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In this thesis, support against lateral elastic buckling of steel members is examined

using trapezoidal sheeting and metal faced sandwich panels. The main issue is to

study, what kind of members can be supported with di�erent sti�ening solutions

and how various parameters a�ect the usability of the solutions.

The thesis presents theories for calculating elastic buckling lengths and connector

forces. Buckling lengths of members supported by trapezoidal sheeting are cal-

culated with Winkler foundation theory and connector forces are calculated with

method from standard SFS-EN 1993-1-1. For members supported by sandwich

panels, elastic buckling lengths and connector forces can be calculated with theory

presented by Eva Hedman-Pétursson in her doctoral thesis. In this thesis, theory is

presented also for di�erent boundary conditions than simply supported beam.

In the parametric study, di�erent supporting solutions and related variables are

examined. The results are presented for members with di�erent lengths as a max-

imum normal force the member can resist before buckling resistance according to

standard SFS-EN 1993-1-1 or shear resistance of connector gives utilization ratio

one. The main variables a�ecting the axial force resistance of supported members

are the buckling resistance of unsupported member, sti�ness of connections and

shear resistance of connections.

The parameters in parametric study are for trapezoidal sheeting: cross-section of the

member, thickness of the sheeting and distance between connectors. For sandwich

panels, the examined parameters are: cross-section of the member, thickness of the

inner face of panel and number of screw pairs in panel.

According to the study, examined solutions can be used to prevent buckling in some

cases. The bene�t of stressed skin is greatest on slender members and the most

critical issue in axial force resistance of supported member is bearing resistance of

connections due to the thin metal sheets.
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Tässä työssä tutkitaan teräksisten sauvojen nurjahdustuentaa muotolevyllä sekä

metallipintaisilla sandwich paneeleilla. Työn pääpaino on tutkia parametrisella

tarkastelulla, minkä kokoisia sauvoja kyseisillä jäykistysratkaisuilla voidaan tukea

ja kuinka eri muuttujat vaikuttavat jäykistysratkaisuiden käytettävyyteen.

Työssä esitetään teoriat nurjahduspituuden ja ruuvivoimien laskentaan. Muo-

tolevyllä tuettujen sauvojen nurjahduspituudet määritetään Winklerin kimmoisesti

tuetun palkin teorialla ja ruuvivoimien määrityksessä käytetään standardissa SFS-

EN 1993-1-1 esiintyvää menetelmää. Sandwich paneeleilla tuetuille sauvoille nurjah-

duspituudet ja ruuvivoimat saadaan määritettyä Eva Hedman-Péturssonin väitöskir-

jassaan esittämän teorian mukaan, joka tässä työssä johdetaan myös muille reuna-

ehdoille, kuin nivelpäisille sauvoille.

Parametrisessa tarkastelussa tarkastellaan eri tuentavaihtoehtoja ja niihin liittyvien

parametrien vaikutusta. Tulokset esitetään suurimpana normaalivoimana, jonka

eri pituiset sauvat kestävät, jotta standardin SFS-EN 1993-1-1 mukainen nurjah-

duskestävyys tai liitoksen leikkauskestävyys saavuttaa käyttöasteen yksi. Tuettu-

jen sauvojen normaalivoimakestävyyteen vaikuttavat tukemattoman sauvan nurjah-

duskestävyys, liitosten jäykkyys sekä liitosten leikkauskestävyys.

Tarkasteltavat muuttujat ovat muotolevylle: sauvan poikkileikkaus, muotolevyn

paksuus sekä liitinten välinen etäisyys. Sandwich paneeleille tutkittavat parametrit

ovat: sauvan poikkileikkaus, paneelin sisäkuoren paksuus sekä ruuviparien määrä

paneelissa.

Tutkimuksen mukaan tutkittuja rakenteita voidaan käyttää nurjahdustuentana jois-

sakin tapauksissa. Levyjäykistyksestä saatava hyöty on suurinta hoikilla sauvoilla

ja ohuista levyistä johtuen liitosten leikkausvoima nousee useissa tapauksissa rajoit-

tavaksi tekijäksi tuetun sauvan normaalivoimakestävyydessä.
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1 INTRODUCTION

This Master's Thesis is part of European Union project STABFI: "Steel cladding

systems for stabilization of steel buildings in �re" funded by the Research Fund for

Coal and Steel. The main goal of the project is to examine usefulness of stressed skin

for stabilization of structural members and entire frames of single-story buildings in a

�re situation. Before the �re situation, it is important to �nd out the possibilities of

stressed skin for stabilization in the ambient temperature. This gives a comparison

result for later research.

Many steel buildings have sheet structures on walls and roof. These structures have

some capacity to stabilize the buildings but in Finland this capacity is generally not

used in structural calculations. Therefore, it is interesting to �nd out the potential of

di�erent sti�ening solutions. By sti�ening the building with wall and roof structures,

material can be use more e�ectively and some extra parts can be omitted.

Figure 1. A trapezoidal sheeting.

Figure 2. A metal faced sandwich panel.

The main goal of this thesis is to compare two di�erent stressed-skin structures,

trapezoidal sheeting Figure 1 and metal faced sandwich panels Figure 2, and to
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�nd out if these components can have bene�ts to the axial force resistance of mem-

bers.

1.1 Background of stressed skin design

The most commonly used sti�ening solution in Finland is the brace sti�ening. In

this solution, the horizontal loads are passed through the diagonal braces, and the

capacity of the sheet structures is not considered at all. Using this solution makes

the calculation easy and fast but the solution needs diagonal braces that increase

the number of members and thus the steel mass of the building.

Trapezoidal sheeting is commonly used on facades and roofs of industrial halls but

usually it is left out from structural calculations. With this solution the building

does not necessarily need separate braces. The sheet can be thought to behave like

a continuous spring support if it is su�ciently connected to the structure.

The idea of using stressed skin for stabilization is rather old but not much used

in Finland. Trapezoidal sheeting has been used for stabilization for a long time

and Bryan & Davies have published a manual in the early 1980s on the theoretical

background and design guidelines (1982).

The sandwich panels consisting of two thin metal faces with an insulating core are

commonly used components on industrial halls because they are easy to use and

provide some insulation. Like with trapezoidal sheeting, a building with sandwich

panels does not necessarily need separate braces but usually the capability of panels

to transfer loads in the longitudinal direction are ignored in the structural calcula-

tions. When trapezoidal sheeting can be thought to behave like a continuous spring

support, sandwich panels cause force pairs to the member and the sti�ening e�ect

is due to their moment.

The theory of using sandwich panels for stabilization is still rather new applica-

tion. The �rst comprehensive studies were published in the early 2000s by Hedman-

Pétursson (2001) and these studies cover only simple supported beams. The �rst

design rules were not developed until the beginning of the 2010s in European project

Ensuring Advancement in Sandwich Construction through Innovation and Exploita-

tion (EASIE 2011), which lead to European Recommendations on the Stabilization

of Steel Structures by Sandwich Panels (ECCS 2013).
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1.2 Aims and limitations

The main goals in this thesis is to present the theories to use trapezoidal sheeting

and sandwich panels as a sti�ening structure, expand the theory of using sandwich

panels for stabilization to cover other boundary conditions than simply supported

members as well and to �nd out what kind of e�ect these components can have to

the axial force resistance of members and how di�erent parameters a�ect that. In

this thesis, only lateral restraint to individual members is studied, structures are at

normal operating temperature, all cross-sections are tubular pro�les and members

are loaded with axial load only.

1.3 Research methods

Analytical solutions for buckling length and connector forces are derived to members

restrained with trapezoidal sheeting from Winkler foundation theory (1867) and to

members restrained with sandwich panels from theory presented in Eva Hedman-

Pétursson's thesis (2001).

Analytical solutions are compared with the results obtained by linear �nite element

method (FEM) using Euler-Bernoulli 3D beam elements. Used analysis software is

RFem (program version 5.07.11.122642, student version) by Dlubal (Dlubal Software

GmbH 2016).

The parametric study is made by calculating axial force resistance with analytical

equations with di�erent parameter values. Studied parameter are buckling resistance

of unrestrained member, sti�ness of connections and shear resistance of connections.

The axial force resistance is calculated by increasing axial load until the buckling

resistance in the plane of stressed skin is exceeded or until the connector force reaches

the bearing resistance of a screw. Buckling resistance is calculated according to SFS-

EN 1993-1-1 (2005).
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2 LATERAL RESTRAINT FROM STRESSED
SKIN

In this chapter, the theoretical framework for stabilization of individual members

with trapezoidal sheeting and metal faced sandwich panels is presented.

The stabilization of the entire building by stressed skin is presented in (Dubina

et al. 2012). Basic theory, recommendations according to SFS-EN 1993-1-1 (2005),

design considerations and design procedures are all presented in (Dubina et al.

2012, Chapter 5) but this thesis focuses on the stabilization of individual structural

members. When stabilizing individual members, the main issue is to prevent the

buckling of the member laterally, i.e. in the plane plane of the cladding. In contrast,

when stabilizing the entire building, the main issue is to prevent the building from

overturning and to limit the displacements. Simpli�ed, one idea in both cases is

�rst to make sure that sheeting is strong enough. Then the sti�ness of the structure

is determined with the sheeting and the sheeting is replaced by a spring system.

The spring system should have support reactions where sheeting interact with the

structure and spring sti�nesses should match with the sheeting sti�ness. After that,

structural analysis is performed to make sure that the de�ections do not exceed the

permitted values.

The main things to stabilize individual members are su�cient support against lateral

displacements and su�cient support against rotations. In this thesis only lateral

restraint is studied and results are useful mainly for tubular cross-sections because

they have good resistance to rotation. Su�cient support means that the strength

of the sti�ening structure is enough to take all the forces coming from the member,

the strength of the connectors is enough to transfer all the forces from the member

to the sti�ening structure and the sti�ness of the sti�ening structure is enough to

prevent the member from losing its stability. In this study it is assumed that the

strength of the sti�ening structure is greater than the strength of the connectors,

so only the connector forces and sti�ness of the sti�eners are taken into account.

Su�cient sti�ness of the sti�ening structure is determined by calculating elastic

buckling length of the member because as the sti�ness increases, the elastic buckling

length decreases and the reduction in the buckling length prevents loss of member's

stability.
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2.1 Lateral restraint with trapezoidal sheeting

With trapezoidal sheeting, connector forces can be calculated according to Annex

BB.2.1 of SFS-EN 1993-1-1 (2005, Clause 5.3.3) and elastic buckling lengths can be

calculated withWinkler foundation theory (Winkler 1867) presented by Timoshenko

and Gere (Timoshenko & Gere 1961) as it is proposed by Höglund (2002).

2.1.1 Elastic buckling length of member restrained with trape-
zoidal sheeting

There exist di�erent theoretical models for the beams restrained with sheeting. It is

proposed by Höglund (2002) that the trapezoidal sheeting is supposed to be abso-

lutely rigid and all deformations between the supported structure and the sheeting

take place at the connectors. Thus, the trapezoidal sheeting is modeled as an elastic

foundation for the supported member. In this thesis, one-parameter Winkler model

(Timoshenko & Gere 1961) is used to model the elastic foundation, as shown in

Figure 3.

Figure 3. Beam on elastic foundation.

In one-parameter Winkler model, the ratio between the foundation pressure p(x) and

the de�ection of the beam, v(x), is assumed to be a constant foundation parameter,

k, along the longitudinal x-axis of member.

k =
p(x)

v(x)
(1)

The use of this model means that the lateral restraint of the steel member is ideal-

ized as a continuous spring support at the centroid of the tubular section and the

rotational restraint is neglected. The idealization is acceptable when the torsional

sti�ness of the section is large and lateral torsional buckling will not be active, which

is usually true with tubular cross-sections.

The foundation parameter k depends on the sti�ness of the sheeting and its connec-

tors. If the wall thickness of the member is 2.5 times larger than the thickness of

the trapezoidal sheet, the sti�ness of one screw can be calculated with Equation (2)
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from the Swedish code StBK-N5 (1979):

K = 1.5d
√
t · 1 · 103 (N/mm) (2)

where

d is diameter of screws;

t is design thickness of the trapezoidal sheet.

Suppose that the spacing of screws is c so the foundation parameter k becomes:

k =
K

c
=

1.5d
√
t · 1 · 103

c
(N/mm2) (3)

Table 1. Sti�ness of the trapezoidal sheeting connectors. Core thickness of the
sheeting is t = tnom − 0.04mm, where tnom is the nominal thickness of the sheeting,
d is the diameter of the connector, K is the shear sti�ness obtained from Equa-
tion (2) and k = K/c (see Equation (3)) with c = 500mm being the distance between
connectors. Sheeting material is S350GD+Z.

tnom [mm] d [mm] K (N/mm) k (N/mm2)

0.7 5.5 6702 13
1.0 5.5 8083 16
1.5 5.5 9969 20

0.7 6.3 7677 15
1.0 6.3 9259 19
1.5 6.3 11418 23

In order to calculate the buckling capacity of the member, it is necessary to derive

the buckling length of the stabilized member in the plane of the trapezoidal sheeting.

After that the member can be designed according to EN 1993-1-1 (2005) using the

buckling length obtained here.

The buckling length of the stabilized member can be calculated from the di�erential

equation, Equation (4), of the de�ection v(x) for the beam with bending sti�ness EI.

The beam is loaded by a constant compressive axial load N in the Winkler model

with the foundation parameter k and longitudinal coordinate x. (Timoshenko &

Gere 1961)

EI
d4v(x)

dx4
+N

d2v(x)

dx2
+ kv(x) = 0 (4)

In this thesis, only simply supported member is considered restraint with trapezoidal
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sheeting. The boundary conditions in that case at the ends of the member are:

v(0) = 0
d2v(0)

dx2
= 0 (5)

v(L) = 0
d2v(L)

dx2
= 0 (6)

The function v(x), which ful�lls the boundary conditions of Equations (5) and (6)

is:

v(x) = C sin
(nπx
L

)
(7)

where C is a real constant and n is integer. Substitution of Equation (4) gives:

EI
(nπ
L

)4
−N

(nπ
L

)2
+ k = 0 (8)

⇒ Ncr =
π2EI

L2

(
n2 +

kL4

n2π4EI

)
(9)

Equation (9) gives the critical load Ncr as a function of n, which represents the

number of half sine waves in which the member subdivides at buckling. The lowest

critical load may occur with n = 1, 2, . . ., depending on the other constants.

When the sti�ness of the foundation is very small, the lowest eigenvalue is ob-

tained with n = 1. As the sti�ness of the foundation increases, the critical buckling

mode changes from n to n + 1 at certain point, which can be de�ned from Equa-

tion (9):

n2 +
kL4

n2π4EI
= (n+ 1)2 +

kL4

(n+ 1)2π4EI
(10)

⇒ k =
π4n2(n+ 1)2EI

L4
(11)

The critical buckling mode with foundation parameter k can be calculated from

Equation (11) by solving n:

n =

√
(2L)2

√
EIk + π2EI

EI
2π

− 1

2
(12)

Equation (12) is derived from a equation that gives sti�ness to change the critical

buckling mode, so the value should be rounded up to the next integer representing

the number of half-waves in the buckling mode.

The elastic buckling load can now be obtained from Equation (9) and the elastic
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buckling length can be calculated from buckling load, as:

Ncr =
π2EI

L2

(
n2 +

kL4

n2π4EI

)
=
π2EI

L2
cr

(13)

⇒ Lcr =

√
π2EI

Ncr

(14)

⇒ Lcr =
L√

n2 +
kL4

n2π4EI

(15)

2.1.2 Shear force of connectors with trapezoidal sheeting

There are some di�erent methods for calculating shear force of the connectors from

sti�ening sheet structure. In this thesis, the method from SFS-EN 1993 (2005,

Clause 5.3.3, Eq. (5.12)) is used to calculate shear forces of the connectors when

sti�ening structure is trapetzoidal sheeting. The method is based on the initial bow

imperfection, e0, that is de�ned as follows:

e0 = αm
L

500
(16)

αm =

√
1

2

(
1 +

1

m

)
(17)

where

m is the number of members to be restrained;

L is the length of the member.

The total equivalent stabilizing force for supporting structure is given as Eq. (5.13)

of EN 1993-1-1 (2005):

qEd =
∑

Ned · 8
e0 + δq
L2

(18)

where

Ned is the axial force in the stabilized member;

δq is the in-plane de�ection of the bracing system due to qEd.

The exact de�nition of the δq leads to iterative analysis because the in-plane

de�ection depends both on the de�ection of the supporting system and on the

de�ection of the stabilization system.
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The summation is taken over the members to be stabilized when determined the

total imperfection force to the sti�ening structure. When calculating connector

forces to individual members, the summation is not taken into account:

F = Ned · 8
e0 + δq
L2

· c (19)

where

c is the distance between connectors.

The shear resistance of the connectors can be calculated based on EN 1993-1-3

(2006, Table 8.1-8.4) when sheet the thickness of the sheeting is less than 3 mm. The

shear resistances of self-tapping screws with varying sheet material and thickness

are presented in Table 2.

Table 2. Shear resistance (kN) of self-tapping screws based on (SFS-EN 1993-1-3
2006, Table 8.2). Design thickness is de�ned as tnom − 0.04 mm. Sheet material
ultimate strength is calculated according to (SFS-EN 1993-1-3 2006, Table 3.1b).

Sheet
material

tnom
(mm) d

(mm)
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.5

S220GD+Z 5.5 0.389 0.562 0.755 0.966 1.193 1.436 1.694 3.216 4.047
S250GD+Z 5.5 0.428 0.618 0.830 1.062 1.313 1.580 1.864 3.537 4.452
S280GD+Z 5.5 0.467 0.674 0.906 1.159 1.432 1.724 2.033 3.859 4.820
S320GD+Z 5.5 0.506 0.731 0.981 1.255 1.551 1.867 2.202 4.180 4.820
S350GD+Z 5.5 0.545 0.787 1.057 1.352 1.671 2.011 2.372 4.502 4.820

S220GD+Z 6.3 0.416 0.601 0.808 1.034 1.277 1.537 1.813 3.683 4.636
S250GD+Z 6.3 0.458 0.662 0.889 1.137 1.405 1.691 1.994 4.052 5.099
S280GD+Z 6.3 0.500 0.722 0.969 1.240 1.533 1.845 2.176 4.420 5.563
S320GD+Z 6.3 0.541 0.782 1.050 1.344 1.660 1.999 2.357 4.788 6.027
S350GD+Z 6.3 0.583 0.842 1.131 1.447 1.788 2.152 2.538 5.157 6.490

2.2 Lateral restraint with sandwich panels

With sandwich panels, buckling length of the member can be calculated with the

theory presented by Hedman-Pétursson (2001). By giving a member the initial

deformation, the connector forces can be calculated from the same theory.

In Hedman-Pétursson's thesis (2001) the theory of stabilization of steel members

by sandwich panels has been presented only for simple supported members but a

torsional buckling of the member has also been taken into account. The theory is

used to calculate analytical expressions in this thesis on for the �exural buckling

length and the corresponding screw forces of the steel member supported by sand-

wich panels. It should be noted, that the same theories may be used for stabilization
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of other than steel members, as well.

2.2.1 Elastic buckling length of member restraint with sand-
wich panels

In this theory, it is assumed that sandwich panels are absolutely rigid in the plane of

the faces and all deformations take place at the connectors. Another basic assump-

tion is that the panels can slide without friction and the longitudinal joints of the

panels are not �xed. In Hedman-Petursson (2001) is given method for the analysis

when it is supposed that the longitudinal joints have sti�ness against longitudinal

forces and the longitudinal joints. The sti�ness may appear due to friction at the

joints and/or due to connectors at the joints. This e�ect has a considerable e�ect to

the sti�ness of the stabilizing system, as shown in Hedman-Petursson (2001). Con-

nectors are supposed to behave elastically and due to slip at the joints, the edges of

the sandwich panels restrain the deformation of the member by the moment which

is caused by force pairs from connectors. The principle is presented in the Figure 4

when there is only one pair of connectors at the edge of each sandwich panels.

Figure 4. Sandwich panel restraining the de�ection of a cantilever member.

Width of the sandwich panel is denoted as B, the distance between screw pair is c

and the connector displacement is denoted as ∆. The rotation of the member is the
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derivative of the de�ection of the member, denoted as v′(x) or
dv

dx
. Notations are

presented in the Figure 5.

Figure 5. Deformation of member at the panel joint.

When deformations are small enough, the connector displacement is:

∆ =
c

2
· dv
dx

(20)

Because the connectors are supposed to behave elastically, the connector force F

is:

F = kν∆ (21)

where kν is the shear sti�ness of one connector. Shear sti�ness of the connector can

be calculated according to ECCS Recommendations (2013, Eq. (21)):

kv =
1

xF
kF2

+
t2cor,sup + 2(1− xF )Dtcor,sup

4Csup
+

3(1− xF )Dt2cor,sup + t3cor,sup
24EI

(22)

xF = 1−

1

kF2

− DTcor,sup
2Csup

−
Dt2cor,sup

8EI

1

kF2

+
D2

Csup
+
D2(2D + 3tcor,sup)

6EI

(23)

EI = 200GPa
πd4S
64

(24)
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Csup = 2400MPa
√
tcor,supd51 (25)

kF2 =


6.93

fu,F2

√
tcor,supd51

0.26mm+ 0.8tcor,sup
if 0.4 mm ≤ tcor,sup ≤ 0.7 mm

4.2
fu,F2

√
tcor,supd51

0.373mm
if tcor,sup > 0.7 mm

In the above,

tF2 is the thickness of internal sheeting;

tcor,F2 is the core thickness of internal face;

tcor,sup is the core thickness of supporting structure;

d is the nominal diameter of the fastener;

d1 is the minor diameter of the threaded part of the fastener;

dS is the diameter of the unthreaded shank;

fu,F2 is the tensile strength of the internal face;

D is the thickness of the panel at point of fastening.

Equation (22) is based on component method with �ve components: Bending sti�-

ness EI of the fastener, clamping of the head of the fastener (rotational spring),

clamping of the fastener in the supporting structure (rotational spring with sti�ness

Csup), hole elongation of the internal face sheet (longitudinal spring with sti�ness

kF2) and hole elongation of the external face sheet (longitudinal spring with sti�ness

kF1).

The sti�ness of a connector corresponds to the load level at the serviceability limit

state. It is assumed that load level not exceed half of the shear resistance of the

internal face sheet at serviceability limit state. The shear resistance can be calcu-

lated according to (ECCS 2013, Eq. (27)) which is shown in Equation (104) in

Section 2.2.2.
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Table 3. Sti�ness of the sandwich panel connectors. Modulus of elasticity of the
connector Econnector = 200 GPa and tensile strength of the internal face of the sand-
wich panel is fy,panel = 350 MPa.

Thickness of
internal face
of sandwich
panel (mm)

Nominal
thickness of
the connector
(mm)

Thickness of
the panel at the
point of the
connector (mm)

Thickness of
the supporting
structure (mm)

Sti�ness of
the
connectors
(N/mm2)

0.4 5.5 100 8 1933
0.7 5.5 100 8 2938
1.0 5.5 100 8 6036
0.4 6.3 100 8 2145
0.7 6.3 100 8 3296
1.0 6.3 100 8 7029

0.4 5.5 230 8 1929
0.7 5.5 230 8 2905
1.0 5.5 230 8 5784
0.4 6.3 230 8 2151
0.7 6.3 230 8 3285
1.0 6.3 230 8 6829

0.4 5.5 230 10 1854
0.7 5.5 230 10 2740
1.0 5.5 230 10 5172
0.4 6.3 230 10 2090
0.7 6.3 230 10 3148
1.0 6.3 230 10 6272

The moment Mk of a force couple Fk is

Mk = Fkck (26)

If there exist n pairs of identical connectors, with the distance of one pair denoted

ck, the shear force Fk, (k = 1, 2, . . . , n) of a connector is:

Fk = kν∆k = kν ·
ck
2
· dv
dx

(27)

The moment of all connectors is:

M =
n∑
k=1

Fkck =
kν
2

n∑
k=1

c2k
dv

dx
(28)

This moment is distributed as a uniform moment m to one panel of width B:

m =
Mk

B
=

kν
2B

n∑
k=1

c2k
dv

dx
(29)

Consider a di�erential element of the member presented in Figure 6.
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Figure 6. Di�erential piece of the member.

The equilibrium equations of element are:

Horizontal forces: N −N − dN = 0⇒ dN = 0⇒ dN

dx
= 0 (30)

Vertical forces: Q−Q− dQ = 0⇒ dQ = 0⇒ dQ

dx
= 0 (31)

Moment: M −M − dM + (Q+ dQ)dx+ (N + dN)
dv

dx
dx−mdx = 0 (32)

⇒ −dM
dx

+Q+N
dv

dx
−m = 0 (33)

⇒ −d
2M

dx2
+
dQ

dx
+N

d2v

dx2
− dm

dx
= 0 (34)

⇒ −d
2M

dx2
+N

d2v

dx2
− dm

dx
= 0 (35)

If the e�ect of shear deformation and shortening of the member are neglected and

deformations are small, then:

M = −EI d
2v

dx2
(36)

Substituting Equations (36) and (29) to Equation (35) gives:

EI
d4v

dx4
+N

d2v

dx2
− kν

2B

n∑
k=1

c2k
d2v

dx2
= 0 (37)

⇒ EI
d4v

dx4
+

(
N − kν

2B

n∑
k=1

c2k

)
d2v

dx2
= 0 (38)

This is the governing linear homogenous di�erential equation for the member which

is restrained by sandwich panels and loaded by the axial compressive force N . If

the shear sti�ness of the connector, kν , is small, the di�erential equation of axially

loaded Euler-Bernoulli member is obtained.
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To derive more general solution of Equation (38), re-write the equation as:

d4v

dx4
+ λ2

d2v

dx2
= 0 (39)

where

λ =

√√√√ N

EI
− kν

2BEI

n∑
k=1

c2k (40)

Assuming that

N

EI
− kν

2BEI

n∑
k=1

c2k ≥ 0 (41)

yields

N ≥ kν
2B

n∑
k=1

c2k (42)

If Equation (42) is not satis�ed, then denote

λ̄ =

√√√√ kν
2BEI

n∑
k=1

c2k −
N

EI
(43)

and the di�erential equation becomes

d4v

dx4
− λ̄2 d

2v

dx2
= 0 (44)

The general solution of Equation (39) is

v(x) = C1 cos (λx) + C2 sin (λx) + C3x+ C4 (45)

and the general solution of Equation (44) is

v(x) = C̄1 cosh (λ̄x) + C̄2 sinh (λ̄x) + C̄3x+ C̄4 (46)

Elastic buckling load Ncr can be calculated from Equations (45) and (46) with the

boundary conditions of the member. The elastic buckling length Lcr in the plane of

the panel can be solved from equation:

Ncr =
π2EI

L2
cr

(47)
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Simply supported member:

Consider �rst a simply supported member as an example. The solution in this

case is shown in Hedman-Pétursson's thesis (2001) also, where the theory has been

validated by tests.

The boundary conditions at the ends of the simply supported member are:

v(0) = 0
d2v(0)

dx2
= 0 (48)

v(L) = 0
d2v(L)

dx2
= 0 (49)

The sine function ful�lls the boundary conditions at the supports and the de�ection

is:

v(x) = Ar sin
(rπx
L

)
(50)

Substitution of Equation (50) when sin
(
rπx
L

)
= 1 to Equation (38) yields:

EI
r4π4

L4
−N r2π2

L2
+
kν
2B

n∑
k=1

c2k
r2π2

L2
= 0 (51)

⇒ Ncr = EI
r2π2

L2
+
kν
2B

n∑
k=1

c2k (52)

It can be seen, that the �rst eigenmode, r = 1, gives always the smallest Ncr in

this case. Moreover, the �rst part of Ncr is the same as for the member without

sandwich panels. The buckling length Lcr in the plane of the panel is:

Ncr =
π2EI

L2
cr

= EI
r2π2

L2
+
kν
2B

n∑
k=1

c2k (53)

⇒ Lcr =
L√

1 +
kν
2B

∑n
k=1 c

2
k ·

L2

π2EI

(54)

Cantilever column:

The boundary conditions for the cantilever member which is �xed at the point x = 0

and free at the end x = L with the compressive force N are:

v(0) = 0
dv(0)

dx
= 0 (55)

d2v(L)

dx2
= 0 Q(L) = 0 (56)
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From Equation (33), the following is obtained:

−dM
dx

+Q+N
dv

dx
−m = 0 (57)

⇒ Q =
dM

dx
−N dv

dx
+
kν
2B

n∑
k=1

c2k
dv

dx
(58)

⇒ Q = −EI d
3v

dx3
−N dv

dx
+
kν
2B

n∑
k=1

c2k
dv

dx
(59)

⇒ Q = −EI d
3v

dx3
−

(
N − kν

2B

n∑
k=1

c2k

)
dv

dx
(60)

The cosine function ful�lls the boundary conditions at the supports and the de�ec-

tion is:

v(x) = Ar

(
1− cos

(rπx
2L

))
, N ≥ kν

2B

n∑
k=1

c2k (61)

Substitution of Equation (61) to Equation (44) leads to:

EI
r4π4

(2L)4
−N r2π2

(2L)2
+
kν
2B

n∑
k=1

c2k
r2π2

(2L)2
= 0 (62)

⇒ Ncr = EI
r2π2

(2L)2
+
kν
2B

n∑
k=1

c2k (63)

In the second case where

N ≤ kν
2B

n∑
k=1

c2k (64)

no positive eigenvalues can be obtained.

It can be seen, that the �rst eigenmode, with r = 1, gives always the smallest Ncr

in this case. Moreover, the �rst part of Ncr is the same as for the member without

sandwich panels, again. The buckling length Lcr in the plane of the panel can be

solved from Equation (47) as:

π2EI

L2
cr

= Ncr =
π2EI

(2L)2
+
kν
2B

n∑
k=1

c2k (65)

⇒ Lcr =
2L√

1 +
kν
2B

∑n
k=1 c

2
k

(2L)2

π2EI

(66)
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Cantilever with support at the top:

The boundary conditions at the ends of the cantilever member with support at the

top are:

v(0) = 0
dv(0)

dx
= 0 (67)

v(L) = 0
d2v(L)

dx2
= 0 (68)

With these boundary conditions, the general solution Equation (45) gives equa-

tion:

(λL) cot (λL)− 1 = 0 (69)

and the smallest eigenvalue can be calculated from that as:

λ =
4.4934095

L
(70)

Substitution of Equation (70) to Equation (40) leads to:

Ncr = λ2EI +
kν
2B

n∑
k=1

c2k (71)

and elastic buckling length can be calculated from Equation (47):

⇒ Lcr =

√
π2EI

Ncr

(72)

Fixed supported member:

The boundary conditions for the member which is �xed at the point x = 0 and

x = L with the compressive force N are:

v(0) = 0
dv(0)

dx
= 0 (73)

v(L) = 0
dv(L)

dx
= 0 (74)

The cosine function ful�lls the boundary conditions at the supports and the de�ec-

tion is:

v(x) = Ar

(
1− cos

(
2rπx

L

))
, N ≥ kν

2B

n∑
k=1

c2k (75)
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Substitution of Equation (75) to Equation (44) leads to:

EI
r4π4

(
L

2
)4
−N r2π2

(
L

2
)2

+
kν
2B

n∑
k=1

c2k
r2π2

(
L

2
)2

= 0 (76)

⇒ Ncr = EI
r2π2

(
L

2
)2

+
kν
2B

n∑
k=1

c2k (77)

In the second case where

N ≤ kν
2B

n∑
k=1

c2k (78)

no positive eigenvalues can be obtained.

It can be seen, that the �rst eigenmode, with r = 1, gives always the smallestNcr and

the �rst part of Ncr is the same as for the member without sandwich panels, again.

The buckling length Lcr in the plane of the panel can be solved from Equation (47)

as:

π2EI

L2
cr

= Ncr =
π2EI

(
L

2
)2

+
kν
2B

n∑
k=1

c2k (79)

⇒ Lcr =
(
L

2
)√√√√

1 +
kν
2B

∑n
k=1 c

2
k

(
L

2
)2

π2EI

(80)

The critical elastic buckling loadNcr can be re-written for simply supported member,

cantilever and �xed supported member as:

⇒ Ncr = EI
r2π2

(Lcr,0)2
+
kν
2B

n∑
k=1

c2k (81)

and the buckling length Lcr in the plane of the panel can be re-written as:

⇒ Lcr =
(Lcr,0)√

1 +
kν
2B

∑n
k=1 c

2
k

(Lcr,0)
2

π2EI

(82)

where Lcr,0 is the buckling length for Euler's critical load in the corresponding case,

which is equal to buckling length for members without support of sandwich pan-

els.
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2.2.2 Shear force of connectors with sandwich panels

Connector force is determined in Equation (27). The force depends on the deriva-

tive of displacement. Buckling mode can be calculated from di�erential equation

Equation (38) but to solve connector forces the amplitude of de�ection must be

approximated.

Some initial deformation v0 is needed in member so that the displacement takes

place when member is only axially loaded. In Hedman-Pétursson's thesis (2001),

the initial deformation is expressed in terms of the actual deformation as:

v0 = av (83)

where a is the proportionality coe�cient. The di�erential equation of buckling in

Equation (38) can be expressed with the initial deformation as:

EI
d4v

dx4
+N(1 + a)

d2v

dx2
− kν

2B

n∑
k=1

c2k
d2v

dx2
= 0 (84)

⇒ EI
d4v

dx4
+

(
N(1 + a)− kν

2B

n∑
k=1

c2k

)
d2v

dx2
= 0 (85)

This can be rewritten as

d4v

dx4
+ λ2

d2v

dx2
= 0 (86)

where

λ =

√√√√N(1 + a)

EI
− kν

2EIB

n∑
k=1

c2k (87)

The solution of Equation (86) can be expressed as:

N =
Ncr

1 + a
(88)

⇒ a =
Ncr

N
− 1 (89)

where Ncr is de�ned according to Equation (52) for pinned boundary conditions and

Equation (63) for cantilever boundary condition.

The de�ection of a simply supported member is as Equation (50)

v(x) = Ar sin
(rπx
L

)
(90)
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and the de�ection of cantilever column is as Equation (61)

v(x) = Ar

(
1− cos

(rπx
2L

))
(91)

The maximum de�ection in both cases is:

vmax = Ar (92)

The maximum initial deformation can now be expressed as:

v0,max = aAr (93)

The amplitude Ar of the subsequent deformation can be expressed as:

Ar =
v0
a

(94)

⇒ Ar =
v0

Ncr

N
− 1

(95)

Substituting Equation (95) to Equation (50) and Equation (61) yields:

v(x) =
v0

Ncr

N
− 1

sin
(rπx
L

)
(96)

v(x) =
v0

Ncr

N
− 1

(
1− cos

(rπx
2L

))
(97)

Now the connector force can be presented as:

F (x) = kν
ck
2
· v0π(

Ncr

NEd

− 1

)
L

cos
πx

L
, for simply supported member (98)

F (x) = kν
ck
2
· v0π(

Ncr

NEd

− 1

)
2L

sin
πx

2L
, for cantilever member (99)

and maximum connector force in member can be presented as:

Fmax = kν
ck
2
· v0π(

Ncr

NEd

− 1

)
L

, for simply supported member (100)

Fmax = kν
ck
2
· v0π(

Ncr

NEd

− 1

)
2L

, for cantilever member (101)
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The initial bow imperfection e0 is recommended in ECCS Recommendations (2013)

to be taken from Eurocode 3 (2005, clause 5.3.3(1)):

e0 =

√
1

2

(
1 +

1

m

)
· L

500
(102)

where m is the number of members to be restrained. There exist in minimum two

members for one panel so when the panel is one span panel from column to column

then m = 2 and

e0 =
L

577
(103)

The initial bow imperfection e0 can be used as initial deformation v0 to calculate

displacements and connector forces.

The shear resistance can be calculated according to ECCS Recommendations (2013,

Eq. (27)):

VRk = 4.2 ·
√
t3cor,F2d1 · fu,F2 (104)

VRk is the characteristic value of shear resistance and the design value can be calcu-

lated with the material safety factor γM2 = 1.25 as:

VRd =
VRk
γM2

(105)

Table 4. Bearing resistance of the sandwich panel's connectors. Tensile strength of
the internal face of the sandwich panel is fy,panel = 350 MPa.

Thickness of
internal face of
sandwich panel
(mm)

Nominal
thickness of the
connector (mm)

Bearing
resistance of
the connectors
(kN)

0.4 5.5 0.697
0.7 5.5 1.477
1.0 5.5 2.592
0.4 6.3 0.746
0.7 6.3 1.581
1.0 6.3 2.774

The bearing resistances for connectors of sandwich panels with varying thickness of

internal face are presented in Table 4.
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3 NUMERICAL EXAMPLES

In this chapter, numerical examples is presented to equations derived in Chapter 2

Theory. Same member is studied in all examples.

Used data for member is:

L = 12 m the length of the member;

CFRHS 200x200x10 cross-section, cold-formed rectangular hollow section;

fy = 420 MPa yield strength of member;

E = 210 GPa modulus of elasticity of member;

A = 7257 mm2 cross-section area of member;

I = 4251 · 104 mm4 second moment of area;

d = 5.5 mm diameter of connectors;

m = 1 number of members;

t = tnom − 0.04 mm design thickness of sheeting;

v0 = L/577 initial deformation of member;

3.1 Elastic flexural buckling length of member restrained with
trapezoidal sheeting

First example is to calculate the elastic buckling length of a simply supported com-

pressed tubular member restrained with trapezoidal sheeting. The �exural buckling

in the plane of the trapezoidal sheeting is considered. The buckling length can be

used to calculate the resistance of member according to Eurocode 3 (2005). The

member is supported in one direction with trapezoidal sheeting with nominal thick-

ness tnom = 0.7mm and design thickness t = 0.66mm. Sheeting is connected to

member with screws with diameter d = 5.5mm, spacing of the screws is c = 500mm

and m = 1.

Shear sti�ness of one screw is according to Equation (2):

K = 1.5d
√
t · 1 · 103 = 1.5 · 5.5

√
0.66 · 1 · 103 = 6702 N/mm

and foundation parameter is:
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k =
K

c
=

6702

500
= 13.4 N/mm2

The critical buckling mode in the plane of the sheet is according to Equa-

tion (12):

n =

√
(2L)2

√
EIk + π2EI

EI
2π

− 1

2
= 3.76

⇒ n = 4 half-waves in the critical buckling mode.

The elastic buckling load from Equation (9) is:

Ncr =
π2EI

L2

(
n2 +

kL4

n2π4EI

)
= 22.01 MN

and the elastic buckling length is:

Lcr =
L√

n2 +
kL4

n2π4EI

= 2.001 m

⇒ Lcr
L

= 0.167

In the other direction without support of sheeting the elastic buckling load is:

Ncr =
π2EI

L2
= 0.612 MN

and the elastic buckling length is:

Lcr =

√
π2EI

Ncr

= 12 m

⇒ Lcr
L

= 1.0

It can be seen that sheeting increases member's buckling resistance signi�cantly

against the �exural buckling in the plane of sheeting when only compressive load is

consider.

3.2 Shear force of connectors with trapezoidal sheeting

In the second example, the maximum shear force of connectors is calculated for the

same case as in the previous Chapter 3.1. Material of the sheeting is S350GD+Z with

ultimate strength 420 MPa, nominal thickness of the sheeting tnom = 0.7mm and

design thickness ist = 0.66mm. Compressive force of the member is NEd = 300kN ,

in-plane de�ection is δq = 0.5mm and m = 1. Sheeting is connected to member with

screws with diameter d = 5.5mm and spacing of the screws is c = 500mm.

Initial bow imperfection e0 can be calculated using Equations (16) and (17):
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αm =

√
1

2

(
1 +

1

m

)
= 1

e0 = αm
L

500
= 24 mm

And after that the shear force of a screw is according to Equation (19):

F = NEd · 8
e0 + δq
L2

· c = 204 N

From Table 2 in Chapter 2.1.2, it can be seen that the shear resistance of the screws

is FRd = 1.352kN , so utilization ratio of screws in this case is 15.1% provided that

the utilization ratio 100% means the fully stressed design and thus the screws are

su�cient.

3.3 Elastic buckling length of member restraint with sandwich
panels

3.3.1 Stiffness of connectors

In this example, the sti�ness of connection between member and sandwich panel is

as follows.

Used data for a connector is:

tF2 = 0.525 mm the thickness of internal sheeting;

tcor,F2 = 0.5 mm the core thickness of internal face;

tcor,sup = 10 mm the core thickness of supporting structure;

d = 5.5 mm the nominal diameter of the fastener;

d1 = 5 mm the minor diameter of the threaded part of the fastener;

dS = 5 mm the diameter of the unthreaded shank;

fu,F2 = 390 MPa the tensile strength of the internal face;

D = 100 mm the thickness of the panel at point of fastening;

The sti�ness of connector is then:

kv =
1

xF
kF2

+
t2cor,sup + 2(1− xF )Dtcor,sup

4Csup
+

3(1− xF )Dt2cor,sup + t3cor,sup
24EI

= 2696N/mm

where
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xF = 1−

1

kF2

− DTcor,sup
2Csup

−
Dt2cor,sup

8EI

1

kF2

+
D2

Csup
+
D2(2D + 3tcor,sup)

6EI

= 1.01

EI = 200GPa
πd4S
64

= 6135923Nmm2

Csup = 2400MPa
√
tcor,supd51 = 424264Nmm

kF2 = 6.93
fu,F2

√
tcor,supd51

0.26mm+ 0.8tcor,sup
= 3142N/mm

3.3.2 Simply supported member

Next example is to calculate elastic buckling length of a simply supported member

restrained with sandwich panels. Width of a sandwich panel is B = 1200mm and

sandwich panels are connected to the member with a pair of screws. The distance

between screws in a panel is ck = 1000mm and the sti�ness of a screw is kv =

2696N/mm.

The elastic buckling load from Equation (52) is:

Ncr = EI
r2π2

L2
+
kν
2B

∑n
k=1 c

2
k = 1.735 MN

and thus the elastic buckling length is:

Lcr =
L√

1 +
kν
2B

∑n
k=1 c

2
k ·

L2

π2EI

= 7125 mm

⇒ Lcr/L = 0.59

Elastic �exural buckling load for the simply supported member without support of

panels is:

Ncr =
π2EI

L2
= 0.612 MN

and the elastic buckling length is:

Lcr =

√
π2EI

Ncr

= 12 m

⇒ Lcr
L

= 1.0

It can be seen that sandwich panels signi�cantly increase buckling load and thus

decrease buckling length.
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3.3.3 Cantilever column

This example is to calculate elastic buckling length of a cantilever column restraint

with sandwich panels. All input data are the same as in the example above except

now the member is cantilever with rigid support at one end and no support in

the other. Width of a sandwich panel is B = 1200mm and sandwich panels are

connected to the member with a pair of screws. The distance between screws in a

panel is ck = 1000mm and the sti�ness of a screw is kv = 2696N/mm.

The elastic buckling load is now according to Equation (63):

Ncr = EI
r2π2

(2L)2
+
kν
2B

∑n
k=1 c

2
k = 1.276 MN

and the elastic buckling length is:

Lcr =
2L√

1 +
kν
2B

∑n
k=1 c

2
k

(2L)2

π2EI

= 8308 mm

⇒ Lcr/L = 0.69

Elastic buckling load for cantilever column without support of panels is:

Ncr =
π2EI

L2
= 0.153 MN

and the elastic buckling length is:

Lcr =

√
π2EI

Ncr

= 24 m

⇒ Lcr
L

= 2.0

It can be seen that again sandwich panels signi�cantly increase buckling load and

decrease buckling length.

3.3.4 Cantilever with support at the top

Third case of boundary conditions is the member with rigid support at one end

and a hinge in the other end. Again, width of a sandwich panel is B = 1200mm

and sandwich panels are connected to the member with a pair of screws. The

distance between screws in a panel is ck = 1000mm and the sti�ness of a screw is

kv = 2696N/mm.

The �rst eigenvalue is according to Equation (70):



28

λ =
4.4934095

L
= 0.374

1

m

With that eigenvalue, critical buckling load can be calculated from Equation (71)

as:

Ncr = λ2EI +
kν
2B

∑n
k=1 c

2
k = 2.375 MN

and elastic buckling length is now:

Lcr =
π2EI

Ncr

= 6091 mm

⇒ Lcr/L = 0.51

Elastic buckling load for these boundary conditions without support of panels

is:

Ncr =
π2EI

L2
= 1.251 MN

and the elastic buckling length is:

Lcr =

√
π2EI

Ncr

= 8390 mm

⇒ Lcr
L

= 0.7

It can be seen that even in this case sandwich panels help with buckling.

3.3.5 Fixed supported member

Fourth case of boundary conditions is the member with rigid supports at the both

ends. All input data are the same as in the earlier examples.

The elastic buckling load is now according to Equation (77):

Ncr = EI
r2π2

(
L

2
)2

+
kν
2B

∑n
k=1 c

2
k = 3.571 MN

and the elastic buckling length is:

Lcr =
(
L

2
)√√√√

1 +
kν
2B

∑n
k=1 c

2
k

(
L

2
)2

π2EI

= 4967 mm

⇒ Lcr/L = 0.41
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Elastic buckling load for �xed supported member without panels is:

Ncr =
π2EI

(
L

2
)2

= 2.447 MN

and the elastic buckling length is:

Lcr =

√
π2EI

Ncr

= 6 m

⇒ Lcr
L

= 0.5

It can be seen that again sandwich panels increase buckling load and decrease buck-

ling length but the bene�t of the panels is reduced when the boundary conditions

are sti�er.

3.4 Shear force of connectors with sandwich panels

The last example shows how to calculate the maximum shear force of connectors

for members with restraint from sandwich panels. In this example, the same sim-

ply supported member and cantilever are examined. The sti�ness of a screw is

kv = 2696N/mm, the distance between screws in a panel is ck = 1000mm, initial

deformation of member is supposed to be according to Equation (103) as v0 =
L

577
,

the axial design force of the member is NEd = 300kN and length of member is

L = 12m. The elastic buckling load of simply supported member is Ncr = 1.735MN

and the elastic buckling load of cantilever is Ncr = 1.276MN .

Maximum force of a connector for simply supported member can be calculated from

Equation (100) as:

Fmax = kν
ck
2
· v0π(

Ncr

NEd

− 1

)
L

= 1.18 kN

Maximum force of a connector for cantilever can be calculated from Equation (101)

as: Fmax = kν
ck
2
· v0π(

Ncr

NEd

− 1

)
2L

= 0.87 kN

The shear resistance of a connector is according to Equation (104):

VRd =
4.2 ·

√
t3cor,F2d1 · fu,F2

γM2

= 1.09 kN

It can be see that utilization ratios of screws are 108% for simply supported member

and 80% when the utilization ratio 100% means the fully stressed design. Thus the
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connectors are su�cient only in the case of cantilever. It seems that with sandwich

panels connector forces limit the member's capacity to withstand axial force more

than buckling.
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4 VERIFICATION OF CALCULATIONS

In Chapter 2, analytical solutions were obtained for elastic buckling lengths of re-

strained members. Analytical solutions are compared with the results obtained by

the �nite element method for veri�cation purposes. The member is modeled with 120

Euler-Bernoulli beam elements. Software RFem (program version 5.07.11.122642,

student version) by Dlubal (Dlubal Software GmbH 2016) was used to solve the

�nite element model.

4.1 Lateral restraint with trapezoidal sheeting

The examined structure was modeled using beam and spring elements. The sti�ness

of spring elements is the same than the foundation parameter K from Equation (2).

Schematic picture from FEM model is shown in Figure 7.

Figure 7. Schematic picture from FEM model of a column restrained by trapezoidal
sheeting. The springs are connected to the mid-points of the column cross-section
and the displacements of other end are �xed. The springs can resist only axial forces.
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Figure 8. The smallest eigenmode of simply supported member without and with
trapezoidal sheeting. Cross-section CFRHS 200x200x10, length 12 m, thickness of
sheeting 0.7 mm and diameter of connectors 5.5 mm.

Without trapezoidal sheeting, analytical solution for critical elastic buckling load

is Ncr = 0.612 MN as calculated in Section 3.1 and FEM solution is Ncr = 0.610

MN. Critical elastic buckling loads for simply supported member restrained with

trapezoidal sheeting are: analytical solution Ncr = 22.010 MN and FEM solution

Ncr = 21.636 MN. It can be seen that analytical solutions and FEM solutions are

close to each others, analytical solutions are slightly safer than FEM solutions but

the di�erence is very small.

Using the model of Figure 7 the lowest eigenmode for the simply supported and

axially loaded column and the distribution of elements is shown Figure 8. The

�gure shows that number of half-waves in the critical buckling mode of restrained

member is n = 4 as calculated in Section 3.1.
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4.2 Lateral restraint with sandwich panels

FEM model is made to act according to the basic assumptions of the theory: con-

nectors are replaced with linear springs, panels are modeled with rigid plates, only

horizontal movement was allowed for panels and the longitudinal joints between

panels do not transfer any loads. Schematic picture of the FEM model is shown in

Figure 9.

Figure 9. Schematic picture from FEM model of a column restrained by sandwich
panels.

The comparison between analytical solutions and FEM solutions with di�erent

boundary conditions is shown in Table 5. From Table 5, it can be seen that an-

alytical solutions and FEM solutions are close to each others in every case and

analytical solutions are slightly safer than FEM solutions. Table 5 shows also how

much sandwich panels increase buckling loads and decrease buckling length in every

case as calculated in Chapter 3.
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Table 5. Flexural buckling loads for CFRHS 200x200x10 in the plane of the panels,
L = 12m, sandwich panels B = 1200mm, screws kν = 2696N/mm (d = 5.5mm,
tf = 0.6mm, fu = 390MPa), ck = 1000mm, n = 1.

Simply supported Fixed/hinged Cantilever Fixed/�xed

Analytical Ncr [kN ]
without sandwich
panels

612 1251 153 2447

FEM Ncr [kN ]
without sandwich
panels

610 1245 153 2425

Analytical Ncr [kN ]
with sandwich panels

1735 2375 1276 3571

FEM Ncr [kN ]
with sandwich panels

1728 2363 1272 3520

Analytical Lcr [m]
without sandwich
panels

12 8.390 24 6

Analytical Lcr [m]
with sandwich panels

7.125 6.091 8.308 4.967

Lcr with panels/
Lcr without panels

0.59 0.73 0.35 0.83

It is also worth noticing that the di�erence between unrestrained members and

members restrained with sandwich panels is greater with boundary conditions where

buckling length of unrestrained member is bigger. In the other words, the greatest

bene�t from sandwich panels is obtained to cantilever members and members with

�xed-�xed support bene�t the least from sandwich panels. That is because the

support the sandwich panels cause is constant in every case and when buckling load

of unsupported member is small the supporting term is relatively bigger.

Figures 10�13 show lowest buckling modes with di�erent boundary conditions with-

out and with sandwich panels. It can be seen that sandwich panels do not change

the buckling mode.
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Figure 10. The lowest eigenmode of FEM model for simply supported column with
and without sandwich panels.

Figure 11. The lowest eigenmode of FEM model for the cantilever column with
and without sandwich panels.
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Figure 12. The lowest eigenmode of FEM model for the cantilever column with
support at the top with and without sandwich panels.

Figure 13. The lowest eigenmode of FEM model for the �xed supported column
with and without sandwich panels.
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Analytical solutions and solutions from FEM analysis correspond to each other very

well with regard of buckling loads and buckling lengths.

4.3 Connector forces with sandwich panels

Figures 14 and 15 show how analytical solutions and FEM solutions correspond to

each other with regard of connector forces in the case of axially loaded cantilever

member. Analytical results can be calculated from Equation (99). Figure 14 shows

real values and Figure 15 shows absolute values of connector forces. It can be seen

that in FEM results, connector forces in a sandwich panel are equal like assumed

in Section 2.2. Instead, analytical connector forces follow sine function when upper

connector takes more force than lower one. It can also be seen that analytical

connector forces are bigger than forces from FEM analysis.

Figure 14. Connector forces in a 12 m cantilever column with sandwich panels.
CFRHS 200x200x10, L = 12 m, kν = 2696 N/mm and NEd = 1000 kN.
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Figure 15. Absolute values of connector forces in a 12 m cantilever column with
sandwich panels. CFRHS 200x200x10, L = 12 m, kν = 2696 N/mm and NEd = 1000
kN.

Figures 16 and 17 show how the maximum de�ection and maximum connector force

of member depend on axial load of member. The maximum de�ection can be cal-

culated from Equation (97) and maximum connector force can be calculated from

Equation (101). It can be seen that the maximum de�ection and maximum con-

nector force behave the same way. When the axial force increases in relation to the

buckling load, the de�ection and connector force increase at an accelerating speed

until the axial load approaches the buckling load and the de�ection and connector

force approach in�nity. Because the connector force approach in�nity when utiliza-

tion ratio of buckling approaches one, connector forces are in all cases the limiting

factor instead of buckling when members are restrained with sandwich panels.
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Figure 16. Maximum de�ection of the column (analytical and FEM) versus axial
load of the cantilever restrained with sandwich panels. CFRHS 200x200x10, L = 12
m and kν = 2696 N/mm.

Figure 17. Maximum force of a connector (analytical and FEM) versus axial load
of the cantilever restrained with sandwich panels. CFRHS 200x200x10, L = 12 m
and kν = 2696 N/mm.
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It can also be seen that analytical results are bigger than FEM results and results

depends on initial deformation v0. In Figures 16 and 17 v0 = 16 mm represents

initial deformation L/750 and v0 = 20.8 mm represents initial deformation L/577

calculated in Equation (103) in Section 2.2.2.
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5 PARAMETRIC STUDY

In this chapter, a parametric study is made to �nd out how di�erent parameters

a�ect and when stressed skin can help to get more resistance. The study is made by

calculating axial force resistance with analytical equations presented in Chapter 2

and studied parameter are buckling resistance of unrestrained member, sti�ness

of connections and shear resistance of connections. Only axial load is taken into

account and the maximum load is calculated by increasing load until the connector

force reaches the bearing resistance of a screw or until buckling resistance in the

plane of stressed skin is exceeded. Buckling resistance is calculated according to

SFS-EN 1993-1-1 (2005).

For unrestrained members, the maximum load that causes buckling resistance of

member to be exceeded, is presented in Figure 18 for simply supported member

and Figure 19 for cantilever. These results serve as comparisons to show if di�erent

sti�ening solutions have bene�ts.

Figure 18. Maximum axial load for simply supported member without restraint.
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Figure 19. Maximum axial load for cantilever column without restraint.

For unrestrained members, the buckling resistance decreases when length of member

increases or cross-section is smaller.

5.1 Lateral restraint with trapezoidal sheeting

In this chapter, only simply supported axially loaded member is studied. There

are four di�erent parameters that a�ect the maximum axial load of member with

trapezoidal sheeting: length of member, cross-section, sti�ness of connections and

shear resistance of connections.

In the �rst case, the e�ect of member's length and cross-section are studied. Three

di�erent cross sections are selected to show the di�erence and results are presented

in Figure 20.
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Figure 20. Maximum axial load versus member length for simply supported member
with restraint from trapezoidal sheeting. Thickness of sheeting is tnom = 0.7 mm,
distance between screws is c = 500 mm and diameter of a screw is d = 5.5 mm.

It can be seen that bigger cross-sections have bigger axial force resistance as usual

but the shape of graphs is di�erent than without trapezoidal sheeting. When axial

force resistance of unsupported member decreases �rst rapidly and later more evenly

approaching zero, the axial force resistance of member restrained with trapezoidal

sheeting increases linearly until it reaches constant value. The linear increase is

caused by connector forces and linear part is caused by buckling resistance.

Figures 21 and 22 present the comparison between unrestrained member and mem-

ber restrained with trapezoidal sheeting. It can be seen that with big cross-sections

and short members connector forces could limit the axial force resistance of member

to be less than resistance of unrestrained member but in most cases the bene�t for

sheeting is signi�cant.
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Figure 21. Maximum axial load versus member length for simply supported mem-
ber with and without restraint from trapezoidal sheeting. Cross-section is CFRHS
200x200x10, thickness of sheeting is tnom = 0.7 mm, distance between screws is
c = 500 mm and diameter of a screw is d = 5.5 mm.

Figure 22. Maximum axial load versus member length for simply supported mem-
ber with and without restraint from trapezoidal sheeting. Cross-section is CFRHS
120x120x10, thickness of sheeting is tnom = 0.7 mm, distance between screws is
c = 500 mm and diameter of a screw is d = 5.5 mm.
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The second case is to study the e�ect of the thickness of the sheeting. The thickness

of the sheet has a signi�cant impact on the shear resistance of connections and it

also a�ects the sti�ness of the connections. The diameter of connectors a�ects shear

resistance also but the e�ect of the thickness is greater. The results are presented

in Figure 23.

Figure 23. Maximum axial load versus member length for simply supported mem-
ber with restraint from trapezoidal sheeting. Cross-section is CFRHS 200x200x10,
distance between screws is c = 500 mm and diameter of a screw is d = 5.5 mm.

It can be seen that changing the thickness of sheeting does not really a�ect the

maximum constant value the axial force resistance settles but it changes the linearly

increasing part caused by connector forces.

The third case is to study the e�ect of the sti�ness of the connections by varying

the distance between screws. As shown in Figure 24, the change of sti�ness a�ect

mostly to the gradient of the part caused by connector forces.
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Figure 24. Maximum axial load versus member length for simply supported mem-
ber with restraint from trapezoidal sheeting. Cross-section is CFRHS 200x200x10,
thickness of sheeting is tnom = 0.7 mm and diameter of a screw is d = 5.5 mm.

Trapezoidal sheeting can be used to increase the axial force resistance of the mem-

bers. The bene�t is unquestionable and the di�erence can be huge, for example

CFRHS 200x200x10, thickness of sheeting tnom = 0.7 mm, distance between screws

c = 500 mm, diameter of a screw d = 5.5 mm and length L = 12 m

⇒ NRd = 580 kN without trapezoidal sheeting and NRd = 2866 kN with restraint

from trapezoidal sheeting.

5.2 Lateral restraint with sandwich panels

In this chapter, the results are shown with two di�erent boundary conditions, simply

supported member and cantilever. The parameters that a�ect the maximum axial

load of member with trapezoidal sheeting are: length of member, cross-section,

sti�ness of connections and shear resistance of connections.

In the �rst case, the e�ect of member's length and cross-section are studied. Three

di�erent cross sections are selected to show the di�erence and results are presented

for simply supported member in Figure 25 and for cantilever in Figure 26.
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Figure 25. Maximum axial load for simply supported member with restraint from
sandwich panels. The sti�ness of a connector is kv = 2696 N/mm, thickness of
internal face is tF2 = 0.525 mm, distance between screws is c = 1000 mm and
diameter of a screw is d = 5.5 mm.

Figure 26. Maximum axial load for cantilever column with restraint from sandwich
panels. The sti�ness of a connector is kv = 2696 N/mm, thickness of internal face
is tF2 = 0.525 mm, distance between screws is c = 1000 mm and diameter of a screw
is d = 5.5 mm.

It can be seen that the graphs for members restrained with sandwich panels re-

semble the graphs for unrestrained members. Both sets of graphs have the same
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decreasing basic shape but when axial force resistance of unrestrained members ap-

proach zero, the axial force resistance of members restrained with sandwich panels

approach some constant value. Cross section of member does not seem to a�ect that

constant value signi�cantly. It is worth noticing that the axial force resistance of

members restrained with sandwich panels is completely the result of shear resistance

of connectors.

Figures 27 and 28 show the di�erences between unrestrained member and member

restrained with sandwich panels in axial force resistance of simply supported member

for two di�erent cross-sections. It can be seen that the axial force resistance of

CFRHS 200x200x10 is better without sandwich panels at the lengths studied because

of the connector forces. For simply supported members, sandwich panels increase the

axial force resistance only with slender members, for example CFRHS 120x120x10

longer than 9 meters. Whit these sandwich panels and connections the axial force

resistance with sandwich panels stays about 200 kN which is maximum increase this

assembly can give.

Figures 29 and 30 show the comparison between unrestrained member and mem-

ber restrained with sandwich panels for cantilever members. Figures show that the

bene�t of sandwich panels is easier to see with cantilever members than simply sup-

ported members because the buckling resistance of unrestrained cantilever member

drops earlier to very small values. It can be seen that sandwich panels increase

the axial force resistance of CFRHS 200x200x10 longer than 7 meters and the axial

force resistance of CFRHS 120x120x10 is better with sandwich panels in all exam-

ined lengths. Whit these sandwich panels and connections the axial force resistance

with sandwich panels stays about 300 kN which is maximum increase this assembly

can give.
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Figure 27. Maximum axial load versus member length for simply supported mem-
ber with and without restraint from sandwich panels. Cross-section is CFRHS
200x200x10, sti�ness of a connector is kv = 2696 N/mm, thickness of internal
face is tF2 = 0.525 mm, distance between screws is c = 1000 mm and diameter of a
screw is d = 5.5 mm.

Figure 28. Maximum axial load versus member length for simply supported mem-
ber with and without restraint from sandwich panels. Cross-section is CFRHS
120x120x10, sti�ness of a connector is kv = 2696 N/mm, thickness of internal
face is tF2 = 0.525 mm, distance between screws is c = 1000 mm and diameter of a
screw is d = 5.5 mm.
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Figure 29. Maximum axial load versus member length for cantilever member with
and without restraint from sandwich panels. Cross-section is CFRHS 200x200x10,
sti�ness of a connector is kv = 2696 N/mm, thickness of internal face is tF2 = 0.525
mm, distance between screws is c = 1000 mm and diameter of a screw is d = 5.5
mm.

Figure 30. Maximum axial load versus member length for cantilever member with
and without restraint from sandwich panels. Cross-section is CFRHS 120x120x10,
sti�ness of a connector is kv = 2696 N/mm, thickness of internal face is tF2 = 0.525
mm, distance between screws is c = 1000 mm and diameter of a screw is d = 5.5
mm.
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The second case is to study the e�ect of the shear resistance of connections. Shear

resistance is mostly due to the thickness of internal face of sandwich panels and

diameter of the screws. Thickness has a greater e�ect on the shear resistance than

diameter, so only the thickness is varied. Results are presented for simply supported

member in Figure 31 and for cantilever in Figure 32.

Figure 31. Maximum axial load for simply supported member with restraint from
sandwich panels. Cross-section is CFRHS 200x200x10, distance between screws is
c = 1000 mm and diameter of a screw is d = 5.5 mm.

Figure 32. Maximum axial load for cantilever column with restraint from sandwich
panels. Cross-section is CFRHS 200x200x10, distance between screws is c = 1000
mm and diameter of a screw is d = 5.5 mm.
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Figures 31 and 32 show that the increase in bearing resistance of connectors increases

the axial force resistance of restrained members directly. Doubling the thickness of

internal face of sandwich panels can even double the axial force resistance of member

so the e�ect is signi�cant.

The third case is to study the e�ect of the sti�ness of connections. The most e�ective

way to increase e�ective sti�ness of connections is to add more connector pairs. In

this study, the e�ect of e�ective sti�ness is shown with three cases:

• In the �rst case, each sandwich panel is connected with a screw pair with

distance between screws c1 = 1000 mm.

• In the second case, each sandwich panel is connected with two screw pairs

with distances between screws c1 = 1000 mm and c2 = 800 mm.

• In the third case, each sandwich panel is connected with three screw pairs with

distances between screws c1 = 1000 mm, c2 = 800 mm and c3 = 600 mm.

Distances c1, c2 and c3 are shown in Figure 33. Results are presented for simply

supported member in Figure 34 and for cantilever in Figure 35.

Figure 33. Distances between screws.
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Figure 34. Maximum axial load for simply supported member with restraint from
sandwich panels. Cross-section is CFRHS 200x200x10, the sti�ness of a connector
is kv = 2696 N/mm, thickness of internal face is tF2 = 0.525 mm and diameter of
a screw is d = 5.5 mm. Distances between screws are c1 = 1000 mm, c2 = 800 mm
and c3 = 600 mm.

Figure 35. Maximum axial load for cantilever column with restraint from sandwich
panels. Cross-section is CFRHS 200x200x10, the sti�ness of a connector is kv =
2696 N/mm, thickness of internal face is tF2 = 0.525 mm and diameter of a screw
is d = 5.5 mm. Distances between screws are c1 = 1000 mm, c2 = 800 mm and
c3 = 600 mm.

It can be seen that the axial force resistance of restrained members can also be

increased by adding the number of screw pairs. This can be the easiest way to
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increase the axial force resistance but the e�ciency of that decreases when screw

pairs come closer to the center of the panel. The e�ect of increasing the number

of screw pairs from one to three seems to be nearly the same than increasing the

thickness of internal face of sandwich panels from 0.5 mm to 1.0 mm.

Sandwich panels can be used to increase the axial force resistance of slender members

and the bene�t can be signi�cant. For example, 12 meters long CFRHS 200x200x10

with three screw pairs (distances between screws are c1 = 1000 mm, c2 = 800 mm

and c3 = 600 mm), thickness of internal face tF2 = 1.0 mm sti�ness of a connector

is kv = 5172 N/mm, and diameter of a screw is d = 5.5 mm.

For simply supported member ⇒ NRd = 580 kN without sandwich panels and

NRd = 849 kN with restraint from sandwich panels. The bene�t from sandwich

panels is 269 kN.

For cantilever ⇒ NRd = 153 kN without sandwich panels and NRd = 1313 kN with

restraint from sandwich panels. The bene�t from sandwich panels is 1160 kN.
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6 SUMMARY AND CONCLUSIONS

The main aims of the thesis were to examine if trapezoidal sheeting and metal faced

sandwich panels can have bene�ts to the axial force resistance of members and how

di�erent parameters a�ect that. The thesis showed that both structures, trapezoidal

sheeting and metal faced sandwich panels, have a great potential to support slender

members against lateral elastic buckling. These structures behave di�erently and

trapezoidal sheeting can be thought to behave like a continuous spring support but

sandwich panels cause force pairs to the member and the sti�ening e�ect is due to

their moment.

With the trapezoidal sheeting, the axial force resistance is smaller for short members

than longer because of the connector forces in all cases. For short members, smaller

axial force cause connector force to be over bearing resistance but when the length

of member increases, eventually buckling becomes critical and the graph becomes

�at. The part of the graphs that depends on connector force is linear. By increasing

the bearing resistance or sti�ness of connectors, the axial force resistance of short

members can be increased even more but these parameters did not seem to a�ect

the resistance of slender members signi�cantly. Trapezoidal sheeting can increase

the maximum axial force of members clearly.

With the sandwich panels the axial force resistance drops when slenderness of mem-

ber increases until it reaches constant value caused by sandwich panels. The buckling

resistance of members restrained with sandwich panels increases a lot but the real

axial force resistance is limited strongly by bearing resistance of connections and

can be increased by increasing the bearing resistance or number of connectors. The

e�ect from sandwich panels are bigger when the boundary conditions are looser be-

cause panels add supporting force to the member that only depends on sti�ness of

connector, width of panel and distances between connectors. That supporting force

is relatively bigger when buckling load of unrestrained member is small.

One goal was to �nd out the possibilities of stressed skin for stabilization in the

ambient temperature to give comparison results for later research. Trapezoidal

sheeting and sandwich panels can be used to transfer lateral forces so stabilization

of the entire building using these structures might be possible but further studies

are needed. The theories presented in the thesis can be used to design structures in

practice, when studying the stabilization of the entire building and these might also

be helpful in �re situation.

The main concerns are how to determine the sti�nesses of the connections with
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su�cient reliability, mostly in the case of trapezoidal sheeting or in the �re situation,

and how to improve the bearing strength of sandwich panel connections. Also, initial

deformation has a remarkable impact to connector forces of sandwich panels so better

results can be obtained if that value can be measured more accurately.

Overall, this thesis provides a good base for further research. There is still a lot of

work left until these solutions become more common and easy to use.
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