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The thesis was a literary review of two public key cryptosystems, RSA and elliptic curve
cryptosystem (ECC). Its main focus was on their key generation as well as their use in
key exchange and digital signatures, looking into the efficiency of these operations.

RSA is a scheme based on the hardness of integer factorization with large numbers, us-
ing exponentiation as its base operation. ECC is based on a discrete logarithm problem
implemented on a geometric curve, and it uses point addition as its base operation.

Elliptic curves provided the same level of security with keys that are shorter by an order
of magnitude, but RSA had more generally usable encryption possibilities as well as more
optimised implementations for digital signatures.

The results showed elliptic curves to have a significant edge against RSA in the future of
public key cryptography, but RSA still outclasses ECC in digital signatures.
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TERMS AND ACRONYMS

Alice, Bob General names used for two people wishing to establish a secure con-
nection

Oscar A general name used for an attacker wishing to eavesdrop on Alice
and Bob

AES Advanced Encryption Standard, symmetric block cipher established in
2001

ECC Elliptic Curve Cryptography

RSA Public-key encryption system designed by Rivest, Shamir and Adle-
man

NIST National Institute of Standards and Technology

HTTPS Hypertext Transfer Protocol Secure

CpPU Computer Processor Unit



1. INTRODUCTION

Cryptography has been used by humans for millenia. Even the ancient Romans realized
that a way to hide a message from prying eyes is important. Julius Caesar was famous,
among other things, for using the Caesar cipher, where he encrypted his battle plans to
his generals by shifting the alphabet three spaces over, so that an "A" became a "D",
"B" became an "E" and so on. When these messages were received, they were easy to
understand by the generals, but if a message was intercepted, the plans would not be
revealed to the attacker.

In time, more sophisticated ciphers were created, such as the Playfair cipher in 1854 and
the Enigma machine during the 2nd World War, which still worked on swapping letters
with each other. After the development of digital computers, the alphabet shifting was
replaced by bit shifting. Modern cryptographic algorithms have continued in this path,
though they are now split into symmetric and asymmetric cryptosystems.

The Rivest-Shamir-Adleman cryptosystem (RSA) and elliptic curve cryptosystem (ECC)
are two of the most used asymmetric algorithms currently in use. Both of them are in
constant use throughout the internet, and they both have their advantages. This said,
elliptic curves have been on the rise for over a decade, yet many applications and websites
still use the aging RSA system.

This thesis attempts to find out the most common uses of these cryptosystems, as well as
their efficiency and performance in these usages. A further research question is why RSA
is used despite the fact RSA keys are an order of magnitude greater than ECC keys of
equal strength.

The thesis will begin with the definitions of symmetric and asymmetric algorithms in
chapter 2 and dive into the computer science and mathematics behind cryptography in
section 2.2 and 3. The definitions of RSA and ECC will be presented in chapters 4 and 5,
and their functionalities will be compared in chapters 6. Chapter 7 speaks about the per-
formances of different operations of the cryptosystems, attempting to answer the research
questions of the thesis.



2. CRYPTOSYSTEMS

Cryptosystems are a way of providing cryptographic tools for a user concerned with the
security of their communication. These tools include encryption and decryption, meaning
the obfuscation and deobfuscation of a message, digital signatures, meaning a way to
produce a unique and verifiable proof of identity, as well as key exchange, meaning a way
to securely exchange encryption keys for other algorithms over an insecure channel.

2.1 Symmetric and Asymmetric Cryptographic Algorithms

Cryptographic algorithms can be separated into two categories, symmetric and asym-
metric, depending on the number of keys they use. In a symmetric algorithm everyone
wishing to either encrypt or decrypt a message has to use the same key. This key is often
known as a shared secret, because it is something known to all involved parties. Ad-
vanced encryption standard (AES) and triple data encryption standard (3DES) are exam-
ples of symmetric algorithms currently in use [13][19]. Both symmetric and asymmetric
are based on modular arithmetic in integer rings, as presented in sections 3.1 and 3.2.

An asymmetric algorithm has two keys, one of which is known as a public key and the
other a private key. Each person creates their own pair of keys and shares the public key.
This public key can now be used to encrypt data, but the same data can only be decrypted
with the private key. It is also impossible to calculate the private key from the public key.

While multiple algorithms with both schemes have been invented and implemented, the
general trend seems to favor symmetric algorithms for speed, efficiency, and security. For
example, the modern symmetric algorithms currently in use are faster by a factor of 1000
in comparison to RSA. Thus, ironically, public key algorithms are rarely used for actual
encryption. [18, p.154]

The need for public key algorithms arises from the need to safely communicate over an
unsafe network. Imagine that Alice and Bob live on different continents, but wish to com-
municate with each other privately. They decide to use AES for encryption because of its
speed and security, but they need to share a key for the algorithm. A symmetric algorithm
is useless if the shared key cannot be delivered to both parties without an attacker being
able to snatch it and eavesdrop on their conversation, and visiting the other and agreeing
on a key would be time consuming and expensive.

Instead, they decide to use an asymmetric cryptographic scheme to share the AES key.
Alice generates a public and a private key and shares the public key with Bob. Bob then
decides the key for AES, encrypts it with the public key, and sends the message to Alice



via the internet. Alice, being the only one with the private key, is the only person who can
decrypt Bob’s message. Although this decryption will most likely take some time, it is
a reasonable trade-off, because this operation is only done once during the conversation,
and now they can use a symmetric algorithm for the rest of their conversation. This way
of using asymmetric cryptography to share a key for a symmetric algorithm is called a
hybrid cryptosystem.

In this way, the asymmetric algorithms enable secure conversation over insecure channels.
The key exchange is perhaps the most common use for asymmetric algorithms.

2.2 Key Lengths and Security Levels

To be able to compare different encryption algorithms, a way of measuring the security
level of the algorithm is required. The security level of an algorithm is measured in bits,
and Paar et al states that "an algorithm has the security level of n bit if the best known
attack requires 2" steps". This is especially simple for all symmetric algorithms, because
their security level is always equal to their key length, but for asymmetric algorithms this
is more complicated.[18, p.156]

Whereas symmetric algorithms are based on key substitution between rounds of diffusion
and confusion, designed to make linear attacks impossible, current asymmetric algorithms
are based on mathematical functions. These functions are designed so that knowing the
starting values, it is easy to calculate the result, but very hard to get to the starting values
from the result. These functions may be subject to different, more efficient attacks, and
thus asymmetric algorithms require longer keys to achieve the same security level as
symmetric ones. As seen in table 1, raising the security level of RSA from 80 bit to 256
bit requires huge amounts of effort and computational power.

Table 1. Bit lengths of public-key algorithms for different security levels [18, p.156]

Algorithm Family Cryptosystems Security Level (bit)
80 128 192 256
Integer factorization RSA 1024 bit | 3072 bit | 7680 bit | 15360 bit
Discrete logarithm | DH, DSA, Elgamal | 1024 bit | 3072 bit | 7680 bit | 15360 bit
Elliptic curves ECDH, ECDSA 160 bit | 256 bit | 384 bit | 512 bit
Symmetric-key AES, 3DES 80 bit 128 bit | 192 bit | 256 bit

Although predicting the computers of the future is quite ambitious, Paar et al. estimates
the time frames in which the security levels are actually secure. Symmetric keys with
length 64 bit or less can be cracked within a few days, while 112-128 bit keys are secure
for several decades in the absence of quantum computers. Key lengths of 256 bit or more
are estimated to be secure for several decades even with quantum computers. [18, p. 12]
Currently, National Institute of Standards and Technology (NIST) suggests, that RSA key
size should be 2048 bits, and 3072 bits if longer term security is required [2].



3. MATHEMATICS IN ENCRYPTION

There are some aspects of mathematics that are essential to be able to understand both
RSA and ECC. In the following subsections, some of these aspects are presented.

3.1 Modular Arithmetic

In general mathematics, modulo operation is the search of the remainder of a given divi-
sion.

a=rmodm (1)

In equation 1 a, r, m € Z and m > 0 if a — r is divisible by m. m is called the modulus and
r is called the remainder. The = symbol means we can handle all the elements with equal
remainders as though they were the same. For example 8 =5 =2 mod 3 because each of
them gives the same remainder when divided by m.

3.2 Integer Rings
We define a ring with the following rules:

1. AsetZ,={0,1,2,...m—1}

2. Two operations "+" and "x" for all a,b € Z,, such that:
(@) a+b=cmodm,(c€Zp)
(b) axb=dmod m,(d € Zy)

Although these rings are closed, the results of both of the given operations are always
in the ring because of the modulo operation. Neutral elements for both addition (0) and
multiplication (1) exist, but the multiplicative inverse exists only for some elements. If
a € Z.,a" " is defined as follows:

axa '=1modm
If an inverse exists, we can use a division operator by multiplying with the inverse.

Rings are also associative and distributive, meaning a+ (b+c¢) = (a+b)+c,ax (bxc) =
(axb)xcandax (b+c)=(axb)+ (axc)forall a,b,c € Zy,,.



3.3 Cyclic Groups

Some integer rings have special elements that, when raised to successive powers, will
eventually produce every element in the ring. These rings are known as cyclic groups,
and all the elements with this special property are known as generators or primitive

elements.

gl=g=3
@=g-g=9=2mod 7
@ =g>g=6=6mod7
gt=¢"g=18=4mod7
@ =g"g=12=5mod 7
=g’ g=15=1mod7
g =g% g=g=3mod7

In the ring Z7 element g = 3 is primitive, as seen above.

3.4 Euclidean Algorithm

Euclidean algorithm is an algorithm designed to find the greatest common divisor of two
integers. Again, the proof is bypassed here, but with its extended counterpart, it is very
useful in cryptography. Here we have a Python implementation of the algorithm:

def gcd(a, b):
while b != 0:
a, b=>b, a%b
return a

Where a,b € 7. Usually a > b, but if a < b, the first iteration will swap the values with
each other. The algorithm lessens the values iteratively and when the modulo of b reaches
zero, the value of the greatest common divisor is a.

An important use of the Euclidean algorithm is discovering whether two numbers have no
common divisors, meaning their greatest common divisor is 1. These kinds of numbers

are called relatively prime, or co-prime.

3.5 Extended Euclidean Algorithm

The extended Euclidian algorithm is a version of the Euclidian algorithm which stores
the temporary results as sum of the original parameters. It can be used to calculate the
inverses of numbers in a cyclic group.



3.6 Euler’s Phi Function

Euler’s phi function is a function ®(m) that finds the number of relatively prime numbers
in Z,. It can be shown that the ®(p) = p — 1 where p is prime, and for non-primes it can
be shown that the value of the phi function can be found by applying the phi function to
its factors.

If the factorization of an integer is defined by
m = pil pgz ... 'pfln’

the phi function can be defined as

D(m) = ﬁ(pf" —pi ). (2)
i=
For example, if m = 1440 = 32-45=2.32.5 = p{' - p* - p%’
d(m) = (20 -24(32-3")(5' -5%) =16-6-4 =384,
meaning 384 integers < 1440 are co-prime with it.
It is worth mentioning that without knowing the factorization of the integer m, calculating
the phi function of a large number becomes very cumbersome.

3.7 Fermat’s Little Theorem and Euler’s Theorem

Fermat’s little theorem, in the equation 3, is a small yet important discovery in modular
arithmetic. It states that if you raise a € Z to power p, where p is a prime, it is equivalent
to a mod p.

a’ = a(mod p) 3)

Now, as most integer rings in cryptography are of a prime order, this simplifies the calcu-
lations significantly, because from it follows that

a’~!' = 1(mod p) @)

Now, whenever there is a calculation involving a”* where n > p, the calculation can be
simplified by subtracting p — 1 from the exponent.

A more generalized form of this theorem is Euler’s theorem, presented in equation 5:
a®™ = 1(modm) ®)

Euler’s theorem is used in RSA key generation, as it enables public-private key pairs to be
calculated so that when both keys are applied to a plaintext, the result will be the original
text.



3.8 Discrete Logarithm Problems

Let Z,, be a cyclic group presented in section 3.3, an element g € Z,, be a generator for
this group and an integer x be a private key. In Z,,, finding out the value of g* is relatively
simple, even if the m is a large number. There are fast algorithms that can calculate g* in
O(logn) time, but given an integer a € Z,,, it is hard to find out x so that g* = a mod m.
Determining x if g, a and m are known is called a discrete logarithm problem in Z,. [9,
p.-12]



4. RSA

RSA is the most used public key cryptosystem currently in general use [24, p.109]. It was
proposed by cryptologists Rivest, Shamir and Adleman in 1978 [21], and multiple varia-
tions of it have been built since then. Due to national security reasons, the proliferation of
RSA was limited by the US arms regulation as an auxiliary military equipment until 1992
[6, Category XI]. Even after multiple decades and several attacks deviced against it, RSA
with a long enough key is still a secure enough system to use [3].

4.1 General Working Model

When using RSA, Alice creates a public and a private key. The public key consists of a
public exponent and a modulus, and the private key is a private exponent. This public key
can now be shared over an insecure channel. When Bob wishes to contact Alice, all he
needs to do is find Alice’s public key and encrypt his message by raising it to the public
exponent. After this has been done, Bob can send the message over an insecure channel,
since only Alice will be able to decrypt the message.

In theory, all three of these numbers are very, very large, as the suggested length of the
modulus is in between 1024-4096 bits, which means the key size is also of the same
length.

4.2 Source of Security and Key Generation

The basis of the security in RSA is that currently computers are not good at factoring
numbers, especially large ones [21]. At the present, largest factored numbers are in the
general area of 768 bits, while some special cases have been solved with as many as 1061
bits. [5] [14]

The key generation is done in five phases [18, p.176].

1. Two primes, p and g are chosen.
2. The product n of these primes is calculated n = p - q.

3. It is now easy to calculate ®(n) = ®(p)-P(q) = (p—1)(¢ — 1), as presented in
section 3.6.

4. The public exponent e € 1,2,...,D(n) — 1 can now be selected such that
gcd(e,®(n)) = 1, using the Euclidean algorithm 3.4



5. The private exponent d is calculated using the extended euclidean algorithm 3.5 such
that
d-e=1mod ®(n).

This hardness of factoring presents an opportunity for a strong cryptographic function.
While multiplying two or more very large primes, say, of size 1024 bits or longer, can
be done by a modern CPU in a relatively fast manner, finding out the primes from the
resulting 2048+ bit product could not be accomplished quite as easily. [12] As Kleinjung
et al. noted, the factoring of a 768 bit number took close to two years using hundreds of
computers, and would have taken closer to fifteen hundred years if done with only one
machine. This said, they did suggest abandoning 1024 bit keys for RSA within a few
years due to still increasing efficiency of integer factorization. [14]

4.3 Encryption and Decryption

The message x being encrypted can be no longer than the size of the public modulus.
This is because if the modulus 7 is exceeded, the resulting x is no longer unique, because

X-+n=xmod n.

Both encryption and decryption of a message involve calculations with large integers. In
encryption, the byte conversion of the message is raised to the public exponent. As this
all happens in an integer ring, the encrypted message is the result of a modulo operation.

In decryption, the encrypted message is now raised to the private exponent, and as seen in
equation 3, the original message will be received.

4.4 Implementation

Although the public exponent may be chosen to be an exponent with bit length equal to
that of the modulo, in practice it is usually rather small, between 2 and 17 bits [18, p.183].
This because the exponentiation of the encrypted message is a rather taxing operation.
Using a short public exponent decreases the amount of work required from the sender,
although it often makes the private exponent significantly higher. This practice is a good
trade-off, because the owner of the public key, say, a global corporation, can have efficient
chips decided only for RSA decryption [4]. These chips make the operation manageable
and quick for both parties.
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5. ELLIPTIC CURVE CRYPTOGRAPHY

In 1985, Koblitz [15] and Miller [17] independently of each other suggested the use of
elliptic curves in cryptography, though they entered the general use only in 2004.

An elliptic curve of this kind is defined as a cyclic group of integer pairs that satisfy the
equation

y2 :x3—|—ax—|—b, (6)
along with a point of infinity O, defined to have the coordinates (0, o).

P+0=P, (N

P+ (—P)=0. ®)

These points can be added to each other, as well as to themselves, and form a modular set.

5.1 Computing with Elliptic Curves

As with integer rings, elliptic curves have generators as well, but as expected, these gen-
erators are points on the curve. Scalar multiplication on a generator point P can be used
to produce all the elements on a modular curve.

The use of the word addition as a name for the group operation is rather arbitrary, because
the actual group operation "+" is actually something entirely different. Let P = (x1,y;)
and Q = (x,y2) be two points on the curve. The addition of these two points produces a
third point, R = (x3,y3) such that

P+Q=R
(x1,31) + (x2,¥2) = (x3,y3)

X3 = s2—x1—xo mod p
y3=s(x; —x3) —y; mod p

where

2
3—Xiamodp;ifP:Q

s:{ );L:xllmodp;ifP;éQ
2y,



11

Figure 1. Example elliptic curves [26]

These operations seem rather unintuitive, but luckily there is a simpler geometric repre-
sentation for these calculations.

On the four curves presented in figure 1, points P and Q are added. If P # Q, they define a
line that intersects the elliptic curve in a third point R. R is then reflected over the x-axis,
and the result of this reflection is the result of the "+" group operation. Thus P+ Q = —R.

If P = Q, meaning it’s value is being doubled, there is only one point on the curve. In
such a case the tangent line is calculated. This tangent has up to one intersection with
the curve (zero, if the P = O), and the x-axis reflection of the point is the result. Thus

Q+Q=-P.

The last two images show P+ (—P) = 0 and the special case of P = —P, the tangent line
of the point P where the curve intersects the x-axis.

5.2 Discrete Logarithm Problem

While the number of elements within Z,, was easy to find out for RSA, knowing the
number of points on an elliptic curve is not quite as easy to find out. Luckily, only the
approximate number is required to find out suitable key lengths, and this approximation
#E for elliptic curve E modulo a prime p can be found with Hasse’s Theorem. [18, p.247]

p+1-2/p<#E<p+1+2\/p )

The theorem states that the number of points is approximately in the range of the prime
p- This means if we need a curve with 2" elements, we only need a prime that is close to
n bits long.

The discrete logarithm problem for elliptic curves is finding the integer d in equation 10.
P+P+...+P=dP=T, (10)

where P is a generator for E, T is another element on the curve and d is the factor of P
such that 1 <d < #FE.
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5.3 Encryption and Decryption

While elliptic curves have multiple uses for cryptographic purposes, such as key agree-
ment and pseudo-random number generation, they are mostly used for encryption indi-
rectly. This is because the elliptic curve does not include all possible messages, due to
only some of the points being in the modular ring [20]. The asymmetric-symmetric hy-
brid encryption is done by using a symmetric encryption scheme (for example AES) with
key-sharing via ECC.

5.4 Implementation

Before ECC can be used, a curve with good cryptographic properties must be selected.
Because this is a rather cumbersome process, standardized curves have been published
and are in general use. [16] A complete example of such a curve will not presented here,
because presenting such long numbers would not benefit the reader. An example of a
prime specifying a 160-bit elliptic curve is

p = 0xE95E4ASF737059DC60DFCTAD9SB3D8139515620F .

Software implementations of ECC are available and effective in most cases, but as seen
in table 5, the verification of a ECC digital signature, Sect. 6.2, is a taxing operation. For
servers having a heavy load of signatures to produce, a hardware solution is often more
suitable.

This said, ECC key size makes it a good candidate for lightweight applications, for exam-
ple RFID tags. These chips can be produced with a low amount of logic gate equivalents
and are fast enough for a use of this kind.



13

6. APPLICATIONS

RSA and ECC both have multiple cryptographic applications, some of which are dis-
cussed below.

6.1 Key Exchange

Due to public key algorithms being rather cumbersome in comparison to symmetric cryp-
tosystems, key exchange is one of the more used applications of both cryptosystems.
Figures 2 and 3 show the workings of RSA and ECC key exhange, respectively.

In RSA Alice publishes her public key, k,,, = (e,n). Bob generates a key, m = ki, for a
symmetric algorithm as he pleases, encrypts it using the k,;, such that y = m® mod n, and
sends y to Alice. Alice then decrypts the message y using her private key, y? mod n = m,
and both parties can now safely encrypt and decrypt using the AES with their shared key
kgsym. This information is more clearly presented in figure 2.

Alice Internet Bob
k — d
pri kpub
kpubz{e, nj e
m= I-csvm
d
y'modn=m .—“’r y=m"mod n
AES(k,,) AES(k,,m)

Figure 2. RSA key exchange

In ECC, however, Alice and Bob agree on a public number P, and a public elliptic curve
E, where P is a generator for E. Generators are presented in section 3.3. Both Alice and
Bob then decide a private key of their own, k4 = a for Alice and k,,;p = b for Bob.
Both parties then multiply P with their private keys, so that aP = A and bP = B, to create
their public keys and send it to the other person. Both parties can now multiply the newly
received public key by their own private key, landing on the same point aB = bA = Typ,
the shared secret. This information is more clearly presented in figure 3.
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Alice Internet Bob
P, E
kpriﬁ.=a ( ) kpriB =b
|"Lput}.nﬂ.: aP=A kpusz bP=B
A
aB=Tap =(Xaps Vg bA =Tap = (Xugr Vg )
AES( XAE-]' AES( XAE-]'

Figure 3. ECC key exchange

One of the coordinates of the shared point can now be used for a symmetric key, say, with
AES. The single coordinate has a high probability of being as long in bits as the modulo,
so it will provide adequate security. Because the coordinates of the point are linked to one
another, only one of them is used. As either coordinate can be easily calculated if one is
known, there is no reason to use both.

Now, as seen in table 1 the required key lengths for RSA and ECC for the same level of
security are quite different. Naturally, longer keys lead to higher number of calculations,
higher strain on the CPU, and all-in-all less efficient communication. For this reason ECC
is used on chips and other smaller devices more often than RSA.

6.2 Digital Signatures

Digital signature is a way of providing proof of the sender of the message. This is achieved
by using a private key to create a signature that can be unlocked with the public key. In
RSA signing is actually this simple. Alice can calculate the signature:

§= sigkpr(m) =m® mod n (11)

Now, if the public exponent was chosen to be small, Bob can verify this signature is very
quickly:

y =s° mod n. (12)

Now, if y = m mod n the signature is valid. Alice, being the only one who has the private
key, is provably the sender of the message.

In ECC the computation of the signature is not quite as straightforward, but equally as
secure. The Elliptic Curve Digital Signature Algorithm (EDCSA) was first proposed by
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Scott Vanstone in 1992. [11]. The algorithm itself is omitted from this thesis, because
what it does is more important than how it does it.

The Federal Information Processing Standards (FIPS) are a set of standards defining,
among other things, cryptographic algorithms. Both RSA Digital Signature Algorith and
EDCSA are currently defined in FIPS 186-4. [7]

6.2.1 Nonrepudiation

Nonrepudiation is defined as the assurance of not being able to deny something. It is
important, say, for a car factory to be able to trust that the person who just ordered a brand
new Cadillac with all the latest technology will actually be purchasing said car. If the
order is signed with a digital signature, it can be shown that only the person buying the
car could actually have made the order.

6.2.2 Identification

Digital signatures can be used to identify the bearers of private keys. These private keys
may often lay in smart cards or RFID tags, which require a fast way to proof of the bearer’s
identity. [22]
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7. PERFORMANCE

Hypertext transfer protocol (HTTP) is a very common way of transferring hypertext over
the internet. The secure version of this protocol, HTTPS, was introduced in 1994 [25].
HTTP is an insecure protocol, because it basically sends all the data in plaintext, so that
a malicious individual might capture all the sent messages. HTTPS encrypts all the com-
munication, making this impossible.

Since July 2018 Google Security Blog announced that every site not using HTTPS will
be marked unsafe [8], and the rising amount of encryption over the internet calls for
efficient algorithms. Sites such as Google, Facebook, Twitter etc. get enormous amounts
of visitors per second, meaning the performance of their public key algorithms is critical.

The group operation of RSA, exponentiation, can be done cheaply in a CPU, whereas
the point addition of ECC is very expensive [23]. While calculations in RSA are faster
with equal key lengths, RSA requires significantly longer keys to achieve the same se-
curity level as ECC keys, as seen in table 1. The following subsections will discuss the
performance of different operations of RSA and ECC.

7.1 Key Generation Performance

Although creating one strong public key might seem enough for a person or a service,
in practice multiple keys are created. This is because if one private key is compromised,
the leak doesn’t grant the attacker access to all the victim’s communication. Therefore
the performance of key generation is of great importance. Values for times for generating
keys of different lengths are presented in table 2.

Key Length (bits) Time (s)
RSA ECC RSA ECC
1024 163 0.16 0.08
2240 233 747  0.18
3072 283 9.80 0.27
7680 409 133.90 0.64
15360 571 679.06 1.44

Table 2. Key Generation Performance [10]

Even with the smaller key sizes the ECC is better than RSA, and especially with the more
sizable ones the difference is evident. In generating keys for a similar security level, ECC
is clearly superior.
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It is also worth noting, that due to significantly shorter key lengths for similar levels of
security, the number of transistors required for implementing ECC in hardware is way
lower than that of RSA[23]. This to leads faster circuits and cheaper chips, especially if
only short messages need to be secured.

Internet of Things (IoT) is a phrase used to describe small items that are connected to the
internet, for example heart monitors, smart ovens and such. These objects often contain
sensitive data, and therefore their security is paramount, but their size limits the security
applications that can be implemented. In these devices, the shorter key lengths of ECC
are a a great advantage, especially if in the future the keys have to be lengthened. [1]

7.2 Digital Signature Performance

Digital signatures have to be handled in two parts, signing and verifying. Time values for
signature operations with different key lengths are presented in tables 3 and 4.

Key Length (bits) Time (s)
RSA ECC RSA ECC
1024 163 0.01 0.15
2240 233 0.15 0.34
3072 283 0.21 0.59
7680 409 1.53 1.18
15360 571 9.20 3.07

Table 3. Signature Generation Performance [10]

As seen above, an ECC signing has a greater overhead than that of RSA. The increase in
ECC signing time doesn’t rise quite as fast as RSA’s does, which may be more important
in the future. Within the RSA key lengths between 2048 bits and 3072 bits, as suggested
by NIST, RSA digital signatures are still faster than those of ECC with similar security
levels.

Key Length (bits) Time (s)
RSA ECC RSA ECC
1024 163 0.01 0.23
2240 233 0.01 0.51
3072 283 0.01 0.86
7680 409 0.01 1.80
15360 571 0.03 4.53

Table 4. Signature Verification Performance [10]

The performance of signature verification can be equally as important as the actual sign-
ing. Understandably, even if signing is really fast but verification takes minutes, the sys-
tem is not really usable.
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As mentioned in subsection 4.4, the public exponent of RSA systems is often chosen as
a two to seventeen bit number. Calculating modular exponentiation with such a small
exponent is extremely fast. This explains the great gap between signing and verifying a
15360 bit key RSA signing, most of the work is done on the side of the public key holder.

Even though RSA slows down in signing when keys get longer, RSA is still the more
efficient choice for situations where a lot of signature verification needs to be done.
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7.3 Overview of Performance

Sinha et al compared ECC and RSA in their study, and came up with table 5. They
concluded that the key generation for RSA is significantly slower, and if RSA wants to
keep up with the security level, the key sizes need to be greater. This means exponentially
greater key generation times and weakening efficiency on it’s part. They do also note, that
since RSA has been around for quite a bit longer, ECC has more potential undiscovered
attacks against it. [23]

Parameters ECC RSA
Computational | Roughly 10 times than that More than
overhead of RSA can be saved ECC
Key sizes System parameters System parameters
and key pairs are and key pairs are
shorter for the ECC longer for the RSA
Bandwidth Considerable savings Much less saving
saving over the RSA than ECC
Key Generation Faster Slower
Encryption Much faster At good speed but
than RSA slower than ECC
Decryption Slower than RSA Faster than ECC
Small Devices Much more Less efficient
efficiency efficient than ECC

Table 5. ECC and RSA: an overview [23]

Still, as seen in tables 5 and 4, RSA is still more efficient than ECC in decryption and
digital signatures. Therefore, it is unlikely that RSA will be abandoned in quite a while.

Both algorithms have a problem with their key sizes, as their computational complexity
rises with the cube of the key length. [18, p. 157] If an efficient attack against ECC is
found and the key size needs to be raised significantly, ECC may be too inefficient to use.
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8. CONCLUSIONS

While RSA and ECC have many similar functionalities, and both of them are based on
modular rings, their implementations differ greatly. RSA’s basic operation, exponentia-
tion, is quite straight forward in comparison to ECC’s point multiplication, and this can
be seen in their base level performance. This makes the RSA base operation way faster,
but its advantage is lost because of the larger key size, as seen in table 2. The increasing
key sizes may make RSA obsolete in the future.

RSA does still have it’s uses, especially with digital signatures. Tables 3 and 4 show
the undoubted superiority of RSA, especially with signature verification. It also has the
advantage in public key encryption. Because an elliptic curve does not have all possible
messages within the group, it is easier to encrypt and decrypt messages with RSA. If a
hybrid scheme is used, ECC is again a better option.

In Internet of Things, the shorter key lengths and simpler implementation of ECC provide
superiority over RSA, especially in the future. IoT is a growing field, and more research
on security applications on IoT devices is required.

ECC, being the newer algorithm, may still have undiscovered attacks against it. Because
of how long RSA has been available, it is unlikely that a new attacks will be discovered.

Most of the signs seem to point toward the superiority of ECC in the public key cryp-
tography field. The efficiency of lower key lengths is significant, and as it gains more
recognition, it is quite possible that more and more systems will turn to use it.
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