
TEEMU STENHAMMAR
FACTORIZATION OF BINARY POLYNOMIALS

Master of Science thesis

Examiner: Docent Henri Hansen

Examiner and topic approved by the

Faculty Council of the Faculty of

Computing and Electrical Engineering

on 5th December 2018

I

ABSTRACT

TEEMU STENHAMMAR: Factorization of binary polynomials
Tampere University of Technology

Master of Science thesis, 55 pages, 1 Appendix page

December 2018

Master's Degree Programme in Information Technology

Major: Computer Science

Examiner: Docent Henri Hansen

Keywords: Polynomial, factorization, �nite �eld

This thesis describes a solution to a cryptographic programming puzzle originally

posted by Nintendo [1] in order to gain job applicants. The encryption method

turned out to be the same as binary polynomial multiplication which means that

the decryption can be done with binary polynomial factorization.

While providing shallow exploration of other options, the main approach in this the-

sis was to �rst compute square-free factorization of a polynomial using David Yun's

algorithm from 1974 [21] and then to apply slower Elwyn Berlekamp's algorithm

[2] on those square-free factors to compute a proper irreducible factorization of the

polynomial. In addition to just explaining and implementing algorithms, the details

of how to make these computations fast on a computer system have been explained

in detail.

One �nding that was made during the research was that sometimes researchers in this

�eld bypass the square-free factorization by just citing Yun and moving on. In fact,

Yun's algorithm as such does not work for �elds with positive characteristic, which

often is the case, and Gianni's work [9] that extends square-free factorization to

positive characteristic is not even based on Yun's algorithm: it is based on Musser's

algorithm [21], which was published 3 years earlier than Yun's.

The binary polynomial factorization translates really e�ciently to a computer al-

gorithm where one bit represents one coe�cient. Using this fact allowed author of

this thesis to e�ciently implement the algorithms to solved the puzzle as the 273rd

person since the problem was posted on-line.

II

TIIVISTELMÄ

TEEMU STENHAMMAR: Binääripolynomien tekijöihinjako
Tampereen teknillinen yliopisto

Diplomityö, 55 sivua, 1 liitesivu

Joulukuu 2018

Tietotekniikan koulutusohjelma

Pääaine: Ohjelmistotiede

Tarkastajat: Dosentti Henri Hansen

Avainsanat: Polynomi, tekijöihinjako, äärellinen kenttä

Tässä työssä kuvataan ratkaisu erääseen kryptogra�seen ongelmaan, jonka peliyhtiö

Nintendo julkaisi [1] tavoitteenaan tarjota työmahdollisuus ongelman ratkaisseille.

Lähemmässä tarkastelussa selvisi, että heidän salausalgoritminsa keskiössä oli binää-

ripolynomien kertolasku ja siten purkualgoritmi, ja siten ongelman ratkaisu vaatii

binääripolynomien tekijöihin jakoa.

Itse ratkaisu koostuu kahdesta vaiheesta. Ensin binääripolynomi jaetaan neliöttö-

miin tekijöihin käyttäen David Yunin algoritmia vuodelta 1974 [21]. Tämän jälkeen

neliöttömät tekijät jaetaan alkupolynomeihin käyttäen hieman hitaampaa Elwyn

Berlekampin algoritmia [2]. Molemmat algoritmit toteutetaan C++ kielellä moder-

nilla tietokoneella ja tuon toteutuksen tehokkuuteen kiinnitettään työssä erityistä

huomiota. Näiden kahden algoritmin kuvaamisen lisäksi työssä esitellään pintapuo-

lisesti muita tapoja jakaa polynomi tekijöihin äärellisen kentän yli tarkoituksena

antaa kuva siitä, kuinka alan tutkimus on kehittynyt.

Työn tutkimusvaiheen aikana huomattiin, että alan kirjallisuudessa on epätarkkuuk-

sia ja joskus aiempi tutkimus sivuttiin liian helposti tai viitattiin väärään työhön.

Esimerkiksi Yunin algoritmiin viitataan helposti, kun kyse on polynomien jakamises-

ta neliöttömiin tekijöihin, vaikka Yunin oma työ on tarkoitettu nolla karakteristikan

omaaviin kenttiin. Tämä on tärkeää siksi, että binääripolynomien kentän karakteris-

tika on nollasta poikkeava, eikä Yunin algortimi siksi toimi. Kaiken lisäksi Giannin

myöhemmin esittämät muutokset [9] eivät pohjaudu Yunin omaan algoritmiin, vaan

Musserin algoritmiin [21], jonka Yun vain esitteli samassa julkaisussaan.

Binääripolynomit on hyvin tehokasta esittää tietokoneella niin, että yksi bitti vastaa

yhtä kerrointa. Tätä hyväksikäyttäen työssä saatiin aikaiseksi tehokas toteutus, jolla

päästiin 273ksi tehtävän suorittaneeksi.

III

CONTENTS

1. Introduction . 1

2. Essential algebraic concepts . 3

2.1 Monoid . 3

2.2 Groups . 4

2.3 Rings . 5

2.4 Principal ideal domain . 7

2.5 Unique factorization domains . 8

2.6 Fields . 9

2.7 The ring of polynomials . 10

2.8 Polynomials . 11

2.8.1 Factorization . 11

2.8.2 Euclidean division . 12

2.8.3 Formal derivative . 14

2.9 Chinese remainder theorem . 14

3. Chosen algorithms . 16

3.1 Fast polynomial operations . 16

3.1.1 Fast carry-less multiplication . 16

3.1.2 Fast division of polynomials . 17

3.1.3 Greatest common divisor . 20

3.2 Square-free factorization . 21

3.2.1 Characteristic zero . 21

3.2.2 Positive characteristic . 24

3.3 Berlekamp's algorithm . 27

3.3.1 Building the Q matrix . 28

3.3.2 Base vectors of the null space of the (Q - I) matrix 29

3.3.3 Factorization . 29

3.3.4 Properties of the Berlekamp's algorithm 30

IV

3.4 Other factorization algorithms . 30

4. Solving the Nintendo challenge . 33

4.1 The Alpha Centaurian encoding . 33

4.1.1 Problem analysis . 34

4.1.2 A brute force solution . 36

4.2 Reformulation of the problem . 37

4.3 Finite �eld F2 . 38

4.3.1 Polynomials over F2 . 39

4.4 Polynomials operations on computer system 39

4.4.1 Representation of polynomials 39

4.4.2 Derivative . 40

4.4.3 Square root of a squared polynomial 41

4.4.4 Squaring of a polynomial . 42

4.4.5 Reversing bits of an unsigned integer 42

4.4.6 Karatsuba multiplication . 44

4.4.7 Fast Euclidean division . 44

4.4.8 Greatest common divisor . 45

4.5 Square-free factorization . 46

4.6 Berlekamp's algorithm . 47

4.6.1 The Q matrix . 47

4.6.2 Base vectors of the null space . 47

4.6.3 Factorization . 48

4.7 Combining factors to result . 50

5. Conclusions . 51

Bibliography . 54

APPENDIX A. Nintendo Challenge . 56

V

LIST OF ABBREVIATIONS AND SYMBOLS

AI Arti�cial Intelligence

AND Logical AND operation

BCH Bose-Chaudhuri-Hocquenghem codes

CLMUL Carry-less multiplication instruction set on modern microprocessors

ECC Elliptic curve cryptography

GPU Graphics processing unit

PC Personal computer

PID Principal ideal domain

PIR Principal ideal ring

RSA Rivest-Shamir-Adleman, one of the �rst and most well-known public-

key cryptosystem

SETI Search for extraterrestrial intelligence

UFD Universal factorization domain

XOR Logical exclusive OR operation

O Mathematical notation providing an upper bound on a growth rate

of a function

Ω Mathematical notation providing a lower bound on a growth rate of

a function

Θ Mathematical notation bounding growth of a function both from

above and below de�ning its exact asymptotic behavior

o Mathematical notation about growth rate of a function. Statement

f(x) ∈ o(g(x)) means that g(x) grows much faster than f(x)

Zp Field of residual classes Z mod p

R[x] The ring of univariate polynomials over ring R with x as the inde-

terminate

char(R) Characteristic of a ring R

deg(p) The degree of a polynomial p

gcd(a, b) A greatest common divisor of a and b

rank(M) Rank of a matrix M

rev(p) Reversing coe�cients of polynomial p

1

1. INTRODUCTION

Factorization of integers to their prime factors is a known problem for which current

algorithms are not e�cient for large enough integers. Even more, the factorization

of integers has a crucial asymmetry: some mathematical computations are fast when

prime factors are known, but when they are not, computations are infeasible. This

asymmetry is what some encryption schemes, like RSA, are based on and they play

a huge part in securing communications today.

It was long thought that the factorization of polynomials is as hard a problem as

factorization of integers is, but in 1967 Berlekamp [2] came up with his ingenious

algorithm and showed that if the set from which the coe�cients come from, is �nite,

then there exists a deterministic polynomial time algorithm for factorization.

This has led to 50 years of research into di�erent ways these polynomials may be

factorized with di�erent sets of restrictions. There have been direct improvements

from solving the problem in phases, like Yun's algorithm [21], which �nds square-

free factors or algorithm by Cantor and Zassenhaus [5] that introduces equal-degree

and distinct-degree factorizations. A more recent approach by Kalto�en and Shoup

brought the factorization down to sub-quadratic-time [12]. And even more recently

Umans published his sub-quadratic-time algorithm [19], which does not rely on fast

matrix multiplication, like Kalto�en's and Shoup's did.

Presently, factorization of polynomials over �nite �elds is an important tool for many

applications. Cyclic redundancy codes for error correction are based on polynomial

rings and the work of Berlekamp in 1968 [11, p. 19]. Two of the most notable

of such codes are Bose-Chaudhuri-Hocquenghem codes (BCH), where polynomial

factorization over �nite �elds is used directly [11, p. 22], and Reed-Solomon codes

that are basically non-binary BCH codes [11, p. 24].

Another application, elliptic curves, rose to everyone's knowledge when they were

used to prove Fermat's last theorem. Particularly elliptic curve cryptography (ECC)

is based on elliptic curves over �nite �elds [8] and relies on the same algebra and

factorization of polynomials this thesis presents and is based on. ECC is making

1. Introduction 2

its way to replace RSA in places like Wi-Fi even though its security has not been

completely evaluated [8]. However, it seems that ECC can provide the same level of

security as RSA, but with shorter keys [8].

The idea for this thesis came when entertainment company Nintendo posted a job-

application-like programming challenge to one well-known website [1] for such game

related programming puzzles. The problem was about decrypting a given encryption

of a laid-out algorithm that looks obfuscated at �rst glance, but actually just does

carry-less multiplication of two binary numbers. This happens to be exactly what

multiplication of binary polynomials does, and hence, the link to factorization of

binary polynomials is made.

This thesis is built around solving the challenge Nintendo posted. The �rst chapter

is this introduction and it gives an overall picture about the �eld to which this

thesis relates to, and then, chapter 2 introduces all necessary algebraic constructs

required for both understanding and proving the algorithms used in the solution.

Then, chapter 3 walks through all used algorithms for computing with polynomials

and factorizing them. The challenge set by Nintendo, along with its full solution

based on the theory and algorithms will be presented in chapter 4. Lastly, chapter 5

concludes the thesis and highlights results and di�culties met during implementation

and writing.

3

2. ESSENTIAL ALGEBRAIC CONCEPTS

Algorithms used for solving the Nintendo challenge [1] rely on algebra of polynomial

rings. So, in order to explain those, there needs �rst to be a clear understanding of

monoids 2.1, groups 2.2, rings 2.3 and �elds 2.6 with some more in-depth concepts

like principal ideal domains 2.4 and universal factorization domains 2.5

Along with the algebra, a good understanding of some properties of polynomials

is required. The background for polynomials begin with explanation of polynomial

rings in section 2.7. Then, operations on polynomial are presented in section 2.8.

Last section, section 2.9, provides a brief summary of the Chinese remainder theorem

which is later required to prove an important property of an algorithm.

2.1 Monoid

For a set S a mapping S × S → S may be called a law of composition. For any

(x, y) ∈ S the law of composition is also called their product and the commonly used

notation for it is xy or x · y. [15, p. 3]

If for all elements x, y, z ∈ S the relation x(yz) = (xy)z holds the law of composition

for S is said to be associative [15, p. 3]. Next, if there exists an element e ∈ S such

that for any x ∈ S it holds that ex = x = xe, the element e is called a neutral

element. The neutral element for a set S is unique, because for any other neutral

element e′ it would hold that e = ee′ = e′. With this we can give the following

de�nition.

De�nition 2.1.1. A monoid is a set G with a law of composition, which is asso-

ciative, and having a neutral element [15, p. 3]. This de�nition also means that the

set G may not be an empty set for a monoid.

In addition to being associative, a law of composition of a set G can be commutative.

It means that for all x, y ∈ G relation xy = yx holds [15, p. 4]. If this is true, G is

said to be commutative, or sometimes abelian.

2.2. Groups 4

2.2 Groups

Given a monoid G, an inverse of an element x ∈ G is an element y ∈ G such that

xy = e = yx [15, p. 7]. The inverse element is usually denoted with superscript −1,

i.e. the inverse of an element a is a−1. The inverse element must be unique, because

if another inverse y′ ∈ G exists, then

y′ = y′e = y′(xy) = (y′x)y = ey = y. [15, p.7]

De�nition 2.2.1. A monoid G is a group if and only if every element of G has an

inverse.

An example of a group would be the set of rational numbers which forms a group

under addition a.k.a. additive group, where the group operation is denoted as + and

the neutral element as 0. If the set was restricted to non-zero rational numbers it

would form a group under multiplication, a multiplicative group, where the group

operation is denoted as · and the neutral element as 1.

Groups may also have subgroups. A subgroup H of G is a subset of G which contains

the neutral element and for which the law of composition and inverse are closed [15,

p. 9], meaning for all a, b ∈ H it holds that ab ∈ H and a−1 ∈ H. If the neutral

element is the only element the subgroup contains, it is called trivial [15, p. 9].

Let G be group and S a subset of G. We say S generates G, or S is the generator

of G, if every element of G can be expressed as a product of elements of S or their

inverses. A group G is called cyclic if it is generated by a set S of only one element.

As an example Z forms a cyclic additive group as it is generated from 1 or −1. Z
has no other generators.

If the law of composition of a group G is commutative, the group G is also said to

be commutative or abelian [4, p. 63]. The group may also be either �nite or in�nite

according to the size of it. All previous examples of groups have been in�nite as the

size of both integers and rational numbers is in�nite. An example of a �nite group

would be integers modulo some n under addition.

Let x, y ∈ Z and n be a positive integer. We de�ne x ≡ y mod n to mean that

x − y = nq for for some q ∈ Z [4, p. 64]. This makes ≡ an equivalence relation

and we denote the equivalence class, or the residue class, in which x belongs to with

x. The set of all possible equivalence classes is then denoted with Zn, or in some

2.3. Rings 5

literature Z/(n). When written out, this set is as follows:

Zn = {0, 1, . . . , n− 1}

Addition and multiplication operations for integers modulo n may be de�ned as

follows:

x + y = x + y

x · y = x · y

The residue class 0 is clearly the neutral element for addition and −x is the inverse

of x, hence, Zn is a group under addition [4, p. 64]. However, there is no inverse for

0 under multiplication, and therefore when multiplication is considered, Zn is just a

monoid.

2.3 Rings

A ring is a fundamental algebraic concept which consists of a nonempty set R and

binary operations for addition and multiplication. Formally a ring is de�ned as

follows [4, p. 159]:

De�nition 2.3.1. A system (R,+, ·), where R is a nonempty set and + and · are
two laws of composition, called addition and multiplication, and for which holds

that [15, p. 83]:

1. R is a commutative group under addition.

2. Multiplication is associative and has a neutral element.

3. Multiplication is distributive over addition which means that

for all a, b, c ∈ R: a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c

Some simple examples of rings are Z, the ring of all integers, and Q, the ring of

all rational numbers. Both accompanied by the familiar addition and multiplica-

tion operations. Zn was already established as a group over addition, but when

multiplication is added, it forms a ring.

A ring is called commutative ring if its multiplicative operation is commutative [4,

p. 160]. Furthermore, a ring R which has a zero element 0 and a unit element 1 such

that 0 6= 1 and for which every non-zero element has an inverse is called a division

ring [15]. Also, if ab = 0 for all a, b ∈ R, the ring R is called trivial [4, p. 160].

2.3. Rings 6

As an example of a non-commutative ring, let us consider n × n square matrices

with entries from a ring R. Also, let addition and multiplication with such matrices

be de�ned as they usually are for matrices. Now, if

a =

[
x 0

0 0

]
, b =

[
0 y

0 0

]
, xy 6= 0,

then it is easy to see that ab 6= ba, and hence, multiplication is not commutative.

However, addition is commutative and multiplication is associative and distributive,

hence, n× n square matrices over R form a ring.

If a ring R contains elements a, b 6= 0 such that ab = 0, then a and b are called zero

divisors. Example of such zero divisors would be 2, 4 ∈ Z8 because 2∗4 ≡ 0 mod 8.

When ring has no such zero divisors, it is called an integral domain, meaning that

for all a, b ∈ R, ab = 0⇒ a = 0 ∨ b = 0.

Multiplication of any element a ∈ R with an integer n may be de�ned by using

addition operation of the ring and the existence of a unit element. First, we observe

that 1a = a. Second, we may de�ne that (1 + 1)a = a + a, and hence 2a = a + a.

And lastly, we can generalize this for any n:

na =
n∑

i=1

a.

Another property of a ring is its characteristic. It is either zero or a positive integer

and tells how many times addition operation must applied to any element of the

ring for the sum to be the additive identity 0. There exists di�erent de�nitions for

this property, but the result of each is the same. The following de�nition is from [4,

169].

De�nition 2.3.2. If there exists a positive integer n such that na = 0 for each

element a of a ring R, the smallest such positive integer is called the characteristic

of R. If no such positive integer exists, R is said to have characteristic zero. The

characteristic of R is denoted char(R).

One consequence of this de�nition is that if the ring is of integers modulo n, denoted

by Zn, then the char(Zn) = n. This follows directly from the fact that na ≡ 0

mod n, when a, n ∈ Z. As an another example, Z has a characteristic of 0.

2.4. Principal ideal domain 7

2.4 Principal ideal domain

An ideal is a subset S of a ring R for which it holds that [4, p. 179]:

1. For a, b ∈ S ⇒ a− b ∈ S

2. For a ∈ S and r ∈ R implies ar ∈ S and ra ∈ S

For non-commutative rings ideal may also be right ideal or left ideal, depending on

if and which way the second rule holds. So, a right ideal is subset SR of a ring R

for which following holds

1. For a, b ∈ SR ⇒ a− b ∈ SR

2. For a ∈ SR and r ∈ R implies ar ∈ SR

and a left ideal a subset SL of a ring R for which following rules hold

1. For a, b ∈ SL ⇒ a− b ∈ SL

2. For a ∈ SL and r ∈ R implies ra ∈ SL

All ideals for commutative rings are both left and right ideals due to the commutative

nature of multiplication in these rings. These ideals are called two-sided ideals [4,

p. 179] or just ideals. In every ring R there are two trivial ideals. Namely, 0 and R

[4, p. 179]. All other ideals are considered non-trivial.

An example of an ideal would be all even integers. Addition of any two even integers

would yield an even integer and multiplying an even integer with any other integer

would yield an even integer. Hence, even integers ful�ll the rules of an ideal above.

Now, for ring R and element a ∈ R multiplication aR generates a right ideal of R

which is called principal [15, p. 86]. Here element a is called the generator of that

ideal [15, p. 86]. An example of such principal ideal would be all integers divisible

by 3, denoted as 3Z. All elements of this ideal are generated as a set I = {3a|a ∈ Z}.

The principal ideal in previous example was right principal ideal as the generation

happened by multiplying from the right side. As with just ideals, the left principal

ideal follows the exact same de�nition except multiplication happening from the

left side. If, however, the principal ideal happens to be two-sided, it is denoted as

RaR and de�ned as the set of all sums
∑

i xiayi, where xi, yi ∈ R [15, p. 86]. For

commutative rings all three de�nitions of principal ideals are the same [15, p. 86].

2.5. Unique factorization domains 8

De�nition 2.4.1. If all ideals of a ring are principal ideals, the ring is called prin-

cipal ideal ring (PIR) [4, p. 183].

De�nition 2.4.2. A commutative integral domain with unity that is a principal

ideal ring is called principal ideal domain (PID) [4, p. 183].

2.5 Unique factorization domains

Let R be a commutative integral domain ring with unity and a, b ∈ R two non-zero

elements. We say b divides a, denoted as b|a, if there exists such an element c ∈ R

that a = bc [4, p. 212]. Another way of expressing the same is to say a ≡ 0 mod b.

Furthermore, if there exists a unit u ∈ R such that a = ub, then a and b are called

associates [4, p. 212].

Now, if a ∈ R is not a zero or a unit and all divisors of a are either associates

or units, it is called irreducible over R. Also, an element p ∈ R is called a prime

element if p is not a unit and p|ab⇒ p|a or p|b, when a, b ∈ R [4, p. 212]. While it

is true that all primes are irreducible for commutative integral domains with unity,

the contrary often is not. But, in a case of a principal ideal domain every irreducible

element is also a prime [4, p. 213].

From these [4, p. 213] derives a de�nition for a unique factorization domain:

De�nition 2.5.1. A commutative integral domain R with unity is called a unique

factorization domain (UFD) if following conditions are met:

1. Every non-unit element of R is a �nite product of irreducible factors

2. Every irreducible element is a prime

There are three important theorems about UFDs that function as the basis for the

algorithms later.

Theorem 2.5.1. If R is a UFD, then the factorization of any element in R is a

�nite product of irreducible factors, and that factorization is unique to within order

and unit factors. [4, p. 214]

Theorem 2.5.2. If R is a UFD and a, b ∈ R, there exists a greatest common divisor

of a and b that is uniquely determined to within arbitrary unit factor. [4, p. 215]

The greatest common divisor in the latter theorem means that for all elements

a, b ∈ R there exists d ∈ R such that:

2.6. Fields 9

1. d|a and d|b
2. If c|a and c|b for any c ∈ R then d|c

Theorem 2.5.3. Every PID is a UFD while not all UFDs are PIDs. [4, p. 216]

This last theorem is proved in [4, p. 216].

2.6 Fields

A �eld is a commutative division ring [15, p. 84]. In other words it is a nonempty

set F accompanied with operations to multiply and add together elements from it.

[15, p. 93] de�nes a �eld as follows.

De�nition 2.6.1. A �eld F is a commutative ring, such that 0 6= 1 and the multi-

plicative monoid of non-zero elements of F is a group.

Requirement for multiplicative monoid of non-zero elements being a group means

that each non-zero element of F must have an inverse. Another direct restriction is

that a �eld must contain at minimum two elements, namely 0 and 1, where 0 is the

additive and 1 multiplicative neutral element.

Some such �elds would be the systems of rational numbers Q and real numbers

R. They both are examples of in�nite �elds as the size of their respective sets are

in�nite. However, when the size of the set F is �nite the �eld is called a �nite �eld.

An example of a �nite �eld would be the set of residue classes Zp with p being a

prime and addition and multiplication de�ned as in section 2.2. The proof of this

being a proper �nite �eld is in [4, p. 38].

On the other hand, if we consider the set of residue classes Z4 = {0, 1, 2, 3}, we
quickly notice that 2 ∈ Z4 does not have an inverse, and hence, Z4 is not a �eld.

It was already established in section 2.3 that the characteristic of a ring Zn, n ∈ N is

n. Therefore characteristic of the �eld Zp, with p being prime, is p. More generally,

for �elds we have theorem [4, p. 170]:

Theorem 2.6.1. Let F be a �eld. The characteristic of F is either 0 or a prime

number p.

Proof: Let n 6= 0 be the characteristic of F , so ne = 0, where e is the unit

element of F and multiplication by n is de�ned as applying addition operation n

2.7. The ring of polynomials 10

times. Assume n is a composite number and hence can be written as n = n1n2.

Now ne = (n1n2)e = (n1e)(n2e) = 0, and because F is a �eld, either n1e = 0 or

n2e = 0 (if n1e = 0, then n1a = n1ea = 0 for all a ∈ F). But, because both n1 < n

and n2 < n, characteristic of F cannot be n.

A �eld F is called perfect if F p = F , where F p denotes the �eld of all elements xp,

x ∈ F [15, p. 252]. Also, all �elds with characteristic zero are perfect [15, p. 252].

By applying Fermat's little theorem, ap ≡ a mod p, it is easy to see that sets of

residue classes of a prime are all perfect �elds.

2.7 The ring of polynomials

Let R be a ring and consider all polynomials of the form

a0 + a1x + a2x
2 + . . . + anx

n, ai ∈ R

Here ai are called coe�cients of the polynomial. In this polynomial n is the largest

integer for which ai 6= 0. As such an is called the leading coe�cient and n the

degree of the polynomial. The degree of a zero polynomial is de�ned to be −∞ [4].

When the leading coe�cient is 1, the polynomial is said to be monic. A part of a

polynomial aixi is called a term. These polynomials may be added and multiplied

together to form a ring in the following manner [4, p. 165]. Let

f(x) = a0 + a1x + a2x
2 + . . . + amx

m,

g(x) = b0 + b1x + b2x
2 + . . . + bnx

n.

Now,

f(x) + g(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + . . . ,

f(x)g(x) = c0 + c1x + c2x
2 + . . . + cm+nx

m+n,

where

ci =
∑
j+k=i

ajbk, 0 ≤ i ≤ m + n.

As noted in [4] it is now quite easy to see that the operations conform to the de�nition

of a ring. Such a polynomial ring is called polynomial ring over R and it is denoted

by R[x], where x is called the indeterminate or variable. When a polynomial has only

one indeterminate it is called univariate. Although a polynomial may have multiple

2.8. Polynomials 11

indeterminates, those are not of any particular interest for this thesis. Polynomial

ring over R is always in�nite even if the underlying ring R is �nite.

A ring of polynomials may also be an integral domain. For example, a ring of

polynomials over Zn is an integral domain if n is a prime. For a non-prime n it is

easy to show that zero divisors do exist. Take Z8[x] and two polynomials f(x) = 2x

and g(x) = 4x ∈ Zn[x]. Clearly, f(x)g(x) = 2x ∗ 4x = 0, because 2 ∗ 4 ≡ 0 mod 8.

But, if n is a prime, Zn[x] is an integral domain. Proof: Let

f(x) =
n∑

i=0

aix
i, g(x) =

m∑
i=0

bix
i

be non-zero polynomials with leading coe�cients an 6= 0 and bm 6= 0. The result

of multiplication of f(x) and g(x) will then have a leading coe�cient anbm and

anbm 6≡ 0 mod n, because a < n, b < n and n is a prime, and hence, result cannot

be a zero polynomial and Zn[x] is an integral domain with no zero divisors.

An important theorem regarding polynomial rings is as follows [15, p. 221]:

Theorem 2.7.1. Let R be a unique factorization domain. Then the polynomial ring

R[x] over R is also a unique factorization domain.

2.8 Polynomials

This section will introduce some basic properties of polynomials. First, there is a

brief discussion what factorization of a polynomial over a ring means. After which

Euclidean division for integers is explained and further expanded to work for speci�c

polynomial rings. And lastly, the concept of derivative is rede�ned for polynomials

over rings.

2.8.1 Factorization

In section 2.5 irreducibility of an element of a ring was de�ned to mean that such

an element is only divisible by units or associates. This de�nition translates to

polynomials over a ring R so that a polynomial f(x) ∈ R[x] is irreducible if deg(f) >

0 and f(x) cannot be written as a product

f(x) = g(x)h(x)

where g, h ∈ R[x], deg(g) > 0 and deg(h) > 0. [15, p. 175]

2.8. Polynomials 12

Factorization of a polynomial f(x) of a polynomial ring R[x] means �nding its

decomposition to powers of irreducible polynomials ai ∈ R[x] such that

f(x) =
∏
i

aeii ,

where ei is the power of an irreducible polynomial ai. These ai are also called factors

of f .

This decomposition is not possible for all polynomial rings, but, if R[x] is a UFD,

each element f ∈ R[x], f 6= 0 can be expressed as a unique product of irreducible

factors in the form shown earlier. However, if R contains multiple units, the factor-

ization of f is only unique up to unit factors. Polynomial f is called primitive if gcd

of all its coe�cients is a unit [4, p. 221].

As an example, consider �eld Z2 and f(x) ∈ Z2 such that

f(x) = x5 + x4 + x3 + 1

= (x2 + 1)2(x3 + x2 + 1).

Here f(x) clearly is not irreducible, but (x2 + 1) and (x3 + x2 + 1) both are. Hence,

they form the factorization of f(x).

2.8.2 Euclidean division

The usual and well-known Euclidean division for integers is the following [7, p. 27].

Theorem 2.8.1. Given integers a, b > 0, there exists unique integers q > 0 and

0 ≤ r < a such that a = bq + r.

This famous theorem may easily be translated to a similar one for univariate poly-

nomials over a commutative ring. In [15, p. 173] this is expressed in the form of the

following theorem:

Theorem 2.8.2. Let R be a commutative ring, let f, g ∈ R[x] be univariate poly-

nomials of degrees ≥ 0 and assume the leading coe�cient of g is a unit in R. Then

there exist unique polynomials q, r ∈ R[x] such that f = gq+ r and deg(r) < deg(g).

2.8. Polynomials 13

Proof: To prove that this theorem holds, let

f(x) = a0 + a1x + . . . anx
n,

g(x) = b0 + b1x + . . . bmx
m,

where n = deg(f), m = deg(g), both an, bm 6= 0 and bm is a unit in R. It is

important that bm is a unit as it guarantees existence of inverse for it even though

inverses for other elements do not necessarily exist in R. Next, according to [15, p.

174], induction on n may be used to construct the proof.

As the basis of the induction if n = 0 and deg(g) > deg(f), we let q = 0 and r = f .

And further, if deg(f) = deg(g) = 0, we let r = 0 and q = anb
−1
m .

Next, we assume the theorem is proved for polynomials with degree < n. Also, we

may assume that deg(g) ≤ deg(f), because if this is not true, we just let q = 0 and

r = f . Now we can write

f(x) = anb
−1
m xn−mg(x) + f1(x),

where deg(f1) < n. By using induction, we can �nd q1, r and write f as

f(x) = anb
−1
m xn−mg(x) + q1(x)g(x) + r(x)

with deg(r) < deg(g). And �nally, to �nish the proof we de�ne

q(x) = anb
−1
m xn−m + q1(x).

The previous proves only the existence of q and r, but makes no claim whether they

are unique or not. To prove uniqueness [15, p. 174] starts by assuming there exists

two instances of q and r such that

f = q1g + r1 = q2g + r2,

where deg(r1) < deg(g) and deg(r2) < deg(g). After reformatting we get

(q1 − q2)g = r2 − r1.

Now, the leading coe�cient of g was assumed to be a unit in R, so, we can say that

deg((q1 − q2)g) = deg(q1 − q2) + deg(g).

But, we know that deg(r2 − r1) < deg(g), and that can be only if deg(q1 − q2) = 0,

2.9. Chinese remainder theorem 14

which means that q1 = q2 and therefore r1 = r2.

2.8.3 Formal derivative

The usual method for derivation of polynomials does not work on polynomials over

rings or �elds. Mainly, because the concept of limits does not generalize in such a

way that it would be meaningful for such polynomials. Hence, the need for formal

derivative, which is basically ordinary derivative but de�ned just for polynomials

over commutative rings and without limits. So, let R be a ring and f(x) ∈ R[x]

such that

f(x) = a0 + a1x + a2x
2 + . . . + anx

n.

Formal derivative of f is as follows [15, p. 178]:

f ′(x) =
d

dx
f(x) = a1 + 2a2x + . . . + nanx

n−1.

Here multiplication mai should be considered as summing ai m times.

From this de�nition it is easy to derive following properties of the formal derivative:

(af + bg)′ = af ′ + bg′, a, b ∈ R (2.1)

(fg)′ = f ′g + g′f (2.2)

The �rst property is usually known as linearity and the second is called the product

rule. [15, p. 307]

2.9 Chinese remainder theorem

Chinese remainder theorem is useful when computing with large integers. It allows

replacing a computation with known bound in size with similar computations but

with smaller integers.

For any two coprime integers x, y > 1 and any other integers a and b the theo-

rem guarantees existence of integer N such that N is the solution to following two

congruences [7, p. 256]

N ≡ a mod x

N ≡ b mod y.

2.9. Chinese remainder theorem 15

In addition to just existence, the theorem also states that the N is unique modulo

xy [7, p. 257].

This theorem generalizes to any number of coprime integers m1,m2, . . . ,mn, where

mi > 1, called the moduli, and any other integers a1, a2, . . . , an. The theorem then

states existence of a solution x to the following set of congruences [7, p. 258]

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ an mod mn.

While this theorem does not generalize directly to all PIDs it does so for univariate

polynomials over a �eld F [7, p. 364].

Theorem 2.9.1. Let F be a �eld, a1(x), a2(x), . . . , an(x) ∈ F [x] be arbitrary polyno-

mials and m1(x),m2(x), . . . ,mn(x) ∈ F [x] be pairwise coprime polynomials. Then,

there exists a polynomial f(x) ∈ F [x] such that

f(x) ≡ a1(x) mod m1(x)

f(x) ≡ a2(x) mod m2(x)

...

f(x) ≡ an(x) mod mn(x).

And if f1(x) and f2(x) are both solutions, then

f1(x) ≡ f2(x) mod
n∏

i=1

mi(x).

Childs goes on to prove the theorem in [7, p. 365] by constructing a solution.

Furthermore, with his constructed solution, he also proves that there exists a unique

solution to the previous group of congruences with a degree less than the degree of∏
i mi(x) [7, p. 365].

16

3. CHOSEN ALGORITHMS

This chapter will explain all major algorithms that the solution to the Nintendo

challenge [1] rely upon. These algorithms can be roughly divided into two categories

where �rst category contains algorithms that are meant for implementing operations

fast on a PC and the second which actually factorizes polynomials.

The �rst category includes algorithms for fast multiplication 3.1.1, division 3.1.2

and �nding the gcd of polynomials 3.1.3.

The second category of algorithms are the main algorithms meant for factorization of

polynomials over �nite �elds. There are several approaches one can take to factorize

such a polynomial and the one chosen for this thesis is one of the oldest. It is

a two-phased approach where �rst a polynomial is decomposed to its square-free

factors in section 3.2 and then those square-free factors are further factorized with

Berlekamp's algorithm in 3.3.

Lastly, in section 3.4 improved approaches to the factorization problem are brie�y

discussed and their main di�erences to the chosen one analyzed.

3.1 Fast polynomial operations

This section presents algorithms that aim at speeding up computations with poly-

nomials. Two basic computations for polynomials, multiplication and division, are

given algorithms that are faster than naive ones. In addition, a gcd algorithm based

on the division algorithm described here is presented.

3.1.1 Fast carry-less multiplication

Being able to multiply polynomials fast in a binary �eld is important for reducing

overall complexity of the factorization solution. If this multiplication is done with a

naive algorithm based on the de�nition in 2.7, it is easy to see that the multiplication

takes n2 multiplication operations and (n− 1)2 addition operations, where n is the

degree of the polynomial. This yields overall quadratic complexity for multiplication.

3.1. Fast polynomial operations 17

Another aspect of multiplication of polynomials over �eld Z2 is that the operation

translates directly to a carry-less multiplication on computer systems. There has

been Carry-less Multiplication (CLMUL) instruction set for x86 microprocessors

from 2008 which was originally proposed by Intel, and which was later made available

in 2010 �rst in Intel Westmere processors. At the time of writing this thesis there

is no simple way of enabling this instruction set for C++, though the algorithm is

created with this option in mind.

There are interesting approaches to multiplication available that improve upon the

naive algorithm. One of the early ones is from 1963 by Karatsuba [13] who was

able to reduce the asymptotic complexity to O(7n1.58 + n). This Karatsuba's algo-

rithm has since been improved upon in 2009 by Bernstein [17, p. 317�336]. He got

the asymptotic complexity down to O(6.5n1.58 + n). While Karatsuba and Bern-

stein solved the problem with clever division to smaller multiplications, Schönhage

and Strassen took di�erent approach in 1971 and based their algorithm on the

Fast Fourier Transform achieving asymptotic complexity of O(n log n log log n) [18].

These are not all, or even latest improvements, but they indicate that carry-less

multiplication is one option for optimizing the whole algorithm further, should such

optimization be needed.

For this thesis Karatsuba's original algorithm was chosen as it is rather simple and

it suits the problem quite well. Karatsuba's algorithm [13, p. 595-596] takes two

2n-bit polynomials F and G as an input. It splits both polynomials to two parts

F = F0 + F1t
n and G = G0 + G1t

n. Now, the product FG can be calculated as

follows:

FG = (F0 + F1t
n)(G0 + G1t

n)

= (1 + tn)(F0G0) + tn(F0 + F1)(G0 + G1) + (tn + t2n)F1G1

By using this decomposition, the multiplication is divided recursively to smaller

multiplications until the resulting product �ts a 32bit integer. At this level algorithm

reverts back to the usual sifting and XORing.

3.1.2 Fast division of polynomials

The Euclidean division, explained in section 2.8.2, is one the key building blocks for

the factorization algorithm presented later. Hence, it is important to have a fast

implementation for it. A naive one, using the long division of polynomials, will yield

an algorithm with asymptotic complexity of O(deg(a)deg(b)), where a and b are the

3.1. Fast polynomial operations 18

polynomials, which for all practical purposes is the same as O(n2), where n is the

degree of polynomials.

Now, for integers there exists a fast way of implementing Euclidean division by

using Newton's method. Let us recall Newton's method and the Euclidean division

problem setting from theorem 2.8.1.

Newton's method is a numerical method for �nding a root of a real-valued function

f(x). It starts by approximating, or just selecting any starting point x0 and then

computing next approximation by forming a tangent line through point (x0, f(x0))

and using the point where this tangent intersects x-axis as the next approximation.

This iterative step can be expressed as

xi+1 = xi −
f(xi)

f ′(xi)
.

Next, when we are given integers a, b > 0, we would like to compute integers q, r ≥ 0

such that a = bq + r and r < b. We observe that q may be computed as q = ba/bc,
and when q is known, we can compute r = a − bq. So, to determine the value of

q, it su�ces to get a close enough approximation of c = b−1 and then multiply ac

and round it down to the closest integer. This we can achieve by using Newton's

method on function f(x) = x−1 − b. With this the iterative step is as follows:

xi+1 = xi −
x−1i − b

−x−2i

= 2xi − bx2
i .

Now, as it turns out, this Newton's method translates to polynomials over commu-

tative rings with unity too. In their publication Zhengjun Cao and Hanyue Cao [6]

improve upon some earlier version of this algorithm and provide all missing steps

for implementing it. Details of their work are out of the scope of this thesis, but the

resulting algorithm will be introduced next.

The algorithm by Cao and Cao relies on �rst reversing coe�cients of a polynomial

and then computing its modulo with a large power of variable x, doubling that

power with each iterative step of Newton's method. Reversing coe�cients of a

polynomial f(x) is denoted with rev(f) = revdeg(f)(f) and can be achieved with

3.1. Fast polynomial operations 19

simply calculating xdeg(f)f(x−1) [6]. So, as an example:

f(x) = a0 + a1x + +a2x
2 . . . + anx

n

rev(f) = xnf(x−1)

= xn(a0 + a1x
−1 + a2x

−2 + . . . + anx
−n)

= a0x
n + an−11 + . . . + an−1x + an.

(3.1)

We recall theorem 2.8.2, Euclidean division for polynomial, which states: Let R be

a commutative ring with unity and a, b ∈ R[x] two polynomials with degrees > 0

and b being monic. There exists unique, up to unit factors, polynomials q, r ∈ R[x]

such that a = bq + r and deg(r) < deg(b).

Cao and Cao begin then by transforming a = bq+ r equation by substituting x with

x−1 and by multiplying with xn, with n = deg(a) and later m = deg(b) [6]. We get

xna(x−1) = (xn−mq(x−1))(xmb(x−1)) + xn−m+1(xm−1r(x−1))

⇔
revn(a) = revn−m(q) · revmb + xn−m+1revm−1(r),

which implies

revn(a) ≡ revn−m(q) · revm(b) mod xn−m+1.

Next Cao and Cao point out that because b was said to be monic, then revm(b) has

a constant coe�cient of 1, and hence, revm(b) is invertible modulo xn−m+1 [6]. For

g ∈ R[x] to be invertible mod f , we have to be able to �nd a polynomial h ∈ R[x]

such that gh ≡ 1 mod f . So, we get

revn−m(q) ≡ revn(a) · revm(b)−1 mod xn−m+1,

and �nally,

q = revn−m(revn−m(q)).

This leaves, according to Cao and Cao [6], a problem of �nding g(x) ∈ R[x] such

that fg ≡ 1 mod xl, when f(x) ∈ R[x] is given, f(0) = 1 and l ∈ N. Furthermore,

they observe that when l is a power of two, the iteration step to solve the problem

is gi+1 = 2gi − fg2i [6]. This leads to the following result [6]:

Theorem 3.1.1. Let R be a commutative ring with unity and let f, g0, g1, . . . ,∈

3.1. Fast polynomial operations 20

R[x], with f(0) = 1, g(0) = 1, and

gi+1 ≡ 2gi − fg2i mod x2i+1

for all i. Then fgi ≡ 1 mod x2i for all i ≥ 0.

When all these are combined, we get the following algorithm [6]:

1. If deg(a) < deg(b) return q = 0 and r = a

2. Let m = deg(a)− deg(b) and r = dlgm+ 1e
3. Let f = rev(b)

4. For i = 1, . . . , r do

gi = (2gi−1 − fg2i−1) mod x2
i

5. Let s = rev(a)gr mod xm+1

6. Return q = xm−deg(s)rev(s) and r = a− bq

This algorithm improves asymptotic complexity to O(M(n)), where M(n) is the

complexity of multiplication of polynomials of degree n [6].

3.1.3 Greatest common divisor

Theorem 2.5.2 stated the existence of a greatest common divisor for any two elements

of a ring that is a UFD. However, as there may be multiple unit elements in such a

ring, there may exist multiple greatest common divisors [14, p. 424]. So, if w is a

greatest common divisor of u and v, then a · w must also be, when a is a unit.

The algorithm for computing a greatest common divisor, often called Euclid's algo-

rithm, may be based on Euclidean division provided in subsection 3.1.2. To see how

that happens let R be a ring that is a UFD and a, b ∈ R[x] be two polynomials.

Next, let a = bq + r and w ∈ R[x] be a polynomial that divides both a and b.

Therefore, we can write a = sw and b = tw for some s, t ∈ R[x]. Now, as w divides

a, it must also divide r because

r = a− bq = sw − twq = (s− tq)w.

Also, any v ∈ R[x] that divides both b and r, where b = s′v and r = t′v, must divide

a as well because

a = bq + r = s′vq + t′v = (s′q + t′)v.

These two show that any common divisor of a and b is also a common divisor of b

and r. The algorithm based on this observation is then easy to produce [14].

3.2. Square-free factorization 21

Let R be a UFD. A greatest common divisor of u, v ∈ R[x], gcd(u, v), may be found

as follows [14, p. 424]:

1. If v = 0, then gcd(u, v) = u

2. Else gcd(u, v) = gcd(v, r),

where r is the remainder of Euclidean division of u and v from section 2.8.2.

After computing a greatest common divisor, it is customary to multiply it with the

inverse of the leading coe�cient which results in a monic polynomial. [14, p. 425].

This way there is always a certain result that can be called the greatest common

divisor of u and v, while there may be many.

3.2 Square-free factorization

Let F be a UFD and f ∈ F [x] a polynomial over F . As presented in section 2.8.1,

f can be written as a product of irreducible factors such that

f(x) =
∏
i

aeii , ai ∈ F [x], ei > 0.

The polynomial f is said to be square-free if ei ≤ 1 for all i. On the other hand,

any factor ak for which corresponding ek > 1 is said to be a repeated factor.

The process of decomposing a polynomial to its square-free factors is called square-

free factorization. Square-free factorization is much faster to perform than a proper

factorization algorithm and is therefore used as a preliminary step to speed up the

factorization as a whole.

3.2.1 Characteristic zero

Let F be a unique factorization domain with characteristic 0. Yun's algorithm

decomposes a polynomial f ∈ F [x] to f = a11a
2
2 . . . a

k
k, where ak 6= 0, each ai is square-

free and gcd(ai, aj) = 1, i 6= j ≤ k [21]. It does this by computing gcd(f, df/dx) and

using a clever trick:

Theorem 3.2.1. If f = a11a
2
2 . . . a

k
k is primitive in x then gcd(f, df

dx
) = a12a

2
3 . . . a

k−1
k [21]

Proof: Let a0 = a12a
2
3 . . . a

k−1
k . First we establish using chain rule that

d

dx
aii = iai−1i

dai
dx

.

3.2. Square-free factorization 22

Next we calculate the formal derivative of f by applying product rule:

df

dx
= (

da1
dx

a22a
3
3 . . . a

k
k) + (2

da2
dx

a1a2a
3
3 . . . a

k
k) + (3

da3
dx

a1a
2
2a

2
3 . . . a

k
k) + . . .

= (
k∏

i=2

ai−1i)((
da1
dx

a2a3 . . . ak) + (2
da2
dx

a1a3 . . . ak) + (3
da3
dx

a1a2 . . . ak) + . . .

= (
k∏

i=2

ai−1i)(
k∑

i=1

(i
dai
dx

k∏
j 6=i

aj))

= a0(
k∑

i=1

(i
dai
dx

k∏
j 6=i

aj))

Now, a0 clearly divides both f and df
dx

and f/a0 =
∏k

i=1 ai. Next we let s be a divisor

of any aj and notice that s does not divide any ai, i 6= j, because gcd(ai, aj) = 1

for all i 6= j. And, because aj is square-free and primitive with respect to x,

gcd(aj,
daj
dx

) = 1 [21], meaning that s does not divide daj
dx
. From this it follows that s

divides all other terms in the remaining sum but one, and hence, s does not divide

the sum. Therefore gcd(f, df
dx

) = a0.

Based on this trick the Yun's algorithm is as follows:

1 a[0] = gcd(f, df/dx)

2 c = f/a[0]

3 d = (df/dx)/a[0] - dc/dx

4

5 For i from 1 until c == 1:

6 a[i] = gcd(c, d)

7 c = c/a[i]

8 d = d/a[i] - dc/dx

Program 3.1 Yun's algorithm [21].

Yun uses two facts to prove correctness of the algorithm, both which are corollaries

of theorem 3.2.1.

Corollary 3.2.1.1. Let f ′ = df/dx, a0 = gcd(f, f ′), then

f ′/a0 − (f/a0)
′ = a1(a

′
2a3 . . . ak + 2a2a

′
3 . . . ak + . . . + (k − 1)a2a3 . . . ak−1a

′
k) [21]

3.2. Square-free factorization 23

Proof: By derivation we get following results:

f ′ = a0(
k∑

i=1

(ia′i

k∏
j 6=i

aj))

f ′/a0 =
k∑

i=1

(ia′i

k∏
j 6=i

aj)

f/a0 = a1a2a3 . . . ak

(f/a0)
′ =

k∑
i=1

(a′i

k∏
j 6=i

aj).

So, we can calculate

f ′/a0 − (f/a0)
′ = a′2a1a3 . . . ak + a′3a1a2 . . . ak + . . . + a′ka1a2 . . . ak−1

= a1(a
′
2a3 . . . ak + 2a′3a2 . . . ak + . . . + (k − 1)a′ka2 . . . ak−1).

Corollary 3.2.1.2. gcd(f/a0, (f
′/a0)− (f/a0)

′) = a1 [21]

Proof: From earlier we already have f/a0 = a1a2 . . . ak and (f ′/a0) − (f/a0)
′ =

a1Q, where Q = a′2a3a4 . . . ak + 2a′3a2a4 . . . ak + . . . + (k − 1)a′ka2a3 . . . ak−1. It is

clear that a1 divides both, but to fully prove the corollary, we need to still show

that gcd(a2a3 . . . ak, Q) = 1 [21]. In order to show this, let f ∗ = a2a
2
3 . . . a

k−1
k . But,

now theorem 3.2.1 states that a∗0 = gcd(f ∗, f ∗′) = a3a
2
4 . . . a

k−2
k , where all factors are

relatively prime, hence, gcd(f ∗/a∗0, f
∗′/a∗0) = 1. And last, we just calculate:

f ∗/a∗0 = a2a3 . . . ak

f ∗′/a∗0 = (a′2a
2
3a

3
4 . . . a

k−1
k + 2a′3a2a3a

3
4 . . . a

k−1
k + . . . + (k − 1)a′ka2a

2
3a

3
4 . . . a

k−2
k)/a∗0

= a′2a3a4 . . . ak + 2a′3a2a4 . . . ak + . . . + (k − 1)a′ka2a3 . . . ak−1

= Q

This proves both the corollary and the correctness of the algorithm.

The asymptotic complexity of this algorithm is mostly a�ected by gcd computations.

If the asymptotic complexity of a gcd computation for a polynomial f ∈ F [x],

with n = deg(f), is denoted with M(n), the asymptotic cost of Yun's algorithm is

O(M(n) log n) [20].

3.2. Square-free factorization 24

3.2.2 Positive characteristic

The Yun's algorithm works well over any universal factorization domain with char-

acteristic zero, but as such does not work when characteristic is positive. This is

a problem because a �elds of integers modulo prime p have characteristic of p, as

stated in section 2.3, and those are important for this thesis.

The problem that arises from the positive characteristic is that the derivative may

vanish as all terms of the polynomial f ∈ Fp[x] which are of the form axip have

derivatives ipaxip−1 ≡ 0 mod p. Also, this means that the derivative of f being

zero does not have the usual meaning of a zero derivative from calculus.

Theorem 3.2.2. Let Fp be a �eld with a positive characteristic p and f(x) ∈ Fp[x]

with f ′(x) = 0. There exists polynomial g(x) ∈ Fp[x] such that f(x) = g(xp) =

(g(x))p [9].

Proof: To prove this peculiar property Knuth [14, p. 440] considers two polyno-

mials u, v ∈ Fp[x] for which

(u(x) + v(x))p = u(x)p +

(
p

1

)
u(x)p−1v(x) + . . . +

(
p

p− 1

)
u(x)v(x)p−1 + v(x)p

= u(x)p + v(x)p.

The last equality is true because a prime number p divides all binomial coe�cients(
p
1

)
, . . . ,

(
p

p−1

)
, and from theorem 2.6.1 we know a �eld can only have characteristic

of 0 or a prime. Furthermore, by Fermat's little theorem we know that ap = a

mod p, and hence, if u(x) = u0 + u1x + . . . + umx
m, then

u(x)p = (u0)
p + (u1x)p + . . . + (umx

m)p

= u0 + u1x
p + . . . + umx

mp = u(xp).

From this we get two important results: Firstly, if the derivative of f ∈ Fp[x] is zero,

f is a perfect pth power of some polynomial g ∈ Fp[x], and secondly, taking pth root

of g ∈ Fp[x], when g is known to be a perfect pth power is achieved by dividing each

exponent in g by p.

Formally, when a �eld has a positive characteristic, theorem 3.2.1 does not hold.

This is easy to see if we have a �eld Fp, f ∈ Fp[x] and f(x) = xp − u. Here f is

clearly irreducible when u does not have pth root in the �eld, and therefore it must

3.2. Square-free factorization 25

also be square-free, but gcd(f, f ′) = f . This means that in positive characteristic a

polynomial is not necessarily relatively prime with its derivative [9].

To improve upon de�nition of irreducibility, Gianni introduces a new one: a separable

polynomial. Polynomial f ∈ Fp[x] is said to be separable if and only if gcd(f, f ′) = 1

[9]. This makes all separable polynomials square-free, but converse only works for

�elds with characteristic zero.

To construct an algorithm for square-free factorization of polynomials over �elds

with positive characteristic Gianni and Trager use Musser's algorithm [9], which

is one of three algorithms explained by Yun in [21]. Like all three algorithms,

Musser's algorithm is also based on the same property of derivative as Yun's, and

it also works only for characteristic zero. However, this algorithm can be improved

upon. Musser's algorithm is as follows:

1 c[1] = gcd(f, df/dx)

2 b[1] = f/c[1]

3

4 For i from 1 until b == 1:

5 b[i + 1] = gcd(c[i], b[i])

6 c[i + 1] = c[i]/b[i + 1]

7 P[i] = b[i]/b[i + 1]

Program 3.2 Musser's algorithm [9].

As an input this algorithm takes any f ∈ Fp[x], where char(F) = 0 and it outputs

P1, P2, . . . , Pk ∈ Fp[x] such that f =
∏

P i
i . First two lines of the algorithm set up

values

c1 = P2P
2
3 . . . P

k−1
k ,

b1 = P1P2 . . . Pk.

Within the loop following invariants hold [9]:

ci = Pi+1P
2
i+2 . . . P

k−i
k ,

bi = PiPi+1 . . . Pk,

bi+1 = Pi+1Pi+2 . . . Pk,

ci+1 = Pi+2P
2
i+3 . . . P

k−i−1
k .

To properly incorporate the idea of a portion of polynomials vanishing by derivation,

Gianni made the following change to the characterization of the factorization to

3.2. Square-free factorization 26

square-free factors [9]:

Lemma 3.2.1. Let Fp be a �eld with a positive characteristic p and f ∈ Fp[x].

There exists unique, up to unit factors, polynomials Pi, Q ∈ Fp[x] such that Pi are

separable with all i, gcd(Q,Pi) = gcd(Pi, Pj) = 1 when i 6= j, dQ/dx = 0, i ≡ 0

mod p⇒ Pi = 1 and

f = Q
k∏

i=1

P i
i .

Proof: Gianni proves this by construction [9]. First we consider irreducible fac-

torization f =
∏

i f
ei
i and sets Si = {j|(ej = i) ∧ (p - i) ∧ (fj 6= 0)} and T = {j|(p |

ej) ∨ (fj = 0)}. Now, all we need to do is to set

Pi =
∏
Si

fi Q =
∏
T

f ei
i .

Next Gianni improves upon Yun's theorem 3.2.1 with following change [9].

Theorem 3.2.3. Let Fp be a �eld with a positive characteristic p, f ∈ Fp[x] and

f = Q
∏k

i=1 P
i
i be the decomposition of f . Then gcd(f, f ′) = Q

∏k
i=1 P

i−1
i .

Proof: The proof for this theorem follows the steps of Yun's proof. First, we get

from the formal derivation that f ′ = Q
∏k

i=1 P
i−1
i (

∑k
j=1 jP

i
j

∏k
i=1,i 6=j Pi) [9]. Next,

by invoking properties of 3.2.1, namely Q′ = 0, Pi is separable, i ≡ 0⇒ Pi = 1 and

Q and Pi are pairwise prime, Gianni obtains the result that gcd(f, f ′) = Q
∏k

i=1 P
i−1
i

[9].

Next Gianni notices that when using decomposition f = Q
∏k

i=1 P
i
i and running

Musser's algorithm, later known as squareFree, the invariants of that algorithm

change to [9]

c1 = QP2P
2
3 . . . P

k−1
k ,

b1 = P1P2 . . . Pk.

3.3. Berlekamp's algorithm 27

and inside the loop to

ci = QPi+1P
2
i+2 . . . P

k−i
k ,

bi = PiPi+1 . . . Pk,

bi+1 = Pi+1Pi+2 . . . Pk,

ci+1 = QPi+2P
2
i+3 . . . P

k−i−1
k .

After the algorithm stops, all that is left in ck = Q.

With the previous insight and the theorem 3.2.2 we can �nally present an algorithm

for square-free factorization of a polynomial f ∈ Fp, when Fp is a perfect �eld [9].

Step 1. (q, f1, f2, . . . , fk) = squareFree(f). Then, if deg(q) = 0, return.

Step 2. Compute pth root of q to variable h.

Step 3. Recursively decompose h and then merge results with fi.

3.3 Berlekamp's algorithm

Berlekamp's algorithm is for factorization of polynomials over �nite �elds to their

irreducible factors. It was invented by Elwyn Berlekamp in 1967 [2] and was the

dominant algorithm before Cantor and Zassenhaus [5] introduced their algorithm in

1981. Even today Berlekamp's algorithm handles well factorization over �elds that

are small.

Berlekamp's algorithm was chosen for this thesis because of it being historically im-

portant and fast enough for small �elds. Improvements to it and more sophisticated

algorithms will be discussed from a theoretical point of view later.

While Berlekamp's algorithm works for all polynomials, it is bene�cial to use it on

square-free polynomials. The �rst bene�t comes from square-free factorization being

much faster and the second from overall less complex algorithm. There are special

cases to take care of when repeated factors are present in the input, and all those

can be avoided by having square-free factorization as a preliminary step.

Berlekamp's algorithm factors polynomial f ∈ Fp[x] to its irreducible factors. So,

let

f(x) =
m∑
k=0

akx
k, ai ∈ Fp

3.3. Berlekamp's algorithm 28

The algorithm will produce such irreducible polynomials ei that:

f(x) =
n∏

i=1

Pi, Pi ∈ Fp[x]

The algorithm works by �rst generating something called the Q matrix [2]. This Q

matrix represents a set of linear equations that must be partly solved in order to get

the information required for factorization. Partial solving here means �guring out

the null space of (Q − I), where I is the identity matrix, with appropriate column

operations. The third step is to use the base vectors of the null space and Euclid's

algorithm for greatest common divisor to �gure out one factorization for f . And last,

if all factors are not yet irreducible; the algorithm uses further gcd computations to

�nd the rest.

3.3.1 Building the Q matrix

The Q matrix is m × m, where m is the largest integer for which the coe�cient

am 6= 0. The ith row of the matrix represents xp(i−1) reduced modulo f(x) [2]. So,

in other terms:

xpi ≡
m−1∑
k=0

Qi+1,k+1x
k mod f(x). (3.2)

Berlekamp makes an observation that given any other polynomial g(x) ∈ Fp[x],

where deg(g) < m we can calculate the residue of (g(x))p mod f(x) by simply

multiplying row vector presentation of g(x) by matrix Q [2]. In other words, when

g(x) =
∑m−1

k=0 gix
i, row vector representation of g(x) is [g0, g1, . . . , gm−1]. And from

the composition of the matrix Q follows that:

(g(x))p = g(xp) =
m−1∑
i=0

gix
pi =

m−1∑
i=0

(
m−1∑
k=0

giQi+1,k+1x
k)

=
m−1∑
i=0

(
m−1∑
k=0

giQi+1,k+1)x
k. [2]

Similarly the residue of (g(x))p − g(x) mod f(x) may be computed by multiplying

row vector of g(x) by the matrix (Q− I), where I is the identity matrix over Fp[x].

[2]

3.3. Berlekamp's algorithm 29

3.3.2 Base vectors of the null space of the (Q - I) matrix

Next important part of Berlekamp's algorithm is to calculate the null space, also

known as the kernel of the matrix (Q− I). In linear algebra the null space is the set

of all vectors ~v such that A~v = ~0, where A is the matrix for which the null space is

de�ned. In other terms, if matrix A is thought as a linear transform, the null space

of A is the sub-space which is transformed to the zero vector.

The base vectors de�ning the null space may be found by applying appropriate col-

umn operations on the matrix. From algorithmic point of view this means applying

Gaussian elimination on the matrix until rows with just zeros are found.

Now, the important property of the null space of (Q − I) is that every polynomial

g(x) that belongs to the null space must satisfy equation

(g(x))p − g(x) ≡ 0 mod f(x) [2]. (3.3)

And, each g(x) that satisfy the equation, is also a row vector in the null space of

the matrix (Q− I) [2].

3.3.3 Factorization

The last step for the algorithm is to use base vectors g(x) of the null space of the

matrix (Q − I) and Euclid's algorithm for �nding the greatest common divisor to

have a factorization of the polynomial f(x). The factorization is as follows:

f(x) =
∏
s∈Fp

gcd(f(x), g(x)− s) [2]. (3.4)

From equation 3.3 we know that f(x) divides (g(x))p − g(x), which again can be

written as
∏

s∈Fp
(g(x)− s). Hence, f(x) also divides

∏
s∈Fp

gcd(f(x), g(x)− s)[2].

But, then again, gcd(f(x), g(x)− s) divides f(x). Now, for all s 6= t and s, t ∈ Fp it

holds that g(x)− s and g(x)− t are relatively prime as are gcd(f(x), g(x)− s) and

gcd(f(x), g(x)− t). From there it follows that∏
s∈Fp

gcd(f(x), g(x)− s)

divides f(x). Now, when both polynomials are assumed to be monic [2], and they

both divide the other, they must be equal.

3.4. Other factorization algorithms 30

3.3.4 Properties of the Berlekamp's algorithm

Due to the way how the last step of Berlekamp's algorithm creates factorization of

polynomial f , it is obvious that it does not always �nd all, or even irreducible, factors

immediately. To see why this happens it is enough to notice that the factorization

contains at most |Fp| factors and if the number of irreducible factors is larger than

that, not all factors are found and at least one of the resulting factors is further

reducible. In order to address this issue either irreducibility test must be created

or there needs to be a way to know how many irreducible factors there should be.

Berlekamp solves it with the latter approach.

If f(x) =
∏

i (pi(x))ei , where pi(x) ∈ Fp[x] and each pi(x) is irreducible over Fp[x],

then f(x) divides
∏

s∈Fp
(g(x)− s) if each (pi(x))ei divides g(x) − si for some s ∈

Fp [2]. On the other hand, for any set of scalars s1, s2, . . . , sn ∈ Fp the Chinese

remainder theorem 2.9.1 guarantees that there exists a unique g(x) mod f(x) such

that g(x) ≡ si mod (pi(x))ei for all i [2]. Here Berlekamp makes an observation

that as there are pn solutions to equation (g(x))p − g(x) ≡ 0 mod f(x), as proven

earlier, it follows that the number of irreducible factors of f(x) is equal to the the

dimension of the null space of (Q− I) or in other words rank(Q− I).

If the gcd computation with the �rst base vector of the null space g1(x) did not

yield as many unique factors as the rank of the matrix (Q − I), then further gcd

computations are required. Next gcd between each known factor and (g2(x)− s) is

computed, where g2(x) is the next base vector of the null space [2]. By continuing

gcd computations for each base vector of the null space all factors are eventually

found [2].

Berlekamp himself does not make any estimations of the asymptotic complexity

of his algorithm in [2], but subsequent researchers have made. Kaltofen and Shoup

compare di�erent algorithms for factorization in their publication [12]. Their propo-

sition is that Berlekamp's algorithm can be implemented in O(nω + n1+o(1) log p)

operations in Fp, where ω is the exponent of matrix multiplication meaning that

two n× n matrices can be multiplied using O(nω) arithmetic operations.

3.4 Other factorization algorithms

There have been many improvements and asymptotically faster algorithms devel-

oped for factorization of polynomials over �nite �elds after Berlekamp �rst brought

the problem to the realm of feasible ones in 1967 [2]. His algorithm works well for

�elds with small size, but soon becomes too complex when the size of the �eld is

3.4. Other factorization algorithms 31

large. Berlekamp improved upon his own work in 1970 when he published his paper

on how to factorize polynomials over large �elds.

When Yun introduced his algorithm for �nding square-free factors of polynomi-

als over �nite �elds in 1974 [21], he e�ectively introduced a preliminary step for

Berlekamp's algorithm as Yun's algorithm is much faster than Berlekamp's and ba-

sically comes with the complexity of a one gcd computation. After Yun's work there

was another improvement in a form of introducing yet another step for factorization.

Algorithms from Cantor & Zassenhaus (1981), Ben-Or (1981), von zur Gathen &

Soup (1992) and Kaltofen & Shoup (1995) all proceed in three steps [20]:

1. Square-free factorization. This is still a preliminary step for all these algo-

rithms and it is handled with some variation of Yun's algorithm.

2. Distinct degree factorization. When given a monic square-free polynomial

f ∈ Fp[x], compute its unique decomposition

f =

deg(f)∏
i=1

hi

into monic polynomials h1, h2 . . . , hdeg(f) ∈ Fp[x], where each hi has only irreducible

factors of degree i. Here, hi are also called equal-degree polynomials. [20]

3. Equal degree factorization. Given integers r, d ∈ N, r ≥ 0 and a square-free

equal-degree polynomial f ∈ Fp[x] of order d and degree n = rd, compute its r

irreducible factors. [20]

In 1994 Niederreiter presented his algorithm which, like Berlekamp's algorithm, sets

up a linear system of equations, solves it using Gaussian elimination and extracts

the solution from the base vectors of solved system with greatest common divisor

computations [16]. In 1999 Roelse showed in his publication [16] that Niederreiter's

algorithm parallelizes to multiple processors and was able to, by his own words,

make a new "world record" in factorization.

All-in-all, the size of the �eld, the number of variables and the degree of polynomials

in�uence hugely which algorithm and method should be used. The problem in this

thesis is about univariate polynomials in a small �eld with rather small maximum

degree, and hence, Berlekamp's algorithm does not fare signi�cantly worse than

3.4. Other factorization algorithms 32

others.

33

4. SOLVING THE NINTENDO CHALLENGE

This chapter provides the full solution to the Nintendo challenge [1]. First, section

4.1 gives full presentation of the Nintendo challenge and then section 4.2 expresses

it in such a way that the theory given in chapter 2 may be used to solve it. Then,

section 4.3 explains why all theory explained applies for the problem. After that,

section 4.4 provides comprehensive insight into how polynomials are represented and

handled in a target computer system. Sections 4.5 and 4.6 explain the implemen-

tation of two main algorithms, square-free factorization and Berlekamp's algorithm

respectively. The last section, 4.7 brie�y discusses how the factors from the algo-

rithms can be combined to a solution to the problem.

All algorithms and pseudo-code programs were implemented by the author of this

thesis in C++ programming language. The implementation with all the helper

methods and data structures took little over 700 lines of code. In addition to just

implementation there were several hundreds of lines of unit test cases to make sure

all code was working properly.

4.1 The Alpha Centaurian encoding

The problem this thesis is to solve originates from www.codingame.com where Nin-

tendo posted it as a sponsored puzzle for participants to solve [1]. A screenshot of

the website can be found in Appendix A. At the time of writing this thesis the chal-

lenge had been available online for more than three years with only 272 completions

during that time. By all measurements this is the hardest puzzle on the site.

The context for the puzzle is that the SETI program has been receiving series of

messages from Alpha Centauri, but they have no idea of the content of these mes-

sages. What they do know is how Alpha Centaurians are encoding these messages

and pseudo-code for this operation is given for participants to use.

4.1. The Alpha Centaurian encoding 34

1 READ size

2 READ size / 16 integers in array a

3 WRITE size / 16 zeros in array b

4

5 For i from 0 to size - 1:

6 For j from 0 to size - 1:

7 b[(i+j)/32] ^= ((a[i/32] >> (i%32)) &

8 (a[j/32 + size /32] >> (j%32)) & 1) << ((i+j)%32)

9

10 PRINT b

Program 4.1 Alpha Centaurian encoding operation.

The algorithm seems to be written in this form to make understanding of the op-

eration as hard as possible for programmers not used to reading algorithms. First

the algorithm reads something called size and then both reads size/16 and outputs

size/16 integers in an array. It is further elaborated in the puzzle context that the

size is restricted to 0 < size ≤ 256. In reality smallest test value for size is 32 and

from there it is incremented in multiples of 32 up until 256.

Next subsection, 4.1.1 will explore the algorithm in detail and subsection 4.1.2 pro-

vides brute force algorithm for decoding as well as explanation why this approach

is not feasible when size > 64.

4.1.1 Problem analysis

For analyzing the Centaurian algorithm let size = 32. This is the smallest size for

which there are tests in the puzzle website and that selection makes understanding

the algorithm easier for now. This means that on line 2 there are two 32bit integers

to be read in the array a and the same amount of space reserved for the output

array b on line 3.

Next, in the nested for loop variables i and j both iterate from 0 to 32. This is

to say that whatever is inside the nested for loops will be ran for all i, j : 0 ≤ i <

32, 0 ≤ j < 32.

A closer look at lines 7 & 8, the actual operation, reveals a structure like this:

1 b[(i+j)/32] ^= (X & 1) << ((i+j)%32)

Program 4.2 Structure of a single iteration of the double loop.

Here (X&1) is just selecting the lowest bit of whatever X is and using XOR-equals

4.1. The Alpha Centaurian encoding 35

operator to XOR it into the array b. The location where the bit is XORred to is

combination of the left side and the right side of the line: It is XORred to (i+j)/32th

integer at position (i+j)%32, which is exactly same as to say array b is just an array

of bits and XORring happens to its (i + j)th bit because ba/nc+ (a mod n) = a.

Now, all that is left is to understand what the lowest bit in X stand for. In the

nested loop X is as follows:

1 (a[i/32] >> (i%32)) & (a[j/32 + size /32] >> (j%32))

Program 4.3 The bit for the xor operation.

Here two parts are combined by logical AND. Left side uses only variable i while

right side uses only variable j. Both sides are again selecting a bit to be the lowest bit

using the same logic as before. The bit selected by the left side is simply bi/32c+ (i

mod 32) = i. Right side is otherwise the same, but it has constant term size/32

in it. In the beginning it was stated that the number of integers in the array a

is size/16, hence size/32 = size/16/2 = |a|/2. Altogether this means that the

algorithm uses the array a as two separate bit arrays, �rst half which is indexed

with variable i and second half which is indexed with variable j. For now on, the

�rst half of the array a is denoted aL and second half aR.

So, to bring it all together: Inside the nested for-loop the Centaurian operation

chooses ith bit from aL and jth bit from aR. Next it uses logical AND operator to

combine these and lastly the result is XORred to the array b in index (i + j).

b0 = aL0 ∧ aR0

b1 = (aL0 ∧ aR1)⊕ (aL1 ∧ aR0)

b2 = (aL0 ∧ aR2)⊕ (aL1 ∧ aR1)⊕ (aL2 ∧ aR0)

b3 = (aL0 ∧ aR3)⊕ (aL1 ∧ aR2)⊕ (aL2 ∧ aR1)⊕ (aL3 ∧ aR0)

. . .

b2size−3 = (aLsize−2 ∧ aRsize−1)⊕ (aLsize−1 ∧ aRsize−2)

b2size−2 = aLsize−1 ∧ aRsize−1

Table 4.1 The output array b of the Centaurian operation

Now, there are two visual ways for interpreting the operation. First, it can be

viewed as a matrix where the value of each cell cij = aLi ∧ aRj. Next, the bits in

the output array b are formed by XORring together cross-diagonal cells such that

bk =
∑

i+j=k cij with addition operation replaced with XOR. Table 4.2 shows an

example of this.

4.1. The Alpha Centaurian encoding 36

aL0 aL1 . . . aLsize−1
aR0 aL0 ∧ aR0 aL1 ∧ aR0 aLsize−1 ∧ aR0

aR1 aL0 ∧ aR1 aL1 ∧ aR1 aLsize−1 ∧ aR1

. . .
aLsize−1 aL0 ∧ aRsize−1 aL1 ∧ aRsize−1 aLsize−1 ∧ aRsize−1

Table 4.2 Matrix visualization of the Centaurian algorithm

aR0 ∧(. . . aL2 aL1 aL0)
aR1 ∧(. . . aL1 aL0)
aR2 ∧(. . . aL0)
. . .

aRsize−3 ∧(aLsize−1 . . .)
aRsize−2 ∧(aLsize−1 aLsize−2 . . .)

⊕ aRsize−1 ∧(aLsize−1 aLsize−2 aLsize−3 . . .)
b2size−2 b2size−3 b2size−3 . . . b2 b1 b0

Table 4.3 Carry-less multiplication visualization of the Centaurian algorithm

The second way of visualizing the problem is to re-arrange rows of the matrix in a

way where previous diagonals are vertical. This creates familiar ladder-like structure

which is how polynomial multiplication may be visualized. But, in this case the

usual binary addition operation has been changed to XOR-operation. What this

e�ectively does, is, that it now discards carry bits, and hence, this operation is

called carry-less multiplication. The structure can be seen in the table 4.3.

4.1.2 A brute force solution

One brute force solution can be created by just testing all values for aL one-by-one.

It is enough to consider only aL and not aR because aR = b/aL when there is no

remainder left from the division. The program 4.4 is given as an example.

1 a := Array of zeroes

2 b := Encrypted message

3

4 Loop

5 Add 1bit to a

6 If overflow

7 return results

8 q, r := div(b, a)

9 If r = 0

10 results.append(a, q)

Program 4.4 A brute force solution for decrypting Centaurian messages.

4.2. Reformulation of the problem 37

Let n be the number of bits in a. The loop is run O(2n) times, adding a bit to the

array takes at most O(n) and division can be done in O(n2) operations. Therefore,

the total asymptotic complexity of the algorithm is O(2n(n2 + n)) ≈ O(2n).

If we take ordinary high-end PC with 3GHz processor with 4 cores and assume it is

able to perform a single step of the previous algorithm in each clock cycle, then the

32bit version of the problem will take approximately 0.36s to solve. However, the

64bit version takes almost 49 years and the hardest problem, the 256bit one, takes

ridiculous 1059 years. It is clear, that the brute force approach is not going to work.

4.2 Reformulation of the problem

Let us consider what the problem would look like if it was given a mathematical

notation. Let AND operation be multiplication and XOR operation addition. Next,

if we represent the two input bit arrays aL and aR from section 4.1.1 as polynomials

f(x) and g(x) respectively with coe�cients aLi, aRj
∈ {0, 1}, and n = size− 1, such

that

f(x) = aL0 + aL1x + aL2x
2 + . . . + aLnx

Ln,

g(x) = aR0 + aR1x + aR2x
2 + . . . + aRnx

Rn.

Now, multiplication of f(x) and g(x) according to section 2.7 would yield following

results

f(x)g(x) = b0 + b1x + b2x
2 + . . . + bkx

k

bk =
∑
i+j=k

aLiaRj, 0 ≥ k ≥ 2n

b0 = aL0aR0 = aL0 ∧ aR0

b1 = aL0aR1 + aL1aR0 = (aL0 ∧ aR1)⊕ (aL1 ∧ aR0)

. . .

b2n−1 = aLn−1aRn + aLnaRn−1 = (aLn−1 ∧ aRn)⊕ (aLn ∧ aRn−1)

b2n = aLnaRn = aLn ∧ aRn

From this formulation it is clear that the resulting coe�cients from multiplication of

f(x)g(x) are exactly the same bi than the Centaurian algorithm produces in section

4.1.1. So, the original decryption problem translates to one of �nding f(x) and

g(x) when f(x)g(x), the bit vector b, is given. But what we do not know at this

point is whether such an operation is possible and whether an algorithm needed to

make such an operation even exists. However, from chapter 3 we do know that an

4.3. Finite �eld F2 38

algorithm for factorization of polynomials over �nite �elds does exist.

For existence of the decryption algorithm for this formulation we need to ensure that

the coe�cient set S = {0, 1} with two laws of composition, AND for multiplication

and XOR for addition, form a �nite �eld, and that polynomials over such a �eld

have a unique factorization. Then, and only then, can all possible f(x) and g(x) be

composed of the factors of f(x)g(x) to provide a solution to the original problem.

4.3 Finite �eld F2

Let set S = Z2 = {0, 1} and + and · be two laws of composition over S, called

addition and multiplication respectively, be de�ned as follows:

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

Here S has 0 as the neutral element for addition, called zero, and 1 as the neu-

tral element for multiplication, called unit, hence, S creates a monoid according to

de�nition 2.1.1 with both addition and multiplication.

With regards to inverse, the unit element of S, 1, is its own inverse for both laws

of composition. From the matrices above, it is easy to check that 1 + 1 = 0 and

1 · 1 = 1. Therefore S forms a group according to de�nition 2.2.1 with addition.

Also, as the matrices that de�ne the operations are symmetric along its diagonal,

both addition and multiplication are commutative.

Multiplication is clearly distributive over addition and with this limited size of S

that is easy to see, or even try all combinations out. And, as S is a commutative

group under addition, multiplication is associative and because multiplication is

distributive over addition, (S,+, ·) is a ring according to de�nition 2.3.1. And,

because both operations are commutative and S has no zero divisors, S forms a

commutative integral domain.

From theory in section 2.4, it is clear that S has only trivial ideals, 0 and S. And,

because unit element 1 generates the whole set S by multiplication 1 · S, S is a

principal ideal. Furthermore, because S is the only principal ideal, hence all ideals

of S are principal (except trivial 0), it follows that S is a principal ideal ring as

de�ned in 2.4.1.

4.4. Polynomials operations on computer system 39

As S has been established to be a commutative integral domain and a principal ideal

ring, it is by de�nition 2.4.2 also a principal ideal domain. Furthermore, theorem

2.5.3 states that every PID is also a universal factorization domain, making S a

UFD too.

And lastly, as S is a commutative ring, it has 0, 1 ∈ S such that 0 6= 1 and as a

residue class of a prime number its multiplicative monoid of non-zero elements is a

group, S is a �eld according to de�nition 2.6.1. As a �eld S is perfect, because it

ful�lls the criterion expressed in section 2.6.

4.3.1 Polynomials over F2

According to theorem 2.7.1 a polynomial ring R[x] over ring R that is a UFD is

also a UFD. Hence, Polynomial ring F2[x] over F2 is a UFD because F2 has been

established as a UFD in the previous section. And consequently, theorem 2.5.1

states that all f(x) ∈ F2[x] have a unique factorization to irreducible factors. The

theorem claims the factors are unique up to unit factors, but as there is only one

unit in F , namely 1, it follows that the factorization is truly unique.

From this we conclude that polynomials over F2 are in fact factorisable and algo-

rithms presented can be used in order to solve the decryption problem.

4.4 Polynomials operations on computer system

This section will provide information about the representation used in this thesis

for polynomials in a computer system. Most of the computations with polynomials

represented in this way have their algorithms explained while some trivial helper

methods are omitted. Algorithms were implemented in C++, but to remove unnec-

essary details of the language, they were written in pseudo-code in this thesis.

4.4.1 Representation of polynomials

Polynomials over F2 may only have a coe�cient of 0 or 1, and hence, using one bit in

a computer to represent one coe�cient would allow a near perfect packing, unless the

polynomial is really sparse, meaning that if k is the number of non-zero coe�cients

in f ∈ F2[x], then deg(f) ≫ k. For this thesis polynomials are considered to be

dense, which is the opposite of being sparse, and means that deg(f) ≈ 2k.

4.4. Polynomials operations on computer system 40

With these assumptions the basic building block of the polynomial representation

is an unsigned 32bit integer, which is capable of representing a polynomial with a

degree < 32. Now, let a be an unsigned integer, a0 the least signi�cant bit and

a31 the most signi�cant bit, then the polynomial f ∈ F2[x] with deg(f) ≤ 31 is

represented as

f =
31∑
i=0

aix
i.

As an example, the representation a of a polynomial f(x) = x8 + x5 + x4 + 1 would

be

a = 153d = 0x99h = 10011001b.

Next, this representation of polynomials is extended to polynomials with arbitrary

degrees by having an array of unsigned 32bit integers, where each integer represents

a block of 32 coe�cients. So, a polynomial f ∈ F2[x] with degree n is represented

in an array of unsigned integers b as

f =
n∑

i=0

aix
i

where ai is the (i mod 32)th bit of the bi/32cth integer in the array b.

Some of the algorithms, like the fast division of polynomials described in section 3.1.2

rely on mod xl operations where l is a power of 2, and hence, the representation

of polynomials must have a degree of n = 2k − 1 for some k > 0. This restriction is

realized by �rst having the smallest representation of polynomials to be one unsigned

32bit integer with maximum degree n = 25 − 1 = 31. Also, the length of an array

representing a polynomial will be made to be a perfect power of 2. The size of the

representation array b for f ∈ F2[x] with n = deg(f) may be computed as

|b| = 2blgnc+1−5.

4.4.2 Derivative

The formal derivative described in section 2.8.3 for polynomials over �eld F2 has

two e�ects on a polynomial f ∈ F2[x]. Firstly, all terms of polynomial f which have

an even exponent for the variable x will vanish. To see why this happens we have

to �rst consider a single term with an even exponent g = x2k ∈ F [x], where k > 0,

and its derivative:

g′ = 2kx2k−1 ≡ 0 mod 2.

4.4. Polynomials operations on computer system 41

Next, by applying the �rst rule, linearity, in 2.8.3, all terms of f where the exponent

is even, hence can be written in a form 2k for some k > 0, will vanish from the

result of the derivation.

Secondly, all terms with odd exponent will have their exponents reduced by one.

This can be seen when we consider a single term with odd exponent g = x2k+1 ∈
F2[x], where k > 0, and its derivative:

g′ = (2k + 1)x2k = 2kx2k + x2k ≡ x2k mod 2.

And again, the same rule of linearity allows application of this result to all terms

with odd exponent in f .

Now, as the representation of polynomials over F2 is an array of unsigned integers

in this thesis, the algorithm for derivation should be fast for them. The following

algorithm takes as an input an array a with n 32bit unsigned integers and outputs

an array b with the result.

1 Function derivative(a)

2 b := []

3 For i from 0 to size(a) - 1:

4 b[i] = (a[i] & 0xAAAAAAAA) >> 1

Program 4.5 Derivation of polynomials over F2.

Here the AND operation with 0xAAAAAAAA removes all coe�cients with an

even exponent, taking care of the �rst e�ect described earlier, because 0xAAh =

10101010b. Afterwards shifting the result right by one bit will reduce exponents

of all odd coe�cients by one, handling the second e�ect. Lastly, we notice that

there are no carry-overs from one integer to another as the lowest coe�cient in this

representation is always even, and hence, will vanish without carrying over.

4.4.3 Square root of a squared polynomial

From theorem 3.2.2 we get two important properties for polynomial f ∈ F2[x].

We can decide whether f is a square of some g ∈ F2[x], meaning f = g2, just by

checking that every exponent in f is even. Furthermore, to avoid going through each

exponent, we can harness the derivation algorithm, because we know from section

4.4.2 that if f ∈ F2[x], f 6= 0 and f ′ = 0, all terms in f have an even exponent.

The second important property from 3.2.2 is that to compute g we just have to

halve each exponent in f , taken that we �rst made sure f was a squared polynomial

4.4. Polynomials operations on computer system 42

with only even exponents. The algorithm for computing the square root of a squared

polynomial is given next. It takes as an input an array f , which contains coe�cients

in 32bit unsigned integers and returns an array r containing the result.

1 Function squareRoot(f)

2 r := 0

3 For i from 0 to deg(f)

4 If f.at(i) Then

5 r.set(i/2)

6 return r

Program 4.6 Square root of a squared polynomial over F2.

In the algorithm each even bit from f is selected and placed in its proper place in

the result array r.

4.4.4 Squaring of a polynomial

Squaring of a polynomial over F2 is the exact opposite of the algorithm from the

previous section. Each exponent of input polynomial f is doubled and the result is

returned as polynomial r.

1 Function square(f)

2 r := 0

3 For i from 0 to deg(f)

4 If f.at(i) Then

5 r.set(2i)

6 return r

Program 4.7 Squaring of a polynomial over F2.

4.4.5 Reversing bits of an unsigned integer

The faster algorithm for dividing polynomials presented in section 3.1.2, and which is

heavily used in Berlekamp's algorithm, requires reversing coe�cients of polynomials.

And, because polynomials are represented as an array of unsigned integers where

each bit represents a single coe�cient, reversing the order of bits within an unsigned

integer is what has to be done e�ciently. A naive approach would reverse bits of an

unsigned integer a to b like this:

4.4. Polynomials operations on computer system 43

1 Function naiveReversal(a)

2 b := 0

3 For i from 0 to n:

4 b |= ((a >> i) & 1) << (n - 1 - i)

Program 4.8 Naive reversal of bits for unsigned integer of size n.

However, this leads to complexity of O(n) and it will slow down the main algorithm.

Some of this complexity can be avoided by creating a bit reversal lookup table where

all 256 8bit sequences have their reversal in the very same index their value points

to. While the overall complexity still remains linear with respect to number of bits,

it will reduce the constant factor signi�cantly as reversing bits of a 32bit unsigned

integer will take 4 lookups to the table instead of 32 iterations of a loop.

1 Function reverseBits(n)

2 b := (BIT_REVERSE_TABLE[n & 0xFF] << 24) |

3 (BIT_REVERSE_TABLE [(n >> 8) & 0xFF] << 16) |

4 (BIT_REVERSE_TABLE [(n >> 16) & 0xFF] << 8) |

5 (BIT_REVERSE_TABLE [(n >> 24) & 0xFF])

6 return b

Program 4.9 Reversing bits of a 32bit unsigned integer a with a table.

To make the reversal of bits to conform with equation 3.1, every 32bit integer in

the array representing the polynomial must be reversed and moved to correct place.

Also, the whole array of bits must be shifted to proper place. This algorithm is as

follows.

1 Function rev(a)

2 r := []

3 For i = 0 to size(a) - 1

4 r[i] = reverseBits(a[size(a) - i - 1])

5 r >>= (32 * size(a) - deg(a) - 1)

6 return r

Program 4.10 Reversing an array a of 32bit integers representing a polynomial.

Some details are omitted from the algorithm. Helper function size(a) returns the

number of 32bit integers in an array a, deg(a) returns the degree of polynomial f

represented by the array a and >>= is an operator shifting all bits in the array to

left by the amount given.

4.4. Polynomials operations on computer system 44

4.4.6 Karatsuba multiplication

The implementation of Karatsuba's algorithm for fast polynomial multiplication

presented in section 3.1.1 is quite straight forward. Any polynomials of size 16 or less

will be multiplied with the well-known quadratic algorithm for binary multiplication,

except instead of addition XOR-operation is used.

Larger polynomials are split up according to Karatsuba's equation and multiplied in

smaller parts. Next, those results from smaller multiplications are again combined

as the result of larger multiplication. The following algorithm relies on two helper

functions which implementations are not included. Namely, size and split. Former

returns the size of the polynomial representation that is always of the form size = 2k,

k > 3, and latter splits a polynomial to two, half the size of the original.

1 Function karatsuba(f, g)

2 // Shall we just multiply the usual way

3 If size(f) <= 16 then

4 r := 0

5 For i from 0 to size(f) - 1:

6 r ^= (f * ((g >> i) & 1)) << i

7 return r

8

9 // Calculate FG = (F0 + tnF1)(G0 + tnG1)

10 // = (1 + tn)F0G0 + tn(F0 + F1)(G0 + G1) + (tn + t2n)F1G1

11 tn := size(f) >> 1

12

13 (f0, f1) := split(f)

14 (g0, g1) := split(g)

15 f0g0 := karatsuba(f0 , g0)

16 f1g1 := karatsuba(f1 , g1)

17 fg := karatsuba ((f0 ^ f1), (g0 ^ g1))

18

19 return f0g0 ^ (f0g0 << tn) ^ (fg << tn)

20 ^ (f1g1 << tn) ^ (f1g1 << (tn << 1))

Program 4.11 Implementation of Karatsuba algorithm for multiplication

4.4.7 Fast Euclidean division

Fast polynomials division algorithm explained in section 3.1.2 bene�ts greatly from

the �eld of polynomials being F2. The most computational heavy operation in the

algorithm is the step from the Newton's method (2g − fg2). Here the �rst part,

2g ≡ 0 mod 2, and the square g2 can be easily computed with method presented in

4.4. Polynomials operations on computer system 45

section 4.4.4. This leaves only one multiplication, which in turn can be computed

with Karatsuba's algorithm from section 4.4.6. Pseudocode implementation of this

algorithm is provided next.

1 Function fastDivision(a, b)

2 If deg(a) < deg(b) then

3 return (0, a)

4

5 m := deg(a) - deg(b)

6 r := ceil(log2(m) + 1)

7 f := rev(b)

8 g := 1

9

10 For i = 1 to r:

11 g = modExponent(karabatsu(f, square(g)), 1 << i)

12

13 s := modExponent(karabatsu(rev(a), g), m + 1)

14 q := rev(s) << (m - deg(s))

15 rem := karabatsu(b, q) + a

16 return (q, rem)

Program 4.12 Implementation of fast Euclidean division

This implementation relies on several helper methods that are omitted from this

work. Function deg(f) returns the degree of a polynomial f , ceil(d) rounds its

parameter d up to the next whole integer and modExponent(f, e) handles modulo

computation f mod xe, which is basically just removing all terms with exponent ≥
e. Helper methods square(f), rev(f) and karatsuba(f, g) are explained in sections

4.4.4, 4.4.5 and 4.4.6 respectively.

4.4.8 Greatest common divisor

The algorithm for computing gcd is really straight forward according to section 3.1.3

and using the division algorithm from the previous section.

1 Function gcd(a, b)

2 If b = 0 then

3 return a

4 Else

5 (q, r) = fastDivision(a, b)

6 return gcd(b, r)

Program 4.13 Implementation of Euclid's algorithm

4.5. Square-free factorization 46

4.5 Square-free factorization

Square-free factorization is the preliminary step for factorization. It is relatively

cheap computation as explained in section 3.2. Yun's algorithm [21] does not su�ce

here as section 4.3 established F2 to have a positive characteristic. Hence, we need

to utilize work by Gianni and Trager [9] to implement square-free factorization

algorithm.

The algorithm itself consists of two parts. First part is the basicSquareFree below

in code 4.14 which is the Muller's algorithm [21] and the latter part, in code 4.15,

with Gianni's and Trager's [9] proposed way of utilizing Muller's algorithm for �elds

with positive characteristic.

1 Function basicSquareFree(f)

2 P := []

3 c := gcd(f, derivate(f))

4 b := fastDivision(f, c)

5

6 For i = 1 until b = 1

7 tmp = gcd(c, b)

8 c = fastDivision(c, tmp)

9 P[i] = fastDivision(b, tmp)

10 b = tmp

11

12 return (P, c)

Program 4.14 Muller's algorithm for basic square-free computation

1 Function squareFree(f)

2 (P, q) = basicSquareFree(f)

3 If deg(q) = 0

4 return P

5 Else

6 h := squareRoot(q)

7 P2 := squareFree(h)

8 return merge(P, P2)

Program 4.15 Gianni's square-free algorithm

These algorithms are based on already provided algorithms derivative 4.5, squareRoot

4.6, fastDivision 4.12 and gcd 4.13. In addition to these two other omitted helpers

are needed, deg(f), which returns the degree of a polynomial f , and merge, which

combines two arrays of factors to one.

4.6. Berlekamp's algorithm 47

4.6 Berlekamp's algorithm

The Berlekamp's algorithm is the main algorithm that is used to factorize all poly-

nomials that resulted from the square-free factorization. Berlekamp's algorithm

described in section 3.3 requires polynomials to be from a �eld and that was estab-

lished in section 4.3. The algebra that the algorithm is based on (theory of �elds

and universal factorization domains) is explained in section 2.5.

4.6.1 The Q matrix

The �rst phase of the Berlekamp's algorithm is to build the Q matrix. The matrix

is formed as an array of rows where each row is a polynomial, and just like any other

polynomial, it is represented as an array of 32bit integers.

The equation 3.2 states that an ith row of the Q matrix equals to xpi mod f(x),

where f(x) is the polynomial we are factorizing and p = 2 because of the �eld F2.

But, Berlekamp's algorithm uses matrix (Q − I), hence, the algorithm 4.16 builds

that directly instead of just Q.

1 Function qmat(f)

2 rows := []

3 p := pol(1)

4 I := pol(1)

5

6 For i = 1 to deg(f)

7 (q, r) := fastDivision(p, f)

8 rows[i] = r ^ I

9 p <<= 2

10 I <<= 1

11 return rows

Program 4.16 Building the Q matrix

Helper method fastDivision was presented in program 4.12 and pol(d) creates a

polynomial representation from integer value d.

4.6.2 Base vectors of the null space

To compute base vectors of the null space of matrix (Q− I), the matrix needs to be

triangulated using Gaussian elimination. Basically this means applying Gaussian

elimination until the matrix is upper triangular, meaning all entries below main

4.6. Berlekamp's algorithm 48

diagonal are 0. While the triangulation takes place, another matrix A = I, is

produced by duplicating every row operation on it also.

Once the (Q−I) matrix has been triangulated, the base vectors of the null space are

the row vectors of A that correspond to 0 rows after triangulation. The algorithm

for computing the null space is given next.

1 Function nullspace(M)

2 A := Identity matrix

3 currentRow := 1

4 Loop

5 // Find the leading row

6 d := -1

7 leading := -1

8 For r := currentRow to M.n

9 If deg(M.row[r]) > d

10 d := deg(M.row[r])

11 leading := r

12

13 If leading < 0

14 break

15

16 // Swap and update all other rows with same degree

17 M.swap(currentRow , leading)

18 A.swap(currentRow , leading)

19 For r := currentRow + 1 to M.n

20 If deg(M.row[r]) = d

21 M.rows[r] += M.rows[currentRow]

22 A.rows[r] += A.rows[currentRow]

23

24 currentRow += 1

25

26 np := []

27 For r = 1 to M.n

28 If M.rows[r] = 0

29 np.append(A.rows[r])

30 return np

Program 4.17 Compute null space of the (Q - I) matrix

4.6.3 Factorization

The last step of Berlekamp's algorithm is to use the base vectors of previously

calculated null space to get the factors of f . Here it becomes meaningful that the

input for the following algorithm is square-free. The number of base vectors in the

4.6. Berlekamp's algorithm 49

null space tells us how many irreducible factors there are, but it does not tell what

is the multiplicity of those factors. But, as the input is square-free, we know that

the multiplicity of each factor is 1. The algorithm is presented below and explained

right after it.

1 Function berlekamp(f)

2 QI := qmat(f)

3 nsp := nullspace(QI)

4 k := nsp.size()

5 factors := []

6

7 // Continue until all factors have been found

8 While !nsp.empty () AND factors.size() < k

9 base := nsp.take()

10

11 If factors.empty() Then

12 p1 := gcd(f, base)

13 p2 := gcd(f, base ^ 1)

14 If deg(p1) > 0 AND p1 != f Then

15 factors.append(p1)

16 If deg(p2) > 0 AND p2 != f Then

17 factors.append(p2)

18 Else

19 tmp := factors

20 factors := []

21 For factor in tmp

22 p1 := gcd(factor , base)

23 p2 := gcd(factor , base ^ 1)

24 If deg(p1) > 0 Then

25 factors.append(p1)

26 If deg(p2) > 0 Then

27 factors.append(p2)

28

29 // In case this was irreducible

30 If size(factors) == 0

31 factors.append(f)

32 return factors

Program 4.18 Implementation of the Berlekamp's algorithm

The implementation begins with computing (Q − I) matrix on line 2 and on the

following line by computing its null space. At this point, according to section 3.3.4,

we already know that there will be as many irreducible factors as there are base

vectors in the null space. The algorithms for computing the (Q− I) matrix and null

space were given earlier, 4.16 and 4.17 respectively.

4.7. Combining factors to result 50

Next, the while loop on line 7 continues until all base vectors have been used, or

all factors have been found. Section 3.3.4 guaranteed that all factors will be found.

Inside the loop there either are no known factors yet, line 11, when the base vector

is used to gain �rst factorization of f , or there are known factors, line 18, and all

known factors are used in order to re�ne factorization.

Last step before returning factorization is to check whether there were any factors.

If the list of factors is empty at this point, the f was irreducible. Without returning

f when it is irreducible, line 19 would not be able to collect all irreducible factors.

4.7 Combining factors to result

After running both square-free factorization and Berlekamp's algorithm the resulting

factors have to be handled with multiplicities, combined as unique solutions aL and

aR and ordered alphabetically for output. The algorithm for this has been omitted.

One note-worthy aspect of combining factors to form polynomials aL and aR is the

size limit. Polynomial f with su�ciently low degree may very well �t into aL and

then solutions aL = 1, aR = f and aL = f, aR = 1 must be added to possibilities. On

the other hand, it is also possible to combine factors in a such a way that the result

does not �t into aL. Such a solution, while mathematically being valid, cannot be

presented, and hence, must be discarded.

51

5. CONCLUSIONS

The Nintendo challenge [1] solved was decrypting messages that were encrypted

with an algorithm expressed in plain C++ code. After analyzing the encryption

algorithm, it became obvious that it interpreted the input as two binary polynomials,

polynomials over F2, and multiplied them together in order to encrypt the message.

The challenge itself was posted as a really di�cult puzzle with an opportunity to

apply for a job at Nintendo if solved. While the problem had already been published

for over 3 years, there were just 272 accepted submissions for it. The implementation

of this thesis was the 273rd.

While the problem of factorizing polynomials over Z or �nding factors of an integer

are really hard problems, it turns out that factorization of polynomials over �nite

�elds is not. Berlekamp in 1967 was the �rst to �gure out a deterministic algorithm

for doing so [2], and as it works reasonably well for small �elds, it was chosen as the

backbone of the implementation of this thesis.

The factorization itself was implemented in two steps. First an algorithm, often cred-

ited for Yun, was used to �nd square-free decomposition and after that Berlekamp's

algorithm to �nd all factors from these already square-free polynomials. The prelim-

inary step is included as it is much faster than Berlekamp's algorithm and therefore

may reduce the complexity of the problem signi�cantly.

Most of the research concentrated on �guring out the mathematics behind Berlekamp's

algorithm to understand why it works. This included enough basic algebra to build

up the understanding needed to prove that factorization of polynomials over F2 is

possible (irreducible factors do exist) and to �gure out how to achieve the actual

factorization.

Another research topic was how to e�ciently implement the algorithms with C++

so that the original problem may be solved. If important details were ine�ciently

implemented, it could render the resulting implementation useless for solving the

problem. This is why binary representation and all operations on it were carefully

thought out.

5. Conclusions 52

There were two sources of confusion during the research phase for this thesis. While

the algorithms of Berlekamp and Yun are both quite straight forward and simple,

there are variations and minute details that di�er according to sources.

Many sources, like on-line course materials available andWikipedia, refer to Berlekamp's

algorithm as one that factorizes square-free polynomials over �nite �elds. As an ex-

ample, Harasawa et al. just simply note that "For the factorization of square-free

polynomials over �nite �elds, the Berlekamp algorithm is well known." [10], and this

is the often found way of presenting Berlekamp's algorithm. However, Berlekamp's

original algorithm [2] makes no mention of input having to be square-free.

Even in his later work for factorization of polynomials over large �nite �elds [3],

where he does mention using the same trick with formal derivation as Yun [21] did,

he claims that "Although it may be advisable to eliminate the repeated factors of

f(x) immediately, it is not necessary to do so.". However, Berlekamp does men-

tion in a footer text in [3] that he extended the original 1967 algorithm with some

computation using gcd(f(x), f ′(x)), which would indicate utilization of square-free

algorithm of some sort.

While Berlekamp's algorithm does not require input polynomial to be square-free,

it is understandable why such requirement would be given. As Knuth states in

[14, p. 439], �nding square-free factors can be done with standard techniques of

formal derivative and gcd computation, and it speeds up the process of factorization

"nicely". Also, Berlekamp's algorithm [2] includes extra complexity when a factor is

repeated, so it does make sense to discard this complexity and add the requirement

for input to be square-free, simultaneously making the whole algorithm faster.

Another source of confusion was that research in the �eld quite easily dismisses

square-free factorization as something that can be done with Yun's algorithm [21].

An example of this is a quote "Using the deterministic algorithm of Yun (1976),

stage 1 (square-free factorization) can be performed at essentially the cost of one

gcd..." by Gathen and Gerhard [20].

The Yun's algorithm does square-free factorization, but only in a �eld of character-

istic zero [21]. In a general case of factorizing over just a �nite �eld F , it would have

made sense to not go into detail how square-free factorization is done, but the work

of Gather and Gerhard [20] is about factorization over F2. And, F2 has positive

characteristic, hence, Yun's algorithm would not work.

Furthermore, in his work Yun [21] presents 3 algorithms for square-free factorization

from which only one is his. Afterwards, Gianni and Trager [9] extended one of the

5. Conclusions 53

algorithms in Yun's paper to work for positive characteristic, but even that was not

the one referred to as Yun's algorithm. In fact, it was Musser's algorithm [21] [9]

that they based theirs on.

There has been a great number of improvements on factorization of polynomials over

�nite �elds since 1967 when Berlekamp introduced his algorithm. Several new ap-

proaches ranging from probabilistic algorithms [12] to using the Fast Fourier Trans-

form have been developed. Computers are being improved by increasing the number

of cores available and opening up GPUs, graphical processing units, for parallelizing

simple computations. Recent processors have special instruction sets for carry-less

multiplication, which when utilized properly, could speed up the factorization algo-

rithms even more.

For the writer of this thesis personally, it would be very interesting to research if

Nvidia CUDA, a parallel computing platform, could be used to move some of the

factorization algorithms to run on modern day GPUs. Mimicking the way how

modern AI computation has already moved there. While this would not reduce

the overall asymptotic complexity of the algorithms, it could dramatically lower

constant terms making them much faster in practice.

54

BIBLIOGRAPHY

[1] �Nintendo sponsored contest,� https://www.codingame.com/ide/puzzle/

nintendo-sponsored-contest, accessed: 2018-11-12.

[2] E. R. Berlekamp, �Factoring polynomials over �nite �elds,� The Bell System

Technical Journal, vol. 46, no. 8, pp. 1853�1859, Oct 1967.

[3] ��, �Factoring polynomials over large �nite �elds,� Mathematics of

Computation, vol. 24, no. 111, pp. 713�735, 1970. [Online]. Available:

http://www.jstor.org/stable/2004849

[4] P. Bhattachharya, S. Jain, and S. Nagpaul, Basic Abstract Algebra. the Press

Syndicate of the University of Cambridge, 1994.

[5] D. G. Cantor and H. Zassenhaus, �A new algorithm for factoring polynomials

over �nite �elds,� Mathematics of Computation, vol. 36, no. 154, pp. 587�592,

1981. [Online]. Available: http://www.jstor.org/stable/2007663

[6] Z. Cao and H. Cao, �On fast division algorithm for polynomials using newton

iteration,� in Information Computing and Applications, B. Liu, M. Ma, and

J. Chang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.

175�180.

[7] L. N. Childs, A Concrete Introduction to Higher Algebra. Springer, New York,

NY, 2009.

[8] S. Gajbhiye, M. Sharma, and S. Dashputre, �A survey report on elliptic curve

cryptography,� International Journal of Electrical and Computer Engineering,

vol. 1, no. 2, p. 195, 12 2011, copyright - Copyright IAES Institute of Advanced

Engineering and Science Dec 2011; Last updated - 2013-09-03. [Online].

Available: https://search-proquest-com.libproxy.tut.�/docview/1429485698?

accountid=27303

[9] P. Gianni and B. Trager, �Square-free algorithms in positive characteristic,�

Applicable Algebra in Engineering, Communication and Computing, vol. 7, no. 1,

pp. 1�14, Jan 1996. [Online]. Available: https://doi.org/10.1007/BF01613611

[10] R. Harasawa, Y. Sueyoshi, and A. Kudo, �Improving the berlekamp algo-

rithm for binomials xn − a,� in Arithmetic of Finite Fields, F. Özbudak and

F. Rodríguez-Henríquez, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2012, pp. 225�235.

https://www.codingame.com/ide/puzzle/nintendo-sponsored-contest
https://www.codingame.com/ide/puzzle/nintendo-sponsored-contest
http://www.jstor.org/stable/2004849
http://www.jstor.org/stable/2007663
https://search-proquest-com.libproxy.tut.fi/docview/1429485698?accountid=27303
https://search-proquest-com.libproxy.tut.fi/docview/1429485698?accountid=27303
https://doi.org/10.1007/BF01613611

Bibliography 55

[11] V. C. d. R. Jr., Elements of Algebraic Coding Systems, 2014.

[12] E. Kaltofen and V. Shoup, �Subquadratic-time factoring of polynomials over

�nite �elds,� in Proceedings of the Twenty-seventh Annual ACM Symposium

on Theory of Computing, ser. STOC '95. New York, NY, USA: ACM, 1995,

pp. 398�406. [Online]. Available: http://doi.acm.org/10.1145/225058.225166

[13] A. Karatsuba and Y. Ofman, Soviet Physics Doklady, 1963.

[14] D. Knuth, The Art of Computer Programming. Addison-Wesley, 1998.

[15] S. Lang, Algebra. Springer-Verlag, 2002.

[16] P. Roelse, �Factoring high-degree polynomials over f2 with niederreiter's algo-

rithm on the ibm sp2,� Math. Comput., vol. 68, pp. 869�880, 1999.

[17] H. S., Advances in Cryptology - CRYPTO 2009. Springer-Verlag Berlin Hei-

delberg, 2009.

[18] A. . S. V. Schönhage, �Schnelle multiplikation groÿer zahlen,� Computing, vol. 7,

no. 3-4, pp. 281�292, 1971.

[19] C. Umans, �Fast polynomial factorization and modular composition in small

characteristic,� in Proceedings of the Fortieth Annual ACM Symposium on

Theory of Computing, ser. STOC '08. New York, NY, USA: ACM, 2008, pp.

481�490. [Online]. Available: http://doi.acm.org/10.1145/1374376.1374445

[20] J. von zur Gathen and J. Gerhard, �Arithmetic and factorization of

polynomial over f2 (extended abstract),� in Proceedings of the 1996

International Symposium on Symbolic and Algebraic Computation, ser. ISSAC

'96. New York, NY, USA: ACM, 1996, pp. 1�9. [Online]. Available:

http://doi.acm.org/10.1145/236869.236882

[21] D. Y. Yun, �On square-free decomposition algorithms,� in Proceedings of the

Third ACM Symposium on Symbolic and Algebraic Computation, ser. SYMSAC

'76. New York, NY, USA: ACM, 1976, pp. 26�35. [Online]. Available:

http://doi.acm.org/10.1145/800205.806320

http://doi.acm.org/10.1145/225058.225166
http://doi.acm.org/10.1145/1374376.1374445
http://doi.acm.org/10.1145/236869.236882
http://doi.acm.org/10.1145/800205.806320

56

APPENDIX A. NINTENDO CHALLENGE

Figure 1 Screenshot of the Nintendo challenge webpage. Retrieved 16.11.2018 from
https://www.codingame.com/ide/puzzle/nintendo-sponsored-contest

	Introduction
	Essential algebraic concepts
	Monoid
	Groups
	Rings
	Principal ideal domain
	Unique factorization domains
	Fields
	The ring of polynomials
	Polynomials
	Factorization
	Euclidean division
	Formal derivative

	Chinese remainder theorem

	Chosen algorithms
	Fast polynomial operations
	Fast carry-less multiplication
	Fast division of polynomials
	Greatest common divisor

	Square-free factorization
	Characteristic zero
	Positive characteristic

	Berlekamp's algorithm
	Building the Q matrix
	Base vectors of the null space of the (Q - I) matrix
	Factorization
	Properties of the Berlekamp's algorithm

	Other factorization algorithms

	Solving the Nintendo challenge
	The Alpha Centaurian encoding
	Problem analysis
	A brute force solution

	Reformulation of the problem
	Finite field F2
	Polynomials over F2

	Polynomials operations on computer system
	Representation of polynomials
	Derivative
	Square root of a squared polynomial
	Squaring of a polynomial
	Reversing bits of an unsigned integer
	Karatsuba multiplication
	Fast Euclidean division
	Greatest common divisor

	Square-free factorization
	Berlekamp's algorithm
	The Q matrix
	Base vectors of the null space
	Factorization

	Combining factors to result

	Conclusions
	Bibliography
	APPENDIX A. Nintendo Challenge

