
ANDREI AHONEN
LEARNING AUTONOMOUS MOTION GENERATING DYNAMICAL
SYSTEMS FROM DEMONSTRATION
Master’s thesis

Examiner: Associate Professor
Reza Ghabcheloo

The examiner and topic of the thesis
were approved on 30 May 2018

i

ABSTRACT

ANDREI AHONEN: Learning autonomous motion generating dynamical systems
from demonstration
Tampere University of Technology
Master of Science Thesis, 40 pages
November 2018
Master’s Degree Programme in Automation Engineering
Major: Robotics
Examiner: Associate Professor Reza Ghabcheloo

Keywords: Dynamical systems, Learning from Demonstration, Behavioral Cloning,
Robotics, Machine Learning

This thesis studies dynamical systems based learning methods at a proof-of-concept level.
The purpose of dynamical systems is to generate motion. In particular, three different
methods are studied in detail and implemented in software to judge their applicability for
a real robotic system. These methods were chosen for the stability they guarantee for the
dynamical system. The software was used with a real manipulator arm to reproduce taught
motions and the reproduction data was recorded and studied. The results indicate that the
methods are viable for learning robotic motions but caution should be exercised when using
the dynamical system for motion generation.

ii

TIIVISTELMÄ

ANDREI AHONEN: Liikkeen tuottavan dynaamisen järjestelmän oppiminen esi-
merkistä
Tampereen teknillinen yliopisto
Diplomityö, 40 sivua
Marraskuu 2018
Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Robotiikka
Tarkastaja: apulaisprofessori Reza Ghabcheloo

Avainsanat: Dynaamiset järjestelmät, Koneoppiminen, Robotiikka

Tässä diplomityössä tarkastellaan dynaamisiin järjestelmiin perustuvan oppimisen toteu-
tuskelpoisuutta. Dynaamisten järjestelmien tarkoitus on tuottaa liikettä. Työssä tutkitaan
erityisesti kolmea erilaista lähestymistapaa jotka toteutetaan ohjelmistona sovelluskel-
poisuuden arviointia varten. Lähestymistavat on valittu niiden tuottamien dynaamisten
järjestelmien stabiilisuustakeiden vuoksi. Robottikättä ohjaavalla ohjelmistolla tuotettiin
opetettuja liikkeitä ja tuotettu liike tallennettiin ja käytiin läpi. Tulokset antavat syytä olet-
taa, että tutkitut menetelmät ovat varteenotettavia tapoja oppia robotin liikkeitä, mutta
dynaamisen järjestelmän soveltaminen liikkeentuotossa tulee tehdä huolella.

iii

PREFACE

This thesis is partly funded by, and is part of, the MIDAS-project.

In Tampere, Finland, on 30 November 2018

Andrei Ahonen

iv

CONTENTS

1. INTRODUCTION ... 1

2. THEORY.. 2
2.1 Dynamical systems ... 2
2.2 Stability of dynamical systems.. 3
2.3 Problem definition... 4
2.4 Similarity measures... 5
2.5 Separating shape and speed in a dynamical system.................................... 7
2.6 Single and multiple demonstration patterns and using the dynamical system 8

3. METHODS .. 10
3.1 SEDS... 10

3.1.1 Definition .. 10
3.1.2 Training SEDS.. 11
3.1.3 Computational complexity of training SEDS 13
3.1.4 Limitation of SEDS .. 13

3.2 Diffeomorphic method.. 13
3.2.1 Diffeomorphic dynamical systems.. 14
3.2.2 Diffeomorphisms from local translations 16
3.2.3 Local translations.. 17
3.2.4 The algorithm for finding the local translations............................ 19

3.3 LMDS ... 21
3.3.1 Local modulations and stability.. 22
3.3.2 Learning the local modulations .. 22
3.3.3 Data selection for LMDS.. 23

3.4 Other dynamical system based methods ... 24

4. TESTING ALGORITHMS ON A ROBOTIC ARM SYSTEM 25
4.1 Physical equipment and set-up.. 25
4.2 Software set-up for reproducing learned motions....................................... 25
4.3 Software set-up for learning the motions .. 26
4.4 Motion reproduction limitations imposed by the set-up 27

5. RESULTS AND CONCLUSIONS.. 29
5.1 Recorded data.. 29
5.2 Reproduction results ... 30
5.3 Conclusion .. 32

REFERENCES .. 38

v

LIST OF FIGURES

Figure 2.1. Single demonstration pattern (from [11]). The trajectories start from
upper right hand corner ... 8

Figure 2.2. Multiple demonstration patterns(from [11]). The trajectories start
from the outer areas and all end in the same point in the center. 8

Figure 2.3. Simplified control architecture for using the dynamical system in a robot 9

Figure 3.1. Two dimensional illustration of the limitation of SEDS. Red lines
are the demonstration trajectories (from [11]). The computational
reproductions are the grey lines. Circular lines depict the contours
of Lyapunov-function.. 14

Figure 3.2. Example SEDS vector field for simpler shape. Data is from [11]. The
demonstration trajectory are the continuous red lines, the velocity
vectors of SEDS are the blue arrows and the circular gray lines are
the contours of Lyapunov-function ... 15

Figure 3.3. Example SEDS reproduction trajectories for simpler shape (from
[11]). The demonstration trajectories are the continuous red lines,
the reproduction trajectories are the gray lines and circular lines are
the contours of Lyapunov-function ... 16

Figure 3.4. Diffeomorphism of a straight line into a more complex curve. The
narrow continuous red line is the average trajectory of demonstrations
of the same dataset as in figure 2.1. The dashed black line is the
straight line of blue dashed line gone through the diffeomorphism.
The dashed orange line is the dashed black line gone through the
inverse of the diffeomorphism. This diffeomorphism was used to
derive the DS in figure 3.5 .. 17

Figure 3.5. Vector field of diffeomorphic dynamical system. The continuous red
line is the average trajectory of demonstrations of the same dataset as
in figure 2.1. The blue arrows are modulated velocity vectors of the DS 18

Figure 3.6. Two sequential local translations in 2-dimensions depicting how they
bend the surrounding space. The blue and orange arrows are the
parameter v1 and v2 of the local translations. 20

Figure 3.7. One 2 dimensional local translation showing the area of effect with the
blue hue. The blue arrow is the parameter v of the local translation.
The position of the area is defined by the parameter p of the local
translation and the size of it is defined by 𝜌... 21

Figure 4.1. Systems physical setup. A block represents a single physical item and
dashed line an Ethernet connection. .. 25

Figure 4.2. Overview of ROS Control software architecture (from [1]). It shows
how the controller is a part of Controller Manager node and how the
controller interfaces the physical equipment. 27

vi

Figure 4.3. Conceptual diagram showing the software hierarchy 27

Figure 5.1. Demonstration pattern 1. The trajectories start from the lower left-
hand side .. 29

Figure 5.2. Demonstration pattern 2. The trajectories start from the left hand side 30
Figure 5.3. Demonstration pattern 3. The trajectories start from the upper left-

hand side .. 30
Figure 5.4. SEDS reproductions for demonstration pattern 1 on Franka Panda.

The demonstrations and reproductions begin from the left-hand side.
The demonstration curves are the red continuous lines and the repro-
ductions are the black dashed lines.. 32

Figure 5.5. LMDS reproductions for demonstration pattern 1 on Franka Panda.
Demonstrations and reproductions begin from left hand side. The
demonstration curves are the red continuous lines and reproductions
are the black dashed lines. ... 33

Figure 5.6. Diffeomorphic DS reproductions for demonstration pattern 1 on
Franka Panda. The demonstrations and reproductions begin from
the left-hand side. The demonstration curves are the red continuous
lines and the reproductions are the black dashed lines.......................... 33

Figure 5.7. SEDS reproductions for demonstration pattern 2 on Franka Panda.
The demonstrations and reproductions begin from the lower left-hand
side. The demonstration curves are the red continuous lines and the
reproductions are the black dashed lines. .. 34

Figure 5.8. LMDS reproductions for demonstration pattern 2 on Franka Panda.
The demonstrations and reproductions begin from the lower left-hand
side. The demonstration curves are the red continuous lines and the
reproductions are the black dashed lines. .. 34

Figure 5.9. Diffeomorphic DS reproductions for demonstration pattern 2 on
Franka Panda. The demonstrations and reproductions begin from the
lower left-hand side. The demonstration curves are the red continuous
lines and the reproductions are the black dashed lines.......................... 35

Figure 5.10. SEDS reproductions for demonstration pattern 3 on Franka Panda.
The demonstrations and reproductions begin from the upper left-hand
side.The demonstration curves are the red continuous lines and the
reproductions are the black dashed lines. .. 35

Figure 5.11. LMDS reproductions for demonstration pattern 3 on Franka Panda.
The demonstrations and reproductions begin from the upper left-hand
side.The demonstration curves are the red continuous lines and the
reproductions are the black dashed lines. .. 36

Figure 5.12. Diffeomorphic DS reproductions for demonstration pattern 3 on
Franka Panda. The demonstrations and the reproductions begin
from the upper left-hand side.The demonstration curves are the red
continuous lines and the reproductions are the black dashed lines. 36

vii

LIST OF SYMBOLS AND ABBREVIATIONS

DS dynamical system
SEA swept error area
SEDS Stable estimator of dynamical systems
LMDS Local modulation of dynamical systems
MDP Markov Decision Process
LASA Learning algorithms and systems laboratory
DMP Dynamical movement primitive
DOF Degrees of freedom
GmbH Gesellschaft mit beschränkter Haftung
FCI Franka Control Interface
UDP User Datagram Protocol
ROS Robot Operating System
DH Denavit-Hartenberg

viii

𝑡 time, indexing variable
𝑑 number of dimensions
𝑥 a real number
̇𝑥 time derivative of 𝑥

𝑓 (𝑥) a function of 𝑥
𝑓 ′(𝑥) Derivative of 𝑓 along 𝑥
𝑓 (𝑥, 𝑦) a function of 𝑥 and 𝑦
ℝ Space of real numbers
ℝ𝑑 Real coordinate space of 𝑑 dimensions
x Vector- or matrix-valued variable
∈ ” is an element of ”
⟺ ” if and only if ”
↦ ” maps to ”
𝑑
𝑑𝑥 Derivative along 𝑥
⋅ Dot product of vectors, scalar multiplication of a vector,product of real

variables(Context dependent)
‖𝑥‖ Euclidean norm of 𝑥
𝑁 Number of demonstrations in a dataset
𝑇 Number of points in a trajectory
𝜏 time, a generic symbol
𝑖 indexing variable
← Assignment
𝜖 A small, but positive real number
∇𝑓 Gradient of 𝑓
𝜇 Modulation function, expected value of probability distribution
ℝ+ Non-negative real numbers
̂𝑥 Estimate of 𝑥

𝑃(𝑥|𝑦) probability(distribution) of 𝑥 given 𝑦
A𝑇 Transpose of A
𝛴 Covariance matrix, sum
𝛩 Set of parameters of a probability distribution, a vector
|A| Determinant of A
” number of ”

[x
y] , (x

y) Vector concatenation of x and y

∠(x, y) angle between x and y
𝛷 A function
𝛷−1 Inverse function of 𝛷
𝜓 A function
𝜌 a real number
⊗ Outer product
𝜉 A function
× Cross product
𝛾 a real number
[𝑎, 𝑏) Half-open interval between 𝑎 and 𝑏
(𝑎, 𝑏) Open interval between 𝑎 and 𝑏

1

1. INTRODUCTION

Dynamical systems based learning is an emerging approach to learning movement. This
thesis focuses in particular on studying autonomous dynamical systems as an approach to
learning movement from demonstrations. The research is done on a proof-of-concept level
as the approach is relatively recent in the literature.

Chapter 2 introduces the basic theoretical concepts related to dynamical systems and
learning them. It should be noted that currently there is no consensus in the literature about
the mathematical notation of the topic.

Chapter 3 introduces and analyses the three methods chosen for this study. The analysis is
not the same for all three methods, but the main focus in all of the analyses is the form of
the dynamical system, and how to evaluate and learn it. The limitations and computational
complexity of each method is discussed and the chapter concludes with a brief description
of other related methods.

Chapter 4 describes the experimental set-up and introduces the equipment used in the real
life implementation. This chapter also explains some of the choices that were made for the
software implementation and the describes the general software architecture of the final
implementation. Finally, a networking issue affecting the reproduction of movement is
briefly discussed.

Chapter 5 presents the recorded data and the learning results. The reproduction movement
gained from the actual robotic arm movement is shown visually and the reproduction results
based on computations are gathered into tables. Finally, the findings are discussed and a
subjective comparison of the three methods is made.

2

2. THEORY

This thesis focuses on applying the introduced methods for generating motion in robotics.
Although the subject matter introduced in this chapter is quite general and could be applied
elsewhere, it should be remembered that this thesis assumes the application case to be in
robotics.

2.1 Dynamical systems

In this thesis, a dynamical system means something that is represented by coupled ordinary
differential equations where the derivatives of the variables are with respect to time 𝑡. In
particular, the equations are real valued, first order and autonomous. A fixed collection of
variables is called a state. If we have 𝑑 variables, the system has the form of the following
equation.
Definition 2.1 (Autonomous dynamical system). Let 𝑓1, 𝑓2, … , 𝑓𝑑 ∶ ℝ𝑑 ↦ ℝ be continu-
ous. Then, an autonomous dynamical system is defined as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

̇𝑥1

̇𝑥1

⋮
̇𝑥𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑑)
𝑓2(𝑥1, 𝑥2, … , 𝑥𝑑)

⋮
𝑓𝑑(𝑥1, 𝑥2, … , 𝑥𝑑)

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

For more compact notation, a collection of variables is referred to with a single, bold-faced
symbol. This collection is thought of as a vector- or matrix-valued variable. If, in addition,
we collect the functions on the right-hand side of the equation (2.1) as a vector-valued
function, then the equation then can be shortened in the following way:

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1

𝑥2

⋮
𝑥𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= x (2.2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

̇𝑥1

̇𝑥1

⋮
̇𝑥𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ẋ, (2.3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑑)
𝑓2(𝑥1, 𝑥2, … , 𝑥𝑑)

⋮
𝑓𝑑(𝑥1, 𝑥2, … , 𝑥𝑑)

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑓1(x)
𝑓2(x)

⋮
𝑓𝑑(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝑓 (x), (2.4)

2.2 Stability of dynamical systems 3

Definition 2.5 (Vector form of an autonomous dynamical system).

̇x = 𝑓 (x). (2.6)

A discrete time forward solution for equation (2.6), given the initial point x0, is called a
trajectory, or an evolution of state. A path is the trajectory without the time, meaning it is
an ordered set of points. In this thesis however, the terms path and trajectory can be used
interchangeably since it is assumed that the time information is known.

In the examples and illustrations, a state is interpreted as a position in 2 or 3 dimensions.
In these cases, the motion of a point can be generated if the function of eq. (2.6) is known.
Additionally, for an intuitive understanding it is often helpful to look upon the system as a
vector field.

2.2 Stability of dynamical systems

Although there are many definitions of stability [16][9], this thesis uses just 2 of them:
globally asymptotically stable and locally asymptotically stable. In general, the equilibrium
point x∗ ∶ 𝑓 (x∗) = 0 is said to have one of the 2 (or more) types of stability, but in this
thesis the DS itself is said to to have one of them. This means that the the equilibrium is
assumed to exist and the mentioned type of stability is applied to it.

Informally speaking, when a dynamical system is said to be globally, asymptotically stable,
it means that when given an arbitrary initial position x0 ∈ ℝ𝑑 the solution settles to an
equilibrium x∗ ∈ ℝ𝑑. Local asymptotic stability means that there exists a subset of the
state space from which the DS settles to the equilibrium. It should be noted that x∗ can be
used interchangeably with 0. [9]

It is generally known that globally asymptotic stability can be defined via the Lyapunov
function, which means that there is no need to know the solution to the system of ODEs.
The dynamical systems discussed here are assumed to be globally, asymptotically stable, if
not stated otherwise.

Asymptotic, global stability can be defined through a famous result of Lyapunov as follows.
Theorem 2.7 (Lyapunov stability). A dynamical system ̇x = 𝑓 (x) is globally, asymptot-
ically stable with equilibrium at x∗ when there exists a radially unbounded, sufficiently
smooth Lyapunov-function 𝑉(x) for which [9]:

𝑉(x) > 0 ⟺ x ≠ x∗, (2.8)

̇𝑉(x) < 0 ⟺ x ≠ x∗, (2.9)

𝑉(x) = 0 ⟺ x = x∗, (2.10)

4 2. Theory

̇𝑉(x) = 0 ⟺ x = x∗. (2.11)

Proof. The proof is shown in [9].

The following remark is a useful identity, which will be used later.
Remark 2.12 (Derivative of Lyapunov function in the direction of the system solu-
tions).

̇𝑉(x) = 𝑑𝑉
𝑑𝑡 = 𝑑𝑉

𝑑x
𝑑x
𝑑𝑡 = ∇𝑉 ⋅ ẋ = ∇𝑉 ⋅ 𝑓 (x), (2.13)

Using this identity in Lyapunov stability results in

∇𝑉 ⋅ 𝑓 (x) < 0. (2.14)

Essentially, the inequality (2.14) says that the velocity vector given by ̇x = 𝑓 (x) can never
point in a direction where the Lyapunov-function would decrease. For a quadratic Lyapunov-
function 𝑉(x) = ‖𝑥‖2 for example, this would mean the trajectories can never move away
from equilibrium.

2.3 Problem definition

In the broader context of learning methods, this thesis focuses on the methods that are
called model-free behavioral cloning, as discussed in [19]. In this thesis, a model-free
method means that the chosen methods do not explicitly take into account any actuator
dynamics. The model and the limitations are assumed to underlie the demonstration data.
Behavioral cloning means that the target of learning is the direct mapping between states
and commands, a mapping between positions and velocities in this thesis’ case, rather than
any value function or suchlike.

Learning dynamical systems means learning the function of equation (2.6). In practice,
this amounts to optimizing the parameters of a particular form of a function in terms of
some suitable similarity or error metric. Since there is no established metric for measuring
the success of DS-based learning, different methods might have varying definitions for it.

The demonstration data typically consists of sampled trajectories. The dynamics, such as
velocities and accelerations, can be inferred or estimated from the trajectories if needed.
One source for benchmark data is from Khansari-Zadeh [11]. It contains 2-dimensional
trajectories depicting movement patterns for handwriting.

For example, the dataset could consist of 𝑁 different demonstrations with 𝑇 states in each.
Then a datapoint would be a double (𝜏 is the actual recorded time, 𝑡 is index):

(𝜏𝑛,𝑡, x𝑛,𝑡), 𝑛 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇 (2.15)

2.4 Similarity measures 5

For autonomous DS, the dataset is often thought of as a pair of positions, x, and velocities
ẋ. Then each datapoint is thought of as:

(x𝑛,𝑡, ẋ𝑛,𝑡) 𝑛 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇. (2.16)

It should be noted that each demonstration might have a different number of points. This
possibility is ignored in the notation for the sake of clarity. One important notion of the
presented form of a dynamical system is that no autonomous dynamical system can produce
a self-intersecting trajectory, namely a loop. That would imply that one point in ℝ𝑑 is
associated with two different velocity vectors, a property that cannot exist in the solution tra-
jectory of such a system. Finally, the learning is intentionally defined with ambiguous terms.

Definition 2.17 (Problem statement). Let ẋ = 𝑓 (x) be an autonomous dynamical system
and let 𝜃𝜃𝜃 denote the set of parameters of the dynamical system function 𝑓 (x). Then the
learning means finding the parameters that maximize a similarity between dynamical
systems defined by 𝑓 (x) and the dynamical system responsible for the demonstrations, and
which keep the dynamical system ẋ = 𝑓 (x) stable.

This definition doesn’t state what the similarity between dynamical systems means. This is
discussed in the next section.

2.4 Similarity measures

It is not immediately obvious how similarity is defined when discussing, comparing, or
learning dynamical systems or their trajectories.

One problem comes from the fact that there are finitely many points in the demonstration
data and the DS is defined everywhere in the state space. However one of the aims of the
DS-based approach is that it should generalize in the sense that it produces satisfactory
results even if the initial positions and trajectories differ from the demonstrations. However,
since we get the information of the DS to be learned from the data points a measure has to
use those.

Another problem is that there is no single established and widely accepted measure for
similarity. This results in using subjective intuition to judge the results, gained from
visualizing the DS and the trajectories. As such, no methods can be compared to each other
objectively.

Yet another problem comes from the issue of shape and speed. As discussed below, they
can be separated and researchers are often only interested in learning the shape, as the speed
can be modulated. But there is no exact definition for shape, which also adds to the problem.
One method that tries to capture the intuition behind learning the shape was introduced in
[12] and is called the swept error area, or SEA. It is well-suited for 2-dimensional cases but
insufficient for higher dimensionalities. One way to generalize SEA could be to introduce

6 2. Theory

some sort of triangulation method in order to estimate the area of the surface exemplified
in figure 14. of [12].

Ideally, there would be only one measure quantifying this similarity and this would be used
both in learning and validating the results. However, an approach like SEA relies on solving
the trajectory in order to evaluate the measure. As such, it is a computationally demanding
approach and is not a realistic choice as a similarity measure to be used in optimization. A
more computationally realistic choice is to compare the individual velocity vectors of the
demonstrations and the DS. The downside of this measure is that it gives a rather limited
view of the similarity.

In this thesis two measures are used to verify the results, but not to train the models. For
reasons associated with the separation of speed and shape, they are intended to downplay
the significance of speed in order to measure the shape more accurately. Algorithm 1 is
a cumulative error-based measure which solves the DS as it is being calculated. This is
done in a time-agnostic manner and gives a measure of dissimilarity rather than similarity.
Algorithm 2 ignores time altogether and measures the similarity by the scaled cosine of their
angle. Scaled means that the cosines are mapped to [0, 1] instead of [−1, 1]. If the vectors
are pointing in the same direction it gives out the value 1. The scaling is not necessary and
it is done here only to emphasize it as a similarity measure. It should be noticed, that the
normalized cosine similarity means scaled cosine similarity, later in the thesis.

Algorithm 1 Cumulative error measure
𝑁 ← the number of points in demonstration trajectory
x ← first point in demonstration trajectory
𝐸𝑟𝑟𝑜𝑟 ← 0
for 𝑖 = 1 … 𝑁 − 1 do

p ← 𝑖th point in demonstration path
q ← (𝑖 + 1)th point in demonstration path
𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 ← ‖q − p‖
ẋ ← 𝑓 (x)
ẋ ← ẋ

‖ẋ‖ ▷ Assuming ‖ ̇x‖ ≠ 0
x ← x + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 ⋅ ẋ
𝐸𝑟𝑟𝑜𝑟 ← 𝐸𝑟𝑟𝑜𝑟 + ‖x − q‖

end for

Algorithm 2 Normalized cosine similarity
p ← a point in demonstration path
q ← the next point in demonstration path
̇x ← 𝑓 (p)

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← ẋ·(q−p)
‖ẋ‖‖p−q‖ ▷ Assuming ‖ṗ‖ ≠ 0 or ‖q − p‖ ≠ 0

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦+1
2

2.5 Separating shape and speed in a dynamical system 7

2.5 Separating shape and speed in a dynamical system

This thesis focuses only on the shape of the dynamical system rather than its speed. This
is due to the limitations of the actuators. They require sufficiently smooth and bounded
signals and the implementation details complicate their delivery.

In this thesis, the shape will be defined by the direction of the velocity vectors while the
speed will be defined by their magnitude. Therefore, the learning of the dynamical system of
the demonstration can be separated into two phases. In the first phase only the shape is taken
into account when applying a similarity metric. This allows more freedom in designing
or modifying the algorithms for learning. After the shape is deemed fit, the magnitude of
the velocity vectors can be transformed to be nearly uniform and then modulated with a
suitable function. This is shown more precisely in the following definition.
Definition 2.18 (Modulating the speed of a dynamical system). Let 𝜖 > 0 be a small
constant and ̇x = 𝑓 (x) globally, asymptotically stable. Then a new similarly shaped DS
can be defined as follows. Let

𝜇 ∶ ℝ𝑑 ↦ [0, ∞) (2.19)

be smooth. Then the new DS is

̇x = 𝑔(x) = 𝜇(x)𝑓 (x)
‖𝑓 (x)‖ + 𝜖. (2.20)

In definition 2.18 the 𝜖 > 0 is a small constant to avoid being undefined at the equilibrium
point. The error resulting from its use is negligible.

After this transformation, the learning of the speed profile can be performed. The speed
profile is essentially the modulating function 𝜇 ∶ ℝ𝑑 ↦ (0, ∞), which is a much simpler
case to learn than the shape. The modulation does not change the stability, as is shown by
the following theorem.
Theorem 2.21. The dynamical system of equation (2.20) is globally, asymptotically stable
if the original dynamical system ẋ = 𝑓 (x) is globally asymptotically stable.

Proof. Since the original dynamical system is globally, asymptotically stable there exists a
Lyapunov-function as defined in theorem 2.7. Since 𝜇(x), 𝜖 are both positive, it follows
that

∇𝑉 ⋅ 𝑓 (x) < 0 ⟺ ∇𝑉 ⋅ 𝑓 (x)𝜇(x)
‖𝑓 (x)‖ + 𝜖 < 0 (2.22)

and
∇𝑉 ⋅ 𝑓 (x) = 0 ⟺ ∇𝑉 ⋅ 𝑓 (x)𝜇(x)

‖𝑓 (x)‖ + 𝜖 = 0. (2.23)

Therefore 𝑉(x) is a Lyapunov-function for ẋ = 𝜇(x)𝑓 (x)
‖𝑓 (x)‖+𝜖 and the system is globally, asymp-

totically stable.

8 2. Theory

2.6 Single and multiple demonstration patterns and using the
dynamical system

The demonstrations usually contain trajectories starting from multiple different positions.
When there is only one cluster (in the statistical sense of the word) of starting points the term
demonstration pattern is used. When there are multiple clusters the demonstration contains
multiple demonstration patterns. This difference is best exemplified by first looking at
figure 2.1 in which there is only one cluster of starting points in the upper right corner with
all the trajectories ending at the origin. Then it can be compared to figure 2.2, which has 3
clusters.

Figure 2.1. Single demonstration pattern (from [11]). The trajectories start from upper
right hand corner

Figure 2.2. Multiple demonstration patterns(from [11]). The trajectories start from the
outer areas and all end in the same point in the center.

The learned dynamical system is used with a robot by giving it velocity commands in real
time. Figure 2.3 shows a simplified architecture for using the function. The robot is assumed
to have internal velocity controller set up to execute the velocity commands. It should be
noted that the goal point x∗ is used to transform the dynamical system coordinates to the
origin. This transformation does not affect the stability [9]. The background assumption
for the function in figure 2.3, is that the equilibrium point for the DS defined by the 𝑓 is at 0.

One practical issue with using the DS in a real system is getting it started. Often the system
starts from rest, and due to inertia the accelerations are bounded. In the implementation
part of this thesis a smooth step signal, the logistic function, was used to start the DS with
parameters found by simple trial and error.

2.6 Single and multiple demonstration patterns and using the dynamical system 9

𝑔(𝑡, x) = 𝑚
1 + 𝑒−𝑘(𝑡−𝑡0) 𝑓 (x) (2.24)

Although using this renders the system time-dependent in principle, it does not have any
effect on the theory introduced here. In equation (2.24), 𝑚 ∈ ℝ+ is the maximum value of
the step modulating the DS, and 𝑘 ∈ ℝ+ is the steepness of the curve and 𝑡0 ∈ ℝ+ is the
value that dictates when the smooth signal reaches the median value of the maximum.

Figure 2.3. Simplified control architecture for using the dynamical system in a robot

Robot

𝑓 (x − x∗)

ẋx

A final aspect of using the DS is the stability of the whole system. The robot with a velocity
controller is its own dynamical system, but this thesis is not concerned of its details. It
is only assumed that the real robot follows velocity commands fast enough and is stable.
More details about robot dynamics and control can be found, for example, in [3] or [2].

The stability of the combination of the robot and the DS is discussed in terms of the figure
2.3 in the next remark.

Remark 2.25. The dynamical system ”Robot” is assumed to stable. Also, the dynamics of
this controlled system is assumed to be fast enough, so that the velocity command seems
instantaneously executed, when compared to the timescale of the loop in figure 2.3.
Under these assumptions the system of figure 2.3 is globally and asymptotically stable,
because the dynamical system defined by ẋ = 𝑓 (x) is globally and asymptotically stable.

10

3. METHODS

3.1 SEDS

3.1.1 Definition

SEDS stands for Stable Estimator of Dynamical Systems. It is derived from the viewpoint
that the state x and velocity ẋ are jointly distributed random variables. The probability
distribution function is composed from 𝐾 gaussian distributions forming a mixed gaussian
model. The estimate for velocity defining the dynamical system is derived as being the
expected value of velocities posterior distribution. For further details of this, see [4], [10],
[13].

Before SEDS can be fully defined, it is necessary to introduce a result shown in [10]
to give some background knowledge.
Theorem 3.1 (Special case of velocity posterior mean). Let X and Ẋ both be 𝑑-dimensional,
jointly distributed random vectors and let ̂𝐾 be a random element of {1, 2, ..., 𝐾}.
Also, let the joint probability density function be defined by

𝑃 ⎛⎜
⎝

X = x
Ẋ = ẋ

⎞⎟
⎠

=
𝐾

∑
𝑘=1

𝑃(̂𝐾 = 𝑘)
√(2𝜋)2𝑑|𝛴𝑘|

𝑒
−0.5(⎛⎜⎜⎜⎜

⎝

x
̇x
⎞⎟⎟⎟⎟
⎠

−𝜇𝑘)
𝑇

𝛴𝑘
x

−1(⎛⎜⎜⎜⎜
⎝

x
̇x
⎞⎟⎟⎟⎟
⎠

−𝜇𝑘)
(3.2)

Additionally, restrict the case by
𝜇𝑘

ẋ = A𝑘𝜇𝑘
x. (3.3)

where
A𝑘 = 𝛴𝑘

ẋx(𝛴𝑘
x)−1. (3.4)

Then a posterior distribution mean of Ẋ is given by:

𝑃(Ẋ = ẋ|X = x) =
𝐾

∑
𝑘=1

ℎ𝑘(x)A𝑘(x − x∗). (3.5)

where

ℎ𝑘(x) = 𝑃(̂𝐾 = 𝑘 | X = 𝑥) = 𝑃(̂𝐾 = 𝑘)𝑃(X = x| ̂𝐾 = 𝑘)
∑𝐾

𝑖=1 𝑃(̂𝐾 = 𝑖)𝑃(X = x| ̂𝐾 = 𝑖)
. (3.6)

Proof. The proof can be found by first considering the general case proved in ([4]) and
then restricting the case for stability as shown in [10]).

3.1 SEDS 11

Because SEDS stands for Stable Estimator of Dynamical Systems, it has to be shown when
the DS defined by (3.5) is stable.
Theorem 3.7. The dynamical system

̇x =
𝐾

∑
𝑘=1

ℎ𝑘(x)A𝑘(x − x∗)

is globally, asymptotically stable, when each A𝑘 is negative definite.

Proof. Let 𝑉(x) = 1
2‖x − x∗‖2 and each A𝑘 be negative definite. Clearly 𝑉(x) > 0 ⟺

x ≠ x∗ and 𝑉(x) = 0 ⟺ x = x∗.

̇𝑉(x) = ∇𝑉(x) ⋅ ẋ = (x − x∗)𝑇
𝐾

∑
𝑘=1

ℎ𝑘(x)A𝑘(x − x∗).

=
𝐾

∑
𝑘=1

ℎ𝑘(x)(x − x∗)𝑇A𝑘(x − x∗) < 0 (3.8)

since each ℎ𝑘(x) > 0 and A𝑘 is negative definite. Additionally

̇𝑉(x) =
𝐾

∑
𝑘=1

ℎ𝑘(x)(x − x∗)𝑇A𝑘(x − x∗) = 0 ⟺ x = x∗, (3.9)

so 𝑉(x) is a Lyapunov-function for ̇x = ∑𝐾
𝑘=1 ℎ𝑘(x)A𝑘(x − x∗) and is thus globally, asymp-

totically stable.

Finally, the definition follows from the previous results.
Definition 3.10 (SEDS). Stable estimator for dynamical systems (SEDS) is the dynamical
system gained, when the velocity is interpreted as the posterior mean estimate shown in
equation (3.5) and restricting the case to stable dynamics:

ẋ =
𝐾

∑
𝑘=1

ℎ𝑘(x)A𝑘(x − x∗), each A𝑘 is negative definite (3.11)

Remark 3.12. It should be noticed, that the A𝑘 might not be symmetric. a simple result
from linear algebra states that:

A nonsymmetric matrix M is negative definite ⟺ M+M𝑇 is negative definite. (3.13)

This result is used to verify the negative definiteness of A𝑘, when training the model.

3.1.2 Training SEDS

Training the SEDS starts by interpreting the data, which are samples from the joint distri-
bution defined by the probability density function in equation (3.2). To be more specific,
the data should be in a similar form as is shown in equation (2.16). This allows the natural
use of the similarity measure of log-likelihood to be used for training the SEDS. Also, the
mean square error can be used as a dissimilarity measure as shown in the original article. In

12 3. Methods

the case of this thesis, only the log-likelihood version was used for the reasons mentioned
in [10].

If the learning is thought of only as an optimization for maximal likelihood, the resulting
DS might not be stable. This is avoided by posing the problem as a constrained optimization
problem with the constraints ensuring that the parameters define the probability distributions
and that the resulting system is stable. For convenience, let

𝜃𝜃𝜃 = {𝑃(̂𝐾 = 1), 𝜇1
x , 𝛴1, ..., 𝑃(̂𝐾 = 𝐾), 𝜇𝑘

x, 𝛴𝐾}. (3.14)

denote the parameters of the probability density function shown in equation (3.2). Notice
that the 𝜇𝑘

ẋ is not included as it assumed to be constrained by equation (3.3).

Definition 3.15 (Training as constrained optimization). Let 𝜃𝜃𝜃 denote the parameters
of SEDS. A measure for dissimilarity or error is given by the log-likelihood of the joint
probability distribution:

𝐽(𝜃𝜃𝜃) = − 1
𝑇𝑁

𝑁
∑
𝑛=1

𝑇
∑
𝑡=1

𝑙𝑜𝑔(𝑃 ⎛⎜
⎝

X = x𝑛,𝑡

Ẋ = ẋ𝑛,𝑡

⎞⎟
⎠

). (3.16)

The parameters for SEDS to reproduce the demonstrative motion can be found by solving
this constrained optimization problem for 𝜃𝜃𝜃 :

minimize
𝜃

𝐽(𝜃𝜃𝜃) (3.17)

subject to
⎧{{{{
⎨{{{{⎩

A𝑘 + A𝑇
𝑘 is negative definite for each 𝑘

each 𝛴𝑘 is positive definite and symmetric

∑𝐾
𝑘=1 𝑃(̂𝐾 = 𝑘) = 1

𝑃(̂𝐾 = 𝑖) ∈ (0, 1], 𝑖 = {1, … , 𝐾}.

(3.18)

One important feature of implementing the training algorithm is how to choose the initial
values. The authors of SEDS have suggested one such method, but it was noticed in
this implementation that sometimes their method leads to numerical problems such as
covariance of state 𝛴𝑘

x) losing rank. As this was mostly the case when the SEDS had more
than two components (𝑘 > 2), a better method for obtaining the initial values was to split
the data into 𝑘 parts and fit an initial SEDS to each part with just one gaussian component.

For practicality, the covariance matrices 𝛴𝑘 can be stored as their Cholesky decompositions
𝐿𝑘, 𝛴𝑘 = 𝐿𝑘𝐿𝑇

𝑘 . This way the number of parameters to be stored in the memory can be
reduced and the covariance be kept as a positive definite symmetric matrix. Also the 𝜇ẋ

does not to be stored during optimization as it is derived from other parameters. Lastly, the
negative definiteness of 𝐴𝑘 can be evaluated with Sylvester’s criterion for 𝐴𝑘 + 𝐴𝑇

𝑘 [13].

3.2 Diffeomorphic method 13

3.1.3 Computational complexity of training SEDS

The number of parameters to be optimized when training SEDS is [10]:

#𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝐾(1 + 2𝑑 + 2𝑑2). (3.19)

The rate of training is of course dependent on the constrained nonlinear optimization
algorithm. The speed can be increased using the analytical form of gradient for the cost
function 𝐽(𝜃𝜃𝜃). However the implemented algorithm for the following results did not use
those analytical derivations, and as such the gradient evaluation was done numerically by
the used software.

3.1.4 Limitation of SEDS

The main limitation can be derived from the Lyapunov-function that underlies the optimiza-
tion constraints for training SEDS. Since the quadratic Lyapunov function is symmetric, its
contour lines are circles and therefore the negative gradient vector always points to goal x∗.
Because of this the trajectories cannot move away from the goal. The following remark
discusses this more accurately.

Remark 3.20 (SEDS can not move away from goal). Assuming that 𝑉(x) = 1
2‖x − x∗‖2

is the Lyapunov function, the stability requirements can be rephrased as:
𝑑𝑉
𝑑𝑡 = ∇𝑉(x) · 𝑓 (x) (3.21)

= ||∇𝑉(x)|| ⋅ ||𝑓 (x)|| cos(∠(∇𝑉(x), 𝑓 (x))) < 0, (3.22)

⟺ cos (∠(− (x − x∗), 𝑓 (x))) > 0. (3.23)

Using the rephrasing it can be concluded that the angle between the DS velocity vector
and the vector pointing to the x∗ can not reach an angle that would result in the velocity
pointing away from the goal:

∠(− (x − x∗), 𝑓 (x)) ∈ (−𝜋
2 , 𝜋

2). (3.24)

In figure 3.1 the circular lines are the contours of the quadratic Lyapunov function, the
red curves are the demonstrations and the grey curves are SEDS trajectories with starting
points denoted by small crosses. Origin is used as the goal point. The figure demonstrates
how the trajectory can parallel the contour but never move away from the goal.

3.2 Diffeomorphic method

In this thesis, a diffeomorphic method means any learning method that uses diffeomorphic
dynamical systems to reproduce the demonstrations. For contrast, in [17] the diffeomor-
phisms were used to compensate for the main limitation of SEDS. However, this thesis
focuses on type of method introduced in [21]. It uses diffeomorphisms more directly than
in [17]. The authors of [21] provided a theoretical background for the method, which will
be discussed in this section.

14 3. Methods

Figure 3.1. Two dimensional illustration of the limitation of SEDS. Red lines are the
demonstration trajectories (from [11]). The computational reproductions are the grey lines.
Circular lines depict the contours of Lyapunov-function

3.2.1 Diffeomorphic dynamical systems

Diffeomorphic dynamical systems are based on the notion of diffeomorphism. Although
it can be defined more generally ([15]), in this thesis the diffeomorphism will defined as
follows.
Definition 3.25 (Diffeomorphism).

𝛷 ∶ ℝ𝑑 ↦ ℝ𝑑, (3.26)

𝛷 is smooth and has a smooth inverse, 𝛷−1. (3.27)

The diffeomorphism is a function that moves points of ℝ𝑑 in a smooth and invertible
manner. To make them applicable to dynamical systems, the following definition is used.

Definition 3.28 (Diffeomorphic dynamical systems). Let 𝐽𝛷 denote the Jacobian of the
diffeomorphism 𝛷. When two dynamical systems, ̇x = 𝑓 (x) and ̇x = 𝑔(x) are diffeomorphic,
it means that there exists a diffeomorphism 𝛷 for which [21]:

𝑓 (𝛷(x)) = 𝐽𝛷(x)𝑔(x). (3.29)

3.2 Diffeomorphic method 15

Figure 3.2. Example SEDS vector field for simpler shape. Data is from [11]. The demon-
stration trajectory are the continuous red lines, the velocity vectors of SEDS are the blue
arrows and the circular gray lines are the contours of Lyapunov-function

In this thesis the diffeomorphic DS defined by 𝑔(x) will be ẋ = 𝑔(x) = −x. This choice
has two benefits. The first is that it provides an intuitive understanding of what the diffeo-
morphisms do in that case. Because all the time forward solutions of ẋ = −x are straight
lines, the diffeomorphisms transform these straight lines into more complex curves. The
second and more important benefit is the result stated in the next theorem. Also, for this
reason the DS ̇x = −x is used, as it is globally asymptotically stable.

Theorem 3.30. If one of two diffeomorphic dynamical systems is globally, asymptotically
stable, then they both are.

Proof. The proof is shown in [21].

How to get the necessary diffeomorphism is yet to be defined, and will be dealt with later.
Assuming that 𝛷(x) is somehow gained from the data, the DS to reproduce them can be
derived as follows.
Remark 3.31. Let 𝛷 be a diffeomorphism learned from the demonstrative data. Then, the
following DS reproduces the demonstrations in a stable manner([21]):

̇x = 𝑓 (x) = −𝐽𝛷(𝛷−1(x))𝛷−1(x). (3.32)

16 3. Methods

Figure 3.3. Example SEDS reproduction trajectories for simpler shape (from [11]). The
demonstration trajectories are the continuous red lines, the reproduction trajectories are
the gray lines and circular lines are the contours of Lyapunov-function

3.2.2 Diffeomorphisms from local translations

The diffeomorphisms in this thesis are a sequential combination of local translations. The
local translations must be diffeomorphisms themselves, which has been proved by the
authors of [21]. Most of the evaluations of the main diffeomorphism stem from evaluating
the inverse of a local translation. The definition for local translations will be introduced
later.
Definition 3.33 (Diffeomorphism from local translations). Let 𝐾 be the number of local
translations used. Then the diffeomorphism from the local translations comes from

𝛷(x) = 𝜓𝐾 ∘ 𝜓𝐾−1 ∘ … ∘ 𝜓1(x), (3.34)

for which the inverse is found by

𝛷−1(x) = 𝜓−1
1 ∘ 𝜓−1

2 ∘ … ∘ 𝜓−1
𝐾 (x). (3.35)

To evaluate the diffeomorphic dynamical system function, it is necessary to find the Jacobian
𝐽𝛷 of the diffeomorphism 𝛷. Finding the Jacobian of the diffeomorphism is based on finding
the Jacobians of the local translations. By using some calculus, a result comes in the form
of following remark.

3.2 Diffeomorphic method 17

Remark 3.36. the Jacobian of the diffeomorphism from sequential local translations is
found by:

𝐽𝛷(x) = 𝑑𝜓𝐾
𝑑𝜓𝐾−1

𝑑𝜓𝐾−1
𝑑𝜓𝐾−2

… 𝑑𝜓1
𝑑x . (3.37)

This can be put into a different form of:

𝐽𝛷 = 𝐽𝜓𝐾
(𝜓𝐾−1 ∘ 𝜓𝐾−2 ∘ … 𝜓1(x))𝐽𝜓𝐾−1

(𝜓𝐾−2 ∘ 𝜓𝐾−3 ∘ … 𝜓1(x)) …

… 𝐽𝜓2
(𝜓1(x))𝐽𝜓1

(x). (3.38)

from which we see how the Jacobians of the local translations become necessary. The
Jacobian of a local translation can be found analytically and the formula for it is shown in
the next subsection.

Figure 3.4. Diffeomorphism of a straight line into a more complex curve. The narrow
continuous red line is the average trajectory of demonstrations of the same dataset as in
figure 2.1. The dashed black line is the straight line of blue dashed line gone through the
diffeomorphism. The dashed orange line is the dashed black line gone through the inverse
of the diffeomorphism. This diffeomorphism was used to derive the DS in figure 3.5

3.2.3 Local translations

So far, the local translations have been used but not defined. An intuitive understanding
of a local translation is that it translates a point of ℝ𝑑 along vector v. The translation is
forced to act locally by the kernel function.

18 3. Methods

Figure 3.5. Vector field of diffeomorphic dynamical system. The continuous red line is the
average trajectory of demonstrations of the same dataset as in figure 2.1. The blue arrows
are modulated velocity vectors of the DS

Definition 3.39 (Local translation and its Jacobian). Let 𝜌 ∈ ℝ and p, v ∈ ℝ𝑑. The
local translation is a function 𝜓 ∶ ℝ𝑑 ↦ ℝ𝑑 defined by

𝜓𝜌,p,v(x) = x + 𝑘𝜌,p(x) ⋅ v. (3.40)

The function 𝑘𝜌,p ∶ ℝ𝑑 ↦ (0, 1] is a smooth radial basis function defined by:

𝑘𝜌,p(x) = 𝑒−𝜌2‖x−p‖2. (3.41)

Finally, the Jacobian of a local translation is found by

𝐽𝜓(x) = 𝐼 − 2𝜌2𝑘(𝜌, x, p) ⋅ v ⊗ (x − p) = 𝐼 − 2𝜌2𝑘(𝜌, x, p) ⋅ v(x − p)𝑇. (3.42)

The main idea of the kernel function 𝑘𝜌,p(x) is to approach the zero value when still far
away from the chosen point p and to allow the translation to happen gradually in circular
area with a radius defined by the parameter 𝜌. An illustration of this is shown in figure
3.7, in which the area of effect for the local translation is indicated by the blue hue and an
arrow shows the vector v of the translation. The parameters 𝜌 defines the size of the area
and p is its center.

3.2 Diffeomorphic method 19

The local translation has to be invertible and that requirement was shown in [21] to be
defined by the parameters 𝜌 and v:

𝜌‖v‖ < 1
√(2)

𝑒
1
2 . (3.43)

In other words, in order for the local translation to be invertible, the area of effect must be
greater than an area defined by a radius of 1

√(2)‖v‖
𝑒

1
2 .

For the local translation to be of any practical interest, its inverse has to be evaluable. The
authors of [21] showed that the inverse is of the form:

𝜓−1(x) = x + 𝑟 ⋅ v, (3.44)

where the 𝑟 is defined by position x and the parameters 𝜌, p, v. Evaluating the inverse of
the local translations then results in finding the root of a function ℎ ∶ ℝ ↦ ℝ which means
finding 𝑟 for ℎ(𝑟) = 0. The function ℎ itself is defined as

ℎ(𝑟) = 𝑟 + 𝑘𝜌,p(x + 𝑟 ⋅ v). (3.45)

As the root can not be found analytically, it has to be found by applying a numerical method.
For this, the straightforward use of Newton’s method suffices with the iterations being
defined by:

𝑟𝑛+1 = 𝑟𝑛 − ℎ(𝑟𝑛)
ℎ′(𝑟𝑛) . (3.46)

In this, the ℎ′(𝑟) can be found analytically:

ℎ′(𝑟) = 1 − 2𝜌2((x + 𝑟 ⋅ v − p) • v)𝑘(𝜌, x + 𝑟 ⋅ v, p). (3.47)

Inverting the local translation is summarized in the next remark.

Remark 3.48 (Evaluating the inverse of a local translation). Find value for 𝑟 by iterating

𝑟𝑛+1 = 𝑟𝑛 − ℎ(𝑟𝑛)
ℎ′(𝑟𝑛) . (3.49)

Then the inverse of a local translation is found simply by

𝜙−1(x) = x + 𝑟 ⋅ v. (3.50)

3.2.4 The algorithm for finding the local translations

In [21] the authors provided a computationally fast heuristic to derive a diffeomorphism
between straight line and a curve. A 2-dimensional example case is shown in figure 3.4. In it,
the diffeomorphism is between a straight line and an averaged curve from one demonstration
pattern in the LASA handwriting dataset [11]. The heuristic is fast and accurate for most

20 3. Methods

Figure 3.6. Two sequential local translations in 2-dimensions depicting how they bend the
surrounding space. The blue and orange arrows are the parameter v1 and v2 of the local
translations.

cases, but it restricts the learning to only a single demonstration pattern and relies on the
average demonstration pattern being smooth enough. In one sense, this way of learning
does not use the dynamical system similarity measure discussed earlier, but a surrogate
similarity measure which only compares points assumed to lie on the curves.

Considering that the final diffeomorphism has 𝐾 local translation and each local transla-
tion has parameters 𝜌, p, v, the diffeomorphic dynamical system then needs 𝐾(1 + 2𝑑)
parameters. The learning of the diffeomorphic dynamical system could then be posed as a
constrained optimization problem, if a satisfactory similarity measure can be used. The
constraints ensure the diffeomorphism is invertible and possibly have the fixed point of at
0.

3.3 LMDS 21

Figure 3.7. One 2 dimensional local translation showing the area of effect with the blue
hue. The blue arrow is the parameter v of the local translation. The position of the area is
defined by the parameter p of the local translation and the size of it is defined by 𝜌.

It should be possible to pose the learning problem in the same way as for SEDS in definition
3.15, but using the cosine similarity measure and constricting the case by the invertibility
criteria. The idea is formalized in following remark.
Remark 3.51 (Using cosine similarity to find diffeomorphic DS).

minimize
𝜌1,…,𝐾,p1,…,𝐾,v1,…,𝐾

𝐽(𝜌1,…,𝐾, p1,…,𝐾, v1,…,𝐾) = − 1
𝑁𝑇

𝑁
∑
𝑛=1

𝑇
∑
𝑡=1

ẋ𝑛,𝑡 ⋅ 𝑓 (x𝑛,𝑡)
‖ ̇x𝑛,𝑡‖‖𝑓 (x𝑛,𝑡)‖

, (3.52)

with subject to

𝜌𝑘‖v𝑘‖ < 𝑒
1
2

√(2)
, 𝑘 = 1, … , 𝐾, (3.53)

𝑓 (0) = 0. (3.54)

3.3 LMDS

LMDS stands for local modulation of dynamical systems. It differs from the previous
methods in that it does not create a dynamical system itself, but modifies a pre-existing
one. As stated in the article introducing it, [14], LMDS implements incremental learning,
improving a learned model while preserving some stability.

22 3. Methods

3.3.1 Local modulations and stability

The locally modulated dynamical system means that for every state x ∈ ℝ𝑑 there exists
a fully ranked linear mapping 𝑀(x) ∈ ℝ𝑑×𝑑, which is the identity map outside a certain
region in the state space. This region should not include the equilibrium x∗, otherwise the
stability of the DS is no longer guaranteed. The strongest proof for stability guarantees
local asymptotic stability under certain criteria. [14]

The method can include learning the speed profile of the demonstrations, but in this
thesis that part of learning is omitted and instead focuses on learning the direction of the
modulation matrix. In this approach the modulation matrix is reduced to a rotation matrix.
Additionally, this thesis focuses mainly on 3-dimensional DS, and as such the rotations
considered are the rotations of ℝ3.

3.3.2 Learning the local modulations

The LMDS learning has two stages. In the first stage, the modulation data from the original
demonstration data is calculated, while the second involves the application of a suitable
local regression method to learn the function

𝜉 ∶ ℝ𝑑 ↦ ℝ𝑠. (3.55)

It takes in a position and gives out an 𝑠-dimensional modulation vector 𝜃 ∈ ℝ𝑠. The
modulation vector in the 3-dimensional case is

𝜃 = ⎛⎜
⎝

v
𝛾

⎞⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣1

𝑣2

𝑣3

𝛾

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.56)

Although it is stated that the learning of this method is achievable by any local regression
method, the original article used gaussian process regression [26] for the learning [14].
Hence, the actual learning part is then reduced to applying the gaussian process regression
to each entry of the modulation vector 𝜃. The chosen kernel function is the squared
exponential.

For a 3-dimensional case, the modulation vector can be thought to include the axis of
rotation v and the amount of rotation 𝛾. The following 2 equations (3.58, 3.59) describe
how to calculate the modulation vector from each data point (x𝑛,𝑡, ẋ𝑛,𝑡).
Remark 3.57 (Calculating the modulation data for 3 dimensions). Let ̇x = 𝑓 (x) be a
pre-existing DS. For each non-zero datapoint (x𝑛,𝑡, ẋ𝑛,𝑡) calculate the axis of rotation

v𝑛,𝑡 =
𝑓 (x𝑛,𝑡) × ẋ𝑛,𝑡

‖𝑓 (x𝑛,𝑡) × ẋ𝑛,𝑡‖
, (3.58)

3.3 LMDS 23

and the amount of rotation

𝛾𝑛,𝑡 = arccos (
𝑓 (x𝑛,𝑡) ⋅ ẋ𝑛,𝑡

‖𝑓 (x𝑛,𝑡)‖‖ẋ𝑛,𝑡‖
). (3.59)

After the data has been transformed into modulation data, the gaussian process regression
can be applied for each modulation variable. In this thesis, the gaussian process regression
and prediction was carried out with commercial software.

Remark 3.60 (Learning and using the local modulation in 3 dimensions). For each
element in 𝜃 treat it as a single gaussian process and let 𝐺𝑃_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 stand for gaussian
process prediction. Then apply gaussian process regression to each element in order to
find the prediction the function

𝜉(x) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐺𝑃_𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑣1(x)
𝐺𝑃_𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑣2(x)
𝐺𝑃_𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑣3(x)
𝐺𝑃_𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝛾(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣1(x)
𝑣2(x)
𝑣3(x)
𝛾(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.61)

Then calculate the modulation by using the exponential form of Rodrigues’ rotation formula:

𝑅(𝜉(x)) = expm(𝛾
⎛⎜⎜⎜⎜
⎝

0 −𝑣3 𝑣2

𝑣3 0 −𝑣1

−𝑣2 𝑣1 0

⎞⎟⎟⎟⎟
⎠

). (3.62)

Finally, the modulation of the DS can then be simply achieved by:

̇x = 𝑔(x) = 𝑅(𝜉(x))𝑓 (x). (3.63)

3.3.3 Data selection for LMDS

Since gaussian process regression is a nonparametric method, the data used for training
is actually part of the model. This imposes practical limits on how much training data
can be utilised when using gaussian processes in LMDS. This question of choosing the
appropriate data set for LMDS is the main challenge in its application for real systems. The
original paper [14] discusses sparsity and introduces a heuristic method to incrementally
build a training set from a larger body of data. In this thesis, however, a simpler heuristic
was used instead. In this simpler heuristic, an average trajectory was calculated from the
demonstration data set and a fixed number of points from that average trajectory were
chosen to be included in the training set.

One additional concern when choosing the data points is to consider the region of influence
for the local modulations. The region of influence is that part of the state space where
the modulation differs substantially from the identity map. This region is defined by the
gaussian process hyperparameters and the data points chosen for it. It is not immediately
obvious how these choices modify the region of influence. This is important, because as
discussed earlier, it has an immediate effect on the stability of the resulting modulated DS.

24 3. Methods

3.4 Other dynamical system based methods

There are many ways for an agent to learn movement from demonstrations but this section
deals with only a handful of these methods. One very popular approach is based on Markov
decision processes (MDP), in which all actions and states have a value or cost attached to
them. This value or cost function encodes the behavior the agent is supposed to realize.
These approaches are often called reinforcement learning or inverse reinforcement learning,
but this thesis does not deal with them.

Other stable DS-based methods can be divided into autonomous DS or non-autonomous
dynamical systems. Since the SEDS has a sound theoretical basis, there is ongoing work
to mitigate its limitations. Since the main limitation of SEDS stems from the form of
Lyapunov-function used to ensure the stability, these methods often focus on modifying
the Lyapunov-function to allow the DS more freedom to reproduce demonstrations.

One example was introduced in [12], in which the DS and Lyapunov-function candidate
are learned separately. The DS can be learned with any relevant method, meaning it can
be unstable. The stability is then forced by online-calculations based on the Lyapunov
function, which is learned from the demonstrations. The enforcement happens by adding
the stabilizing command 𝑢(x) to the original DS ẋ = 𝑓 (x) resulting in a stable DS ẋ =
𝑓 (x) + 𝑢(x) .

Another example is the method called 𝜏-SEDS, which was introduced in [17]. It alleviates
the restrictive quadratic Lyapunov-function by the following steps. First, a Lyapunov-
function is learned from the data. Secondly, a diffeomorphism is calculated which trans-
forms the learned Lyapunov-function into a quadratic Lyapunov-function. Finally, this
diffeomorphism is used to transform the data so that it is compatible with a quadratic
Lyapunov-function, which means that the SEDS can be used. After the DS has been found
by SEDS, the diffeomorphism can be applied to the resulting DS which then reproduces
the demonstration better than the original SEDS.

One very popular approach based on non-autonomous dynamical systems is called dy-
namical motion primitives (DMP)[23], [8], [20], [25], [24]. The dynamical systems used
by DMPs are a combination of nonlinear and stable linear systems. The DS first follows
nonlinear dynamics but is then smoothly switched to stable linear dynamics by using a
phasing variable. This phasing variable is essentially a dynamical system of its own and
during the execution of a DMP it is the part that makes the DMP time-dependent.

The argument for preferring autonomous methods to non-autonomous ones is that they are
more robust against spatial and temporal disturbances [10] [17].

25

4. TESTING ALGORITHMS ON A ROBOTIC ARM
SYSTEM

4.1 Physical equipment and set-up

The aim of the tests was to explore the applicability of a DS-based approach to learning
motion on a proof-of-concept level. The methods were tested on a 7-DOF manipulator arm
made by Franka Emika GmbH. Figure 4.1 is a conceptual depiction of the physical system.

The physical set-up consists of a real time PC, the arm controller, the arm and a PC. The
real-time PC is connected to the controller via an Ethernet cable, while the arm and the
controller are connected through a customised cable. Presumably, this customised cable
transfers power to the arm’s motors and transmits information about the status of the arm’s
joints to the controller. The robot arm also has an Ethernet interface for connection to a
PC. This Ethernet connection allows the use of a web-interface. Among its many purposes,
this web-interface is used to set up the robot arm’s internal networking parameters and its
physical parameters, and to unlock its joints.

Figure 4.1. Systems physical setup. A block represents a single physical item and dashed
line an Ethernet connection.

Controller Robot Arm

Currents

Sensor signals

PC
Web interface

Real time PC
FCI (ethernet)

4.2 Software set-up for reproducing learned motions

Most of the functionality is defined by the software on the real-time PC. This PC has a
real-time Linux [27] installed in it, as required by the franka control interface, FCI [6]. The
client part of the FCI is implemented as a C++ library, known as libfranka in the real-time
Linux. Through the FCI, the real time PC can establish a motion generator for the robot
arm. As described in the FCI documentation [6], a motion generator means a functionality
that gives out movement-related commands for the system to follow, such as points or
velocities. These commands are in joint coordinates or in Cartesian coordinates. In this
thesis, the movement generator is the DS learned from the demonstrations.

In addition to the FCI, a popular middleware library known as ROS, short for Robot
Operating System [18], was used. ROS provides many helpful functionalities for robotics,

26 4. Testing algorithms on a robotic arm system

such as communication between running programs. The FCI provides an interface for the
ROS known as franka_ros.

The franka_ros includes a group of examples written in C++ demonstrating the usage of
its components. The most immediately useful subset of examples is called franka_exam-
ple_controllers [7]. This provided a template for a cartesian space motion generator in
the form of a ROS controller. ROS control is a ROS package for implementing real-time
control loops in a ROS node [1]. There is a useful diagram in figure 4.2 from the original
article introducing ros_control that illustrates clearly how a ROS controller works.

In terms of figure 4.2, the implemented DS was part of a “Controller”, indicated by a
yellow box in the figure. As can be seen, the “Controller” is part of “Controller Manager”
which is a ROS-node. The “Controller Manager” runs inside the real-time Linux and can
communicate with other ROS-nodes via ROS. Figure 4.2 illustrates the hierarchy.

The initial implementation and investigation of the methods was done in MATLAB®

1. Since the example ROS controllers were written in C++, a MATLAB toolbox called
MATLAB Coder™ was used. The toolbox can convert functions written in MATLAB to
C/C++ with some restrictions. A MATLAB-function was first written for each form of the
dynamical systems (SEDS, LMDS, diffeomorphic DS) and then converted to a C++ source
code.

After this conversion, a simple wrapper class was written for each DS to be used in a
modified form of cartesian_velocity_example_controller from franka_example_controllers.
The SEDS and diffeomorphic DS take in their parameters from an external .mat file, while
the LMDS uses a MATLAB Statistics and Machine Learning Toolbox™ for the gaussian
process prediction. This forces the generated C++ code to contain all the parameters in it
as code. This stems from the fact that in the initial implementation of LMDS for this thesis,
the part used for learning the gaussian processes was a Statistics and Machine Learning
Toolbox-function2. Since it had already provided satisfactory results there was no need to
write custom code.

4.3 Software set-up for learning the motions

As mentioned in the earlier section, the learning methods were implemented in MATLAB.
The teaching data was gathered using an example controller from the franka_example_con-
trollers, ROS and a MATLAB toolbox called Robotics Systems Toolbox™. The modified
example controller recorded the time, the robot joint values and published these values in
ROS topics. A Simulink® 1 node was used to listen to these topics and record the values in
MATLAB workspace.

1MATLAB and Simulink are registered trademarks of Mathworks, Inc
2URL: https://se.mathworks.com/help/stats/fitrgp.html , accessed 2018-10-29.

4.4 Motion reproduction limitations imposed by the set-up 27

Figure 4.2. Overview of ROS Control software architecture (from [1]). It shows how the
controller is a part of Controller Manager node and how the controller interfaces the
physical equipment.

Figure 4.3. Conceptual diagram showing the software hierarchy

Real time PC Real time Linux ROS Controller Manager Controller DS

4.4 Motion reproduction limitations imposed by the set-up

The FCI documentation explains that the command signal given to the arm has to be
sufficiently smooth. Essentially, this means that the forces resulting from the velocity
signals should not exceed the limits dictated by the FCI. If there is a violation of this the
robot arm stops all movement and goes into a reflex error mode which has to be manually
resolved. The FCI provides a software implementation of a signal rate limiter and a low-pass
filter, but recommends that the end-user should nevertheless provide a sufficiently smooth
signal without relying on the rate limiter and filter.

Assuming that the signal adheres to the limitations, there are 2 additional sources for signal
non-smoothness. The first comes from the fact that the control loop might not execute in

28 4. Testing algorithms on a robotic arm system

time, although this happens very rarely. However, the second and much more important
source for error arises from the fact that the physical controller of the arm and the real-time
PC communication is UDP[22]-based. Since UDP is not deterministic, there is always
some packet loss when it is used. This is a major drawback for a real time application such
as movement control. The rate of packet loss is dependent on the physical set-up of the
network, so the FCI must be provided sufficient networking capability in order to use it.

This is the reason for the separation of the speed and shape discussed in section 2.5. When
trying to run the demonstrations at the original speed, the networking was a major obstacle.
Often the test run could not be run at the original speed without the system stopping
prematurely. The stops come from internal safety implementations that prevent the arm
from excessive torque commands. Because the signal was not smooth enough, the velocity
commands resulted in excessive angular jerks and accelerations.

A solution for this could come from implementing the DS part so that it communicates
with the velocity controller in a deterministic manner. A computer bus or something more
sophisticated should remove the problem of inconsistent communication frequency.

It has to be noted that the system can also stop when reaching joint or workspace limits.
This however, is not a limitation of the implementation but rather of the methods. The
methods do not take any actuator limitations into account so it is possible that the resulting
trajectories exceed the actuator’s limits.

29

5. RESULTS AND CONCLUSIONS

5.1 Recorded data

A collection of 3 different 3-dimensional demonstration patterns was recorded to test the
methods. The patterns depict an arbitrary movement resembling an equally arbitrary shape
and do not necessarily model any actual work-related movements, but it might be helpful
to interpret them as pick-and-place sort of movements. Figures 5.1, 5.2, 5.3 show the
recorded patterns. The demonstration pattern 1 shows a movement that starts from the
left side, negative 𝑦-axis, and ends on the right side. Demonstration pattern 2 shows a
movement that starts from the lower left corner and ends at the upper right corner. Finally
the demonstration pattern 3 shows a movement starting from the upper left corner and
ending at the lower center.

The data was collected by implementing a Simulink-node listening to a particular topic
in ROS and saving the results in the MATLAB-workspace. The recording was done in
the joint space meaning that 7 joint values for each time instant were recorded with the
time. The conversion to Cartesian space without the pose was done by using the modified
DH-parameters([5]) provided in the FCI documentation.

Figure 5.1. Demonstration pattern 1. The trajectories start from the lower left-hand side

30 5. Results and conclusions

Figure 5.2. Demonstration pattern 2. The trajectories start from the left hand side

Figure 5.3. Demonstration pattern 3. The trajectories start from the upper left-hand side

5.2 Reproduction results

Reproduction was done in two ways. The first way was with the real robot arm and the
second way was to solve the ODE:s with the same initial positions as in the demonstration
data. The motivation for reproducing the demonstrations on a real robot was to try out the
methods’ applicability in a real-world situation. It highlighted the infrastructure needed for
applying the methods. One such piece of infrastructure that is clearly needed is a velocity
controller with smooth communication between the DS and the controller. The motivation
for reproducing the motions by solving the ODE:s is that it is more convenient not to need

5.2 Reproduction results 31

the physical set-up required for running the motions. This allows a faster and perhaps more
general way of comparing the methods.

In the real-robot reproductions, 5 different trajectories were recorded for each method and
demonstration pattern. These reproductions are intended for visualization and subjective
evaluation of the methods’ efficacy. One immediate effect of the model-free approach is
that some reproductions end prematurely due to exceeding the movement limit or exceeding
the reach of the arm. This can be seen in figures 5.4, 5.8 and 5.11.

Although these reproductions can also shed some light on the question of a method’s
robustness and generalization, these qualities are not discussed in this thesis and have
not yet been formalized in the context of DS-based learning. However, there are some
indications as to how the methods compare with each other in that the initial positions
varied greatly from those in the demonstrations. Figures 5.5 and 5.6 show the significant
differences in this regard.

The second way of reproduction will not be visualized, but will act as a basis for calculating
similarity measures with the algorithms 1 and 2 introduced in section 2.4. Table 5.1
shows the numbers calculated with algorithm 1 and adding the results together for each
demonstration in a pattern. These results indicate that the most accurate method in this
regard was LMDS.

Table 5.1. Cumulative error measure (Higher number means less similar)

SEDS LMDS Diffeomorphic DS
Demonstration pattern 1 74.59 35.11 78.61
Demonstration pattern 2 94.76 63.49 37.26
Demonstration pattern 3 207.0 40.63 46.25
average 125.4 46.41 53.71

Since the previous table, 5.1, shows a measure of dissimilarity rather than similarity, it
should be transformed into a measure of similarity comparable to results given by the
algorithm 2. Assuming that the 𝐸𝑟𝑟𝑜𝑟 ≥ 0, this can simply be achieved by:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 100
1 + 𝐸𝑟𝑟𝑜𝑟. (5.1)

In order to make table 5.1 more comparable to table 5.3, the latter is transformed with the
previous equation, except for the averages.

Now the methods can be compared with regard to both similarity measures. Judging
from the result, it can be seen that LMDS provides better cumulative similarity while the
diffeomorphic DS gives better reproduction in terms of velocity direction.

It should be noted however, that the LMDS was SEDS-based and the sparse data selection
was based on a very simple heuristic. Also, the diffeomorphism for the diffeomorphic
DS was gained by the original author’s fast heuristic algorithm. There is still much room

32 5. Results and conclusions

Table 5.2. Transformed cumulative similarity measure of table 5.1 (Higher number means
more similar)

SEDS LMDS Diffeomorphic DS
Demonstration pattern 1 1.32 2.77 1.26
Demonstration pattern 2 1.04 1.55 2.61
Demonstration pattern 3 0.48 2.40 2.16
average 0.95 2.24 2.01

Table 5.3. Normalized cosine similarity results (Higher number means more similar)

SEDS LMDS Diffeomorphic DS
Demonstration pattern 1 0.9124 0.9655 0.9612
Demonstration pattern 2 0.8636 0.9588 0.9855
Demonstration pattern 3 0.8833 0.9715 0.9753
average 0.8865 0.9653 0.9740

for improvement for both of these methods, and if restricted to the three methods chosen,
probably the best result would be gained from applying the LMDS with good sparsity
criteria to a diffeomorphic DS gained from a more general optimization. Finally, it should
be remembered that so far the methods do not take actuator limitations into account.

Figure 5.4. SEDS reproductions for demonstration pattern 1 on Franka Panda. The
demonstrations and reproductions begin from the left-hand side. The demonstration curves
are the red continuous lines and the reproductions are the black dashed lines.

5.3 Conclusion

In table 5.4 the comparison is made subjectively by giving each method a value between 1
and 5 indicated with asterisks. The methods were compared in 5 aspects: implementation
difficulty, runtime complexity, reproduction accuracy, scalability and stability. What these

5.3 Conclusion 33

Figure 5.5. LMDS reproductions for demonstration pattern 1 on Franka Panda. Demon-
strations and reproductions begin from left hand side. The demonstration curves are the
red continuous lines and reproductions are the black dashed lines.

Figure 5.6. Diffeomorphic DS reproductions for demonstration pattern 1 on Franka Panda.
The demonstrations and reproductions begin from the left-hand side. The demonstration
curves are the red continuous lines and the reproductions are the black dashed lines.

aspects mean and the reasoning behind the scores given for them is explained below. The
underlying assumption for the diffeomorphic DS is that it uses the heuristic algorithm to
gain it as introduced by the authors of [21].

Implementation difficulty is the subjective assessment of the effort needed to gain a dy-
namical system function with the specified method.The diffeomorphic DS is given the

34 5. Results and conclusions

Figure 5.7. SEDS reproductions for demonstration pattern 2 on Franka Panda. The
demonstrations and reproductions begin from the lower left-hand side. The demonstration
curves are the red continuous lines and the reproductions are the black dashed lines.

Figure 5.8. LMDS reproductions for demonstration pattern 2 on Franka Panda. The
demonstrations and reproductions begin from the lower left-hand side. The demonstration
curves are the red continuous lines and the reproductions are the black dashed lines.

lowest value as it is relatively straightforward to implement. The high value for LMDS
reflects the fact that it always requires a pre-existing DS in order to use it. Also, much of
its implementation complexity can be put down to the implementation of gaussian process
regression.

Runtime complexity could be analyzed more rigorously, but for practical purposes this

5.3 Conclusion 35

Figure 5.9. Diffeomorphic DS reproductions for demonstration pattern 2 on Franka Panda.
The demonstrations and reproductions begin from the lower left-hand side. The demon-
stration curves are the red continuous lines and the reproductions are the black dashed
lines.

Figure 5.10. SEDS reproductions for demonstration pattern 3 on Franka Panda. The
demonstrations and reproductions begin from the upper left-hand side.The demonstration
curves are the red continuous lines and the reproductions are the black dashed lines.

simple value is assumed to be sufficient. Also the runtime complexity is highly correlated
with the scalability that is discussed later in this chapter. For this criterion, SEDS is
given the lowest value as evaluating the dynamical system function mainly requires only
elementary functions and the inversion of fixed-size matrices. The diffeomorphic DS is

36 5. Results and conclusions

Figure 5.11. LMDS reproductions for demonstration pattern 3 on Franka Panda. The
demonstrations and reproductions begin from the upper left-hand side.The demonstration
curves are the red continuous lines and the reproductions are the black dashed lines.

Figure 5.12. Diffeomorphic DS reproductions for demonstration pattern 3 on Franka
Panda. The demonstrations and the reproductions begin from the upper left-hand side.The
demonstration curves are the red continuous lines and the reproductions are the black
dashed lines.

next in this category, because the evaluation of inverse diffeomorphism requires an iterative
method. Finally, the LMDS is deemed most complex at runtime because again it requires a
pre-existing DS and uses the gaussian process prediction for the evaluation.

Reproduction accuracy is based on the similarity results shown above, taking the limited

5.3 Conclusion 37

Table 5.4. Subjective comparison of the methods. The amount of asterisks is directly
proportional to the quality mentioned in the columns. For example, more asterisks in
computational complexity means it is more complex (and as such, slower) to run.

Implementation difficulty Runtime complexity Reproduction accuracy Scalability Stability
SEDS *** * ** *** *****
LMDS ***** ***** ***** * ***
Diffeomorphic DS ** *** **** **** ****

form of the implementation into account. In this category, LMDS has most potential
because it can further improve on the already very good result. SEDS is deemed lowest
here, because of its fundamental limitation arising from the Lyapunov-function.

Scalability is the subjective assessment of the effort required to apply the method for higher
than 3-dimensional cases. The diffeomorphic DS with its heuristic way of training is easily
scalable for almost any dimension. If the training is done with a more general optimization,
it would still be less complex, or at worst comparable to, SEDS as an optimization problem.
The LMDS is based mostly on rotations, so its generalization for higher than 3 dimensions
is possible, but requires further analysis.

The stability is also a subjective comparison. The SEDS and diffeomorphic DS have
both been proved to be asymptotically and globally stable. The differences in their scores
come from the details of the proofs shown in the articles in which they were introduced.
The SEDS proof is easily followable and can stand very rigorous examination but the
diffeomorphic DS stability proof is slightly more obscure. The LMDS has the weakest
notion of stability, mostly because choosing the data points to be included in the gaussian
processes can affect the stability negatively.

Finally, using the DS places high demands on the computational and networking equipment.
Because of this it is highly recommended that the velocity commands should be transmitted
in a deterministic manner, such as via a computer bus. The UDP-based communication is
simply not sufficient for highly dynamic applications.

38

REFERENCES

[1] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. Rodríguez Tsouroukdis-
sian, J. Bohren, D. Coleman, B. Magyar, G. Raiola, M. Lüdtke, E. Fernandez Per-
domo, ros_control: A generic and simple control framework for ROS, The Journal
of Open Source Software, Vol. 2, Iss. 20, Dec. 2017, pp. 456 – 456.

[2] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, S. Thrun,
Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press,
May 2005.

[3] W. Chung, L.C. Fu, S.H. Hsu, Motion Control, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008, pp. 133–159. Available: https://doi.org/10.1007/
978-3-540-30301-5_7

[4] D.A. Cohn, Z. Ghahramani, M.I. Jordan, Active learning with statistical models,
Journal of Artificial Intelligence Research, Vol. 4, Iss. 1, Mar. 1996, pp. 129–145.

[5] J. Craig, Introduction to Robotics: Mechanics and Control, Pearson/Prentice Hall,
Addison-Wesley series in electrical and computer engineering: control engineering,
2005. Available: https://books.google.fi/books?id=MqMeAQAAIAAJ

[6] Franka Emika GmbH, Franka control interface documentation. Available (accessed
on 19.10.2018): https://frankaemika.github.io/docs/index.html

[7] Franka Emika GmbH, franka_example_controllers source code. Available (ac-
cessed on 29.10.2018): https://github.com/frankaemika/franka_ros

[8] A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical movement
primitives: Learning attractor models for motor behaviors, Neural Computation,
Vol. 25, Iss. 2, PMID: 23148415, 2013, pp. 328–373.

[9] H. Khalil, Nonlinear Systems, Prentice Hall, Pearson Education, 2002. Available:
https://books.google.fi/books?id=t_d1QgAACAAJ

[10] S. Khansari-Zadeh, A. Billard, Learning stable non-linear dynamical systems with
gaussian mixture models, IEEE Transactions on Robotics, Vol. 27, Iss. 5, 2011, pp.
943 – 957.

[11] S.M. Khansari-Zadeh, LASA Handwriting Dataset, version 2.0, https://bitbucket.
org/khansari/lasahandwritingdataset, 2010. [Online; accessed 15-November-2017].

39

[12] S.M. Khansari-Zadeh, A. Billard, Learning control lyapunov function to ensure
stability of dynamical system-based robot reaching motions, Robotics and Au-
tonomous Systems, Vol. 62, Iss. 6, 2014, pp. 752 – 765.

[13] S. Khansari‐Zadeh, A. Billard, The derivatives of the SEDS optimization cost
function and constraints with respect to its optimization parameters, Learning
algorithms and systems laboratory, École Polytechnique Fédérale de Lausanne,
Techn. rep., 2011.

[14] K. Kronander, M. Khansari, A. Billard, Incremental motion learning with locally
modulated dynamical systems, Robot. Auton. Syst., Vol. 70, Iss. C, Aug. 2015, pp.
52–62.

[15] J. Lee, Introduction to Smooth Manifolds, Springer, Graduate Texts in Mathematics,
2003. Available: https://books.google.fi/books?id=eqfgZtjQceYC

[16] A.N. Michel, L. Hou, D. Liu, Fundamental Theory: The Principal Stability and
Boundedness Results on Metric Spaces, Birkhäuser Boston, Boston, MA, 2008,
pp. 71–148. Available: https://doi.org/10.1007/978-0-8176-4649-3_3

[17] K. Neumann, J.J. Steil, Learning robot motions with stable dynamical systems
under diffeomorphic transformations, Robotics and Autonomous Systems, Vol. 70,
2015, pp. 1 – 15.

[18] Open Source Robotics Foundation. Available (accessed on 27.10.2018): http:
//www.ros.org/

[19] T. Osa, J. Pajarinen, G. Neumann, J.A. Bagnell, P. Abbeel, J. Peters, An algorithmic
perspective on imitation learning, Foundations and Trends® in Robotics, Vol. 7,
Iss. 1-2, 2018, pp. 1–179.

[20] P. Pastor, H. Hoffmann, T. Asfour, S. Schaal, Learning and generalization of motor
skills by learning from demonstration, in: 2009 IEEE International Conference on
Robotics and Automation, May, 2009, pp. 763–768.

[21] N. Perrin, P. Schlehuber-Caissier, Fast diffeomorphic matching to learn globally
asymptotically stable nonlinear dynamical systems, Systems & Control Letters,
Vol. 96, 2016, pp. 51 – 59.

[22] J.B. Postel, Rfc 768: User datagram protocol, Internet Engineering Task Force,
1980. DOI: 10.17487/RFC0768.

[23] S. Schaal, Dynamic Movement Primitives -A Framework for Motor Control in
Humans and Humanoid Robotics, Springer Tokyo, Tokyo, 2006, pp. 261–280.
Available: https://doi.org/10.1007/4-431-31381-8_23

40 References

[24] S. Schaal, S. Kotosaka, D. Sternad, Nonlinear dynamical systems as movement
primitives, in: Humanoids2000, First IEEE-RAS International Conference on
Humanoid Robots, Cambridge, MA, Sept. 2000, CD-Proceedings. clmc.

[25] S. Schaal, J. Peters, J. Nakanishi, A. Ijspeert, Learning movement primitives,
in: Dario, P., Chatila, R. (eds.), Robotics Research. The Eleventh International
Symposium, Berlin, Heidelberg, 2005, Springer Berlin Heidelberg, pp. 561–572.

[26] M. Seeger, Gaussian processes for machine learning, International Journal of Neural
Systems, Vol. 14, 2004, pp. 69–106.

[27] The Linux Foundation, Real time linux documentation. Available (accessed on
27.10.2018): https://wiki.linuxfoundation.org/realtime/documentation/start

	Abstract
	Tiivistelmä
	Preface
	Contents
	List of Figures
	List of Symbols and Abbreviations
	1. Introduction
	2. Theory
	2.1 Dynamical systems
	2.2 Stability of dynamical systems
	2.3 Problem definition
	2.4 Similarity measures
	2.5 Separating shape and speed in a dynamical system
	2.6 Single and multiple demonstration patterns and using the dynamical system

	3. Methods
	3.1 SEDS
	3.1.1 Definition
	3.1.2 Training SEDS
	3.1.3 Computational complexity of training SEDS
	3.1.4 Limitation of SEDS

	3.2 Diffeomorphic method
	3.2.1 Diffeomorphic dynamical systems
	3.2.2 Diffeomorphisms from local translations
	3.2.3 Local translations
	3.2.4 The algorithm for finding the local translations

	3.3 LMDS
	3.3.1 Local modulations and stability
	3.3.2 Learning the local modulations
	3.3.3 Data selection for LMDS

	3.4 Other dynamical system based methods

	4. Testing algorithms on a robotic arm system
	4.1 Physical equipment and set-up
	4.2 Software set-up for reproducing learned motions
	4.3 Software set-up for learning the motions
	4.4 Motion reproduction limitations imposed by the set-up

	5. Results and conclusions
	5.1 Recorded data
	5.2 Reproduction results
	5.3 Conclusion

	References

