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Visualization of three-dimensional (3D) computer-aided design model is an inte-
gral part of the design process. Large assemblies such as plant or building designs
contain a substantial amount of geometric data. New constraints for visualization
performance and the amount of geometric data are set by the advent of mobile de-
vices and virtual reality headsets. Our goal is to improve visualization performance
and reduce memory consumption by simplifying 3D models while retaining the out-
put simplification quality stable regardless of the geometric complexity of the input
mesh.

We research the current state of 3D mesh simplification methods that use geometry
decimation. We design and implement our own data structure for geometry decima-
tion. Based on the existing research, we select and use an edge decimation method
for model simplification. In order to free the user from configuring edge decimation
level per model by hand, and to retain a stable quality of the simplification output,
we propose a threshold parameter, edge decimation cost threshold. The threshold is
calculated by multiplying the length of the model’s bounding box diagonal with a
user-defined scale parameter.

Our results show that the edge decimation cost threshold works as expected. The
geometry decimation algorithm manages to simplify models with round surfaces with
an excellent simplification rate. Based on the edge decimation cost threshold, the
algorithm terminates the geometry decimation for models that have a large number
of planar surfaces. Without the threshold, the simplification leads to large geometric
errors quickly. The visualization performance improvement from the simplification
scales almost at the same rate as the simplification rate.
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Kolmiulotteisten (3D) tietokoneavusteisten mallien visualisointi on tärkeä osa suun-
nitteluprosessia. Isot kokoonpanot, kuten laitos- ja talomallit, sisältävät suuria mää-
riä geometrista tietoa. Mobiililaitteiden ja virtuaalitodellisuuden lisääntyvä käyttö
visualisoinnin apuna asettaa uusia rajoitteita visualisoinnin tehokkuudelle, sekä geo-
metrisen tiedon määrälle. Tavoitteenamme on parantaa visualisoinnin tehokkuutta
ja pienentää muistinkulutusta yksinkertaistamalla 3D malleja, pitäen samalla ulos-
tulevan yksinkertaistuksen laadun tasaisena riippumatta syötteenä annetun mallin
geometrisesta monimutkaisuudesta.

Tutkimme 3D mallien yksinkertaistamisen tapoja, jotka käyttävät geometrian pois-
toa. Suunnittelemme ja toteutamme oman tietorakenteen geometrian poistoa varten.
Perustuen olemassa olevaan tutkimukseen, valitsemme ja käytämme särmien pois-
toa mallin yksinkertaistamiseksi. Vapauttaakseen käyttäjän määrittelemästä sär-
mien poiston määrää erikseen jokaiselle mallille, ehdotamme kynnysarvoparametria,
särmän poiston kustannuksen kynnysarvo. Kynnysarvo lasketaan kertomalla mallin
rajaavan laatikon lävistäjän pituus ja käyttäjän määrittämä skaala-arvo.

Tuloksemme näyttävät, että särmän poiston kustannuksen kynnysarvo toimii odo-
tetusti. Geometrianpoistoalgoritmi onnistuu erinomaisesti yksinkertaistamaan mal-
leja, jotka sisältää paljon pyöreitä pintoja. Algoritmi pysäyttää geometrian poiston
paljon suoria pintoja sisältäville malleille. Ilman kynnysarvoa, yksinkertaistaminen
johtaa nopeasti suureen geometriseen virhetasoon. Yksinkertaistamisesta johtuva
visualisoinnin tehokkuuden parannus skaalautuu melkein samassa suhteessa kuin
yksinkertaistamisen taso.
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1. INTRODUCTION

In this thesis, we focus on reviewing techniques for simplifying large virtual industrial
three-dimensional (3D) design models, such as building or plant designs. We develop
an offline simplification method based on existing research. Using the method, we
measure rendering time performance improvements in desktop and mobile environ-
ments. Currently, the amount of geometry data in models that are used to visualize
the design on a desktop computer is too significant to be presented efficiently in a
virtual reality environment on a desktop computer or mobile technology.

This work is done for Vertex Systems Oy which provides computer-aided design
(CAD) and product data management software for various fields of industry. Major
industries include building, machinery, plant, and interior industry. The numerous
different types of designs imply that the resulting implementation cannot be focused
on the design of a single type. The implementation is planned to be integrated into
Vertex CAD products in the future. Figure 1.1 illustrates various industrial models
designed using Vertex CAD products.

In order to use a computer to design arbitrary items such as machinery, buildings,
and parts of which such structures are assembled, CAD software is used. A 3D
representation is used to visualize an item to aid the design work. The 3D represen-
tation which is a result of the design is called a 3D model. The process of designing
items using 3D CAD software is called modeling. A 3D representation is an integral
part of CAD software as it helps the designer to view the design model virtually.

Precision in CAD software is vital as the goal is to design physically plausible items
that can be manufactured in the real world. In order to achieve such accuracy,
mathematical models are used to represent the 3D model. Mathematical models
guarantee continuous accuracy of 3D model surfaces when they are modified or
measured. As such mathematical models are complicated to solve, an estimation of
the mathematical model is created to visualize the model in real time. A polygon
mesh is created from the mathematical model with precise accuracy to accelerate
the visualization and to take advantage of the graphics hardware. The accuracy
of the mesh is a compromise between visualization performance and visual quality.
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Figure 1.1 Models designed using Vertex CAD software: a) mechanical assembly b)
building framing c) plant design. [1]

The polygon mesh is a discrete representation of the underlying mathematical model
consisting of points, edges, and faces.

In recent years, the advances in computational performance have enabled new ways
to visualize 3D models. In this thesis, we focus on measuring the performance im-
provements of simplified 3D models in desktop and mobile environments. On both
environments, virtual reality (VR) technology is exciting as it allows the 3D model
to be experienced in the real world scale, that further helps a viewer to perceive how
the design displays in the real environment. In addition to VR, mobile technology
allows, for example, using augmented reality (AR) to visualize the 3D model mixed
to a real environment. Milgram et al. define the mixing of the real-world and virtual
environment as a virtuality continuum [2]. A continuum that covers real environ-
ments and completely virtual environments. The paper defines term mixed reality
(MR) which refers to display techniques placed within the virtuality continuum.

Even though computational performance has allowed such visualization techniques,
still limitations exist how complex 3D meshes can be handled in VR or mobile
in comparison to a desktop computer with a dedicated graphics card. In order
to visualize a complex mesh in VR and mobile environments, we are faced with an
optimization problem; a need to reduce the complexity of a 3D mesh to a level where
it can be effectively visualized in mobile and VR environments. The optimization
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problems raise new challenges, such as how much a 3D mesh can be simplified while
maintaining an acceptable visual level and the final visualization performance.

In a 3D CAD model simplification report made in 2015 [3], Arvo et al. research,
describe and test common simplification algorithms for CAD mesh model data. In
their survey, they are faced with a similar problem as we do; how mesh simplification
algorithms are used to simplify highly detailed CAD models to improve performance
and reduce memory requirements to be used in augmented reality applications on
mobile.

The remainder of this thesis is organized as follows. In Chapter 2 we introduce basic
theory of 3D models and build the background for mesh simplification. Chapter 3
continues with it, and we explore previous work and different methods of mesh
simplification by geometry decimation. In Chapter 4, we explain the details of our
mesh simplification implementation and the simplification method that is used. In
order to handle meshes with different complexities, we propose an edge decimation
cost threshold to guide the decimation. In Chapter 5, we present the results of
comparing the output of our simplification method to a similar method, testing
the edge decimation cost target against various CAD models, and finally measuring
the performance improvements. Finally, we discuss the results and future work
in Chapter 6. Appendix A includes results from Hausdorff distance measurement
against models decimated using QSlim. In Appendix B images of original and
simplified Vertex CAD models are presented.
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2. 3D MODEL BASICS

This chapter provides a basic theory for a 3D model, which is an integral part
of this work. 3D models are used to represent a three-dimensional object in a
virtual environment. The model is either represented analytically by mathematical
models or by geometric data, using points, lines, and faces. Figure 2.1 illustrates a
visualization of a 3D CAD model build using mathematical models.

Figure 2.1 Rendering of a 3D CAD model created in Vertex CAD software. [1]

2.1 Mathematical representation

A 3D model can be based on mathematical surface models, such as boundary repre-
sentation (B-rep), which is a mathematical method to describe curves and surfaces.
Another popular mathematical model based technique is constructive solid geometry
(CSG) where the model is built by combining primitive objects such as spheres and
cubes using boolean operations. Figure 2.2 illustrates the difference of these model
construction techniques. Solid modeling is a method of modeling 3D models using
mathematical representations. The point of solid modeling is to ensure the rigidity
and ’watertightness’ of the model. Stroud explains solid modeling techniques in
more detail in his book [4]. Mathematical 3D models are used in software where
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the theoretical accuracy of a model is important. For example, in CAD software the
designed model is meant to represent the real world equivalent as close as possible.
For CAD software, another advantage of solid modeling is the simple and accurate
computation of physical properties, such as mass, volume, and center of gravity. To
visualize a mathematical model, a polygon mesh is usually created from the model.
The polygon mesh is an approximation of the underlying mathematical model. If
the mesh simplification is performed in the CAD software, we can take advantage
of the conversion process. The quality of the mesh approximation could be tweaked
to reduce the amount of mesh geometry data to get to the simplification target. In
this work, we especially focus on the simplification of polygon meshes created from
the mathematical CAD models.

Figure 2.2 Two methods of solid modeling: a) CSG and b) B-rep.
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2.2 Polygon mesh

As an alternative to a mathematical model, a polygon mesh can be used to represent
a 3D model. A polygon mesh consists of vertices and faces. Vertices are three-
dimensional points that are connected with faces. A vertex can also contain other
attributes such as surface normal vector or texture coordinate to map an image to the
surface. A face contains the vertices which define the given face in three-dimensional
space. A polygon mesh can be structured in many ways. For example, a triangle
mesh is popular geometry representation for 3D geometry in hardware accelerated
graphics software. In a triangle mesh, a face with triangle type is represented using
three vertices. Additionally, vertices can be shared between triangular faces by using
a list which contains sets of three indices. Figure 2.3 illustrates how faces, in this
case, triangles, form surfaces which in turn create mesh models.

Figure 2.3 Visualization of a) triangle, b) surface and c) mesh model.

In comparison to mathematical models, a triangle mesh structure is trivial to render,
by iterating the face list and rendering each triangle face as they are read. Poly-
gon mesh structure in which only a list of vertices and indices are available does
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not have connections between nearby vertices, edges and triangles readily available.
That means that a polygon mesh structure is not optimal data structure when the
mesh needs to be modified — for example, using a mesh simplification algorithm.
A half-edge mesh data structure is one way to address this issue as it has more
connectivity information between edges, faces, and points attached to it [5]. The
advantage compared to the mathematical model is that the discrete face information
is efficiently rasterized by the graphics processing unit (GPU) without solving the
mathematical model. As triangle mesh is the most popular polygon mesh represen-
tation, in this work, we assume that polygon mesh consists only of triangular faces
unless otherwise is stated.

We define a polygon mesh M as a pair of vertices V and faces F . A vertex list V =

(v1,v2, ...,vn) is a list of set of attributes vi = {xp, yp, zp, xn, yn, zn, u, v}. Where
the elements with subscript p represents the vertex position in three-dimensional
Euclidean space R3. Elements with subscript n represent a vertex surface normal
vector in three-dimensional range ]− 1, 1[ with length of 1. Elements u, v represents
a texture coordinate vector at the vertex position and is defined in two-dimensional
range ]0, 1[. A face list F = (f1, f2, ..., fr) is a list of set of indices fi = {j0, j1, ..., jk}.
In a polygon mesh which has triangular faces, a single face is a set of three indices
fi = (j0, j1, j2). The indices are referring to the vertex list, thus a triangular face
fi = (j, k, l) is defined using vertices (vj ,vk,vl). Edges of the polygon mesh are
implied from face boundaries, for example, a triangular face fi = (j, k, l) has three
edges e0 = (vj ,vk), e1 = (vk,vl), e2 = (vl,vj).

Mesh topology defines connectivity between the points, forming lines and how lines
are connected to form triangles or other polygon faces. A mesh has either a non-
manifold or manifold topology space. A mesh has a closed manifold topology space
if each edge is related to two faces and every point is part of a closed disk. For
example, sphere, cube, and torus have a closed manifold structure. If some edges
of the mesh are related to one face only and some points are part of an open disk,
then the mesh has a manifold with a boundary. As an example, a plane surface,
or a Möbius strip has manifold with a boundary. Figure 2.4 further illustrates the
case of non-manifold or manifold topology.

Mesh data structure limits the mesh topology space. For example, a half-edge data
structure only supports closed manifold space. Simplification algorithm might mod-
ify the mesh topology if the data structure allows, resulting in non-manifold surfaces.
That is solved by constraining the simplification to disallow the modification if it
results in a non-manifold mesh. If the local surface is non-manifold, the simplifica-
tion of the region can be omitted. Garland discusses and visualizes the differences
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Figure 2.4 Visualization of a) manifold mesh, a closed sphere, b) Möbius strip, manifold
mesh with boundary, c) non-manifold mesh.

between non-manifold and manifold meshes in great detail in his Ph.D. dissertation
[6].

2.3 Rendering

Rendering is a way of visualizing a 3D model. In rendering, a picture is generated
from the 3D geometric data using a viewpoint. In short, a renderer transforms the
3D model to a two-dimensional image using a projection. In real-time rendering
sequence of pictures, called frames, are rendered. The frame rate is to measure how
many times a frame is rendered per second. Usually, most computer screens update
the screen 60 frames per second (fps). The time to render one frame is called frame
time. In a virtual reality environment, a feel of presence is wanted. In order to ensure
a good presence, a frame rate of 95 fps should be achieved [7]. On mobile devices,
we target a frame rate of 30 fps as it on the vertical blanking interval which is forced
on most mobile devices [8, 9]. 30 fps provides acceptable visual perception. In
real-time rendered visualization, low latency is wanted if interaction is possible, for
example, using a controller. Latency in real-time rendering context means the time
from controller input to change on the screen. Low latency is especially important
in virtual reality applications where the feeling of presence is dependent on it, as
the viewpoint position is updated based on the head position [7].

On current hardware, rasterization is used to perform real-time rendered visual-
izations of 3D models. Rasterization is a process of transforming a mesh, built of
geometry primitives, points, lines, and triangles, directly to a two-dimensional im-
age using transformation matrices and a rasterization algorithm. A rasterization
algorithm decides if a given primitive, such as a triangle, fills at currently processed
image pixel or row. A rasterization algorithm is either software or hardware based
and the algorithm is implementation specific. Current GPUs are designed to pro-



2.3. Rendering 9

cess, rasterize and shade large amounts of polygon mesh data. Practically every
computer has a GPU. Thus it is wise to leverage the additional processing power
when rendering a model.

Due to the programmability and parallel nature of GPU, more and more GPUs are
used for general-purpose computation tasks. One such task is ray tracing, which
has recently gained much momentum as graphics APIs are adding support for it
[10, 11]. Furthermore, NVIDIA’s Turing architecture added hardware-based ray
tracing acceleration, which could mean that in future ray tracing could be a viable
method for real-time rendering [12]. Similarly to rasterization, ray tracing can be
used to render a mesh. In ray tracing, a mesh is rendered by calculating the nearest
intersections from viewport pixels towards a virtual camera’s forward direction to
the scene space. If ray intersects with a mesh in the scene space, the nearest hit
point along the ray relative to the viewpoint is shaded. The shading is often done by
ray tracing from the hit point, also known as ’bouncing’, to a light source or to some
other direction based on a surface shading function. Such function is user-defined
and in photo-realistic rendering often based on the physical properties of the surface
material. The advantage of ray tracing over rasterization is that it supports pro-
grammable ray intersection routines, which means that any arbitrary mathematical
model is supported. Additionally, ray tracing is more suited for purposes where
high quality or photo-realistic images are required, as ray tracing allows to use more
advanced shading techniques. For example, to simulate light transport by mimick-
ing the properties of a photon bouncing around a scene. Currently, as a rendering
technique, ray tracing is slower by a large margin compared to rasterization. Deng
et al. excellently survey the current state of real-time ray tracing performance [13].

In virtual reality, two viewpoints for each eye have to be rendered in order to create
an illusion of presence. Thus during a single frame, the scene has to be rendered
twice. Optimization techniques to speed up the rendering has been proposed. For
example, instead of rendering each eye in a separate pass, the Unity engine has a
single pass rendering mode, where each object is rendered twice during an iteration
to a single image which is shared with each eye [14]. That decreases the frame time
by minimizing graphics state changes and object visibility checks. As the eye is
focused to a single point, foveated rendering has been proposed to address the issue
by focusing the pixel processing in the center of the viewpoint. That is, rendering
the inset of the viewpoint using higher resolution and the outset by lower resolution
[15].
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2.4 Mesh complexity

Polygon meshes can have different levels of detail. Mesh level-of-detail (LOD) is
used to describe the visual quality of the mesh, that is, how closely the mesh is
representing the model. In Figure 2.5 three different level-of-detail meshes from the
same base mesh are displayed. Usually when high fidelity is wanted a high polygon
count meshes are used. The perception of visual quality of a mesh is affected by the
distance between the viewpoint and the mesh. For example, if the mesh is rendered
distant from the viewpoint where the mesh appears small, many polygons are ras-
terized and shaded per viewpoint pixel, which leads to unnecessary computation.
That problem is often alleviated by having multiple level-of-detail versions of the
mesh and changing it based on the distance to the viewpoint. The level of detail, or
in other words, polygon density often changes locally to the mesh itself. Different
surface areas of the mesh usually differ in polygon density. Local polygon density
becomes important in mesh simplification, as it is beneficial to remove polygons
from areas where high polygon density is unnecessary. For example, in flat surface
areas where removing polygons do not affect the quality of the mesh as much as
areas that have irregular or round surfaces, such as curves.

Figure 2.5 A circular tube triangle mesh model with different level-of-detail: a) 64 tri-
angles b) 144 triangles c) 768 triangles.

In order to enhance the fidelity of 3D models, 2D bitmaps, such as normal or bump
maps is projected to the model surfaces using UV coordinates. A normal map defines
the normal at the point of projection and a bump map the relative height from the
mapped surface and in the scalar range [16]. By using these maps, small detail is
added without having to define the detail using geometry. Current graphics cards
feature surface tessellation support which can subdivide given geometry during run-
time. With tessellation controlled geometry, detail is added dynamically by using a
displacement map as a source of a surface transform [17].
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In Vertex CAD software, a commercial ACIS CAD kernel is used for mathematical
modeling [18]. The ACIS kernel is also used to convert the mathematical surface
model to a polygon mesh. For conversion, the quality and accuracy of the mesh
output can be configured. In real-time graphics applications such as games and
interactive visualization software, a balance between visual quality and performance
has to be taken into account. To attempt to get the best possible quality while
maintaining an adequate rendering performance. That causes a problem for the
simplification; reduce the number of polygons while maximizing the visual quality.
In the next chapter, we review methods of mesh simplification methods in order to
reduce geometric complexity.
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3. SIMPLIFICATION OF 3D CAD MODEL

In this chapter, we explore ways to reduce the geometry information in order to
improve the run-time performance of real-time rendering of 3D CAD models. By
reducing the geometry information, we also lose visual information about the ob-
ject. That means we have to find a balance between required visual quality and
simplification amount. Mesh simplification is a well-studied problem, in this chap-
ter, we introduce previous work that proposes techniques to simplify 3D mesh. We
especially explore different mesh decimation techniques, such as vertex clustering
and edge decimation. Our need is to be able to simplify a wide range of different
type CAD models, from small to large mechanical assemblies and from small to
large building designs. The ideal simplification method is not specific to the model
type, form or features, yet would perform well using any input without excessive
per-model based configuration or pre-processing.

Notable mesh simplification surveys include a paper by Arvo et al. where they study
different mesh simplification methods for CAD models [3]. The paper excellently
collects many research papers for different simplification methods. It also mentions
and surveys other mesh simplification techniques, which we leave out, such as re-
meshing and wavelet decomposition. We specifically focus on techniques that rely
on geometric decimation operations, such as edge decimation. As the basis of the
decimation operation is simple, the heuristic and algorithms that guide the opera-
tions are the most exciting part of the research. Next, in this chapter, we introduce
quality evaluation which controls the simplification process, and then we review
mesh decimation methods and previous work. Finally, we conclude the review.

3.1 Quality evaluation

Error metrics is necessary to control the simplification process in order to maintain
the wanted quality of the simplified mesh. Approximation error defines the deviation
between the original and the simplified meshes. The simplification process often uses
the approximation error as a guide or terminate the process. A paper by Cignoni
et al. describes the following ways to characterize approximation errors [19].
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• Locally bounded error, where the error is based on from surrounding faces. Be-
cause locality and fast calculation, it is often used in iterative mesh decimation
methods.

• Globally bounded error, where the error is known for the whole mesh.

• Other criteria, such as surface boundaries or curvature.

• No approximation error.

For approximation error, different methods for calculating error metrics can be used.
For the locally bounded error, a quadric error metric (QEM) has been found to be
a fast and general approximation. For memory intensive applications, a memoryless
approximation is necessary. Memoryless approximation algorithm does not need to
save or record the approximation error locally, as it can be calculated on the premise.

Hausdorff distance can be used for high-quality global approximation error. It is
also practical for evaluating different simplification methods by geometric quality.
Hausdorff distance measures mesh-to-mesh distance [20].

Image-based simplification methods often focus on visual quality. Often mean-square
error between images after and before simplification is used as metrics to classify the
performance of the simplification method. In view-dependent mesh simplification,
viewport location and direction relative to the mesh is often used as an importance
factor when calculating the error.

3.2 Vertex clustering

In vertex clustering, a 3D uniform grid is created from polygon mesh. Each vertex
is then mapped to the cluster cells. Vertices inside a cluster are merged to one
vertex using selected approximation algorithm, such as average, median or least error
quadric. Then, the vertices are reconnected between clusters. The first published
clustering approach to simplify complex meshes, such as CAD designs, was defined
by Rossignac and Borren [21]. Vertex clustering algorithm can process arbitrary
polygon inputs, although often the quality of the output is weak and the cluster
operation does not attempt to preserve the topology of the mesh. The method has
been since extended in many ways. Figure 3.1 illustrates vertex clustering method,
where the vertices in a cluster are merged to a single averaged vertex.

In order to handle huge meshes which do not fit main memory, such as medi-
cal datasets, Lindstrom proposes an out-of-core method which takes advantage of
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Figure 3.1 Visualization of vertex clustering, where clusters (left) are merged to a single
vertex, which is positioned to the average position of cluster vertices (right).

quadric error metric [22]. Although vertex clustering is already a fast simplification
method, performance improvements have been made. DeCoro and Tatarchuk par-
allelize the vertex clustering method by modifying the method to use GPU-friendly
octree structure and use GPU shaders to implement and execute the simplification
[23]. Using the GPU implementation, they were able to simplify the meshes in
real-time.

The naive vertex clustering approach does not take account local features, and
usually, the resulting mesh has lost defining features such as sharp edges. Many ap-
proaches to improve the quality of vertex clustering has been proposed. To improve
memory consumption and to preserve more local details, changes to the uniform grid
has been proposed. Shaffer and Garland change the uniform grid to binary space
partitioned tree [24]. Schaefer and Warren proposed improvement by changing the
uniform grid to adaptive octrees [25]. Boubekeur and Alexa introduced geometry
aware stochastic vertex selection to preserve geometrical features and topological
clustering to preserve topological features [26].

Brodsky and Watson propose a vertex clustering algorithm that starts from coarse
approximation [27]. The approximation is then refined by splitting the cluster until
the wanted vertex count is reached. Using the same method, Brodsky and Pedersen
present a way to partition the model to be able to execute the simplification process
on multiple computer clusters [28].

Because of the high performance and generality of the method, it has been used in
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run-time simplification and mesh streaming. For example, Limper et al. define a
pop-buffer, a polygon model quantization method which they propose to be used as
simplification and level-of-detail implementation [29]. Their method is suitable for
progressive streaming of large 3D models over a network.

3.3 Vertex decimation

Vertex decimation is a process of selecting, removing vertices and re-triangulating
the resulting hole. Similar to all the other decimation methods, the vertex decima-
tion process is iterative and continued until a user-defined constraint is set. Such
constraints are, for example, the number of vertices removed and an approximation
error threshold. Figure 3.2 shows how a vertex in red is 1) selected and 2) removed.
The surrounding geometry is then 3) re-triangulated, reducing triangle count. Six
triangles in total are removed in the process.

Vertex decimation is defined by Schroeder et al. where they proposed an iterative
multi-pass vertex removal [30]. A vertex is iteratively selected for removal, and all
the connected faces are removed. Local triangulation process is used to patch the
hole caused by the vertex removal.

Klein et al. further improves the mesh quality of the vertex decimation by using
Hausdorff distance between the original and the simplified mesh as an approxima-
tion error metric [20]. The minimum Hausdorff distance is user-defined and used
as a constraint to terminate the decimation process as it is about to be exceeded.
Multiresolution surface modeling technique has been proposed by Soucy and Lau-
rendeau to improve the triangulation process by optimizing the equiangularity of
the simplified mesh surface [31]. Chuon and Guha proposed a volume cost based
method [32]. Their method improves the mesh quality by classifying a vertex as
hyperbolic or non-hyperbolic and calculating the cost based on the spherical volume
that is lost if the vertex is removed.

3.4 Edge decimation

In edge decimation or edge collapse, an edge that connects two vertices is removed
from the mesh and replaced with a single vertex. Different edge decimation methods
have proposed various ways to place the new vertex to minimize the approximation
error. The operation is illustrated in Figure 3.3, the edge in red is 1) selected and
then 2) collapsed. As the figure shows, two triangles are removed after the operation
is completed.
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Figure 3.2 Visualization of vertex decimation. The vertex in red is 1) selected and 2)
removed. Finally, 3) the resulting hole is patched.

Hoppe et al. samples random points along the original mesh, and uses them to
compute energy metric to minimize volume error and guide the edge collapse, edge
swap, and edge split operations [33]. Next, Hoppe proposes that only edge collapse
operation is needed for efficient simplification, and proposes a mesh representation
that can be transformed in a level-of-detail domain by edge collapse and edge split
operations [34]. Hoppe also extends the progressive mesh optimization method for
view-dependent simplification by adding a screen-space geometric error [35]. Franc
and Skala adapt the vertex decimation method by Schroeder et al. and use edge
decimation instead in order to speed up the simplification process [36].

Roufard and Rossignac propose a method to calculate local geometric error by defin-
ing, for every vertex, planes of each triangle attached to it and compute the error as
a sum of squared distances from the planes [37]. Garland and Heckbert simplify the
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method proposed by Roufard and Rossignac by showing that the same error metric
can be defined using quadric error metric [38]. In their next paper, Garland and
Heckbert extend the method to take account vertex attributes, such as color, normal
and texture coordinates [39]. Quadric error metric based decimation remains a fast
and consistent method. Bahirat et al. derive their version of QEM based decima-
tion algorithm by taking account boundary preservation and focus on optimizing
the simplification method for virtual reality applications [40].

Figure 3.3 Visualization of edge decimation. The edge in red is 1) selected and 2)
collapsed.

Lindstrom and Turk build on the quadric error metric and also use volume and
boundary constraints to perform memoryless simplification suitable for memory con-
strained applications [41]. Hoppe builds on the work of Garland and Heckbert, and
proposes an improved version of the quadric error metric by adding vertex attributes,
volume preservation, and memoryless simplification [42]. Salinas et al. propose a
pre-processing step where planar proxies are detected and used to guide the deci-
mation [43]. Their method requires significant pre-processing time and produces an
improved result when simplifying models with planar surfaces.

Parallelized edge decimation methods have been proposed to take advantage of pro-
grammable GPUs. Papageorgiou and Platis introduce GPU based edge decimation
method. They divide the mesh into areas that are simplified independently of each
other [44]. Hu et al. parallelize the view-dependent progressive meshes by Hoppe
using GPU programmable pipelines [45, 46]. Odaker et al. focus on view-dependent
real-time simplification describe a half-edge collapse method that is run in parallel
on the GPU [47]. They achieve fast simplification time although they lose quality
compared to other iterative approaches. Lee and Kyung also introduce a similar
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GPU accelerated edge collapse method and use a more sophisticated way to update
the mesh to improve the simplification quality [48].

3.5 Triangle decimation

Similar to vertex and edge decimation, some methods have used triangle decimation
or triangle collapse. Decimating a triangle is the same as performing three edge
collapses, which leads to the removal of four triangles. Figure 3.4 illustrated the
process of triangle collapse, where a triangle is 1) selected and 2) collapsed.

Figure 3.4 Visualization of triangle decimation. The triangle in red is 1) selected and 2)
collapsed.

Haman proposes triangle decimation and computes a weight value from curvature
at triangle vertices [49]. The triangles are then inserted to a removal priority queue
based on the weight value. Triangles in planar surfaces have low weight and are first
to be decimated. Gieng et al. builds on the triangle decimation method and pro-
poses adding a triangle area term for weighting calculation [50]. They also use past
information of triangle collapse operations when calculating triangle weights. Gieng
et al. expand the method by proposing a triangle collapse operation to produce a
continuous level-of-detail variation of the mesh [51]. Isler et al. propose a hybrid
method where they use triangle decimation for flat areas and edge decimation for
feature defining areas [52]. They classify vertices into three different categories, flat,
edge, and feature. Visual importance of a triangle is based on the classification of
its vertices.
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3.6 Image-based decimation

Image-based methods use data gathered from images of rendered mesh as an error
metric. The method if often computationally heavy as the mesh has to be rendered
multiple times during the mesh simplification. For CAD models, image-based dec-
imation is often beneficial in cases where the inside geometry is unimportant for
visualization. In some visualization purposes, inside geometry is essential and must
be included in the final output. The quality of the results depends on the count and
locations of the viewpoints, and thus manual viewpoint placement is beneficial for
simplification quality.

Lindstrom and Turk propose calculating edge collapse cost from luminance based
on the mean-square error between images before and after edge collapse [53]. They
render the mesh from multiple uniformly distributed viewpoints. Lindstrom and
Turk mention that image-based decimation might yield better results for appli-
cations where visual importance is more valuable than geometric accuracy when
comparing to the original model. Their results show that quadric error metric based
edge decimation is a much faster method than their proposed image-based method.
Zhang and Turk pre-compute a view-independent visibility measure for each trian-
gle and combine the information with quadric error metric based edge decimation
[54]. Using the visibility measure, they were able to produce visually better results
when compared to QEM-based edge decimation. Lee et al. define mesh saliency, a
measure of regional importance, inspired by human visual system cues. They use
pre-computed saliency to guide the quadric error metric based decimation method
[55]. Their simplification results show improvement in preserving details such as
eyes and nose better. Qu and Meyer derive view-dependent simplification algorithm
based on models of the human visual system [56]. They generate an importance
map and use it to compute the importance value for each vertex to be used in the
decimation algorithm.

3.7 Other decimation methods

Cohen et al. propose appearance-preserving simplification, where in addition to
generating an approximation mesh, create texture and normal maps based on the
original mesh surfaces [57]. From the results, it is seen that the normal maps help to
preserve the high-fidelity of the original mesh. Alvarez et al. propose a simplification
method that uses the Growing Neural Gas algorithm to generate a simplified set of
vertices from the input mesh and then reconstruct faces using the generated set of
vertices [58]. Gonzales et al. propose user-assisted simplification by giving the user
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control to decide each sub-mesh simplification amount [59]. They use information
from CAD to divide the mesh to sub-meshes. Gao et al. use feature recognition
and suppression for CAD mesh simplification [60]. Their method removes small
features from the mesh while preserving the overall form under heavy simplification
when compared to QEM-based edge decimation. Kanai et al. propose three differ-
ent methods of removing invisible CAD model parts and features [61]. They use
rendering to determine if a part or feature is visible.

3.8 Summary

We reviewed various mesh decimation methods. In short, we found three mesh
decimation operations and vertex clustering to simplify a polygon model. In vertex
decimation, a vertex is removed, and the resulting hole is patched using a method
specific to the application. In edge decimation, an edge is collapsed to a computed
or selected collapse point. In triangle decimation, a triangle is collapsed, it is similar
to collapse three edges at once. Lastly, in vertex clustering, the vertices are assigned
to grids in 3D space. The vertices inside a grid are then merged to a single vertex.

Vasts amount of methods exists to select which vertex, edge, or triangle should be
decimated. Usually, the decision is based on an error metric, which is classified
either local geometric error or global geometric error. Global error is more costly to
compute when comparing to local error. A local error also produces results that are
close to methods using global error [38]. One of such local metric is quadric error
metric which has been used and extended by many [38, 39, 40, 41, 42]. We also
reviewed image-based decimation methods, where images or visual cues are used to
determine the vertex error weights [53, 54, 55, 56]. In view-dependent simplification
methods, the location of the viewpoint is used to guide the decimation [45, 46, 47].
Parallelization is used to accelerate the decimation process, and some parallelized
decimation techniques are designed to run real-time [44, 45, 46, 47, 48].

Based on the review, we selected edge decimation and quadric error metric intro-
duced by Garland and Heckbert as a basis for our mesh simplification process [38].
The reasoning is that the quadric error metric has been extended by many and var-
ious implementations use quadric error metric. Furthermore, the original method
is easy to implement and extend. Also, the performance of the original method is
adequate for our offline simplification process. In the next chapter, we cover the
implementation of a mesh export process and mesh simplification which is based on
the quadric error metric.
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4. IMPLEMENTATION

In this chapter, we describe a process to simplify the 3D CAD scene from Vertex
CAD software. We cover the process of exporting the CAD model as a triangle
mesh and the simplification method implemented. We select a simplification method
based on the quadric error metric as proposed by Garland and Heckbert based on
the simplicity and popularity of the method [38]. We propose an edge decimation
cost threshold in order to handle the meshes of different complexities gracefully.
We also extract metadata, such as names, dimensions, descriptions from the model
which is attached to the final exported result. The resulted triangle mesh, materials,
and metadata is exported to file in the glTF file format [62].

The implementation is programmed in C++ language, and uses the Microsoft STL
implementation of the C++ standard library. We also use Microsoft glTF library for
glTF exporting [63]. C++ language was selected as the Vertex CAD is build using
C++. At the time when the implementation began Microsoft’s glTF library was only
available C++ library that supported glTF 2.0 format. glTF is a file format that
is specified by Khronos organization, which is well known in the graphics industry
from OpenGL and Vulkan specifications. We selected the glTF file format because
of the open nature of the format and it has been gaining lot of support from various
organizations such as Microsoft and Mozilla. Because the glTF is a relatively new
format at the time of writing, a negative aspect of glTF format is that it is 2.0
specification support may be lacking across software.

4.1 Overview of the process

At the beginning of the exporting process, we have a 3D CAD scene S. The scene
S contains a set of geometric objects M = {m0,m1, ...mi}. We start the export
process for a scene S which is explained in Program 4.1.
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1 function export scene S:
2 scene triangle mesh: T
3 foreach geometric object M in S:
4 T_m = triangulate object M
5 Ts_m = simplify T_m
6 append mesh Ts_m to T
7 append T to glTF file

Program 4.1 Overview of the CAD scene export process.

Each geometric object mi in the scene S is iteratively processed. A triangular mesh
Tm is extracted from the geometric object mi, and then the mesh is simplified to
Tsm. The resulting mesh is appended to the final triangular mesh T . Metadata is
also collected from the geometric object during the iteration. After the iteration of
the geometric object has been completed, we have a triangle mesh T that contains
the CAD scene as a simplified mesh. In our implementation, the triangle mesh is
split by materials, which are found from the CAD model surfaces, as each material
is rendered separately during run-time. Finally, the triangle mesh, materials, and
metadata are saved to a file in a glTF format.

Internally, the CAD scene or model is built from either mathematical models or
polygonal visual models. A mathematical model allows for precise modeling of
three-dimensional objects and scenes, and visual polygonal models are used for vi-
sualization purposes. In Vertex CAD software, the scene can contain both models
that are mathematically represented or have polygonal mesh representation. If the
model is mathematically represented, it is converted to polygonal representation
for visualization purposes during run-time. The conversion is done by the ACIS
CAD kernel, which Vertex CAD uses. ACIS is a modeling kernel library which is
a commercially produced software [18]. Furthermore, the ACIS features a faceting
component that produces a triangle mesh presentation of the mathematical model.
This faceting is used in Vertex CAD to create the visualization model.

Typically, Vertex CAD models and scenes are described as a tree hierarchy. For
example, a mechanical model is represented by a top-level assembly that further
contains child assemblies and parts. In other words, an assembly is a collection
of parts or child assemblies. Each part object contains geometric data. In our
implementation, this means that every part of the model is processed and simplified
separately from others. Thus the whole CAD scene or model is not simplified as one
large unit.
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4.2 Model data representation

The exporting algorithm iterates through objects in the CAD scene which contain
geometric data. In an iteration, a data structure object Tm representing the geomet-
ric object specific for the exporting process is built from the geometric data. The
vertices and indices of the mesh generated by ACIS or which are already present in
the geometric data are saved to the data structure. We split the triangle mesh per
material and use a unique material index to map the corresponding triangle mesh for
that material. Furthermore, a transformation is saved along with the vertices and
indices. The transformation matrix is a 3 by 4 matrix which represents the geom-
etry’s absolute scene space position and rotation in double-precision floating-point
format. Double-precision is selected as Vertex CAD internally uses double-precision
for point transformation. The data structure of a geometric object is described in
Program 4.2.

1 structure geometric object {
2 map of integer , triangle mesh: mesh by material
3 matrix3x4: transform
4 }

Program 4.2 Program structure of a geometric object.

The triangle mesh that is specific to a unique material index is built from vertices
and indices. A vertex has a position, normal and texture coordinate attributes.
Position and normal are represented using three-dimensional single-precision float-
vector and texture coordinate with two-dimensional single-precision float-vector.
Each attribute is in a separate list and indexed using the mesh indices. The data
structure of a triangle mesh is described in Program 4.3.

1 structure triangle mesh {
2 list of vector of 3 f l oa t : positions
3 list of vector of 3 f l oa t : normals
4 list of vector of 2 f l oa t : texture coordinates
5 list of integer: indices
6 }

Program 4.3 Program structure of a triangle mesh.

The position and normal coordinate is in mesh local space. The transformation from
the geometric object is used to get the world space location of the mesh. Normal is a
unit vector between which defines a perpendicular vector the surface point. Texture
coordinate vector is from scale ]0, 1[ is used to map the texture of the material at
the surface point.
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4.3 Data structure for mesh decimation

In order to decimate edges from the mesh, we need to have information about
neighboring vertices and triangles. The input triangle mesh data structure does not
contain neighbor information which makes it very slow to find neighbors purely from
it. To accelerate the simplification process, we designed data structures that contain
information about neighbors and relations.

4.3.1 Definition

We define three primitives vertex, edge, and triangle. Each primitive is defined with
its own data structure and has connections to other primitives. A vertex is defined
as a position, and it has a list of triangles and edge indices to determine which edges
and triangles it is connected to. The vertex structure is shown in Program 4.4.

1 structure vertex {
2 vector of 3 f l oa t : position
3 list of integer: edges
4 list of integer: triangles
5 }

Program 4.4 Program structure of a vertex.

An edge is constructed from a begin and end vertex index, and a list of triangle
indices the edge is connected to. List of triangle indices in non-manifold cases can
be more than two or in boundary case only one. Also, implementation specific
properties are included such as an iterator to the cost ordered map and a collapse
target if the edge is to be collapsed. Edge structure is illustrated in Program 4.5.

1 structure edge {
2 integer: vertex begin
3 integer: vertex end
4 list of integer: triangles
5 vector of 3 f l oa t : collapse target
6 heap iterator: it
7 }

Program 4.5 Program structure of an edge.

Finally, the triangle contains information about the surface, such as material index,
vertex and texture coordinate indices, a normal vector and a state if the triangle
has been removed. The triangle structure is the most critical structure when the
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mesh is converted back to a triangle mesh. Program 4.6 illustrates how the triangle
structure is laid out in the implementation.

1 structure triangle {
2 integer: material
3 vector of 3 integer: vertices
4 vector of 2 f l oa t : texture coordinates
5 vector of 3 f l oa t : normal
6 boolean: is removed
7 }

Program 4.6 Program structure of a triangle.

As an implementation specific detail, none of the structures does own the structure
it is referencing to. The referencing is done by indexing to a list which owns the
data structure. Figure 4.1 visualizes the relations between vertex, edge and triangle
structures.

Figure 4.1 Visualization of custom decimation data structure relations.
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4.3.2 Construction

To construct the data structures, we start by iterating the triangles in the triangle
mesh. Note that the triangle mesh is divided per material. If the model has more
than one material, we can be almost sure that overlapping vertices exists. We
assume that the input has only triangle surfaces and are ordered by indices. We
start by building vertices of the triangle T . For each vertex of the mesh triangle
we attempt to find if some vertex is located at a position already defined for an
existing vertex. We do this by using spatial hashing with a multi hash map, which
can contain one or more elements for a single hash value. The multi hash map is
specific to a single material. It ensures that vertices that are at the same position
but are part of different material, do not get mixed. By not mixing the vertices
with vertices of different material, we create a boundary vertex. In conjunction
with boundary constraints, we do not collapse the edges on material boundaries.
A vertex is created if one was not found at the position. Finally, we have vertices
V = {vi, vj, vk}. Program 4.7 illustrates the algorithm pseudocode.

1 function find or add vertex at P:
2 integer64: position hash = get hash for P
3 list of hash entries: P hash entries
4 P hash entries = find position hash in vertices multi hash map
5
6 for hash entry in P hash entries:
7 vertex: V = hash entry value
8 i f absolute distance V position and P < epsilon:
9 // Vertex was found by spatial hashing -> return

10 return V index
11
12 // Create new , as vertex was not found by spatial hashing
13 create vertex V with position P
14 add V to vertices multi hash map with position hash
15 return vertex V index

Program 4.7 Algorithm to find or add a vertex with the given 3D position vector.

To calculate the hash value, we use optimized spatial hashing function proposed by
Teschner et al. [64]. They define a cell size which they use to discretize the 3D
position. The discretization is done by dividing the position by the cell size and
truncating the result. Similar to vertex clustering, we now have a 64-bit integer
vector that defines the location of the vertex’s cluster. Finally, they use a hash
function for the discretized 3D position to calculate the hash value. The hash
function implementation is defined in Program 4.8.
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1 function get hash for position P:
2 double: C = 1 / 0.00001 // inverse of cell size in meters
3 array of integer64: [x, y, z] = truncate (C * P)
4 // Prime number defined by Teschner et al.
5 array of integer: [p1 , p2, p3] = [73856093 , 19349663 , 83492791]
6
7 // Hash function from Teschner et al.
8 integer64: hash = (x * p1) xor (y * p2) xor (z * p3)
9 return hash

Program 4.8 Algorithm to compute a 64-bit integer hash hash for 3D position vector.

Triangle contains three edges, which are connected between vertices {vi, vj}, {vj, vk},
and {vk, vi}. As triangles in most cases share edges, we attempt to find if an edge
already exists with given the vertex indices {iv, jv}, {jv, kv}, and {kv, iv}. If such
edge does not exist, an edge is created. The algorithm is defined in Program 4.9.

1 function find or add edge for {i_v , j_v}:
2 integer64: e hash = get hash for {i_v , j_v}
3 i f edge e with e hash in edge hash map:
4 return edge e index
5 e l se
6 create edge e with with vertex indices {i_v , j_v}
7 add e to edge hash map with e_hash
8 return edge e index

Program 4.9 Algorithm to find or add an edge for given endpoint vertices.

We use a hash map with 64-bit integer keys to accelerate the search. The vertex
indices are 32-bit unsigned integers. To create the key, we combine to one 64-bit
unsigned integer. We also order the indices by magnitude to make the hash function
order-independent as the edges in our data structure do not have direction. The hash
function is defined in Program 4.10.

1 function get hash for edge {i_v , j_v}:
2 i f i_v > j_v:
3 swap i_v and j_v
4 // bitwise shift left 32 bits and bitwise or
5 integer64: hash = i_v << 32 | j_v
6 return hash

Program 4.10 Algorithm to compute a 64-bit integer hash for an edge.

After finding vertices and edges, we associate a triangle T with vertices V and vice
versa. Program 4.11 describes the creation of the data structures in detail. First,
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in lines 4-12, we find vertices and edges as described previously. In lines 14-19
a triangle is created, for the triangle, we also calculate a normal vector and add
material identifier and texture coordinates. Finally, in lines 22-23, we associate
vertices V and edges E with triangle T . In lines 25-27, edges E with vertices V .

1 function create data structures for triangle mesh T_m:
2 for mesh per material M in T_m:
3 for mesh triangle M_t in M:
4 // Find or add vertices , return vertex indices
5 integer: i_v = find or add vertex in M_t vertices at index 0
6 integer: j_v = find or add vertex in M_t vertices at index 1
7 integer: k_v = find or add vertex in M_t vertices at index 2
8
9 // Find or add edges , return edge indices

10 integer: i_e = find or add edge {i_v , j_v}
11 integer: j_e = find or add edge {j_v , k_v}
12 integer: k_e = find or add edge {k_v , i_v}
13
14 integer: i_t = get next triangle index
15 triangle: T = create triangle at index i_t
16 set T vertices = {i_v , j_v , k_v} // set triangle vertices
17 set T normal = calculate normal from vertices at {i_v , j_v , k_v}
18 set T texture coordinates = get M_t texture coordinates
19 set T material = get M_t material
20
21 // Associate edges and vertices with triangle
22 add triangle index i_t for edges at {i_e , j_e , k_e}
23 add triangle index i_t for vertices at {i_v , j_v , k_v}
24 // Associate vertices with edges
25 add edge index i_e for vertices at {i_v , j_v}
26 add edge index j_e for vertices at {j_v , k_v}
27 add edge index k_e for vertices at {k_v , i_v}

Program 4.11 Algorithm to create data structures for the edge decimation process.

4.4 Simplification

The resulting mesh of the geometric object Tm is then simplified. In the end, we
selected the quadric error metric based edge decimation method by Garland and
Heckbert. The decision based on the available research and high appraisal of the
quality, simplicity, and performance of the method. Another method that was closely
evaluated was the method by Lindstrom and Turk [41]. Based on the available re-
search, performance was much worse than the QED based method, and simplification
quality gain was minimal. As the export is done offline and not during the critical
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rendering process, real-time focused simplification methods were discarded. Further-
more, viewpoint-dependent and image-based methods add significant performance
overhead and mostly are not suitable for general case CAD simplification.

The simplification process begins by building our neighbor look-up friendly data
structures which largely simplifies and speeds up the edge decimation operation.
Then, we proceed by implementing the algorithm as described by Garland and
Heckbert. We calculate the vertex errors, compute initial edge collapse costs and
start iterative edge decimation. We use an edge decimation cost threshold along with
maximum face decimation amount as conditions to terminate the iteration. Finally,
we rebuild the triangle mesh from the data structures and return the simplified
mesh. In our implementation, the quadric error metric based edge decimation is
implemented as described in Program 4.12.

1 function simplify geometric object G:
2 create data structures for G
3 compute quadrics
4 compute edge collapse costs and targets
5 do iterative edge decimation
6 Gd = rebuild triangle mesh
7 return Gd

Program 4.12 Overview of the process to simplify a geometric object.

4.4.1 Edge decimation cost threshold

In order to retain the output quality stable regardless of the input mesh complexity,
we propose an edge decimation cost threshold Tc. As different models have different
levels of geometric complexity, a face target count does not work alone to terminate
the decimation process in most situations. For example, a building design, along
with topologically complex items, often have a lot of box-shaped geometries such
as walls. Such walls often are topologically simple items and usually cannot be
decimated without a significant loss in visual and geometric quality. The edge
decimation cost threshold is derived from the model’s bounding box scaled by user-
defined value: Tc = diag(Tmbb

)Cu. Where Cu is a user configurable input variable,
giving a model complexity independent way to control the output quality.

4.4.2 Garland and Heckbert edge decimation algorithm

Next, we start the simplification process. The algorithm summary is well described
in Garland and Heckbert paper in section 4.1 [38]. First, we calculate the symmetric
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4x4 matrices Q for each vertex. The matrix Q is used to characterize the geometric
error at the vertex. Then, we select all valid edges for decimation, compute optimal
contraction target vc and error for each valid edge (v1, v2) and place the edges to
a heap with the minimum cost edge at the top. Finally, we iteratively remove the
edges of the least cost from the heap, contract the edge and update the cost of edges
involving the edge until the target cost threshold is reached.

4.4.3 Computing Q for vertices

In order to calculate the symmetric matrix Q for given vertex v, we calculate the
planes P = [ p1 p2 .. pn ] of every triangle. Where pi = [ a b c d ]T represents a plane
for equation ax+ by + cz + d = 0. From the plane pi, we a create symmetric matrix
Kp in the form:

Kp = ppT =


a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2

 .

For every vertex of a triangle, we sum the matrix Kp to the matrix Q belonging to
the vertex. The procedure is also explained in Chapter 5 of Garland and Heckbert
paper [38]. The pseudocode for our implementation of the algorithm is defined in
Program 4.13.

1 function compute quadrics:
2 for every triangle T in triangles:
3 f l oa t : D = - dot product of T normal and V position
4 plane: p = { T normal , D }
5
6 symmetric matrix: K_p = create symmetric matrix from plane p
7
8 for every vertex V in triangle T:
9 sum K_p to symmetric matrix Q of vertex V

Program 4.13 Algorithm to calculate the matrix Q for vertices.

4.4.4 Computing edge collapse costs and targets

Next, we iterate through the edges. We check if the edge is valid, compute initial
collapse cost and target for it and finally add it to the heap using the collapse cost
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as a key. In our case, an edge is valid if it has two triangles attached to it. Thus
boundary edges or edges with more than two triangles are left out from the collapse
operation. The algorithm for computing the costs and target is defined in Program
4.14.

1 function compute edge collapse costs and targets:
2 for every edge E in edges:
3 update collapse cost and target for edge E
4
5 i f edge E triangle count == 2:
6 add edge E to heap tree using E collapse cost

Program 4.14 Algorithm to compute the collapse cost and the collapse target for edges.

The procedure for calculating the cost of collapse and finding a target for edge
collapse is explained in Chapter 4 of Garland and Heckbert paper [38]. Error function
for given vertex v = [vxvyvz1]T is defined as ∆(v) = vTQv. The error function is
finally transformed to form:

vTQv = q11x
2 +2q12xy+2q13xz+2q14x+q22y

2 +2q23yz+2q24y+q33z2+2q34z+q44.

In order to calculate a cost for edge collapse (v1,v2) → vc, the quadrics of the
vertices are summed Qc = Q1 +Q2 and vc is found that minimizes the error function
∆(vc). To find the vc, the equation:

q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1

vc =


0

0

0

1



is to be solved for vc. If the matrix Qc is invertible, the vc is solved from:

vc =


q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1


−1 

0

0

0

1

 .

Otherwise, the vc is either attempted to be found from along the segment (v1,v2)

or by selecting one of the segment endpoints or midpoint.

In our implementation, we follow Garland and Heckbert closely. The implementation
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pseudocode for updating the edge collapse cost and the collapse target is presented
in Program 4.15. In lines 8-10, the case when matrix Qc is invertible is handled.
Otherwise, lines 11-23 handle the opposite. In contrast to Garland and Heckbert,
to save time in the case when the matrix is not invertible, we iterate the segment
with discrete steps and select a target point of the smallest cost.

1 function update collapse cost and target for edge E:
2 vector of 3 f l oa t : Target
3 f l oa t : Cost
4
5 // Qc = Q1 + Q2
6 symmetric matrix: Qc = sum of edge vertices Q matrices
7
8 i f Qc is invertible:
9 Target = get [x y z] from inverse of Qc * vector [0 0 0 1]

10 Cost = compute cost for Target
11 e l se :
12 vector of 3 f l oa t : Iterate Vector
13 Iterate Vector = calculate iteration vector (E v2 , E v1)
14 integer: Iterations = 10
15
16 iterate integer I range (0, Iterations ):
17 vector of 3 f l oa t : Position
18 Position = E V1 position + Iterate Vector * I
19 This Cost = compute cost for Target
20
21 i f This Cost < Cost:
22 Target = Position
23 Cost = This Cost
24
25 set E collapse target to Target
26 set E collapse cost to Cost

Program 4.15 Algorithm to update the collapse cost and the collapse target for an
edge

4.4.5 Decimating the edges

We now have a heap which we begin to iterate and process the edges. In our
implementation there are three conditions which are used to terminate the iteration:

1. The edge heap becomes empty. I.e. all edges that were marked for removal
were processed.
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2. The number of triangles removed is equal to or greater than the specified target
number of triangles to be removed.

3. The cost of the edge removal is equal or greater than the specified edge deci-
mation cost threshold Tc.

The edge decimation cost threshold is determined by scaling the length of the model’s
bounding box diagonal by a user-defined scalar value. The length of the model’s
bounding box diagonal ensures that the cost threshold does not need to be modified
between different models which differ in size and complexity.

The collapse algorithm is shown in Program 4.16. In lines 3-8, we begin the iteration
of the edge heap and check against the two termination conditions before decimating
the edge. In lines 14-17, we check if some of the resulting triangles after the edge
E collapse would be flipped, the edge E is connected to a border, or the edge E

collapse would result in a non-manifold surface. If one or more of the conditions are
true, then the collapse operation is invalid. In lines 20-28, we create new a vertex
Vn at the edge E collapse target, mark triangles attached to the edge E as removed,
update edges and triangles of the edge E with the vertex Vn, set the matrix Q and
compute neighbors edge collapse costs for the vertex Vn. The process is continued
until a termination condition is reached, or all edges in the edge heap are processed.
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1 function do iterative edge decimation :
2 integer: number of triangles removed = 0
3 while edge heap is not empty:
4 pop edge E from edge heap
5 // Check for stop conditions (face count removed and Tc)
6 i f number of triangles removed >= triangle remove count target
7 or E collapse cost > edge decimation cost threshold:
8 break
9

10 // Skip collapse of this edge
11 // if resulting triangle(s) would be flipped
12 // if edge is connected to a border edge
13 // or edge collapse will cause non -manifold surface
14 i f does neighbor triangle flip after collapse for edge E
15 or is edge E connected to border
16 or will cause non manifold surface after collapse edge E:
17 continue
18
19 // Create new vertex at collapse target of edge E
20 vertex: Vn = create vertex at E collapse target
21
22 for triangle T in edge E:
23 mark T as removed
24 number of triangles removed += 1
25
26 update edges and triangles of edge E with new vertex Vn
27 merge similar edges in vertex Vn
28 set Q and compute edge collapse costs for vertex Vn

Program 4.16 Algorithm to collapse edges.

4.4.6 Deciding if collapse operation is valid for an edge

Before the edge is collapsed, there are three tests performed which ensure that the
collapse operation is valid. First, we test if the edge collapse will flip any triangle
that is connected to the edge vertices (v1, v2). As Figure 4.2 illustrates, triangle flip
causes intersecting geometry which will produce unwanted artifacts for the mesh.

Program 4.17 shows how every triangle connected to the edges by vertices are tested.
In lines 6-7, the triangles containing the collapse candidate are excluded because they
will be collapsed. In lines 9-10, a new triangle ∆T which represents the result after
decimation is created. In lines 12-17, a normal for the ∆T is computed, and it is
tested against the normal of the current triangle. Given the properties of the dot
product, if the dot product is negative, we know that the angle between the normal
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Figure 4.2 Visualization of 1) invalid edge collapse operation, 2) where the triangle in
red stripes is flipped after the collapse of the red edge.

vectors is greater than 90 degrees. If the dot product is close to minus one, then
the triangle after edge collapse is flipped completely. Thus the new normal would
be almost perpendicular to the opposite direction, making the decimation operation
invalid.

1 function does neighbor triangle flip after collapse for edge E:
2 for vertex V in E:
3 // Loop through triangles connected to vertex
4 for triangle T in vertex V:
5 // Edge which is part of the triangle will be collapsed always
6 i f edge E in triangle T:
7 continue
8
9 triangle: delta T = create triangle from T

10 in delta T replace V position with E collapse target
11
12 vector of 3 floats: normal = calculate normal for delta T
13 // Check if normal is almost perpendicular
14 // to the opposite direction
15 f l oa t : d = dot product of T normal and delta T normal
16 i f absolute (d) > 1 - Epsilon:
17 return true
18
19 // Function completed checking triangles validity successfully
20 return false

Program 4.17 Algorithm to test if a triangle will flip when an edge is collapsed.

To prevent possible discontinues on model borders, the second test ensures that
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none of the edge vertices lie on a border edge. Program 4.18 illustrates an algorithm
that iterates all edges connected to the edge vertices and tests if one of them is on
a border.

1 function is edge E connected to border:
2 for every vertex V in E:
3 // Check if the edges connected to the edge E vertices
4 // are part of boundary or non -manifold mesh
5 for every edge Ev in V:
6 i f Ev triangle count != 2:
7 return true

Program 4.18 Algorithm to test if an edge is connected to a border.

The third test, analyses if the edge collapse results in two edge merges. This way
we ensure that the edge collapse does not result in non-manifold geometry. Figure
4.3 illustrates a case where an edge collapse results in non-manifold geometry. The
figure shows four edges that are merged. In a valid edge collapse operation, two
edges should be merged.

Figure 4.3 Visualization of 1) invalid edge collapse operation, 2) where the triangle in
red stripes is non-manifold after the collapse of the red edge.

Program 4.19 tests if there are two edge merges when the edge E is collapsed. Every
triangle connected to the edge vertices is tested if it resulted in an edge that would
exist after the collapse. In a valid case, there should be two pairs of edges that are
merged when an edge is collapsed.
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1 function will cause non manifold surface i f collapse edge E:
2 hash set: Edge Hashes
3 integer: Number of Edge Merges = 0
4
5 for every vertex V in E:
6 for every edge Ev in V:
7 // Ev is the collapsed edge
8 i f Ev is E:
9 continue

10
11 // Temporarily replace the vertex that would be removed
12 // with dummy vertex to calculate new hash
13 in edge Ev replace V with dummy vertex
14 integer64: Hash = get hash for Ev
15 i f Hash exists in Edge Hashes:
16 Number of Edge Merges += 1
17 e l se
18 add Hash to Edge Hashes
19
20 i f Number of Edge Merges > 2:
21 return true
22
23 // There should be exactly two edge merges
24 i f Number of Edge Merges != 2:
25 return true

Program 4.19 Algorithm to check if the edge collapse would result to a non-manifold
surface.

4.4.7 Updating mesh topology at edge collapse

Now we create a new vertex vn at the edge collapse target and mark all the triangles
associated with the edge as removed. For each edge endpoint (v1, v2), we go through
the edges the vertex is connected to. We replace the vertex with the new vertex vn.
The same procedure is also performed for triangles. Program 4.20 demonstrates the
edge and triangle update. In lines 5-14, the edges in decimated vertex are updated to
the vn. In lines 15-25, the triangles connected to the decimated vertices are updated
to use vn. Also the triangle normal vector is computed using the new vertex.
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1 function update edges and triangles of edge E with new vertex Vn:
2 // Loop through decimated vertices
3 for vertex V in edge E:
4 // Loop through edges connected to decimated vertex
5 for edge Ev in vertex V:
6 // Edge which is removed does not need to be updated
7 i f Ev is removed:
8 continue
9

10 // Update edge with Vn
11 in edge Ev replace V with Vn
12 // Associate this edge with new vertex
13 add edge index of Ev for vertex Vn
14
15 for triangle T in vertex V:
16 // No need to update removed triangle
17 i f T is removed:
18 continue
19
20 // Update triangle with new vertex Vn and
21 // recalculate normal
22 in triangle T replace V with Vn
23 update normal for T
24 // Associate this triangle with new vertex
25 add triangle index of T for vertex Vn

Program 4.20 Algorithm to update edges and triangles with a new vertex.

After updating the edges, the new vertex can have edges with same endpoints but
with different references to triangles. To fix it, we merge the data of edges with the
same endpoints. In Program 4.21, we use a hash map to map unique edges. We
iterate through the edges in the new vertex and try to find identical edges using
the hash. As previously explained, in Program 4.10, the hash is built from the edge
endpoint indices. As shown in Program 4.21 lines 8-14, if a duplicate edge Ed (an
edge with same endpoints) is found, the edge E is removed from the edge heap,
all its triangle references are added to another edge Ed, and all the references to
removed triangle are removed. Otherwise, if an edge is not found, E is added to the
hash map. Finally, in lines 18-20, references to decimated edges are removed from
vertices referencing to it.
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1 function merge similar edges in vertex V:
2 hash map of edge: unique edges
3 list of edge: edges decimated
4
5 for edge E in triangle V:
6 integer64: E hash = get hash for E
7 find edge Ed from unique edges with E hash
8 i f Ed found:
9 remove E from edge heap

10 add all unique triangle references from edge E to edge Ed
11 remove all removed triangle references from edge Ed
12 add edge E to edges decimated
13 e l se :
14 add edge E to unique edges with E hash
15
16 // Remove references to removed duplicate edges from vertices
17 // which reference to it
18 for edge E in edges decimated:
19 for every vertex V in E:
20 remove edge E from vertex V

Program 4.21 Algorithm to update edges and triangles with new vertex.

Now that the data structure has been updated, we update the Q value for the new
vertex. The new Q value is directly a sum of the vertices Q matrices that were
part of the removed edge. We also update collapse costs and targets of the edges to
which the new vertex is connected to. The algorithm is defined in Program 4.22.

1 function set Q and compute edge collapse costs for vertex V:
2 Q for V = Q at removed vertex V1 + Q at removed vertex V2
3 for every edge E in vertex V:
4 update collapse cost and target for edge E
5 update edge heap for edge E

Program 4.22 Algorithm to update the matrix Q and compute the edge collapse cost
and target for a vertex.

4.5 Rebuilding the geometric object

After the edge decimation process, we transform the mesh from the decimation data
structures back to geometric object G as an indexed triangle mesh. We iterate
through the triangles T while adding the vertices and indices to the geometric ob-
ject structure based on the triangle material. The procedure is shown in detail in
Program 4.23. As the vertices are shared between triangles in the decimation data
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structure, we split the vertices by triangle surface normal. Currently, we use 30
degrees as a threshold. This is shown in lines 13-23, where indices of triangle mesh
vertices which are already added to the triangle mesh with the vertex V index are
attempted to be found. We iterate the found vertices. If an angle between the found
vertex and the current triangle is within the threshold, then the vertex is reused,
and the normal is averaged. Lines 25-31, show how to a case when the vertex is not
found either by not being already added to the list or by not reaching the normal
angle threshold is handled.

1 function rebuild triangle mesh
2 geometric object: G
3
4 for triangle T in triangles:
5 i f T is removed:
6 continue
7
8 triangle mesh: Tm = G get mesh for T material
9

10 for vertex V in triangle T:
11 boolean: vertex found = false
12
13 index list: Vl = find vertex indices added to Tm with V index
14 for index I in Vl:
15 // Re-use vertex if normal close to threshold.
16 vector3: vertex normal = Tm normal at I
17 f l oa t : angle = angle between vertex normal and T normal
18 i f angle < 30:
19 add I to Tm indices list
20 // update the vertex normal by averaging
21 vector3: new normal = (vertex normal + T normal) / 2
22 vertex normal = normalize new normal
23 vertex found = true
24
25 i f vertex found == false:
26 add V position to Tm position list
27 add T normal to Tm normal list
28 add T UV coordinates to Tm UV coordinate list
29
30 integer: index = size of Tm position list
31 add index to Tm indices list
32
33 return G

Program 4.23 Algorithm to rebuild the triangle mesh.
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5. RESULTS

In this chapter, we test the implementation described in the previous chapter using
various techniques. First, we test the geometric quality of our simplification against
Garland and Heckbert reference implementation of QEM based edge decimation
in open-source QSlim 2.1 software [65]. Then, the edge collapse cost threshold is
tested in practice using Vertex CAD models. Finally, we compare the rendering
performance of original models and the simplified approximation in desktop and
mobile environments.

5.1 Simplification quality

We use geometric quality in order to test the simplification quality and validate our
implementation against a reference implementation. To measure geometric quality
between the original and approximation, we use Hausdorff distance as a measure.
We use open-source MeshLab 2016.12 software to calculate the Hausdorff distance
[66].

5.1.1 Difference to reference implementation

We compare our implementation to QSlim software output. The QSlim software
reads only in simple model format (smf) which seems to be an unknown format, and
as a result, we found very few models using the format. The smf format specification
is part of the QSlim software [65]. The smf format is a subset of the Wavefront obj
format, which Vertex CAD software supports as an import file format [67]. As
the QSlim software outputs the simplified geometry in smf format, we modified the
export pipeline to output the simplified mesh from Vertex CAD software in the
same format and accuracy to make the comparison as fair as possible. The QSlim
software is run with default settings.

Fortunately, for this test, we use models provided by Garland on his website [68].
These same models are the same used in Garland and Heckbert papers [38, 39].
From that model set, we use models buddha, skeletal foot, cow, crater lake and
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bunny, which are illustrated in Figure 5.1. We have decided to use four different
levels of decimation amount in order to test the quality in a variety of approximation
levels. The selected levels are to reduce 50, 70, 90 and 95 percent of the original
face count. For this test, we also disabled the target cost threshold in our algorithm
to match the simplification levels of QSlim output. For these models, Hausdorff
distance measurement is configured to sample 10 million points from the original
mesh faces and find the nearest point to the simplified approximation mesh. The
detailed results of the measurements are in appendix A.

(a) Buddha (b) Skeletal foot (c) Cow (d) Crater lake (e) Bunny

Figure 5.1 The collection of models that are evaluated.

In Table 5.1 we have results comparing the root mean square (RMS) Hausdorff
distance between the QSlim and Vertex CAD simplification outputs MQSlim and
MV ertex. The distance is relative to the diagonal of the model’s bounding box. The
difference is calculated as Drmsdiff = DrmsMQSlim

−DrmsMV ertex
. Negative difference

means that the QSlim output has lower RMS Hausdorff distance and vice versa. In
the table, the difference is scaled by 100 to improve the readability of the results as
we are interested only the difference between the two outputs. That also means that
the reported error difference is a percentage of the model’s bounding box diagonal.

Table 5.1 Scaled relative difference of RMS Hausdorff distance between the QSlim and
Vertex output using different levels of face count reduction. A positive value is in favor of
Vertex output. The value can be interpreted as a percentage of the model’s bounding box
diagonal.

Model 50% 70% 90% 95%
Skeletal foot (4.2k triangles) -0,0125 -0,0226 0,271 0,3643
Buddha (1085k triangles) 0,0001 0,0002 0,0014 0,0034
Bunny (69k triangles) 0,0015 0,0035 0,0151 0,0341
Cow (5.8k triangles) -0,0083 -0,0137 -0,0207 -0,0407
Crater (119k triangles) -0,0002 -0,0003 -0,0006 -0,0013

In Table 5.2 we show the maximum difference of Hausdorff distance Dmaxdiff =

DmaxMQSlim
− DmaxMV ertex

. The result is also scaled in the same way as for the
previous table and thus it is a percentage of the model’s bounding box diagonal.
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Table 5.2 Scaled relative difference of maximum Hausdorff distance between the QSlim
and Vertex output using different levels of face count reduction. A positive value is in favor
of Vertex output. The value can be interpreted as a percentage of the model’s bounding box
diagonal.

Model 50% 70% 90% 95%
Skeletal foot (4.2k triangles) 0,1305 0,0002 5,2827 6,4497
Buddha (1085k triangles) 0,1826 0,2332 0,5811 0,5584
Bunny (69k triangles) 0,0151 0,022 0,0182 0,1103
Cow (5.8k triangles) -0,0464 -0,0486 0,6143 0,4542
Crater (119k triangles) 0,0002 -0,0008 -0,0294 -0,1421

From the results, we can see that overall we are close to the results of QSlim output.
For the skeleton foot model, we have much improved maximum Hausdorff distance
and for the others marginally better. The difference is most likely to be attributed to
face area weighting which QSlim uses by default. Investigating the implementation
detail, they multiply the vertices quadric error matrices by the sum of the triangle
areas connected to the vertex.

From Figure 5.2, the difference of the skeletal foot mesh is seen as the output from
our implementation has preserved more detail on minor parts whereas QSlim has
deleted some details. The difference is explained by the non-manifold constraints
that we have enforced. The constraint rejects edge decimation operations when it
would result in non-manifold geometry. The disadvantage is that the edge has to
be removed some other place that has greater decimation cost in order to reach the
same decimation level.

(a) 95% of faces decimated
using QSlim.

(b) Original mesh. (c) 95% of faces decimated
using our implementation.

Figure 5.2 Comparison between the simplified skeletal foot mesh outputs of QSlim, our
implementation, and the original mesh.
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5.1.2 Evaluating edge collapse cost threshold

We selected three different types of Vertex CAD models to evaluate the edge collapse
cost threshold Tc defined in Chapter 4. The first model is a plant design model,
which contains lots of planar surfaces and some amount of round surfaces. The
second model is a building design model that contains lots of round surfaces and
some amount of planar surfaces. The last model is a building framing model that
mostly contains planar surfaces. Figure 5.3 illustrates the models that are used for
the evaluation. Vertex Systems Oy provided the Vertex CAD models evaluated in
this test.

(a) Building design. (b) Plant design. (c) Framing design.

Figure 5.3 The collection of Vertex CAD models that are evaluated.

For this test, we set the edge collapse cost scale to 0,0001 and the face reduction
threshold is 90%. With our definition, theoretically, the maximum error of single
edge collapse operation has to be under 0,1% of the model’s bounding box diagonal.
We selected those values based on the output which were on par with the quality
and simplification amount we wanted. To measure Hausdorff distance, we utilize
the MeshLab software and compute 40 million samples from faces of the original
mesh to the simplified mesh. The models are exported from Vertex CAD software
to glTF file format.

Table 5.3 presents the results of the measurements. Appendix B contains detailed
images comparing the simplification to the original model. We see the effect of the
threshold parameter, as the framing design model featuring mostly planar surfaces
does not benefit from the simplification at all. That is illustrated better in Figure
B.1, which shows the planar surfaces of the mesh. Furthermore, the building model,
which contains lots of round surfaces benefits considerably from the simplification.
For example, this can be seen from Figure B.2 where the door handle has been sim-
plified a considerable amount. Besides, as shown in Figure B.3, decorative objects
benefit also to a great extent. Finally, the plant design model is on the middle and
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ends up benefiting comparatively little. A further investigation revealed that the
plant model contains lots of pipe parts which are represented using non-manifold
meshes. On straight piping sections, the mesh consist of single-sided rounded cylin-
der in which every vertex lies on a boundary edge. Based on our constraints the mesh
did not get simplified at all. That is illustrated in Figure B.5. Similarly to building
simplification result, objects which benefit from the simplification are constructed
from round elements, as Figure B.4 illustrates.

Table 5.3 Edge decimation results of Vertex CAD models using the edge collapse cost
threshold.

Model Face count Face count Realized RMS Max
original simplified face count Hausdorff Hausdorff

reduction (%) distance distance
Plant 12 625 658 8 559 494 32,2 0,002429 0,115265
Building 15 297 934 1 852 203 87,9 0,003351 0,239714
Framing 695 784 685 272 1,5 0,000006 0,001011

The binary buffer size of the resulting glTF file contains geometry and texture data.
In Table 5.4 we list the resulting buffer size of with and without simplification.
The results show that the buffer size of the framing design model has grown after
simplification. That is the result of the simplification algorithm splitting vertices by
normal when the simplified mesh is rebuilt (Program 4.23). As the simplification
factor is low, the growth in vertices causes the simplified mesh to grow in buffer size.

Table 5.4 Effect to buffer size of Vertex CAD models after simplification using the edge
collapse cost threshold.

Model Buffer size Buffer size Realized
original simplified buffer size
(bytes) (bytes) reduction (%)

Plant 569 076 844 399 757 500 29,8
Building 481 994 244 67 702 780 86,0
Framing 42 208 228 44 297 028 -4,9

Figure 5.4 shows a comparison between the original and the simplified building
design models. From the image, an apparent reduction in geometry is seen in the
car model and on the railing at the roof. On the car model, the hood has been
flattened, and tires are noticeably more planar. On the roof, the railing has been
turned from perfectly round to a much more planar shaped object.
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(a) Original model. (b) Simplified model.

Figure 5.4 A comparison between the original building design model and the simplified
model outputs from Vertex CAD.

5.2 Rendering performance

We use frame time as a metric to evaluate the difference of rendering performance
between the original and the simplified model. The rendering performance test
is performed on a desktop computer and on a mobile device. In both tests, we
collect and analyze 5000 samples of frame times. We use the same three models
designed and exported from the Vertex CAD program as in the previous test. An
application executable for both desktop and mobile environments are created using
the Unity 2018.2.17f1 game engine [69]. The application has a scene containing the
mesh that is measured. In our Unity scene setup, all environment effects such as
environment map, lights, shadows are disabled to reduce additional processing time
during frame rendering. Such effects are unrelated to the actual mesh rendering of
which performance we are interested in. In order to focus on performance differences
on vertex processing and reduce the effects of pixel processing performance, we set
the materials to unlit.

5.2.1 Desktop environment

The desktop computer used to execute the application is using Windows 10 En-
terprise (1803) operating system and has an Intel Core i7-7700K processor with
32 gigabytes of DDR4 memory. The graphics processing unit is NVIDIA Quadro
K1200, and the graphics driver version is 384.0. The computer configuration was
selected as it was readily available. During frame time measurement, the applica-
tion is run in a full-screen mode with a resolution of 640x480. The low resolution is
selected in order to minimize the effect of pixel processing to the overall frame time.
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We use The Open Capture and Analytics Tool (OCAT) for measuring the frame
time of the application [70]. During the testing, no user input was performed, and
the number of open applications was minimized to reduce the external performance
impact to the testing.

Table 5.5 includes the results from the test. We can see that the performance
almost scales by the number of faces decimated. For the building design model,
the performance improved dramatically, allowing the model, for example, to be
visualized in a virtual reality environment with good performance.

Table 5.5 Average frame times recorded on desktop computer using original and simplified
Vertex CAD models.

Model Average frame Average frame
time original (ms) time simplified (ms) performance scale

Plant 12,3 8,6 1.43
Building 24,4 3,2 7.63
Framing 1,2 1,2 0.00

5.2.2 Mobile environment

The same application is executed in LG G2 mobile phone, which is using the Android
5.0.2 operating system. The device was selected as it was easily available for testing
and provides a reference to low-end Android phone. As Android surface presenter
has vertical synchronization always enabled, the frame time is clamped to it [8].
That means that a detailed analysis of frame time is impossible without using a
GPU profiler. We collect the frame times using an internal program that collects
the current frame time to an array. Finally, it saves the collected frame times to
a file after a specific amount of frames has been recorded. Table 5.6 shows the
average frame times for the mobile environment.

Table 5.6 Average frame times recorded on mobile computer using original and simplified
Vertex CAD models.

Model Average frame Average frame
time original (ms) time simplified (ms)

Plant N/A N/A
Building N/A 32.2
Framing 18.4 18.5

The plant design model was unable to load both original and simplified versions
due to memory constraints. For the building design model, the original model was
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unable to load. Fortunately, the substantial reduction in geometry the simplified
model allowed the mesh to load and run at around 30 frames per second (13.3
milliseconds frame time). For the framing design model, no performance differences
were measured as expected.
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6. CONCLUSIONS

This thesis reviewed methods of simplifying 3D meshes using offline decimation
algorithms. New constraints for rendering performance and mesh complexity have
been added, as the visualization of 3D CAD models on new platforms such as mobile
and virtual reality are becoming more significant. A general simplification is a
hard problem as the input mesh might vary a lot in complexity, size, and form. A
balance is needed between the visual quality and rendering performance which we
are attempting to achieve.

We defined and built a custom data structure in order to modify and collapse
edges easily. We then implemented an iterative edge decimation algorithm based on
quadric error metric proposed by Garland and Heckbert [38]. A face count target
threshold works poorly as a condition to terminate the decimation iteration when
the complexity of the input meshes varies a lot. For example, a relatively simple
model consisting of planar faces cannot be decimated as much as a model with round
surfaces without having a significant impact on quality. To aid such situations, we
proposed an edge collapse cost threshold Tc which is calculated by multiplying a
user-defined scale variable and the diagonal of the decimated model’s bounding box.
The threshold Tc represents a theoretical maximum for possible error that is allowed
during the decimation process. Finally, after the decimation process is terminated,
we rebuilt the mesh from the custom data structure to an indexed triangle mesh.

We evaluated the quality and performance of the simplification algorithm. First, we
compared our implementation against the QSlim software output using root mean
square and the maximum value of Hausdorff distance. Overall the differences to QS-
lim output are small. The differences of RMS values are well under 1 percent relative
to the diagonal of mesh’s bounding box. An apparent exception was the skeleton
foot mesh where our implementation managed to retain more high-frequency de-
tails while having a high face reduction level. That was shown by the significant
difference in maximum Hausdorff distance and, furthermore, is seen in Figure 5.2.
Next, we evaluated the performance of the edge collapse cost threshold Tc. By using
three different Vertex CAD models, we saw an expected result of significant face
count reduction in situation where the model contains lots of round surfaces with
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high-frequency detail. Vice versa, the framing design model which contained lots
of low-frequency detail did not benefit from the simplification as in that case the
error would rise in a fast rate. Finally, we measured performance improvements
which are gained from the simplification. From the results, we could see that the
performance scaled almost the same rate as the decimation amount. We managed
to get the complex building design model to run on low-end mobile by simplifying
it a significant factor. All in all, the threshold Tc works as expected, it terminates
the decimation before the error raises too high and it scales with the model size.
As a downside, it still needs a user-defined scale value, which is configured for the
user’s preference. Based on the results, it does not work well for models with mostly
planar faces.

Overall, the thesis process went well. The project started by researching mesh
simplification methods. Then, implementing the iterative edge decimation algorithm
based on quadric error metric proposed by Garland and Heckbert to the Vertex CAD
software [38]. As the algorithm performed poorly with fixed settings, we added the
edge collapse cost threshold, which was simple to implement and understand. In
hindsight, an external proof of concept program would have made the testing process
faster, in addition to improving the time of developing, modifying and validating
the simplification algorithm. Conversely, the described simplification is now in use
in Vertex CAD software.

6.1 Future work

For future improvements, the threshold Tc should be tested further using various
new scale values. Instead of using the diagonal of the model’s bounding box, other
ways of computing the threshold could be investigated as well. In order to improve
the visual quality, the decimation algorithm should take account textures and also
handle the transformation of the texture coordinates. For example, texture errors
can be seen in Figure B.3, where the green texture is skewed after simplification.
Garland and Heckbert extent the quadric error metric to use the texture coordinates
and other possible vertex attributes in their work [39]. Hoppe also researches the
same extension [42].

A displacement or normal map could be generated from the detailed model and
applied to the simplified mesh. The normal map would then give the mesh an
approximation of the removed detail. Normal maps were successfully used by Cohen
et al. to preserve appearance [57]. A possible issue for normal map generation is
the memory usage of the generated maps when the input CAD scene is large. In
order to shorten the simplification time, the algorithm could be task parallelized for
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multiple geometric objects M = {m0,m1, ...mi}. As the algorithm does not share
any state between the objects, each simplification is an independent task. Currently,
the algorithm does not utilize geometric object instancing, where objects containing
identical geometry with different transformation are simplified only once, and the
simplification result is reused for the rest of the instanced objects. That would
significantly speed up scenes where the same object is shared multiple times.

For run-time performance and visual quality improvements, a level-of-detail hierar-
chy could be built. That means that a predetermined number of approximations with
different face reduction amounts are generated per model basis. A large CAD scene
could benefit from the LOD hierarchy, as models close to the camera’s viewpoint
would be shown in higher resolution, whereas models at further would be shown in
ascending levels of lower resolution depending on the distance to the viewpoint.
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APPENDIX A. HAUSDORFF DISTANCE

RESULTS

This appendix contains results of measuring Hausdorff distance by sampling 10
million points from the original mesh to the simplified mesh. The number suffix
in the model file name describes the percentage of faces removed. If the model file
includes character "g" it means that the model has been decimated using QSlim
software, otherwise using our implementation.

Sampled 10000000 pts on bones.obj searched closest on bones_50.obj
Values w.r.t. BBox Diag (12.603421)

min : 0.000000 max 0.004746 mean : 0.000450 RMS : 0.000623

Sampled 10000000 pts on bones.obj searched closest on bones_g_50.obj
Values w.r.t. BBox Diag (12.603421)

min : 0.000000 max 0.006051 mean : 0.000323 RMS : 0.000498

Sampled 10000000 pts on bones.obj searched closest on bones_70.obj
Values w.r.t. BBox Diag (12.603421)

min : 0.000000 max 0.007736 mean : 0.000980 RMS : 0.001287

Sampled 10000000 pts on bones.obj searched closest on bones_g_70.obj
Values w.r.t. BBox Diag (12.603421)

min : 0.000000 max 0.007738 mean : 0.000768 RMS : 0.001061

Sampled 10000000 pts on bones.obj searched closest on bones_90.obj
Values w.r.t. BBox Diag (12.603421)

min : 0.000000 max 0.021050 mean : 0.003070 RMS : 0.003953

Sampled 10000000 pts on bones.obj searched closest on bones_g_90.obj
Values w.r.t. BBox Diag (12.603421)

min : 0.000000 max 0.073877 mean : 0.003223 RMS : 0.006663

Sampled 10000000 pts on bones.obj searched closest on bones_95.obj
Values w.r.t. BBox Diag (12.603421)

min : 0.000000 max 0.027494 mean : 0.005483 RMS : 0.006910

Sampled 10000000 pts on bones.obj searched closest on bones_g_95.obj
Values w.r.t. BBox Diag (12.603421)

min : 0.000000 max 0.091991 mean : 0.006003 RMS : 0.010553

Sampled 10000000 pts on buddha.obj searched closest on buddha_50.obj
Values w.r.t. BBox Diag (0.229031)

min : 0.000000 max 0.000188 mean : 0.000005 RMS : 0.000007
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Sampled 10000000 pts on buddha.obj searched closest on buddha_g_50.obj
Values w.r.t. BBox Diag (0.229031)

min : 0.000000 max 0.002014 mean : 0.000004 RMS : 0.000008

Sampled 10000000 pts on buddha.obj searched closest on buddha_70.obj
Values w.r.t. BBox Diag (0.229031)

min : 0.000000 max 0.000406 mean : 0.000013 RMS : 0.000017

Sampled 10000000 pts on buddha.obj searched closest on buddha_g_70.obj
Values w.r.t. BBox Diag (0.229031)

min : 0.000000 max 0.002738 mean : 0.000012 RMS : 0.000019

Sampled 10000000 pts on buddha.obj searched closest on buddha_90.obj
Values w.r.t. BBox Diag (0.229031)

min : 0.000000 max 0.001295 mean : 0.000041 RMS : 0.000053

Sampled 10000000 pts on buddha.obj searched closest on buddha_g_90.obj
Values w.r.t. BBox Diag (0.229031)

min : 0.000000 max 0.007106 mean : 0.000047 RMS : 0.000067

Sampled 10000000 pts on buddha.obj searched closest on buddha_95.obj
Values w.r.t. BBox Diag (0.229031)

min : 0.000000 max 0.002505 mean : 0.000075 RMS : 0.000098

Sampled 10000000 pts on buddha.obj searched closest on buddha_g_95.obj
Values w.r.t. BBox Diag (0.229031)

min : 0.000000 max 0.008089 mean : 0.000093 RMS : 0.000132

Sampled 10000000 pts on bunny.obj searched closest on bunny_50.obj
Values w.r.t. BBox Diag (0.250247)

min : 0.000000 max 0.000361 mean : 0.000037 RMS : 0.000050

Sampled 10000000 pts on bunny.obj searched closest on bunny_g_50.obj
Values w.r.t. BBox Diag (0.250247)

min : 0.000000 max 0.000512 mean : 0.000045 RMS : 0.000065

Sampled 10000000 pts on bunny.obj searched closest on bunny_70.obj
Values w.r.t. BBox Diag (0.250247)

min : 0.000000 max 0.000685 mean : 0.000073 RMS : 0.000096

Sampled 10000000 pts on bunny.obj searched closest on bunny_g_70.obj
Values w.r.t. BBox Diag (0.250247)

min : 0.000000 max 0.000905 mean : 0.000099 RMS : 0.000131

Sampled 10000000 pts on bunny.obj searched closest on bunny_90.obj
Values w.r.t. BBox Diag (0.250247)
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min : 0.000000 max 0.002379 mean : 0.000196 RMS : 0.000256

Sampled 10000000 pts on bunny.obj searched closest on bunny_g_90.obj
Values w.r.t. BBox Diag (0.250247)

min : 0.000000 max 0.002561 mean : 0.000322 RMS : 0.000407

Sampled 10000000 pts on bunny.obj searched closest on bunny_95.obj
Values w.r.t. BBox Diag (0.250247)

min : 0.000000 max 0.003633 mean : 0.000363 RMS : 0.000475

Sampled 10000000 pts on bunny.obj searched closest on bunny_g_95.obj
Values w.r.t. BBox Diag (0.250247)

min : 0.000000 max 0.004736 mean : 0.000653 RMS : 0.000816

Sampled 10000000 pts on cow.obj searched closest on cow_50.obj
Values w.r.t. BBox Diag (1.271114)

min : 0.000000 max 0.005833 mean : 0.000243 RMS : 0.000338

Sampled 10000000 pts on cow.obj searched closest on cow_g_50.obj
Values w.r.t. BBox Diag (1.271114)

min : 0.000000 max 0.005369 mean : 0.000153 RMS : 0.000255

Sampled 10000000 pts on cow.obj searched closest on cow_70.obj
Values w.r.t. BBox Diag (1.271114)

min : 0.000000 max 0.007455 mean : 0.000535 RMS : 0.000691

Sampled 10000000 pts on cow.obj searched closest on cow_g_70.obj
Values w.r.t. BBox Diag (1.271114)

min : 0.000000 max 0.006969 mean : 0.000390 RMS : 0.000554

Sampled 10000000 pts on cow.obj searched closest on cow_90.obj
Values w.r.t. BBox Diag (1.271114)

min : 0.000000 max 0.023186 mean : 0.001666 RMS : 0.002147

Sampled 10000000 pts on cow.obj searched closest on cow_g_90.obj
Values w.r.t. BBox Diag (1.271114)

min : 0.000000 max 0.029329 mean : 0.001322 RMS : 0.001940

Sampled 10000000 pts on cow.obj searched closest on cow_95.obj
Values w.r.t. BBox Diag (1.271114)

min : 0.000000 max 0.041921 mean : 0.003205 RMS : 0.004320

Sampled 10000000 pts on cow.obj searched closest on cow_g_95.obj
Values w.r.t. BBox Diag (1.271114)

min : 0.000000 max 0.046463 mean : 0.002630 RMS : 0.003913

Sampled 10000000 pts on crater.obj searched closest on crater_50.obj
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Values w.r.t. BBox Diag (568.698364)
min : 0.000000 max 0.000109 mean : 0.000010 RMS : 0.000014

Sampled 10000000 pts on crater.obj searched closest on crater_g_50.obj
Values w.r.t. BBox Diag (568.698364)

min : 0.000000 max 0.000111 mean : 0.000008 RMS : 0.000012

Sampled 10000000 pts on crater.obj searched closest on crater_70.obj
Values w.r.t. BBox Diag (568.698364)

min : 0.000000 max 0.000235 mean : 0.000020 RMS : 0.000026

Sampled 10000000 pts on crater.obj searched closest on crater_g_70.obj
Values w.r.t. BBox Diag (568.698364)

min : 0.000000 max 0.000227 mean : 0.000017 RMS : 0.000023

Sampled 10000000 pts on crater.obj searched closest on crater_90.obj
Values w.r.t. BBox Diag (568.698364)

min : 0.000000 max 0.000962 mean : 0.000050 RMS : 0.000068

Sampled 10000000 pts on crater.obj searched closest on crater_g_90.obj
Values w.r.t. BBox Diag (568.698364)

min : 0.000000 max 0.000668 mean : 0.000045 RMS : 0.000062

Sampled 10000000 pts on crater.obj searched closest on crater_95.obj
Values w.r.t. BBox Diag (568.698364)

min : 0.000000 max 0.002521 mean : 0.000086 RMS : 0.000119

Sampled 10000000 pts on crater.obj searched closest on crater_g_95.obj
Values w.r.t. BBox Diag (568.698364)

min : 0.000000 max 0.001100 mean : 0.000075 RMS : 0.000106
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APPENDIX B. FIGURES OF ORIGINAL AND

SIMPLIFIED VERTEX CAD MODELS

This appendix contains pictures of original (up) and simplified (down) Vertex CAD
model.

Figure B.1 Original and simplified Vertex CAD framing model. The model consist of
planar surfaces and thus does not benefit from the simplification.
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Figure B.2 Original and simplified Vertex CAD building model. Round objects are sim-
plified to a significant extent.
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Figure B.3 Original and simplified Vertex CAD building model. Door handle which con-
tains lots of high frequency detail is simplified, while all low frequency detail such as walls,
doors and other decorative objects are in place.
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Figure B.4 Original and simplified Vertex CAD plant model. Again, round elements
benefit from the simplification, the overall shape is still remained while great amount of
geometry has been decimated.
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Figure B.5 Original and simplified Vertex CAD plant model. In this specific plant model,
piping mesh is from non-manifold surfaces and due to constraints, cannot be simplified.
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