

1

Topi Hintikka

REAL-TIME SINGLE-SHOT FACE
RECOGNITION USING MACHINE LEARNING

Faculty of Information Technology and Communication Sciences

Master’s Thesis

April 2019

ABSTRACT

Topi Hintikka: Real-time Single-shot Face Recognition using Machine Learning
Master’s Thesis
Tampere University
Information Technology
April 2019

Face recognition is one of the earliest applications in the field of computer vision. In general, face recognition
refers to recognizing the identity of a person from the facial image, by comparing the image to the set of facial
images from known identities. Numerous approaches for solving this face recognition problem utilizing
traditional machine learning methods have been proposed over the years. However, these methods have not
been capable of solving the problem in an unconstrained environment. Due to increase of available data and
computational power over the past 5 years, convolutional neural network (CNN) based deep learning
approaches have became a state-of-the-art solution for face recognition problem. While some of these
methods are capable of even beating a human in recognition accuracy, also the computational complexity of
deep learning models used in solutions, have increased significantly and usually a graphics processing unit
(GPU) is required to run face recognition in real-time.

A pipeline for solving the face recognition problem in an unconstrained environment on real-time from the
video stream, is presented in this thesis. For solving the problem, the pipeline is divided into 4 steps where
each step solves one smaller more specific problem. For each of the steps, multiple approaches are tested to
find an optimal solution to the problem solved in the step. After all, a solution for each of the steps in the
pipeline are proposed and the solutions are collected for demonstrating the complete system. The system is
designed to run on embedded NVIDIA Jetson TX2 hardware.

Face detection is the first step in the pipeline, where faces are detected from the video stream and
extracted. Then, the affection of applying different image alignments for the extracted facial croppings before
the following steps of the pipeline, are tested. Alignment is performed by training machine learning models for
facial landmark detection and applying an image transformation based on the detections. The third step,
feature extraction from the facial images, is solved by training CNN’s with different alignments and loss
functions to find an optimal solution for extraction. In the last step, an embedding of extracted features, is
classified using nearest neighbor search from the set of known embeddings extracted earlier. Different
clustering approaches are tested for accelerating the search speed by finding the nearest neighbor only from
the subset of known embeddings.

For face detection, all the tested lightweight CNN object detectors achieved similar accuracy and each of
them could be used. For extracted facial images, trained Multi-task Cascaded Convolutional Networks
(MTCNN) framework’s ONet achieved superior accuracy in facial landmark detection and it was utilized in
implementing different alignments for facial images. Different alignments and loss functions had significant
affection to nearest neighbor search. The highest accuracy was achieved by applying an affine transformation
based on detected facial landmarks before feature extraction performed by CNN trained with Additive Angular
Margin (ArcFace) loss. For accelerating nearest neighbor search, a hierarchical correlation clustering algorithm
CHUNX achieved very accurate approximation for the nearest neighbor with significantly smaller slope
compared to the exact nearest neighbor search. After all, the implemented demo application runs in real-time
on Jetson TX2 hardware with over 10 frames per seconds (FPS).

Keywords: Face Recognition, Machine Learning, Deep Learning, Convolutional Neural Networks, Nearest
Neighbor Search, Clustering

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

TIIVISTELMÄ

Topi Hintikka: Reaaliaikainen kasvontunnistus käyttäen koneoppimisen menetelmiä
Diplomityö
Tampereen yliopisto
Tietotekniikka
Huhtikuu 2019

Kasvontunnistus on yksi konenäön ensimmäisistä sovelluskohteista. Yleisesti sillä viitataan henkilöllisyyden
tunnistamiseen kasvokuvan perusteella vertailemalla kasvoja joukkoon tunnettuja kasvoja ja etsimällä parasta
vastaavuutta. Vuosien varrella on ehdotettu lukuisia vaihtoehtoja ongelman ratkaisemiseksi, jotka hyödyntävät
perinteisiä koneoppimisen menetelmiä. Näiden menetelmien avulla ei kuitenkaan ole kyetty ratkaisemaan
ympäristössä, jota ei ole standardoitu. Saatavilla olevan datan määrän ja laskentatehon kasvettua
merkittävästi viimeisen viiden vuoden aikana, konvoluutioneuroverkkoihin (engl. convolutional neural networks
(CNN)) pohjautuvat menetelmät ovat osoittautuneet toimivimmaksi ongelman ratkaisemiseksi. Osa näistä
menetelmistä on onnistunut lyömään ihmisen tunnistustarkkuudessa, mutta samanaikaisesti ne ovat
muuttuneet laskennallisesti huomattavasti raskaammiksi. Käytännössä menetelmiä käyttöön vaaditaan
grafiikkaprosessori, jotta niillä voitaisiin tehdä kasvontunnistusta reaaliajassa.

Tässä työssä esitellään ratkaisu reaaliaikaiseen kasvontunnistukseen liittyvän ongelman ratkaisuun
ympäristössä, jota ei ole standardoitu. Ongelma jaetaan ratkaisua varten neljään eri osaan, joista kukin osista
muodostaa pienemmän tarkemmin rajatun ongelman. Jokaisen osaongelman ratkaisemiseksi testataan
useampia eri lähestymisiä, ja lopulta paras ratkaisu jokaiseen osaongelmaan kootaan yhteen. Tämän pohjalta
toteutetaan demo sulautetulle NVIDIA Jetson TX2 laitteelle.

Kasvojen paikallistaminen ja irrottaminen videokuvasta muodostaa ensimmäisen osaongelman. Tämän
jälkeen tutkitaan videosta irrotettujen kasvokuvien esikäsittelyn vaikutusta seuraavien osaongelmien
ratkaisuun. Esikäsittely tehdään tunnistamalla kasvoista tiettyjen pisteiden sijainti (muun muassa silmät) ja
tekemällä tämän perusteella muunnos kuvalle, jolla pyritään asettamaan esimerkiksi silmät tiettyyn kohtaan
kuvassa. Kolmas osaongelma liittyy piirrevektorin irrottamiseen esikäsitellystä kasvokuvasta. Parhaan
piirreirrottajan löytämistä varten koulutetaan konvoluutioneuroverkkoja käyttäen erilaisia esikäsittelyitä ja
sakkofunktioita (engl. loss functions). Lopulta irrotetut piirrevektorit luokitellaan etsimällä vektorille lähin
naapuri joukosta piirrevektoreita, jotka on aikaisemmin irrotettu samalla piirreirrotusmenetelmällä. Lisäksi
tutkitaan eri klusterointimenetelmiä, jotta etsimistä voitaisiin nopeuttaa rajaamalla joukkoa pienemmäksi ennen
tarkempaa lähimmän naapurin etsintää.

Kasvojen paikallistamiseen videosta kaikki kolme testattua kevyttä konvoluutioneuroverkkoa saavuttivat
lähes toisiaan vastaavan tarkkuuden ja niitä kaikkia oltaisiin voitu hyödyntää toteutetussa demossa. Tiettyjen
pisteiden tunnistamiseen kasvokuvasta koulutettu Multi-task Cascaded Convolutional Networks (MTCNN)
järjestelmään kuuluva ONet -konvoluutioneuroverkko saavutti selvästi parhaan tarkkuuden ja sitä
hyödynnettiin eri kasvokuvien esikäsittelyiden toteuttamiseen. Eri esikäsittelyillä ja sakkofunktioilla oli suuri
vaikutus piirrevektorien luokittelun tarkkuuteen. Paras tarkkuus saavutettiin tekemällä affiinimunnos (engl.
affine transformation) ennen piirrevektorin irrotusta ja käyttämällä Additive Angular Margin (ArcFace) -
sakkofunktiota piirreirroitukseen käytetyn konvuluutioneuroverkon koulutuksessa. Parhaan vastaavuuden
etsinnässä hierarkinen korrelaatioklusterointialgoritmi CHUNX saavutti erittäin hyvän tarkkuuden hakemalla
lähintä naapuria ainoastaan algoritmin osoittamasta alijoukosta verrattuna tarkkaan lähimmän naapurin
etsintään. Lisäksi CHUNX:lla tehty lähimmän naapurin etsintä oli suhteessa selvästi nopeampi kuin tarkka
lähimmän naapurin etsintä etenkin hakuavaruuden ollessa suurempi. Lopulta osaongelmien parhaiden
ratkaisujen avulla toteutettiin demo, joka toimii reaaliajassa Jetson TX2 laitteella yli kymmenen hertsin
päivitysnopeudella.

Avainsanat: Kasvontunnistus, Koneoppiminen, Syväoppiminen, Kovoluutioneuroverkot, Lähimmän naapurin
etsintä, Klusterointi

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

The project related to this thesis was implemented at Wapice during the spring 2019. First,
I would like to thank Wapice for providing an opportunity to work with very interesting
projects related to data science including this thesis. Especially fruitful discussions and
useful tips from Ilari Kampman and my workmates in data science team have helped me not
only with this thesis but also in constant personal development in the field of data science.

In addition, I would like to thank Associate Professor Heikki Huttunen for great tips and
feedback for improving this thesis, and steering the writing process to correct direction.

Finally, I am very grateful to Mira for her support and understanding of long days and
nights spent with my studies over the years. Also, the support from my family and friends
have helped me carrying on throughout my studies.

In Tampere, Finland, on 12 April 2019

Topi Hintikka

iv

CONTENTS

1. INTRODUCTION ... 1

2. THEORY.. 4
2.1 Machine learning .. 4
2.2 Deep learning.. 5
2.3 Neural networks .. 6

2.3.1 Activation.. 7
2.3.2 Loss... 8
2.3.3 Optimization ... 9
2.3.4 Regularization... 11

2.4 Convolutional neural networks ... 12
2.4.1 Convolutional layer ... 13
2.4.2 Pooling layer ... 14
2.4.3 Dense layer.. 16
2.4.4 Commonly used architectures... 16

3. PIPELINE .. 20
3.1 Face detection ... 21

3.1.1 Viola-Jones object detector... 22
3.1.2 Single Shot MultiBox Detector... 23
3.1.3 "YOLO: You Only Look Once" object detector 25
3.1.4 Detector evaluation ... 25

3.2 Facial image preprocessing ... 26
3.2.1 Landmark detection .. 26
3.2.2 Landmark detection evaluation... 28
3.2.3 Image transformations .. 28

3.3 Face recognition.. 30
3.3.1 Triplet loss .. 30
3.3.2 Additive Angular Margin Loss ... 31
3.3.3 Feature extraction evaluation .. 32

3.4 Nearest neighbour search .. 33
3.4.1 Vector similarity ... 34
3.4.2 k-means clustering .. 35
3.4.3 Hierarchical clustering.. 35

4. IMPLEMENTATION .. 37
4.1 Data ... 37
4.2 Hardware... 38
4.3 Detecting faces from image .. 39
4.4 Aligning facial image.. 42
4.5 Extracting face embedding.. 45
4.6 Classifying embedding.. 46

v

4.7 System implementation... 51

5. RESULTS AND DISCUSSION .. 53
5.1 Face detection ... 53
5.2 Facial image alignment ... 55
5.3 Face recognition.. 56

6. CONCLUSION.. 59

REFERENCES .. 62

APPENDIX A: VISUALIZATIONS OF K-MEANS AND CHUNX CLUSTERING
RESULTS .. 67

vi

LIST OF FIGURES

Figure 2.1. Structure of a simple neural network with one hidden layer. Symbols
xn are n inputs to the network, yn are the outputs and hn describes
the stage on hidden layer between the input and output. 6

Figure 2.2. ReLU and logistic sigmoid activation functions..................................... 8
Figure 2.3. The affect of learning rate in optimization as a function between the

neural network parameters Θ and the loss. a) well chosen (blue) b)
too big (green) c) too small (orange) learning rate................................ 10

Figure 2.4. Different scenarios related to optimization. a) the minima is hidden
"behind obstacle", b) only local minima is found, and c) with good
initial parameters the minima can be found. .. 10

Figure 2.5. VGG16 network architecture [1]. ... 13
Figure 2.6. Convolutional layer with 4x4x1 input and 2x2 kernel with stride 1. 14
Figure 2.7. Demonstration of a single filter’s ability to extract features (edges)

from grayscale image (image taken from VGGFace2 dataset [2])......... 15
Figure 2.8. Max pooling, a) using 2x2 kernel and stride=1, b) 3x3 kernel with

stride=2. ... 15
Figure 2.9. Inception module. ... 17
Figure 2.10. Residual block. ... 18
Figure 2.11. Building blocks of a) MobileNetV1 and b) MobileNetV2 with two

different strides. .. 18

Figure 3.1. Pipeline of the system ... 20
Figure 3.2. Desired face detector output (image taken from VGGFace2 dataset [2]). 21
Figure 3.3. Computation of integral image... 22
Figure 3.4. Visualization of integral image (image taken from VGGFace2 dataset

[2]). .. 22
Figure 3.5. Example of different Haar features (A, B, C and D) within the relative

detection window (redrawn from [3]). ... 23
Figure 3.6. Architecture of the SSD network (modified from [4])............................. 24
Figure 3.7. An illustration of SSD feature maps. a) groundtruth image with

predicted boxes for two classes, person (green) and face (red), b) four
bounding boxes per cell with 5×5 feature map, where only one of four
boxes (marked with red) detects the face cell, c) four bounding boxes
per cell with 3×3 feature map, where one of four boxes (marked with
green) detects the person in cell and one of four boxes in another
cell detects a face (marked with red) (groundtruth image taken from
VGGFace2 dataset [2]). ... 24

Figure 3.8. Intersection over union (IoU). The closer the predicted bounding box
B is to groundtruth A, the higher the IoU is. .. 25

vii

Figure 3.9. Face alignment process. Detect the five landmarks and align image so
that the landmark can be found from same coordinates in the image.
Locations marked with green point are considered as groundtruth
locations and red are the detected landmarks from the image that is
aligned. (images taken from VGGFace2 dataset [2]) 27

Figure 3.10. Architecture of the ONet in MTCNN cascaded CNNs with the sizes of
the outputs for each of the blocks. .. 27

Figure 3.11. Components of isometries, similarity transforms and affine transforms
in group of perspective transforms: a) translation, b) rotation, c)
scale and d) shear. The anchor point is set to upper left corner............ 29

Figure 3.12. Visualization of triplet selection problem by locating positive and
negative samples of the triplet based on distance to the anchor (a):
b) easy positive is close to the anchor (a), c) hard positive is further
away from the anchor (a), d) hard negative is closer to anchor (a)
than hard positive (c), e) semi-hard negative is little further from
anchor (a) compared to hard positive (c), f) easy negative is far away
from the anchor... 31

Figure 3.13. Confusion matrix in binary classification. ... 32
Figure 3.14. Example of hierarchy of the CHUNX. Nodes including the samples

from data X have gray background. Values in the nodes refer to the
i:th angle related to the corresponding eigenvector which is the most
significant component that defines the cluster. 36

Figure 4.1. Bounding boxes detected with different frameworks. (images taken
from VGGFace2 dataset [2]).. 40

Figure 4.2. Differences in detection results related to framework. On upper row,
Darknet framework with YOLOv3 Tiny CNN and Tensorflow with
MobileNetV1+SSD are used. On bottom row, OpenCV library is used
with both detectors. (image taken from VGGFace2 dataset [2]). 41

Figure 4.3. Examples of implemented unified face cropping (images taken from
VGGFace2 dataset [2]). ... 41

Figure 4.4. Examples of facial landmark detector output. a)Dlib detector, b)
MTCNN ONet detector (images taken from VGGFace2 dataset [2])..... 43

Figure 4.5. Affect of the cropping in landmark detection with different detectors.
(images taken from VGGFace2 dataset [2])... 44

Figure 4.6. Differences between the alignments. a) unaligned, b) similarity
aligned and c) affine aligned. (images taken from VGGFace2 dataset
[2]) ... 45

Figure 4.7. ROC curves for LFW evaluation with different alignments for triplet
and ArcFace losses. .. 47

Figure 4.8. Search speed as a function of search space size with different maximum
cluster sizes (s) with dynamically adjustable k-means clustering
classifier.. 48

viii

Figure 4.9. Search speed as a function of search space size with different number
of clusters (s) using static k-means clustering classifier. 49

Figure 4.10. Search speed as a function of search space size with different maximum
cluster sizes (s) utilizing CHUNX based clustering classifier. 50

Figure 5.1. Average images with different alignments utilizing test partition of
VGGFace2 dataset.. 56

Figure 5.2. Distribution of the pairs with same identity and different identities
with LFW (left) and VGGFace2 (right) datasets with magnitude on
y-axis. ... 57

Figure 5.3. Search speed as a function of search space size with different classifiers
with small number of groundtruth embeddings...................................... 58

Figure 5.4. Search speed as a function of search space size with different classifiers
with high number of groundtruth embeddings. 58

Figure A.1. Visualization of k-means clustering with 96 clusters utilizing 9035
identities in VGGFace2 dataset, where one image from each cluster
was picked (images taken from VGGFace2 dataset [2]). 67

Figure A.2. Visualization of CHUNX clustering, where maximum number of
images per cluster was set to 50 and only clusters with more than
16 facial images were chosen, utilizing 9035 identities in VGGFace2
dataset, where one image from each cluster was picked (images taken
from VGGFace2 dataset [2]).. 68

Figure A.3. Visualization of CHUNX clustering tree, where maximum number of
images per cluster was set to 100 and only clusters with more than 16
facial images were chosen, utilizing one image from 9035 identities
in VGGFace2 dataset. The nodes in the leaf include the facial images.
For the nodes that have only one child in the visualization, the other
children are due to the defined minimum cluster size............................. 69

ix

LIST OF TABLES

Table 4.1. Optimal thresholds and corresponding accuracies with different
alignments utilizing triplet and ArcFace losses in training.................... 46

Table 4.2. Accuracy of the nearest neighbour search with different methods for
finding correct match within one, five and ten nearest neighbours using
two different alignments. Base classifier accuracies from nearest
neighbour search and the rest are approximations of it utilizing cluster
structure. For dynamic k-means and CHUNX, maximum cluster size
was set to 60 and for static k-means, number of clusters was 100......... 50

Table 5.1. Detector’s performance. ... 53
Table 5.2. Face detector inference times in milliseconds (ms). 54
Table 5.3. Landmark detector performance for each of the five detected land-

marks. The scores are percentages of the width of the image. 55
Table 5.4. Landmark detector inference times in milliseconds (ms). 55
Table 5.5. Accuracy of the feature extractor of this thesis compared to other

methods... 56

x

LIST OF SYMBOLS AND ABBREVIATIONS

AI Artificial Intelligence
API Application Programming Interface
ArcFace Additive Angular Margin Loss
AUC Area Under Curve
CNN Convolutional Neural Network
COCO Common Objects in Context
CPU Central Processing Unit
DoF Degrees of Freedom
FDDB Face Detection Data Set and Benchmark
FLOPS Floating Point Operations Per Second
FPR False Positive Rate
FPS Frames Per Second
GPU Graphics Processing Unit
ILSVRC ImageNet Large-Scale Visual Recognition Challenge
IoU Intersection over Union
LFW Labeled Faces in the Wild
mAP Mean Average Precision
MTCNN Multi-task Cascaded Convolutional Networks
NMS Non-Maximum Suppression
OpenCV Open Source Computer Vision Library
PCA Principal Component Analysis
ReLU Rectified Linear Unit
ROC Receiver Operating Characteristics
SGD Stochastic Gradient Descent
SSD Single Shot MultiBox Detector
TPR True Positive Rate
YOLO You Only Look Once, an object detection framework

1

1. INTRODUCTION

Over the past decade, numerous machine learning applications have become familiar
to many people. For the end user, these applications are usually advertised as "smart"
solutions that utilize artificial intelligence (AI) to solve different problems. Although the
concepts behind the neural networks (1943) [5] and machine learning (1959) [6] that are
the key elements of today’s state-of-the-art AI applications, have been introduced over 50
years ago, the performance of the AI solutions have improved drastically within the past
five years.

The main reasons behind this rapid development include the growth of data collection and
an increase in computational power. With bigger amount of data, it is possible to create
more complex machine learning models which provide increased performance in terms of
accuracy, since the data most likely covers bigger amount of possible scenarios in a real life
environment. The term deep learning, refers to these complex machine learning models
that can be trained to find the key features from the data and are capable of classifying the
data in greatly varying environment.

In the field of computer vision, the current state-of-the-art deep learning models can solve
numerous problems that are too challenging for more simple machine learning models.
However, the most of these models are computationally too heavy for today’s mobile
devices and embedded systems. They often require a graphics processing unit (GPU) in
order to be fast enough to run in real-time with video streams.

Face recognition is one of the earliest applications in the field of computer vision. The
topic has been researched widely in the past and numerous solutions to this problem have
been proposed. However, especially more simple methods from the 2000s were not able
to solve the problem in an unconstrained environment. After all, in the last few years,
the deep learning methods utilizing convolutional neural networks (CNN) such as the
DeepFace (2014) [7] and FaceNet (2015) [8] have been capable of solving the problem and
outperforming the human accuracy in recognition benchmark. [9]

Face recognition is considered as a difficult machine learning problem since the appearance
of the faces vary, for example skin tone, makeup, eye glasses and facial hair cause challenges
for the recognition. Also, the facial expressions and aging might break a face recognition
system [10]. In an unconstrained environment, pose, illumination and occlusions caused
by obstacles must be considered in face recognition system development [10]. In addition,
there are vulnerabilities in face recognition systems related to presentation attacks [11].
For example it has been reported multiple times lately, that the face recognition systems of
mobile devices might for example accept a printed image of a person while accessing their

1. Introduction 2

personal mobile devices.

There are applications for face recognition in many fields. Some of the most important
applications for face recognition are related to safety. Face recognition can be used for
person identification, for example in access control and video surveillance systems. [10]

This thesis covers a development process of a complete face recognition system, which
is capable of recognizing reliably previously known people based on frames captured
from video stream. The main focus in this thesis is in classification of the facial images.
However, also other parts of the system are covered, since they must also be implemented
in order to estimate the performance of the complete system.

The goal of the thesis is to develop a robust face recognition system that is capable of
classifying facial images that are found from video stream, with high confidence. It should
run on NVIDIA Jetson TX2 hardware or similar embedded platform, in real-time with
reasonable frame rate (at least 20 frames per second (FPS)). The complete system includes
multiple components. First, a reliable face detector that is capable of finding faces from the
frames of the video stream, which are at least partially visible (20% minimum), is needed.
These faces should be classified by comparing them to the set of known facial images
with at least 98% accuracy. In addition, the number of false positives, where a sample is
recognized to incorrect identity, should be minimized although it might weaken the overall
accuracy. The search speed for the nearest neighbour search should be logarithmically
proportional to the number of the known facial images.

Chapter 2 explains the theory behind the methods that are used. The theory starts from the
basics of machine learning which forms the fundamentals to the used methods. After that,
the term deep learning is explained, which leads to an introduction of the neural networks.
After all, the building blocks of the CNN and the concepts that are required for training a
CNN are presented based on principles related to the neural networks.

The different tasks related to the face recognition problem are presented in Chapter 3.
First, the pipeline that will be followed in the implementation, is defined. Based on the
pipeline, the problem is divided to smaller steps that can be solved individually. Then, the
different tasks are introduced in detail and methods for solving them are covered. Also, the
evaluation of the methods that are introduced for solving the tasks, are studied. Chapter 4
describes the implementation of pipeline steps. It focuses on describing, how the methods
are utilized for solving the steps and visualizing the output of the implemented methods.
Also, the datasets and the environment for the implementation are covered. Based on the
implementation, the solution for the face recognition system is described by collecting a
solution for each of the steps.

The results of implementation are evaluated and discussed in Chapter 5. The performance
of the methods for each step of the pipeline are evaluated with commonly used performance
metrics. The conclusion in Chapter 6 sums up the achieved results and reviews the thesis.

1. Introduction 3

The solution for the problem stated in the introduction is presented based on the results and
development ideas are discussed. Also, the requirements for the system presented in this
chapter are revisited and compared to the results.

4

2. THEORY

In order to develop system for face recognition, the main concepts behind the used methods
are covered. First, the term machine learning is defined. Then, the difference between
the traditional machine learning methods and deep learning is explained. Finally, the
techniques and methods for developing deep learning models for solving the presented
problems are introduced.

2.1 Machine learning

A person collects huge amount of data every day using all of the available senses. These
include smell, taste, vision, sensory, hearing and balance. Based on this collected data,
numerous decisions are made on a daily basis. Some of these decisions require a lot
of collected knowledge, but on the other hand some decisions are made without prior
knowledge by trying to adopt the knowledge to an unknown situation.

Data can also be collected using different sensors, that presents the collected data in
generally used format such as numbers, text or images. This kind of data can also be
analysed and used by a human, but it is highly subjective and limited by ones ability to
collect and understand only small amount of data. In addition, the simple well formatted
abstract problems that are the most difficult to solve for a human, are the easiest to apply
machine learning methods [12, p. 2].

In machine learning, decisions are made based on available data using computer. The
available data is used to create a model, that can for example classify or detect patterns
from the data. It is also possible to predict unseen data to do estimations for the future.
[13, p. 1] Compared to the human, machine learning methods can utilize much more data
to form the model. In general, the more data is available, the easier it is to develop good
models. On the other hand, complex problems related to vision or hearing, which are
intuitive for humans, are very difficult for machine learning models due to the high amount
of possible scenarios [12, p. 1–2]. The solution for these complex problems is discussed in
Section 2.2.

The main goal in machine learning model development is to train a model that performs well
with the data that has not been used in the development of the model. Training the model
can also be called fitting which refers to adjusting the model parameters to fit to available
data. In training, the variables in the machine learning model are adjusted to minimize the
cost function. This minimization process is discussed in Section 2.3.3. Trained machine
learning model can later be used for example predicting output or classifying new data,
that has not been available while training the model. The better the model performs with

2. Theory 5

previously unseen data, the more generalized it is. The complex models are capable of
learning very detailed features from the data. However, if the model learns these details, its
overall performance may weaken. In this case, the model overfits to the data. On the other
hand, if the model is too simple for the problem, it underfits and is not capable of learning
all the key features from the data. [12, p. 96–113]

The overfitting problem can be solved by carefully estimating the requirements for machine
learning model complexity and the data used in model development. For the data, cross-
validation can be used to group data so that the machine learning model performance can
be objectively estimated while developing the model. In cross-validation, the goal is to
divide data to training and validation sets. The validation set is only used to estimate the
model performance, not in training. Both the training and the validation datasets should
include samples from original dataset so that they both represents the whole dataset, but
the two parts cannot include same samples. [14, p. 241–249]

Machine learning methods can be divided into three main categories. One of them,
supervised learning, outputs for the data are known and the relations from specific inputs
to outputs should be learned by the model. Supervised learning suits well for example in
classification of the input samples and in object detection. [13, p. 2–9]

However, annotating the known outputs for the data is time consuming and therefore
expensive. The annotation is mostly done by humans, and there might also be some
differences between the annotated output depending on the person that annotates the data.
If the outputs for the data are unknown, another main category, unsupervised learning
finds the relations from data. It can be used for example in dimensionality reduction and
knowledge mining, where hidden patterns, relations or associations from the data that
could classify the samples, are searched using for example clustering or decision trees. [12,
p. 142–148] Supervised learning can also support unsupervised learning by steering and
verifying the unsupervised learning process. This is called semi-supervised learning. [12,
p. 240]

2.2 Deep learning

The simple machine learning algorithms such as k-means, use k nearest neighbours from
data to classify samples, perform well with well formatted problems and simple data. Well
formatted problems refer, for example, to simple classification problems where the data is
classified to few available classes. In these cases, the dimensionality of the data and the
number of the outputs in the system should be relatively low. While the data becomes more
complex (for example dimensionality is higher and there are noise in the data), they are not
suitable. [12, p. 137–151] These cases include for example object detection and feature
extraction from the images.

Machine learning models that are capable of solving these complex problems, require more
representational capability, which can come from the depth of the model where multiple

2. Theory 6

processing steps are performed in a series. Each of the steps learn new more abstract
features based on the previous step. [13, p. 995–1000] The deep learning models can have
millions of parameters on numerous layers. The more parameters and layers there exist, the
more challenging it is to train the network and understand its strategy for decision making.
Therefore, deep learning methods are also called as black box methods.

Development and usage of deep learning models is similar to traditional more simple
machine learning models discussed in Section 2.1. The main difference is related to model
training. While the deep learning model is more complex, the minima of the loss is harder
to find. In addition, a complex deep learning model can learn very detailed representation
(fine details) from the data, which causes overfitting. The most simple way to avoid
overfitting is to use early stopping where the number of epochs (the whole set of training
data is shown once to the model [14, p. 397]) run during the training is limited so that the
common features in the data are learnt, but the unique details are left out from the model.
[12, p. 224–225, 241–243]

2.3 Neural networks

Deep learning refers to the neural network models that are highly influenced by the
modelling of the human brains. Single unit in neural network tries to replicate a brain
cell which structure was first introduced by McCulloch in 1943 [5] and later modeled as
a perceptron by Rosenblatt in 1958 [15]. In neural networks, perceptrons are placed on
layers from input to output layer. There can also one be or more layers of perseptrons
between the input and output, these layers are called hidden layers [14, p. 392-393]. The
structure of a simple neural network is illustrated in Figure 2.1.

x2

x3

h2

h3

y1

x1 h1

y2

Figure 2.1. Structure of a simple neural network with one hidden layer. Symbols xn are
n inputs to the network, yn are the outputs and hn describes the stage on hidden layer
between the input and output.

The neural network in Figure 2.1 is called feedforward neural network, which refers to its
structure that does not include any feedback connections to previous layers. The whole
network can be modelled as a function f that maps the input values to outputs as

y = fΘ(x), (2.1)

2. Theory 7

where x is an input vector to the network, y is an output and Θ models the neural network
parameters. While training the neural network, these parameters are optimized to learn the
mapping from input to output. With three layer neural network as presented in Figure 2.1,
the mapping function f consists of multiple functions where each function represents a
layer as

fΘ(x) = fΘ2(fΘ1(x)), (2.2)

where fΘ1 is the mapping from input to hidden layer, fΘ2 is mapping from the hidden layer
to output layer. [12, p. 164–165]

In addition to the neural network architecture (number of the layers and the width of the
each layer), also activation function, optimizer and cost function (loss) must be designed
for fitting a neural network. While fitting the network, also regularization (Section 2.3.4)
must be considered in order not to overfit. [12, p. 172–173]

2.3.1 Activation

If the neural network were using only the weights of the perceptrons in order to calculate
the output of the network, it would be a linear function, which cannot be used in more
advanced classification tasks that include non-linearity. In neural networks, non-linearity is
implemented using a non-linear activation function for the outputs of the perceptrons. One
of the most used activation functions is rectified linear unit (ReLU) which is defined as

g(z) =max(0, z), (2.3)

where z ∈ R is the output of a perceptron. [12, p. 168–172][16] There are also different
specializations such as ReLU6, which limits the maximum of the output to 6.

However, in a classification task, wanted output from the neural network is a probability
in range [0,1] for each of the possible classes. Therefore, ReLU cannot be used as an
activation function on output layer of the neural network in classification task. For binary
output (classification probability), a logistic sigmoid function can be used for instance. It is
defined as

g(z) =
1

1+ exp(−z)
. (2.4)

In a multiclass case, a probability for each class i is presented as a separate output node.
For that purpose softmax function

g(z)i =
exp(zi)∑
j exp(z j)

(2.5)

can be used. The sum of the probabilities for classes equals to 1. [12, p. 65–67, 180–181]
ReLU and logistic sigmoid functions are presented in Figure 2.2.

The most of the current state-of-the-art neural networks utilize ReLU or softmax activation
functions. Still, there are also numerous other activation functions and different variations

2. Theory 8

5 4 3 2 1 0 1 2 3 4 5
z

1

0

1

2

3

4

5

g(
z)

ReLU
logistic sigmoid

Figure 2.2. ReLU and logistic sigmoid activation functions.

to them available that have been developed for different purposes. [17] Activation function
adds hyperparameters that must be tuned while developing neural network based deep
learning model. The optimal function can be found only via trial and error, but the most
used functions are a good starting point.

2.3.2 Loss

In order to estimate the performance of the neural network during the training, and also
to steer it, the loss L must be defined. It measures, how far the estimated output of the
neural network with input x ∈ RD, where D defines dimensionality of the data, is from the
desired output. One simple measure for measuring the output y ∈ RN with length N is an
euclidean loss (`2 loss). It is formed as

Leuclidean(fΘ(x),y) = ‖y− fΘ(x)‖22 =
N∑

i=1
(yi − fΘi (x))2, (2.6)

where fΘ(x) is presented in Equation 2.1. In classification tasks, the output of the network
is a vector of probabilities for a sample being in class c among all the possible classes
C. Therefore, a neural network can be modelled as a probability function pΘ with neural
network weights Θ. In this case, categorical cross-entropy loss is described as

Lcategorical cross−entropy(pΘ(x),y) = −
C∑

c=1
yc log pΘ,c(x), (2.7)

which computes the loss as a sum of probabilities pΘ,c for x to belong in class c, can be
used. [14, p. 395–396]

2. Theory 9

The choice of a loss function is respect to the problem that is solved. It should present
the differences related to it. After all, the goal is to minimize the loss that describes the
problems related to the output of the model that is trained.

2.3.3 Optimization

In traditional optimization problem, the goal is to find optimal solution for the problem.
In machine learning, a known set of data is utilized for optimizing model parameters Θ
to map input samples X ∈ RD×M , where M is the number of training data samples, to
corresponding outputs Y ∈ RN×M that minimize the cost function J(Θ;X,Y). However,
the machine learning model is optimized with limited amount of data while the model
should work well also with unseen data. Therefore, the model optimization is only a guess
based on available data. [12, p. 271]

While optimizing a deep learning model, cost function can be considered as an average of
the loss over the training dataset. With carefully evaluated data and generalization, the cost
function of the model trained with available training dataset with empirical distribution,
represents closely the model’s cost function with true distribution of the data. With this
assumption, the cost function can be modelled as an average of the loss over M samples of
data as, [12, p. 272–273],

J(Θ;X,Y) = 1
M

M∑
i=1

L(fΘ(xi),yi). (2.8)

In neural network training, based on cost function value, the parameters of the network
Θ are adjusted. The adjustment (training the network) is performed by iterating over the
training data and constantly updating the parameters. The parameter update utilizes an
optimizer. One of the most used optimizer is stochastic gradient descent (SGD). In SGD,
the parameters are updated based on the minibatch, which is a subset m of the training data
samples. For minibatch, the gradient of the cost function

ggg = ∇ΘJ(Θ;X,Y) = 1
m
∇Θ

m∑
i=1

L(fΘ(xi),yi) (2.9)

is computed. After processing a minibatch, the computed gradient can be used to update
neural network parameters

Θ←Θ− εggg, (2.10)

where ε is a learning rate, which defines the size of the change in parameters based on the
computed gradient. [12, p. 274–278, 290–291]

Learning rate is chosen to be big enough to reach the minimum of the cost function yet
small enough to hit it. It can also be changed during training, for example to get close to the
minima first, and then decreasing the learning rate to reach the minima. The affect of the

2. Theory 10

a)

b)

c)

Figure 2.3. The affect of learning rate in optimization as a function between the neural
network parameters Θ and the loss. a) well chosen (blue) b) too big (green) c) too small
(orange) learning rate.

learning rate is shown in Figure 2.3. In the figure, the optimization problem is simplified
into two dimensions, where the cost function J(Θ) is modelled in two dimensional space
as a function of parameters Θ.

In deep learning, the optimization of the parameters is a very difficult task since their
dependency on each other is complex. While the gradient is used in finding the optimal
parameters, the minima of the cost function might be behind an "obstacle" that gradient
may be unable to handle. In addition, neural network training can "get stuck" to the
local minima of the cost function although more optimal solution is available. Also the
initial parameters can define, where the minima of the gradient is eventually found. [12,
p. 274–289] Figure 2.4 illustrates these situations.

c)

a)
b)

Figure 2.4. Different scenarios related to optimization. a) the minima is hidden "behind
obstacle", b) only local minima is found, and c) with good initial parameters the minima
can be found.

2. Theory 11

After all, optimization is a difficult task where numerous components, and their hyperpa-
rameters, related to neural network such as network architecture, activation functions, used
losses and optimizer, affect the performance of the trained model. The performance is very
difficult or impossible to predict before training.

2.3.4 Regularization

In optimization, the goal is to minimize the loss. However, the loss minimization can lead
to overfitting especially if the used machine learning model is complex and it is capable
of representing fine details. If the model overfits, the model does not work well with the
data that has not been used in training the model. As stated in Section 2.1, the goal in
machine learning model development is to create a model, that performs well with the
data that model has not seen before. Regularization is used to meet that goal. In addition,
controlling the training process based on metrics or carefully choosing the training data that
were discussed in Section 2.1, regularization can also be implemented by adding penalties
based on model parameters during the optimization [12, p. 226].

For optimization, the norm penalty Ω(Θ) can be added to the total cost function J̃ as

J̃(Θ;X,Y) = J(Θ;X,Y)+αΩ(Θ), (2.11)

where hyperparameter α > 0 defines the weight of the norm penalty. The most used norm
penalties are l2 and l1 penalties. The l2 is defined as

Ωl2(Θ) = ‖Θ‖2 =

√∑
i

Θ2
i (2.12)

and l1 is defined as
Ωl1(Θ) = ‖Θ‖1 =

∑
i

|Θi |. (2.13)

The difference between l1 and l2 losses is that l1 loss penalises for single high absolute
value weight and l2 for norm of the weights. [12, p. 226–231]

Penalty can be added to every component in neural network. For example Keras deep
learning library [18] provides an application programming interface (API), where penalty
can be added to network weights, bias and output of the activation function for each layer.
Bias is an additional constant that is added to each neuron or other unit in the network [14,
p. 392–393].

Generalization can also be added to the neural networks by randomly disabling temporarily
some neurons or other neural network units with specific probability during training which
decreases network’s representational power. This method, dropout, was presented by
Srivastava et al. in 2014 [19]. In dropout, a configured amount of units are temporally
disconnected from the network while training so that they are not used in evaluating
network output on that minibatch. By randomly changing the disconnected units between

2. Theory 12

the epochs, the training uses different sub-nets of the original neural network in training.
After training these sub-nets can be used together as a one complete network, where the
trained weights are scaled from training with unit’s probability to be present in a sub-net.

Batch normalization can also be used in accelerating the convergence during the neural
network training and regularizing the output. It normalizes the inputs within a training
batch for the layer in order to avoid covariate shift which means that the distribution of the
input for specific network part changes while the parameters in preceding layers change.
Because of the distribution change in preceding layer’s output while training, the following
layers must also learn the changes on the preceding layers, which amplifies the effect on
parameter update throughout the network and slows the training process. [20]

2.4 Convolutional neural networks

Traditional neural networks presented in Section 2.3 suit well for one dimensional data.
However, with multi-dimensional data such as images, traditional networks are impractical.
CNNs provide an effective way for extracting features from multi-dimensional data and
they are used in numerous machine learning applications for that purpose. [12, p. 326]
CNNs are capable of achieving similar performance compared to traditional fully connected
networks, similar to one in Figure 2.1, with significantly lower amount of parameters
because the training is easier due to smaller amount of parameters and fewer connections
between the parameters. In addition, current GPUs are well optimized for calculation of
two dimensional convolution which is the cornerstone for CNNs. [21]

CNN includes one or more convolutional layers (Section 2.4.1) in the network architecture.
They are capable of reducing the amount of needed parameters drastically compared to
the traditional networks. CNNs are based on filtering the image with numerous filters
at each layer in order to calculate the output of the layer. Therefore convolutional layers
share parameters within a layer, which can also be used as a regularization method. In
addition, the convolution operation of the filtering is computationally lighter than matrix
multiplication that would be needed with traditional neural networks. [12, p. 326–335]

Since the AlexNet in 2012 [21], CNNs have significantly improved the state-of-the-art
classification accuracy in annual ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) which uses a subset of ImageNet dataset [22]. While the AlexNet included five
convolutional (Section 2.4.1) and three dense (Section 2.4.3) layers, later the depth and the
complexity of the architecture has increased. Some of these architectures are presented in
Section 2.4.4.

The architecture of the commonly used CNNs consist of components that can be considered
as building blocks of the network. Each block contains usually convolutional layers,
an activation function for the output of the convolutional layer which is similar to the
traditional neural networks, and a pooling layer which performs sub-sampling. [12, p. 336]
For example in classification problems or feature vector extraction, the desired output of

2. Theory 13

the network is one dimensional. In these cases one or more dense layers are used to map
the outputs from convolutional layers to desired outputs. These basic layers are used to
form building blocks for various CNN architectures that have been developed for different
deep learning applications. For this thesis, focus is on computationally light CNNs for
image processing. This architecture is visualized in Figure 2.5 utilizing an architecture of
the VGG16 [23] network.

Figure 2.5. VGG16 network architecture [1].

2.4.1 Convolutional layer

The task of the convolutional layer in most of the image related problem is to filter the
W ×H ×D (width×height×depth) sized input with the set of N filters. Filtering is a
convolutional operation between the input image I and filtering kernel K , which can be
represented as a discrete case with images. For each location (i, j) in image the result of
convolution is

S(i, j) = (I ∗K)(i, j) =
∑

m

∑
n

I(m,n)K(i−m, j −n), (2.14)

where n and m define the kernel size. The convolution operation is commutative, which
is possible because the kernel relative to the image I is flipped (kernel index decrease
while the index of image increases). By utilizing commutation (K ∗ I)(i, j) = (I ∗K)(i, j)
for Equation 2.14 and using cross correlation function instead of convolution, where the
kernel is flipped, the equation is modified to

S(i, j) = (K ∗ I)(i, j) =
∑

m

∑
n

I(i+m, j +n)K(m,n), (2.15)

which is used by the deep learning frameworks instead of the convolution. [12, p. 327–329]

2. Theory 14

An example of a convolutional layer is presented in Figure 2.6. The convolution operation
is run through each pixel location in image matrix. The depth of the filter is same that the
depth of the image matrix. The image kernel size m×n can be chosen freely. Usually 1×1,
3×3 or 5×5 kernel sizes are used in convolutional layers. In addition to kernel size, also
stride must be chosen. It defines a step size for filtering (with stride=1 each pixel is used,
stride=2 every second pixel etc.). The edges of the image require a special processing in
order to fit the kernel also to the border pixels of the image. Two main approaches can
be used. First, image can be padded with zeros to increase the image size in order to get
output which width and height are same than in input. The other approach is run kernel
only so that it fits completely inside the image. In this case, width and height of the output
of the layer is smaller than the input.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

A + 2B +
5C + 6D

2A + 3B +
6C +7D

3A + 4B +
7C + 8D

5A + 6B +
9C + 10D

6A + 7B +
10C + 11D

7A + 8B +
11C + 12D

9A + 10B +
13C + 14D

10A + 11B +
14C + 15D

11A + 12B +
15C + 16D

A B

C D

input kernel output

* =

Figure 2.6. Convolutional layer with 4x4x1 input and 2x2 kernel with stride 1.

Filtering of the image with simple kernel is a powerful tool for feature extraction. For
example, in Figure 2.7 edges are extracted form the image using kernel that subtracts
surrounding pixel’s values from each pixel in the image in order find the changes in pixel
values.

As shown in Figure 2.7, a single filter is capable of extracting features from the image
using only nine parameters. By filtering the image with multiple filters on a convolutional
layer, it is possible to extract very detailed features with very few parameters (kernel
weights). In addition, the number of the input channels for each of the convolutional
layers can be increased to extract more information from the previous layer of the network.
The convolution operation can also be applied depthwise to the input channels with
three-dimensional filtering kernels that are capable of extracting features not only from
each channel but also combining information from multiple channels.

2.4.2 Pooling layer

Pooling is used in CNN for reducing the size of the output by sub-sampling the output from
the convolutional layer after the activation function is applied. The goal in pooling is to

2. Theory 15

=*

-1 -1 -1

-1 8 -1

-1 -1 -1

Figure 2.7. Demonstration of a single filter’s ability to extract features (edges) from
grayscale image (image taken from VGGFace2 dataset [2]).

remain the important features from the input and remove others. With CNN, max pooling
is the most used pooling, which finds the maximum value within the pooling kernel and
outputs that. Similar to convolutional layer, pooling kernel size and stride must be chosen.
Figure 2.8 illustrates max pooling operation with different kernel sizes and stride. [12,
p. 335–339]

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

13 15

23 25

7 8 9 10

12 13 14 15

17 18 19 20

22 23 24 25

a)

b)

Figure 2.8. Max pooling, a) using 2x2 kernel and stride=1, b) 3x3 kernel with stride=2.

Pooling layer reduces the size of the input for the following layer in CNN. This reduces
the total inference time of the CNN which means that the network is faster to process the

2. Theory 16

image. The inference time is one of the main problems related to neural network usage
especially in real-time applications on hardware with limited computational capacity.

2.4.3 Dense layer

Dense layer refers to a fully connected layer of perceptrons similar to three-layer network
presented in Figure 2.1, which performs linear transformation for input. Dense layer inputs
a n-length vector of features and connects each of the elements in the input vector to
every perceptron of the dense layer. The width of the layer m is defined by the number
of perseptrons. For the output of each perceptron, an activation function is used for
non-linearity. [12, p. 164–167]

In CNN, dense layers are usually used between the last convolutional layer and output
to map the features extracted by the convolutional layers to output. Compared to the
convolutional layers that share parameters efficiently, a dense layer has n×m parameters
and they are not shared. In order to limit the network size (number of parameters in
network), the size of the dense layer should be limited. It can be achieved by reducing the
number of features in convolutional layers before flattening the network to dense layers.
Flattening is an operation that creates a one dimensional vector from multidimensional
output of the convolutional layer.

2.4.4 Commonly used architectures

During the last five years, numerous CNN architectures have been proposed for different
purposes. Some architectures that have proven to performwell in common object recognition
tasks for classifying objects in commonly used datasets such as COCO (Common Objects
in Context) [24] or ImageNet [22]. Since the classification of images in these datasets can
be considered to cover well any general task related to feature extraction from images, also
the used network architectures suit well for various tasks. For this thesis, some commonly
used CNN architectures are used as a complete network or some components from them
are integrated to custom architecture.

Followed by AlexNet [21], the VGG16 network[23] with similar simple architecture was
presented in 2014. Compared to AlexNet, VGG16 has more convolutional layers (16)
and the network size in general was bigger. VGG16 architecture consists of five blocks
of convolutional layers, max pooling after each block and three dense layers. Due to
very big number of parameters (138 millions) and many computationally relatively heavy
convolutional layers with big number of filters, the VGG16 network is not suitable for
real-time applications.

In order to increase the models representational capacity, and therefore increase the
performance, but at the same time limit the size of the network and computational
complexity, the base of the CNN architecture must be re-designed. In 2014, the GoogLeNet

2. Theory 17

network [25], which has approximately 20 times less parameters (6.8 million) and ten
times less needed FLOPS (floating point operations per second) compared to VGG16 while
the result in ILSVRC competition is similar. The architecture of the GoogLeNet consists
of Inception modules that replace traditional convolutional layers compared to VGG16.
The inception module, which is presented in Figure 2.9, reduces the dimensionality of the
data before expensive operations, which reduces the number of parameters and reduces
computational complexity although the number of layers (22) is higher than in VGG16.

<output>

Conv 1x1

Concatenation

<input>

Conv 1x1

Conv 3x3

Conv 1x1

Conv 5x5

Max Pooling 3x3

Conv 3x3

Figure 2.9. Inception module.

Another approach to replace traditional convolutional layers, similarly to inception modules,
is residual blocks that was introduced in 2015 [26] by He et al., which is named in CNN
architectures as ResNet. The residual block, which is shown in Figure 2.10, forms the
output as a sum of block input and convolutional layers’ output. This approach allows
deeper networks where the depth increases complexity instead adding parameters to each
convolutional layer as in VGG16. In the paper He et al. reports that the depth of the
network does not improve accuracy if traditional convolutional layers are used, because
the problem becomes too difficult to optimize. Therefore, structures such as residual
block are needed to increase the complexity of the model without adding parameters or
computational complexity.

For utilizing CNNs in real time applications such as video processing, on mobile and
embedded devices, these custom building blocks must be optimized more. Howard et
al. proposed in 2017 MobileNet models for this purpose [27]. The idea in MobileNet is
similar to GoogLeNet [25], computationally heavy convolution operations are split to two
separable convolution operations that are lighter to compute. In MobileNet, first, depthwise
convolution is applied to each channel with separate filter and then outputs of the depthwise
convolutions are combined using convolutions with 1x1 kernel filters.

In 2018, the next generation of MobileNet, named as MobileNetV2, added residual blocks

2. Theory 18

<input>

<output>

Conv 3x3

Conv 3x3,
ReLU

Add

ReLU

Figure 2.10. Residual block.

from ResNet [26] to the block structure [28]. These bottleneck blocks consist of two
convolutions with 1x1 kernel which task is to scale down and up sample size, around the
computational heavy convolution similar to layer in VGG16 [23] architecture. The blocks
in both MobileNetV1 (the original MobileNet) and MobileNetV2 are illustrated in Figure
2.11. Both MobileNet versions use ReLU6 activation function.

Conv 1x1,
ReLU6

a) b)

<input> <input> <input>

<output> <output> <output>

Depthwise conv 3x3,
stride=[1,2],
ReLU6

Depthwise conv 3x3,
stride=2,
ReLU6

Depthwise conv 3x3,
stride=1,
ReLU6

Conv 1x1,
Linear

Conv 1x1,
Linear

Conv 1x1,
ReLU6

Conv 1x1,
ReLU6

Add

Figure 2.11. Building blocks of a) MobileNetV1 and b) MobileNetV2 with two different
strides.

2. Theory 19

While training the presented architectures, also different regularization methods discussed
in Section 2.3.4 are applied. For example ResNet, MobileNetV1 and MobileNetV2 utilize
batch normalization [20]. In general, the deeper the network is, the more difficult it is to
train. However, if fewer parameters and faster inference times are required, increasing the
depth of the CNN is the only possibility to improve the representational capability of the
model.

Transfer learning refers to using available machine learning models to solve new problems.
The machine learning models may not work in new domain with different data than has
originally been used in training. However, training models from scratch is time consuming
and more challenging. By using a pre-trained model and applying transfer learning, the
training of the new model can be eased. [29] There are numerous sources for open-source
pre-trained models that include these commonly used architectures to solve different
problems such as ILSVRC competition and object detection with COCO dataset.

20

3. PIPELINE

Face recognition from the video stream can be divided into three main steps. First, the faces
are detected like any other object from the frames of the video stream. Based on detection,
the detected faces can be extracted from the frames and classified. Before classification,
the extracted facial images can be pre-processed. Recognition includes two steps, first the
features are extracted from the facial image and then the resulting embedding, which is a
feature vector including features extracted from the facial image, is classified by comparing
it to the known set of embeddings in order to find the best match. Figure 3.1 presents this
recognition pipeline.

Face
detection

Feature
Extraction

For
detected

faces

Video
frames

Feature
embedding
comparison

to the
known set of
embeddings

<output><output><output>

(optional)
Align faces
based on
landmark

localization

Figure 3.1. Pipeline of the system

3. Pipeline 21

As shown in the figure, classification is made based on set of embeddings that are extracted
from facial images. The extraction of these embeddings is made using the detection and
feature extraction steps of the pipeline. Each face that is detected from the input frames, is
processed through feature extraction and feature embedding comparison step individually.
Each face in the facial images obtains a unique identifier which is later used in classification
of new samples, which in this case are the extracted embeddings of the faces that are
detected from the frames of the video stream.

3.1 Face detection

Face detection is a similar problem to any other object detection problem. In general,
object detection system is capable of detecting multiple object classes. In this case, a face
is the only object class that is detected. The goal in face detection is to find and locate
one or more faces from images. In this thesis, the desired output of the face detector is
illustrated in Figure 3.2.

Figure 3.2. Desired face detector output (image taken from VGGFace2 dataset [2]).

A bounding box can be drawn around each face based on the coordinates that are obtained
from the output of the face detection algorithm. Based on the coordinates, facial images
are cut from the image and passed to the next step of the pipeline.

As mentioned in the introduction (Chapter 1), face detection is widely researched problem.
For this thesis, only few approaches are covered. First, Viola-Jones object detection
framework [3] based face detector, which has been referred also in the surveys, is tested.
After that, two neural network based approaches, YOLO (You Only Look Once) [30] and

3. Pipeline 22

SSD (Single Shot MultiBox Detector) [4] are went through. The third widely used neural
network based approach, Region Proposal Networks is left out, because their performance
in terms of speed do not meet the requirements for the real time system with hardware
described in Section 4.2 [31].

3.1.1 Viola-Jones object detector

Viola-Jones object detection framework is a three-step procedure to detect objects from the
images. It was published in 2001 and it was originally developed for face detection. The
first step in the procedure include a generation of integral image, which is formed as a sum
of pixel values on top and left side of specific pixel as shown in Figure 3.3. In addition, the
computation of an integral image is visualized in Figure 3.4. [3]

2 3 5 3 1

3 1 2 4 2

5 2 3 5 4

1 3 4 2 1

4 1 2 5 3

0 0 0 0 0 0

0 2 5 10 13 14

0 5 9 16 23 26

0 10 16 26 38 45

0 11 20 34 48 56

0 15 25 41 60 71

Figure 3.3. Computation of integral image.

Figure 3.4. Visualization of integral image (image taken from VGGFace2 dataset [2]).

3. Pipeline 23

Based on integral image, Haar features, which describe the difference of pixel values
on specific areas as shown in in Figure 3.5, can be computed efficiently based on pixel
area sums that lay under specified rectangles. Sum of the pixel values on white areas are
subtracted from the sum of values on black areas to compute single feature within the
rectangle inside detection window. For example, a sum of pixel values within the red square
in the Figure 3.3, can be calculated as D+ A−(C+B) which is 48+9−(20+23) = 14. [3]

A

B

C

D

Figure 3.5. Example of different Haar features (A, B, C and D) within the relative detection
window (redrawn from [3]).

Cascaded structure of AdaBoost classifiers is used for classification based on extracted Haar
features. Each of the AdaBoost classifier consist of weighted weak classifiers that threshold
single extracted features. In cascade on classifiers, each classifier classifies window to
either include the object or not. If no object is detected, the sample is rejected immediately
without running it through the rest of cascaded structure of classifiers, because only very
few of the extracted features are significant. This way, classifiers in the cascade can detect
object starting from abstract features and focus on interesting areas by continuing more
detailed features on those areas, which is very efficient in rejecting false positives. [3]

3.1.2 Single Shot MultiBox Detector

The idea of SSD framework is to locate and classify the objects in the image with single
forward pass to the neural network. For the image that is fed to the network, the output
consists of bounding boxes around detected objects and a class for each of the detected
objects respectively. The SSD framework consists of a base network, which output is
truncated, and additional feature layers that replace the output layers of the base network.
SSD architecture is presented in Figure 3.6.

The feature layers are used to detect objects at multiple scales by producing a discrete set
of bounding boxes on each location of the feature map and a probability for different object
classes occurrence within the box. Feature maps, which are illustrated in Figure 3.7 are
formed as a N ×N grid on the input image, where different scales output varying number

3. Pipeline 24

Figure 3.6. Architecture of the SSD network (modified from [4]).

of cells. In the architecture presented in Figure 3.6, the grid size varies from 38×38 to
1×1 in six different sizes and four or six bounding boxes per cell. For Figure 3.7, number
of boxes per cell is limited to four to improve readability. Boxes are also adjusted to object
shape within the box. Based on the bounding boxes, non-maximum suppression (NMS)
[32] is used to output final detections. NMS combines overlapping bounding boxes of same
object class into one bounding box. [4]

a) Groundtruth image
with predictions

b) Boxes with 5x5 feature
map

c) Boxes with 3x3 feature
map

Figure 3.7. An illustration of SSD feature maps. a) groundtruth image with predicted
boxes for two classes, person (green) and face (red), b) four bounding boxes per cell with
5×5 feature map, where only one of four boxes (marked with red) detects the face cell,
c) four bounding boxes per cell with 3×3 feature map, where one of four boxes (marked
with green) detects the person in cell and one of four boxes in another cell detects a face
(marked with red) (groundtruth image taken from VGGFace2 dataset [2]).

The base network can be chosen based on the requirements of the application. For example,
VGG16 network is too heavy to be used on the hardware (section 4.2) that is used in this
thesis. Therefore, a relatively light network such as MobileNetV1 or V2 can be used
although the maximum performance might weaken slightly.

3. Pipeline 25

3.1.3 "YOLO: You Only Look Once" object detector

Similarly to SSD (presented in Section 3.1.2), YOLO is capable of locating and classifying
objects in multiple classes on single forward pass. In addition, the base architecture
constructs of blocks of convolutional layers that are responsible for feature extraction,
similarly to base networks in SSD. However, the structure of the additional layers that do
the object localization and classification, in YOLO, is different compared to the SSD.

The latest versions of YOLO, named as YOLOv3 [30], uses anchor boxes in prediction
similarly to SSD. Instead of fixing the anchors by hand, k-means clustering is used for
finding the most suitable priors (boxes) based on training data annotations. To stabilize the
training, the coordinates relative to grid cells for the predicted boxes are used as an output
instead of image coordinates. While the SSD framework scales the grid in order to find
different size objects, YOLOv3 increase the resolution of the features by running it through
a layer that increases number of channels where the higher resolution features are.

3.1.4 Detector evaluation

For face detection, the similarity of the correctly predicted bounding boxes is evaluated. In
order to determine whether the accuracy of the prediction, Intersection over Union (IoU)
[33] metric is used. IoU is defined as

IoU =
A∩B
A∪B

, (3.1)

where A is the groundtruth and B predicted bounding box. IoU is visualized in Figure 3.8.

A B

Figure 3.8. Intersection over union (IoU). The closer the predicted bounding box B is to
groundtruth A, the higher the IoU is.

Based on chosen IoU threshold, the detection can be considered as a positive or negative.
With specific IoU threshold, number of correct detections can be compared to the number
of groundtruth bounding boxes in the image. Mean average precision (mAP) is defined
as an average of correctly detected objects per class over the test dataset. The positive
prediction has an overlapping bounding box with the groundtruth bounding box with IoU,

3. Pipeline 26

which is the same or higher than the defined threshold. On the other hand, the prediction is
negative, if there is no prediction for the groundtruth bounding bounding box with specified
IoU threshold.

In COCO evaluation metrics [34], thresholds from 0.5 to 0.95 with interval 0.05 for IoU
are used and the final mAP is computed as an average over the possible thresholds. COCO
evaluation metrics rewards for well located bounding boxes since high IoU thresholds are
used. On the other hand, a threshold of 0.5 can be used for estimating how well the objects
are found in general without penalizing the small margins to groundtruth coordinates.

3.2 Facial image preprocessing

Facial image alignment step can be added between the face detection and feature extraction.
Adding this step might improve classification results, since the pose is standardized in the
images. However, feature extraction can also be performed with unaligned facial images,
where the entire alignment step is skipped. In general, the alignment step increases the
computational complexity of the system by adding an extra machine learning model and an
image transformation to the pipeline.

Different preprocessing methods are used before feature extraction in different existing deep
learning based extraction methods. For example, DeepFace [7] performs 3D alignment
of the face in order to transform facial images as similar as possible before extraction. In
addition, FaceNet [8] performs translation and scale transformations, MobileFaceNets [35]
a similarity transformation and OpenFace project [36] an affine transformation, that are
more simple 2D transformations explained in Section 3.2.3. The transformations require a
specific number of detected facial landmarks, such as eyes, from the facial images to create
point correspondences to the fixed groundtruth locations, for forming the mapping between
the current and desired locations in the images [37, p. 37–44].

In this thesis, five facial landmarks are detected. They are left and right eye, nose tip and
left and right of the mouth. First, the landmarks are detected from face, and then the facial
image is aligned so that the landmark locations match to the fixed locations. This process
is shown in Figure 3.9.

3.2.1 Landmark detection

For facial landmark detection, the wanted output of the machine learning model is a
vector of coordinates, where specific facial landmarks are located in the facial image.
Two computationally light solutions, an ensemble of regression trees [38], and Multi-task
Cascaded Convolutional Networks (MTCNN) [39] are introduced for landmark localization.
For training the model, both aforementioned methods utilize an euclidean loss defined in
Equation 2.6, where the squared sum of coordinate differences between the predicted and
groundtruth landmark locations is computed.

3. Pipeline 27

Figure 3.9. Face alignment process. Detect the five landmarks and align image so that the
landmark can be found from same coordinates in the image. Locations marked with green
point are considered as groundtruth locations and red are the detected landmarks from the
image that is aligned. (images taken from VGGFace2 dataset [2])

Ensemble of regression trees by Kazemi and Sullivan in 2014 [38], predicts landmarks with
a cascade of regression functions. Each regressor in the cascade updates the prediction by
adding an update vector to predictions from the previous cascade based on output of the
previous cascade and the input image. For the first regressor in the cascade, an initial shape
estimate defines the basis for the update. Regression functions are learnt with gradient tree
boosting. For each regressor, the decisions are made in regression tree based on difference
between two pixel values. Before the difference computations at each cascade level, the
image is warped using the current estimation of the landmarks in order to compare pixel
values from the same location in the image relative to facial landmarks.

MTCNN is a model for both predicting the bounding box location similarly to face detection
and facial landmarks within the predicted bounding box. It is a cascade of three CNNs
where the first CNN, named PNet, is responsible for obtaining multiple candidates for
detected face. The second CNN, RNet, removes most of the candidate bounding boxes that
are false and outputs the detected faces. The final CNN, ONet is responsible for finding
the final bounding boxes for the existing faces and also locating the facial landmarks. The
architectures of the cascaded CNNs are presented in Figure 3.10. [39]

<input> <output>
Conv 3x3,
Max pooling 3x3

Conv 3x3,
Max pooling 3x3

Conv 3x3,
Max pooling 2x2

Conv 2x2 Dense

48x48x3 23x23x3210x10x64 4x4x64 3x3x128 1x1x256 1x1x10

Figure 3.10. Architecture of the ONet in MTCNN cascaded CNNs with the sizes of the
outputs for each of the blocks.

In face detection, the idea of the MTCNN is similar to the Viola-Jones detector (Section

3. Pipeline 28

3.1.1), where the interesting areas are located first and the detection confidence is increased
by rejecting false positives from those areas. This way, it is possible to simplify the structure
of the CNNs since single network has simple task to be solved.

3.2.2 Landmark detection evaluation

Landmark localization evaluation for the facial landmarks presented in Figure 3.9 uses a
measure, where the distances between the groundtruth and estimated landmark locations
are computed separately for each of the landmarks. For each of the detected landmarks, the
error is computed as

elandmark =
1
N

N∑
i=1

√
(y′i − yi)

2+ (x′i − xi)
2

l
, (3.2)

where l is the scale for the distance, N number of images in evaluation dataset, (y′, x′) are
the groundtruth coordinates for the landmark, and (y, x) define the predicted location of the
landmark. The overall error for the landmark detection is computed as an average of errors
for each of the landmarks.

For scale l, the inter-ocular distance or the shape (for example width or height) of the image
can be used in normalizing the results. For some poses, the distance between the eyes can
be impossible to measure (for example, both eyes are not visible). In these cases, image
dimensions output more reliable results. By scaling the results, the size of the image does
not affect the results. For inter-ocular distance, also the scaling of the face in the image is
normalized.

3.2.3 Image transformations

A group of projective transformations consists of subgroups that are specializations of
the projective transformation. These subgroups include for example translation and affine
transformations. The subgroups form a hierarchical structure, where for example translation
is one element in an affine transformation. The first class in the hierarchy, isometries, include
translation and rotation transformations. For the second class, similarity transformation,
also the scale transformation is added. The third class, affine transformation, adds shearing
to the transformation. In shearing, the lines that are parallel preserves, but the perpendicular
lines are not perpendicular after the transformation. The transformations included in first
three subgroups of projective transform group, are shown in Figure 3.11. [37, p. 37–44]

For transformations, degrees of freedom (DoF) define the number of parameters in the
transformation. Based on the parameters, the number of point correspondences that
are needed for implementing the transformation, can be defined. For isometries, a

3. Pipeline 29

a) translation b) rotation c) scale d) shear

Figure 3.11. Components of isometries, similarity transforms and affine transforms in
group of perspective transforms: a) translation, b) rotation, c) scale and d) shear. The
anchor point is set to upper left corner.

transformation from point (x, y) to (x′, y′) is defined in homogeneous coordinates as

©­­«
x′

y′

1

ª®®¬ =

βcosφ −sinφ tx

β sinφ cosφ ty
0 0 1


©­­«

x
y

1

ª®®¬, (3.3)

where tx and ty define translation, θ is the rotation angle and β = ±1, which defines the
orientation. With β = 1, orientation preserves, and β = −1 reverses it. Isometry requires
three parameters (3 DoF): components of translation (tx, ty) and the rotation φ that can be
solved with two point correspondences. For similarity transform, defined with

©­­«
x′

y′

1

ª®®¬ =

s cosφ −s sinφ tx

s sinφ s cosφ ty
0 0 1


©­­«

x
y

1

ª®®¬, (3.4)

where s is the scale factor, the parameter for the scale is added. Still, the transformation
can be solved with two corresponding points. For affine transformation, the formula for the
transformation is ©­­«

x′

y′

1

ª®®¬ =

a11 a12 tx

a21 a22 ty
0 0 1


©­­«

x
y

1

ª®®¬, (3.5)

where transformation matrix A defined as

A =
[
a11 a12

a21 a22

]
, (3.6)

3. Pipeline 30

includes the parameters for affine transformation. Shear adds two parameters to the
transformation matrix compared to similarity transformation (6 DoF in total), and three
point correspondences are required for solving the transformation. [37, p. 37–44]

3.3 Face recognition

In feature extraction, a cropped facial image, which might also be pre-processed in the
previous step of the pipeline, is processed to an embedding which is an n-dimensional
vector of features, that represents the face in cropped facial image. The embedding should
be as similar as possible for each unique face (for each person) regardless the factors related
to for example pose and environment that is captured in the image.

For this thesis, the problem is limited to only optimizing the loss function for training. Two
different losses, Triplet Loss [8] and Additive Angular Margin Loss (ArcFace) [40] are
presented for describing the optimization problem related to face recognition, where the
similarity of the extracted embeddings are optimized.

3.3.1 Triplet loss

The triplet loss, which was presented by Schroffet al. in FaceNet paper [8], optimizes
the CNN based on triplets where the distances within the samples of specific class are
minimized (positive match) and the difference between the different classes (negative
match) are maximized. It is formed based on the difference of euclidean losses (Equation
2.6) of the positive (xp) and negative (xn) match to the anchor (xa) which can be expressed
based on Equation 2.6 for triplet i as

‖ f (xa
i)− f (xp

i)‖
2
2 +α < ‖ f (xa

i)− f (xn
i)‖

2
2, (3.7)

where α defines the margin between the positive and negative samples in optimization.
Based, on this expression, the triplet loss for N triplets can be defined similarly to Section
2.3.2 as

Ltriplet =

N∑
i

max([‖ f (xa
i)− f (xp

i)‖
2
2 − ‖ f (xa

i)− f (xn
i)‖

2
2 +α],0), (3.8)

where CNN is modelled with function f . By utilizing three samples to form the triplet,
both negative and positive match, and the anchor, where the matches are compared, the
embedding of the face can directly be optimized to separate identities.

While training the model, choosing the triplets from the training data, is a key element.
The FaceNet finds the optimal triplets from minibatches with semi-hard negative mining. It
leaves the most difficult negatives (distance to the anchor is smaller than with some of the
positives) out from the training in order to stabilize it. Figure 3.12 visualizes the problem
related to the triplet selection. [8]

The structure of the FaceNet model while training consists of CNN that is responsible
for feature extraction, L2 normalization of the output and triplet loss. The architecture of

3. Pipeline 31

margin α

a) anchor

b) easy positive

c) hard positive

d) hard negative

e) semi-hard negative

f) easy negative

Figure 3.12. Visualization of triplet selection problem by locating positive and negative
samples of the triplet based on distance to the anchor (a): b) easy positive is close to the
anchor (a), c) hard positive is further away from the anchor (a), d) hard negative is closer
to anchor (a) than hard positive (c), e) semi-hard negative is little further from anchor (a)
compared to hard positive (c), f) easy negative is far away from the anchor.

the CNN and the dimensionality (length) of the output feature embedding can be chosen
based on requirements of the application. They affect for example in the computational
complexity of the model. [8]

3.3.2 Additive Angular Margin Loss

While the triplet loss aims to minimize the distance within a class so that the hardest positive
is closer than the hard negatives from the anchor, additive angular margin (ArcFace) loss
minimizes samples’ distances to their class means and maximizes the distances between
the means of the different classes. In Arcface loss, these distances are interpreted as angles
θ j , where j represents sample, between the feature embedding xi, where i refers to the
sample index, and W j which can be considered as a mean of the class for sample j. [40]

By combining the softmax activation function (Equation 2.5), that maps the embedding
vector to class probabilities, and the categorical cross-entropy loss (Equation 2.7) that
penalizes incorrect classifications, softmax loss is defined as

Lso f tmax = −
1
N

N∑
i=1

log
exp(WT

yi
xi)∑n

j=1 exp(WT
j xi)

, (3.9)

3. Pipeline 32

where index yi refers to weights corresponding xi. While the logit WT
j xi is transformed

to the product of parameter lengths and the angle as ‖WT
j ‖‖xi‖ cosθ j and, in addition,

by normalizing the weights W j individually as ‖WT
j ‖ = 1, and feature vector as ‖xi‖ = 1,

applying additional scale s and adding the angular margin penalty m to the angle θ j ,
ArcFace loss can be written based on Equation 3.9 as, [40],

Larc f ace = −
1
N

N∑
i=1

log
exp(s cos(θyi +m))

exp(s cos(θyi +m))+
∑n

j=1, j,yi exp(s cosθ j)
. (3.10)

Similarly to the triplet loss, the architecture of the feature extraction CNN and the
dimensionality of the output can be chosen based on the application. For example,
MobileFaceNet has utilized successfully ArcFace loss in applications that require lower
computational complexity [35]. TheMobileFaceNet architecture is based on MobileNetV2
blocks followed by layers that are responsible for mapping the extracted features to output
of the CNN [35].

3.3.3 Feature extraction evaluation

In binary classification case, the sample is classified as true or false. Each classification
is either positive or negative based on the groundtruth of the sample. Based on this
information, a confusion matrix can be drawn that covers all the possible combinations. It
is presented in Figure 3.13. [41]

True
Positives

(TP)

False
Positives

(FP)

False
Negatives

(FN)

True
Negatives

(TN)

P N

T

F

True class

P
re
d
ic
te
d
cl
as

s

Figure 3.13. Confusion matrix in binary classification.

3. Pipeline 33

Based on the cells in Figure 3.13, accuracy metrics can be defined. True positive rate (TPR)
evaluates, how many of the positive samples are classified to "true" as

TPR =
TP
P
, (3.11)

where TP are positive samples classified as "true" and P are positive samples. False
positive rate (FPR) measures how many of the samples that are negative are classified to
"true" as

FPR =
FP
N
, (3.12)

where N are negative samples and FP are negative samples classified as "true. In addition
to true and false positive rates, accuracy for binary case can be defined as

accuracy =
TP+T N

P+N
, (3.13)

where T N are negative samples classified as "false". All the accuracy parameters are
visualized in Figure 3.13. [41]

Based on TPR and FPR, receiver operating characteristics (ROC) curve can be drawn
by changing the threshold for classification (which similarity defines whether the sample
is classified as "true" or "false"). Different thresholds define the classifier sensitivity to
the false positives (how many classified as "true" are negative). Area under curve (AUC)
metric measures the area under ROC curve. The closer the AUC is from the maximum
value 1, the better the classifier is in separating the positive and negative samples from
each other. [41]

The threshold can be adjusted to define, how sensitive the similarity search is to false
positives. The threshold defines whether the nearest neighbour from the set of groundtruth
embeddings is close enough from the embedding that is classified. Generally, the lower the
threshold is, the less sensitive the classification is to false positives, but simultaneously the
risk of false negatives (negative match classified as "true") increases.

For evaluating the feature extraction, labeled faces in the wild (LFW) evaluation protocol
[42] is used in forming a binary classification problem and benchmarking feature extractors.
LFW dataset splits [43] divide dataset to ten folds where images are paired to positive and
negative pairs. Positive pairs include two images with same identity and negative pairs
have different identities in images.

3.4 Nearest neighbour search

In classification of the embeddings extracted in the previous step of the pipeline, nearest
neighbour search refers to finding the most similar embedding (vector) from the set of
embeddings. The most similar embedding defines the class for the sample. By comparing
the number of correct nearest neighbour searches to the total number of searches, the
top-1 accuracy is obtained as correctly classi f ied

number o f samples in search space . In addition, top-5 and top-10

3. Pipeline 34

accuracy can be used to find out, whether the correct match is within the five or ten nearest
neighbours respectively.

Finding the nearest neighbour from the random set of embeddings is a linear operation
(sample is compared to each embedding in the set and each comparison is a constant
time operation). While the size of the set of embeddings increase, the search space can
be reduced to subset of the original set. Clustering methods are capable of dividing the
embeddings to clusters (subsets), where each subset contains embeddings that are similar
to each other. In this case, the search estimates the nearest neighbour by searching it from
the subspace rather than from full search space.

Different types of clustering methods can be used, two of them are introduced in this thesis.
Partitioning methods divide the samples to desired number of clusters that are as far from
each other as possible. The other type of methods introduced in this thesis, hierarchical
clustering, forms a hierarchy between the clusters which reminds a tree structure. [44,
p. 448–449]

For high dimensional data, the clustering becomes challenging. One problem is that the
noise may dominate in distance measures between the samples since all the dimensions
may not be significant in clusters. This could be solved for example searching clusters
in subspace of the original dataset (feature selection) or reducing the dimensionality of
the data. However, these approaches lead to the loss of data that is considered to be
non-meaningful. [44, p. 508–512]

3.4.1 Vector similarity

The embeddings can be modelled as arrays with fixed dimensionality that represent the
features that are extracted from the face. In this case, these arrays xi and x j that are the
two samples to be compared, simple vector similarity metrics are used. In order to limit
the distances between the samples, each sample xn is normalized before the comparison
(‖xn‖ = 1).

The angle between the samples xi and x j can be used for representing the similarity between
the samples. For that purpose, cosine similarity

dcosine(xi,x j) =
xi ·x j

‖xi‖‖x j ‖
, (3.14)

can be used.

For normalized samples, the denominator of the equation equals to 1. The possible values
of dcosine are on interval [−1,1] similarly to cosine of the angle. The value 1 corresponds
to 0◦ angle, 0 to 90◦ angle and -1 corresponds 180◦ angle. The smaller the angle is, the
closer the samples are from each other based on cosine similarity metric. [44, p. 77–78]

3. Pipeline 35

For this thesis, cosine similarity metric is modified so that value 0 corresponds to 0◦ angle
and value 2 corresponds 180◦ angle (based on Equation 3.14 as |dcosine−1|). This scaling
is similar to other distance metrics, which helps in implementing different distance metrics.

3.4.2 k-means clustering

k-means clustering is a partition clustering method that groups the data to the clusters,
where each sample x j in data X belongs to cluster Ci, which central point ci is closest to the
sample. For example the cosine distance defined in Equation 3.14 can be used to determine
the closest distance. In addition, the number of the clusters k can be defined based on the
data that is fitted to the clusters.

Data is fitted with k-means clustering by first defining the initial cluster centroids and
then iterating them. First, each sample in the data is located to the cluster which centroid
is closest to the sample. Then, new cluster centroids are computed to be the mean of
the samples in the cluster. The iteration is continued until the stopping condition, where
the location of the cluster centroids do not change between the iterations, is met. [44,
p. 452–453]

3.4.3 Hierarchical clustering

For utilizing hierarchical clustering for high dimensional data, the most significant compo-
nents of the data are proven to work in forming the hierarchical model. This way, while
the root node describes all the data that is clustered, the following level of hierarchy is
determined based on the most significant components, and this hierarchy is continued to
the less significant components in descending order until the stopping condition of the
clustering algorithm is met. [45]

Principal component analysis (PCA) can be used in finding the most significant components.
PCA is a technique that extracts the important features from the data and represents that
information in principal components that are a set of orthogonal vectors. [46]

First, the PCA computes the covariance matrix ΣX for data X, where the rows represent
samples and columns represent features. For covariance matrix ΣX, a sample covariance
for the columns i and j of the the data X as yi and y j respectively, is formed as

σi, j = cov(yi,y j) =
(yi − µiln) · (y j − µ j ln)

n−1
, (3.15)

where n is the number of rows in X and ln is a vector of ones with length n. Based on
Equation 3.15, the covariance matrix can be defined as

ΣX = cov(X) =
1

n−1
XT

CXC, (3.16)

3. Pipeline 36

where centered data XC is formed similarly to 3.15 by subtracting the means µµµ of each
column of X as XC = X− lnµµµT . For PCA, the eigenvalues λ are solved so that there exists
an eigenvector v that fulfils the equation

ΣXv = λv, (3.17)

for each eigenvalue λ. Based on Equation 3.17, the matrix ΣX can be decomposed to

ΣX = VΛV−1, (3.18)

where Λ holds the eigenvalues λ in diagonal elements and eigenvector matrix V includes
eigenvectors that are mutually orthogonal. [45]

The eigenvector matrixV is utilized in hierarchical correlation clustering algorithmCHUNX
[45]. It computes the angles ±γi between the samples in data X and the eigenvectors vi in
V, where the sign in ±γi refers to the angles between the positive and negative directions
of the eigenvectors. In order to compute the eigenvectors, there must be at least as many
embeddings in the set of groundtruth embeddings as the dimensionality of the embedding
is. The angles to the principal components in V are computed with Equation 3.14. The
most significant component for sample x is defined by the smallest angle between it and
the eigenvectors vi in V.

Based on the smallest angle with specific eigenvector, the data is divided to the clusters
that are children of the node in tree structure. For each of the cluster, the next most
significant component recursively splits clusters until the defined stopping condition, where
a hyperparameter is used in this case, is met. For CHUNX, the hyperparameter is the
maximum cluster size. The recursion is continued as long as the cluster size is smaller
than the set limit. An example of clustering hierarchy is shown in Figure 3.14. While the
formation of the hierarchical structure in CHUNX is respect to the cluster size, clusters can
appear only in the leafs of the tree. [45]

+𝜃1 −𝜃2

+𝜃1 +𝜃3 −𝜃3

−𝜃3 +𝜃4

𝑿

Figure 3.14. Example of hierarchy of the CHUNX. Nodes including the samples from
data X have gray background. Values in the nodes refer to the i:th angle related to the
corresponding eigenvector which is the most significant component that defines the cluster.

37

4. IMPLEMENTATION

The implementation of the face recognition system was made by collecting a solution for
each of the steps in the pipeline presented in Figure 3.1 to a complete pipeline based on the
experiments. The methods that were used in the implementation are presented in Chapter
3. Multiple separate solutions for each pipeline step were experimented and compared in
order to find the best solution for each step.

In order to develop and test solutions for each step, few datasets are required. They
are presented in this chapter. In addition, computational complexity of the implemented
methods is evaluated by timing the inference times using hardware, which is also introduced.
The system and methods were implemented with Python programming language. The
implementations of the pipeline steps utilize multiple open-source libraries and machine
learning model sources.

4.1 Data

There are numerous datasets available for face detection, facial landmark localization and
face recognition. However, most of them are only for research purposes and commercial
use is prohibited. Due to restriction of commercial usage, the amount of available datasets
was relatively limited. After all, two datasets for face detection and face recognition were
chosen. For both of these cases, one dataset is larger and used in training of the machine
learning models. In general, larger dataset provides better material for training. The other
set in both of the cases was reserved for evaluation purposes only, since it improves the
reliability of obtained results. The evaluation datasets were chosen because they are widely
used in benchmarking the performance of the models.

For face detection, the datasets are labeled so that for each image the locations of the faces
are given as explained in Section 3.1. In these datasets, each face that fill the specification
of the face that is defined in dataset report. In this thesis WIDER FACE [47] dataset
with 32,203 images that include 393,703 faces with high variance in factors described in
introduction (Chapter 1), was used in face detector training. It is divided into three parts,
training, validation and testing. The training and validation parts were used. WIDER
FACE dataset is very challenging dataset for any machine learning model due to its high
variance. It suits well in face detector model training since the model can be considered
to work well in most of the environments if the performance with validation part of the
dataset is good.

In estimation of face detector performance, the FDDB (Face Detection Data Set and
Benchmark) [48] dataset was used. It includes 2845 images with 5171 faces labeled.

4. Implementation 38

Compared to the WIDER FACE, the FDDB dataset has smaller variance, yet it is high
enough for obtaining reliable results. After all, the FDDB dataset covers most of the
possible scenarios that are faced in this application.

Face recognition datasets include only a label for each image. The label corresponds to
one identity in a dataset. There might also be some other people on the background of
the images, but the classified identity can always be easily recognized. For training the
face recognizer, VGGFace2 dataset [2] was used. In total, the VGGFace2 dataset has 3.31
million images of 9131 persons. The dataset has a high variance for example in ethnicity
and profession.

In addition, VGGFace2 dataset include annotations for bounding boxes for face detection
and five facial landmarks (eyes, nose, left and right of the mouth) within the box. Based on
the bounding boxes, the whole dataset was pre-processed to 96×96 pixel images where
the annotated face was cropped to cover most of the image. The faces were cropped
with modified bounding box, which was extended from the annotated box. Also facial
landmarks were recalculated based on the cropping. For facial landmark localization, only
pre-processed VGGFace2 dataset was used. For training, a subset of the dataset training
partition was randomly picked. The validation used the test partition of the dataset.

For benchmarking face recognition performance, LFW [49] dataset was utilized. There are
images from 5749 individuals in the dataset (13,233 images in total). 1680 identities in the
dataset have more than one image. In addition, the search speed among the faces in the
dataset was measured. For that purpose, an image from each of the 5749 individuals were
picked. LFW dataset was pre-processed similarly to VGGFace2 dataset. Since there are no
groundtruth bounding boxes available, developed face detector (Section 4.3) was used to
create them first in order to crop the face from the images.

There are 522 overlapping identities between the LFW and VGGFace2 dataset, 244 in
identities that has more than 1 image in LFW dataset, but they were not removed. There
might also be same images, but it was not tested. In LFW benchmark, 410 overlapping
identities appear 4281 identities that are involved in the benchmark. This has an impact
on accuracy scores achieved with LFW dataset, but the affection is expected to be small,
because of the big amount of images in VGGFace2 dataset, and it does not affect the
relative differences between the tested models.

4.2 Hardware

For running performance tests, NVIDIA Jetson TX2 Developer Kit was used. The kit
includes NVIDIA Jetson TX2 Module, which is an embedded computer for AI related
development. The developer kit includes also an embedded camera, but for this application
an external web camera with 1080p resolution was used.

The Jetson TX2 module includes both central processing unit (CPU) and GPU which can
be used to accelerate computation especially with neural networks. It has ARMCortex-A57

4. Implementation 39

and NVIDIA Denver2 CPUs, an NVIDIA GPUwith 256 CUDA cores and 8 GB of memory,
which is shared between the GPU and CPUs. Jetson TX2 Developer kit was chosen for
implementation in this thesis since the computational power is sufficient for using neural
networks in face recognition pipeline yet the price of the Jetson TX2 module is relatively
low.

4.3 Detecting faces from image

OpenCV library provides pre-trained models for Viola-Jones object detector (Section 3.1.1),
where one of the models is for detecting faces in front (both eyes, nose and mouth are
visible), and sample for a lightweight ResNet CNN that utilize Residual blocks (presented
in Section 2.4.4) in its architecture for feature extraction and SSD for object detection, that
has been trained with Caffe framework [50]. These models are trained to detect faces only
and they can be used as is, without any modifications for implementation.

For training object detection models, two separate frameworks, Tensorflow Object Detection
API [51] and Darknet [52], were used. For both networks, pre-trained models are available
and they were utilized for transfer learning. The available pre-trained models are trained
with COCO dataset, where 80 different object classes are available. However, object
class for the face does not include in COCO. While objects in COCO dataset vary, the
pre-trained models can be considered as a good base for the most of the different custom
object detectors. For both of the frameworks, training the model follows similar pattern.
First, a pre-trained model and dataset with annotations were loaded, then training was
configured and data was converted to the format that framework accepts, and finally the
model was trained with the training script that are provided by the framework. For training,
WIDER FACE dataset was used.

For Tensorflow Object Detection API, Tensorflow Detection Model Zoo includes pre-trained
models, that can be used for training SSD detector. MobileNetV1 and V2 were tested
because their inference time were expected to be fast enough. The MobileNetV1 and
V2 were configured so that the input image size to the detector was set to 300×300 and
320×320 respectively in order to reduce inference time, but still achieve good performance.
After all, MobileNetV2 provided slower inference time in tests with very similar accuracy
to MobileNetV1. Therefore, MobileNetV2 was left out.

Darknet project provides pre-trained YOLO object detection models. YOLOv3 Tiny model,
which is a smaller version of YOLOv3 model, was chosen because of its fast inference
time similarly to MobileNetV1. Similarly to trained MobileNet+SSD CNNs, the input
size was configured to 320× 320 pixels due to inference time. Also bigger input sizes
were tested (416× 416 and 608× 608 pixels), but their accuracy improvement was not
significant considering the increased inference time which is more important factor for this
application.

While models that has either provided as open-source or trained, use different frameworks,

4. Implementation 40

also the models are saved and stored in different formats and different models require
special preprocessing (format changes, resizing, mean subtraction of the pixel values and
scaling of the intensities) for the images. In addition, converting the models between the
frameworks is not straightforward. OpenCV library provides tools for accessing each of
the described detectors. However, the OpenCV library is not capable of accessing the
GPU on the hardware in Section 4.2. The CNN based models benefit greatly from the
GPU’s parallel computation capabilities and effective matrix multiplication. Therefore,
Tensorflow [53] and pydarknet libraries according to the format of the model were used.
After all, a common interface was developed, where each model was implemented as a
class, which inherits the base class that describes the required functionality for the detector.

For the following steps of the face recognition system pipeline from Figure 3.1, face
detection step is responsible for extracting detected faces from the image and cropping them.
For cropping, the bounding boxes that are detected by the detector framework are used
in cropping. Some examples of the detected bounding boxes with different frameworks
are shown in Figure 4.1. For the models which outputs are added to the Figure 4.1, (a)
Viola-Jones and (b) ResNet+SSD are models provided open-source by the OpenCV library.
Models (c) MobileNetV1+SSD and (d) YOLOv3 Tiny were trained for this thesis.

a) Viola-Jones b) ResNet+SSD c) MobileNetV1+SSD d) YOLOv3 Tiny

Figure 4.1. Bounding boxes detected with different frameworks. (images taken from
VGGFace2 dataset [2])

From the Figure 4.1 it can be seen that the bounding boxes differ from each other based
on the used framework. In general, CNN based approaches (b-d) output relatively similar
results, but their bounding box locations have slight differences. YOLOv3 Tiny detector
was capable of finding more challenging faces than the others. Viola-Jones detector did
not detect face from profile view, but that kind of images have not most likely been used

4. Implementation 41

in training the model because it is developed for frontal view detection. In addition, the
framework that was used in performing the prediction affected to the output. In Figure 4.2,
the frameworks that were used in training the CNNs achieved better detection results than
OpenCV which provides an interface to run detections with deep learning models that have
been trained with different frameworks.

a) YOLOv3 Tiny b) MobileNetV1+SSD

Figure 4.2. Differences in detection results related to framework. On upper row, Darknet
framework with YOLOv3 Tiny CNN and Tensorflow with MobileNetV1+SSD are used. On
bottom row, OpenCV library is used with both detectors. (image taken from VGGFace2
dataset [2]).

For following steps in the pipeline, a unified cropping between the frameworks is required.
Now that the cropped facial images are processed with CNNs in the following steps of
the pipeline, the cropped facial image was cropped so that the outputting facial image is a
square and the face covers most of the facial image without being stretched. While the
image size affects to the processing speed, the size of the facial image was fixed to 96×96
pixels. The implemented face cropping is presented in Figure 4.3

Figure 4.3. Examples of implemented unified face cropping (images taken from VGGFace2
dataset [2]).

Now that the focus in implementation for this thesis is in following steps of the pipeline
presented in Figure 3.1, less effort was used in optimizing the face detector. The main goal

4. Implementation 42

was to implement a detector that is reliable enough from our subjective perspective and is
fast enough to fulfil the goal of the thesis. For objective evaluation, metrics presented in
Section 3.1.4 were used. COCO [34] provides a tool for evaluating the metrics based on
numerical values that define the location of the bounding boxes in the image. In order to use
the tool, each image in the evaluation dataset (FDDB and WIDER FACE test partition were
used in this case) was run through the detector to get bounding box coordinates, and then the
detector was evaluated by comparing detected coordinates to the groundtruth annotations
provided with the datasets. In addition, the inference time of the detection process for
each image was measured for speed evaluation. Based on the output of the detectors
and implemented evaluation, which results are shown in Section 5.1, MobileNetV1+SSD
detector was chosen to be used for pre-processing that is required for following steps.

4.4 Aligning facial image

Based on the cropping of the facial images defined in face detection step (Section 4.3), the
alignment of the facial images was implemented in three steps. First, models for landmark
localization were trained, then, the landmarks were utilized in alignment and finally the
facial image was aligned by applying an image transform based on difference of the detected
landmarks and fixed locations.

The most of the datasets that include annotations for facial landmark detection, does not
allow commercial usage, which was required in this thesis. In addition, pre-trained models
that are trained with these datasets, cannot be used in commercial applications. Therefore,
a VGGFace2 dataset with annotated landmarks and preprocessing explained in Section
4.1 was used for training the models from scratch. Since there are over 3 million images
in training set, only one tenth of the images in the training dataset were randomly picked
for training. For testing the model, test partition of the VGGFace2 dataset was used in its
entirety. Two different approaches presented in Section 3.2.1 were implemented.

Dlib [54] provides implementation of the Ensemble of regression trees method [38]. There
is also a script available for training and evaluating own custom landmark detectors. In
order to utilize the implementation, training and testing dataset meta information (image
paths in file system and annotations) were parsed to specific format. Based on Dlib script
implementation, the model was configured based on the hyperparameter settings from
method paper [38].

For CNN based landmark detector, the architecture of the MTCNN ONet shown in Figure
3.10 was implemented in Keras [18]. For this ONet detector, two outputs related to
bounding box localization and object class probabilities were removed so that the CNN
has only one output, which is a vector with length ten (x and y coordinates of five facial
landmarks). For training SGD was used as an optimizer with euclidean loss (Equation 2.6).
MTCNN ONet is designed for 48×48×3 input image. Therefore, the training and testing
datasets were scaled to this size.

4. Implementation 43

Similarly to face detection, also the aligners require different libraries for detecting the
landmarks with different models. Therefore, a common interface for landmark detector was
created. MTCNNONet detector, was converted to Tensorflowmodel, and in implementation
Tensorflow was used for accelerating the inference with GPU. For Ensemble of regression
trees model, Dlib was used in implementation. Four examples of detected facial landmarks
utilizing the implementation are shown in Figure 4.4.

a)

b)

Figure 4.4. Examples of facial landmark detector output. a)Dlib detector, b) MTCNN
ONet detector (images taken from VGGFace2 dataset [2])

From the Figure 4.4, it can be seen that the MTCNN detector performs better with faces that
are aligned straight towards the camera. In addition to pose, also the cropping of the facial
image affects significantly to the performance of the output. The affection is visualized
in Figure 4.5. For objective evaluation of the landmark detectors, the testing partition
of the VGGFace2 was used. The landmarks were detected with both of the detectors for
each facial image in the dataset and evaluated with metrics presented in Section 3.2.2. In
addition, inference times were computed simultaneously.

The cropping of the facial images also affected to the landmark detector accuracy. In
general, the implemented detectors expect relatively similar patters of the facial landmark.
If the landmarks differ significantly from the expected, the accuracy weakened. The
affection of the the cropping can be seen from Figure 4.5. Because of this limitation, it was
essential to use similar cropping in both training dataset and in environment, where the
detector is used.

As shown in Section 3.2.3, two or three landmark are required for alignment depending on
the alignment. Similarity (Equation 3.4) and affine (Equation 3.5) transforms were chosen
for implementations. For both of the transforms were implemented with OpenCV library,
that provides functions for performing the transformations.

In order to perform alignments, groundtruth locations of the three landmarks to perform

4. Implementation 44

a) Dlib b) MTCNN ONet

Figure 4.5. Affect of the cropping in landmark detection with different detectors. (images
taken from VGGFace2 dataset [2])

the transformation were fixed. First, both eyes were located so that the mean point of the
eyes was horizontally centered to the image and the distance and vertical location was set
so that the whole face is visible in the image.

For similarity transformation, the locations of the eyes were used in alignment. For affine
transformation, also the third landmark was needed. While the relative location of the
nose tip to the other landmarks is not constant with different poses, as seen from Figure
4.4, the third landmark was chosen to be a mean of the two landmarks of the mouth. The
examples of the implemented alignments based on detected landmarks utilizing MTCNN
ONet based detector are presented in Figure 4.6.

The main difference between the transformations in Figure 4.6 is that the affine transforma-
tion stretches the face in order to fit it into the model. The effect of the alignment for the
feature extraction from the facial images, and eventually to the classification result, cannot
be evaluated by examining the differences of the alignment output. The affection of the
alignment was estimated by training different feature extraction models for each type of
preprocessing of the image.

In addition, fixing the desired locations of the landmarks in the template that the transform
follows, was defined. The locations of the landmarks were chosen by experimenting the
relative locations in the facial image from small set of images, so that the face would fill
the most of the outputting cropping, the majority of the face is visible, and its landmarks
relative locations would remain the same compared to the unaligned facial images.

4. Implementation 45

a)

b)

c)

Figure 4.6. Differences between the alignments. a) unaligned, b) similarity aligned and c)
affine aligned. (images taken from VGGFace2 dataset [2])

4.5 Extracting face embedding

In order to limit the number of different combinations of CNNs and alignments in
implementation, one lightweight architecture for facial feature extractor CNN was chosen.
MobileFaceNet [35] architecture fulfilled the requirements and had proven to achieve high
performance. It was implemented with Tensorflow using 96×96 input image size based
on the output size of the face detector defined in Section 4.3. For the following steps, the
length (dimensionality) of the outputting embedding was defined. Recent papers such as
MobileFaceNet [35] use 512 dimensional output. However, the dimensionality was fixed to
128 in order to limit the size as much as possible to improve inference time of the system.
In addition, FaceNet paper [8] has proven that the 128 dimensional embedding is capable
of achieving very similar accuracy to current state-of-the-art methods such as ArcFace loss
based models [40].

While developing the feature extractor, three different alignments (no alignment, similarity
transformation and affine transformation) with two different losses, triplet (Section 3.3.1)
and ArcFace (Section 3.3.2) loss were trained and evaluated. Different alignments for
pre-processed images were created utilizing methods defined in Section 4.4. For training,
the train partition of VGGFace2 was used in its entirety. In order validate training results,
LFW dataset was used.

The hyperparameter configuration for learning rate and margin of the loss in training

4. Implementation 46

the models with triplet loss was similar to FaceNet [8]. Also different configuration
for the settings were tested, but the FaceNet settings yielded best results in validation.
Similar pattern was followed with ArcFace loss. The training was configured based on
hyperparameters presented in ArcFace [40] and MobileFaceNet [35] papers. Batch size
was however reduced to 128, because of the limited GPU memory size, and number of
epochs was increased instead. Again, different values were tested, but the resulting models
were weaker respect to the accuracy with LFW dataset validation.

To decide either the embeddings represent same identity or not, a threshold for the distance
metric was defined. Optimal thresholds for classification were searched for cosine similarity
metric defined in Section 3.4.1, to maximize the accuracy. Different distance metrics such
as euclidean distance did not affect the results. In order to find the optimal threshold, LFW
10-fold cross-validation [43] was used for evaluation so that each of the ten folds of positive
and negative pairs were tested with different thresholds individually. The averages of
optimal thresholds for cosine similarity metric for the folds and the corresponding accuracy
are presented in Table 4.1 for both of the tested loss functions.

Table 4.1. Optimal thresholds and corresponding accuracies with different alignments
utilizing triplet and ArcFace losses in training.

Triplet loss ArcFace loss
alignment accuracy threshold accuracy threshold
none 0.895 0.32 0.978 0.61
similarity 0.875 0.30 0.961 0.26
affine 0.892 0.36 0.980 0.64

On hardware described in Section 4.2, the feature extraction from the facial utilizing
implemented CNN image took 0.119 s on CPU and 0.023 s on GPU. In general, training
with ArcFace loss results to higher performance compared to training with triplet loss.
In addition, applying different alignments as presented in Section 4.4, does not improve
accuracy of the classification utilizing LFW evaluation metrics in estimation. ROC curves
based on average TPR and FPR of the folds with LFW evaluation with both losses and
alignments are visualized in Figure 4.7.

4.6 Classifying embedding

Based on the experiments in Section 4.5, networks trained without alignment and with
affine alignment utilizing ArcFace loss were chosen to further evaluation, because they
outperformed other combinations of alignment and loss function.

In order to develop different classification methods effectively, a base class for all the
classifiers was developed. The classifier has three different tasks in this application. First,
groundtruth embeddings with labels can be either added or removed from the classifier.
Secondly, if the classifier requires fitting while changes to the groundtruth embeddings
occur, the classifier must be fitted. Finally, the samples are classified by comparing them

4. Implementation 47

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False positive rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 p
os

iti
ve

 ra
te triplet, no alignment (AUC=0.956)

triplet, similarity (AUC=0.947)
triplet, affine (AUC=0.956)
ArcFace, no alignment (AUC=0.993)
ArcFace, similarity (AUC=0.992)
ArcFace, affine (AUC=0.994)

Figure 4.7. ROC curves for LFW evaluation with different alignments for triplet and
ArcFace losses.

to the known groundtruth embeddings. All of these tasks were implemented in the base
classifier. For this base classifier, where different classifiers can be derived, the groundtruth
embeddings are stored in a list and the closest item in a list is found for classifying an
unknown sample.

Since the base classifier uses list to store the embeddings, adding or removing embeddings
do not require fitting. However, the search operation is directly proportional to the length
of the list. In order to reduce search space, two different clustering based classifiers were
inherited from base classifier. The basic idea behind these classifiers is to reduce the
search space to the cluster that is most similar to the sample, and then find the most similar
groundtruth embedding from the reduced number of embeddings. Two different clustering
techniques algorithms, k-means clustering (Section 3.4.2) and hierarchical correlation
clustering algorithm CHUNX (Section 3.4.3), were tested for creating data structure for
the groundtruth embeddings. For k-means based approaches, Scikit-learn library [55] was
used and CHUNX implementation was modified from the implementation of the author
[45].

To reduce the number of fits while adding or removing groundtruth samples from classifier,
two approaches were tested for k-means clustering. First, the clusters were refitted
dynamically, only if any of the existing cluster become empty (no groundtruth samples) or
full (more groundtruth samples in a cluster than set hyperparameter), with the embeddings
that were in set of groundtruth embeddings. Otherwise changes in the set of groundtruth
embeddings are added to the existing cluster structure. k-means clustering has one
adjustable hyperparameter, which defines the number of clusters. The parameter was

4. Implementation 48

converted to maximum number of items per cluster, which was computed based on the
number of the embeddings to be clustered so that in average each cluster is 70% full.

Also the Faiss library [56] was considered in the implementation. However, it was noted
based on the documentation that the library did not suit to the problem, where the items
in the data structure might change rabidly. For dynamically adjustable set of groundtruth
embeddings, following the changes in the set and tracking the indices (classes) for each
embedding seemed challenging, because of the requirements for the implementation, where
more information than the embedding itself is required to be linked to the indices of the
classifier.

The search speed with different maximum cluster sizes as a function of search space size
(number of groundtruth embeddings) with dynamically fitted k-means clustering is shown
in Figure 4.8. There are some noise in the measurements related to the other processes
that run simultaneously on the hardware. For example with hyperparameter setting s=20,
some values are significantly lower than expected based on the trend. The search speed
was computed by first adding defined number of embeddings from different identities in
LFW dataset to the structure and then searching the nearest neighbour for randomly chosen
100 identities from the 1680 identities that has more than 1 facial image in the dataset.

0 250 500 750 1000 1250 1500 1750 2000
Search space size (n)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Av
er

ag
e

se
ar

ch
 ti

m
e

(s
) s=10

s=20
s=30
s=40
s=50
s=60
s=70
s=80
s=90
s=100

Figure 4.8. Search speed as a function of search space size with different maximum cluster
sizes (s) with dynamically adjustable k-means clustering classifier.

The other approach was to create a general static cluster structure by fitting it with high
number of embeddings and utilizing that as a data structure for groundtruth embeddings.
For k-means, the static cluster structure does not optimize the search speed based on the
number of embeddings, since the search speed is also directly proportional to the number
of clusters. For fitting the static clustering model, one facial image from 9035 identities in

4. Implementation 49

VGGFace2 dataset were used. The image from each identity was chosen randomly. The
search speed respect to the number of cluster as a function search space size is plotted in
Figure 4.9 with similar settings compared to Figure 4.8.

0 250 500 750 1000 1250 1500 1750 2000
Search space size (n)

0.002

0.004

0.006

0.008

Av
er

ag
e

se
ar

ch
 ti

m
e

(s
) s=10

s=20
s=30
s=40
s=50
s=60
s=70
s=80
s=90
s=100

Figure 4.9. Search speed as a function of search space size with different number of
clusters (s) using static k-means clustering classifier.

In order to compute eigenvectors in CHUNX algorithm, there must be at least as many
embeddings in the set of groundtruth embeddings as the dimensionality of the embedding
is. Therefore, the eigenvectors were computed with one facial image from 9035 identities
in VGGFace2 dataset, and used in classification. CHUNX has one hyperparameter related
to the maximum size of the cluster. Based on the maximum cluster size, the groundtruth
embeddings were clustered dynamically so that the hierarchical tree structure was updated
based on changes in the set of groundtruth embeddings. The search speed with different
maximum cluster sizes as a function of search space size is plotted in Figure 4.10.

Changing the set of groundtruth embeddings was left from the speed comparisons, because
the changes are very similar operations compared to searching the nearest neighbour. In
addition, refitting the model can be performed parallel to the search operation and in general
the classifier does not have to be located in the same edge hardware than the rest of the
system.

In addition to search speed comparison, also the search accuracy from the set of groundtruth
embeddings was estimated in order to estimate the classification accuracy in practice for the
developed system. For this purpose, accuracy for finding the matching identity within one,
five and ten nearest neighbours was computed utilizing LFW dataset. First, four classifiers
described in this section, were fitted so that there were an image from each of the 5749 in

4. Implementation 50

0 250 500 750 1000 1250 1500 1750 2000
Search space size (n)

0.00

0.01

0.02

0.03

0.04

0.05

Av
er

ag
e

se
ar

ch
 ti

m
e

(s
) s=10

s=20
s=30
s=40
s=50
s=60
s=70
s=80
s=90
s=100

Figure 4.10. Search speed as a function of search space size with different maximum
cluster sizes (s) utilizing CHUNX based clustering classifier.

the classifier. List classifier corresponds to base classifier. Then, one image from each of
the 1680 identities that has more than one image in the dataset was collected and nearest
neighbours were searched. The accuracy for each of the classifier types and two alignments
(none and affine) that achieved the highest accuracy in LFW benchmark are shown in Table
4.2. The accuracies of the base classifier can be considered to be groundtruth, since it finds
the nearest neighbours in whole search space while other clustering based methods first
iterate to subspace and find the nearest neighbour within that space, which leads to only an
approximation of the nearest neighbour.

Table 4.2. Accuracy of the nearest neighbour search with different methods for finding
correct match within one, five and ten nearest neighbours using two different alignments.
Base classifier accuracies from nearest neighbour search and the rest are approximations
of it utilizing cluster structure. For dynamic k-means and CHUNX, maximum cluster size
was set to 60 and for static k-means, number of clusters was 100.

No alignment Affine alignment
Classifier top-1 top-5 top-10 top-1 top-5 top-10
Base 0.762 0.875 0.905 0.826 0.0.911 0.929
Dynamic k-means 0.439 0.474 0.482 0.477 0.498 0.500
Static k-means 0.408 0.445 0.451 0.411 0.441 0.445
CHUNX 0.757 0.861 0.887 0.820 0.901 0.920

In general, k-means based classifiers had weak performance. Their performance improved
if the number of the cluster is very small or close to the size of the whole search space that
correspond to base classifier. For CHUNX, the maximum size of the cluster did not affect
the accuracy. In addition, applying affine alignment increased the accuracy compared to

4. Implementation 51

unaligned although their performance in LFW benchmark were very similar.

In order to reduce the number of false positive matches, the threshold was set low as
described in Section 4.5. By reducing the threshold, the most of the false classifications
were left out, but it also reduced the number of correct predictions, since classifier was not
capable in finding the embedding that is similar enough.

Both VGGFace2 and LFW datasets include identities for example with different ethnicity,
age and gender. While fitting the clustering models, different distribution of the identities
most likely affects the search speed since the appearance of individuals may be more similar
to each other than in fitted clustering models. This can be noticed from the Figures A.1,
A.2 and A.3 in Appendix A, where one facial image from each cluster was added to the
collections, for fitted static clustering models utilizing VGGFace2 dataset.

4.7 System implementation

For implementing the demo of the system, the pipeline in Figure 3.1 was followed. A
solution to the pipeline steps was collected from Sections 4.3–4.6. Two processes were
started while starting the application. These processes share the classifier object, which
includes the face classifier.

The first of the processes connects to the camera that was used for recognition. For
the frames of the camera stream, the pipeline of the system was followed to output the
recognition results. In addition, new groundtruth images can be added to the classifier
of the system before each new frame is processed and they are also processed through
the pipeline. These two operations were not divided to different processes, because of
the limited amount of available memory (this way, the session utilizing the GPU are only
initialized once). The other process was responsible for fitting the classifier model if
needed. Also, other problems related to utilizing different frameworks that access the GPU
of the hardware, were encountered. Therefore, only Tensorflow framework was used demo,
because it offers tools for controlling the GPU resources manually.

In production environment, the classifier could be implemented for example in the cloud
in order to simplify the application. This way, also the controlling the set of groundtruth
embeddings, which are the identities that are added in the system, could be separated from
the face recognition pipeline. These changes would improve the performance compared to
implemented demo application.

For demo application, two different pipelines were tested. For both of the pipelines in demo
application, face detection uses developed MobileNetV1+SSD detector and the hierarchical
classifier perform classification, since its performance was the best and it also survived
well from high number of groundtruth embeddings.

The difference between the pipelines was that the first one did not include an alignment
step, and the other performed affine alignment based on landmarks detected with trained

4. Implementation 52

MTCNN ONet detector. Also the version of trained extractor CNN with ArcFace loss,
depends based on the chosen alignment. Two different alignments were tested in demo in
order to find out in practice, if the alignment could provide improvement in the performance
by improving accuracy more than it slows down the application. After all, the demo
application ran with 11.8 FPS without alignment step, and 11.5 FPS with affine alignment
with four identities added to the set of groundtruth embeddings of the classifier. No
difference was noted between the pipelines by running the demo. The threshold for positive
match was set to 0.4 in order to minimize the number of false positives in classification
although it caused few positive matches to be classified as false.

53

5. RESULTS AND DISCUSSION

The results are collected based on the implementation in Chapter 4. First, the outcome
of the evaluation for the main components of the pipeline in the system are evaluated
individually. For result collection, feature extraction and classification are presented as a
single component since they are closely related to each other. Based on the outcome, the
decisions related to the used methods in system implementation are motivated. After all,
the performance of the entire system described in Section 4.7 is evaluated.

5.1 Face detection

Based on the implementation described in Section 4.3, the different methods are objectively
evaluated and compared. First, by running the detectors with OpenCV library interface,
COCO metrics explained in Section 3.1.4 are shown in Table 5.1. Two different mAP
values are shown in the table. First mAP value with 11 different IoU thresholds is shown
to measure, how accurately bounding boxes correspond to groundtruth annotation where
weaker IoU’s are penalized. In addition, the mAP with minimum 0.5 IoU is added to find
out, how many of the bounding boxes are found with more loose estimation. For OpenCV
detectors, the information related to training datasets is not available, which might affect
the results.

Table 5.1. Detector’s performance.

Dataset Detector mAP (%) mAP@IoU=0.5 (%)

FDDB

Viola-Jones * 15.7 55.4
ResNet+SSD * 40.8 84.9
YOLOv3 Tiny 32.7 84.3

MobileNetV1+SSD 33.3 83.6

WIDER FACE

Viola-Jones * 3.7 10.8
ResNet+SSD * 7.4 14.0
YOLOv3 Tiny 9.7 22.4

MobileNetV1+SSD 5.8 11.4

* OpenCV implementation

In addition to accuracy estimation, also inference times with different methods are measured
by computing inference times while predicting bounding boxes for FDDB dataset with
hardware described in Section 4.2. The results are shown in Table 5.2. For each of the CNN
based detector a input size is either 300×300 or 320×320 and for Viola-Jones detector
FDDB dataset default image sizes are used. For measurements with CPU, OpenCV library
interface is used in detection. In case of MobileNetV1+SSD detector, running the detection

5. Results and discussion 54

on CPU with Tensorflow framework, the inference time was 157 ms which is 31% higher
compared to OpenCV. However, the detection result is more accurate with Tensorflow
which can be seen from Figure 4.2. For GPU inference times, the frameworks described in
Section 4.3 were used.

Table 5.2. Face detector inference times in milliseconds (ms).

Detector CPU GPU
Viola-Jones * 48 -
ResNet+SSD * 107 -
YOLOv3 Tiny 203 38

MobileNetV1+SSD 120 54

* OpenCV implementation

From the tables, it can be seen that the CNN based detectors have very similar performance
with FDDB dataset and their ability to detect faces does not differ from each other
significantly. Small differences can also be explained with differences in bounding box
localization which is respective to the model, although the detection accuracy is practically
the same. However, YOLOv3 Tiny detector is capable of performing better with WIDER
FACE dataset, which can be considered as more challenging dataset. Therefore, it is the
best option for detection in difficult cases because it is capable of learning more detailed
face description from the data and being more tolerant to factors related to image capturing
environment. For Viola-Jones detector, the performance is weaker compared to the other
detectors. As seen from Figure 4.1 however, the square shape of the output with Viola-Jones
algorithm also weakens the score since the face cropping is more inaccurate.

By testing the detectors with video stream, all three CNN based detectors offers performance
which is good enough for this application from subjective view. From this view, the Viola-
Jones detector performance is too weak, because the detection works only with pose where
face is aligned straight towards the camera. Therefore, the choice between the CNN
detectors can be made based on inference time and other implementation related reasons.

As shown in table 5.2, the performance is proportional to the accuracy of the detector.
However, even a relatively low power GPU, as on the Jetson TX2 module, is capable of
boosting the performance significantly. Also the framework and its optimizations matter
significantly to the performance. Since 50 ms inference time corresponds to 20 FPS and
the system has also other components than the detector, the real-time requirement of the
application limits the options for choosing the detector so that the inference time should be
under this value. After all, MobileNetV1+SSD detector implemented with Tensorflow and
utilizing GPU, provides the best compromise for this application although the performance
of YOLOv3 Tiny is better, because of the reasons related to implementation covered in
Section 4.7.

5. Results and discussion 55

5.2 Facial image alignment

For evaluating the alignment, two different approaches are used. Since the alignment
is based on first detecting the keypoints (landmarks), the robustness of the landmark
localization is an essential component in the alignment. For estimating the landmark
localization, the accuracy of two different models implemented in Section 4.4 are collected
to Table 5.3 based on metrics defined in Section 3.2.2 by utilizing VGGFace2 dataset test
partition. The facial image width which is 96×96 based on the output of the face detector,
is used in normalizing the distances. For some of the facial images, the groundtruth
annotations was noticed to be unreliable because the inter-ocular distance was impossible
to define due to pose or occlusion.

Table 5.3. Landmark detector performance for each of the five detected landmarks. The
scores are percentages of the width of the image.

Detector left eye right eye nose tip mouth left mouth right average
Dlib 8.7 8.8 13.2 8.3 8.4 9.5

MTCNN ONet 3.3 3.3 3.9 3.5 3.5 3.5

The CNN based MTCNN ONet landmark detector outperforms the Dlib based detector by
wide margin. Because of the input image size, the percentages percentages in Table 5.3
correspond approximately to average error in pixels. Therefore, MTCNN ONet detector
has average error of bit under four pixels for each landmark. Based on experiments and
visualizations shown in Section 4.4, this detector is accurate enough to be used for alignment.
As it can be seen from Table 5.4, a lightweight carefully selected CNN architecture is also
capable of beating more traditional methods in terms of inference time, especially if a GPU
is available for accelerating computing. With the inference time of 8 ms, the landmark
localization and the alignment does not affect the inference time of the complete system
significantly because the face detection is significantly slower operation. Therefore, the
decision whether to include the alignment in the pipeline or skip it completely, can be made
only based on classification accuracy that the feature extractor is capable of achieving.

Table 5.4. Landmark detector inference times in milliseconds (ms).

Detector CPU GPU
Dlib 24 -

MTCNN ONet 17 8

The implementation of the similarity alignment did not work out well which can be seen
from the Table 4.1. Most likely fixed locations of the eyes were set badly, which lead to
loss of information in the facial images. However, the affine transformation with same fixed
groundtruth locations than similarity transformation, achieved slightly improved accuracy
of the classification with LFW dataset. The main difference between the alignments is that
similarity transform can only scale the input image while affine transformation can perform

5. Results and discussion 56

also stretching. This way, more uniform facial image was obtained which resulted to higher
accuracy although the fixed locations of the landmarks might not have been optimal.

For estimating the output from the alignments, average images with different alignments
were created utilizing test partition of VGGFace2 dataset. They are shown in Figure 5.1.
From the figure it can be seen that booth the similarity and affine alignments are capable of
locating eyes accurately compared to unaligned case. In addition, affine alignment aligns
mouth more accurately compared to similarity alignment. However, the face fills smaller
area with average images computed with alignments, which leads to loss of information
and weakens the accuracy.

a) No align b) Similarity aligned c) Affine aligned

Figure 5.1. Average images with different alignments utilizing test partition of VGGFace2
dataset.

5.3 Face recognition

Firstly, the performance of the feature extractor and the classifier that are responsible for
performing the identity recognition based on the facial image, are evaluated in theory with
the LFW benchmark. In Table 5.5, the accuracy of the best performing extractor, where
affine transformation was applied and the extractor CNN was trained utilizing ArcFace as a
loss function, is compared to other approaches. Based on classification results, a network
trained with ArcFace loss and applying affine alignment before extraction, achieves the
highest performance based on experiments and is therefore used in this section.

Table 5.5. Accuracy of the feature extractor of this thesis compared to other methods.

Extractor Accuracy (%)
FaceNet [8] 99.63

MobileFaceNet (96×96 input) [35] 99.08
this thesis 97.97

Human, cropped [57] 97.53
DeepFace [7] 97.35

The accuracy achieved in this thesis beats for example human and DeepFace [7] model.
However, other methods presented in this thesis (FaceNet[8] and MobileFaceNet [35])

5. Results and discussion 57

achieve higher accuracy. On the other hand, FaceNet has significantly larger CNN structure
and MobileFaceNet’s outputting embedding dimensionality is four times higher, which
would make nearest neighbour search more difficult problem.

In addition, the distribution of the distances between the embeddings with the LFW
evaluation protocol was tested. While it was noted in Section 4.1 that the LFW dataset has
overlapping identities with VGGFace2 dataset, also similar pairs were extracted randomly
from VGGFace2 dataset test partition. The distributions of the pairs with both datasets are
plotted in Figure 5.2. From the plots it can be seen that the optimal threshold for rejecting
false positives is approximately 0.45. In general, the VGGFace2 dataset includes bigger
variety related to the environment, where the images have been captured, compared to
LFW dataset, which causes an increase higher distances between facial images in pairs
where the images represent same identity.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
distance

Same identity
Different identity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
distance

Same identity
Different identity

Figure 5.2. Distribution of the pairs with same identity and different identities with LFW
(left) and VGGFace2 (right) datasets with magnitude on y-axis.

The distributions shown in Figure 5.2 visualize, how well the feature extraction is capable
of separating different identities from each other. The most interesting region is at the point
where the line of the positive pairs intersect with the line of the negative pairs. In general,
the smaller the value at y-axis is at the point of intersection, the better the extractor is for
separating different identities.

The task of the classifier differs from pairwise comparisons that LFW evaluation protocol is
based on. In order to test the performance in practise, the nearest neighbour was performed
with the set of known embeddings where each of the embeddings correspond different
identity, utilizing LFW dataset. The achieved accuracy for finding the nearest neighbour are
presented in Table 4.2, where it was noted that base classifier and CHUNX based classifier
both achieved very similar nearest neighbour search accuracy. Therefore, CHUNX is
capable of clustering the embeddings very accurately without problems related to high
dimensionality of the data. On the other hand, k-means based classifiers had significantly
lower accuracy that is related to curse of dimensionality problem that exists with high
dimensional data. CHUNX provide effective solution to this problem and it can be used in
this application without weakening the accuracy unlike other tested clustering approaches.

5. Results and discussion 58

Also, the search speed relative to the search space size was measured. The results are shown
in Figures 5.3 and 5.4. The hyperparameters for the methods were chosen to consider
both accuracy and the speed. For dynamic k-means, the maximum number of ground
embeddings per cluster was set to 40, static k-means had 20 clusters and the maximum
number of ground embeddings per cluster for CHUNX was 50. Compared to base classifier,
different clustering based classifiers are capable of speeding up the search with almost any
search space size. From Figure 5.3 can be seen that the chosen clustering approaches does
not have significant computational complexity that is not related to the size of the search
space. The dynamically adjustable clustering methods is similar to base classifier as long
as the defined maximum cluster size is full. After that the speed increases slower compared
to base classifier since items are located in multiple clusters.

20 40 60 80 100
Search space size (n)

0.001

0.002

0.003

0.004

0.005

Av
er

ag
e

se
ar

ch
 ti

m
e

(s
)

Base
Dynamic k-means
Static k-means
CHUNX

Figure 5.3. Search speed as a function of search space size with different classifiers with
small number of groundtruth embeddings.

0 1000 2000 3000 4000 5000 6000
Search space size (n)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er
ag

e
se

ar
ch

 ti
m
e
(s
)

Base
Dynamic k-means
Static k-means
CHUNX

Figure 5.4. Search speed as a function of search space size with different classifiers with
high number of groundtruth embeddings.

59

6. CONCLUSION

The solution for face recognition system was presented in this thesis. The system was
designed to run in real-time with low inference time on hardware, which computational
capability was limited. In order to solve the problem, the pipeline that the system followed,
was defined. In the pipeline, the problem was divided to steps that were solved and
evaluated individually. After all, a solution for each of the steps were collected and a demo
system was developed to demonstrate the system in a real life environment.

The pipeline consisted of face detection, where faces were detected from the images and
cropped for the following steps of the pipeline. After that, different preprocessing methods
were tested for the facial images before the following steps. Next, a feature embedding was
extracted from the facial images and finally a nearest neighbour search was performed to
compare extracted features to the set of known groundtruth embeddings that represents
classes for the output of the system.

For face detection different methods were compared. The tested CNN based approaches,
two lightweight network architectures (ResNet and MobileNetV1) with SSD detector and
YOLOv3 Tiny, achieved similar performance. The fourth tested detector, Viola-Jones,
did not perform as well as the other approaches. Each of the three CNN could have been
implemented to demo application. The decision for using MobileNetV1+SSD detector in
the demo application was made based on the implementation, because it was the easiest to
integrate to the demo.

In order to classify facial images extractor by the face detector utilizing nearest neighbour
search, the features from the facial images were extracted first. In addition, different image
transformation based methods were tested if they could help feature extractor to separate
different identities better. For image transformation, five facial landmarks were detected
first. It was noted that MTCNN ONet architecture was superior compared to the detector
implemented in Dlib. Based on detections, three different preprocessing approaches were
tested. Two different transformations, similarity and affine, were tested and compared
to the situation, where no transformation was applied before feature extraction. In LFW
benchmark, the unaligned and affine transformed inputs for the extractor achieved similar
accuracy, while similarity transform weakened the accuracy little.

Two different loss functions were tested while developing the feature extractor. The
architecture of the CNN for feature extraction was taken from MobileFaceNet. ArcFace
loss outperformed triplet loss in feature extraction with LFW benchmarks at least with
the chosen CNN architecture. With Arcface loss trained models, applying the affine
transformation before extraction increased the accuracy of the nearest neighbour search,

6. Conclusion 60

which models the accuracy of the system in practice compared to extraction with unaligned
facial images.

For nearest neighbour search, different clustering approaches, partitioning (k-means) and
hierarchical clustering (CHUNX) were tested and their approximations for search accuracy
compared to the exact nearest neighbour search from the list of groundtruth embeddings. It
was noted that k-means based approaches were very fast with bigger search space sizes, but
the accuracy of their nearest neighbour approximations were significantly worse than the
exact search. With CHUNX, the slope relative to the increase of search space size and the
time elapsed in search was significantly higher compared to k-means based approaches,
but still around three times smaller compared to exact search from list. In addition, the
accuracy for the approximate search with CHUNX was almost as good compared to exact
search. After all, the CHUNX was noted to be the best solution for nearest neighbour
search.

The goals that were set for the thesis, were partially achieved. The system was capable of
running in real-time on Jetson TX2 hardware, but the FPS was lower than desired. The
face detection was capable of detecting well visible faces with high confidence, but for
example larger occlusions caused problems for the detection. The set recognition accuracy
was almost reached in LFW benchmark, but tests in practice achieved weaker accuracy
than desired. However, these false recognition can be removed by setting tight thresholds
for the recognition that minimized very well the number of false positives which is very
important aspect for face recognition system. The search speed was directly proportional
to the search space size, but the slope was decreased significantly without weakening the
accuracy of the search. After all, the developed demo application suits very well at least for
demo purposes, but for the production ready system, some optimization should be done.

In future, the face detector could be improved compared to the implemented detectors, that
are originally designed for general object detection. Currently the object detection takes
approximately 60% of the inference time of the developed system and it could be lower. In
addition, the transformation applied before the feature extraction could be tuned. Especially
the similarity transformation lost information from the data rather than transforming it to
the format that would help feature extractor to achieve higher accuracy in classification by
separating different identities more accurately.

All in all, the development of the face recognition system presented in this thesis succeeded
well. With limited computational resources, the overall design of the system is a key
element. Luckily, even a small size GPU is capable of increasing the computational power
of an embedded hardware enough for utilizing multiple CNNs simultaneously to solve
the problems such as face recognition. The CNN architectures with low computational
cost are currently the optimal solution for the problem. However, while the size of the
CNN decreases in order to achieve lower computational cost, also the task that the model is
solving, must be defined more accurately. With smaller model sizes, the representational

6. Conclusion 61

capability of the model decreases and models ability to ignore different factors related to
environment such as a pose of the face in the image, weakens.

62

REFERENCES

[1] (2016) Vgg16 architecture, image. Accessed: 17 February, 2019. [Online]. Available:
https://heuritech.files.wordpress.com/2016/02/vgg16.png?w=768

[2] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2: A dataset for
recognising faces across pose and age,” in International Conference on Automatic
Face and Gesture Recognition, 2018.

[3] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple
features,” inProceedings of the 2001 IEEEComputer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, vol. 1, Dec 2001, pp. 511–518.

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg,
“SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015. [Online].
Available: http://arxiv.org/abs/1512.02325

[5] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, Dec
1943. [Online]. Available: https://doi.org/10.1007/BF02478259

[6] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM
Journal of Research and Development, vol. 3, no. 3, pp. 210–229, July 1959.

[7] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to
human-level performance in face verification,” in 2014 IEEE Conference on Computer
Vision and Pattern Recognition, June 2014, pp. 1701–1708.

[8] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” CoRR, vol. abs/1503.03832, 2015. [Online]. Available:
http://arxiv.org/abs/1503.03832

[9] M. Wang and W. Deng, “Deep face recognition: A survey,” CoRR, vol.
abs/1804.06655, 2018. [Online]. Available: http://arxiv.org/abs/1804.06655

[10] M. Sharif, F. Naz, M. Yasmin, M. A. Shahid, and A. Rehman, “Face recognition: A
survey,” Journal of Engineering Science and Technology Review, vol. 10, no. 2, pp.
166–177, 2017.

[11] R. Ramachandra and C. Busch, “Presentation attack detection methods
for face recognition systems: A comprehensive survey,” ACM Comput.
Surv., vol. 50, no. 1, pp. 8:1–8:37, Mar. 2017. [Online]. Available:
http://doi.acm.org.libproxy.tuni.fi/10.1145/3038924

https://heuritech.files.wordpress.com/2016/02/vgg16.png?w=768
http://arxiv.org/abs/1512.02325
https://doi.org/10.1007/BF02478259
http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1804.06655
http://doi.acm.org.libproxy.tuni.fi/10.1145/3038924

References 63

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[13] K. P. Murphy,Machine learning: a probabilistic perspective. Cambridge, MA: MIT
Press, 2012.

[14] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: Data
mining, inference, and prediction. 2nd ed., corrected at 12th printing. New York:
Springer, 2017.

[15] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

[16] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th International Conference on International
Conference on Machine Learning, ser. ICML’10. USA: Omnipress, 2010, pp.
807–814. [Online]. Available: http://dl.acm.org/citation.cfm?id=3104322.3104425

[17] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:
Comparison of trends in practice and research for deep learning,” CoRR, vol.
abs/1811.03378, 2018. [Online]. Available: http://arxiv.org/abs/1811.03378

[18] F. Chollet et al., “Keras,” https://keras.io, 2015.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015. [Online].
Available: http://arxiv.org/abs/1502.03167

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[22] J. Deng,W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in CVPR09, 2009.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online]. Available:
http://arxiv.org/abs/1409.1556

http://www.deeplearningbook.org
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://arxiv.org/abs/1811.03378
https://keras.io
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1502.03167
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1409.1556

References 64

[24] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” CoRR, vol. abs/1405.0312, 2014. [Online]. Available:
http://arxiv.org/abs/1405.0312

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR, vol.
abs/1409.4842, 2014. [Online]. Available: http://arxiv.org/abs/1409.4842

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[27] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, vol. abs/1704.04861, 2017. [Online]. Available:
http://arxiv.org/abs/1704.04861

[28] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted
residuals and linear bottlenecks: Mobile networks for classification, detection
and segmentation,” CoRR, vol. abs/1801.04381, 2018. [Online]. Available:
http://arxiv.org/abs/1801.04381

[29] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct 2010.

[30] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” CoRR, vol.
abs/1804.02767, 2018. [Online]. Available: http://arxiv.org/abs/1804.02767

[31] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time
object detection with region proposal networks,” CoRR, vol. abs/1506.01497, 2015.
[Online]. Available: http://arxiv.org/abs/1506.01497

[32] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection
with discriminatively trained part-based models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, Sep. 2010.

[33] P. Jaccard, “Etude de la distribution florale dans une portion des alpes et du jura,”
Bulletin de la Societe Vaudoise des Sciences Naturelles, vol. 37, pp. 547–579, 01
1901.

[34] COCO - Common Objects in Context: detection evaluation. Accessed: 17 February,
2019. [Online]. Available: http://cocodataset.org/#detection-eval

[35] S. Chen, Y. Liu, X. Gao, and Z. Han, “Mobilefacenets: Efficient cnns for accurate
real-time face verification on mobile devices,” CoRR, vol. abs/1804.07573, 2018.
[Online]. Available: http://arxiv.org/abs/1804.07573

http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1506.01497
http://cocodataset.org/#detection-eval
http://arxiv.org/abs/1804.07573

References 65

[36] B. Amos, B. Ludwiczuk, and M. Satyanarayanan, “Openface: A general-purpose
face recognition library with mobile applications,” CMU-CS-16-118, CMU School
of Computer Science, Tech. Rep., 2016.

[37] R. Hartley and A. Zisserman, Multiple view geometry in computer vision, 2nd ed.
Cambridge, UK;New York;: Cambridge University Press, 2003.

[38] V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble
of regression trees,” in 2014 IEEE Conference on Computer Vision and Pattern
Recognition, June 2014, pp. 1867–1874.

[39] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using
multi-task cascaded convolutional networks,” CoRR, vol. abs/1604.02878, 2016.
[Online]. Available: http://arxiv.org/abs/1604.02878

[40] J. Deng, J. Guo, and S. Zafeiriou, “Arcface: Additive angular margin loss for
deep face recognition,” CoRR, vol. abs/1801.07698, 2018. [Online]. Available:
http://arxiv.org/abs/1801.07698

[41] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition Letters, vol. 27,
no. 8, pp. 861–874, 2006.

[42] G. B. H. E. Learned-Miller, “Labeled faces in the wild: Updates and new reporting
procedures,” University of Massachusetts, Amherst, Tech. Rep. UM-CS-2014-003,
May 2014.

[43] Labeled faces in the wild. Accessed: 19 February, 2019. [Online]. Available:
http://vis-www.cs.umass.edu/lfw/#download

[44] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques, 3rd ed.
Amsterdam;Boston;: Elsevier/Morgan Kaufmann, 2012.

[45] I. Kampman and T. Elomaa, “Hierarchical clustering of high-dimensional data without
global dimensionality reduction,” in Foundations of Intelligent Systems, M. Ceci,
N. Japkowicz, J. Liu, G. A. Papadopoulos, and Z. W. Raś, Eds. Cham: Springer
International Publishing, 2018, pp. 236–246.

[46] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 2, no. 4, pp. 433–459, 2010. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101

[47] S. Yang, P. Luo, C. C. Loy, and X. Tang, “Wider face: A face detection benchmark,”
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[48] V. Jain and E. Learned-Miller, “Fddb: A benchmark for face detection in unconstrained
settings,” University of Massachusetts, Amherst, Tech. Rep. UM-CS-2010-009, 2010.

http://arxiv.org/abs/1604.02878
http://arxiv.org/abs/1801.07698
http://vis-www.cs.umass.edu/lfw/#download
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101

References 66

[49] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild:
A database for studying face recognition in unconstrained environments,” University
of Massachusetts, Amherst, Tech. Rep. 07-49, October 2007.

[50] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv
preprint arXiv:1408.5093, 2014.

[51] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs for
modern convolutional object detectors,” CoRR, vol. abs/1611.10012, 2016. [Online].
Available: http://arxiv.org/abs/1611.10012

[52] J. Redmon, “Darknet: Open source neural networks in c,” http://pjreddie.com/darknet/,
2013–2016.

[53] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[54] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine Learning
Research, vol. 10, pp. 1755–1758, 2009.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V.Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[56] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus,”
arXiv preprint arXiv:1702.08734, 2017.

[57] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, “Attribute and simile
classifiers for face verification,” in 2009 IEEE 12th International Conference on
Computer Vision, Sep. 2009, pp. 365–372.

http://arxiv.org/abs/1611.10012
http://pjreddie.com/darknet/
https://www.tensorflow.org/

67

APPENDIX A: VISUALIZATIONS OF K -MEANS AND
CHUNX CLUSTERING RESULTS

Figure A.1. Visualization of k-means clustering with 96 clusters utilizing 9035 identities
in VGGFace2 dataset, where one image from each cluster was picked (images taken from
VGGFace2 dataset [2]).

Appendix A: Visualizations of k-means and CHUNX clustering results 68

Figure A.2. Visualization of CHUNX clustering, where maximum number of images per
cluster was set to 50 and only clusters with more than 16 facial images were chosen,
utilizing 9035 identities in VGGFace2 dataset, where one image from each cluster was
picked (images taken from VGGFace2 dataset [2]).

A p p e n di x A: Vis u aliz ati o ns of k - m e a ns a n d C H U N X cl ust eri n g r es ults 6 9

XXX

-5
2

(2
1)

-3
3

(2
3)

-2
8

(1
9)

-2
7

(1
9)

-2
6

(3
0)

-2
5

(3
1)

-2
4

(2
8)

-2
3

(3
3)

-2
2

(3
5)

-2
1

(5
1)

-2
0

(3
4)

-1
9

(6
6)

-1
8

(5
2)

-1
7

(6
6)

-1
6

(8
2)

-1
5

(7
5)

-1
4

(9
2)

-7 +2 (1
7)

-6 -4 (1
9)

-5 -1 (2
2)

-4

-7 (2
0)

-6 (2
0)

-3 (3
1)

-1 (1
9)

+6 (2
4)

+2 (3
3)

-3

-4 (2
4)

-2 (2
3)

-1 (4
0)

+4 (1
7)

+1 (2
9)

-2

-7 (1
7)

-4 (2
2)

-3 (1
8)

-1 (2
7)

+9 (1
8)

+6 (2
3)

+5 (2
3)

+4 (1
8)

-1

-1
2

(2
0)

-1
0

(1
8)

-9 (3
2)

-8 (1
9)

-7 (2
4)

-6 (3
9)

-5 (3
4)

-4 (2
3)

-3 (4
7)

-2 (1
9)

+1
7

(1
7)

+1
4

(1
9)

+1
3

(1
8)

+1
2

(2
0)

+1
1

(1
9)

+9 (1
9)

+7 (2
6)

+6 (2
1)

+5 (4
4)

+4 (2
9)

+3 (2
3)

+2 +5 (2
2)

+2
9

(2
8)

+2
8

(3
2)

+2
7

(2
0)

+2
5

(2
5)

+2
4

(3
2)

+2
3

(3
3)

+2
2

(3
2)

+2
1

(4
7)

+2
0

(6
0)

+1
9

(6
0)

+1
8

(6
3)

+1
7

(7
0)

+1
6

(6
5)

+1
5

(8
5)

+1
4

+1 (1
7)

+1
3

(9
2)

+1
2

+1 (2
2)

+9 -1 (2
2)

+6

-2 (2
4)

-1 (2
1)

+4 (2
1)

+5

-1 (1
8)

+2 (1
9)

+1 (3
0)

+4

-1 (3
5)

+1 (1
9)

+3

-8 (1
9)

-4 (2
3)

-2 (2
1)

+5 (1
7)

+1 (3
8)

+2

-7 (1
9)

-4 (3
0)

-3 (1
7)

-1 (2
4)

+7 (2
7)

+5 (3
8)

+4 (1
7)

+1

-1
9

(1
7)

-1
5

(1
9)

-3 (2
9)

-2 (2
2)

+1
3

(1
7)

+8 (1
7)

+5 (1
7) Fi
g
ur

e
A.

3.
Vi

su
al
iz

at
io

n
of

C
H

U
N

X
cl

us
te

ri
ng

tr
ee

,
wh

er
e

ma
xi

mu
m

nu
mb

er
of

i
ma

ge
s

pe
r

cl
us

te
r

wa
s

se
t
to

10
0

an
d

on
ly

cl
us

te
rs

wi
th

mo
re

th
an

16
fa

ci
al

i
ma

ge
s

we
re

ch
os

en
,

ut
il
iz

in
g

on
e
i

ma
ge

fr
o

m
90

35
id

en
ti
ti

es
in

V
G

G
Fa

ce
2

da
ta

se
t.

Th
e

no
de

s
in

th
e
le

af
in

cl
ud

e
th

e
fa

ci
al

i
ma

ge
s.

Fo
r
th

e
no

de
s
th

at
ha

ve
on

ly
on

e
ch

il
d
in

th
e

vi
su

al
iz

at
io

n,
th

e
ot

he
r

ch
il

dr
en

ar
e

du
e
to

th
e

de
fin

ed
mi

ni
mu

m
cl

us
te

r
si

ze
.

	Abstract
	Tiivistelmä
	Preface
	Contents
	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	1. Introduction
	2. Theory
	2.1 Machine learning
	2.2 Deep learning
	2.3 Neural networks
	2.3.1 Activation
	2.3.2 Loss
	2.3.3 Optimization
	2.3.4 Regularization

	2.4 Convolutional neural networks
	2.4.1 Convolutional layer
	2.4.2 Pooling layer
	2.4.3 Dense layer
	2.4.4 Commonly used architectures

	3. Pipeline
	3.1 Face detection
	3.1.1 Viola-Jones object detector
	3.1.2 Single Shot MultiBox Detector
	3.1.3 "YOLO: You Only Look Once" object detector
	3.1.4 Detector evaluation

	3.2 Facial image preprocessing
	3.2.1 Landmark detection
	3.2.2 Landmark detection evaluation
	3.2.3 Image transformations

	3.3 Face recognition
	3.3.1 Triplet loss
	3.3.2 Additive Angular Margin Loss
	3.3.3 Feature extraction evaluation

	3.4 Nearest neighbour search
	3.4.1 Vector similarity
	3.4.2 k-means clustering
	3.4.3 Hierarchical clustering

	4. Implementation
	4.1 Data
	4.2 Hardware
	4.3 Detecting faces from image
	4.4 Aligning facial image
	4.5 Extracting face embedding
	4.6 Classifying embedding
	4.7 System implementation

	5. Results and discussion
	5.1 Face detection
	5.2 Facial image alignment
	5.3 Face recognition

	6. Conclusion
	References
	Appendix A: Visualizations of k-means and CHUNX clustering results

