details need to be recognized, but no 
confirmation has been received for the project while writing this Thesis. 

The second aim of this Thesis is to implement a deep convolutional neural network for auto-
matic vehicle detection, called a virtual trigger. Its purpose is to replace inductive loops and laser 
scanners in Visy projects. In other words, image frames are captured from a camera and each 
frame is classified to contain a vehicle on the correct spot or not. If the image is classified to have 
a vehicle on the correct spot, an image for license plate recognition is triggered. Three different 
network models are implemented, trained and tested, including two pre-trained models and one 
model that is created from scratch.  

The requirements for the virtual trigger network are that it is fast and classifies the images with 
a high classification accuracy, meaning over 99 %. The neural network tests show that one of the 
pre-trained network models achieves almost all the goals and is chosen for real-life tests, which 
are not a part of this Thesis.  Virtual trigger is operating on a real installation now. The results are 
promising, but further improvements are needed for obtaining over 99 % accuracy in real life.  

Almost all the goals were achieved, a suitable camera was found, and virtual trigger obtained 
over 99 % validation accuracy. Camera tests were slightly one-sided and virtual trigger did not 
exceed the aim on the test data, but the future for both parts looks promising. 

 
Keywords: automatic vehicle detection, machine learning, deep convolutional neural 

networks, image classification, cameras, image quality, image sensor 
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Koneoppiminen on saavuttanut tärkeän roolin tutkimuksessa, yrityselämässä sekä ihmisten 
jokapäiväisessä elämässä esimerkiksi automaattisen lentokoneiden ohjauksen, kasvojen ja pu-
heen tunnistuksen sekä virtuaalitodellisuuden pelien muodossa. Visy Oy, joka toimii Suomessa 
Tampereella, kehittää erilaisia työkaluja automaattiseen liikenteen ohjaukseen. Nämä työkalut 
pitävät sisällään automaattisen portin, joka koostuu induktiosilmukasta tai laserskannerista, puo-
mista ja kamerasta. Induktiosilmukan tai laserskannerin tarkoituksena on käskeä kameraa otta-
maan kuva, kun ajoneuvo on oikealla kohdalla kameraan nähden, eli siinä, mihin kamera on koh-
distettu ja tarkennettu. Kuva lähetetään rekisterinkilpitunnistusohjelmalle, ja lupapäätös tehdään 
tunnistetun kilven perusteella. Jos lupa on kunnossa, puomi aukeaa. 

Tällä työllä on kaksi tavoitetta liittyen automaattiseen liikenteenohjaukseen ja koneoppimi-
seen. Ensimmäinen tavoite on etsiä, tutkia ja testata korkean kuvanlaadun omaavia kameroita ja 
päättää, sopivatko ne Visyn projekteihin. Korkea kuvanlaatu on lähtöisin asiakkaiden toiveesta 
tunnistaa pieniä yksityiskohtia, kuten sinettejä ja vaarallisten aineiden merkkejä, kuvasta, joka on 
otettu kokonaisesta kontista. Visy Oy:n nykyisin käyttämät kamerat eivät ole riittäviä tähän tarkoi-
tukseen. 

Kolme kameraa valittiin kameratesteihin. Nämä ovat Sonyn videovalvontakamera, Canonin 
järjestelmäkamera ja tällä hetkellä käytössä oleva Baslerin videovalvontakamera. Vain Sony ja 
Basler olivat mukana testeissä johtuen Canonissa ilmenneestä ohjelmistotuen ongelmasta. Testit 
toteutettiin Visyn näkökulmasta ja Visyn tarpeita ajatellen Visy Oy:n toimistossa ja tulokset arvi-
oidaan visuaalisesti. Kamerat ottivat 15 minuutin välein kuvia testeissä, myös yöaikaan, ja kuvat 
tallennetaan kansioon tietokoneelle. 

Sonyn kamerassa todettiin olevan huomattavasti korkeampi kuvanlaatu kuin Baslerissa, eri-
tyisesti yökuvissa. Sonyn kamera täyttää vaatimukset ja soveltuu Visy Oy:n projekteihin. Sitä on 
jo tarjottu korkean kuvanlaadun kameraksi yhteen mahdolliseen projektiin, jossa on tarkoitus tun-
nistaa pieniä yksityiskohtia kuvista, mutta projekti ei ole varmistunut tätä työtä kirjoitettaessa.  

Toinen työn tavoite on toteuttaa syvä konvoluutioneuroverkko automaattiseen ajoneuvontun-
nistukseen, jota kutsutaan nimellä ”virtual trigger”. Sen tarkoituksena on korvata induktiosilmukat 
ja laserskannerit Visyn projekteissa. Toisin sanoen, kameralta napataan kuvia ja jokainen kuva 
luokitellaan sen mukaan, onko siinä ajoneuvo oikealla kohdalla vai ei. Kun ajoneuvon havaitaan 
olevan oikealla kohdalla, käsketään kameran ottaa kuva rekisterinkilpitunnistusta varten. Kolme 
eri neuroverkkoa toteutettiin, opetettiin ja testattiin tässä työssä. Näistä kaksi on esiopetettuja 
verkkoja ja yksi rakennetaan itse tyhjästä.  

Neuroverkon vaatimukset ovat, että se on nopea ja luokittelee kuvia korkealla luokittelutark-
kuudella, tarkoittaen yli 99 prosentin tarkkuutta. Neuroverkkotestit osoittivat, että yksi opetetuista 
verkoista toteuttaa lähes kaikki vaatimukset ja kyseinen verkko valittiin tosielämän testeihin, jotka 
eivät ole osa tätä työtä. Virtual trigger on toiminnassa eräässä projektissa tällä hetkellä. Tulokset 
ovat tähän asti olleet lupaavia, mutta verkko vaatii vielä parannuksia saavuttaakseen yli 99 % 
tunnistustarkkuuden. 

Lähes kaikki tavoitteet saavutettiin työssä: löydettiin Visyn projekteihin soveltuva korkean ku-
vanlaadun kamera ja virtual trigger ylitti 99 % luokittelutarkkuuden validointidatalle. Kameratestit 
jäivät hieman yksipuolisiksi, eikä virtual trigger ylittänyt toivottua tarkkuutta testidatalle, mutta tu-
levaisuus näyttää lupaavalta molempien osioiden osalta. 
 

Avainsanat: automaattinen ajoneuvontunnistus, koneoppiminen, syvät 
konvoluutioneuroverkot, kuvien luokittelu, kamerat, kuvanlaatu, valoherkkä kenno 
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1. INTRODUCTION 

Machine learning has achieved an important role in research, business and everyday 

life. Different machine learning algorithms are also used for fun, like virtual reality games 

and experiences. Algorithms are also developed for making the life of people easier and 

for decreasing human errors in the fields where it is possible. For example, the automatic 

aviation in airplanes decreases the possibility of a human error made by a tired pilot. 

However, some people are worried about being replaced by robots and don’t still believe 

that a machine could perform tasks better than a human.  

Visy Oy has developed automatic access and traffic control systems for industry. The 

systems are globally used in, for example, shipping terminals, border control and facto-

ries. It includes machine learning: each time a vehicle wants to enter a certain area, the 

license plate is recognized, and this is performed with an optical character recognition 

machine learning algorithm. In addition to license plates, Visy Oy implements, for exam-

ple, container and wagon number recognition and seal and hazardous materials sign 

recognition.  

Image quality plays a major role in machine learning systems where the algorithms are 

supposed to recognize small details from images, like in Visy projects. If the image qual-

ity is low, it is difficult or even impossible for human eye and for a machine to recognize 

these details in an image. Therefore, one part of this thesis focuses on the basic princi-

ples of cameras and on which factors affect image quality. One aim of this Thesis is to 

find a camera that is suitable for Visy projects, and offers higher image quality than the 

current cameras used in the projects. In this Thesis, few cameras are investigated and 

tested and the use cases for a high-quality camera are considered. 

One part of this Thesis consists of machine learning. The cameras in Visy’s traffic control 

systems are zoomed at a certain point, and when a vehicle drives to a gate, it is important 

to take the image at the correct spot. Currently this is performed with inductive loops, 

which recognize large amounts of metal over them, or with laser scanners, which alert, 

when something passes a location that is configured to be on an alarm area. The diffi-

culty of inductive loops is that they are dug to the ground, which makes them difficult to 

move in cases where gates are relocated. Digging is also expensive. In cases, when 

there is something magnetic nearby, the loops don’t work correctly, because they react 
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to the change in the magnetic field caused by metal in a vehicle. Laser scanners, on the 

other hand, are easier to move and not that expensive because no digging is needed. 

However, they react to everything that passes the alarm area, like rain, snow, animals 

and humans. And because of this they are not 100 % reliable when it is raining or when 

a moose decides to pass a gate. 

The second aim of this Thesis is to implement a mechanism for vehicle detection in soft-

ware. We call this algorithm a virtual trigger because its purpose is to trigger images 

exactly like loops and scanners do and to be nearly as reliable without causing too much 

extra photo shooting. The virtual trigger is implemented as a deep convolutional neural 

network that recognizes from the image if there is a vehicle on a certain spot. So, the 

purpose is not to locate vehicles but to trigger an image when a vehicle is on a desired 

spot. The idea is to capture frames from the camera’s video stream and perform a clas-

sification with two classes (vehicle or no vehicle) for each frame. When the frame is 

classified to the vehicle class, the actual permit image is taken and the license plate 

recognition for the image performed.  

We could also just detect license plates from the frames instead of vehicles, but this 

would mean that vehicles with no plates (i.e. snowploughs and the vehicles owned by 

ports and factories) would be unrecognized. Also, detecting license plates might be 

slower because it is performed block by block from the frame while virtual trigger will just 

perform classification to the whole frame.  

This Thesis consists of seven chapters. Chapter 2 gives theoretical background infor-

mation about the principles of cameras: their structure and function and different parts of 

the camera. The focus is in the properties of the camera that affect image quality. Chap-

ter 3 introduces the theory of machine learning focusing on convolutional neural networks 

that are the main part considering this work. Chapter 4 explains how the camera tests 

were implemented and which cameras were chosen to be tested and why. The imple-

mentation of the virtual trigger is presented in Chapter 5. This includes the data, the 

neural network models that were implemented and a short explanation of the program-

ming tools that were used. The results of both camera and virtual trigger tests are col-

lected to Chapter 6 with discussion about them. Chapter 7 concludes this work and gives 

some ideas about the future for both cameras and virtual trigger. 
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2. PRINCIPLES OF CAMERAS 

Cameras are optical devices developed for capturing images and videos. Many different 

camera types have been developed, and they have slightly different functions. The sim-

plest structure of a camera, a pinhole camera, which is introduced in Chapter 2.1, has 

been known since ancient times. Since the 12th century a useful way of using a lens in 

image formation has been known, but the photosensitive components for saving the im-

age has been known only since the 17th century, still unable to use them properly. The 

story of the digital cameras began in 1975 in Kodak laboratories. [1]  

The main idea of this Chapter is to introduce basic structure and functions, and the main 

parts of cameras, mainly focusing on digital cameras, and particularly on digital single-

lens reflex (DSLR) cameras. First, the basics of camera functions, parts and focusing 

are introduced and then some details about aperture, shutter, image sensor, mirror and 

pentaprism are discussed. Camera interfaces are discussed in Chapter 2.6 and suitable 

camera types in the perspective of Visy Oy are considered in Chapter 2.7. 

2.1 Basic structure and function 

As introduced previously, in the simplest case, a camera is a box with a hole. This is 

called camera obscura or a pinhole camera. Figure 1 shows an example of a pinhole 

camera. Light comes through the hole and image is projected on the wall opposite the 

hole. For saving the image, the wall must be a film or an image sensor with a chemically 

processed surface. [2] The scale of the formatted image is the ratio between the depth 

of the box d’ and the distance d of the object to the hole: 
𝑑′

𝑑
. So, increasing d’ or decreas-

ing d will increase the image size and increasing d or decreasing d’ will decrease the 

image size. The smaller the hole is, the sharper the image will be, but also the image will 

be darker. The smaller the hole is, the brighter the image will be, so one must find the 

balance between sharpness and brightness. [1] These properties are discussed later in 

Chapter 2.2 and 2.3. For increasing the amount of light, a lens is installed to the hole [2]. 

There are many different parts in a digital camera body. The main parts are lens, aper-

ture, shutter, image sensor, pentaprism and mirror. Pentaprism and mirror are used for 

viewfinder, which is introduced in Chapter 2.5. This Thesis will concentrate on the main 

parts leaving the other parts of a digital camera body out of the scope. Figure 2 shows 

an example of DSLR camera parts.  
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The lens gathers light and focuses the light rays from an object through the aperture to 

the image sensor (or, in some cameras, film). The image is formatted on the image sen-

sor, reversed and turned upside-down, as shown in Figure 1. The aperture is usually 

adjustable and controls how much light is admitted to the camera’s sensor in a certain 

time period. The shutter is opened when an image is taken, and the time that the shutter 

is open, and the image sensor is exposed to light, is called exposure time. Together, the 

shutter and the aperture control the exposure, i.e. the amount of light and the exposure 

time. If the light of the image is desired to stay stable, the shutter needs to be open longer 

with smaller aperture and vice versa. [2] A colour filter is used for showing the images in 

RGB (Red Green Blue) space. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Digital camera (DSLR) parts 

Figure 1: An example image of a pinhole camera and image formation 
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The lens that is added to the pinhole cameras enables more light but lacks the possibility 

of focusing. The objects closer the lens will be sharper, and the others are blurrier, de-

pending on the lens. Because of the lack of focusing, DSLR cameras need a separate 

photographic objective, which means a lens or more commonly a system of lenses, to 

be able to function properly. [1] Figure 3 shows a simplified diagram of focusing. The 

depth of field (DOF) shown in Figure 3 is discussed in Chapter 2.2 

 

 

There are three colored points in Figure 3. Let’s imagine an object to each of these 

points. The green one is perfectly in focus and it will be seen sharp on the image. The 

blue point is said to be marginally in focus. It is not totally out of the focus, but it is located 

in the acceptable area of depth of field (see Chapter 2.2), so it will be acceptably blurry. 

The orange point is out of focus so this object will be blurry in image.  

2.2 Aperture 

 

As discussed earlier, the aperture controls the amount of light in a certain time interval: 

the bigger the aperture, the brighter the image will be because of more light coming to 

the image sensor. The separate photographic lenses have their own aperture sizes, 

which affect the adjustability and the image quality of the camera (camera body + pho-

tographic objective). Let’s now study the standard scale of the aperture sizes, called f-

numbers or f-stops. [2] Some examples of these are shown in Figure 4 [3]. F-numbers 

are related to the properties of an optical system. In cameras, the explanation for the f-

numbers can be started from the lenses. 

Figure 3: A simplified diagram of focusing of cameras 
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Lenses are usually convex or concave and they have a focal point. Focal length is the 

name for the distance between the focal point and the lens. [4] In optical systems the f-

number describes the ratio between the focal length of the system and the aperture di-

ameter [5]. Let’s mark the focal length as l and the aperture diameter as A, and we obtain 

the following formula: 

𝑓𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑙

𝐴
.           (2.1) 

If the focal length is 28 mm and the aperture is 10 mm, the f-number is marked as f/2.8 

or f2.8. The bigger the f-number, the smaller the aperture and therefore, the less light 

will be let in. Few DSLR cameras have the possibility to use the whole f-number scale, 

but only a range of it. Therefore, when choosing the camera and the photographic ob-

jective, it is important to check the available f-number values. [2] 

Besides affecting the amount of light in a certain time period, the aperture size affects 

the depth of field. The bigger the aperture, which means a smaller f-number, the narrower 

the depth of field. The depth of field means the area, which is sharp in the image. So, 

the camera is focused only on the objectives at a certain distance. With a smaller aper-

ture size, a larger depth of field is obtained. This means that a bigger area in front of and 

behind the focus point will be sharp in the image. [2] 

The depth of field is demonstrated in Figure 5. The upper image in Figure 5 demonstrates 

the result with a bigger aperture causing a narrow depth of field. Lower image demon-

strates the larger depth of field with smaller aperture. The depth of field is actually a result 

of four different parameters. One is the aperture (f-number), second is the focal length 

of the optical system, third is the object-to-lens distance, also known as focus distance, 

and fourth is the criterion chosen for sharpness, called the circle of confusion.  

 

Figure 4: Examples of standard aperture f-number scale [3] 
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Circle of confusion means an optical spot, which is caused by light rays that are not 

coming to a perfect focus from the lens as seen in Figure 6. Let’s mark the focal length 

as l, the focus distance as D, aperture as fnumber and circle of confusion as C. The ap-

proximation for DOF is then 

𝐷𝑂𝐹 ≈
2𝐷2𝐶𝑓𝑛𝑢𝑚𝑏𝑒𝑟

𝑙2  [6]         (2.2) 

given in meters.  

 

Figure 5: Understanding the depth of field 

Figure 6: Imperfect lens  
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Let’s calculate an example for DOF. If the focus distance is D = 5 m, circle of confusion 

is decided to be C = 3 m, the focal length is l = 50 mm and the f-number is 1.4, we get 

the following result for DOF: 

𝐷𝑂𝐹 ≈
2 ∗ (5 )2 ∗ 1.4 ∗ 3

(50)2
≈ 0.084 (𝑚). 

The black point in Figure 6 describes the focal point of the lens. Yellow lines describe 

the light rays coming to the lens and refracting when reaching the lens. As in Figure 6, 

in an imperfect real-life lens not all the light rays go through the focal point of the lens 

after refracting. This causes the blurry spots in the image.  

2.3 Shutter 

The shutter speed affects the exposure time. In addition to that, the shutter speed can 

be considered as the controller of motion. The two main types of shutters are mechanical 

and electronic. Mechanical shutter includes two types: a leaf shutter and a focal-plane 

shutter. The leaf-shutter comprises of overlapping metal blades that open and close by 

a spring. The focal-plane shutter is in general two overlapping curtains, which move to 

one direction over the film or the image sensor. The curtains work as an adjustable win-

dow, which expose the film or the image sensor one section at a time. [2] Rolling, global 

and hybrid shutter are electronic shutters. Rolling and global shutter are controlled by 

the sensor itself. Rolling shutter scans the image plane row by row and the exposure 

takes place in the time interval between the first and the last row illumination. Global 

shutter illuminates the whole image plane at the same time. Hybrid shutter combines 

mechanical and electronic shutter functions. Electronic shutters don’t have any moving 

parts, which is an advantage since their operation is silent and there are no mechanical 

shutter parts that break easier. Another advantage of electronic shutters is their high 

shutter speed. [7] 

As demonstrated in Figure 7 [8], a high shutter speed eliminates blurring from an image. 

This ability depends on the speed of the objects also. When the shutter speed is low or 

the object moves too fast compared to the shutter speed, the object moves before the 

image is fully formatted on the film or the sensor and this causes blurring. The blurring 

occurs more, when the object is moving horizontally in front of the camera than when the 

object is moving directly towards or away from the camera. [2]  
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Aperture diameter and shutter speed are related to each other: when the f-stop is in-

creased by one (the aperture is smaller), the amount of the light is half of the previous 

value and, due to this, the shutter speed needs to be doubled. When the f-stop is de-

creased by one, the amount of light is doubled, and therefore, the shutter speed may be 

reduced to half.  

2.4 Image sensor 

Image sensor is considered as the most important part of the camera in terms of the 

image quality. Image sensor consists of pixels that are usually square. The common 

technology used in image sensors in DSLR cameras these days is complementary 

metal-oxide semiconductor (CMOS) transistor technology. This technology has almost 

fully replaced the charge-coupled-device (CCD) technology, which used to be the most 

common technology in DSLR cameras. The basic idea of image sensors is that first, the 

light rays are focused on the sensor. Image sensor converts light into an array of electri-

cal signals. Usually, the sensor uses a colour-filter array (CFA) to make each pixel to 

produce a signal that corresponds to red, green or blue colour i.e. the pixels show the 

image in RGB colour space. The sensor itself does not produce colours, it sees only the 

black and white data and therefore a CFA is needed. A common CFA is a Bayer filter, 

which is demonstrated in Figure 8. One pixel does not store all the RGB values. The 

RGB values are stored according to the Bayer filter array. The analog pixel data i.e. the 

electrical signals are converted to digital with an analog to digital converter (ADC). Then 

a spatial interpolation operation is performed to form a full colour image and usually some 

further digital signal processing is used to improve the image. Interpolation completes 

Figure 7: Shutter speed controlling blurring [8] 
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the image, which is formed with the Bayer filter. Finally, the image is compressed and 

stored to reduce the file size. [9]  

 

 

In CMOS technology, each pixel of the image sensor contains a photodetector, which 

converts the light into photocurrent. Then the photocurrent is converted into voltage and 

readout or vice versa. The most general types of photodetectors in CMOS technology 

are reverse-biased PN junction photodiodes and PIN diodes. The photocurrent produced 

by photodetectors is usually too low, which means current from femtoamperes to pico-

amperes. Therefore, in CMOS technology the current is first integrated as shown in Fig-

ure 9, and then read out. Figure 9 shows, that the voltage over the photodiode is reset 

to voltage Vdd after which the switch is opened and the current flow through the diode is 

integrated over the diode capacitance (Cd). [9] The PN junction photodiode is a semicon-

ductor, which contains negatively charged electrodes (n-type region) and positively 

charged holes (p-type region) and those are fused together. Reverse-biased means that 

the voltage over the diode is negative, and the n-type region of the diode is connected 

to positive terminal of a source and p-type region is connected to negative terminal of 

the same source. The greater the light intensity, the smaller the diode resistance and 

therefore the greater the current. The PIN diode contains n-type and p-type regions and, 

a slightly doped semiconductor region between them. [10] 

Figure 8: A Bayer pattern colour filter  
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There are three main readout technologies in CMOS image sensors. Different versions 

of active pixel sensor (APS) are the most common ones. This means a technology where 

each pixel contains a photodiode, one or more transistors and an amplifier, which makes 

the imaging process faster and increases signal-to-noise ratio (SNR). The photocurrent 

is first converted into voltage and then read out from the pixel array. Digital pixel sensor 

(DPS) means that each pixel contains a photodiode, few transistors, an ADC and some 

memory for temporary storage of the digital data. So, the current is changed into digital 

data and then read out from the pixel. Passive pixel sensor (PPS) is the oldest one of 

the main readout technologies. In PPS, each pixel contains only one diode and one tran-

sistor, and the current is first read out and then changed into voltage. [9] 

Image sensor size affects the image quality. The bigger the image sensor, the bigger the 

resolution and the more detailed the image if the sensor contains more pixels. This 

means also better image quality and larger image area. If the image sensor size in-

creases, but the number of pixels stays the same, the aim is to have bigger pixels and a 

better dynamic range, which is introduced later. Figure 10 [11] shows different sensor 

sizes. Some camera manufacturers have own names for specific image sensor sizes, 

but usually image sensor sizes are expressed in inches. Figure 10 shows both: sizes in 

inches and few examples of sizes of camera manufacturers. The full frame image sensor 

is currently the largest available in basic consumer cameras. It is 36x24 mm. [12] 

 

 

Figure 9: An example of direct integration of the photocurrent  
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One important character of an image sensor is called light sensitivity or ISO (International 

Organization for Standardization) speed. It is a camera setting controlling the brightness 

of photos. The higher the ISO speed, the brighter the photo. The brightness is controlled 

by amplifying the output signal, and therefore the image quality does not necessarily 

improve with a higher ISO value since the noise in the photo will also increase when the 

ISO number increases. ISO value should only be used if the photo cannot be brightened 

with aperture or shutter instead. When adjusting aperture, shutter and ISO number it is 

possible to keep the exposure time the same. With smaller aperture, the shutter time 

needs to be increased, or, if those need to be stable, then the ISO number is increased. 

[13] 

Related to the characters introduced above, dynamic range (DR) of a camera is an im-

portant term regarding photography and image quality. It describes the ratio between the 

maximum and the minimum light intensities at each ISO stop. The maximum light inten-

sity or signal is at the pixel saturation point, and the minimum light intensity is the noise 

floor of the signal. The sensor pixel size affects the camera’s dynamic range. Because 

only a certain number of photons fit to the area of a pixel, smaller pixels have a smaller 

dynamic range and DR is defined by dividing the maximum number of photons in the 

area of one pixel by the minimum amount, which is one. In real life, it is not possible to 

count the actual number of photons. For example, f-stops, which were introduced in 

Chapter 2.2, can be used as a measure for the DR of a camera. In this case, increasing 

the DR by one stop means doubling ratio between maximum and minimum light intensity, 

and therefore twice the details in dark and light areas can be seen. [14]  

Figure 10: Different sensor sizes [11] 
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2.5 Viewfinder 

A viewfinder allows the photographer to check the cropping and the focus of an image 

before taking it. There are mainly two technologies: an optical viewfinder and an elec-

tronic viewfinder, which is a liquid crystal display (LCD). There may also be an additional 

LCD in the cameras, especially if the viewfinder is optical. In these cases, the extra LCD 

screen is meant for live view and for showing the image right after taking it. [2] 

The optical viewfinder is more common in DSLR cameras than electronic and it is imple-

mented with a mirror and a pentaprism. Before the shutter is opened, the light reaches 

the mirror instead of the image sensor. After the light rays reach the mirror, the mirror 

reflects them to the pentaprism. The pentaprism turns the image to the correct position. 

This means that the photographer sees the actual image, which will be saved by the 

image sensor, through the optical viewfinder. [2] When the shutter button is pressed the 

mirror rises to let the light rays to expose the image sensor. [15] 

In the electronic viewfinder, the image is electronically projected into the small LCD. 

Therefore, the view is not exactly the same as it will be on the image sensor, but a pro-

jection of it. [2]  

2.6 Camera interfaces 

For this project, it is important to know, what kind of interfaces the cameras have, con-

cerning the software and hardware interfaces. The power cabling for different cameras 

is different. Some cameras work with a Power over Ethernet (PoE) cable, some work 

with a VDC power cable and some need a battery. Some of the cameras may have 

several options for cabling and a battery system. For example, Basler IP cameras can 

be powered with a PoE cable, but also with a 12 to 24 VDC cable [16]. DSLR cameras 

like Canon’s are powered with a battery, but in some of their cameras, the battery is 

replaceable with an AC power adapter and a DC power connector [17].  

If the camera is an IP camera, it needs a network connection also. Those cameras are 

connected to Internet via Ethernet cable. In these cases, the camera usually has a web 

user interface (UI), from where the settings are configured. Some cameras may also 

have wireless connection possibilities, for example, wi-fi and Bluetooth connections. Wi-

fi and Bluetooth connections may also be used for accessing the camera from a mobile 

phone or a laptop. The camera may be connected to a laptop or a computer with a USB 

(universal serial bus) cable for, e.g., transferring images. This is a common way in DSLR 

cameras. 
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Software interfaces are important, when one needs to control the camera automatically 

from a PC and transfer and process images automatically. Some cameras are accessed 

from a computer through a web UI and some camera manufacturers have made their 

own application that needs to be downloaded and installed before using the camera re-

motely. Some manufacturers have also made a software development kit (SDK) for con-

trolling and using the camera remotely. Video surveillance cameras are usually IP cam-

eras, and therefore, there is usually a web UI, which allows watching a live image from 

the camera and changing the camera settings. For accessing the camera through a web 

UI, an IP address is needed. It is usually obtained through a finder program provided by 

the camera manufacturer.  

In IP cameras, still images are obtained by using hypertext transfer protocol (HTTP) for 

transferring information or by using real-time transport protocol (RTP) and capturing 

frames from the video stream. HTTP is a request-response protocol, where the HTTP 

request is sent from a client to a server. The server sends a response, which in this case 

is an image. RTP is a protocol for transferring real-time data, for example, images and 

audio, over IP networks.  

2.7 Properties of suitable camera types 

 

Above we introduced different camera types and their properties. When considering this 

Thesis and the requirements that Visy Oy has for the cameras, next we figure out, which 

kinds of cameras would be suitable for the future projects. 

First, the aim is to have a higher image quality, so the image sensor needs to be large 

and contain at least 10 megapixels. The pixel size needs to be also big for obtaining a 

high dynamic range and due to this, high image quality. The type of the sensor is not that 

important, but the size of it.  

From two different shutter types, an electronic shutter would be better when compared 

to mechanical. In Visy projects the cameras may take thousands of images per day, 

which would most likely consume a mechanical shutter more than an electronic one.  

A suitable camera needs to be powered with a PoE or a VDC power cable. In Visy pro-

jects the camera must take images all the time every day so loading a battery is not 

possible, and because automation is the purpose of Visy’s projects, changing the battery 

by people would not be desired.  

There has to be a way to control the camera remotely and automatically, because our 

software needs to be able to tell the camera, when to take an image. Also, related to the 
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remote control, a possibility to use HTTP for transforming images is considered as an 

advantage. This is not critical, if there is another fast way to transfer the images from the 

camera to the computer, but since Visy Oy has already implemented code for HTTP 

image transferring, it would make it easier for us to use HTTP also in the future. Also, if 

the camera has a web UI for changing settings, it is considered as an advantage. A web 

UI enables configuring the camera remotely, which we currently do in projects.  
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3. MACHINE LEARNING THEORY 

Machine learning consists of algorithms and statistical models for automated data anal-

ysis methods. The idea is to implement mathematical models that can learn from the 

data by detecting patterns and using these patterns to predict from new data. For exam-

ple, classification, regression and feature learning are types of machine learning meth-

ods. The idea of machine learning is to find an output Y for some input variable X in 

ℝ𝑚𝑥𝑛. This can be written mathematically as following: 

𝐹: 𝑿 → 𝑌,           (3.1) 

where X is a matrix of the input variables and Y is an output variable. The aim is to find 

the function F that best maps X to Y. One input for a machine learning model is xi and 

the model will produce an output Y by computing it from the input with a function F.  

The models of machine learning are trained with data. Data can be, for example, images, 

audio or data points and the dataset used for training a machine learning model is called 

training data. Three main types or training are supervised, semi-supervised and unsu-

pervised training. [18] These are introduced later, especially supervised learning, which 

is in the focus of this Thesis. There are also other types of learning, for example, rein-

forcement learning, but those are out of the focus of this Thesis, so they are not dis-

cussed. 

Supervised learning is the most common concept of machine learning [19]. In supervised 

learning, the model is trained with a labelled or a classified training dataset. Labelling or 

classifying the training data is called annotating it. Annotating is an important part of the 

machine learning process because in order to obtain good results, there must be a large 

amount of annotated data and annotations need to be correct. The training data is usually 

a vector of inputs x. It is shown to the model one by one with the desired output Y. 

According to this knowledge, the model is supposed to find parameters that map the 

input X into the desired output Y. The more inputs the model is able to map into correct 

outputs, the better the found parameters. So, supervised learning means that the model 

is trained with a set where the correct output is known for each input and during the 

learning process, the model modifies its parameters in order to obtain better results. [20]   
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Classification and regression are types of supervised learning. In classification, the out-

puts belong to a limited set of values, and the target outputs are categorical. For exam-

ple, in binary classification problems there may be two possible output classes like cats 

and dogs, and they can correspond to, for example, classes 0 and 1 in the model. In 

regression, the outputs may be any numerical values in a range and the model tries to 

find thresholds or boundaries to divide the data. [18] Figure 11 shows a 2D linear regres-

sion example with two classes. Green points belong to one class and blue points belong 

to other class, for example, classes 0 and 1. Red line is the result of linear regression, 

called a decision boundary. It is a function 𝑓 = 𝑤𝑎𝑥 + 𝑤𝑏 and the parameters, also known 

as weights wa and bias wb are chosen to be the ones that produce a decision boundary 

that separates the two classes most accurately. Whenever a new point is added to the 

samples, it can be classified with the found decision boundary.   

In unsupervised learning, the dataset is not annotated, so the correct outputs for the 

given inputs are not known. Instead, the model is supposed to divide the dataset into 

outputs itself by studying the features of the data. Unsupervised learning tasks can be 

divided into clustering, density estimation and visualization problems. The most common 

one is clustering, where the data is organized to groups by the features of it. The model 

finds the commonalities or their absence and groups or, in other words, clusters the data 

according to those. In density estimation, the model tries to find the density distribution 

of the data. The aim in visualization problems is to project high-dimensional data into two 

or three dimensions to be able to visualize it. [18]  

Semi-supervised learning combines supervised and unsupervised learning methods. A 

part of the training data is labelled. In semi-supervised learning problems, there is usually 

Figure 11: An example of linear regression  
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a large amount of training data available, but annotating is not possible, or it is too ex-

pensive, which leads to training the model first with supervised methods and continuing 

with unsupervised learning. [21] However, this Thesis concentrates on supervised learn-

ing methods, and, more specifically, on deep convolutional neural networks. 

First, this Chapter introduces artificial neural networks generally. Then single-layer per-

ceptron, multi-layer perceptron and convolutional neural networks are presented. Finally, 

training and evaluating neural network models is discussed. Model evaluation includes 

presenting error metrics, overfitting, cross-validation, data augmentation and regulariza-

tion. 

3.1 Artificial neural networks 

Artificial neural networks (ANNs) are a group of machine learning methods. The basic 

component of ANNs is an artificial neuron, which is loosely based on the biological neu-

ron. Figure 12 [22] shows one biological neuron that would be connected to another from 

the axon terminal. Electrical signals are transmitted from neuron to another via axons. 

  

 

 

 

 

 

 

 

 

 

The artificial neural network itself is not an algorithm. It is a structure for different machine 

learning algorithms to learn patterns from the data and produce desired target outputs. 

The simplest type of a feedforward artificial neural network is a perceptron. It was in-

vented in 1960s by Frank Rosenblatt to solve binary classification problems. The function 

of only one neuron is called a single-layer perceptron, and it is introduced below. A feed-

forward network means that the data is only transmitted to one direction and the neurons 

do not form cycles. [18] 

Figure 12: Biological neurons, modified from [22]  



19 
 

3.1.1 Single-layer perceptron 
 

Single-layer perceptron is presented in Figure 13. Inputs X are fed to through weights W 

and the outputs Y are calculated as a sum of dot products of the weights and the inputs 

as the following formula shows. 

𝑦 =  𝑓(∑ 𝑤𝑖𝑥𝑖 + 𝑏),𝑁
𝑖=1          (3.2) 

where b is a bias for shifting an activation function f and wi describes the ith weight of W. 

The output y is the resulting class from two options. Single-layer perceptron can only be 

applied to linearly separable data and only in the case of binary classification. If the prob-

lem is more complicated or includes more classes, the single-layer perceptron needs to 

be developed into a non-linear multi-layer perceptron, which is introduced later in Chap-

ter 3.1.2. [23]  

 

 

 

 

 

 

 

The purpose of the activation function is to produce a decision boundary, also known as 

a threshold, which defines the resulting class. If the output exceeds the threshold, the 

neuron is activated and if it the threshold is not exceeded, the neuron is not activated. 

[23] 

Rosenblatt’s algorithm defines the non-linear activation function is as a step function: 

𝑓(𝑠) =  {
1, 𝑖𝑓 𝑠 ≥ 𝑇

−1, 𝑖𝑓 𝑠 < 𝑇
 [23].         (3.3) 

Rosenblatt’s theorem says that a perceptron can learn anything that it represents or sim-

ulates. However, the Rosenblatt’s theorem is already out of date, so to say, and the 

activation function can also be something else, when the Rosenblatt’s theorem does not 

even hold up anymore [23]. Rosenblatt’s theorem is only introduced in this Thesis, be-

cause it is a simple example and introduction to machine learning, artificial neurons and 

ANNs and it makes it easier to understand the rest of this Chapter. 

Figure 13: A simple single-layer perceptron, also known as a neuron 
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3.1.2 Multi-layer perceptron 
 

A multi-layer perceptron (MLP) consists of multiple layers of neurons [24]. A multi-layer 

perceptron is shown in Figure 14. The Figure shows an example of N inputs and C out-

puts.  

 

 

 

 

 

 

 

 

 

 

 

The neuron layers between input and output layer are called hidden layers. Hidden 

means that they have no contact with the outside – the input data is given to the first 

layer and the output layer gives the results. The layers in a multi-layer perceptron are 

fully connected which means that each neuron in one layer is connected to every unit on 

the subsequent and previous layer. Multi-layer perceptron is a feedforward network. [25] 

 

 

 

 

 

 

 

 

 

Figure 14: Multi-layer perceptron 

Figure 15: Logistic sigmoid curve 
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Multi-layer perceptron needs also an activation function to decide whether a neuron is 

activated or not. In multi-layer perceptron, commonly used activation functions are called 

logistic sigmoid, hyperbolic tangent and rectified linear unit (ReLU). They are all mathe-

matical functions that are applied to machine learning. [25] 

A non-linear logistic sigmoid function is shown in Figure 15, and it is defined as following: 

1

1+𝑒−𝑠,            (3.4) 

where 𝑠 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑁−1
𝑖=0  [23].       

 

 

 

 

 

 

 

 

 

 

Hyperbolic tangent in Figure 16 is defined as: 

tanh(𝑠) =  
sinh (𝑠)

cosh (𝑠)
=  

1−𝑒−𝑠

1+𝑒−𝑠. [26]        (3.5) 

Definition for s is as above. Rectified linear unit curve is shown in Figure 17. 

 

 

 

 

 

 

 

 

Figure 16: Hyperbolic tangent 
curve 

Figure 17: ReLU curve 
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ReLU is congruent to a half-wave rectifier in electronics. A half-wave rectifier circuit in-

cludes a diode for allowing the current to only flow to one direction. This means that the 

current to the other direction is 0 and to the other some value I. [27] The definition for 

ReLU is 

x → 𝑥+ = max(0, 𝑠)   [28]         (3.6) 

and s is defined as above. 

3.1.3 Convolutional neural networks 
 

Convolutional neural networks (CNNs) are deep neural network variations of the multi-

layer perceptron structure, using a convolution instead of a general matrix multiplication 

at least on one layer. In difference to multi-layer perceptron, CNNs have sigmoidal non-

linearity in hidden layers whereas MLP has step-function non-linearities. [18]  

The convolution itself is mathematically written as the following formula 

𝑠(𝑡) = (𝑤 ∗ 𝑥)(𝑡),          (3.7) 

where x and w are functions describing the input (x) and the function modifying the shape 

of the input (w). In this work, we focus on CNNs, and therefore we are interested in the 

discrete case of convolution. This is written for a 1D input vector x as 

𝑠(𝑛) = ∑ 𝑤(𝑡 − 𝑛)𝑥(𝑛),         (3.8) 

where x(n) is the nth value of vector x and w describes a so-called kernel in CNNs. The 

kernel, in this case, is also a 1D vector, and the values of it are adjusted by a learning 

algorithm. [25]  

Convolutional neural networks typically consist of pairs of one convolutional layer with 

activation function and one pooling layer. The last layer or layers are usually fully con-

nected layers. Figure 18 shows an example of this kind of typical structure of a CNN, but 

also other kinds of structures have been proposed to improve the performance of the 

networks. [24] The example of CNN in Figure 18 is for image classification.  

A convolutional layer computes the convolution of the inputs and the kernel, and pro-

duces a feature map, which is passed to the subsequent layer. Neurons in one convolu-

tional layer are organized into these feature map planes. The neurons in the same plane 

use the same weights. Each neuron of the convolutional layer takes a subregion of the 

input (e.g. image). This input area for the neuron is also called a receptive field. In a fully 

connected layer, each input is connected to each neuron and the receptive field is the 

entire previous field. [24] 
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CNNs are especially used for processing 2D grid-like data, like images, which are also 

the focus of this project. Images can also be considered as 3D data, if colour channels 

are added. Next, we want to apply the Formulas 3.7 and 3.8 to get a convolution for 2D 

cases. When the input is a multi-dimensional array, we also want to use a multi-dimen-

sional kernel. For a grayscale image of the size M x M with an N x N kernel, the output 

feature map for one neuron in convolutional layer is computed as 

𝑠𝑢,𝑣 = ∑ ∑ 𝑤𝑖,𝑗𝑥𝑖−𝑢,𝑗−𝑣 
𝑁−1
𝑗=0

𝑁−1
𝑖=0  [25].       (3.9) 

The resulting feature maps are passed through a non-linear activation function. Com-

monly used activation functions have been logistic sigmoid and hyperbolic tangent. Re-

cently, ReLU has become a popular option for the activation function, but also other 

activation functions are used. [24] ReLU, logistic sigmoid and hyperbolic tangent were 

introduced in Chapter 3.1.2. 

If we follow our example in Figure 18, the next step is a pooling layer after the feature 

maps are passed through an activation function. The pooling layer performs a down-

sampling to the feature maps. Each unit of the pooling layer takes an N x N disjoint block 

of the feature map and reduces that to one single pixel. Two different examples of how 

pooling can be performed, are presented in Figure 19. These are called max pooling and 

average pooling. Max pooling on the left chooses only the maximum value of the block 

and passes that to the next layer. In average pooling, the average of the block is com-

puted and that is passed on. [24] 

Figure 18: An example of a convolutional neural network architecture  
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In our example, the last layer is a fully connected layer. It means that each neuron on 

this layer is connected to each unit of the output of previous layer. In CNNs, the high-

level reasoning happens in fully connected layer and this is where the feature maps are 

interpreted. A fully connected layer is followed by an output layer, which includes as 

many neurons as there are possible output targets. In the example in Figure 18 we have 

two neurons in the output layer corresponding to two possible output classes. Each input 

image is classified into one of these. [24] 

3.2 Network training 

In general, training a deep convolutional neural network means using learning algorithms 

for adjusting the free parameters of the network model, meaning the weights and the 

biases [24]. The weights are related to the convolution, which is computed in each con-

volutional layer. The convolution was introduced in Chapter 3.1.3. This Thesis focuses 

on image classification and for that purpose, the convolution is performed with the For-

mula 3.9, where wi describes the ith weight. The neurons in the same feature map plane 

(introduced in Chapter 3.1.3) use the same weights for calculations. 

For training a deep CNN model with supervised learning, the training data needs to be 

annotated. For image classification training dataset means a set of classified images. In 

the first phase of training, the weights and biases are initialized randomly, and the train-

ing data is fed to the network model. The network with randomly initialized weights and 

biases processes the data and produces the result vector ŷ consisting of the predicted 

outputs. This phase is called forward propagation. Because of annotated training data, 

the desired vector y with the correct output labels is also known. Therefore, it is possible 

to calculate the difference between ŷ and y. [25] 

Figure 19: Examples of how max and average pooling are performed 
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For minimizing the difference, also known as the error, between ŷ and y, a so-called cost 

function J(w) is needed. The cost function measures the performance of the neural net-

work model. Commonly used cost function is, for example, a mean squared error (MSE): 

𝐽(𝑤) =  
1

𝑁
∑ (ŷ𝑖 − 𝑦𝑖)2𝑁

𝑖=1 ,          (3.10) 

where N is the number of samples, yi the ith correct label and ŷi the ith predicted label. 

The labels are in image classification problems integers each corresponding to one 

class. Another cost function used in DNNs is a mean absolute error (MAE): 

𝐽(𝑤) =
1

𝑁
∑ |ŷ𝑖 − 𝑦𝑖|𝑁

𝑖=1 ,         (3.11) 

where the variables are defined as above. A third example, with the same variable defi-

nitions, of cost function options is the cross-entropy function, which is given as 

𝐽(𝑤) = − ∑ [𝑦𝑖𝑙𝑛ŷ𝑖 + (1 − 𝑦𝑖)ln (1 − ŷ𝑖)].𝑁
𝑖=1  [18]      (3.12) 

The next step after deciding a cost function is to perform backpropagation. This starts 

with an optimization problem: we want to minimize the cost function. In backpropagation, 

the gradients for all the outputs in the previous layer are computed. These gradients then 

show, how much and to which direction the adjustable parameters of the neural network 

affect the cost. The weights and the biases are then updated according to the result of 

the cost function. [18] 

Backpropagation is performed by using the chain rule of calculus and an optimization 

algorithm. The optimization algorithm is used for computing the gradients. Most of the 

deep learning optimization algorithms are based on an algorithm called stochastic gradi-

ent descent (SGD) [25]. It is a stochastic approximation of a gradient descent algorithm, 

which is a first-order iterative algorithm defined as 

𝑤𝜏+1 = 𝑤𝜏 − ɳ∇𝐽(𝑤𝜏).         (3.13) 

On each parameter update, a step ɳ, also known as the learning rate, towards the neg-

ative gradient is taken. After each update, the gradient is re-evaluated. [18] 

In gradient descent, the cost function is defined to the whole dataset. Therefore, the 

whole dataset is processed at once and the adjustable parameters are only updated 

according to that. These methods are called batch methods. In SGD, only a mini batch 

of samples is processed at once and the gradient is computed for that as following: 

𝑤𝜏+1 = 𝑤𝜏 − ɳ∇𝐽𝑛(𝑤𝜏).  [18]        (3.14) 

In order to find the minimum of the cost function the gradient is computed and a step 

towards the negative gradient is performed. It is good to keep in mind that finding a 
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minimum of the cost function does not necessarily mean that it is the global minimum, 

because usually the cost functions have many local minimums in addition to the global 

minimum. In most cases, however, the local minimums will give results close enough to 

the global one [19] and therefore, the training of the neural network is stopped whenever 

a minimum, local or global, is found.  

3.3 Model evaluation 

While and after the training of a CNN model, it is important to validate and test it. The 

aim is that the model generalizes, which means that it successfully classifies unseen 

data (data outside the training set) in the future [25]. Therefore, it is reasonable to split 

the training set into three different datasets in the training phase. These sets are called 

training, validation and test sets. Training set is used for training the model. Validation 

set is for testing during the training, how well the adjustable parameters work and when 

the model’s performance does not improve anymore, and it is no use to continue training. 

Test set is used after training for testing the generalization of the model. Test set can 

also be collected separately and outside the training set, but the main point is that it 

consists of data that is not yet shown to model during training.  

The purpose of this Chapter is to introduce ways to measure and improve the perfor-

mance of a deep CNN model, and finally to discuss about a common problem in network 

training called overfitting. The more we have the data, the higher the performance of the 

model usually is [29].This can be performed with an algorithm called cross-validation, 

which is introduced in Chapter 3.3.3. Another way to gain more data is data augmenta-

tion, which is discussed in Chapter 3.3.4. For evaluating the model, Chapter 3.3.1 intro-

duces error metrics. Chapter 3.3.2 discusses about overfitting. Finally, Chapter 3.3.5 

presents regularization and dropout, which are used for preventing overfitting along with 

data augmentation and cross-validation. 

3.3.1 Error metrics 
 

Error metrics are used to measure the performance of the deep CNN models and with 

them, different models can be compared to each other and the model with the highest 

performance can be chosen. Accuracy is one metric for measuring the performance of a 

neural network model. It simply provides the proportion of how many samples were pre-

dicted correctly out of the total number of samples. Error rate is the opposite metrics for 

the accuracy. It presents the proportion of incorrectly predicted samples. [25] 
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When evaluating the deep CNN models, it is reasonable to think about what kind of errors 

are acceptable and which errors should not occur at all. If we take a cancer detector 

example, it is far more dangerous to obtain an output class ‘no cancer’, when there is 

cancer than getting a result ‘cancer’, when there actually is not cancer. In our virtual 

trigger case, it is also better to get false positive (FP) results, which mean that the clas-

sifier gives an output ‘car’ when it should give ‘no car’ than false negatives (FN) results 

meaning an output ‘no car’ when there actually is a car. In the false negative virtual 

trigger case, the vehicle would not be able to pass since it is categorized to be a ‘no car’ 

and therefore no license plate recognition and permit check is performed for it. The re-

sults for four different error metrics are collected to a confusion matrix shown in Table 1. 

These include FP and FN, but also the positive cases, where the output is correct, true 

positive (TP), when a car is classified to a ‘car’, and true negative (TN), when a no car is 

classified to ‘no car’. [30] 

Table 1: Confusion matrix 

 predicted positive predicted nega-

tive 

true positive TRUE POSITIVE FALSE POSI-

TIVE 

true negative FALSE NEGA-

TIVE 

TRUE NEGA-

TIVE 

 

Based on the confusion matrix, it is possible to compute true positive rate (TPR) for the 

deep CNN. This is also called sensitivity or recall of the model, because it describes how 

many of the samples belonging to the positive class have been classified correctly. It is 

computed as 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. [30]          (3.15) 

True negative rate (TNR) describes how many of the samples of negative class (in virtual 

trigger case ‘no car’) have been predicted correctly by the CNN model. TNR is also called 

the specificity of the model, and the formula for computing it is 

𝑇𝑁𝑅 =  
𝑇𝑁

𝐹𝑃+𝑇𝑁
. [30]          (3.16) 

False positive rate (FPR) indicates how many of the samples belonging to negative class 

(in virtual trigger ‘no car’) have been falsely predicted to the positive class (‘car’). FPR is 

computed with the following formula: 
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𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
  [30].          (3.17) 

False negative rate (FNR) shows how many of the samples belonging to the positive 

class (‘Car’) have been predicted to the negative class. The following formula gives us 

FNR: 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
 [30].          (3.18) 

One other useful measure for indicating model performance is F1 score. It is defined to 

be the harmonic mean of recall and precision. Precision is given as 

𝑝 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 [31]          (3.19) 

and F1 score is computed as 

𝐹1 =
2

1

𝑇𝑃𝑅
+

1

𝑝

=
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 [31].        (3.20) 

We can now write the accuracy of the model, which was defined in the beginning of this 

Chapter, with the parameters introduced above as 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
.         (3.21) 

A receiver operating characteristics (ROC) analysis is developed for measuring the per-

formance of a deep CNN model. ROC analysis is based on measures introduced above: 

a ROC graph is a plot of TPR on y-axis against FPR on x-axis. The shape and location 

of the ROC curve indicate the performance of a classifier. [30] Examples of ROC curve 

shapes and locations are shown in Figure 20.  
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Figure 20: Examples of ROC curves 
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Figure 20 introduces two different examples of ROC curves on a ROC graph. Curve B is 

located on the diagonal of the graph. The classifier with a ROC curve like this is a random 

guesser with an accuracy of 50 %. So, the performance of a model with a ROC curve 

like B is not very high. The location for an ideal classifier would be at the point (1,0), 

which means that TPR = 1 and FPR = 0. Curve A follows the shape of an ideal ROC 

curve.  

Area under curve (AUC) is a measure for comparing different ROC curves in numerical 

form. For the diagonal ROC curve AUC = 0.5, and therefore, any reasonable classifier 

would have an AUC close to 1.0. An ideal classifier would have AUC = 1.0.  

The original ROC analysis is developed for two-class classification problems [30], and 

since the aim of this project is to implement a two-class classifier, this Thesis introduces 

only the basic ROC analysis and will not go deep into the multi-class applications of 

ROC.  

3.3.2 Overfitting 
 

The problem that may occur in training the deep CNN models is called overfitting. Over-

fitting means that the model learns the training data too well, so to say, and it begins to 

learn also the noise in the training data in addition to the actual signal. This also leads to 

a model that does not generalize. It may classify the training data perfectly but fails in 

classifying the test data.  

Many ways to reduce overfitting have been proposed. One way is to keep the CNN model 

simple. The complexity of the model should correspond to the number of the training 

data available [32], and therefore a model that is too simple or too complex will not have 

a high performance. Data-related approaches for preventing overfitting, cross-validation 

algorithm and data augmentation, are introduced in Chapters 3.3.3 and 3.3.4. Chapter 

3.3.5 presents two model-related ways to reduce overfitting, regularization and dropout.  

Besides overfitting, also underfitting may occur when training machine learning models. 

Underfitting means that the model is unable to reach a relatively low error [25], i.e. mini-

mizing the cost function is unsuccessful. This occurs in, for example, situations, where a 

linear model is attempted to train with non-linear data or the other way around. However, 

because this Thesis concentrates on deep CNN models, which overfit more often than 

underfit, we will not go deeper into underfitting. 
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3.3.3 Cross-validation 
 

Cross-validation algorithm is based on the idea of performing training and validation sev-

eral times with different training and validation data. For each time, the training dataset 

is split randomly into subsets. One set is used for validating the model and all the other 

parts for training it.  For k-fold cross-validation, this is performed by dividing training da-

taset into k equal-sized subsets. One set is used for validation and others for training. 

This process is repeated k times and the final model is a combination of the results. 

Figure 21 shows the idea of k-fold cross-validation. 

 

 

 

 

 

 

 

In Figure 21 the training dataset is divided into five subsets, so k = 5. This means that 

the training is performed five times. Light blue block means a subset that is used for 

validation in that run and grey blocks are the subsets used for training. [18] 

If the size of the neural network model and the training dataset allow, we may mark that 

k = N, where N is the total number of the training samples. In this case, the algorithm is 

called leave-one-out cross-validation. The training is performed as many times as there 

are samples and each sample is used as validation data on its turn. Usually this is not 

required or even recommended, because the number of samples and the size of the 

network are so large that it would not be reasonable. [18] 

3.3.4 Data augmentation 
 

Data augmentation means increasing the number of the datapoints in the training data. 

In image classification, data augmentation means increasing the number of images. This 

can be performed by rotating, mirroring and translating the images. For example, rotating 

and translating an image of a tennis ball, which is demonstrated in Figure 22, may seem 

to human eye like a minor change, but a neural network won’t know anything about tennis 

Figure 21: K-fold cross-validation 
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balls before it sees the training data and therefore it is better to show as many different 

positions of the objects to be recognized as possible [33]. 

 

 

 

 

 

 

There is a library [34] for programming language python called imgaug that provides 

several data augmentation techniques. With imgaug, it is possible to perform all the 

above-mentioned image transformations, but also other image processing like filtering. 

Different filters include adding noise to images like salt, pepper or salt and pepper noise. 

Blurring the images can be done with i.e. Gaussian and median filters. Adding noisy and 

blurry images to the training dataset improves the model’s ability to separate noise and 

signals from each other [29]. Imgaug also provides tools for modifying the colors and the 

contrast of the images.  

3.3.5 Regularization 
 

In many approaches, regularization is performed by adding a penalty (a regularization 

term) to the cost function (introduced in Chapter 3.2) as 𝐽(𝑤) = 𝐽(𝑤) + 𝑟, where r de-

scribes the regularization term. The aim of the penalty term is to limit the capacity of the 

CNN model and therefore to prevent overfitting, because the simpler the model, the less 

it will be prone to overfitting.  Commonly used regularization methods are L1 and L2 (also 

known as weight decay) regularizations. [25] Dropout is also one regularization method, 

proposed recently [19]. 

L2 adds a quadratic penalty to the cost function J(w) as following 

𝐽(𝑤)𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑 = 𝐽(𝑤) +
𝜆

2
𝒘𝑇𝒘,        (3.22) 

where λ is the chosen regularization coefficient and w describes the weights of the 

model. [18] 

L1 adds the absolute value of the weights w of the model to the cost function as following: 

𝐽(𝑤)𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑 = 𝐽(𝑤) +
𝜆

2
|𝒘|. [18]       (3.23) 

Figure 22: Rotating and moving an image of a tennis ball 
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Dropout means dropping out units from the deep CNN model during training. The 

dropped units may be hidden or visible, but they are temporarily deleted. In the simplest 

case, the dropout is a probability between [0,1] referring to the proportion of dropped 

units out of all units. [35] 
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4. CAMERA TESTS 

This Chapter introduces the camera tests. First, the requirements for cameras in the 

perspective of machine learning in access control system are discussed, including a 

glance into a basic Visy access gate. Secondly, the chosen camera models are intro-

duced, and the choices justified and discussed. Also, the most interesting properties of 

the cameras from Visy Oy’s point of view are presented. Then the implementation and 

environment of the tests are introduced, and finally, the use cases for a high image qual-

ity camera in Visy projects are considered. 

4.1 Requirements for cameras 

The main idea for these camera tests is to find out whether the cameras with a sufficient 

image quality to recognize small details from large images are suitable for Visy projects. 

Visy projects include machine learning in traffic control systems. The basic gate system 

is like in Figure 23. A truck drives to a gate that consists of a camera and a barrier. Few 

meters before the gate, there is an inductive loop on the ground that notices the truck 

driving and triggers the camera to take images. The purpose is that an image is taken 

and sent to a computer, license plate is recognized from the image and the permit deci-

sion made (access OK or denied) and the barrier starts opening, if the permit is fine, 

before the truck reaches the barrier. 

 

 

 

 

 

 

 

 

 

 

 Figure 23: An example of access gate made by Visy Oy  



34 
 

In the perspective of machine learning, the most important property of the camera is the 

image quality. The image quality is important, because the aim is to recognize details 

from image, and this is not possible if the images are blurry. When high image quality is 

desired, the focus needs to be on the camera’s image sensor and pixel sizes. Image 

sensor was introduced in Chapter 2.4. To obtain high image quality, the sensor needs to 

be big and include many big pixels. In this case we search for cameras with a sensor 

with at least 10 megapixels, because it would guarantee a significantly higher image 

quality than currently in our projects, and more detailed images. Also, the aperture and 

the shutter, which form the exposure time, affect the image quality of a camera. These 

were introduced in Chapter 2.2 and 2.3. 

When the machine learning is combined with an access control system, where the cam-

eras need to be outdoors all the time every day, also speed, size, durability and usability 

of a camera become points of interest. The speed is important because the vehicles 

approaching the gates are not supposed to wait for long times before entering, and usu-

ally they are moving when the images are taken. Therefore, the camera needs to be fast 

enough to capture a sharp image while the truck is moving and transferring images from 

the camera to a computer for performing recognition needs to be fast also. Size, durabil-

ity and usability are all related to each other, because, for example, durability can be 

improved with a camera outdoor housing, but a housing increases the camera size and 

possibly makes the usability more difficult.  

The durability of the camera consists of the operating temperature and the mechanical 

durability. The operating temperature is important, because the camera needs to work in 

all possible weather conditions. However, as discussed, an outdoor housing can be 

added to increase the operating temperature. In the housing, it is possible to include 

heating and cooling and increase the mechanical durability because if a vehicle hits only 

the housing, the camera does not break. The outdoor housing needs to include the power 

and ethernet cabling, but it also needs to be small enough, because of the usability of 

the camera.  

In traffic control systems, the size of a camera is important, because cameras need to 

be easy to attach to the gates and portals, and small enough not to disturb the vehicles 

driving by. So, when the outdoor housing is added, this needs to be kept in mind. The 

outdoor housing, the functions and user interfaces belong to the usability of the camera. 

If the camera breaks, it needs to be easy to switch. The outdoor housing cannot prevent 

electricians from checking and measuring electrical properties of the camera, the cou-

plers or the cables. It would also be good to have an easy access to the buttons of the 

camera to zoom and focus after installing the camera, when needed. The UIs include, 
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besides cabling, software and data transferring protocols etc. We need to be able to 

transfer images from a camera to a computer, where the recognition is performed, fast, 

so vehicles do not have to wait a long time at the gate.  

4.2 Camera models 

When starting this project, a DSLR camera was considered as the only choice for im-

proving the image quality, because of the image sensor and pixel sizes were thought to 

be large enough only in those. The negative side in DSLR cameras is that they are usu-

ally designed for consumers and not for business, and therefore the needs of business 

and 24/7 outdoor use are not necessarily considered. However, when the project pro-

ceeded, it turned out that there are also few video surveillance camera manufacturers, 

which offer cameras with sufficiently big image sensors and enough pixels. In this project, 

three different cameras are supposed to be tested. These include Basler BIP2-1920-30c 

(video surveillance camera), Sony SNC-VB770 (a video surveillance camera) and Canon 

EOS 6D Mark II (a DSLR).  

The camera needs to fulfil all or almost all the requirements that Visy Oy has for the 

camera, but camera manufacturers don’t have all the details that are needed to be stud-

ied on their websites, so comparing two different cameras on paper is not that straight-

forward. When considering DSLR or video surveillance cameras, also the photographic 

objective lens is an important part of the image quality. The availability of the cameras 

affected the choices also.  

Canon was chosen for the manufacturer of the DSLR camera because it turned out that 

Visy Oy already had implemented some code for Canon cameras for other kind of pur-

poses, and therefore the aim was to utilize that code when implementing the remote 

control of the camera (sending the message to shoot an image and transferring the im-

age to a computer). Sony and Nikon were also considered as the manufacturer, mainly 

because of their reputation. No other major differences than the existing code between 

Canon, Sony and Nikon DSLR cameras were found. The model of Canon DSLR camera, 

EOS 6D Mark II, was chosen because it has a sufficient image sensor and pixel size, 

which means a high image quality, it is relatively new model, so it is expected that Canon 

is not going to finish manufacturing them in the near future, which would require new 

tests for a new camera model, and according to the documentation of Canon, this model 

has support for Canon EOS Digital SDK [36], which is needed for the Visy’s code to work.  

Sony’s video surveillance camera was chosen because of the expected high image qual-

ity resulting from the image sensor and pixel sizes. A video surveillance camera was 
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chosen because of their reliability. They are usually designed for outdoor use all the time 

every day and for business, and therefore it is justified to expect that their durability, 

usability and speed fulfil the requirements that we have for cameras. Sony was also very 

cooperative, and therefore their cameras were easily available. Currently used Basler’s 

video surveillance camera was included in tests to be able to compare the results and 

decide, if the goals are achieved with the other two cameras (Canon and Sony). Figure 

24 shows all the three models included in tests. The sizes in Figure 24 do not correspond 

to the actual sizes and while Basler and Canon are shown without an objective lens, 

Sony is shown with one.  

 

 

Because of the requirements introduced in Chapter 4.1, we are interested in the physical 

size and weight of the camera, the size of the image sensor and the amount of the pixels, 

the maximum aperture size, the user interfaces and the power cabling of the camera. 

The properties of interest of all the three cameras chosen for tests are collected to Table 

2. Visy Oy uses HTTP grabbing to get images from cameras, and therefore if HTTP 

grabbing is an option in a camera, it is considered as an advantage. From image com-

pression formats, we are interested in JPEG (joint photographic experts group) to save 

network bandwidth in comparison to RAW in multiple camera configurations. 

The cameras that Visy Oy uses now are Basler BIP2-1920-30-c cameras with an Azure 

12-36 mm objective lens [16] [37]. The aperture is manually adjusted and used fully open 

in Visy Oy projects. Also zoom and focusing are done manually from the objective lens. 

These cameras are network cameras and their IPv4 addresses are obtained with 

Basler’s BIP Finder software. Then the web UI can be accessed with the IP address and 

the camera can be configured. 

The objective lens chosen for Canon EOS 6D Mark II camera is Canon EF 24 - 105 mm 

f/4L IS II USM lens [38] . The viewfinder is based on pentaprism and the camera has 

also an LCD screen. This camera has a live view-mode where an electronic projection 

Figure 24: Canon EOS 6D Mark II DSLR camera (on the left) [17], Basler's BIP2-1920-
30c camera (middle) [16] and Sony SNC-VB770 full frame video surveillance camera 
(right) [40]  
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of the image is shown on the LCD screen for viewing it before taking the image, if one 

does not want to use the pentaprism viewfinder. [17] The aim with this camera is to 

stream the viewfinder image in live-view mode and capture images from that. One note 

for this camera model is that the maximum length of a video is 29 minutes and 59 sec-

onds [17], so using the video property in the future is not possible.  

Canon offers two different ways to control DSLR cameras remotely. EOS Utility software 

allows to control the camera remotely, for example, shoot images. The software user 

interface consists of different buttons, and therefore EOS Utility needs a person to use 

it. EOS Utility is available for free download from Canon website. Canon has also made 

an SDK called Canon EOS Digital SDK (EDSDK). The access to SDK can be obtained 

by applying for it on the internet. [17] EOS Utility software does not use EDSDK [39]. In 

this project, EDSDK was utilized because the goal is to have a camera, that is functioning 

automatically. Therefore, EOS Utility was not considered as an option.  

Table 2: Summary of the properties of the cameras and their objective lenses 

 Basler Canon Sony 

Physical camera 

size (L/D x W x H, 

mm) 

109.7 x 44 x 29 

[16] 

74.8 x 144 x 110.5 [17] 118 x 104 x 84.6 

[40] 

Camera weight 

(g) 

210 [16] 765 [17] 720 [40] 

Sensor type CMOS [16] CMOS [17] Exmor CMOS [40] 

Sensor size (mm 

x mm) 

4.8 x 3.6 [16] 35.9 x 24.0 [17] 36 x 24 [40]  

Maximum image 

resolution (px x 

px) 

1920 x 1080 [16] 6240 x 4160 [17] 4240 x 2832 [40] 

Number of pixels 

(Mpx) 

2.1 [16] 26.2 (effective) 

27.1 (total) [17] 

12 [40] 

Pixel size (µm x 

µm) 

5.86 x 5.86 [16] - - 

Objective lens 

size (D x L, mm) 

38.5 x 53.97 [37] 83.5 x 118 [38] 64.4 x 70.5 [41] 
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Objective lens 

weight (kg) 

0.150 [37] 0.795 [38] 0.281 [41] 

Objective lens ap-

erture size 

f/2.8 [37] f/22-f/4 [38] f/22-f/1.8 [41] 

Objective lens fo-

cal length (mm) 

12-36 [37] 24-105 [38] 55 [41] 

Operating temper-

ature (°C) 

-10 – +50 [16] 0 – +40 [17] -5 – +50 [40] 

User interfaces BIP Finder + Web 

UI  

EOS Utility, Canon 

EOS SDK 

Web UI 

Shutter Global shutter 

[16] 

Focal plane shutter 

(electronic control) [17] 

Electronic [40] 

HTTP grabbing Yes [16] No [17] Yes [40] 

Video compres-

sion formats 

MJPEG, MPEG-

4, H.264 [16] 

MPEG-4, H.264 [17] JPEG, H264 [40] 

Max. video rate 

(fps) 

30 [16] - 2.5, 30 [40] 

JPEG format Yes [16] Yes [17] Yes [40] 

Power cabling PoE or 12 to 24 

VDC [16] 

Battery or an AC 

Adapter E6(N) with a 

DC coupler: DR-E6 

[17] 

12 VDC or 24 VAC 

[40] 

 

The objective lens for Sony’s full frame video surveillance camera SNC-VB770 is Carl 

Zeiss Sonnar FE 1.8/55 ZA. The image sensor of this camera is a 35 mm full frame 

exmor CMOS sensor [40]. Exmor CMOS image sensor technology is developed by Sony. 

[42] Sony’s special exmor sensor technology does not have a conventional fundamental 

pixel structure, which is called front-illumination. Sony uses a back-illumination pixel 

structure. Back-illumination provides improved sensitivity and noise reduction, but 

causes dark current, defective pixels and colour mixture that lead to decrease in SNR. 

To solve these problems, Sony has a photo diode structure and on-chip lens, which both 

are specifically developed for back-illumination pixel structure. [43] This camera is a net-
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work camera, which is considered as an advantage because we are currently using net-

work cameras and therefore it would be really easy to integrate this camera to Visy’s 

projects. Sony offers a web UI for configurating the camera, watching the live image from 

it and taking evidence shots. The IP address for accessing the web UI can be obtained, 

for example, with SNC Toolbox provided by Sony. [40] 

From the perspective of durability and usability, all the three cameras have almost the 

same operating temperature as shown in Table 2. This means that they all need an out-

door camera housing to be able to work in less than -5 °C temperatures. Basler camera 

is significantly smaller and lighter than Sony and Canon, which are about the same size 

with each other. However, Sony and Canon are still small enough for Visy’s purposes. 

The objective lens used in Canon’s case is bigger than in Sony’s but does not offer as 

wide aperture size range. Objective lens can be, however, chosen from many different 

options. One just needs to make sure that it is suitable for the camera. With Sony’s cam-

era we in Visy would not need to change almost anything in our code, because the user 

interface, accessing the camera configuration, telling the camera to shoot and transfer-

ring the images to a computer are implemented in the same way as in our projects cur-

rently. But, the software for Canon is also implemented, it should just be modified for this 

particular use. Basler and Sony are both powered with a power cable. For Canon to work 

all the time every day, we would need a separate AC adapter and DC coupler, which 

were difficult to find and buy, as it turned out during this project.  

Considering the image quality, Basler has significantly smaller image sensor and it pro-

duces significantly smaller image resolution as can be seen in Table 2. When considering 

object detection cases, which are introduced in Chapter 4.4, Basler’s IP camera is not 

enough because its image sensor is too small and therefore the image quality is not high 

enough. Sony has only half of the image sensor size of the Canon’s camera, but it still 

exceeds the aim, which is over 10 megapixels. As shown in the Table 2, the image sen-

sor in Sony has 12 megapixels. Therefore, both Sony and Canon have image sensor big 

enough to produce a sufficient image quality. 

4.3 Test implementation and environment 

The camera tests were performed in the office of Visy Oy. The cameras were placed on 

a table in front of a window next to each other. Figure 25 shows approximately how the 

cameras were located on the table, but not the final test placements. The cameras were 

not moved or touched during the tests. The idea was to get images from roughly the 

same place with the same view at the same time to be able to compare the test results. 

In the tests, the cameras were shooting images every 15 minutes to obtain images at 
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night also, because the importance of the exposure time and image quality increases at 

night. 

 

 

 

 

 

 

 

 

 

 

For shooting the images with a specific time interval, a software made by Visy Oy was 

used. The software tells the camera to shoot an image every 15 minutes (or as often as 

it is configured) and after each shooting, it transfers the image from the camera to a 

computer and saves it into a folder. The image transferring is designed in these tests as 

if it would be performed in real life. In real life the camera would shoot only when it is 

triggered with a message from Visy software, but in this case, images are only needed 

to compare the image quality. The image transferring was performed with HTTP grab-

bing, because only Sony’s and Basler’s cameras were included in the tests and both 

offer this option. Sony and Basler were taking photos during the following nights: 6.3-

7.3.2018, 7.3.-8.3.2018 and 8.3.-9.3.2018. 

The promised support in Canon camera for EDSDK turned out not to be working. This 

was discussed with Canon contacts and they promised to study the problem [39], but no 

solution was found in a reasonable time, so Canon’s camera was left out of the tests. 

This also showed that maybe DSLR cameras are not reliable enough for our projects. 

We have to sometimes switch to a newer model in cameras, because, for example, the 

manufacturer does not produce the model used by us anymore. In these situations, we 

have to be able to be sure that the support for an SDK that is promised, actually works.  

The speed is only shortly tested by holding a hand in front of the camera and pressing 

the shutter button at the same time when taking the hand away and checking, whether 

the hand is still in the image or not. We made a decision not to follow official standards 

when comparing the image quality, but to test the cameras specifically for Visy project 

Figure 25: The placement of the cameras 
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needs. Many of the standardized tests are designed for cameras that are used in photo 

shooting, professional or individual use and mainly in indoors. In Visy projects, the cam-

eras are outdoors all the time every day, so the properties of the cameras were studied 

in that point of view. The focus in Visy projects is on machine learning, and more specif-

ically on image or object recognition and not so much on the visual result of the image. 

4.4 Use cases 

As mentioned, a better image quality is obtained with a sensor with more pixels than in 

the current cameras. Then, the sensor also needs to be bigger to keep the DR value 

high despite the bigger number of pixels. There are two main use cases, where the cam-

eras with better image quality could be used. Both cases include recognizing small de-

tails of containers. An example image of a container is in Figure 26. From images of 

whole containers, we want to recognize, in addition to container numbers, some smaller 

details too, because it is a request of the customers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the use cases for the high-quality camera is recognizing IMO labels, which mean 

the labels for dangerous goods that are mandatory for trucks and train wagons trans-

porting them. In Figure 26 can be seen examples of those too. For machine learning 

purposes, the image is too blurry to detect and classify the IMO labels. Figure 27 shows 

an example of the image quality in practise, taken with a Basler camera, zooming to the 

Figure 26: An example of a container image 
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labels. One of the reasons for this quality is that the camera needs to take an image of 

the whole marine container, as shown in Figure 26, but the IMO labels are small com-

pared to the container with the image quality that Basler BIP2-1920-30c cameras offer. 

With a better image quality, the image taken from the whole container could look clear 

enough for detecting and recognizing these labels too. 

 

 

 

 

 

 

 

 

 

 

 

Another case would be seal recognition. Marine container handles should usually be 

sealed with a seal to ensure that the goods they are transporting are still the same as 

when they collected them, and nothing has been removed or added. Seals are relatively 

small objects and with the present cameras, almost impossible to recognize even with a 

human eye. Figure 26 shows how small the handles are on the images when there is the 

whole container on the image. Figure 28 shows two example images of seals.  

 

Figure 27: Example of the image quality in IMO recognition in practise 

Figure 28: Two examples of image quality in seal recognition in practise 
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The image on the left in Figure 28 is not a zoomed in version of an image with a whole 

container. This image is taken with a camera, which is dedicated only to take images 

from seals. The purpose is to have photos of as high image quality as this but taking the 

whole container in the image and not just handles. Most of the images containing seals 

look like the photo on the right in Figure 28, so not clear enough. In addition to recogniz-

ing if there is a seal, we should be able to recognize, if the seal is broken or not. If it is 

very difficult even to recognize if there is a seal, it seems impossible to tell, if it is broken. 

With the image quality of Basler BIP2-1920-30c cameras, we have not been able to im-

plement this, and the aim is to choose a high-quality camera, which is suitable for Visy 

projects, to be able to implement seal and IMO label recognition in the future.  
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5. USE CASE: A VIRTUAL TRIGGER IMPLEMEN-
TATION 

In this work, a use case of machine learning, and more precisely, of deep convolutional 

neural networks introduced in Chapter 3, is implemented. It is called a virtual trigger. The 

idea is that the convolutional neural network takes an image as an input and classifies it 

into one of two classes: car or no car. “Car” in this case means any vehicle trying to enter 

a Visy access gate like one in Figure 23. Currently, laser scanners and inductive loops 

are used for triggering the cameras to take images in Visy projects, when a vehicle ar-

rives at the gate. The aim of this DNN implementation is to replace scanners and loops 

with virtual triggering, so only the cameras would be needed in the projects in the future. 

The idea of how virtual trigger would operate can be seen in Figure 29. The output means 

the class probability: when the output is close to zero, it will be classified as “No car” and 

when a vehicle is present, the output will be close to one.  

 

 

 

 

 

 

 

 

 

 

 

 

First, this Chapter presents what kind of data was collected to train and test the network. 

Secondly, the used programming environments, platforms and languages are discussed 

and, finally, the implemented models and the ways of comparing them are introduced. 

Figure 29: The idea of how virtual trigger would operate 
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5.1 Data 

The training and the testing data consist of images of vehicles, and the sets were col-

lected from different places and different lanes around the world. Train and test sets are 

collected from different places and kept separate throughout the process to be able to 

use unseen data for final testing of the neural network. All the places, from where the 

images were collected, have Visy’s traffic control system. The purpose was to include 

images from different times of the day and different times of the year to include as many 

different scenarios in training and testing as possible, because the classifier needs to 

work properly all the time in different conditions. Different scenarios include everything 

where the images may differ from each other, for example sunshine, cloudy weather, 

raining, snowing, day and night. Figure 30 shows examples of different lighting and 

weather conditions. Images in Figure 30 are taken from the actual training dataset.  

The images in the datasets are taken with a Basler BIP2-1920-30c cameras with Azure 

optics, which are introduced in Chapter 4.2. The settings, zooming and focusing of the 

cameras differ slightly from each other in different access control systems because the 

lanes in real life can be very different from each other and, regardless of the lane, it is 

important to get a clear and sharp image for license plate recognition. Also, depending 

on the lane, the angle in which the vehicle drives to the gate may differ. The highest 

image resolution that can be obtained from Basler cameras is 1920 x 1080 pixels, and 

therefore all the images in the training set are of this resolution or lower. All the neural 

networks in this project resize the images for speeding up the training. Few image sizes 

were tested in training and according to these test results, the image sizes resulting in 

the highest classifying accuracies were chosen for further network training and testing. 

The top image on the left in Figure 30 shows an example were the sun is shining and its 

rays are reflecting from the car and disturbing the visibility of the details. The top image 

on the right shows an example of the image quality at night, the visibility of the details is 

low again. The middle image on the left shows a situation when it is snowing, and the 

snow is disturbing and covering the details in the image. The bottom image on the right 

shows a situation where the environment looks different because of snow and disturbs 

the classifier because the classifier needs to learn the environment too to be able to 

separate it from a vehicle. The middle image on the right shows a cloudy environment, 

where, however, the details should be sharp because there are no shades or extra ob-

jects (like snowflakes) disturbing the visibility. The bottom image on the left shows a 

situation where there is a vehicle in the image, but it is not at the correct spot for license 

plate recognition, and therefore it should be classified as a ‘No_car’. 
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When comparing the images including a vehicle in Figure 30, it is visible that the vehicles 

come in an angle to the camera, from left or from right. This also complicates the CNN 

model training, because the model needs to learn both angles, with a vehicle and without.  

The training set was modified during the training of the CNNs, mainly by adding more 

images from new places for obtaining higher classifying accuracies and avoiding overfit-

ting, which was introduced in Chapter 3.3.2. The final training set consists of 1145 im-

ages belonging to class ‘Car’ and 1213 images belonging to class ‘No_Car’. So, in total 

2358 images were used for training the network.  

Figure 30: Examples of different weather and lighting conditions 



47 
 

The test set was collected similarly to training set: as many different weather conditions 

as possible and vehicles of different colours and angles etc. The final test set consists of 

62 images belonging to class ‘Car’ and 63 images belonging to class ‘No_Car’. So, 125 

images in total belong to the test dataset.  

5.2 Programming tools 

The code is implemented with an application programming interface (API) called Keras, 

which is developed for neural networks and written with a programming language called 

Python. It is also usable with Python versions 2.7-3.6, and therefore all the code is im-

plemented in Python. It can run on different platforms. In this work, a Tensorflow backend 

is used with cuDNN dependency. Keras offers tools for neural network development and 

those are utilized in this project. [44] 

CuDNN is a library accelerated with a graphics processing unit (GPU), developed for 

running codes on a GPU [45] instead of a central processing unit (CPU). Teaching deep 

neural networks may be very slow depending on the size of the network and the amount 

of training data. To obtain high recognition or classification accuracies, a large amount 

of training data is usually desired. Running code with GPU-acceleration makes teaching 

deep convolutional neural networks faster. CuDNN needs to be installed with CUDA 

Toolkit, which is a programming model and computing platform [46]. In this work, the 

virtual environment running the code on GPU was used for training the models, because 

it is faster and the environment running the code on CPU was used for testing the mod-

els, because in real-life situation there are rarely GPUs available and the aim was to get 

as reliable and realistic test results as possible. 

In this work, the code is implemented using Anaconda Distribution, which is meant for 

performing code in R or Python programming language. In this work, we are interested 

in Python, so Anaconda works as a Python package manager. Anaconda offers a pos-

sibility to create different virtual environments and install different Python packages to 

each of them. This enables, for examples, creating two virtual environments, which are 

copies of each other, but one runs the code on CPU and the other one on GPU. Ana-

conda is also compatible with Tensorflow, which is necessary to be able to use it since 

we want to use Keras with Tensorflow backend, because it is the standard way in Visy 

Oy. Using Keras with Tensorflow backend enables other workers in Visy to run the codes 

also on their computers. [47] 
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5.3 Neural network models 

Three different deep CNN models were trained. Two of them use a pre-trained Keras 

network model as the basis for the neural network, and only the last layer is added or 

modified. One neural network model was implemented from scratch. The purpose of 

testing many different networks was to find one with a high classification accuracy and 

speed. Because the aim is to replace inductive loops and laser scanners, the virtual 

trigger should be almost as accurate, which means roughly over 99 % recognition accu-

racy. The loops and the scanners trigger an image when the vehicle is about seven me-

ters from the camera and the aim is that the virtual trigger would work likewise. The 

speed is related to the real-life use of this application. The vehicles are supposed to pass 

the gates fast, assuming they have a permission to access, and therefore the classifica-

tion should happen practically in no time. Something around 200 to 300 milliseconds is 

a maximum for classifying one frame, and therefore it would be possible to capture and 

classify 3 to 5 frames per second. After the classification the access control system still 

needs to capture the permit image and do the license plate recognition, and because of 

this, the virtual trigger cannot consume a lot of time. 

One of the pre-trained models is called VGG16 [48]. It is a deep neural network proposed 

by Simonyan and Zisserman. It achieved 92.7 % accuracy on ImageNet database. 

ImageNet database includes over 15 million images, which are labeled. [49] The default 

input size for VGG16 is 224 x 224, but this can be modified, and, in this work, it is de-

creased, because the smaller the input image size the faster the training and the classi-

fication, and speed is one criterion for the CNN in this Thesis. The input images need to 

be in RGB color model for VGG16.  However, VGG16 has shown higher results compar-

ing to previous pre-trained models [49] and therefore it was chosen to be one of the 

models to be tested in this work also. The last layer of this structure is removed and 

replaced with one corresponding to the virtual trigger, which has only two classes: vehicle 

or no vehicle.  

The second pre-trained neural network is called MobileNet [48]. MobileNet was proposed 

by a group of eight people working for Google. Their motivation was to implement deep 

convolutional neural networks small enough to be used on, for example, mobile phone 

applications, but still efficient.  Since we are interested in fast and efficient classification, 

this pre-trained model was chosen to be tested for virtual trigger. MobileNet has 28 lay-

ers. Like with VGG16, the default input size for MobileNet is 224 x 224, and input images 

need to be in RGB. MobileNet is also pre-trained with ImageNet weights and the last 

layer needs to be replaced with one corresponding to vehicle/no vehicle model. In a 

classification task, which was performed by the Google group that invented MobileNet, 
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MobileNet obtained slightly lower classification accuracy compared to VGG16, but the 

difference is relatively small (70.6 % vs. 71.5 %) and the speed of the classification in 

this project is very important, and therefore MobileNet is chosen to be tested. [50] 

The structure of the model implemented from scratch is shown in Figure 31. The moti-

vation to implement a deep neural network model of my own is to obtain even faster 

classification than with MobileNet, which was introduced above. This model created from 

scratch was chosen to have only two convolutional layers because that was the number 

of the convolutional layers used in a project [51] which is slightly similar to this task. In 

that project, the aim was to classify the vehicle on an image to one of four classes: truck, 

van, car and bus [51]. 

 

 

Figure 31 shows that the model created from scratch has an input layer, the first convo-

lutional layer followed by dropout and max pooling and the second convolutional layer 

followed by max pooling. Then it has a layer called flatten, which is used for flattening 

the input [52], which means transforming it into a 1D vector, and finally, three fully-con-

nected regular layers called dense layers in Keras [52]. 

Table 3 presents different parameters chosen for the models. Input image size is chosen 

to be the same for each model to be able to compare the classification speed. Loss, 

optimizer and error metrics are also the same. Batch size is chosen to be 32 for Mo-

bileNet and the model from scratch. This batch size was noticed to be too large for the 

VGG16 model, because it led to an exhausting error, which means that the GPU used 

was not efficient enough to perform the training. Therefore, the batch size is chosen to 

be 16 for the VGG16 model. Learning rate is different for each of the models. Different 

learning rates were tested and the one resulting in best validating accuracies is chosen. 

Epochs for MobileNet and the model from scratch are 60, but 50 for VGG16. It was 

noticed that training and validation accuracy did not increase during the last 10 epochs 

for VGG16 and it was noticed to be slower to train than the other two models, so therefore 

the epochs for it were decreased by 10.  

 

 

Figure 31: The structure of the CNN implemented from scratch 
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Table 3: Parameters chosen for the deep CNN models 

 

All the three models are trained with the same training data introduced in Chapter 5.1 

and the training and validating results are plotted using the same code to be able to 

compare them. The models are also tested with the same test dataset, which was also 

introduced in Chapter 5.1. The speed is tested by classifying the test set, and measuring, 

how long time it takes from the model to perform classification. From this it would be 

possible to calculate, for example, the average time for classifying one image and the 

frames per second (FPS) speed. The classification test is performed in the virtual envi-

ronment, which runs the code on CPU, because in real-life projects the classification will 

be run on CPU, at least for now. 

For each model, we plot an accuracy and loss plot showing the training and the validation 

accuracies. Accuracy was introduced in Chapter 3.3.1. The training data is split to train 

and test parts. Also, a confusion matrix (introduced in Chapter 3.3.1 and shown in Table 

1) and a ROC curve (introduced in Chapter 3.3.1 and shown in Figure 20) are plotted for 

all the models and few measures computed from confusion matrix. Then, the results are 

compared and discussed. The training, validating and test results are collected and dis-

cussed in Chapter 6.2.  

 Input image 

shape (pix-

els, pixels, 

color chan-

nels) 

Loss Batch 

size 

Learn-

ing rate 

Opti-

mizer 

Error 

metrics 

Epochs 

VGG16 (128,128,3) categorical 

cross en-

tropy 

16 1e-4 SGD Accu-

racy 

50 

Mo-

bileNet 

(128,128,3) categorical 

cross en-

tropy 

32 3e-4 SGD Accu-

racy 

60 

From 

scratch 

(128,128,3) categorical 

cross en-

tropy 

32 1e-2 SGD Accu-

racy 

60 
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6. RESULTS 

The purpose of this Chapter is to introduce the results of the camera tests and the virtual 

trigger tests separately. The camera tests include few examples of the images taken 

during the tests according to Visy’s own purposes as introduced in Chapter 4. The im-

ages are followed by some discussion about the image quality and the properties of the 

cameras. The aim is to decide, whether the tested cameras have a significantly better 

image quality than the current cameras and if they can be used in Visy’s projects due to 

their properties or not. Secondly, the results for the three different virtual trigger deep 

CNN models are introduced and discussed and one of them is chosen for real-life tests 

that are not a part of this Thesis.   

6.1 Camera tests results and discussion 

The camera tests implementation, motivation and the camera models chosen for tests 

were introduced in Chapter 4. The purpose was originally to include all the three cameras 

introduced in Chapter 4.2 to the tests. But because of problems, also discussed in Chap-

ter 4, that occurred in implementing the test code for Canon EOS 6D Mark II, only 

Basler’s BIP2-1920-30c and Sony’s SNC-VB770 video surveillance cameras were finally 

included in the tests.   

 

 

Figure 32: Basler test image on 9th of March 2018 at 1:45AM 
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Figure 32 shows a test image taken with a Basler IP camera (the present model used in 

Visy projects). This image is taken at night, because the importance of image quality 

increases when it’s dark. From Figure 32 it can be seen that the image is quite blurry, 

and no small details can be detected. Figure 33 shows image taken with Sony’s camera 

approximately at the same time as the Basler’s image above. When comparing Figure 

32 to Figure 33, it can be evaluated with human eye that the image quality is significantly 

higher in Figure 33. So, Sony’s camera offers a better image quality than Basler’s. 

 

 

The test results show clearly that 12 megapixels is enough to increase the image quality 

from 2 megapixels. Because the Canon’s DSLR camera has over 20 megapixels, it is 

likely that also the image quality of it would be enough, but the reliability, like the support 

for SDK, is not enough, and therefore it is better to use video surveillance cameras. 

Important properties of Sony’s camera were similar to the Basler’s camera. For example, 

the messages can be sent to the camera as to the present Basler’s camera. Images can 

be transferred via HTTP grabbing, which is the case with the Basler camera also. There-

fore, there is no need to change anything in Visy software, which is a significant ad-

vantage. Sony’s camera is powered by a power cable which is also important, because 

in Visy projects, using a battery is not possible.  

Figure 33: Sony test image on 9th of March 2018 at 1:45AM 
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The speed was tested as described in Chapter 4.3, and no major differences between 

the cameras were noticed. The speed tests did not follow any standards and therefore, 

it is to question, if the speed of the cameras actually differ or not. However, in Visy pro-

jects the most important point concerning the speed is that the camera takes the images 

fast enough after it receives the message to do so, and both Basler and Sony fulfil this 

criterion.  

However, Sony’s camera would need some outdoor housing to work in less than -5°C, 

which needs a bit of consideration. But all the cameras that were studied for this Thesis 

have this disadvantage, and therefore it does not affect the choice. The most important 

property, image quality, seems to be significantly better in images taken with Sony than 

taken with Basler, and due to all these observations, Sony is chosen to be tested in future 

projects, where we need to recognize small details from images. 

6.2 Virtual trigger results and discussion 

Three different deep CNN models were implemented and tested. Two of them are pre-

trained models. We start with the results from training and validation and continue to test 

results. The results are compared to each other, discussed, and the most suitable model 

for virtual trigger is chosen according to this. For each model, there is shown an accuracy 

plot, a confusion matrix and a ROC curve. These were introduced in Chapter 3.3. The 

parameters for each model were presented in Chapter 5.3.  

Let’s first compare training and validation accuracies and losses of the models. The ac-

curacy and loss plots for all the three models are shown in Figure 34. The accuracy is 

presented as a probability between [0, 1]. It can be changed to percentage by multiplying 

with 100. The green curves on these figures are named as “test accuracy” and “test loss”, 

but what they mean is the testing performed during the training, so they can also be 

called validation accuracy and validation loss. Training and validation accuracies for all 

the models seem to be smooth and steady, and the losses smoothly decreasing during 

the training. Except for model created from scratch, the loss seems to be slightly increas-

ing towards to end of the training. Both training and validation accuracy seem to be quite 

high for all the models.  
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Figure 34: Training and validation accuracies and losses 
plots for all the three models 
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For VGG16 model, training and validation accuracies seem to be a little closer to each 

other according to the plots in Figure 34, which would indicate that this model has over-

fitted the least. This is, however, better studied with the test data. Also, the differences 

between the performance of the models is difficult to tell only by Figure 34, because we 

see the values only approximately and all the models seem to have quite similar perfor-

mance according to these result plots. The actual values for validation accuracies are 

collected to Table 5, and these tell more accurately, which model obtained the best val-

idation accuracy during training.  

 

 

Figure 35 shows the confusion matrices for all the three models. “Pred” means the pre-

dicted class and “True” is the class to which the image actually belongs. From these 

matrices, we compute FPR, FNR and F1 score for each model. These were all intro-

duced in Chapter 3.3.1. The results are collected to Table 4. 

Table 4: Results for CNN models 

 FPR FNR F1 score 

VGG16 0 0.0086 0.9957 

MobileNet 0.0004 0.0086 0.9935 

Scratch 0.0161 0.0179 0.9821 

 

The ROC curves for all the model is presented in Figure 36. The plots show also the 

AUC values for each model. 

Figure 35: Confusion matrices for all three CNN models 
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 Figure 36: ROC curves for all the CNN models 
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The shape of the ROC curves for all the models seems to follow nicely the shape of the 

ideal ROC curve. The AUC value for VGG16 is 0.996, which is close to ideal value 1. 

For MobileNet, the AUC value is 0.994, which is also close to the ideal value. The AUC 

for the model created from scratch is 0.983, which is the lowest one of these three mod-

els, but still, in general, relatively close to the ideal value. 

Training, validation and testing accuracies, and the classification time for the entire test 

dataset with 125 images are collected to Table 5. The tests were run more than once, 

and CPU time in milliseconds was measured to be in the time interval of 9 and 15 milli-

seconds for all three models. No major differences between the classification time was 

found, so it seems that the test dataset may be too small to test the accurate classifica-

tion speed.  

Table 5: Test results for three deep CNN models 

 

When comparing all these results introduced above, it seems that the model from scratch 

is slower than MobileNet, however, the speed tests may have not been reliable. Model 

from scratch also obtains a significantly lower classification accuracy on the test dataset 

than the pre-trained models, which would indicate that the model has been overfitting. 

The difference between VGG16 and MobileNet models is not that significant. MobileNet 

seems to be faster but obtains slightly lower validation accuracy. However, it obtains a 

higher test accuracy. Because of the knowledge that VGG16 is a larger and therefore 

slower network and that it obtains lower test accuracy than MobileNet, MobileNet model 

is chosen as the deep CNN model to be tested in a real-life case. The real-life case is 

 Training ac-

curacy (%) 

Validation 

accuracy (%) 

Test Accu-

racy (%) 

CPU time (mil-

liseconds for 

125 images) 

Model 1: 

VGG16 

100 99.58 92.8 13.99 

Model 2:  

MobileNet 

99.95 99.36 94.4 10.99 

Model 3: 

From scratch 

100 98.31 83.2 12.59 
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outside of the focus of this Thesis, because the aim of this project was to test different 

deep CNN models and choose the most suitable one. 

The training dataset in this project was stable, and therefore the results may be optimistic 

compared to a real-life situation, where the angles of the vehicles differ from each other, 

the weather conditions differ, and the camera is zoomed and focused differently. How-

ever, improving the results in a real-life site can be performed by adding images from 

that site to the training set. 

Virtual trigger is now operating in one real-life site. For now, it seems to be working with 

a slightly less accuracy than in these tests and it triggers the image too early, when the 

license plate is not yet on the correct spot. But updates are under implementation, and 

the tests in the real site show a positive future and possibilities for improvements. 
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7. CONCLUSIONS 

Visy Oy is a company producing machine learning software to traffic control systems. 

Image quality plays a key role in machine learning projects where the purpose is to detect 

and classify small details from images. There were two main goals in this Thesis related 

to traffic control systems which include machine learning. One goal was to find and test 

high-quality cameras, study their properties and decide according to the results whether 

they can be used in Visy’s projects or not. The second goal was to implement a deep 

convolutional neural network, called a virtual trigger, for classifying images into two clas-

ses: cars and no cars, where class ‘Car’ means any vehicle on a specific spot in the 

image.  A camera meant for license plate recognition is zoomed and focused on this 

spot.  

The motivation to test high-quality cameras was to be able to recognize small details, 

such as seals or dangerous goods labels, from an image that is taken of a whole con-

tainer. Basler’s BIP2-1920-30c cameras are currently used and suitable for license plate 

and container number recognition, but they do not offer an image quality high enough to 

recognize seals and dangerous goods labels. In the images taken with a Basler, seals 

and IMO labels are too blurry to be recognized correctly or even detected. To improve 

this, two cameras were chosen for tests, Canon EOS 6D Mark II, which is a DSLR cam-

era and Sony’s SNC-VB770 video surveillance camera. Also, the Basler’s video surveil-

lance camera was included in the tests for comparing the image quality. Finally, Canon’s 

camera was left out, because of a problem with its support for Canon’s remote camera 

control software called EDSDK.  

The image quality tests were performed in Visy’s office and they were planned in the 

perspective of Visy’s needs and purposes. The image quality was estimated visually. We 

in Visy decided not to perform standardized tests, because standard tests were not found 

to measure our needs.  

It took a long time to realize that the problems in developing remote control for Canon’s 

camera were not in Visy’s software but in the EDSDK support. When this was found out 

and discussed with Canon, it would have still been possible to ask for another camera 

from Canon to include a DSLR camera into tests in addition to the video surveillance 

cameras. Now the tests included only video surveillance cameras and therefore seem to 

be slightly one-sided. There is still the possibility to test some other DSLR model from 

Canon or from another manufacturer, if DSLR cameras are considered reliable enough 
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in the future. According to these tests, DSLR cameras are not yet reliable enough for 

Visy’s projects. 

After all, the goal was achieved. Sony’s camera was found out to fulfil the requirements 

that Visy Oy has for cameras. It can be used similarly to the current Basler cameras in 

projects, so software changes are not required. It also fulfils the image quality require-

ment with its 12 megapixels image sensor. After the tests this camera model was pro-

posed to a potential customer when making a project offer, but the decision has not been 

made when writing this Thesis. It is likely that we will use this camera model in some 

projects that require high image quality in the future. 

The motivation for the virtual trigger part was to replace inductive loops and laser scan-

ners that are currently used to trigger images at traffic control gates in Visy projects. This 

would save money and time, when there would not be the need to dig loops into the 

ground or configure laser scanners. The idea is to trigger permit images as they are 

triggered with loops and scanners. Whenever the output from the neural network is ‘Car’, 

an image will be taken.  

Training and test datasets were collected separately for implementing deep convolu-

tional neural networks. One virtual environment was created to train the neural networks 

on a GPU, and one was created to test them on a CPU, because in projects there usually 

is not a GPU available. Two of the deep CNNs are pre-trained network models, called 

MobileNet and VGG16 and one model is created from scratch. 

MobileNet classifies fast enough and has over 99 % accuracy on validation data. The 

aim was to obtain over 99 % accuracy also on test data, but this was not achieved while 

making this project. VGG16 reached over 99 % validation accuracy and model from 

scratch reached over 98 % validation accuracy, but both obtained a lower test accuracy 

compared to MobileNet. We found out that there was not enough data for getting reliable 

speed measurement results, but the speed tests proved that all the three models classify 

fast enough on CPU. Because the speed test results are not reliably comparable to each 

other, the final model for real-life tests was chosen due to the documentation and re-

search about MobileNet and VGG16. MobileNet was chosen, because it has a lighter 

and smaller structure than VGG16, which would indicate that MobileNet is a faster clas-

sifier, and it also obtained a higher classification accuracy on test data than VGG16.   

At first, there were many problems with the virtual environments. Whenever one library 

is updated to a version that has some bugs, the whole virtual environment breaks down 

so there were a couple of occasions where the virtual environments needed to be created 

all over again. Also plotting the results had some problems. This was solved by using 
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and modifying some ready-made code. The number of images belonging to training da-

taset was increased when it seemed that accuracy will not be enough. Increasing the 

number of training images helped. 

Virtual trigger is running at a customer site at the moment. The results are very promising 

but further improvements are needed to obtain the required 99 % in real installations. 

This is mainly because the lanes in the customer sites look so different to each other and 

the cameras are focused and zoomed differently. For example, the triggering happens 

too early in the current real-life test environment because the camera is not as zoomed 

in as in most of the training data cases. Some images were collected from this real test 

lane and the deep CNN model based on MobileNet has been trained again to obtain 

higher accuracies, but the network model has not yet been updated to the site. Therefore, 

when writing this Thesis it is still unknown how the improvements will affect.  

All in all, almost all the goals were achieved and there seems to be future use for both 

Sony’s camera and virtual trigger.  
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