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ABSTRACT 
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Master of Science Thesis, 71 pages, 4 Appendix pages 
December 2018 
Master’s Degree Programme in Science and Engineering 
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Examiner: University Lecturer, Docent Terttu Hukka 
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There is an increasing interest in renewable raw materials in all industries and adhesive 

industry is no exception. With the continuous development of biorefineries, the selection 

of bio-based materials is growing. The objective of this Thesis was to determine whether 

tannins from the bark of Finnish softwood could be added to that selection in regards to 

hot melt adhesive formulation. More precisely, whether tannins would be compatible with 

established materials, and whether tannins would be compatible with cellulose deriva-

tives. This work functions as a laboratory scale proof of concept. 

The theoretical part of this Thesis introduces how adhesives work, what are hot melt ad-

hesives and how adhesives are tested, before presenting some sustainable materials and 

tannins in particular. Hot melt adhesives have three primary components, polymer, tacki-

fier and wax, and the properties of the adhesive can be adjusted by component selection 

and ratio. Hot melt adhesives are mostly used in packaging industry and thus this Thesis 

focuses on using folding boxboard. Phenolic tackifiers are industrially available and lig-

nin has been proven to function as tackifier with cellulose derivatives. Due to these facts, 

hypothesis was that tannins should function as tackifiers due to their phenolic nature, 

especially with cellulose derivatives. Tannins used in this Thesis are extracted from the 

bark of Finnish softwood.  

It was discovered that mixture of tannins and poly(DL-lactide-co-ε-caprolactone) was a 

potential hot melt adhesive. This formulation was developed by screening mixtures of 

crude spruce tannin with 7 different polymers and 5 different waxes. Screening of the 

adhesive capabilities of different combinations was done by manual testing, and the peel 

strength of the most promising formulations was measured. The copolymer can be used 

as a hot melt adhesive by itself, but the processability and adhesion towards uncoated 

boxboard increased with tannins. In contrast to expectations, adhesive capabilities with 

the tested cellulose esters were weak. Next steps should be development of a better mix-

ing mechanism as the tannin-copolymer mixture was not fully homogenous. There should 

also be research into how the parameters of the copolymer affect the adhesive capabilities 

of the hot melt adhesive, and whether changing these parameters could be used to enhance 

the adhesive. Compatibility with other materials should still also be tested with tannins.   
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Teollisuuden kiinnostus siirtyä kestävän kehityksen mukaisiin raaka-aineisiin kasvaa jat-

kuvasti, eikä liimateollisuus ole poikkeus. Biojalostamoiden kehitys on johtanut bioma-

teriaalien määrän kasvamiseen. Tämän diplomityön tarkoitus oli määrittää, voisiko suo-

malaisen havupuun kuoresta saatava tanniini toimia biopohjaisena materiaalina kuuma-

liimassa. Tarkennettuna, toimisiko tanniini vakiintuneiden materiaalien tai selluloosaes-

terien kanssa. Työ toimi laboratoriomittakaavan perustutkimuksena. 

Työn teoriaosuudessa käydään läpi liiman toimintaperiaate ja testaus sekä kuumaliiman 

ominaisuuksia. Lisäksi esitellään valittuja biopohjaisia materiaaleja ennen tanniineihin 

syventymistä. Kuumaliimassa on kolme pääkomponenttia, polymeeri, tarra-aine ja vaha. 

Näitä komponentteja ja niiden määräsuhdetta vaihtamalla voidaan vaikuttaa liiman omi-

naisuuksiin. Kuumaliimoja käytetään pääosin pakkausteollisuudessa, ja siksi tässä työssä 

liiman testaus keskittyy pakkauspahviin. Teollisessa käytössä on fenolisia tarra-aineita, 

ja ligniinin on todettu toimivan tarra-aineena selluloosaesterien kanssa. Näistä johtuen 

hypoteesi oli, että tanniinit voisivat fenolisen luonteensa ansiosta toimia tarra-aineena 

etenkin selluloosaesterien kanssa. Työn tanniinit on uutettu suomalaisen havupuun kuo-

resta. 

Työn aikana havaittiin, että tanniinin ja DL-maitohappo/ε-kaprolaktonikopolymeerin se-

koitus vaikutti potentiaaliselta kuumaliimalta. Materiaalien valinta tehtiin seulomalla raa-

kakuusitanniinin seoksia 7 eri polymeerin ja 5 eri vahan kanssa. Seulonta tehtiin testaa-

malla käsin seosten liimautuvuutta, minkä jälkeen lupaavimpien seosten kuorintakestä-

vyys mitattiin. Kopolymeeria voidaan käyttää kuumaliimassa myös ilman tanniinia, 

mutta käsiteltävyys ja liimautuvuus käsittelemättömään pahviin paranivat tanniinin li-

säyksen myötä. Odotuksien vastaisesti tanniinin ja testattujen selluloosaesterien seokset 

olivat liimausteholtaan heikkoja. Tanniinin ja kopolymeerin seos ei ollut täysin homogee-

ninen, joten seostuksen parantamisen tulisi olla seuraava askel. Lisäksi tulisi tutkia, miten 

kyseisen kopolymeerin ominaisuudet vaikuttavat kuumaliiman tehoon, ja voisiko näiden 

ominaisuuksien muuttaminen vahvistaa liimaa. Tanniinien yhteensopivuutta erilaisten 

materiaalien kanssa tulisi edelleen myös tutkia. 
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1. INTRODUCTION 

Adhesives are used everywhere from milk cartons to cars and walls to secure two surfaces 

together. In layman’s terms, adhesive means any material that is capable of holding sub-

stances together by attaching to both surfaces. Adhesives are not a new invention; a 5000 

year old corpse found in the Italian mountains wielded an axe that had its blade attached 

with birch tar [1]. Adhesives as a group are hard to define, as there are numerous different 

adhesives for numerous different uses. Thus this Thesis focuses on one type of adhesives, 

hot melt adhesives (HMAs). HMAs are a subgroup of adhesives that are used in their 

molten state. Global HMA market revenue was 3.6 billion USD in 2012 with 820 kilotons 

of materials. Packaging industry is by far the largest user of HMAs, using 56.5% of all 

HMAs in 2012. [2, p. 33,44] At the end of 2017 packaging industry itself was globally 

worth 851 billion USD and it is projected to grow steadily by 2.9% yearly [3], so HMAs 

will remain essential in the future. 

Present HMAs are mostly synthetic. There is an increasing interest in renewable raw ma-

terials in all industries and adhesive industry is no exception. New alternative materials, 

mostly plant-based, are constantly being researched. One subject of interest as a potential 

renewable material for HMAs are tannins, which are a group of phenolic compounds pre-

sent in a large variety of plants. They are being used in several ways in different indus-

tries, but they are best known for their traditional use of turning animal hide into leather 

in the act of tanning. 

This Thesis work was performed as a part of a larger project SusBinders, short for Sus-

tainable Binders from bark [4]. SusBinders is a collaboration between VTT Technical 

Research Centre of Finland Ltd (VTT), Natural Resources Institute Finland, South-East-

ern Finland University of Applied Sciences and commercial partners. The overall goal of 

the project is to refine the tannin extraction technology and evaluate whether tannins from 

spruce and pine bark could be used in adhesive formulations.  

The objective of this Thesis is to evaluate tannins from Finnish softwood as a major com-

ponent of HMAs for cardboard. More specifically, could tannins be used as sustainable 

‘drop-in’ tackifiers with established HMA materials and whether they could be used with 

cellulose derivatives. 

The hypothesis is that tannins should indeed be usable as tackifiers in HMA formulation, 

especially with cellulose derivatives. Some phenolic compounds are in use industrially as 

tackifiers [5] and previous VTT projects have proven lignin to function as tackifier with 

cellulose derivatives [6]. Thus phenolic tannins, which are relatively similar to lignin, are 
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expected to also function in this role. This expectation is challenged in this Thesis by 

testing mixtures of tannins and different polymers and waxes for adhesive capabilities on 

cardboard. This experimental work is mostly focused on crude spruce tannin. This testing 

aims to function as a laboratory scale proof of concept on the usage of tannins in HMA 

formulation. 

The next chapter will introduce the basic knowledge on adhesion, HMAs and tannins. 

This will include the phenomena behind adhesion, how adhesives are tested and what 

kind of sustainable materials there currently are. The components, advantages and usage 

of HMAs are also presented. Finally the nature and composition, sources and potential 

uses of tannins are discussed. The third chapter of this Thesis describes the materials as 

well as the methods used in this research. Most notably these methods include the proce-

dures of manufacturing and testing of the HMA formulations. The results of the research 

are then presented and discussed in detail in chapter four, before the final conclusions. 
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2. ADHESIVES AND TACKIFIERS 

In the theoretical part the basic knowledge behind sustainable HMAs and tannins will be 

presented. Firstly the thesis introduces the theories of adhesion and how adhesives work. 

Then HMAs and their difference from other adhesives, both regarding components and 

usage will be presented. Testing of adhesives will be briefly noted and background of 

sustainable adhesives will discussed. Lastly the thesis will focus on tannins; what they 

are, how can they be produced, what are they used for and what can they be used for. 

Both Merriam-Webster and Oxford Dictionaries define ‘adhesion’ by the action, state or 

process of adhering, which is in the same dictionaries defined as sticking fast to a surface. 

The Adhesive and Sealant Council, Inc. on the other hand gives us the more scientific 

definition of “[adhesion is] the stage in which two surfaces are held together by interfacial 

forces which may consist of valence forces or interlocking addition, or both” [7, p. 1]. 

Materials used in adhering, adhesives, have long been used; for example gluing feathers 

onto arrow shaft stabilized its flight. The items bonded together by adhesive are called 

adherends. This is visualized in Figure 1. 

 

Figure 1.  Visualization of important vocabulary. 

 

The beginning of modern adhesives technology can be claimed to be when Charles Good-

year, an American engineer, discovered the process that would later be termed ‘vulcani-

zation’. Goodyear noticed in 1839 that heating a mixture of rubber and sulfur changed it 

from plastic to elastic state. Another major leap happened hundred years later when sev-

eral synthetic plastic resins, including neoprene rubber, poly(vinyl acetate) and urea-for-

maldehyde, were commercialized in the United States during 1930s. In the early days of 

adhesives, a single handbook could include all known raw material options, but by 1960s 

the amount of alternative materials had grown too large to be collected in a single book. 

[8, pp. 12–20]  

Even though there are numerous different types of adhesives, there is not one universally 

recognized way to classify them. Instead there are several different ways to classify ad-

hesives. One such way is by chemical composition, where adhesives can be divided into 

thermosetting, thermoplastic, elastomeric and alloy adhesives. Thermosetting adhesives 
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cure by cross-linking caused by chemical reactions. Thermoplastics harden when the sol-

vent evaporates or when they are cooled from molten state. Elastomerics do not have a 

set type of curing, but are characterized by their low strength and great flexibility. Alloys 

are combinations of other groups. Adhesives can also be classified by their physical form, 

e.g. liquid, film, granule, or end use, e.g. wood adhesives or acid-resistant adhesives. [9, 

pp. 47–55] 

Adhesives are usually not the only option for attaching objects to another. For example 

welding, screws or simple interlocking may also be applied, depending on the materials 

and the situation. There are several advantages and disadvantages to note when deciding 

whether adhesives are the choice to form a certain bond. These are presented in Table 1. 

Table 1. Advantages and disadvantages of adhesive bonding in general. 

Adapted from [10, pp. 398–401] 

There are a few distinct basic requirements for a good adhesive bond; cleanliness, wet-

ting, solidification, joint design and proper selection of adhesive. Cleanliness means re-

moving foreign materials such as moisture and dirt from the surface, so that they do not 

form a weak boundary layer. This can also mean a more sophisticated physical or chem-

ical process to prepare the surface. Wetting means the ability of the adhesive to flow into 

Advantages Disadvantages 

Stress is divided on a large area. 
Surfaces must be clean, any dirt will weaken 

the bond. 

Cycles of low and high load do not usually 

weaken the bond. 
Long cure times are sometimes necessary. 

Acts as shock absorber and vibration damper. 
Finished joint is not visible, so inspection is dif-

ficult. Process must be well controlled. 

Protects metals from galvanic corrosion. 
Heat or pressure may be needed to set the 

adhesive. 

Shape and thickness does not prevent joining. 
If setting time is long, assembly jigs and fix-

tures may be needed. 

Provides smooth contours. Cleanup may be expensive. 

Can be used to seal joints. Limitations in operating temperature. 

Variety of different materials possible. 
Usage environment (e.g. moisture, chemicals) 

affects how long the bond will hold. 

Often cheaper and faster than mechanical fas-

tening. 

Commonly compose of hazardous materials 

so environmental, health and safety consider-

ations are necessary. 

Even if heat is required, usually too low to 

have an effect on metal parts. 

Product appearance may be ruined by misap-

plied adhesive. 

Can be made with special properties; insula-

tive or thermally and electrically conductive. 

Bonded joints cannot be disassembled. Faulty 

joints may lead to scrapping the product. 

Good strength-to-weight ratio.  
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the crevices and pores of the surface. Good wetting increases contact area for the adhe-

sion. Solidification is the process where the adhesive solidifies from its liquid state. Dif-

ferent adhesives employ different methods to achieve that; solvent evaporation, cooling 

from molten state, chemical reaction due to pressure or cooling agents, to name a few. 

Joint design means designing the joint so that the forces of adhesion are optimized. The 

adhesive selection is an integral part; material to be bonded, service and production re-

quirements (temperature, moisture, biological factors etc.) and overall budget should all 

be considered when selecting adhesives. [10, pp. 404–405].  

2.1 Theories of adhesion 

The basic principle of adhesion is relatively simple - interfacial forces hold two surfaces 

together. However, there are several different theories that try to explain the phenomenon. 

They are each valid to some extent and their importance depends on the materials of the 

bond. Oftentimes in reality several of them might be simultaneously working together [9, 

p. 6]. Most of these theories have short-comings and only work in certain cases, but still 

they give perspective on what might be happening in the interface.  

It is important to note that surfaces are different from bulk material. A unit - be it atom or 

molecule - within the bulk phase is surrounded by similar units and attracted in all direc-

tions. The molecules on the surface are not surrounded, so they have different attraction 

to different directions; usually they are more strongly attracted towards the bulk. This 

may lead to increased density of molecules on the surface. Interfaces are also rarely sharp 

planes; not only liquids but even solids utilize vapor pressure which leads to a concentra-

tion gradient at the interface. [8, p. 80] 

The six different theories of adhesion which are presented in more detail next are 

• Adsorption theory 

• Mechanical interlocking theory 

• Electrostatic theory 

• Weak-boundary layer theory 

• Diffusion theory 

• Chemical bonding theory 

Adsorption theory - also sometimes referred to as wetting or thermodynamic theory - is 

the widely used approach in adhesion at the present. It proposes that adhesion is caused 

by surface forces developed by molecular contact between the adhesive and the adherend. 

These forces are thought to primarily be van der Waals forces and hydrogen bonds. For 

these molecular forces to happen, the materials must have intimate contact. The process 

of establishing this contact is called wetting. For wetting to happen on a solid surface, the 

surface tension of the adhesive should be lower than the critical surface tension of the 

solid. This leads to the adhesive flowing into the irregularities of the surface and thus 
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maximizes the contact surface; poor wetting is the result of adhesive flowing over such 

irregularities. [8, p. 65][9, pp. 9–10] For example, aluminium has a critical surface tension 

of 500 mN/m while cellulose has 45 mN/m [10, p. 402]; this means that adhesive that 

flows readily on aluminium may not do so on cellulose. 

Mechanical interlocking theory states that adhesion occurs when the adhesive pene-

trates into the crevices on the surface of the adherend. Solid surfaces are seldom com-

pletely smooth, but consist of pores, peaks and valleys. Bonds are indeed frequently 

stronger between porous surfaces than smooth surfaces, which supports this claim. How-

ever, this interlocking also has the effect of increasing interfacial area between the adhe-

sive and the adherend. So it can be debated whether mechanical interlocking itself is what 

makes bonds stronger or if it enhances other mechanisms by increasing the contact area. 

[8, pp. 62–65][9, pp. 6–7][10, pp. 401–404] This mechanical adhesion was regarded as 

common sense in the 1920s, but the theory was largely rejected by 1950s and 1960s. In 

1970s the theory garnered new trust again with new research. [8, p. 77]  

Electrostatic theory suggests that the cause of adhesion is electrostatic effect between 

the materials. Dissimilar electronic band structures between the adhesive and the ad-

herend lead to electron transfer and form an electrical double layer between the materials. 

Electrostatic forces caused by this double layer would cause the resistance of separation 

and thus adhesive strength. [8, p. 62][9, p. 8] This theory is supported by evidence of 

electrical discharges when peeling adhesive [10, p. 403]. 

Weak-boundary layer theory states that even when the adhesive bond seems to break 

at the interface of the adhesive and the adherend, the bond between the materials is usually 

not the reason of failure. The failure is argued to be cohesive within the interfacial zone 

of one of the substrates, caused by a weak boundary layer. These layers can occur if an 

impurity, such as dirt or air, concentrates near the bonding surface. This will lead to a 

weak adhesive bonding and cause failure at lower stress than usual. The failure appears 

to have happened at the interface, but is in fact really caused by the weak boundary layer. 

These layers can often be removed or altered by surface treatment. An easy example of a 

weak boundary layer is an air bubble trapped between the surface and the adhesive due 

to poor wetting. Also a weaker-bond-forming compound within the material itself, such 

as shorter polymer chains, can be the cause of weak boundary layers. [8, p. 64][9, pp. 13–

14][10, p. 404]   

Diffusion theory, on the other hand, suggests that adhesion is caused by molecules dif-

fusing between the adhesive and the adherend and forming an interfacial interphase layer, 

which consists of molecules of both materials. It implies that macromolecular chains are 

mobile and soluble in one another. This is primarily applicable when both materials are 

polymeric and their molecules are capable of movement. While these demands are not 

always met, they do contribute to the adhesive strength when that happens. [8, p. 69][9, 

p. 8]  
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There is also the chemical bonding theory, which is relatively simple; chemical bonds 

between the materials have a profound effect on the adhesion strength. These bonds can 

be covalent, ion and hydrogen bonds, van der Waals forces or acid-base interactions. Co-

valent and ion bonds are strong and durable, but require mutually reactive chemical 

groups. For this reason surfaces can be pre-treated to enable covalent bonding. It is also 

possible that the chemical bonding is not directly between the adhesive and the adherend, 

but there might be a so called coupling agent in between, forming a chemical bridge be-

tween those two. [8, pp. 71–72][9, pp. 11–12]  

2.1.1 Modes of failure in adhesives 

Failure of an adhesive bond may occur by three different ways, as depicted in Figure 2; 

adhesive failure, cohesive failure in adherend or cohesive failure in adhesive. Adhesive 

failure means that the interfacial bond between the adhesive and the adherend was broken. 

Cohesive failure in the adherend on the other hand means that the adherend breaks; this 

is often called fiber tear when the adherend is paper or boxboard. Cohesive failure inside 

the adhesive means that some of the adhesive remains on both adherends. Of course the 

adhesive bond might not break cleanly in only one way, but show both cohesive and 

adhesive failure. [9, p. 14] What type of failure mode is deemed desirable depends on the 

use of the adhesive.  

 

Figure 2. Examples of modes of failure. From left to right: adhesive failure, cohe-

sive failure in adherend, cohesive failure in adhesive.  

 

Failure mode can be useful in determining the reason to the bond failure. For example, 

one reason for adhesive failure can be poor wetting. [9, p. 17] Cohesive failure within the 

adhesive may be avoided if the adhesive itself is robust enough that high levels of work 

are needed to cause cohesive failure within the adhesive [11, p. 440].  

2.2 Hot melt adhesives 

HMAs are generally thermoplastic compounds which are solid in room temperature and 

used in molten liquid state in elevated temperature. They set up an adhesive bond by 

solidifying upon cooling. The preferred materials “are usually solid up to 79.4 °C or 
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higher, then melt sharply to give a low-viscosity fluid that is easily applied and is capable 

of wetting the substrate to be bonded, followed by rapid setting upon cooling” [9, p. 88]; 

these characteristics make it suited to industrial high-speed use. [8, p. 730] HMAs are 

generally appreciated for their ease and rate of use, while their most noted drawbacks are 

low heat resistance and slowly giving in under prolonged load. Thus they are primarily 

recommended for hold-in-place operations in packaging. [8, pp. 907–908][9, p. 89] 

There are subcategories in HMAs; pressure-sensitive and reactive HMAs, the latter which 

is also called curing HMAs. Pressure-sensitive HMAs are permanently tacky in room 

temperature [2, p. 18], but they are thermoplastic in nature and as such can be heated to 

mold them better. Reactive HMAs are for example polyurethane prepolymers, which re-

act with the water content of the wood to create a crosslinked polyurethane network. This 

leads to them being thermosetting adhesives instead of thermoplastic like most HMAs. 

Reactive HMAs have higher temperature and moisture resistance and greater strength 

than conventional HMAs, but they are more expensive and have higher curing times. [8, 

p. 909]  

HMAs have two distinct and important parameters: open time and set time, sometimes 

called setting speed. Open time is the maximum amount of time between setting the ad-

hesive and applying the second substrate that leads to an acceptable bond. Set time is 

defined as the minimum length of time needed to wait after applying the second substrate 

to obtain sufficient bond strength. Both times are oftentimes in the seconds range, though 

open time can be almost infinite for pressure-sensitive HMAs. [11, p. 440][12, p. 301] 

Narrow molecular-weight distribution is also quite critical parameter for HMAs, as it 

minimizes melt elasticity [13, p. 48]. This elasticity leads to poor application patterns, 

which can occur as long thin tails when the adhesive is handled [11, p. 440]. 

2.2.1 Components 

Adhesives in general are quite diverse component-wise; they all have the adhesive base, 

sometimes referred to as the binder, but the other components all depend on the kind of 

adhesive. Binder is indeed the primary component and is responsible for forming a strong 

bond between the substrates, keeping them together. Adhesives are also generally named 

after the binder.  

In addition to binder, there are several basic components that are commonly used in ad-

hesives. Hardeners are used in thermosetting adhesives to act as catalyst for the curing 

reaction or to cross-link with the binder to create more robust adhesive. Solvents can be 

used to reduce the viscosity so that the adhesive can more easily be spread on a surface, 

and usually evaporate readily. Diluents serve the same purpose as solvents, but differ in 

the sense that they do not evaporate but stay incorporated in the adhesive. Fillers are 

usually neutral, non-reactive substances that are added to improve some properties of the 
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adhesive, such as heat resistance or electrical conductivity. They also often reduce mate-

rials costs. Carriers or reinforcements are usually thin materials like films or papers, 

which can serve as support for the adhesive or a release media. In addition to these basic 

components - all of which are again not found in every adhesive - there are also a number 

of other additives used to achieve certain characteristics. These include plasticizers, anti-

oxidants, thickeners, inhibitors and surfactants. [9, pp. 47–48]  

In HMAs, there are commonly three primary components: binder (usually in HMAs re-

ferred to as simply polymer), tackifier (also known as resin) and wax. Tackifiers and 

waxes are notably missing from the previous paragraph, as they seem to be only found in 

HMAs. In addition to these, all kinds of previously mentioned different additives can be 

used to further enhance the adhesive’s service properties. [14, p. 106] The properties and 

functions of the three primary components are collected in Table 2. 

The main component is the polymer, which mostly determines the properties. It gives the 

HMA strength, cohesion and mechanical properties. The molecular mass of the polymer 

has a high impact on the properties of the HMA. Higher average molecular mass means 

higher viscosity and therefore worse wetting, but better heat resistance and cohesion [8, 

p. 908]. As mentioned earlier, the molecular mass distribution affects processing the ma-

terial, as wide distribution may cause strings or thin filaments coming from the end of the 

adhesive bead. These are not wanted as they will gradually mess the equipment. For pro-

cessing of the adhesive to be clean, the adhesive should behave more like liquid and less 

like rubber, and this is accomplished by narrow molecular mass distribution. [11, p. 443] 

Poly(ethylene-co-vinyl acetate) - or EVA as it is usually called - is the most used polymer 

for HMAs with an approximate share of 43%. Polyolefins and polyurethanes have market 

shares of 31% and 11%, respectively. [2, p. 13] Other common polymers are polyamides 

and styrene block copolymers [15, p. 3]. Advantages of these different common base pol-

ymers have been collected in Table 3. 
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Table 2. Primary components of HMAs, revised from [11, pp. 440–441] and [14, p. 106]. 

Table 3. Common base polymers and their advantages, revised from [2, p. 21] 

Component Properties Functions 

Polymer • High molecular weight 

(MW): >10 kg/mol 

• Glass transition tem-

perature (Tg) usually < 

room temperature 

• Physically cross-links 

on cooling 

• Strong 

 

• Responsible for the strength of the adhesive bond 

by forming a hard polymer network 

• Ability to stick to adherends 

 

Tackifier • Low MW, <5 kg/mol 

• Tg usually >  room tem-

perature 

• Amorphous 

• Lowers viscosity for better machinability 

• Improves wetting (contact of adhesive and sub-

strate) 

• Adjusts Tg to optimize strength at service temper-

ature [15, p. 2] 

• Dilutes polymer entanglement network to soften 

the adhesive 

• Enhances adhesion [8, p. 908] 

 

Wax • Low MW, <2 kg/mol 

• Tg < room temperature 

• Crystalline 

• Lowers viscosity 

• Provides heat resistance 

• Increases setting speed to enable faster develop-

ment of strong adhesive bond 

• Some form crystallites that reinforce the hot melt 

by resisting deformation under load 

• Reduces the surface tension of the liquid adhe-

sive, enhance wetting properties 

• Increases water resistance [8, p. 908] 

Base polymer Advantages 

EVA Low cost, short to moderate open time, compatible with many substrates 

Polyolefins 
Good barrier against moisture, excellent chemical resistance, low cost, 

long open time, higher temperature resistance 

Polyurethanes 
Excellent solvent and chemical resistance, strong bonds, usable with ther-

mally sensitive substrates, long open time 

Polyamide 
Stable at high temperatures, good chemical resistance, compatible with 

many substrates, strong bonds 

Styrene block co-

polymers 

Optimal low temperature properties, good stability, compatible with most 

tackifying resins 
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As shown in the Table 3, EVA and polyolefins have the advantage of low cost. This also 

explains their popularity. They are primarily used in packaging [2, p. 21]. According to 

Dreger as cited by Ebnesajjad, polyamide and polyester based HMAs are sometimes re-

ferred to as “high-performance” HMAs and are used with a larger variety of adherends, 

including glass, leather and some metals. Some HMAs of these materials can be used as 

holding adhesives at even 150 °C. [9, p. 90] According to an article “Thermal cycling 

makes strong adhesive stronger” as cited by Ebnessajjad, polyesters have a distinct ad-

vantage of having sharp melting points, which makes high-speed manufacturing easier. 

Yet according to same article, both polyamides and polyesters suffer from being suscep-

tible to moisture. [9, p. 90] EVA is often added to polyamide to adjust its’ viscosity and 

lower the overall cost [8, p. 733]. 

Being a copolymer, EVA’s properties can be adjusted by changing the vinyl acetate 

amount. The vinyl acetate levels used in adhesives vary in the range of 6-40 % [11, p. 

442]. Usually EVAs used in HMAs include 28% vinyl acetate [8, p. 731]. Increasing the 

vinyl acetate content increases the adhesion ability, wetting and flexibility, but also price 

and setting time while heat resistance and cohesion become worse [8, p. 908]. Around 

40% of the total mass of EVA-based HMAs consists of the polymer [8, p. 731]. 

The purpose of the tackifier is to adjust viscosity and service temperature and enhance 

adhesion. Some renewable tackifiers are already seeing use, such as rosin esters and pol-

yterpenes. More common materials are derivatives of tall oil resin and synthetic hydro-

carbon resin. [15, pp. 3–4] Tackifier constitutes usually 10-25% of the total mass of the 

HMAs [8, p. 908]. The role of tackifier is to act as a solid solvent for the other ingredients 

in the adhesive. As such, they should not be able to pack too well with itself, since then 

it will be less prone to dissolve other materials. Low MW also increases the entropy of 

mixing with other ingredients which leads to stronger solvency power. Phenolic tackifiers 

are common in HMAs due to their chemical resistance and ability to form hydrogen 

bonds, which improves the adhesion to substrates capable of hydrogen bonding. [11, p. 

442] 

Waxes lower the viscosity of the HMA and improve its flow, making it easier to apply. 

They are also sometimes used to increase water resistance [8, p. 908]. The ones used in 

HMAs are typically petroleum fraction waxes such as paraffin wax [15, p. 5]. Fischer-

Tropsch waxes produces from synthesis gas are also commonly used [11, p. 443]. 

Antioxidants are often added to adhesives to protect them from free radicals, which can 

be formed from the polymer by heat or shear, among other things. One of the major 

groups of primary or free-radical scavenging antioxidants are hindered phenols, which 

form stable radicals due to electron resonance. In HMA manufacturing, it is typical to use 

antioxidants to stabilize all of the components (polymer, resin, wax) to ensure no changes 
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to their properties. Especially tackifier resins are susceptible to thermooxidative degrada-

tion. [8, pp. 440–454] Antioxidants usually consist of 0.2-0.5 % of the total mass of the 

HMA [8, p. 732].  

2.2.2 Advantages and disadvantages of hot melt adhesives 

HMAs are in many ways different from the adhesives used more commonly in everyday 

lives, such as tape and paper glue. HMAs are distinctively characterized by their high 

application temperature, lack of solvent and compatibility for high speed application. 

Some of the most prominent advantages and disadvantages of HMAs have been collected 

from the literature in Table 4. 

Table 4. Advantages and disadvantages of non-reactive HMAs  

compared to other adhesives. 

While the list of advantages does seem longer, hot melt adhesives are by no means the 

final solution of adhesives. For example, HMAs are used for metal gluing but there a 

different approach must be taken than when gluing wood or cardboard. With wood it is 

possible to simply apply molten HMA and press the pieces together. With metals having 

high thermal conductivity, the HMA might cool and set too fast. 

Advantages Disadvantages 

No water or organic solvents to be evaporated 

[8, p. 907]; so no need to invest in solvent re-

covery equipment [2, p. 17] 

Poor creep resistance: slowly creep under low 

load at far below the softening point [8, p. 

907][9, p. 112][11, p. 440] 

Formulation can be varied to achieve individ-

ual requirements, e.g. melt viscosity, applica-

tion temperature [8, p. 907] 

Low service temperature and heat resistance 

due to low softening point [8, p. 908][9, p. 112] 

Low safety requirements [8, p. 907]: non-vol-

atile [8, p. 730] and chemically nonreactive 

[11, p. 440] 

Certain substrates can be sensitive to the ele-

vated application temperature [8, p. 908] 

High-speed application: low set times, rapid 

curing by cooling, usually seconds [8, p. 

730][2, p. 17][11, p. 440]  

No solvent and cooling causes quick thicken-

ing, so limited ability to properly wet rough or 

porous surfaces and thermally conductive ma-

terials [11, p. 440] 

Broad adhesion; good bonding with wide vari-

ety of surfaces [2, p. 17][8, p. 907] 

 

Long shelf life [8, p. 907]  

High bond strength [8, p. 907]  

Generally high water resistance [2, p. 17]   
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2.2.3 Industrial use of hot melt adhesives 

As mentioned earlier, packaging industry is the largest user of HMAs with over 50% 

share. Paper and board packaging represent 34% of the whole packaging market [16, p. 

1], and the experimental focus of this Thesis is particularly in cardboard. In Finland pack-

aging production was valued over 1.6 billion euros in 2012, and 75% of this was exported 

abroad. There is a long-term project ‘Packaging Valley’, the aim of which is to help Finn-

ish packaging industry to rise to the top of the world. [17, pp. 2–5] 

Due to the high temperatures needed to work with HMAs, special application equipment 

is required. While there are variations in equipment, by basic principle there are two types 

of systems for applying HMAs: melt-reservoir and pressure-feed systems. [9, p. 189] 

In melt-reservoir system the HMA is loaded into a tank where it is melted. This melt is 

then pumped through an extrusion gun or application wheel to apply to the adherend. Its 

biggest advantage is its ability to hold large amounts of adhesive ready for use, while its 

drawbacks feature difficulties maintaining uniform temperature, especially when more 

adhesive is added, and the bond degrading due to too high temperature of the adhesive at 

the nozzle. [9, p. 190] 

Pressure-feed systems, also known as progressive-feed systems, operate with smaller 

amounts in a “first in, first out” method.  In them adhesives are melted and immediately 

transferred under pressure or mechanical force to the nozzle. A portable hot-melt gun 

sometimes used in crafting is an example of this. Pressure-feed systems bolster ad-

vantages of minimizing adhesive degradation due to their “first in, first out” system and 

they are more portable, especially in the case of a personal hot-melt gun. Their disad-

vantages are lower delivery rates and need of special arrangements to allow use for tacky 

or soft adhesives. [9, pp. 190–191] 

EVA-based hot melts tend to have relatively high melt viscosities and need special man-

ufacturing equipment. A Z-blade mixer with oil-heated jacketing is one way to work 

around this problem; this kneading action allows copolymers, resin and fillers to be rap-

idly dispersed even in a viscous compound. Once the product is homogenous, it is ex-

truded into ropes. These ropes can then be supplied into the next application equipment 

for use, or allowed to cool and be granulated into pellet form. Cooling is commonly 

achieved by water, so moisture must be eliminated before packing with an air-drying cy-

clone, for example. [8, p. 732]  

2.3 Testing of adhesives 

Since the effectiveness of an adhesive bond is quite straight-forwardly examined - the 

stronger the bond, the larger amount of force it takes to break it - testing is quite an es-

sential part of adhesive manufacturing. There are several different ways to test adhesive 
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bond strength which are listed in Table 5. The figures in the table represent the basic ideas 

of these bond test types: tensile, shear, peel and cleavage. There are of course more ways 

to design these tests, such as depicted in [8, pp. 228–237]. In addition to these tests, there 

are also other properties of the bond that are frequently tested. Those properties include 

creep, which means weakening of the bond due to static load; fatigue, weakening of the 

bond due to cycling of low and high load; impact, effect of sudden load; and durability, 

which contains all kinds of environmental effects. [9, pp. 276–278] 

Table 5. Adhesive test types, gathered from [9, pp. 273–276] 

Viscosity of adhesives is also an important parameter that has a major impact on the bond; 

with too low viscosity, the adhesive might too readily penetrate into the adherend and 

thus leave too little adhesive to form the actual bond. Yet with too high viscosity proper 

wetting will not happen, which will lead into low penetration into the adherend and con-

sequently into low or no mechanical interlocking. [8, p. 911] Poor penetration will lead 

into decreased bond area and this way into decreased bond strength. With hot melts, al-

tering the temperature might change the viscosity, so viscosity can theoretically be played 

around with. 

Durability contains environmental effects. These can range from temperature to humidity 

and chemicals. In the case of packaging, the major application for HMAs, adhesives 

might experience some temperature and humidity variety during transfer and possible 

outside storage. As mentioned earlier in chapter 2.2.2., one major drawback of HMAs is 

their low service temperature. One could argue that precisely for this reason knowledge 

of the heat resistance of a certain HMA can be very important. 

Bond test type Figure Properties 

Tensile 

 

Among the most common tests, even 

though other modes of load are preferred 

when designing the joint. 

 

Shear 

 

Very common due to simple manufacturing 

and testing of samples. 

Peel 

          

Intended for flexible adhesives and at least 

one flexible adherend, measures highly lo-

calized stress. 

180° peel on the left, 90° peel on the right. 

Cleavage 

 

Variation of peel where adherends are rigid. 
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For some adhesive uses, water resistance can be of importance, especially if the adhesive 

can be expected to be used outdoors. There are several different ways to measure this and 

literature of the field sees varied measurements. Frequently used test conditions were 

soaking at room temperature and boiling, as in literature examples [18, p. 329][19, pp. 2–

3]. In these literature examples, two different tests were conducted. Water-soaking-and-

drying test saw specimens soaking and drying under fume hood in room temperature. 

Boiling-water test saw specimens undergo a cycle of boiling, drying, boiling and water 

cooling, before being tested both wet and after fume hood drying. Also long drying in 

standard atmosphere after soaking can be utilized [20, p. 38] as well as soaking in elevated 

temperature [21, p. 3]. A European Union standard for non-structural thermoplastic wood 

adhesives classifies adhesive durability by its ability to retain a satisfying degree of bond 

strength after certain conditions. For example holding fast after seven days in standard 

atmosphere, six hours in boiling water and two hours in room temperature water is one 

of the requirements for achieving durability class D4. [22] 

Heat resistance is in its heart a simpler measurement. To measure that, adhesive bond 

strength is simply measured at an elevated temperature. In practice this measurement re-

quires a bit more sophisticated measurement devices to ensure the correct temperature. 

Test specimens simply taken from an oven and tested in room temperature offer merely 

a crude estimate. ASTM standard D 2295 [23] suggests using heat lamps or other uniform 

heat source. Other good alternative is to have an environmental chamber in your testing 

machine as seen here [24, p. 945]. 

2.4 Sustainable adhesives 

Before the era of petroleum, natural raw materials were used out of necessity. For exam-

ple, according to Delmonte as cited by Pizzi, a protein found in milk called casein, animal 

bones and starch were all used for adhesives in the 1800s [8, pp. 12–13]  As with many 

other natural materials, soy was industrially used in 1930s and 1940s, but the advantages 

of petroleum - cheaper cost and biochemical inertness of petroleum-based hydrocarbons 

- took over and caused industrial use of soy to collapse [25, p. 156]. 

Renewables gained more interest during the oil crisis in 1970s, but once the cost of oil 

decreased again, the interest decreased as well. Adhesives from renewable materials have 

been garnering interest for several years now, when concern for the environment has in-

creased. Then again, the rise of renewable resources has not been only because of envi-

ronmental issues, but also partly because of economic issues, as new regulations are being 

put in motion regarding synthetic adhesives. [26, pp. 829–830] Rising and unstable prices 

of petroleum have caused a switch of attention to other raw materials. This is especially 

true for renewable materials, where environmental changes are encouraged by offering 

discounts and subsidies. [14, p. 105] 
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This switch from petroleum to renewable materials should be easy in theory, since the 

technology to turn biomass into specific chemicals already exists. However, renewable 

polymers still only had 5% market share in 2016. This slow change can be attributed 

mainly to two reasons; renewable polymers often have inferior properties in lower me-

chanical properties and high hydrophilicity and they are still quite expensive to use in 

production compared to petroleum based polymers. [14, p. 105] The advantages of re-

newable materials - lower toxicity, biodegradability, ease of recycling - are drawn back 

by these weaknesses. There are also some risks in bio-based raw materials having differ-

ent yield when harvested in different locations and at a different time of year, creating 

potential instability in the material supply. [8, p. 901] 

If general change into renewable materials has been slow, it has been even slower in the 

adhesives industry. This is partly due to the fact that adhesives industry uses smaller vol-

ume of polymers compared to for example packaging industry. [14, p. 105] But with the 

renewed appreciation for renewable materials, the term ‘bio-based adhesive’ has come to 

only include “materials of natural, non-mineral, origin which can be used as such or after 

small modifications to reproduce the behaviour and performance of synthetic resins” [26, 

p. 830]. While these bio-based adhesives have been researched for quite some time now, 

major industrial use has not broken through yet in Europe - however, in southern hemi-

sphere plant-based phenols, tannins, are seeing industrial use in wood gluing [8, p. 903].  

There is interest in bio-based adhesives, but in general they are regarded as demanding 

novel technologies and methods to implement [8, p. 901]. There are already several re-

newable options for HMA’s main components commercially available today. Their rela-

tively small industrial use is caused mainly by lack of suppliers, high introductory prices 

and difficulties in reformulating, meaning they might have to be chemically altered before 

using as alternative to the original. [15, p. 3] Depending on the scale of these alterations, 

adhesives manufactured this way might not be bio-based adhesives as per the earlier def-

inition of ‘bio-based adhesive’, but they would still be a step in the right direction. Several 

times in literature the properties of an ideal bio-based adhesive are listed, and according 

to Petrie [15, p. 3] the list is originally from “a specification developed by The Procter & 

Gamble Company for a sustainable hot melt packaging adhesive”. These properties of 

ideal bio-based adhesive are listed below: 

• 100% renewable raw materials 

• Thermoplastic and elastic 

• Tg less than -10 °C 

• Low or no crystallinity (amorphous) 

• Is not stiff, stretches before breaking 

• Relatively low melt viscosity 

• Stable in molten form 

• Must meet all regulatory requirements depending on the application  
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• Price preferably lower than $5 per kilogram 

• Production scalable to 5 000 - 10 000 tons per year in 5 years 

As mentioned in chapter 2.2.2, HMAs already have some environmental benefits over 

other adhesives, namely the low energy consumption and absence of solvents. These ben-

efits continue as regarding renewable resources for adhesives, HMAs are on the front line. 

One of the big points of using sustainable adhesives is not only reducing the reliance on 

petroleum, but also making recycling easier. This forces us to consider one important 

parameter for bio-based HMAs; they should be “stable during storage, processing and 

application but should degrade rapidly once their purpose is served” [14, p. 108]. Largest 

problem in creating 100% renewable HMAs is that in general, biodegradable tackifiers 

and renewable polymers are not compatible [15, p. 5].  

Some natural tackifiers are already in use, which includes rosin derivatives and terpenes. 

They can both be produced from pine stumps and from Kraft process of pulping pine trees 

[27][28]. They are both compatible with some synthetic polymers such as EVA and acryl-

ics. Pine rosin can adhere to several different kinds of substrates while terpenes are ap-

proved for food contact and are very tacky when hot. Natural waxes are often based on 

plants, which use waxes to reduce the evaporation of water. While natural waxes exist 

and some HMAs using natural waxes were patented as early as 1975, they often struggle 

with having too low melting points. [15, pp. 4–5] 

Biopolymers used in HMAs today are primarily based on soy, starch, polylactide and 

polyamide. However, typically biopolymers from renewable sources lack elastomeric 

character. As a result those biopolymers require toughening agents or plasticizers to 

achieve greater flexibility. [15, pp. 5–6] 

Modified starch shows promise as a biopolymer for HMAs. Starch adhesives provide 

good adhesion to paper and wood due to starch’s similarity to cellulose and ability to form 

hydrogen bonds. Conventionally starch adhesives are not thermoplastic and suffer 

starch’s poor water and mold resistance, but there is research being made into circum-

venting these problems by chemical alteration. [14, pp. 113–115][15, pp. 6–7] One pos-

sible way is transglycosylation reaction between starch derivatives and alkanols as in this 

process patented by VTT [29].  

Cellulose, polymer consisting of glucose units, is extremely common material, being 

found in the cell wall of plant cells. Due to the number of hydroxyl groups, cellulose 

molecules tend to form hydrogen bonds between one another. This leads to crystalline 

structures, which do not dissolve in most common solvents. However, esterification and 

etherification of cellulose leads to compounds that can be dissolved. Some of these de-

rivatives are thermoplastic and have seen use in plastic and HMAs. Cellulose acetate bu-
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tyrate (CAB) for example is reported to be usable in HMAs and also solvent-based adhe-

sives. [8, pp. 492–496] Again, transglycosylation of cellulose derivatives has been found 

to increase processibility and biodegradability, and be usable for HMAs [30]. 

Aliphatic polyesters are a group that suits the need for easy recycling, as they have robust 

mechanical properties but are susceptible to degrade by hydrolysis. One such polyester is 

polylactide (PLA). Lactic acid, the monomer of PLA, can be produced by fermentation 

or by chemical synthesis. Lactic acid is a chiral molecule, and fermentation produces 

selectively either one of the isomers, while chemical synthesis produces a mixture of both 

[14, pp. 107–108]. Poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) are isotactic pol-

ymers where all monomers have the same tacticity, and poly(D,L-lactide) (PDLLA) is 

composed of both types of monomers. Chirality does not affect chemical properties, but 

can affect how biological systems handle the molecule.  

PLA can be degraded by composting which would mean easier recycling and potentially 

CO2-neutral life cycle. Melting point of PLA is quite high with 170 °C and it is fairly 

inflexible, which limit its use in adhesives. [31, p. 220] One way to combat these prob-

lems is copolymerizing lactic acid with ε-caprolactone [14, p. 108][15, p. 7]. Poly(ε-ca-

prolactone) (PCL) melts at around 61 °C and is very flexible [32], so it balances the dis-

advantages of PLA. Both polymers are biodegradable [33, p. 805], so the copolymer 

should be as well. At the moment PCL is mostly produced from petrochemicals, but since 

the technology exists to manufacture benzene from biomass [34] and ethylene can be 

produced from bioethanol [35, p. 1], PCL too can be completely bio-based. Poly(L-lac-

tide-co-ε-caprolactone) (P(LLA-CL)) with 81:19 molar ratio is reported to show excellent 

hot tack, long open time and moderate setting time when it was tested for usability in 

HMAs [31]. 

Regarding the natural raw materials for adhesives lignin is one of the most researched, 

especially concerning wood adhesives [26, p. 835]. Lignin is a class of large cross-linked 

phenolic polymers abundant in plants, second only to cellulose. Lignins are a large vari-

ation of different complex substances which presents us with a conundrum; there are no 

individual molecules that can be fixed to particular structures, ergo a generic lignin mol-

ecule for softwood or hardwood cannot be identified. The attractiveness of lignin is its 

abundance and cheap price - it is mostly produced as a by-product in wood pulping, esti-

mated 75 million tons per year. [8, pp. 904–906] The International Lignin Institute how-

ever estimates the production to be between 40 and 50 million tons per year, and this is 

mostly uncommercialized waste product. Industrially usable lignosulphonates and Kraft 

lignins are produced 500 000 tons and 100 000 tons per year, respectively. [36] 

Due to this vast supply, there is a lot of interest towards using lignin as raw material. It 

has not found large scale industrial usage yet, and most lignin-rich wastes are still burned 

for energy [8, p. 583]. Research has found, however, that it could be used to replace phe-

nols in phenol-formaldehyde resins [8, p. 588]. There has been research conducted in 
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VTT about using lignin as tackifier in HMAs, and it has been proven as a potential mate-

rial, especially with cellulose derivatives [6].  

2.5 Tannins as sustainable tackifiers 

Tannins are a group of phenolic molecules that are present in a large variety of different 

plants. As such, they could be playfully described as cousins of lignin; they both are a 

class of plant-based phenolic compounds. However, there are differences, as tannins’ his-

torical capability of tanning leather, for example. What follows is a brief explanation on 

what tannins are, where they are found and what they can be used for. 

First mentions of vegetable tannins, as they were known earlier, are credited to a plant 

encyclopedia by Greek botanist Theophrastus of Eressus around 300 BC [37, p. 587]. 

When searching for a definition of tannins, one notices that definitions vary. Dictionaries 

of Oxford, Collins, Cambridge, MacMillan and Merriam-Webster all give different defi-

nitions for the word ‘tannin’. Oxford’s Dictionary of Chemistry defines tannins as a 

“group of complex organic chemicals -- commonly found in leaves, unripe fruits, and the 

bark of trees. -- Some tannins have commercial uses, notably in the production of leather 

and ink.“ [38, p. 517] In literature, tannins are usually recognized as vegetable water sol-

uble polyhydroxyphenols which can coagulate proteins [8, p. 901].  A prime example of 

this coagulation, the act of tanning, happens by tannins “forming hydrogen-bonded cross-

linked structures with collagen molecules” [37, p. 588]. This widely accepted quality is 

quite problematic, however, since some compounds without this quality are nevertheless 

commonly accepted as tannins due to their molecular composition. At the moment, the 

most explicit way to define tannins seems to be in fact through molecular structure. 

2.5.1 Molecular composition 

Tannins are commonly divided into three distinctive classes of phenolic compounds: hy-

drolysable tannins, condensed tannins and phlorotannins. Sometimes phlorotannins, the 

most recently identified class, are omitted from the list; this might be caused by the fact 

that the ability of phlorotannins to tan animal skins into leather has not been proven [37, 

pp. 590–591]. Phlorotannins are present in marine brown algae [39, p. 1927] and are 

structurally easily defined: they are comprised of phloroglucinol units which are attached 

to each other by carbon or ether bonds. Some variations with additional bonds or hydroxyl 

groups are possible. [40, p. 327] Figures 3 and 4 show a phloroglucinol and tetrameric 

phlorotannin, respectively. 
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Figure 3.  Phloroglucinol.  

 

 

Figure 4.  Tetrameric phlorotannin. 

 

Condensed tannins are more prevalent and constitute around 90% of total world produc-

tion of commercial tannins with 200 000 tons per year [8, p. 569]. Condensed tannins 

consist of at least two subgroups, procyanidins and prodelphinidins, though also a third 

group, profisetinidins, have been mentioned [41]. Procyanidins consist of stereoisomers 

(+)-catechin and (−)-epicatechin, the structures of which are depicted in Figure 5. The 

structure of prodelphinidins’ stereoisomeric main units, (+)-gallocatechin and (−)-epigal-

locatechin is shown in Figure 6. There are also other, smaller groups of condensed tannins 

where the main units may be missing one or more hydroxyl groups. Example of procyani-

din polymer is given in Figure 7. [40, p. 328] 

 

 

Figure 5.  Molecular structures of (+)-catechin (left) and (−)-epicatechin (right). 
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Figure 6.  Molecular structures of (+)-gallocatechin (left)  

and (−)-epigallocatechin (right). 

 

 

Figure 7.  Example of procyanidin polymer consisting of (−)-epicatechin monomers. 

 

Arguably the most complex group of tannins are the hydrolysable tannins, which are di-

vided into gallotannins, ellagitannins and simple gallic acid derivatives. Simple gallic 

acid derivatives contain up to five galloyl groups which are usually esterified to glucose 

or quinic acid. If there are six or more galloyl groups, they are defined as gallotannins. 

Figure 8 depicts gallic acid, esterified group of which is called galloyl group. Figure 9 

presents heptagalloyl glucose, a simple gallotannin. [40, pp. 328–329] 
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Figure 8.  Gallic acid. 

 

 

Figure 9.  Heptagalloyl glucose. 

 

Ellagitannins are much more common in plants than gallic acid derivatives and gallotan-

nins. They are also very diverse; over 500 ellagitannin structures have been reported, 

which can be divided into six slightly different subgroups. The basic common building 

blocks in ellagitannins are glucose, galloyl group and hexahydroxydiphenyl group, which 

is the bonded form of ellagic acid. [40, pp. 329–330] Ellagic acid and an example ellag-

itannin in corilagin are depicted in Figures 10 and 11, respectively. Some ellagitannins 

have trouble binding proteins at low or neutral pH, and are therefore problematic regard-

ing the common definition of tannins [40, p. 327]. 
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Figure 10.  Ellagic acid. 

 

 

Figure 11. Corilagin. 

 

As shown, tannins compose of a myriad of different compounds. Fortunately the com-

pounds are chemically quite similar in regards to their functional groups. This means it is 

possible to relatively reliably know what kind of reactions they will undergo, even if the 

exact molecular composition is unknown. 

2.5.2 Sources 

Tannins can be found in a plethora of plants, both flowering and seed-producing, and in 

lesser extent in fungi, algae and mosses. They are found in all types of plant tissues serv-

ing different causes; in the roots tannins are found under the epidermal layer and act as a 

protection against pathogens; in the trunk tannins are found in the areas of active growth 

where they regulate said growth; inside the seeds tannins contribute to the maintenance 

of dormancy; in the fruits and leaves tannins serve as a natural line of defense by provid-

ing an astringent flavor to reduce animals’ appetites. [41] However, largest sources of 
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commercial tannins are barks of various trees, which are rich in condensed tannins [8, p. 

569]. 

In January of 2018, a Finnish magazine reported that annually Finnish forest industries 

produce 3 000 000 tons of softwood bark, and at the moment they are mostly burned for 

energy [42]. In year 2016 77 million cubic meters of wood was used in Finland, 88% of 

it in wood industry. Of the wood industry’s by-products, 12 million cubic meters are used 

in energy production. [43] Over 7 million cubic meters of this was bark [44]. 

Dry matter of spruce bark contains circa 10% tannin [45, p. 70]. In the hypothetical state 

where this 10% is applicable to all bark, theoretically some 700 000 cubic meters or 

300 000 tons of tannins are available from wood industry per year. These tannins would 

be primarily from Finnish softwood, which means Norway spruce (Picea abies) and Scots 

pine (Pinus sylvestris). In his 1977 article [46, p. 1425], Bate-Smith concluded that gym-

nosperms - which include both spruce and pine - produce only condensed tannins. This is 

quite fortunate, because hydrolysable tannins have several disadvantages; “lack of mac-

romolecular structure in their natural state, the low level of phenol substitution they allow, 

their low nucleophilicity, limited worldwide production, and higher price“ all severely 

limit their chemical and economical potential [26, p. 830]. 

Commercial tannin extracts are produced from bark of various tree species, including 

several from Acacia, Schinopsis, and Pinus families. [8, p. 569] Extraction can be done 

in a reactor where hot water with a small amount of extraction chemicals is circulated 

through the bark. Water temperature is in the 55-90 °C range, and sodium bisulfite and 

sodium carbonate can be utilized as extraction chemicals. [47, p. 159] This extraction 

solution also includes sugars, pectins, amino acids and other substances. [8, pp. 901–902]. 

As an example, usually circa 75 % of commercial wattle bark extracts are active phenolic 

ingredients. The rest is mostly simple sugars and hydrocolloid gums. These impurities are 

of course unwanted and pure tannins would be preferred, but industrial fractionation of 

tannin and the nontannin fraction has proven to be difficult. [8, p. 573] 

Synthesis of tannins has been widely researched as well. Condensed tannins consist of 

many oligomeric products formed from flavanol units by condensation reactions through 

a biomechanism that is not yet fully understood. Controlling the degree of polymerization 

and the regio- and stereochemical features prove to be difficult, however. This has been 

approached by several stepwise-condensation processes, most of which are based on an 

alkylation process to connect a flavan-3-ol derivative to a nucleophilic flavan-3-ol unit. 

Of hydrolysable tannins’ sub-group gallotannins, only ‘simple’ gallotannins are reported 

to be able to be synthetized. Ellagitannins, another sub-group of hydrolyzed tannins, are 

reported to be readily synthetized using esterification of gallic acid or hexahydroxydiphe-

noic acid and diol derivative of glucose.[37, pp. 607–611] 
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2.5.3 Properties and usage 

As mentioned earlier in chapter 2.5.2, bark from wood industry and tannins within are 

burned for energy in Finland. However, while the heating value of bark is on the same 

level as the rest of the tree, it is weakened as fuel due to heterogeneity and high amounts 

of water and ash [48, p. 83]. Worldwide tannins are still mainly used for leather tanning 

[8, p. 569].  

Tannins function as antioxidants. This ability is caused by several different mechanics; 

they can chelate metal ions that are involved in producing OH• radicals or they can inhibit 

enzymes that generate reactive non-radical oxygen compounds such as O2
−•, but the ma-

jor way for phenolic compounds to quench radicals is electronic delocalization through-

out the molecule. This stabilizes the phenolic radicals so that they are mostly unreactive 

and as such terminate the radical chain reaction. The strength of polyphenols’ antioxidant 

abilities depend on the atomic structure of the molecule and its ability to stabilize by 

resonance. [37, pp. 596–597] This ability is simplified and portrayed in Figure 12. How-

ever, polyphenols are also reported to have prooxidant properties under certain circum-

stances [49]. 

 

Figure 12. Resonance stability of phenolic radical. 

 

Tannins have been reported to have both carcinogenic and anticarcinogenic properties, 

and some tannins have also been reported to have antimutagenic properties. Both anticar-

cinogenic and antimutagenic properties may be related to tannins’ antioxidative property 

and ability to protect cellular components from oxidative damage. Different tannins have 

been reported to inhibit a large variety of bacteria, fungi and yeast. These antimicrobial 

properties may be caused tannins’ tendency to inhibit certain enzymes and impair absorp-

tion of vitamins and minerals. [50, pp. 426–443] 

These attributes have lead tannins to also be widely used in oenology to increase the lon-

gevity of red wine, protect vineyards from fungi, precipitate metals from wines and inhibit 

micro-organismic growth by enhancing the antimicrobial properties of sulfur dioxide. 

Tannins are also used in cosmetics and pharmaceutical industries for their antioxidant and 

anticarcinogenic properties. [41]  
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There have been also other interesting possibilities for the use of tannins. Research has 

suggested it could be used to recover uranium from seawater due to immobilized tannin 

having high selective adsorption ability to uranium [51]. There has also been a suggestion 

of investigating the use of tannin and other polyphenols as “prodrugs” against diseases 

such as cancer due to their ability to act as pro-oxidants under certain conditions. Cancer 

cells in general are characterized by a higher level of reactive oxygen species which could 

potentially be taken advantage of to preferentially kill cancer cells [52, p. 105]. Tannins 

could theoretically be developed for this purpose. [37, p. 614] 

In chapter 2.4 it was mentioned that lignin could be used to replace synthetic phenols in 

phenol-formaldehyde (PF) resins. Tannins possess the same ability due to their phenolic 

nature, which allows cross-linking by formaldehyde in a polycondensation reaction [53, 

p. 186]. There are several mentions in literature about partially substituting phenols in PF 

with tannins. But unlike lignin, tannin can also be used alone with formaldehyde to create 

PF-like adhesive. [8, pp. 903–906] Another part of the SusBinders project was a proof of 

concept whether Finnish softwood tannins could be used for these formaldehyde resins, 

and initial results were promising [54]. 

Interesting discovery – or lack thereof – regarding this Thesis was that no mention was 

found about using tannins as major component in HMAs. Considering tannins are used 

in other kinds of adhesives even on industrial level, this was quite surprising. This Thesis 

work thus presents for the first time the implementation of tannin as major component in 

HMAs. 
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3. MATERIALS AND METHODS 

3.1 Materials 

Tannins used in this Thesis were extracted at an earlier part of the SusBinders project. 

Crude Spruce Tannins (CST) and Crude Pine Tannins (CPT) from Finnish spruce (Picea 

abies) and pine (Pinus sylvestris) bark were used. CST and CPT composed of 40-45 % 

and 30-35 % tannins, respectively. Carbohydrate contents were 35-40 % for CST and 40-

45 % for CPT. Molecular weight of CST was 3.4 kg/mol compared to 1.9 kg/mol of CPT. 

[55, p. 11] Thermogravimetric analysis with heating rate of 5 K/min had been conducted 

on both CST and CPT, and degradation began around 200 °C.  Mass losses of 5 % were 

achieved at temperatures 212 °C and 216 °C, and mass losses of 10 % were achieved at 

temperatures 237 °C and 244 °C, for CPT and CST respectively. These properties are 

listed in Table 6 below. 

Table 6. Properties of crude tannins of SusBinders project. 

Property CST CPT 

Tannins (%) 40-45 30-35 

MW (kg/mol) 3.4 1.9 

Temperature with 5 % 

mass loss (°C) 
216 212 

Temperature with 10 % 

mass loss (°C) 
244 237 

Carbohydrates (%) 35-40 40-45 

 

Due to the high amount of sugars, the enzymatic purification of the crude tannins has also 

been examined as another part of the SusBinders project. The sugars are expected to de-

crease the efficacy of tannins and thus HMAs with purified tannins instead of crude tan-

nins are expected to be stronger. Purified and ultrafiltered tannins used in this Thesis are 

Purified Spruce Tannins (PST) and Purified Pine Tannins (PPT).  

Two different copolymers (Co1 and Co2) of lactic acid and ε-caprolactone were used in 

this Thesis. These poly(D,L-lactide-co-ε-caprolactone) (P(DLLA-CL)) were polymer-

ized in another VTT project. Their polymerization procedure is confidential and not pre-

sented in this Thesis. 

Commercial chemicals used are listed in Table 7. Cellulose acetate (CA), cellulose acetate 

propionate (CAP) and cellulose acetate butyrate (CAB) and their oxidized derivatives 

CA-Ox, CAP-Ox and CAB-Ox were used in material testing as renewable polymers. In 
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cellulose esters cellulose’s hydroxyl groups have reacted to form esters. Oxidation reac-

tions were done with hydrogen peroxide before the start of this Thesis. Waxes used be-

long to one of two categories. Triethyl citrate (TEC), tributyl O-acetylcitrate (CITRO) 

and Soft-N-Safe acetid acid ester (SNS) were different acid esters while Sasolwax H1 and 

C80 were used as synthetic Fischer-Tropsch waxes. 

Table 7. Commercial chemicals used. 

As reference, a commercial HMA was used. Also two commercial tannins from Silvateam 

S.p.A., two commercial resins and a reference EVA were later used.  These materials are 

presented in Table 8 below. 

 

 

 

Chemical Product Name Manufacturer Product Code 

PLA Polylactide NatureWorks LLC Ingeo 4060D 

PCL Poly(ε-caprolactone) Sigma-Aldrich Product number 704105 

EVA 
Poly(ethylene-co-vinyl ace-

tate) 
Sigma-Aldrich Product number 437220 

TEC Triethyl citrate Sigma-Aldrich Product number 27500 

CITRO Tributyl O-acetylcitrate Sigma-Aldrich Product number 388378 

SNS 
GRINDSTED® SOFT-N-

SAFE Acetic Acid Ester 
DuPont Material number 175540 

H1 Sasolwax® H1 Sasol Limited  

C80 Sasolwax® C80 Sasol Limited  

CA Cellulose Acetate  EastmanTM CA-398-3 

CAP 
Cellulose Acetate Propio-

nate  
Eastman™ CAP-482-20 

CAB Cellulose Acetate Butyrate Eastman™ CAB-321-0.1 

Palmitic 

acid chlo-

ride 

Palmitoyl Chloride 98% Aldrich CAS 112-67-4 

N,N-dime-

thylforma-

mide 

N,N-dimethylformamide 

>99.8% 
Sigma-Aldrich CAS 68-12-2 

Triethyla-

mine 
Triethylamine >98%  Fluka CAS 121-44-8 
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Table 8. Reference materials. 

Material Abbreviation Product 

Commercial Tannin 1 CT1 Silvateam S.p.A. Fintan OP 

Commercial Tannin 2 CT2 Silvateam S.p.A. Fintan Q 

Commercial Resin 1 CR1 Ester of hydrogenated rosin 

Commercial Resin 2 CR2 Ester of hydrogenated rosin 

Reference HMA REF EVA-based HMA 

Reference EVA REF-EVA Commercial EVA with a melt index of 

400 and a vinyl acetate content of 28% 

 

Adherend material used in this Thesis was mainly commercial folding boxboard (FBB). 

FBB had a coated white side and an uncoated light brown side, as seen in Figure 13 below. 

 

Figure 13. Commercial FBB used in this Thesis. 

 

Other materials used as adherends were borosilicate glass, cloth with linen and cotton, 

aluminum foil, poly(ethylene terephthalate) film and birch veneers. 

3.2 Methods 

3.2.1 Manufacturing the adhesives 

In the so-called try-out phase, adhesive formulations were manufactured by weighing the 

materials in a small glass vial or a beaker. The mixture was then heated in an oil bath and 

stirred with a wooden spatula until homogenous melt was achieved. For the strength 

measurements the formulations were done with a DACA Instruments (USA) microcom-

pounder to ensure homogeneity, if possible. For the microcompounder, mixing time was 

set to 10 minutes, mixing force was maximum 5 Newtons and mixing speed was 100 

rounds per minute. For some materials beakers were still used due to their tendency to 

aggressively stick to materials. 
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In the try-out phase small FBB strips of approximately 25 mm x 40 mm were used and 

adhesive was applied on an area of approximately 25 mm x 10 mm. Three pairs were 

glued per try-out formulation. For strength measurements, FBB was cut into 70 mm x 15 

mm strips. For each separate measurement, ten pairs were cut and numbered. All strips 

were marked with code to represent the adhesive formulation or test condition. On one 

strip of each pair a 20 mm area was marked for the adhesive. Diagram of the test strips is 

seen in Figure 14. 

 

Figure 14. Diagram of test strip pair #1 for adhesive formulation 43. 

 

For gluing, adhesive formulations were heated in oil bath. Once the mixture was molten 

or at least soft enough, it was spread on the designated area on the FBB strip and another 

FBB piece was then pressed on top. The glue bond was always formed between coated 

and uncoated side of the FBB, unless otherwise noted. Glued pieces were briefly pressed 

against the heat plate to ensure enough bonding that the pieces would not separate while 

transporting, then set in oven for 10 minutes under weight of 5.3 kg. Oven temperature 

was set as the same temperature as the oil bath. After this, the glued strips were allowed 

to set in 23 °C and 50% relative humidity (RH) for several days before conducting 

strength measurements. 

3.2.2 Strength testing 

For try-outs, adhesive strength was tested by hand. The glued test specimens were peeled 

open and the resistance or lack thereof was noted. The formulations that indicated notable 

resistance were then taken to second round of testing with strength measurements. 
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The strength measurements of the HMAs were conducted in VTT’s standard atmosphere 

laboratory (23 °C and 50 % RH) using universal testing machine Lloyd Instruments Ad-

vanced Materials Testing System LS5 by Ametek (USA) with constant crosshead speed 

of 100 mm/min. The machine is shown in Figure 15. 

 

Figure 15. Universal testing machine used in strength measurements. 

 

Most of the measurements were done using 180° peel and using a 100N sensor. Four sets 

of measurements were done in shear mode, where a 1000N sensor was used instead. 

Measurement modes are given in Figure 16. 10 parallel tests were conducted for each 

experiment, and both average and standard deviation were noted. For all different meas-

urements, REF was also measured. FBB peel strengths with REF showed 100% cohesive 

failure in the adherend. This is also called fiber tear, as mentioned in chapter 2.1.1. 
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Figure 16. Strength measurement modes used. 

 

Peel testing measures the ability to resist localized stress. So comparing maximum meas-

ured peel load to the total mass of the adhesive gives accurate information only if the 

adhesive layer is assumed to be uniformly thick.  This assumption cannot be done due to 

the hand-made nature of these test specimens. Mass-related strength does, however, allow 

quantifying how easy the adhesive is to spread. High viscosity and difficult to spread 

means more mass. 

It was discovered that some adhesives showed pressure-sensitive properties, ergo they 

had the ability to be re-glued simply by pressing. This pressure-sensitivity or re-adhesion 

phenomenon was first tested by simply pressing them in hand and measuring the opening 

again. Later on this was standardized into holding them under weight of 2,5kg for one 

minute.   

Nearly all the tests in this Thesis have been done on commercial FBB. It was decided to 

briefly test the adhesion properties to some other materials as well. Borosilicate glass, 

poly(ethylene terephthalate), aluminium foil and linen-cotton cloth were tested by hand. 

Birch veneers were cut into suitable pieces, glued and their shear strength was measured. 

3.2.3 Viscosity 

Viscosity was measured with Cone & Plate Viscometer by Research Equipment (London) 

Ltd using temperature of 150 °C. Measurement was allowed to run for at least 20 seconds 

or until the value had stabilized. Some specimens were aged in a oven for 24 hours in 

their given temperature. 

3.2.4 Characterization 

For characterization, differential scanning calorimetry (DSC) measurements were con-

ducted on several different materials and compounds. Measurements were done on Met-

tler-Toledo (USA) DSC 2, using 2-10 mg of material and 40 µl aluminium crucibles. 

Method is depicted in Figure 17. 
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Figure 17. DSC method. 

 

The method consisted of a 20 minute drying and a heating-cooling-heating curve. The 

drying temperature was 105 °C and the temperature change rate was 10 K/min. DSC 

measurement was done in nitrogen gas flow of 80.0 ml/min. 

3.2.5 Esterification of Tannin 

For the esterification reaction, a two litre glass reactor was set up with mixer and cooling. 

Spruce tannin, N,N-dimethylformamide and trimethylamine were added to the reactor. 

Once the mixture was cooled to 0 °C, palmitic acid chloride was slowly added through a 

dropping funnel. After this the cooling was stopped and the mixture was allowed to react 

overnight. In the morning the mixture was moved to a large decanter glass and sediment 

was allowed to descend. Mixture was centrifuged for 10 minutes at 4500 rpm and washed 

four times, until it no longer smelled like organic solvent and left very little color in the 

water. It was then allowed to dry in a hot air oven in 38 °C for 72 hours before it was 

ground with a mortar. 

Tannin ester was measured by DSC, using the same method as described earlier, and by 

solid state 13C Nuclear Magnetic Resonance (NMR) using an Agilent (USA) DD2 600 

NMR spectrometer. The 13C cross polarization magic angle spinning (MAS) NMR meas-

urements were performed with magnetic flux density of 14.1 T. The spectrometer was 

equipped with a 3.2 mm T3 MAS NMR probe operating in a double resonance mode. The 

samples were packed in ZrO2 rotors and the MAS rate in experiments was 10 kHz. Using 

a 1.3 ms contact time and a 6.0 s delay between scans, the samples were scanned 8000 
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times. SPINAL-64 proton decoupling with a field strength of 80 kHz was used to decou-

ple protons during acquisition. -glycine was used to calibrate Hartmann-Hahn match for 

cross polarization and 90 degree pulse durations. The spectra were processed using Top-

Spin 3.5 software. 

3.2.6 Water resistance 

Test conditions for water resistance were taken from European Standard EN 204:2001 

[22]. Conditioning sequences 2 and 4 were used to test the effect of room temperature 

water. Sequence 2 consists of 7 days in standard atmosphere (23 °C and 50% RH), 3 hours 

in water at (20±5) °C and another 7 days in standard atmosphere before measurement. 

Sequence 4 consists of 7 days in standard atmosphere, 4 days in water at (20±5) °C and 

again another 7 days in standard atmosphere before measurement. 

3.2.7 Folding boxboard properties 

Hydrophobicity of FBB was measured with Attension Theta by Biolin Scientific (Fin-

land) using Contact Angle (Young-Laplace) Analysis and 4.000 ul drop size. Hydropho-

bicity was determined by measuring contact angle of water. FBB was allowed to gain 

balance in 23 °C and 50% RH overnight before it was measured in the same conditions. 

Contact angle was first measured once for 100s for both coated and uncoated sides of the 

FBB, after which it could be seen that no change happened after first ten seconds. Thus 

contact angle measurements for 10s were made for both sides. 

Thickness of FBB was measured with Micrometer 51 by L&W (Sweden). Measurement 

was repeated for three different A4 sized FBB pieces, five measurements each. 

Roughness of FBB was measured with Bendtsen Tester by L&W (Sweden). Measurement 

was done using four different A4 sized FBB pieces, totalling 10 measurements per side. 
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4. RESULTS AND DISCUSSION 

4.1 Phase 1: Screening of cohesive polymers and waxes 

The purpose of the first phase was to test formulations with different polymers and waxes 

with SusBinders tannins to determine which material combinations could potentially 

work as a HMA. For this, commercial FBB was used as a standard adherend. The prop-

erties of FBB are presented below in Table 9. The contact angle with water shows that 

FBB is hydrophobic.  

Table 9. Commercial FBB properties. 

Measurement Average Standard deviation (%) 

Thickness 343 µm 5.8 

Roughness - uncoated side 434 ml/min 8.1 

Roughness - coated side 19 ml/min 26.0 

Contact angle with water 

- uncoated side 

100° 5.6 

Contact angle with water 

- coated side 

86° 1.7 

Mass per area 200 g/m2 (value from manufacturer) 

 

The method of manufacturing the adhesives have been introduced earlier in this Thesis. 

The 7 different polymers and 5 different waxes used in the phase 1 are listed in Table 10 

below. Motivation for the polymer selections are discussed below in separate subchapters. 

The tannin was standardized to be CST throughout the phase 1. This decision was based 

on CST having higher tannin content than CPT, as seen in Table 6 in chapter 3.1. Thus 

adhesives with CST were assumed to have better properties and were regarded as a better 

starting point. 

Table 10. Materials used in screening phase. 

Polymer Wax 

poly(ethylene-co-vinyl acetate) (EVA) triethyl citrate (TEC) 

oxidiced cellulose acetate (CA-Ox) tributyl O-acetylcitrate (CITRO) 

cellulose acetate butyrate (CAB) acetic acid ester (SNS) 

oxidized cellulose acetate butyrate (CAB-Ox) Fischer-Tropsch hard wax #1 (C80) 

poly(D,L-lactide-co-ε-caprolactone)  

formulation 1 (Co1) 

Fischer-Tropsch hard wax #2 (H1) 

poly(D,L-lactide-co-ε-caprolactone)  

formulation 2 (Co2) 

 

50:50 mixture of polylactide (PLA) 

and poly(ε-caprolactone) (PCL) 
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Before the start of this Thesis, there had already been some manual testing of different 

materials. As per those tests, six different formulations had been manufactured with a 

microcompounder in temperature of 140 °C. These formulations are depicted in Appen-

dix A, noted as P-1 through P-6. The peel strength measurement for these formulations 

was conducted before the screening, and the results were used as a basis for the new 

formulations. The results of these preliminary tests and the phase 1 are depicted and dis-

cussed together, divided according to the polymers used in the formulations. 

During the phase 1 a total of 40 different formulations were mixed and heated, and of 

those 19 showed potential and were applied to small FBB strips. This first round delivered 

non-quantitative results as all adhesive formulations were tested for resistance simply by 

tearing by hand. The formulations and notes can be seen in Appendix A. 

After this first round of manual testing, six most promising formulations were selected 

for quantitative testing as will be discussed in chapters 4.1.1-4.1.3. Larger batches of these 

adhesives were produced with a microcompounder when possible to assure homogeneity. 

Mixing settings were introduced in chapter 3.2.1, and the melt temperature was used both 

as mixing temperature and as gluing temperature. This temperature is noted as “Temper-

ature” in Appendix A and following tables.  

4.1.1 Poly(ethylene-co-vinyl acetate)  

Formulations based on EVA, the most prominent polymer in HMA industry, are dis-

cussed in this chapter. EVA with synthetic Fischer-Tropsch waxes H1 and C80 proved to 

be a potential formulation, especially with a higher wax content. The formulations with 

the other three of the selected waxes did not function as HMAs. Formulation with TEC 

was impossible to spread and formulations with CITRO and SNS showed no adhesive 

properties. In Appendix A, EVA-based formulations can be seen with IDs 1-3, 7-8 and 

16-17. 

Formulations 16 and 17 utilizing H1 and C80 with EVA were selected for quantitative 

analysis due to being notably strong in the manual testing. These formulations were com-

posed of 22% EVA, 28% CST and 50% wax, and were melted and glued in 160 °C. These 

properties and the results of the peel strength measurements are shown in Table 11 and 

Figure 18, respectively. In the column ‘Fiber tear’ is marked the amount of specimens, 

where fiber tear was observed. The vertical axis of Figure 18 and other such Figures in 

this Thesis depict the measured peel strengths of the HMA formulations in Newtons. REF 

of Figure 18 was a commercial HMA for packaging applications, which was used as a 

reference point for the measurements in this Thesis. REF-EVA of Figure 18 was a pure 

EVA copolymer with different properties than what was used in formulations. This was 

done because the EVA used for compounding did not melt in suitable temperature for 

gluing. 
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Table 11. Properties of EVA-based HMAs. 

ID Materials used Mass ratio Temperature Fiber tear 

16 EVA - CST - H1 22 : 28 : 50 160 °C No 

17 EVA - CST - C80 22 : 28 : 50 160 °C 1 of 9 

 

 

Figure 18. Peel strengths of EVA-based HMA formulations. Due to high varia-

tion, maximum strengths of the formulations are also shown. 

 

While the measurements showed that formulation 17 was stronger than 16, the measure-

ments showed high variation in maximum load. For formulation 17, there was a single 

very strong measurement but others were considerably weaker. This strong measurements 

was also the only fiber tear of these formulations. Due to the strength in the manual test-

ing, it was believed that these low results were caused simply by suboptimal gluing con-

ditions leading to poor wetting between adhesive and adherend. As mentioned in chapter 

2, good wetting increases the contact area and thus enables stronger adhesion. Thus it was 

believed that small corrections in the gluing conditions could lead to proper wetting and 

reliable adhesion. 

Therefore formulation 17 was tested several times with different gluing conditions in an 

attempt to find the optimal conditions. All the measurements run only ever had one or 

zero strong specimens, however. There does seem to be potential to use tannin as a drop-

in tackifier in synthetic HMAs, but this potential could not be realized in this Thesis. Due 

to this low reproducibility, it was decided to abandon work on formulation 17 and move 

forward with other materials. 
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4.1.2 Cellulose esters 

In this chapter, the formulations with cellulose derivatives as polymers are presented. 

Oxidized cellulose acetate had proven to work in HMA formulations with lignin [6], so 

similar results were expected also with tannins. In the pre-Thesis testing cellulose esters 

CA, CAP and CAB and their oxidized versions were all used with TEC as wax. These are 

noted in Appendix A with IDs P-2 to P-6. This was continued in phase 1 by using the 

most promising ones, CA-Ox, CAB and CAB-Ox, with new waxes. 

Formulations with CA-Ox are numbered 11-14 and 40 in Appendix A. Formulation 40 

with TEC as wax was re-testing of formulation P-4, and it was also the only formulation 

utilizing CA-Ox to melt. Formulations with CAB are numbered 20-24. The ones with 

synthetic waxes H1 and C80 did not lead to a homogenous melt and had no adhesion 

ability. The others could be glued, and formulations 21 and 22 did exhibit a notable level 

of adhesion. Formulations with CAB-Ox are numbered 25-29 and behaved similarly to 

CAB. Synthetic waxes did not work but also other waxes lead to very weak adhesion. As 

such, formulations 21 and 22 were selected for further quantitative analysis. The proper-

ties and peel strength measurements of selected formulations and earlier formulations P-

2 to P-6 are shown in Table 12 and Figure 19, respectively. As can be seen, TEC caused 

the formulations to melt in a lower temperature than the other waxes. 

Table 12. Properties of cellulose ester based HMAs. 

ID Materials used Mass ratio Temperature Fiber tear 

P-2 CAP - CST - TEC 26 / 34 / 40 160 °C No 

P-3 CAB - CST - TEC 21 / 29 / 50 160 °C No 

P-4 CA-Ox - CST - TEC 26 / 34 / 40 160 °C No 

P-5 CAP-Ox - CST - TEC 21 / 29 / 50 160 °C No 

P-6 CAB-Ox - CST - TEC 21 / 29 / 50 160 °C No 

21 CAB - CST - CITRO 22 / 28 / 50 180 °C No 

22 CAB - CST - SNS 22 / 28 / 50 180 °C No 
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Figure 19. Peel strengths of cellulose ester HMA formulations. 

 

Two interesting discoveries were done. Formulations 21 and 22 experienced a clean ad-

hesive failure and the adhesive could be peeled off the FBB as a solid brown film. Also 

formulation P-6 was noted to be able to readhere when pressed together after opening. 

While this pressure sensitivity or readhesion was fairly weak, it could hold on to a variety 

of different materials: FBB, wooden office desk, denim jeans, cotton shirt and even metal. 

It could also adhere to a concrete wall, where the adhesion was relatively strong. This led 

to keeping an eye out for other adhesives with similar ability. 

The results of these peel strength measurements were quite clear, however. Formulation 

P-4 with CA-Ox and TEC proved multiple times stronger than the others, but even it 

achieved no fiber tears. The others all showed relatively similar weak strengths. Formu-

lations with CAB and CAB-Ox had shown potential in the manual testing before this 

Thesis and therefore their weakness was relatively surprising. While formulation P-4 was 

strongest of the cellulose ester HMAs, it was overshadowed by other, more promising 

formulations and as such studying it was not continued.  

As tannins did not achieve proper adhesion with cellulose derivatives, one part of the 

original hypothesis was rebutted. This was quite surprising because as previously men-

tioned, lignins had worked quite well with cellulose derivatives. Formulations with lignin 

and cellulose derivatives had reached strengths over twice of that of formulation P-4’s. 

[6, pp. 17–20] 
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4.1.3 Polylactide and poly(ε-caprolactone) 

This chapter presents the formulations including PLA and PCL. Before the start of this 

Thesis, both PLA and PCL were inspected for possible use as polymers. PLA’s melting 

point was considered too high for formulations, but PCL was tested and measured as 

formulation P-1. As mentioned in chapter 2.4, P(LLA-CL), a copolymer of these two, is 

reported to have shown promise for use in HMAs. Two different copolymers produced in 

another project in VTT were tested. These poly(D,L-lactide-co-ε-caprolactone) com-

pounds were coded Co1 and Co2. Co1 was hard and sticky in room temperature and ag-

gressively tacky when heated; Co2 had cohesion similar to honey in room temperature 

and as such was not expected to work well in HMAs. Formulations with these are num-

bers 30-39 and 41-44 in Appendix A. 

Formulations with Co1 seemed to follow the same pattern as cellulose esters; Fischer-

Tropsch waxes did not produce a homogenous melt while the other waxes did. Even the 

formulations with the other waxes had low adhesion, however, with some breaking off 

even before testing. Co2 was only tested with the one wax that seemed to work best with 

Co-1, but it showed no adhesive strength. 

After this it was decided to test these copolymers and tannins without adding wax. For-

mulations with 60% copolymer and 40% tannins melted at suitable temperature. Formu-

lation with Co2 showed no adhesive strength, but formulation with Co1 showed strength 

similar to pure Co1. As an added bonus adding tannin made the handling enormously 

easier; pure Co1 was aggressively tacky when heated while mixture with tannin was much 

easier to handle and clean.  

It was also tested whether simply melting the polymers together would cause them to 

bond and cause a sort of “pseudo-copolymer”. For this, 0.5 g of both PLA and PCL was 

melted in a glass vial in oil bath, let cool and melted again. Melting the combined system 

did not happen in a lower temperature, however.  

The effect of adding wax to the PLA-PCL mixture for reducing its melting point was 

tested by adding 0.5 g of TEC. The mixture started releasing vapour at around 180 °C, 

and investigating literature [56] revealed that PLA starts to deteriorate at lower tempera-

tures in presence of TEC. Thus it was concluded that the vapour was lactic acid which 

has boiling point of 122 °C. Hence the PLA-PCL mixture was used with other waxes. 

This 50:50 mixture of the polymers was tested in formulations 4-6 and 9-10. Mixtures 

with Fischer-Tropsch waxes H1 and C80 did not melt at suitable temperatures. The other 

waxes CITRO and SNS did allow gluing, but the adhesive strength was deemed too weak. 

As such, formulation 43 with Co1 and CST was selected for quantitative analysis with 

pure Co1 as reference. The properties of formulations P-1, 43 and pure Co1 are shown in 

Table 13 and the peel strengths are shown in Figure 20. 
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Table 13. Properties of polylactide or poly(ε-caprolactone) based HMAs. 

ID Materials used Mass ratio Temperature Fiber tear 

P-1 PCL - CPT - TEC 26 : 34 : 40 160 °C No 

43 P(DLLA-CL) - CST 60 : 40 150 °C 3 of 10 

Co1 P(DLLA-CL) 100 140°C 3 of 7 

 

 

Figure 20. Peel strengths of HMA formulations based on  

PCL or P(DLLA-CL). 

 

The results of the quantitative measurements were promising. Co1 and Co1-CST HMA 

both achieved higher maximum loads than the reference HMA, REF. To keep in mind is 

the fact that all specimens with REF opened with fiber tear, while only part Co1 and Co1-

CST HMA did so; mostly they opened with cohesive failure in adhesive. It is believed 

that REF achieved fiber tear faster due to more rigid form; the more elastic copolymer 

absorbed some of the force to elongate the adhesive. And while both pure copolymer and 

copolymer-tannin mixture achieved similar strengths, adding tannin caused a notable dif-

ference in handling. Co1 in itself was difficult to handle due to its aggressive tackiness 

and its tendency to leave fine tails and filaments. After adding tannins the mixture was 

significantly easier to handle due to the fact that it turned into a paste that left no tails or 

filaments when handled. 

Notable were also the pressure-sensitive properties of Co1 and Co1-CST HMA; those test 

specimens that did not result in fiber tear could be reattached by pressing them together. 

This phenomenon was tested only manually in this phase, but it was considerably strong. 

More detailed studies were performed later on as reported in chapter 4.6. There was also 

no major difference detected between the peel strengths of Co1 and Co1-CST HMA. An-

other point of interest in this formulation is its probable biodegradability; as mentioned 
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in chapter 2.4, P(DLLA-CL) is believed to be biodegradable, and tannin as biomaterial 

is. Thus Co1-CST HMA as their combination is believed to be a biodegradable HMA. 

Due to strong adhesion and interesting properties, Co1-CST HMA was selected for fur-

ther studying. 

4.2 Phase 2: Mass ratio and aging 

After the quantitative results were promising with formulation 43, the biodegradable two-

component adhesive, this formulation was taken into more serious consideration and var-

iation of mass ratio was tested. Different mass ratios were compared; mixtures with  

50%, 60%, 70%, 80% and 90% Co1. Of these, only 50% did not melt but all others 

seemed to be nearly equally strong, as is seen below in Figure 21.  

 

Figure 21. Peel strengths of Co1-CST HMAs using aged copolymer. Mass ra-

tios are noted Co1:CST. 

 

As seen from the graphs, all the formulations are relatively close to each other strength-

wise. The temperature needed to achieve a homogenous melt decreased as amount of 

copolymer increased. The level of peel strength was notably less than what formulation 

43 achieved in phase 1, however. The explanation for that was that the Co1 sample was 

stored at room temperature for several weeks. This had caused it to deteriorate; this is 

widely reported in literature to be caused by hydrolysis of the ester group in the copoly-

mer. This deteriorating has been earlier observed and methods for tackling this issue have 

been suggested [31, p. 220]. As 70:30 seemed like the best mass ratio, it and the original 

60:40 were then mixed again, this time using copolymer that was stored in the freezer. 

The results of that experiment are given below in Figure 22. 
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Figure 22. Peel strengths of two Co1-CST HMAs. Mass ratios are noted 

Co1:CST. 

 

Now the strength of the glue bond is again on the level it was earlier in Phase 1. 60:40 

and 70:30 are still relatively even. However, formulation with 70% copolymer had some 

advantages; it was notably less viscous and as such was much easier to handle. This lead 

to thinner, lighter and more uniform layer of adhesive. Gluing conditions were also 10 °C 

lower for the HMA with 70% copolymer. An interesting note in this test is that all speci-

mes in this measurement suffered fiber tear compared to 3/10 in the first quantitative 

measurement for Co1-CST, as noted in Table 13 in chapter 4.1.3. This reinforces the 

notion that the copolymer deteriorates quite fast in room temperature. Based on the results 

more detailed studies were conducted on Co1-CST HMA with 70% copolymer. 

4.3 Variation of adhesive amounts and adherend surfaces 

The effect of amount of HMA and cardboard coating was studied. It has been suggested 

that  smaller amounts of adhesive are stronger [57], and this interesting notion was de-

cided to be tested. The amount of adhesive was tested with three stages; first it was spread 

like in previous measurements, and in later measurements it was deliberately tried to use 

a smaller and even smaller amount. These test specimens are noted below as ‘Normal’, 

‘Less’ and ‘Least’. The results of these measurements are given in Figures 23 and 24. 
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Figure 23. Peel strengths with different amounts of Co1-CST HMA. 

 

It can be clearly seen that first decreasing the amount of glue had a positive impact on the 

bond strength, but further decreasing returned it to its original state. This is backed by the 

load per weight results presented below in Figure 24; first decrease had considerably 

stronger effect than second decrease. In this Figure the vertical axis depicts the measured 

peel strengths per mass in Newtons per gram. The methods of bond failure changed ac-

cording to the HMA amount; originally there were 9/10 cohesive failures in adherend, 

but that amount decreased to 7/10 and finally to 5/10 when HMA amount decreased. This 

is an interesting result, as with higher peel strength it would have been logical to also 

have a higher degree of fiber tear. 

 

Figure 24. Peel strengths per mass with different amounts of Co1-CST HMA.  
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These numbers are quite different compared to the reference HMA REF, however; REF 

measured at over 700 N/g and averaged approximately 31 g/m2. This is partly because 

compared to tannin HMAs, REF is extremely easy to spread very thinly and extra adhe-

sive tended to be forced out in the gluing process. Tannin HMAs, however, resembled a 

thick paste and thus naturally accrued a thicker layer than REF. And while some extra 

adhesive was forced out in the case of tannin HMAs as well, it is evident that a larger 

amount was left in the adhesive layer. This is most likely caused by the thicker nature of 

the tannin HMAs. It should be remembered that the developed HMA with Co1 and CST 

was rather a HMA prototype compared to commercial HMA. It is expected that the 

spreadability can be improved by further development and additives. 

FBB used in this Thesis had different surfaces on its sides as earlier noted. White coated 

sides and natural coloured uncoated sides. As all earlier testing had been between coated 

and uncoated sides of the FBB, measurements were now done between two similar sides. 

Results are seen in Figure 25.  

 

 

Figure 25. Peel strengths on different surfaces. 

 

The results of this experiment are quite interesting. It is clear that the different surfaces 

behave differently, with coated sides having slightly stronger bonds. What cannot be seen 

from the figure is the effect the coating had on the opening itself. In the coated measure-

ment, all specimens but one opened with fiber tear. Yet in the uncoated measurement not 

a single specimen opened with fiber tear; all suffered cohesive failure in adhesive. This 

indicates that the adhesive experiences stronger adhesion to the coating layer than the 

coating does to the cardboard itself. Figure 26 shows a close-up picture of a fiber tear. 
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The thin coating layer can clearly be seen on the left, while clear FBB is visible on the 

right. 

 

Figure 26. Picture of fiber tear on Co1-CST HMA with 40x zoom. 

 

It was also decided to measure the shear strength of the adhesive and the reference HMA 

to further see how well they compare. This experiment was done between coated and 

uncoated surfaces. Both adhesives were strong enough to cause the FBB to break at ap-

proximately 100 N. 

4.4 Stability and water resistance 

Due to Co1 degrading by hydrolysis and tannins being water-soluble, the water resistance 

of the Co1-CST HMA was measured. As mentioned earlier, the degradation of the copol-

ymer of lactic acid and caprolactone is widely reported in literature to be caused by hy-

drolysis of the ester group. This hydrolysis can be catalysed by the carboxylic acid end 

groups [58, p. 640]. In literature it is also mentioned that ε-caprolactone and DL-lactide 

have been copolymerized to achieve faster degradation rates [59, p. 770]. There are some 

ways to stabilize the polymers; hydrophobic aliphatic end-capping groups seem to have 

an effect by decreasing the polymer’s ability to absorb water [60, p. 442], while at the 

same time also preventing the carboxylic acid end groups from catalysing the hydrolysis. 

Peroxides have also been reported to stabilize PLLA [61], so this could also be tested for 

the copolymer. 

The test specimens were held in room temperature water for 3 hours or 4 days as per the 

methods described in chapter 3.2.6. The results are given in Figure 27 below. 
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Figure 27. Peel strengths after soaking the specimens in room temperature 

water. 

 

As seen from above, only a small difference was observed in the peel strengths of soaked 

specimens. Even though Co1 was not protected against hydrolysis, the HMA held well. 

This leads to two questions; does water soaking hasten the rate of hydrolysis and does the 

HMA degrade at the same rate as pure Co1? As from this experiment it is unclear, whether 

the decrease in peel strength is due to a change in the adhesive or in the FBB, as all the 

test specimens ended in fiber tear. The water used in the measurement gained a strong 

brown hue which leads to believe that at least some tannins were dissolved. 

While tannins may or may not affect the hydrolysis degrading Co1, they should have 

other properties affecting the stability. Tannins function as antioxidants by having stabile 

phenolic radicals as mentioned in chapter 2.5.3. Antioxidants are often added to adhesives 

for stability. Tannins could potentially function as both components at the same time. 

This would however require more research. 

4.5 Comparison of tackifiers 

The formulation with 70:30 Co1-tackifier was tested with other project tannins, reference 

tannins and reference resins. Using the same 70:30 mass ratio, eight different mixtures 

were manufactured using eight different materials, listed below: 

• Crude Spruce Tannin (CST) 

• Crude Pine Tannin (CPT) 

• Purified Spruce Tannin (PPT) 

• Purified Pine Tannin (PST) 

• Commercial Tannin 1 (CT1) 
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• Commercial Tannin 2 (CT2) 

• Commercial Resin 1 (CR1) 

• Commercial Resin 2 (CR2) 

In Figure 28 below, pictures of different mixtures can be seen. Leftmost picture is of pure 

Co1 which is transparent. Second is the light grey mixture with CR2; the mixtures with 

commercial resins had the advantage of being easier to spread than any mixture with 

tannin. The middle picture shows mixture with CT1 and the one to its right is the Co1-

CST HMA. Both of these seem dark brown, even black in the pictures. In reality, CT1 

gave the compound a reddish brown color while Co1-CST HMA is indeed dark brown. 

Later the light brown color of Co1-CPT HMA will be seen. The last picture on the right 

is the reference HMA, REF. As can be seen, all other pictures show droplets; REF started 

solidifying faster than others which led to it leaving thin filaments and not forming a 

round droplet. 

 

 

Figure 28. Examples of HMA appearance. From left to right: Co1, Co1 + 

CR2, Co1 + CT1, Co1 + CST, REF. 

 

All mixtures were tested both between coated and uncoated and between two uncoated 

sides. This latter was done due to the fact that coated-uncoated measurements tended to 

end in fiber tear; uncoated-uncoated measurements, as seen earlier, ended in cohesive 

failure in the adhesive and as such could potentially better show improvements in the 

adhesives. Results of testing on coated-uncoated surfaces are shown in Figure 29, and 

results from two uncoated surfaces are shown in Figure 30. The results for REF and Co1 

from earlier testing were included to the graphs for reference.  
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Figure 29. Peel strengths and peel strength per adhesive mass of Co1 HMAs 

with different tackifiers between coated and uncoated sides of FBB. 

 

 

Figure 30. Peel strengths and peel strength per adhesive mass of Co1 HMAs 

with different tackifiers, measured between two uncoated sides of FBB. 
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In general it is quite clear that stronger adhesion happens when at least one of the surfaces 

is coated, as was previously noted. From the results it is also evident that tannins are more 

compatible with Co1 than the commercial resins used in this Thesis. The peel strengths 

of all formulations with tannins are relatively close to each other in the measurement 

between coated and uncoated surfaces. But when the adhesion was measured between 

two uncoated surfaces, this changed. Formulation with CST is the only formulation that 

shows the same level of peel strength on both occasions. Also commercial tannins’ de-

crease of peel strength is larger than that of CPT. This is an interesting notion. As men-

tioned in chapter 3.1, crude tannins were expected to form weaker HMAs than pure tan-

nins due to their carbohydrate content. Yet here the effect seems to be reverse. A possible 

explanation is that the carbohydrates in fact contribute to the adhesion capabilities due to 

their ability to form hydrogen bonds. These bonds would then positively contribute to the 

adhesion. 

This could partially explain why enzymatically purified tannins did not prove to be 

stronger in this formulation. Another effect could be caused by freeze-drying of the solu-

tions that caused the solid purified tannins to be considerably less dense than the crude 

tannins. Due to that the usual 70:30 mass ratio mixture did not melt. To achieve melting, 

copolymer had to be added until there was 14% and 21% tannins, for Spruce and Pine 

respectively. They achieved similar properties, especially maximum load per weight, as 

crude tannins, except between uncoated sides where their peel strength was inferior. As 

such purifying tannins for this formulation was not beneficial and can be omitted. 

There was also quite strong differences in how well the mixtures seemed to blend. This 

is where the commercial resins had an advantage over tannins; the formation of homoge-

nous mixture between Co1 and commercial resins led to easier spreading. Conversely, 

commercial tannins were unable to form a homogenous mixture; especially Co1-CT2 

HMA looked more like a heterogeneous dispersion. This heterogeneity lead to difficulties 

in spreading the adhesive which in turn lead to increased mass and thus lower strength 

per mass. This problem was also visible with CPT. Figures 31 and 32 below show the 

difference between formulations with CST and CPT. 
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Figure 31. Co1-CST HMA on cardboard after opening. Co1-CST created a 

seemingly homogenous dark brown paste. 

 

 

Figure 32. Co1-CPT HMA on cardboard after opening. Co1-CPT did not 

achieve homogeneity, and small tannin particles can be seen. 

 

CST, which had been used so far, created a visually homogenous dark brown paste. CPT, 

however, did not achieve the same level of homogeneity, but was quite “crunchy” and it 

appeared as if some tannin particles did not mix with the copolymer. These particles are 

notably visible in the figures above, and even better visible in the microscope pictures in 

Figures 33-35 below. These pictures show HMA formulations with CST, CPT and PPT 

and show the level of homogeneity of Co1-tannin HMA. 
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Figure 33. Picture of Co1-CST HMA with 40x zoom. 

 

 

Figure 34. Picture of Co1-CPT HMA with 40x zoom. 
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Figure 35. Picture of Co1-PPT HMA with 100x zoom. 

 

In Figure 33 the dark brown paste of Co1-CST HMA that appeared homogenous to human 

eye is revealed to be heterogenous in the micrometer scale. The paste is lumpy and small 

particles can be seen throughout the picture. These same particles can be assumed to be 

the cause of the lumps in the paste. Co1-CPT HMA depicted in Figure 34 shows compa-

rably larger particles as could be expected based on Figures 31 and 32. While the bulk in 

bottom right seems quite homogenous, even there very small particles can be seen. In 

Figure 35 the picture of Co1-PPT HMA shows small flakes of purified tannins within the 

copolymer, and here the heterogeneity is very strongly visible.  

4.6 Pressure sensitivity in readhesion 

The pressure sensitivity observed earlier in Co1-tannin HMAs was investigated by meas-

uring the peel strength of repeatedly opened and closed bond. While the phenomenon was 

weak in formulation P-6 with which it was first observed, it did lead to testing all future 

formulations of this same affinity. The adhesive bond was closed after each measurement 

by keeping it under a weight of 2.5 kg for one minute in room temperature. Pressure 

sensitivity was measured between uncoated surfaces to prevent fiber tear on opening. 

Measurements of Co1-CST HMA, Co1-CPT HMA and pure Co1 are depicted below in 

Figures 36 and 37. 
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Figure 36. Peel strengths of repeated closing and opening of tannin HMAs and 

pure copolymer between uncoated surfaces. 

 

 

Figure 37. Peel strengths per adhesive mass of repeated closing and opening 

of tannin HMAs and pure copolymer between uncoated surfaces. 

 

These results suggest that tannins enhance the adhesive ability of Co1 against uncoated 

FBB surface. This could be partially caused by the carbohydrates in crude tannins, as 

discussed earlier. More drastic difference is the effect on pressure sensitivity caused by 

adding pine tannins. Co1-CPT HMA had approximately twice as strong adhesive ability 
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after re-closing the bond compared to Co1-CST HMA or pure Co1. In the loads per 

weight figure, again the homogeneity and the ability to be spread can be seen; Co1-CST 

HMA was easier to spread than Co1-CPT HMA. This could be seen in the opened speci-

mens in Figures 31 and 32. While Co1-CST HMA was quite uniformly spread on the 

surface, Co1-CPT HMA seemed to have a tendency to clump a bit more, creating an 

uneven layer of adhesive. Whether this tendency is related to pine tannins’ superior ca-

pability to readhere after opening, is an interesting question and could potentially be stud-

ied. 

4.7 Viscosity 

Viscosity for selected materials was measured to gain better knowledge on how viscosity 

of HMA affects its spreadability. Measurements were also done for aged HMAs to eval-

uate HMA stability. Viscosity was measured for materials listed below: 

• REF 

• Co1-CST HMA 

• Co1-CST HMA, aged 24 hours in 60 °C 

• Co1-CST HMA, aged 24 hours in 140 °C 

• Co1-CT1 HMA 

• Co1-CR2 HMA 

• Co1 

Results are presented in Table 14.  

Table 14. Viscosity measurements. 

Material Viscosity (g cm-1 s-1 (poise)) 

REF 6,2 ± 0,1 

Co1-CST HMA 3,9 ± 0,6 

Co1-CST HMA, aged in 60 °C 4,3 ± 1,4 

Co1-CST HMA, aged in 140 °C 3,3 ± 0,6 

Co1-CT1 HMA Could not be measured. 

Co1-CR2 HMA 4,3 ± 1,8 

Co-1 1,7 ± 0,3 

 

HMA with commercial tannin could not be measured, as it did not melt homogenously 

on the measurement device and remained as a layer on the top part of the device. It was 

observed that reference HMA was quite uniform, as expected, and also very viscous. Pure 

copolymer was quite fluid and the viscosity increased rapidly when adding other materi-

als. Some of these results were unexpected. The reference HMA was so easy to spread 

that it was expected to have low viscosity. Likewise the disparity of the spruce tannin 

HMAs were surprising. A possible explanation is that unaged HMA and the one aged in 
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melt temperature remain quite homogenous, and aging in 60 °C makes the HMA lose its 

homogeneity and thus increases viscosity. 

The developed HMA specimens were in a suitable viscosity range when compared to 

REF. The HMA viscosity range of 3.9−4.3 g cm-1 s-1 measured here is also comparable 

to the reported viscosity of starch-based HMA developed by VTT. HMA with purified 

transglycosylated starch acetate and TEC measured viscosity range of 3.2−5.2 g cm-1 s-1 

[29, p. 23].  

4.8 Alternative adherend materials 

In this chapter alternative adherend materials, birch veneer, cotton-linen cloth, borosili-

cate glass, poly(ethylene terephthalate) and aluminium foil, were evaluated. During the 

manual testing of these materials, the note of HMAs weak creep resistance became obvi-

ous. When materials were glued together in a 180 peel configuration, sharp and strong 

pulls did not seem to do much. However, constant slow pull opened all the peel config-

urated bonds quite easily. Adhesion on poly(ethylene terephthalate) and aluminium foil 

was noted to be on a weak but acceptable level. Adhesion on linen-cotton cloth was quite 

strong and especially the shear mode held well. 

Adhesion on borosilicate glass could not be tested, as the glass proved to be too fragile 

and was broken too easily. However, during a viscosity testing a piece of adhesive had 

become stuck in the bottom of a glass vial, and the vial was shattered in the attempt to 

wrangle it free. This incident does suggest that the adhesive does indeed adhere to glass 

quite well. 

Birch veneers were glued with REF and Co1-CST HMA in shear configuration and the 

bond strength was measured. Results for Co1-CST HMA are presented in Figure 38. REF 

held until the machine’s safety limit of 900 Newtons and as such no data is available. This 

showed that Co1-CST had weaker adhesive strength than REF. 
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Figure 38. Shear strength on birch veneer. Adhesive bond was re-closed by 

keeping it under 2.5 kg for one minute. 

 

As the adhesive suffered a cohesive failure, it was pressed again under 2.5kg for one 

minute before measuring the shear strength again. The results seen above match the re-

sults of pressure sensitivity testing for Co1-CST HMA. With uncoated FBB, the readhe-

sion loads were approximately 35% of the initial load while here the later loads were 

approximately 40%.  

4.9 Esterification of Tannin 

Esterification of lignin with tall oil fatty acids has been researched at VTT. The esterified 

lignin together with oxidized cellulose acetate achieved peel strengths comparable to 

other formulations, without needing a wax component. [6, pp. 22–23] This so called in-

ternal plasticizing was a matter of interest for tannins as well, so spruce tannin was ester-

ified with palmitic acid, saturated fatty acid with 16 carbons. 

The esterified tannin powder was tested with several formulations. Using it in tannins’ 

place in formulation 43 did not create a plausible mixture; esterified tannins remained on 

the surface of the molten copolymer. Also mixtures of 50:50 and 20:80 of EVA and es-

terified tannin were tested; these formulations did mix together but had no adhesive 

strength. And upon testing formulation 17 with EVA, esterified tannin and C80, it was 

noted that the mixture formed bubbles. This is assumed to be caused by ester degrading, 

because the esterified tannin was dried for 72 hours and as such should not contain water. 

Due to the results of these tests, work with esterified tannins was not continued. The DSC 

and NMR measurements of esterified spruce tannin are given in Figures 39 and 40, re-

spectively. 
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Figure 39. DSC measurement of esterified spruce tannin. Black line represents 

the first heating run and the red line represents the second heating run. 

 

Esterified spruce tannin shows two melting points around temperatures 50 and 75 °C. 

Due to the change of intensities between heating runs, it is assumed that there were dif-

ferent forms of crystallization in the sample, and during cooling one form is preferred. 

There can also be different esters present, as condensed tannins have several hydroxyl 

groups where the ester bond can be formed. These different esters would explain the 

shoulders of the melting peaks. 
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Figure 40. Solid state 13C NMR measurement of esterified spruce tannin. 

Peaks marked with asterisks were determined to be spinning sidebands. 

 

In Figure 40, the peaks marked with an asterisk were determined to be spinning sidebands. 

These artifacts may appear in solid state 13C NMR at multiples of spinning speed. The 

strong peaks around 13-33 ppm all correspond to aliphatic C-C bonds of the palmitoyl 

side group, and peak at 180 ppm corresponds to carbonyl of the ester group. The fact that 

these are intensive compared to the other peaks of the spectrum suggests that the esterifi-

cation rate was very high.  

Comparing this measurement to a NMR result of condensed tannin from Picea mariana 

bark, some peaks not related to the palmitoyl ester can be assigned. Peak at 142 ppm 

could be assigned to tannin’s aromatic carbon with a hydroxyl group, and peak at 103 

ppm to aromatic carbon with hydrogen. [62, p. 4] However, tannins should present several 

more peaks around 100-160 ppm. It is probable that some of the spinning sidebands are 

in fact actually measurement peaks that are coincidentally at the locations of spinning 

sidebands and that the low wide peak around 120 ppm is caused by aromatic carbons. 

Also no clear cause could be discerned from literature for the peak at 52 ppm; however 

its intensity suggests that it is common in the structure of the ester.  
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4.10 Thermal properties 

The thermal properties of different materials were evaluated by DSC. The different ma-

terials are depicted in Table 15. 

Most of the graphs are depicted here and discussed in more detail. Graphs of EVA, C80 

and commercial tackifiers are shown in Appendix B. In some measurements there are 

disturbances below room temperature; these were caused by an unknown problem in the 

DSC machine but deemed minor enough that repeated measurements were unnecessary.  

Table 15. DSC measurement test subjects. 

Raw materials Tannins and reference materials Adhesives 

EVA PST REF 

C80 PPT Co1-CST HMA 

Co1 CT1 Co1-CT1 HMA 

Aged Co1 CT2 Co1-CR2 HMA 

CST CR1  

CPT CR2  

 Esterified Tannin  

 

Figures 41-43 depict DSC measurement of both CST and PST, both CPT and PPT, and 

both commercial tannins, respectively. Figures 44-45 show measurements of P(DLLA-

CL) and its aged version, respectively. Figure 46 depicts DSC curves of mixtures of 70% 

P(DLLA-CL) with CST, CT1 and CR2, and Figure 47 presents the DSC measurement of 

reference HMA. 

 



61 

 

Figure 41. DSC measurements of spruce tannins. 

 

 

Figure 42. DSC measurements of pine tannins. 
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Figure 43. DSC measurements of commercial tannins. 

 

These measurements of Figures 41-43 show that tannins lack any distinct features on their 

DSC curves. The crude tannins’ graphs closely resemble the DSC of tannin from Acacia 

dealbata depicted here [63, p. 3189]. Interestingly the PST graph shows a high exother-

mal peak at 235 °C. This peak could be related to degradation of tannin; as noted in chap-

ter 3.1, CST and CPT started to degrade in temperatures over 200 °C. 

 

  

Figure 44. DSC measurement of Co1. 
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Figure 45. DSC measurement of aged Co1. 

 

The aged Co1 specimen of Figure 45 was stored in the laboratory for several weeks while 

the temperature was 25-30 °C due to the high summer temperatures. The effect of aging 

and deteriorating can be seen in the glass transition temperature of the copolymer. The 

temperature has decreased by several degrees. While this seems like a small change, the 

effects are evident when comparing Figures 21 and 22 in chapter 4.2. Also evident from 

these graphs is Co1’s thermoplastic nature; there is no clear melting point but instead it 

softens when heated. 

 

 

Figure 46. DSC measurements of Co1 HMAs with different tackifiers. 
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Figure 46 depicts DSC curves of Co1 HMAs with CT1, CST and CR2. It seems that the 

thermal properties of the Co1 HMAs are mostly those of Co1. Only notable change is the 

change in heat capacity (noted as ‘Delta Cp’ in the graphs) in the glass transition. It de-

creased in all mixtures and quite significantly in the case of Co1-CT1 HMA. 

 

Figure 47. DSC measurement of REF. 

 

The melting is clearly visible in the DSC graph of REF in Figure 47. No glass transition 

could be identified from the graph. The relatively wide melting range explains the form-

ing of long thin filaments as seen in figure 28 in chapter 4.5, as some parts of the melt 

will solidify at higher temperatures. 
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5. CONCLUSIONS 

The formulation of HMA with tannins as component was experimentally studied by 

measuring the peel strength of adhesive formulations between commercial cardboard. It 

was concluded that tannins could be used to affect the properties of poly(D,L-lactide-co-

ε-caprolactone) (Co1) without decreasing its adhesive capabilities, and that this mixture 

could be used as a HMA for cardboard. This mixture is believed to be biodegradable. Co1 

in itself was difficult to handle due to its aggressive tackiness and its tendency to leave 

fine tails and filaments. As mentioned in chapter 2.2.1, this tendency can be caused by a 

wide molecular weight distribution. After adding tannins the mixture was significantly 

easier to handle due to the fact that it turned into a thick paste that left no tails or filaments 

when handled. The added tannins also increased the viscosity. 

Adding tannins increased the adhesion properties towards uncoated surface of commer-

cial FBB. This could be caused by hydrogen bonding between tannins and the surface of 

the FBB. The most interesting finding, however, was the effect of tannins in the readhe-

sion properties of the formulation. When an adhesive bond of pure Co1 was opened, it 

could be closed again by simply applying pressure. Adding pine tannins increased the 

strength of the reclosed adhesive bond. There was a distinct difference between pine and 

spruce tannins in this regard, as spruce tannins did not cause such increase. The cause of 

this effect is unknown. It can be caused by the molecular differences of the tannins due 

to different origins or the difference in the homogeneity. It was noted that the mixing 

mechanism used in this Thesis resulted in heterogeneity in the micrometer scale. The 

effect of homogeneity and heterogeneity should be studied in more detail. 

As for the research questions introduced in the beginning of this Thesis, the research con-

cluded that using cellulose derivatives as the base polymer with crude tannins results in 

weak adhesive properties. The research also suggests that the prospect of using crude 

tannins as simple ‘drop-in’ alternatives of established tackifiers does not seem probable 

with the selected materials used in this Thesis. Formulation 17 with EVA and C80 did 

show potential, however, and was only plagued by reproducibility issues. This potential 

should be revisited in an attempt to actualize it. Using EVA with different parameters and 

different mass ratios could be tested as well as purified tannins. 

This Thesis was conducted using crude spruce tannins, and other tannins were only used 

as comparison on the final formulation. Other tannins, crude pine tannins and purified 

tannins, appear to behave differently. Thus it is recommended that research on the other 

tannins should include new screening, even if same materials are used. Also research on 

different adherend surfaces would be interesting for future studies. Most of the experi-

ments in this Thesis were conducted between commercial FBB due to the prevalence of 
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HMAs in packaging. The adhesive capabilities of Co1-CST HMA between cotton-linen 

cloth and borosilicate glass were only tested by hand, but they appeared quite strong.  

A point of interest is the first formulation where pressure sensitivity was noticed; formu-

lation P-6 with CAB-Ox and TEC showed weak adhesive strength but could adhere to a 

wide variety of materials. Especially the strength of adhesion towards a concrete wall was 

an interesting notion. 

Sources of potential imprecision in this Thesis must be kept in mind. Firstly, all spreading 

of adhesives was done by hand due to the lack of small scale adhesive testing equipment. 

Even though great care was taken in attempts to achieve an adhesive layer as smooth as 

possible, uneven spreading could not be fully avoided. This means that no adhesive layer 

tested in this Thesis is uniform and that no two test specimens were exactly alike. As 

such, adhesives with high viscosity or high heterogeneity were the most affected by this. 

Most tannin based HMAs had one or both of those disadvantages. This also had the effect 

of the amounts of adhesive to be quite high. Even when trying to spread as little adhesive 

as possible, the amount of Co1-CST HMA was almost five times as high as REF. The 

imprecision of manual work also affected the Co1-based HMA formulations; due to its 

aggressive and tacky nature, the formulations were not mixed in a microcompounder. 

Instead they were manually heated and mixed in an oil bath, which by its very nature is 

more prone to less homogenous mixture. This could be seen in Co1-CPT HMA, for ex-

ample, as it could have been more homogenous if it had been able to be done in a micro-

compounder. Another issue to keep in mind is the degradation of the copolymer. While 

care was taken to minimize the time the copolymer had to degrade before measurements, 

it is possible to have affected the measurements conducted on the copolymer. 

This Thesis aimed to function as a laboratory scale proof of concept of the hypothesis that 

tannins could be used as tackifiers in HMAs. This hypothesis was proven with the copol-

ymer of lactic acid and caprolactone. The potential of the formulation with EVA and C80 

should also be remembered. This Thesis also cannot address the potential of purified tan-

nins in the role of tackifier. Nevertheless, more research must be done before the pro-

spects of tannins in HMAs can be really determined. Further research should include pol-

ymers and waxes not tested in this Thesis, such as polyurethanes, and a proper mixing to 

achieve homogenous compounds. 
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APPENDIX A: MATERIAL TESTING NOTES 

Table A1. Material testing notes from screening in phase 1.  
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APPENDIX B: ADDITIONAL DSC GRAPHS 

Figure B1. DSC measurement of poly(ethylene-co-vinyl acetate) (EVA). 

The graph closely resembles that found in “Curing kinetics of EVA using DSC, DMA 

and model free kinetics”, Thermal Analysis Application No. UC 312 by METTLER TO-

LEDO. Glass transition is not clearly visible, but seems to be at around −40 to −30 °C. 

Examining the sample after measurement showed that it had not completely melted but 

instead was a softened granule. 
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Figure B2. DSC measurement of hard Fischer-Tropsch wax C80. 

A relatively sharp melting peak is clearly visible at 84 °C. 
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Figure B3. DSC measurement of commercial tackifiers CT1 and CT2. 

Glass transition temperatures can be seen at around 40 and 55 °C. No melting peak is 

visible, but sample granules had turned changed into film layer during the measurement. 

 

 


