

JUHA JÄNTTI

THE EMBEDDED SOFTWARE OF A POWER MEASUREMENT

CARD

Master of Science Thesis

Examiner: Prof. Karri Palovuori
Examiner and topic approved by the
Dean of the Faculty of
Computing and Electrical
Engineering
on 2nd of May 2018

i

ABSTRACT

JUHA JÄNTTI: The embedded software of a power measurement card
Tampere University of Technology
Master of Science Thesis, 48 pages, 5 Appendix pages
September 2018
Master’s Degree Programme in Information Technology
Major: Embedded Systems
Examiner: Prof. Karri Palovuori

Keywords: measurement instrument, power and performance, data acquisition,
embedded systems, firmware, software

Available commercial power measurement instruments and systems did not provide a

solution meeting project requirement in terms of size, cost, performance, features and

usability combination. Therefore, a new power and performance measurement card

hardware that is tightly integrated with device under test and tailored for use with product

enabling development boards was developed. The developed power measurement card is

based on Atmel AVR32 microcontroller unit and a discrete analog front-end and is

capable of measuring voltage and current of eight power rails and calculating average

power. Measurement results are stored on a memory card or streamed to a PC

measurement software via USB adapter.

Hardware design of the power measurement card and measurement accuracy

characterization was done in collaboration with others and electronics design and results

are briefly presented in this thesis. The embedded firmware of the power measurement

card and a companion Java PC measurement application were developed as part of this

thesis work. Accuracy and usability of the complete hardware and software solution met

the project requirements. The developed power measurement card was successfully used

to optimize power consumption of one product platform and enabled power

measurements which otherwise would not have been practical to perform.

ii

TIIVISTELMÄ

JUHA JÄNTTI: Tehonmittauskortin sulautettu ohjelmisto
Tampereen teknillinen yliopisto
Diplomityö, 48 sivua, 5 liitesivua
Syyskuu 2018
Tietotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Sulautetut järjestelmät
Tarkastaja: professori Karri Palovuori

Avainsanat: mittalaite, teho ja suorituskyky, sulautetut järjestelmät, laiteohjel-
misto, ohjelmisto

Markkinoilla saatavilla olevat teolliset tehonmittauslaitteet ja -järjestelmät eivät

täyttäneet projektin vaatimuksia koon, hinnan, suorituskyvyn, ominaisuuksien ja

käytettävyyden kokonaisuuden osalta. Tämän ratkaisemiseksi kehitettiin uusi teho ja

suorituskyky mittalaitekortti, joka integroituu tiiviisti testattavaan tuotekehitysalustaan.

Kehitetty tehonmittauskortti rakentuu Atmelin AVR32-mikrokontrollerista sekä

erilliskomponenteista kasatusta analogisesta mittapäästä. Mittaustulokset tallennetaan

muistikortille tai lähetetään tietokoneella suoritettavalle mittausohjelmalle USB-

adapterin välityksellä.

Tehonmittauskortin elektroniikkasuunnittelu ja mittaustarkkuuden karakterisointi tehtiin

yhteistyössä muiden kanssa ja tulokset esitetään lyhyesti tässä diplomityössä.

Tehonmittauskortin sulautettu ohjelmisto ja Java-mittausohjelmisto tietokoneelle

kehitettiin kokonaan tämän diplomityön puitteissa. Kehitetyn elektroniikka- ja

ohjelmistokokonaisuuden mittaustarkkuus ja käytettävyys täyttivät projektin

vaatimukset. Kehitettyä tehonmittauskorttia käytettiin onnistuneesti yhden

tuotekehitysalustan tehonkulutuksen optimoinnissa ja se mahdollisti sellaisten

tehonmittausten tekemisen, mitkä olisivat muuten olleet epäkäytännöllisiä tehdä.

iii

PREFACE

I would like to thank everyone who supported me during my studies and my co-workers

at Intel Finland Oy for providing this thesis topic and opportunity to work with and learn

from some of the most skilled engineers in the industry.

In Tampere, Finland, 23.9.2018

Juha Jäntti

iv

CONTENTS

1. INTRODUCTION .. 1

2. PROJECT REQUIREMENTS .. 4

3. HARDWARE DESCRIPTION ... 7

3.1 The PnP DAQ card ... 7

3.2 A DUT system .. 13

4. DEVELOPMENT ENVIRONMENT ... 16

4.1 Firmware .. 16

4.2 PC measurement software .. 18

5. EMBEDDED FIRMWARE .. 19

5.1 Mapping HW/SW resources... 19

5.2 Functional description .. 20

5.3 Configuration ... 24

5.4 Arithmetic calculations .. 26

5.5 UART API.. 28

5.6 Calibration .. 30

6. PC MEASUREMENT SOFTWARE .. 33

6.1 Features .. 34

6.2 Graphical user interface ... 35

7. MEASUREMENT RESULTS .. 38

7.1 Voltage measurement accuracy .. 38

7.2 Current measurement accuracy .. 39

8. SOFTWARE ISSUES AND SOLUTIONS .. 42

9. PROJECT EXECUTION .. 44

10. CONCLUSIONS ... 47

REFERENCES .. 49

APPENDIX A: PNP DAQ CARD SPECIFICATIONS

APPENDIX B: EXTRACT FROM ATMEL AT32UC3A DATASHEET

APPENDIX C: EXTRACT FROM TEXAS INSTRUMENTS ADS1278 DATASHEET

v

LIST OF SYMBOLS AND ABBREVIATIONS

A Ampere, unit of current

ADC Analog-to-Digital Converter

AFE Analog Front-End

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASF Atmel Software Framework

AVR Atmel’s Microcontroller Architecture

B2B Board to Board

C A Programming Language

CSV Comma Separated Values

DAQ Data Acquisition

DC Direct Current

DMA Direct Memory Access

DMM Digital Multimeter

DUT Device Under Test

EEPROM Electrically Erasable Programmable Read-Only Memory

FFD Form Factor Device

FTDI Future Technology Devices International Ltd.

FW Firmware

GPIO General Purpose Input/Output

GUI Graphical User Interface

HW Hardware

Hz Hertz, unit of frequency

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

IoT Internet of Things

JTAG Joint Test Action Group

LDO Low Dropout Linear Regulator

LED Light-Emitting Diode

Li-Ion Lithium-Ion

LTS Long Term Support

MCU Microcontroller Unit

MUX Multiplexer

OTG On-The-Go

OSC Oscillator

PC Personal Computer

PCB Printed Circuit Board

PLL Phase-Locked Loop

PMIC Power Management Integrated Circuit

PnP Power and Performance

PoC Proof of Concept

POR Power-On Reset

RTC Real-Time Clock

SD Secure Digital

SDIO Secure Digital Input Output

SMD Surface-Mount Device

SoC System-on-a-Chip

SSC Synchronous Serial Controller

vi

SW Software

TDM Time-Division Multiplexing

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

V Volt, unit of voltage

VBUS USB power rail

VREF Voltage Reference

W Watt, unit of power

XTAL Crystal

°C Degrees Celsius, unit of temperature

Ω Ohm, unit of resistance

Av Amplifier voltage gain

I Current

P Power

R Resistance

V Voltage

1

1. INTRODUCTION

Increasing demand from customers is driving electronics industry towards smaller and

more power-efficient devices for what is commonly known as the Internet of Things

(IoT). Study by Gartner forecasts that the IoT market will continue its fast growth in the

next years especially in the consumer appliances segment [3]. Some of the newer product

segments include smart wearable devices and smart home appliances. Because of weight,

size and cost requirements, these wearable devices are often powered from very low

capacity lithium-ion (Li-Ion) batteries. To achieve the best possible battery life to meet

customer demands in this very competitive business environment, it is important to

optimize device power consumption in various use cases by hardware selection and

software optimizations. Longer battery life is a way to gain market advantage over the

competing solutions. But before actions for reducing device power consumption can be

taken, one must first have accurate measurement data of the device and its subsystems’

power consumption.

Traditional measurement systems designed for high sample rate data acquisition (DAQ)

of up to hundreds of channels can cost tens of thousands of euros and be complex

equipment to setup and use. They are not a practical solution for a high number of users

with varying skill sets. Based on my own experience, setting up the required measurement

software and hardware can be difficult and require deep understanding of both the

measurement system and the device under test (DUT) to get accurate and repeatable

measurement results. On the other hand, simple measurement instruments like digital

multimeters (DMMs) do exist, but usually being limited to one measurement channel at

a time and often lacking measurement software support makes them more suited for basic

debug and measurement tasks than platform-level power measurements. Using them also

requires good understanding of the DUT hardware to select appropriate measurement

points and to perform the measurement safely.

There was a need for a power measurement system that is so easy to use that any engineer

with a technical background, and without prior knowledge of the DUT hardware and the

measurement system, could set it up with help of a light user manual in less than an hour.

User should also be able to start doing meaningful measurements of the DUT right after

setup is done. One key use case for the power measurement system would be software

engineers doing power measurements when they make changes to a software build

running on the DUT. Based on the measurement results, they would then know how their

software changes affected device’s power consumption in various use cases before

committing software changes to others eliminating obvious mistakes in the earliest

possible stage. It would be difficult to characterize power consumption in complex use

2

cases that use multiple platform components and at the same time meeting performance

goals unless you can know exactly how the power consumption is split between each

subsystem component.

This thesis follows embedded system firmware development done while working at Intel

Finland Oy showing some of the tasks and challenges a design engineer faces when

developing software for a new proof-of-concept (PoC) embedded measurement solution.

Developing embedded firmware and being part of a project team to accomplish customer

requirements provided a great and rewarding opportunity for learning new skills in the

field of electronics hardware, low-level C language programming and combined software

and hardware project management. The new measurement solution was then completed

by developing a measurement application for a personal computer (PC), which simplified

the user experience and provided much needed development support during later stages

of firmware development and hardware validation.

Scope of this thesis is developing the embedded firmware and the PC measurement

software for a power and performance (PnP) measurement DAQ card. Figure 1 illustrates

the thesis scope. The PnP DAQ card hardware was developed together with K. Ruoko

and hardware development work is not part of this thesis. The hardware implementation

is described in more detail in Ruoko’s thesis [13]. Testing of the DAQ card was done in

collaboration and relevant subset of the results are included in this thesis.

Chapter 1 lays the foundation for this thesis by giving background to the subject and

explaining the measurement problem at hand. Chapter 2 outlines the project requirements

and Chapter 3 describes the target hardware, the PnP DAQ card and a typical DUT

system. In Chapter 4, development environment is setup. In chapter 5, software

requirements are mapped to the target hardware components and firmware design is

described. A short introduction to the PC measurement software follows in Chapter 6.

Measurement accuracy test results are shown in Chapter 7 and Chapter 8 presents

discovered software issues and solutions. Project execution and schedule is presented in

Chapter 9. Finally, Chapter 10 summarizes how well targeted project requirements were

met, and what were the key learnings from the thesis work.

3

MCU FIRMWARE &

PC SOFTWARE

 DUT

 PNP DAQ CARD MCU

 PNP DAQ CARD MCU

 PNP DAQ CARD MCU

 PNP DAQ CARD MCU

UART

USB

PC

USB

MEASUREMENT

SOFTWARE

DUT POWER RAIL(S) VOLTAGE & CURRENT MEASUREMENT

Figure 1. Scope of this thesis is the firmware of the power measurement card and

the PC measurement software. Hardware design of the DAQ card, which was

done in collaboration with others [13], and an example DUT platform are

briefly detailed and are not the key focus of this thesis.

4

2. PROJECT REQUIREMENTS

At first, key project requirements for the new power measurement system were identified

from perspective of the customer and end users. Requirements set approximate

performance targets and other focus areas, which have a high priority in the

implementation phase of the measurement card firmware and a companion PC

measurement software. The key project requirements are listed in Table 1.

Table 1. The key requirements of the power measurement system.

Requirement Description

1. Easy to setup and use

2. Reliable operation

3. Eight measurable power rails

4. Sample rate of > 200 samples per second, data can be averaged

5. Raw data storage to a micro SD memory card for cordless operation

6. Real-time wired data streaming to a PC measurement application

7. UART-to-USB connection and API for control and data streaming

8. Good average DC voltage and current measurement accuracy with

calibration support

9. A graphical PC measurement software for real-time monitoring, control and

data logging to .csv files

10. The measurement system is used with product-enabling development

boards and support for product form factor devices is not required

Because users of the new system may have little previous knowledge of the DUT or other

measurement instruments, it was important to focus on usability and simple setup of the

complete power measurement system. Expectation was set, that a new technically-minded

engineering user would be able to setup and start measurements in less than 60 minutes

by following a short user manual. This sets a high-quality standard for documentation, as

well as companion PC measurement software implementation user experience. Once the

power measurement system and documentation are ready, user testing would be

performed to refine user manual and verify that requirements were met satisfactory.

From performance point of view, the system would focus on good average voltage of

direct current (DC) and current measurement accuracy at a rate of modest 200 samples

per second or higher. Based on early design estimations, performance targets of better

than 10 mV and 10 mA range accuracy with typical milliohm (mΩ) range current shunt

resistor values were set. Averaging of raw sample data by factor of 10 is acceptable to

reduce data output rate, which would otherwise be significant from eight measurable

channels. Since hardware architecture requires multiplexing four input channels at a time

to an analog-to-digital converter (ADC), great care would have to be taken with firmware

5

timings to prevent unwanted switching noise affecting measurements. To meet quality

and performance standards of the end users, each power measurement card would have

to be unit tested and possibly individually calibrated to meet the accuracy requirements.

Software and firmware design should be built with support of at least basic offset and

gain correction calibration for both voltage and current measurement for all channels.

Simple calibration procedure would be made with the help from Maxim’s application

note [6]. Calibration coefficients and unique serial number would be stored on the

measurement card’s non-volatile electrically erasable programmable read-only memory

(EEPROM) during production. Applying calibration coefficients may be offloaded from

the measurement card’s microcontroller unit (MCU) to a PC measurement software,

which reads and applies the calibration coefficients and DUT’s shunt resistor values to

calculations during run-time. Because current and therefore also power calculations

require knowledge of the DUT’s shunt resistor values, they should be defined in user

modifiable configuration file read by the measurement software.

To meet the usability requirements, and to provide a tool for development and debugging

of the measurement system, a graphical PC measurement software with a simple enough

user interface was required. Main supported operating systems would be 64-bit Microsoft

Windows 7 and newer, but portability to Linux was preferred in the long run. Preferred

Linux distributions would be Ubuntu 12.04 long term support (LTS) and 15.04 LTS. The

PC measurement software should support at least minimum set of features to fulfill basic

measurement tasks and provide means to log measurement results to a comma separated

values (CSV) file.

The new power measurement system should be able to support portable use by logging

data to a micro secure digital (SD) memory card, from which data can then be downloaded

to a PC. However, the main use case for the measurement system would be doing wired

measurements by streaming in data real-time from power measurement cards to a

computer via universal serial bus (USB) virtual serial port.

To support basic data streaming and control features between a PC measurement software

and the power measurement card firmware, a simple universal asynchronous

receiver/transmitter (UART) application programming interface (API) is needed. This

could optionally be used to integrate support of the developed power measurement cards

to other software solutions, such as a factory automated unit test setup of a DUT hardware.

The developed power measurement system would primarily be used with product

enabling system-on-a-chip (SoC) platform development boards such as macro-size debug

versions of a product platform. Support for potentially very small final product form

factor device (FFD) is not required of the system. Major issue supporting state-of-the-art

mobile product FFDs that have a printed circuit board (PCB) the size of only a few square

centimeters is that addition of current sense shunt resistors makes the layout routing less

optimal and more difficult as you would not only need to route power rails to PCB top

6

layer in order to add the shunt resistor but also route out the differential sense signals for

external measurement card hardware. For the shunt resistors to be able to handle high

currents, they would often need to be in larger surface-mount device (SMD) passive

component packages such as 0805 or even 1206 in imperial units. Another difficulty

would be connecting the current sense signals from the PCB to the measurement solution

because there is no room for additional connectors on the product FFD. However, if the

product form factor would not be as size constrained, the developed power measurement

solution could be used even with FFDs.

7

3. HARDWARE DESCRIPTION

This chapter introduces the power measurement card hardware, for which firmware was

developed as part of this thesis. Actual hardware design is not part of this thesis work, but

some background is given because it is important to fully understand target device

operation before developing firmware that supports it to make sure right things are done

the correct and optimal way to get best system performance out of the hardware and

firmware combination.

3.1 The PnP DAQ card

Basic operating principle of the power measurement card is detailed in Figure 2 simplified

high-side current measurement circuit. Reasons for choosing high-side current sensing

are detailed in an application note by Texas Instruments [15]. A high-side sensing circuit

is preferred when application circuit cannot tolerate ground level disturbances [15, p. 3],

which is the case with a modern complex SoC platform. Individual power rail inputs and

outputs to and from a power management integrated circuit (PMIC) must be measurable

instead of total ground current, which is another reason for using a high-side sensing

architecture. On the developed PnP DAQ card, current sense circuit was designed for

measuring low voltage DC power rails with focus on average accuracy. A low

temperature drift, low resistance and high accuracy shunt resistor is placed on the high-

side between a power rail supply and a load. Load current flowing through the shunt

resistor causes a voltage drop proportional to the current. By measuring voltage drop over

the shunt resistor and voltage on load side of the shunt, load current and finally power

consumption can be calculated. Current I in amperes (A) is calculated with Ohm’s law

[4, p. 4] in Equation (1).

𝐼 =
𝑉

𝑅
 , (1)

where V is voltage in volts (V) and R is resistance in ohms (Ω). Then load power

consumption P in watts (W) can be calculated with Equation (2) [4, p. 6].

𝑃 = 𝑉 ∗ 𝐼 , (2)

where V is voltage in volts and I is current in amperes. The ADC compares differential

input signal to a reference voltage, and outputs digital value reflecting input signal level.

This result can then be read by a microcontroller unit. If the ADC measures both the shunt

resistor voltage drop, and the voltage delivered to load at the same time, instantaneous

power can be accurately calculated. Amplifying the differential sense signal with an

operational amplifier allows usage of lower shunt resistor values with less decrease to

measurement accuracy at low currents by utilizing more of full-scale range of the ADC.

8

Amplification is needed because the DUT system cannot tolerate large voltage drops on

already low voltage power rails that would happen with large shunt resistor values during

load current spikes.

ILOAD

+V_DUT_SUPPLY_RAIL

ANALOG-TO-DIGITAL

CONVERTER

ADC_CHANNEL_1_DN

ADC_CHANNEL_1_DP

ADC_CHANNEL_2_DN

ADC_CHANNEL_2_DP

+5V_ANALOG

+

-

+2P5V_VREF

X100

MCU

FRAME SYNC

& CONTROL

< DAQ CARD >< DUT >

GND

RSHUNT

Figure 2. A simplified high-side current and voltage sense circuit [15, p. 3]

describing hardware division between a DUT and the DAQ card. Amplifier gain

set resistors and negative feedback are omitted from the figure.

Shunt resistor absolute value must be carefully selected by estimating maximum load

current to meet DUT’s load regulation requirements and not to exceed dynamic input

range of the DAQ card’s analog front-end (AFE) and the ADC, causing measurement to

saturate and data to be invalid. Selection of the shunt resistor has significant effect on

measurement accuracy, as too low value will result in a very small differential voltage

over the shunt resistor and would not utilize full dynamic range of ADC and offset errors

of amplifier and the ADC combined would be significant portion of measured result [15,

p. 3]. Shunt resistor must also have a low temperature drift and good initial accuracy,

preferably 0.5 % tolerance or less, to avoid inaccurate measurements without special

shunt calibration process and when ambient temperature changes or the DUT is used in a

thermal chamber for electrical validation purposes.

In addition to offset and gain errors, due to circuit limitations measurements at near-zero

current are more inaccurate as even rail-to-rail operational amplifiers are typically unable

to drive output all the way to ground level when used in a single positive supply

configuration. This can be observed for example in the Analog Devices ADA4528

operational amplifier datasheet, which plots output low voltage versus output current [1,

p. 10]. The ADA4528 was chosen for the DAQ card due to its low offset voltage error

9

and output noise characteristics. Since necessary external negative supply rail biasing or

use of true-zero type amplifiers that would overcome the limitation were not implemented

on the power measurement card hardware, the circuit design is unable to measure zero

current precisely. Another major design limitation of this circuit is ability to perform only

unidirectional current measurement. Bidirectional current measurement would be useful

when measuring battery charging or USB power rail (VBUS) in on-the-go (OTG) host

mode but would require a more complex AFE circuitry. For those measurements, battery

and USB VBUS power rails are usually easily accessible with other external measurement

instruments and do not require integrated support from a DUT, mitigating the DAQ card

hardware limitation.

A simplified hardware block diagram of the developed power measurement card is

presented in Figure 3. The PnP DAQ card circuit is divided in three major functional

groups. The AFE is responsible for differential input signal conditioning, input

multiplexing and converting analog signals to digital sample values. Digital group

handles circuit control signals, power management, communication and data processing.

Both analog and digital groups have their own low noise supply voltage regulators

consisting of a DC-to-DC boost converter stage followed by a low-dropout linear

regulator (LDO). To further reduce switching noise coupled to supplies, more filtering is

provided by ferrite beads on the individual LDO outputs. Used boost regulator input range

accepts typical lithium battery chemistries with voltages from 2.7 V to 4.5 V, which

means USB VBUS ranging from 4.75 V to 5.25 V or 5.5 V depending on USB

implementation specification cannot be used directly [16]. The power measurement card

can measure its own power consumption with a 16-bit integrated power monitor with a

digital inter-integrated circuit (I2C) bus interface and a high-side current shunt resistor in

series with the DAQ card power supply input.

10

D
IG

IT
A

L
G

P
IO

U
A

R
T

8
 x

 A
N

A
LO

G
 D

IF
FE

R
E

N
TI

A
L

S
EN

SE
 IN

P
U

T
S

JT
A

G

0
..

+
3

.3
 V

0.
.+

3
.3

 V
0

..
+3

.3
 V

0.
.+

50
 m

V
 D

IF
FE

R
EN

TI
A

L,
 0

..
+5

 V
 C

O
M

M
O

N
-M

O
D

E

D
IG

IT
A

L
T

R
IG

G
ER

_N
IN

P
U

T

0.
.+

3
.3

 V

P
O

W
E

R
SU

P
P

LY
IN

P
U

T

+2
.7

..
+4

.5
 V

SD
IO

4
-B

IT

0
..

+
3

.3
 V

A
N

A
LO

G
 M

U
X

1

6
 :

8

O
P

A
M

P

x1
0

0
G

A
IN

O
P

A
M

P

x1
0

0
G

A
IN

O
P

A
M

P

x1
0

0
G

A
IN

O
P

A
M

P

x1
0

0
G

A
IN

A
D

C

2
4

-B
IT

 8
-C

H
A

N
N

E
L

S
YN

C
H

R
O

N
O

U
S

SA
M

P
LI

N
G

M
C

U
A

T
M

E
L

A
T

32
U

C
3

A
4

12
8

X
T

A
L

3
2

.7
6

8
kH

z

O
SC

2
7

.0
0

0
M

H
z

+V5P0

+V5P0

+V5P0

+V5P0

+V5P4

+V5P0

+V3P3_DIG

+V1P8

+V3P3_SDCARD

+V3P3_DIG

+V3P3_DIG

+V2P5_VREF

LE
D

R
ED

SSC

12 x GPIO

ADC_CLOCK

SENSE1

SENSE2

SENSE3

SENSE4

SENSE5

SENSE6

SENSE7

SENSE8

CH4_DP

CH4_DN

CH3_DP

CH3_DN

CH2_DP

CH2_DN

CH1_DP

CH1_DN

ADC8

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

+V3P3_DIG

+V3P3_DIG

R
ES

IS
T

O
R

C
U

R
R

EN
T

SH

U
N

T

D
C

-D
C

B

O
O

ST
5

 V

D
C

-D
C

B

O
O

ST
5

.4
 V

LD
O

5
 V

LD
O

3
.3

 V

LD
O

3
.3

 V

LD
O

1
.8

 V

+V
5P

0

+V
3P

3_
D

IG

+V
3P

3_
SD

C
A

R
D

+V
1P

8

V
R

E
F

2
.5

 V

+V
2P

5_
V

R
EF

P
O

W
E

R
M

O
N

IT
O

R
IN

A
2

2
6

E
EP

R
O

M
T

EM
P

SE
N

SO
R

SE
9

7B +V3P3_DIG

+V3P3_DIG

UART

JTAG

2 x GPIO

GPIO

4-BIT SDIO

GPIO

I2C

I2C

GPIO

EXT_CLK

RTC

VBAT

SE
N

SE

Figure 3. A simplified hardware block diagram of the developed power

measurement card. Level of detail shows all the major integrated circuits, power

rails, digital and analog interfaces and clocks.

11

Differential voltage from an external shunt resistor on a DUT is first going to an analog

multiplexer component responsible of selecting group of eight signals from 16 inputs.

Selection is done between two fixed groups of eight signals, effectively doubling

available measurement rails from four to eight. After multiplexing, differential signals go

to Analog Devices’ ADA4528-2 operational amplifiers [1] working in differential

amplifier configuration performing analog voltage gain of 100 and converting signal to

single-ended, also acting as a buffer driving the ADC input. Load side of the differential

sense signal also bypasses amplifier stage and is directly connected to one ADC channel

for load voltage measurement. This way the undesirable voltage drop on the current

sensing resistor is not affecting load power measurement. By not doing buffering on the

voltage channels, circuit size could be optimized at the cost of lower input impedance of

AFE, which was not critical in this application as input is always from a low impedance

power rail. If a more generic DAQ operation was required, operational amplifiers could

be added to the voltage channels too. A Texas Instruments’ 24-bit ADS1278 ADC [14]

was used on the power measurement card. It has eight differential inputs [14, p. 1], which

are all referenced to a precision 2.5 V voltage reference (VREF) for input range of 0 V to

5 V, input signal being within +/- VREF from the reference level as required by the

ADS1278 [14, p. 3]. At current shunt sensing gain of 100, this gives maximum of

approximately 50 mV voltage drop over a shunt resistor and 5 V for maximum

measurable load voltage. The ADC samples all the eight inputs simultaneously measuring

DUT’s power rail voltage and current synchronized in time. Four power rails are always

measured at the same time and total number of available measurement channels is

doubled by multiplexing input channels. This results in capability to measure up to eight

power rails grouped in two alternating four rail time slots. Extract from the ADS1278

specifications [14] can be found in Appendix C.

The Atmel AVR32 architecture based AT32UC3A4 series microcontroller [7] and

firmware running on it is responsible for controlling circuit components, data acquisition,

writing and reading to a micro SD memory card with a 4-bit secure digital input output

(SDIO) interface, I2C bus to an EEPROM and communicating with a PC via UART to

USB connection. Block diagram and summary of the MCU specifications [7] can be

found in Appendix B. A micro SD memory card stores measurement data in battery

powered cordless use case. The MCU also operates a red indication light-emitting diode

(LED) and three external general-purpose input/outputs (GPIOs), which are used for

triggering data acquisition and two optional status LEDs on the DUT. The EEPROM chip

has integrated I2C temperature sensor which is used for monitoring operational

temperature of the DAQ card. The EEPROM is also used for storing calibration

coefficients and unique serial number, which are remembered after power-loss due to

non-volatile nature of EEPROM. The MCU is clocked from an external 27 megahertz

(MHz) main oscillator (OSC) and a 32.768 kHz crystal (XTAL) for a real-time clock

(RTC). The external 27 MHz clock is passed through the microcontroller’s clock phase-

12

locked loop (PLL) to the ADC’s sample clock input so that the MCU can change

operating frequency of the ADC through firmware.

The power measurement card connects to a DUT with a 40-pin low profile Hirose DF40

series board to board (B2B) connector. The B2B connector passes through MCU

programming joint test action group (JTAG) signals, UART signals, external digital

trigger signal for measurement control, eight differential analog sense signals, two digital

GPIOs and a few ground pins. Physical size of the power measurement card's 8-layer

PCB is 40 x 15 millimeters and SMD components are placed on both sides. Small size

and tight integration with the DUT hardware, coupled with reasonably low average power

consumption of 400 mW per a DAQ card as listed in Appendix A specification of the PnP

DAQ card, enables truly portable operation while allowing measurement of multiple

power rails. A combination, which was not possible with existing readily available

commercial solutions. Smallest SMD component footprint used is 0201 imperial for

selection of resistors and decoupling capacitors. The used operational amplifiers, gain

setting resistors, critical filtering capacitors, voltage reference and ADC were all selected

with a focus on low temperature drift characteristics. Due to selection of high-quality

components, unit cost of a single DAQ card was approximately 150 euros in low volume

production with total solution cost of measuring 32 power rails summing up to

approximately 600 euros. This is still very competitive compared to other commercial

solutions especially when the feature set is considered and could be significantly reduced

in volume production or with architectural design improvements. A photo of the final

revision PnP DAQ card hardware is presented in Figure 4.

In total there were three hardware revisions, which were designed in parallel with

firmware and PC measurement software development. First version PoC board design

enabled validation of the design’s basic operation and firmware development, but

extensive redesign of second revision boards added new features and changes, which had

major impact on firmware design. Biggest changes were related to addition of EEPROM

to store calibration information and redesign of analog front-end of the ADC. Third and

final hardware revision was a minor correction to reduce unpowered input leakage and

did not require any significant firmware changes.

13

Figure 4. Photo of the final revision PnP DAQ card hardware shows both

sides of PCB fully assembled with components. The PCB has 8-layer any-layer

micro via high-density stack-up to meet demanding size requirements.

3.2 A DUT system

A simplified block diagram of the measurement system and a specific DUT platform is

presented in Figure 5. Platform in this case means a product enabling development board

used in product system design validation and not the final product FFD. Up to four DAQ

cards are connect to the DUT with board to board connectors. In this specific case, the

DUT has 32 current sensing shunt resistors in series with power rails. Measured rails

could be for example a battery, SoC power rails supplied by PMIC’s switching converters

or LDOs going to platform peripherals. Differential sense voltages over the shunt resistors

are connected to the DAQ cards’ analog sensing inputs. The DAQ cards are powered

separately from the DUT, through the DUT by connecting either an USB charging power

bank or a wall charger capable of providing at least 1 ampere of peak current if four DAQ

cards are used. This way power consumption of the DAQ cards does not affect DUT

measurements in a significant way, although it should be noted that there is a few hundred

µA current leakage to the DAQ card AFE. It is recommended that a low ripple switching

DC-to-DC converter with a 4 V output and higher than 1 A peak current capability is used

14

to create the DAQ card supply on the DUT. Significant inrush current could be a problem

when four DAQ cards are connected in parallel to same power supply and therefore a

soft-start circuit is recommended. Power supply input switching noise effects are greatly

reduced by the DAQ card’s two stage voltage regulation consisting of a boost switching

converter followed by an LDO and ferrite bead filter.

The DAQ cards’ UART interfaces go to a quad-channel UART-to-USB bridge chip and

from there to a micro USB type B connector allowing data streaming and control with a

PC measurement application. Start and stop of measurement can be triggered from the

PC software over USB virtual serial port interface, a push button located on a DUT or

from a platform SoC software controlled GPIO in active-low open-drain configuration.

The UART connections should be power-gated with the DAQ card power supply

preventing leakage to the DAQ card MCU pins when they are not powered. The DAQ

cards limit input leakage current to analog sensing inputs when the DAQ card power

supply is not present and do not require additional protection. Typical leakage current

was measured to be below 100 µA per rail. While not optimal, this small leakage current

poses no danger to either the DUT or the DAQ card hardware and allows normal operation

of the DUT even without a DAQ card power supply.

Alternatively, the DAQ cards can be used as a standalone measurement system, if a DUT

is not designed to support embedded DAQ cards. A standalone board needs to provide

power to the DAQ cards and have an UART converter for data USB connection to a PC.

In this case, the DUT system must still have current sensing resistors and a way to connect

sense signals to external systems, such as the standalone measurement system via wires,

cables or a flexible PCB.

15

DUT

GPIO

TRIGGERGPIO

TRIGGER

4

UARTS

32 DIFF

TRACES

DAQ CARD

DAQ CARD

DAQ CARD

DAQ CARD

SHUNT

RESISTOR
SHUNT

RESISTOR
SHUNT

RESISTOR
SHUNT

RESISTOR

UP TO 32 SHUNTS

UP TO 4 DAQS

FTDI

UART

TO

USB

BUTTON

SOC

USB2

EXTERNAL

DAQ

POWER

SUPPLY

EXTERNAL

DUT

POWER

SUPPLY

PC

JAVA

SW

Figure 5. A simplified block diagram of the developed power measurement

system and how it is connected to a typical DUT. Each DUT is designed from

the start to support the DAQ cards by having required supporting components

and connectors.

16

4. DEVELOPMENT ENVIRONMENT

This chapter introduces the used software development tools and the development

environment. Hardware setup, such as a programmer and initial microcontroller

evaluation board, is identified.

4.1 Firmware

Programming of the MCU firmware was done with an Atmel ICE JTAG programmer and

software. Picture of the programmer is shown in Figure 6. [8] A DAQ card was installed

on a purpose-built breakout board, which provided target device with power and allowed

access to MCU’s JTAG programming pins. At first, the factory default bootloader was

erased and then firmware was programmed and verified on the target device.

Figure 6. Atmel ICE JTAG programmer and adapter cables [8, p. 7] were

used for programming the target MCU and doing in-system debugging.

An Atmel Xplained series evaluation board [11] was used as a starter platform, on which

firmware basic structure with UART debugging could be built and tested before the first

proof-of-concept DAQ card hardware was available. Picture of the development board is

shown in Figure 7. I2C bus functions and external GPIO interrupts were also implemented

early on and were for the most part immediately working with the target hardware proving

value of using an evaluation board for early firmware development to reduce hardware

bring-up time significantly.

17

Moving the project from A3 revision MCU on the evaluation board to A4 on the target

hardware required some modifications on the Atmel libraries because existing driver

libraries were not yet fully compatible with the new A4 series. For the most part, A3 and

A4 series are firmware compatible with each other [9], so moving project from

AT32UC3A3256 to AT32UC3A4128 device was easy and did not take longer than a day.

Most work was due to target MCU having less integrated flash memory than the one on

evaluation board and therefore having slightly different configuration header files.

Figure 7. Evaluation board for AT32UC3A3256 microcontroller [11, p. 1]

was used to start firmware development before target hardware was available

bringing forward project schedule by a few weeks.

Atmel Studio 6 integrated development environment (IDE) was used for developing

firmware code, compiling binaries and programming MCUs. The Atmel Studio supports

all of Atmel’s AVR and SAM series microcontrollers. The Atmel Studio allowed easy

integration of Atmel Software Framework’s (ASF) ready driver libraries [9] to the C

language project. In the end, the firmware project was upgraded to a newer Atmel Studio

7 IDE version, which did not require any additional modifications. [10]

Atmel provides extensive driver libraries for their microcontrollers. Included are many

example projects demonstrating use of hardware peripherals helping developers to get

started with their own firmware designs. Integrated support on the Atmel Studio helped

with integrating needed ASF software libraries and keeping them up-to-date. Full ASF

support for new MCU models can take some time and may require some manual

integration work from the developer as was the case in this project work. [9]

18

4.2 PC measurement software

Netbeans IDE was used for developing a graphical Java PC measurement software for

the developed DAQ card. Netbeans’ built-in graphical user interface (GUI) builder tool

was used for making a simple Java Swing user interface, requiring less manual user

interface programming and decreasing total development time. [12] Downsides of using

the GUI editor were ugly machine generated code blocks and hard maintenance of the

GUI design making interface structure more difficult to modify in the future. Advantages

of the GUI builder outweighed disadvantages in a one-man agile project, being the only

way to meet aggressive delivery deadline when starting software development from a

scratch.

Pre-requisites for installing the developed software include virtual serial port drivers,

which are needed for communication with a Future Technology Devices International

Ltd. (FTDI) UART-to-USB bridge chip used between the DAQ cards and the PC [2].

RXTXcomm Java libraries [5] were used for adding serial port communication support

to the measurement application. The RXTXcomm library supports both Windows and

Linux operating systems [5], and since it was the only third-party Java library needed, the

developed PC measurement software has no problem supporting the required operating

systems.

19

5. EMBEDDED FIRMWARE

This chapter describes the power measurement card firmware design and functional

implementation with the help of state and flow charts. Software resources are mapped to

hardware requirements and Atmel ASF drivers [9] are utilized where applicable to reduce

development time.

5.1 Mapping HW/SW resources

Firmware peripheral driver components from Atmel Software Framework libraries [9]

were imported to project based on interfaces described in hardware block diagram in

Figure 3 and microcontroller resources available [7, pp. 1-5], which can be found also in

Appendix B extract from the MCU datasheet. These drivers implement functionality to

utilize all the DAQ card’s hardware resources. High-level peripheral driver content

diagram of the developed firmware is shown in Figure 8.

UART I2C SSC SDIO RTCGPIO PLL

MCU FIRMWARE MAIN

DAQ CARD HARDWARE

Figure 8. Firmware functions were built on top of the Atmel ASF peripheral

drivers [9].

An UART interface handles serial communication with a PC measurement software over

virtual USB serial port. PLL driver controls MCU main oscillator input and buffering of

the clock output to the ADC. Measurement timestamp information is provided by RTC

driver. SDIO driver utilizes a micro SD card in raw block data format for datalogging

purposes. A synchronous serial interface is configured in a frame-sync mode to interface

with the ADC data output. Some GPIOs were utilized for circuit control, and support for

an external interrupt was added to trigger input signal. The firmware functions which used

hardware peripherals were written on top of the ASF driver stack [9].

20

5.2 Functional description

A simple power management state machine of the developed MCU firmware is presented

in Figure 9. The state machine has total of three states, which implement necessary

functions controlling the hardware. After a power-on reset (POR) event, MCU enters

‘init’ state in which hardware and digital interfaces are configured.

INIT

OK

TRIGGER

EVENT

POWER-ON RESET

INIT

ACTIVEIDLE

Figure 9. Power management state machine of the developed firmware.

State transitions between idle and active states are controlled by a trigger event, which

can be either an external GPIO interrupt or an UART command modifying state variable.

The GPIO interrupt implements a simple one-second signal de-bouncing preventing any

unwanted glitches caused by a button press. Based on actual user experience, the button

de-bouncing worked well.

Functional flowchart in Figure 10 shows how firmware executes ‘init’ state after POR.

At first, power rails are enabled to meet power sequencing requirements of the hardware.

Then MCU clocks are switched to an external 27 MHz oscillator and a 32 kHz RTC

XTAL. Next, UART communication is enabled and firmware begins to print out debug

information regarding to power-up status. The MCU connects to several GPIOs, which

are required to be in a pre-defined state. Firmware configures the pins from a default high

impedance input mode [7, p. 19] to what is needed by the hardware implementation. The

GPIO pins can have multiple different alternate functions multiplexed on them [7, pp. 8-

12], and they need to be mapped to the specific driver functions in firmware code.

21

Enable Voltage Regulators &

Clocks

Configure GPIOs, UART, I2C &

SSC

Configure SDIO &

Initialize SD Card

Configure ADC

Enable Interrupts &

Enter Idle Mode

Power-On Reset

Power Management State : Idle Mode

Figure 10. Functional flowchart of the init state.

A red colored status LED is turned on before more complex hardware interfaces are

initialized, indication configuration is in progress. Firmware enables I2C bus and

performs a simple self-check by trying to communicate with all I2C components and

receive acknowledgements from their slave addresses. However, the slave device register

content is not read and verified. After that, firmware enables SDIO interface and tries to

establish communication with a micro SD memory card. Since the SD card is needed by

following firmware operations by default, firmware halts execution and waits until the

SD card is successfully initialized. Firmware periodically tries to power cycle the SD card

until the SD card is successfully detected. A red LED remains on indicating user the DAQ

card failed to initialize peripherals, and the SD card can be hot-plug removed or inserted

at this point. After inserting a functional SD card, the firmware continues forward. After

successful peripheral initializations, GPIO interrupts are enabled for external triggering

support. A synchronous serial controller (SSC) is configured as a frame-sync interface

between MCU and ADC [7, pp. 508-545], and the ADC is initialized to a correct

operating mode with control GPIOs. Firmware then automatically enters ‘idle’ state and

waits for interrupt by incoming UART commands or external trigger event.

22

YESNO

Enable SSC &

fixed delay

Fixed delay

Power Management State : Active Mode

Trigger?
Power Management State :

Idle Mode

Sync ADC & start

conversion

Fixed delay

Read ADC data &

switch analog mux

Fixed delay

Read ADC data &

switch analog mux

Read I2C sensors &

RTC timestamp

Post-process data

Write data to SD

memory card

Write data to UART

Figure 11. Functional flowchart of the active state.

Functional flowchart in Figure 11 shows ‘active’ state execution flow. When the firmware

enters ‘active’ state, all ADC channels and frame-sync interface is enabled. After a short

delay allowing ADC time to exit shutdown mode, measurement loop is started. MCU

sends a synchronization pulse to the ADC starting conversion [14, pp. 27-28], while

frame-sync interface is ready to receive data. A fixed delay is waited until ADC output

data is valid [14, pp. 27-28], and eight successive samples from all eight ADC channels

are read to a software buffer by polling SSC receive data register when data ready bit is

set [7, pp. 508-545]. This was by far the most timing critical part of firmware code and

required a lot of work to get it right, as MCU’s SSC block had trouble keeping up with

ADC running at same 27 MHz clock as MCU without enabling hardware direct memory

23

access (DMA), which was not practical due to project schedule. An analog multiplexer

(MUX) is then switched, and a fixed delay is waited until AFE stabilizes and ADC outputs

stable data. Eight samples are again read from all channels to a software buffer by polling

SSC receive data register. Analog mux is switched again to connect previous channels to

the AFE. After reading analog inputs with main ADC, I2C power and temperature sensors

and RTC time counter values are read.

Raw ADC output data is post-processed by averaging eight consecutive samples to a

single data value. Possible zero crossing in two’s complement data is detected and taken

in to account while making averaging by a three-bit shift-right operation. Data is then

written to a micro SD card, if it has not been specifically disabled by UART command.

Measurement data is always streamed to the UART interface while performing

conversion from two’s complement to one’s complement on the fly for main ADC data.

At start of each loop iteration, breakpoint checks if state variable has been changed by

either external GPIO interrupt trigger event or UART command. If trigger is received,

firmware exits ‘active’ state and enters ‘idle’ state after completing the ongoing

measurement loop cycle. Interrupts are disabled during a measurement loop iteration to

prevent timing critical parts of the firmware execution from being halted by UART or

GPIO event.

YES NO

Disable ADC channels & SSC

NOPEnable ADC channels

Power Management State : Idle Mode

Power Management State :

Active Mode

Trigger?

Figure 12. Functional flowchart of the idle state.

Functional flowchart in Figure 12 shows ‘idle’ state execution logic. When firmware

enters ‘idle’ state, status LED is turned off and all ADC channels are disabled for power

savings with dedicated ADC channel shutdown control GPIOs [14, p. 29]. Firmware

waits in a no operation loop until state variable change by trigger event is detected. After

24

loop break, the ADC channels are enabled, status LED is turned on and firmware enters

‘active’ state.

5.3 Configuration

After POR event occurs and MCU is powered up, firmware switches internal low-

frequency oscillator to a 27 MHz external oscillator and configures RTC to produce time

ticks at 1024 ticks per second rate using external 32.768 kHz XTAL as a reference.

Firmware then performs MCU physical pin to function mapping and enables interrupt

logic on UART receiver and external trigger GPIO. [7, pp. 1-19]

The Texas Instruments ADS1278 ADC is controlled with a selection of GPIOs, which

are used for selecting operating mode, data format, enabling sampling channels and

synchronization to the rest of the hardware. Data from the eight ADC channels is

configured in time-division multiplexed (TDM) dynamic mode by setting format pins to

“011” and received by the MCU via a Synchronous Serial Controller (SSC) interface in

a frame-sync mode. A 27 MHz main sample clock frequency of the ADC is generated by

buffering MCU’s external 27 MHz oscillator with a PLL on the MCU. This allows MCU

to synchronize precisely with the ADC and select desired sampling clock frequency

depending on the ADC configuration used. Mode pins are set to “10” and clock divider

to ‘1’ to select ADC low-power mode and maximum of 27 MHz clock. All eight ADC

channels are enabled by setting logic ‘1’ on each active-low power-down pin.

Configuration bits are explained in detail in the ADS1278 datasheet. [14, pp. 26, 30, 33]

The MCU’s SSC frame-sync interface is configured by setting appropriate bits in the SSC

configuration registers for a 24-bit data length and frame-sync signal active-high pulse

polarity. These registers are explained in Atmel AVR32UC3A series datasheet. [7, pp.

508-545] The SSC is also configured to meet timing requirements of the ADC as

described in ADS1278 datasheet. Active-low sync pulse allows MCU to synchronize

ADC to switching event of an analog multiplexer in the ADC input path. This sync pulse

can be asynchronous to the ADC clock if one clock cycle variance is allowed in delay to

valid output data. After each sync pulse, a fixed delay of at least 128 clock cycles is waited

before ADC sample data is valid and received by MCU. This requirement is detailed in

ADS1278 datasheet and extract from it in Figure 13, which can also be found in Appendix

C. [14]

25

Figure 13. Frame-sync protocol timing requirements of Texas Instruments

ADS1278 analog-to-digital converter set timing constraints to firmware

implementation [14, p. 28].

Microcontroller’s I2C master was configured to work at 400 kHz frequency. There were

some minor differences in communication protocol required by the I2C power monitor

and EEPROM ICs, which meant some modifications to the example ASF I2C source

codes [9] had to be done taking in to account for example a repeated start condition.

The UART interface was configured at baud rate of 1.152 Mbps, which was tested to be

the highest working speed when used with a FT4232H quad UART-to-USB bridge. Other

parameters were set as no parity bits, normal polarity and eight data bits. The UART

receive was handled by interrupt routine while transmit was done blocking way by

polling.

Simple software de-bouncing was added on external trigger pin, which was configured as

interrupt event when voltage level transitions from high to low. DUT system connects to

the trigger pin via open-drain transistor, pull-up resistor being on the DAQ card side.

Measurement is triggered on or off if MCU side pin is low for one second or more.

Retriggering will not happen until pin state has returned to high and again low over one

second de-bouncing period, preventing accidental multiple triggers by driving trigger

signal low for long durations.

Microcontroller interfaces to a SD memory card via a 4-bit data width SDIO bus. SDIO

driver automatically detects highest supported speed of the memory card. Physical hot-

plug detect feature was not used and card detection was done by polling in initialization

phase of firmware after POR event.

26

Voltage regulator power sequencing and timing for SD card and analog front-end proved

challenging as having up to four cards in parallel powering up at the same time caused

significant inrush current from DAQ card’s power supply seen in measurements

performed with hardware. The DAQ card hardware provided minor soft-start

functionality with a resistor and a capacitor delayed enables of voltage regulators, but

additional measurements and firmware timing changes were done to minimize startup

current. This improved functionality with some of the cheaper USB power bank models,

which would otherwise trigger current limitation and the DAQ card’s boost voltage

regulators would fail to start. When used with a wall charger or power supply capable of

delivering at least one ampere of current, cards would always start reliably even before

soft-start delays were added.

5.4 Arithmetic calculations

This section details various arithmetic calculations, which are performed by the

developed DAQ card firmware and the PC measurement software. Firmware needs to

convert raw ADC data, which is in two’s complement format, to one’s complement for

other calculation. The ADC’s ideal output codes related to input voltage levels are

detailed in ADS1278 datasheet and in Figure 14 . [14, p. 24]

Figure 14. The ADS1278 ADC’s input signal ranges and corresponding ideal

digital output codes assuming no error sources [14, p. 24].

Firmware converts raw ADC sample data before pushing it to the PC measurement

software via UART. Because the 24-bit ADC inputs are referenced to a VREF instead of

ground, the data range is from -8388608 to 8388607 zero point being at 2.5 V VREF

input. Negative two’s complement values are detected by checking if they are higher than

0x7FFFFF in value meaning the most significant bit is one. If the two’s complement value

27

is negative, the negative sign is printed to the UART connection and conversion to one’s

complement is done by executing bitwise exclusive-or operation with 0xFFFFFF and the

data and adding one. Positive values can be printed without conversion. UART message

format used is signed decimal values represented in American Standard Code for

Information Interchange (ASCII). The conversion of raw ADC sample data is done with

C language code presented in Program 1.

When firmware performs averaging of eight ADC samples, a bit-shift right by three bits

is executed instead of a division to potentially optimize performance. Program 2 shows

the C language code for the shift operation. A bit-shift operation can be used here, and its

performance does not rely on compiler utilizing hardware divider unit, if available.

The PC software receives ADC sample data ranging from -8388608 to 8388607. Digital

output code is converted to voltage V with Equation (3), which is partially given in

ADS1278 datasheet [14, p. 24] and Figure 14 and modified to include analog input

reference offset of DAQ card hardware design.

𝑉 = 𝐴𝐷𝐶𝑐𝑜𝑑𝑒 ∗ (
𝑉𝑟𝑒𝑓

223−1
) + 𝑉𝑎𝑖𝑟𝑒𝑓 , (3)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// Get 24-bit ADC’s raw two’s complement data
uint32_t adc_data = adc_data_twosc;

// Detection of negative two’s complement value (MSB ‘1’)
if(adc_data > 0x7FFFFF)
{

// Print negative sign to UART
uart_print(“-“);
// Conversion to ones’ complement
// Exclusive OR operation
adc_data ^= 0xFFFFFF;
// Add one
adc_data += 1;

}
// Print to UART as ASCII string
uart_print(adc_data);

Program 1. Conversion of 24-bit two’s complement ADC sample output data to ones’

complement and printing to UART interface in ASCII string format.

1

adc_averaged_sample = adc_eight_samples_sum >> 3;

Program 2. Divide by eight by doing a three-bit shift-right operation.

28

where ADCcode is a digital output code value from the ADC, Vref is reference voltage of

the ADC, and Vairef is analog input reference voltage connected to negative pin of

differential input of the ADC channel. For example, when the ADC digital output code

reads 2796000, Vref is 2.5 V and Vairef is set to 2.5 V by the DAQ card hardware design,

the Equation (3) gives voltage of approximately 3.33 V. Current Ishunt flowing through

shunt resistor is calculated with Equation (4) based on Ohm’s law Equation (1) and

including voltage gain Av of added amplifier in the signal path.

𝐼𝑠ℎ𝑢𝑛𝑡 =

𝑉𝑠ℎ𝑢𝑛𝑡
𝑅𝑠ℎ𝑢𝑛𝑡

𝐴𝑣
 , (4)

where Vshunt is voltage over shunt resistance Rshunt and Av is the ADC input amplifier

voltage gain, which is set by the DAQ card hardware to a fixed value of 100. For example,

when voltage over shunt is 2.5 V and the shunt resistance is 25 mΩ, the Equation (4)

gives a current value of 1 ampere. Power rail voltage measurement error is removed and

final calibrated rail voltage Vcal is calculated by applying gain and offset correction

coefficients with Equation (5).

𝑉𝑐𝑎𝑙 = 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∗ 𝐴𝑐𝑎𝑙 + 𝑉𝑜𝑓𝑓𝑠𝑒𝑡 , (5)

where Vmeasured is voltage measured by ADC, Acal is gain correction coefficient and Voffset

is offset error correction coefficient. Similarly, shunt current calibration is done by

applying gain and offset correction coefficients by Equation (6).

𝐼𝑐𝑎𝑙 = 𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∗ 𝐴𝑐𝑎𝑙 + 𝐼𝑜𝑓𝑓𝑠𝑒𝑡 , (6)

where Imeaasured is measured shunt current, Acal is gain correction coefficient and Ioffset is

offset error correction coefficient. Calibration procedure is further explained in Chapter

5.6.

5.5 UART API

To support command and control of the DAQ card from a PC measurement application,

a simple UART API was implemented. The API contains 17 basic commands, each meant

to enable required base functionality for targeted use cases. More commands are easy to

add to firmware UART receive parser if additional features are needed in the future. The

supported firmware UART API commands are listed in Table 2.

29

Table 2. Supported UART API commands of the developed power measurement card.

Command Description

1. Software system reset

2. Trigger (toogle)

3. Trigger (start)

4. Trigger (stop)

5. Read SD card content

6. Reset RTC counter

7. SD card writing (disable)

8. SD card writing (enable)

9. Read EEPROM content (all)

10. Clear SD card data

10. Read SD card type and size

12. Force slow SD card read speed

13. Read system status register

14. LED (on)

15. LED (off)

16. Read EEPROM register

17. Write EEPROM register

Each ASCII format string command packet consists of three parts. First is the command

code, then the parameter code and finally the data. The commands are terminated with a

‘\r’ carriage return escape sequence. When firmware receives a command, a

corresponding reply is sent back to the host application. All reply packets start with a

string “!R” for easy parsing on the receiving PC software side. A return packet specifies

received command code, and if the command was a data query, corresponding data is also

sent. Table 3 describes command and Table 4 reply packet format. During active

measurement, data packets are always pushed to UART by firmware. Data packet format

is different from commands, and message is surrounded with starting ‘[‘, and ending ‘]’

brackets and has fixed positions for voltage and current measurement results from all

eight channels separated by dots as delimiters. Packets being pushed to UART without a

request command from the PC software is by design to reduce downstream traffic from

the PC host and maximize the upstream data rate, which is crucial to performance of the

DAQ card. Streaming data packages are identified with brackets and have a fixed format

with a specific amount of separator characters for easy parsing and basic error detection.

There is no error detection or checksum calculation built-in to the firmware, so this falls

entirely to the PC application’s responsibility. To make communication more robust,

error checking could be added to the commands in future. This is not strictly required

though, as the system proved to work without glitches by relying on basic sanity checks

of received data format and value ranges by the PC application.

30

Table 3. ASCII string format of the DAQ card UART command packets. All command

packets are terminated with a carriage return escape sequence. For certain

command packets, the data field may be longer than a single byte.

START CMD ID DELIMETER PARAM DELIMETER DATA STOP

C 12 < DOT > 34 < DOT > 56 \r

CHAR

HEX

1 BYTE CHAR

HEX

1 BYTE CHAR

HEX

1 … n BYTES

CARRIAGE

RETURN

Table 4. ASCII string format of the DAQ card UART reply packets. All reply packets

are terminated with a carriage return escape sequence. For certain reply

packets, the data field may be longer than a single byte.

START DELIMETER CMD ID DELIMETER DATA STOP

!R < DOT > 12 < DOT > 34 \r

2 CHARS CHAR

HEX

1 BYTE CHAR

HEX

1 … n BYTES

CARRIAGE

 RETURN

5.6 Calibration

The DAQ card firmware was built to support calibration of both voltage and current

measurement during manufacturing by storing calibration coefficients to I2C EEPROM.

Calibration is divided in two main components, the offset and the gain error. Maxim’s

application notes detail how these error sources affect unipolar ADC measurements,

which is the configuration used in the designed DAQ card. Figure 15 illustrates how

negative and positive offset errors reduce dynamic range of the ADC. [6]

31

Figure 15. Negative and positive offset errors reduce unipolar ADC full-scale

input voltage range as explained by Maxim Integrated in an application note

[6].

To calculate calibration coefficients for offset and gain, each DAQ card had to be

individually tested against a reference instrument. By measuring voltage at two or more

steps, coefficients can be calculated to first remove the offset and then adjust gain to

match more closely ideal ADC. Figure 16 illustrates this process of eliminating offset and

gain errors. In the case of the developed DAQ card, measurement error is driven by initial

offset error when ADC input is low, and gain error dominates as input increases closer to

maximum. On all tested DAQ cards, voltage measurement channels had a small positive

offset error and current measurement channels had a small negative offset error. Initial

gain errors were typically below 0.5 % of ADC full scale range. [6]

32

Figure 16. Gain and offset errors of an ADC can be measured, and software

calibrated to improve measurement accuracy [6].

It is important to note that depending on hardware component thermal drift

characteristics, the measurement instrument output may drift over ambient temperature

change. For this reason, it may be required to make calibration measurements at a few

different ambient temperatures. The DAQ cards were calibrated in a typical operating

temperature of approximately 40 degrees Celsius (°C) and low thermal drift components

guaranteed staying within specifications at operating temperature range from -20 to 60

°C. This was validated by thermal chamber testing. When correct coefficient values are

known, they are written to EEPROM memory chip by sending EEPROM data write

commands from PC software to DAQ card firmware. The firmware automatically verifies

that EEPROM register value is successfully written by reading it back and comparing to

given data input. Each of the eight measurement channels has its own gain and offset

coefficients. Similarly, current measurement offset and gain errors can be found by

measuring two different test currents at opposite ends of input range, calculating

coefficient values and writing them to EEPROM. Calibration coefficients for all voltage

and current measurement channels are read by PC software when it is started, and

coefficients are applied to all data received from the DAQ card. This means the

responsibility of applying calibration is of the host PC application, and DAQ card only

sends raw ADC data out. The coefficients are applied according to Equation (5) and

Equation (6) in Chapter 5.4. In the developed measurement system, only one gain and

offset coefficient was used for each voltage and current channel. This could be improved

in future designs with multiple coefficients covering different parts of the input range and

operating temperature for greatly enhanced measurement accuracy.

33

6. PC MEASUREMENT SOFTWARE

Power measurement card PC measurement software was written with Java programming

language utilizing graphical Swing libraries. Use of Java enabled easy portability of

software to both Linux and Windows operating systems. Focus with PC software was to

keep it simple and provide only necessary features for planned measurement use cases.

MEASUREMENT SOFTWARE (JAVA)

SERIAL

PORT

SERIAL

PORT

SERIAL

PORT

SERIAL

PORT

SWING

GUI
MAIN

RXTXcomm LIBRARY

FTDI USB DRIVERS

Figure 17. Instance diagram of the developed PC measurement application.

High-level instance diagram of the developed Java PC application is shown in Figure 17.

Application consists of main class, Swing GUI and four serial port class instances which

interact with external RXTXcomm library [5] enabling communication with up to four

DAQ cards. Each of the serial ports handles received data writing to a CSV format log

file and pushes data to the Swing GUI updated four times a second to keep it human

readable. Updating the shown values too fast would make it hard to read. Serial port

instances perform 32 consecutive samples moving averaging of real-time measurement

data shown to user on Swing GUI to further improve human readability. Main class

instantiates the GUI and serial port classes, controls GUI updating and has functions for

automating serial port writing to support production automation tasks. Swing GUI also

handles user interaction by detecting mouse presses of buttons.

34

6.1 Features

Priority in development of the PC application was first to enable critical debugging

functionality, and later to add support for enough features to perform simple monitoring,

control and measurement tasks with a clean looking graphical user interface. The PC

application also proved vital for unit testing and calibration, not just debugging work

during firmware development. Secondary benefit of the PC application was ability to

show off more interesting live demos to promote the new DAQ system for interested

parties. They would not have to make their own user interface, if they chose to start using

the DAQ cards. Main features of the first PC software release are listed in Table 5.

Table 5. Features of the developed PC measurement software

Feature Description

1. Graphical user interface

2. Data logging to CSV files with µV/µA resolution

3. User configurable power rail names, shunt values and serial ports with a text file

4. Built-in serial terminal and command shortcuts

5. Production scripts for writing EEPROM registers

6. Support of applying DAQ card calibration coefficients

7. Real-time monitoring of voltage, current and power measurements

8. Windows and Linux operating systems support

Power rail names and shunt resistor values are configurable by user with a simple text

file. Serial ports are also configured with a text file of their own. Configuring the serial

port order had to be done manually by checking DAQ card serial numbers printed on PC

software’s serial terminal. This was the most difficult step in setup process and had to be

explained very well in user manual. Automating serial port setup could be a good addition

in future software versions.

Application provides raw data logging capabilities to CSV files. Real-time measurement

data can be monitored for all available channels. Built-in serial terminal prints out serial

messages from four DAQ cards and it is possible to control DAQ cards with UART API

commands directly from terminal or with UI button macros.

To speed up production of DAQ cards, support for automated EEPROM register writing

was implemented on the PC software. This enabled for example writing calibration

coefficients and serial number to EEPROM automatically from a text file. PC software

supports reading calibration coefficients from DAQ cards and applying them to data,

producing ready calibrated output for users.

35

The developed PC application was successfully tested on 64-bit Windows 7, Windows

8.1, Ubuntu 12.04 LTS and Ubuntu 15.04 LTS. Other operating systems would likely

work as well if Java JRE7 or newer and serial port adapter drivers are available.

6.2 Graphical user interface

Graphical user interface of the developed PC software was designed to be clean and

simple looking supporting only the minimum features required for measurement and

debug tasks. To keep the system easy to use, measurement process was made very simple

requiring minimal user interaction. To perform measurements, user only needs to start the

software, press a button on GUI couple times and close the software. First time

installation of software requires installing FTDI drivers [2], Java runtime and copying

RXTXcomm library file [5], and setting up virtual serial ports to match the FTDI bridge

on DUT hardware.

After starting the software by running a batch file or directly from terminal on Linux, user

is greeted with GUI which defaults to monitor tab. On this tab, moving average real-time

data can be monitored from all available measurement channels. Update interval of the

GUI was set as four times a second and averaging to 32 samples, resulting in moving

average of roughly one second at the typical sample rate of the DAQ cards. Faster update

rate was tried through iterating various speeds, but more than four times a second made

it hard for human to read and provided no benefits as data is anyway stored at full sample

rate in the background.

On the monitor tab, user can see measured voltage and current with calculated power

value. Each power rail is identified by a name corresponding to hardware schematic net

name, defined in a separate configuration text file. Other miscellaneous information such

as how many samples are received from each DAQ card, what is the DAQ card

temperature and current RTC timestamp value and detected communication error count

by PC software are also shown on this tab. Monitor tab has the mostly used command

shortcut buttons for triggering measurement, clearing RTC values and resetting DAQ

cards from software for user convenience. Based on user feedback, a button for automatic

60 second measurement was also added to this tab. Each of the four DAQ cards are color

coded with red, orange, purple and green to match terminal text colors on terminal tab.

Monitor tab of the developed PC software graphical user interface is shown in Figure 18.

36

Figure 18. Monitor tab of the developed PC application shows user latest

averaged measurement results and ability to control measurement hardware

using command shortcut buttons.

Integrating terminal to the PC software was mainly driven by debug use requirements

during firmware development. In the end, it proved to be valuable to end users as well,

being able to see the UART responses coming from DAQ cards. Button shortcuts for

more advanced UART API commands were also placed on this tab for both the

developer’s and more advanced user’s convenience. Terminal tab is shown in Figure 19.

37

Figure 19. Terminal tab of the developed PC application shows serial terminal

outputs from measurement hardware and allows manual sending of commands

mainly for development purposes.

The settings tab was included mostly for future use, enabling more advanced features and

settings configuration by user. Currently it only has controls for enabling and disabling

printing of raw data packets to terminal from each DAQ card, which was useful during

development. About tab included contact and version information of the PC software.

Addition of more tabs to the developed software is very easy, if new features are needed

in the future.

38

7. MEASUREMENT RESULTS

Characterization measurements were done to validate accuracy and operation of complete

power measurement card hardware, firmware and software design. Laboratory

instruments such as Keysight 34401A 6.5-digit digital multimeter and a Keysight DC

power supply were used as reference instruments. A breakout board supplying power and

exposing DAQ card analog inputs was used as a validation vehicle, to which external

shunt resistor between power supply and load was wired. Key results from

characterization measurements are shown in Appendix A power measurement card

specifications. Only the most relevant characterization measurements regarding firmware

and software design are detailed in this chapter, because focus of this thesis work is not

the hardware implementation.

7.1 Voltage measurement accuracy

A Keysight 34401A 6.5-digit digital multimeter was used as a reference instrument. A

unit-tested and calibrated DAQ card was installed on a breakout board powered from an

USB power bank and connected to a PC with USB for real-time measurement data

streaming. A few minutes was waited for the DAQ card to reach typical operating

temperature of 40 °C. Test voltage supplied from a DC power supply unit was applied on

the DAQ card voltage measurement channel inputs, while measuring it with the Keysight

DMM connected in parallel. Test voltage was swept from 0 mV to 4096 mV in increasing

steps, and the difference in voltage measured by the DAQ card and the DMM was

recorded. Measurement setup used in the DAQ card voltage measurement accuracy

characterization is presented in Figure 20.

Figure 21 shows that DAQ card voltage channels measured test voltage with better than

±300 µV accuracy. Other four channels are analog multiplexed to same inputs and have

practically same measurement accuracy based on characterization measurements.

Multiplexing does not have significant effect on the accuracy when switching timing

gives enough time for output voltage to stabilize. All DAQ cards are unit tested to meet

±1 mV accuracy on all channels, so this unit was within specifications with a good margin.

This result meets project requirements and is within design expectations.

Additional testing revealed there was no significant drift in measurements when operating

temperature was swept from -20 °C to 60 °C in a thermal chamber, validating DAQ card

low temperature drift component selection performance. The low thermal drift allows use

of embedded DAQ cards even when the whole DUT is placed in a thermal chamber for

electrical validation work.

39

Figure 20. Measurement setup used in the DAQ card voltage measurement

accuracy characterization consisted of a power supply unit and a voltmeter.

Figure 21. The DAQ card voltage measurement accuracy characterization

results from all four of the ADC channels used for voltage measurements.

7.2 Current measurement accuracy

Measurement setup used in the DAQ card current measurement accuracy characterization

is presented in Figure 22. A Keysight 34401A 6.5-digit DMM was used as a reference

ammeter instrument. A unit-tested and calibrated DAQ card was installed on a breakout

board powered from a USB power bank and connected to a PC with USB for real-time

measurement data streaming. A few minutes was waited for the DAQ card to reach typical

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

1 2 4 8 16 32 64 128 256 512 1024 2014 4096

V
o

lt
ag

e
M

ea
su

re
m

en
t

E
rr

o
r

(m
V

)

Reference Voltage (mV)

DAQ Card Voltage Measurement Error

vs. Keysight 6.5 Digit DMM

CH1 CH3 CH5 Ch7

VOLTMETER

POWER

SUPPLY

DAQ

CARDV

+

-

V_SHUNT_DN

G
N
D

G
N
D

OUTPUT +

GND GND

GND

40

operating temperature of 40 °C. Test current supplied from a DC power supply unit was

applied on a test load, which was a programmable current sink. Positive and negative side

of an external 20 mΩ 0.1% tolerance precision shunt resistor were connected to the DAQ

card measurement inputs. The DC power supply provided adjustable test current flowing

through test load and shunt resistor connected in series. The Keysight DMM was

connected in series with the load current path and used as a more precise reference

instrument. Load current was swept from 0 mA to 1638.4 mA in increasing steps and

difference measured by the DAQ card and the DMM was recorded.

Selection of current shunt resistor value has significant effect on minimum accurately

measurable current. With a 20 mΩ shunt resistor, the DAQ card typically has better than

1% absolute measurement accuracy after 50 mA of current as is seen in Figure 23, when

precision shunt resistor is used. This is within design expectations and could be further

improved with better calibration, although this was enough to meet the project

requirements in this specific case. All produced DAQ card units were tested to pass the

±3 mA current measurement accuracy specification with a 20 mΩ shunt over the full-

scale input range. Common-mode performance was also validated by sweeping input

voltage over the whole input range and comparing current measurement to a precision

DMM. Results showed similarly good correlation with both instruments over the whole

input voltage range.

CONSTANT

CURRENT

SINK

POWER

SUPPLY

A

AMMETER

DAQ CARD

V
_
S
H
U
N
T
_
D
N

V
_
S
H
U
N
T
_
D
P

G
N
D

OUTPUT +

RSHUNT

GND

GND

GND

G
N
D

Figure 22. Measurement setup used in the DAQ card current measurement

accuracy characterization consisted of a power supply unit, an ammeter, a

precision shunt resistor and an adjustable constant current sink.

41

Figure 23. The DAQ card current measurement accuracy characterization

results with a 20 mΩ shunt resistor.

7
3

.7
5

3
4

.0
6

1
4

.5
3

8
.4

4

5
.3

4

1
.7

2

0
.5

5

0
.3

1

0
.2

4

0
.2

0

0
.1

8

0
.1

7

0

20

40

60

80

100

0
.8

1
.6

3
.2

6
.4

1
2
.8

2
5
.6

5
1
.2

1
0
2

.4

2
0
4

.8

4
0
9

.6

8
1
9

.2

1
6
3

8
.4

C
u
rr

en
t

M
ea

su
re

m
en

t
E

rr
o

r
(%

)

Reference Current (mA)

DAQ Card Current Measurement Error (20 mΩ shunt)

vs. Keysight 6.5 Digit DMM

CH1

42

8. SOFTWARE ISSUES AND SOLUTIONS

Various programming mistakes were found, root causes were identified, and appropriate

solutions were implemented during the DAQ card firmware and PC software

development and testing. The most critical firmware problem was discovered at a very

late stage of doing final unit testing. In the measurement loop, firmware adds up eight

consecutive ADC samples to a single 32-bit integer variable. The sum is then divided by

eight to perform averaging. Because raw ADC sample data is in two’s complement

format, and when there was a zero-crossing at middle point of the ADC input range during

the eight-sample period, averaging by eight by shifting data right three bits produced

unexpected results. In a typical use, this situation is unlikely to show up as averaging

period is short, and the zero-crossing needs to happen during it. However, one of the unit

testing voltages was selected at this strategic 2.5 V value, which is the reference voltage

of ADC and zero-crossing point of two’s complement data, and some cards started to

show odd results. More debugging revealed this happened only when the ADC input was

precisely half of the full-scale input range, so that there is a good change to have a zero-

crossing event below and over the middle point. As a quick workaround, firmware

performed a zero-crossing detection before doing averaging and took appropriate

measures to prevent data corruption. This method proved successful eliminating the

problem and was validated by checking raw input and averaged data on zero-crossing

events in both directions.

One hard to debug problem occurred when firmware was streaming contents of SD

memory card over UART interface. During this operation, microcontroller responded to

none of the UART interrupt commands it received. This was a minor issue with impact

of causing possible inconvenience to some users in rare situations as operation resumed

normally when data streaming from the SD card was over. Therefore, it was decided not

to spend time fixing it and instead document the bug clearly in user manual. It is still the

only known bug in the shipping firmware version more than half a year later.

Second SD memory card related problem was related to the speed the content was being

streamed over UART. Since hardware used no flow control because of limited connector

pin count, it was possible to lose big chunks of data due to buffer overflow occurring on

the UART bridge chip. Simply slowing down the data streaming by adding more loop

delay solved the issue. If a different UART to USB bridge chip with a smaller receive and

transmit data buffer is used, the SD card reading might have to be slowed down more. As

a backup solution for future, a new UART API command was added to reduce SD card

reading speed if problems were to occur with the default speed. The SD memory cards

also had unexpectedly wildly varying write latencies, sometimes a write operation taking

longer than multiple sample periods. This unpredictable behavior was a significant issue

43

especially with some of the cheaper SD memory card models. By picking the best SD

memory card within reasonable cost, with least write latency variation, was good enough

for this application but could prove to be architectural pitfall if not prepared for. Other

memory storage options with fixed or less varying write latencies should be used if faster

and more predictable measurement sample rates are needed, or at least provide a larger

external buffer memory allowing larger block writes to the SD memory card mitigating

some of the latency variations.

Most of the PC measurement application issues were related to graphical elements acting

unexpectedly on certain operating systems. Especially Ubuntu Linux proved problematic

by overriding interface text elements with its own larger default font causing visual

problems to occur on a software build, which looked as intended on a Windows system.

Another issue related to serial data receiving was never fixed, as sometimes a single

received data packet would not get passed to the PC measurement software until next one

was received. This may be a library issue with the RXTXcomm or odd behavior by the

FTDI serial driver. Thus, it may cause minor inconvenience at times when using UART

API commands manually but is otherwise insignificant issue as no received data is lost.

As a workaround, a flush command could be added to the UART API sending a dummy

packet and pushing the last valid data packet through.

44

9. PROJECT EXECUTION

Preparation for firmware development started before project requirements were fully

known and a proof-of-concept target hardware was not yet available. Evolving system

requirements were implemented in agile manner, selecting options which were sometimes

faster but not necessarily better is terms of system complexity and cost. Project schedule

is outlined in Table 6.

Table 6. Actualized project execution timeline.

Month Project milestone

1. Firmware development on a development board

2. Proof-of-concept hardware available

3. PC measurement software development

4. Combined HW/FW/SW validation with a new HW revision

5. First stable FW/SW release

6. Measurement accuracy characterization completed with final HW revision

7. Production and delivering measurement systems to customers

First few weeks of firmware development was done on a development kit of previous

revision AVR32UC3A3 microcontroller, which was the closest available option and

software compatible for the most parts with AVR32UC3A4 device on the target

hardware. [7] During this time, all required Atmel Software Framework driver libraries

[9] were imported and basic structure of firmware state machine was prepared. Out of the

serial interfaces, UART and I2C could be fully enabled in this phase. When target

hardware was available, project was converted to the A4 device. The Atmel Xplained

evaluation board used in initial development [11] had the MCU in a different package.

Because of this, and a custom pinout of the target board, almost all GPIO pin to function

mappings had to be redone when moving to target hardware. Thanks to abstracting GPIO

pin mapping and code variable names on a header file early on, this was easy task and

required no changes on bulk firmware code. In total, there were three hardware revisions

starting from early proof-of-concept work, an extensive redesign and final issue solving

round. Major changes in firmware code needed to be done for the redesigned board

revision.

Debugging target hardware issues same time as enabling more complex firmware

functions such as SDIO interface proved challenging. Especially SSC frame-sync

interface with ADC was problematic, losing sync after only a few samples, and

implementation was changing almost every week trying to find a way to overcome this.

45

Luckily the less than optimal SSC implementation proved stable and working even in a

small-scale volume production. In total, firmware development, testing and issue solving

took approximately three months.

Development of PC software started when firmware was close to feature complete stage.

If a basic application template would have been ready earlier, development of the

firmware would likely have been faster as PC measurement software proved crucial for

testing of the whole measurement system. Development of the PC software took

approximately two months from start to finish and final touches to it were done as late as

production unit testing of the DAQ cards. The PC software continued to improve after

shipping of hardware. Firmware development was prioritized first, as doing firmware

updates after shipping hardware would not be a trivial task. Development of the Java

Swing based PC application proved relatively easy task compared to the DAQ card

firmware and there were no significant issues at any phase of the development.

When complete measurement kit with user manual was nearing completion, some kits

were given to users with similar technical background as the expected user base but had

no previous experience with neither the DUT hardware nor the developed measurement

system. This refined documentation further and proved the system met usability

requirements, as people succeeded in installing the kit and started first measurements

within the first hour. The DAQ card measurement accuracy was verified by other users

and it met their expectations, replicating some of the characterization measurement results

done during the DAQ card development.

Initially planned project schedule of five months could not be met due to combination of

a needed new hardware revision and overly-optimistic initial expectations resulting in a

two-month extra delay before whole measurement kit was ready. This delay however

significantly improved quality of both the hardware and software deliverables. Good

quality deliverables resulted in positive feedback from users and no significant issues

were found during the project. Effort of documentation, characterization and production

unit testing was also underestimated, and the amount of work surprised as documentation

and testing took two months in total for two persons. This was a valuable learning and

measures can be taken to prepare better in the future projects by starting documentation

in parallel to design work.

Probably the biggest challenge in the whole project was how to make users comfortable

with the new measurement instrument and trust its results. Often people would prefer

using older, more limited and even worse-performing instruments, because they were

used to it and grown to trust it. With time and sharing extensive characterization results,

and helping users to replicate them, users started to build trust on the new measurement

system. Having more detailed data from platform subsystems than was possible before

allowed to identify new problems with DUT’s power management software code and

some would not like the new measurement system because the results were not what they

46

wanted to see. Some people would rather question the new measurement system instead

of being open-minded to solving the real issues found, but thankfully they were only the

loud minority. The benefits of the measurement system were validated when it was used

to optimize power consumption of a real product development board, which ultimately

met its challenging power consumption targets. The measurement system also received

good feedback and few improvement ideas to better accommodate platform software

engineer’s needs.

47

10. CONCLUSIONS

Overall, the project was a challenging experience, but for the most part it was completed

without major problems during development. At times, solving a certain issue took a few

days, but in the end a working solution was always found, and the project could continue

forward towards shipping to users. Some of the more notable problems during the project

were debugging target hardware during firmware development, unit testing in small-scale

volume production and microcontroller’s frame-sync functionality at high speeds

required by the specific ADC chip. The amount of needed design collateral

documentation for a measurement instrument, which had to be completed before any

measurement kits could be delivered to users, was also a surprise and can be better

planned for in the future projects. In total, the project took seven months to complete from

start to finish. Most of the time was spent in firmware development, but a few months

was spent also developing the PC measurement software, characterization testing and

documentation to provide customers a ready and validated measurement kit. Table 7

summarizes the project works, development time, challenges and results.

Table 7. Summary of the project goals, schedule, results and notable challenges.

Project

goals

Create a firmware and a PC measurement software for the PnP DAQ card and

meet project requirements regarding functionality, measurement accuracy and

usability.

Schedule Firmware: 3 months

PC measurement software: 2 months

Testing: 1 month

Documentation: 1 month

Results The PnP DAQ card functionality, measurement accuracy and usability met

project requirements, but the project was delayed by two months to

accommodate a new hardware revision with design fixes.

Notable

challenges

Atmel AVR32’s SSC functionality and configuration

Voltage regulator power sequencing and inrush current

SD memory card read/write latency

Firmware timings and how they affect ADC measurement accuracy

Firmware development started without target hardware

Debugging target hardware during firmware development

Initial project schedule was too optimistic

Division of work between developing and documenting

Unit testing and calibration in production

48

Project tasks included developing firmware and a PC measurement software for the DAQ

card while meeting performance and usability requirements. Detailed characterization of

final hardware, firmware and software combination proved that performance of the

system met the project requirements. User testing provided much needed feedback about

usability of the system, and validated ease of use meeting expectations for a typical

technical-minded user base. Based on feedback from users, more features could be added

to the PC measurement software to make automated testing easier and further improve

usability. Makings software more generic in terms of supported DUT platforms could

prove useful, if DAQ cards would be used in multiple projects, reducing amount of

software support needed from developer of the power measurement system.

The developed PnP DAQ system was successfully used in a hardware project optimizing

a DUT’s power consumption to meet its design targets. This proved that the developed

one, and other similar DAQ systems, are not just useful tools to have around for

debugging purposes but are a valuable addition to any development board’s capabilities.

The developed power measurement solution brings advanced power measurement

capabilities to potentially every software developers’ desk giving them a powerful new

tool to analyze hardware and software behavior in real-time. To justify additional cost of

deploying power measurement solutions to a larger developer base, already low total cost

of ownership of the new power measurement solution is further reduced by reusability in

multiple projects.

A key learning from the project would be the importance of design for testability and

design for manufacturability. If not built to the design from the start, it is very difficult to

ramp up production volumes as process is quickly slowed down by unit testing and

electrical validation. The simple things like placement of test points underside of a PCB

where they cannot be probed with an oscilloscope without soldering wires or lack of a

breakout board to enable easier access to signals during test and development can add up

and cause significant delays in the long run. In addition, one learned the hard way to read

component manufacturer datasheets with a healthy skepticism as some of the fine print

or even completely omitted details can reveal unwanted surprises with far-reaching

consequences later in the project.

The plans for future include development of a new proof-of-concept system which would

add more features at lower total system cost while using a different microcontroller series

better suited for future needs and design reuse without the need for advanced PCB

manufacturing solutions. C++/Qt based approach to developing the PC software is also

planned with greatly improved GUI and USB virtual serial port API without the need for

additional UART-to-USB adapters.

49

REFERENCES

[1] ADA4528-2 Precision, Ultralow Noise, RRIO, Zero-Drift Op Amp Datasheet,

Analog Devices, Inc., Rev. F, 2017, p. 10. Available (accessed 01.09.2018):

http://www.analog.com/media/en/technical-documentation/data-sheets/ADA4528-

1_4528-2.pdf

[2] D2XX Drivers, Future Technology Devices International, Ltd., 2018, web page.

Available (accessed 15.07.2018): http://www.ftdichip.com/Drivers/D2XX.htm

[3] Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up 31

Percent From 2016, Gartner, Inc., Feb 2017, web page. Available (accessed

14.07.2018): http://www.gartner.com/newsroom/id/3598917

[4] P. Horowitz, W. Hill, The Art of Electronics, Cambridge University Press, 3rd ed.

2015, pp. 4-6.

[5] T. Jarvi and contributors, RXTX project wiki, qbang.org, web page. Available

(accessed 15.07.2018): http://rxtx.qbang.org/wiki/index.php/Main_Page

[6] Tutorial 748 The ABCs of ADCs: Understanding How ADC Errors Affect System

Performance, Maxim Integrated Products, Inc., Jul 2002, web page. Available

(accessed 25.08.2018): https://www.maximintegrated.com/en/app-

notes/index.mvp/id/748

[7] Atmel AT32UC3A3/A4 Series Complete Datasheet, Microchip Technology, Inc.,

Oct 2012, pp. 1-19, 508-545. Available (accessed 14.07.2018):

http://ww1.microchip.com/downloads/en/DeviceDoc/doc32072.pdf

[8] Atmel-ICE Debugger User Guide, Microchip Technology, Inc., Oct 2016, p. 8.

Available (accessed 15.07.2018):

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42330-Atmel-

ICE_UserGuide.pdf

[9] Atmel Software Framework (ASF), Microchip Technology, Inc., 2018, web page.

Available (accessed 01.09.2018): https://www.microchip.com/mplab/avr-

support/advanced-software-framework

[10] Atmel Studio 7, Microchip Technology, Inc., 2018, web page. Available

(accessed 15.07.2018): http://www.microchip.com/mplab/avr-support/atmel-

studio-7

http://www.analog.com/media/en/technical-documentation/data-sheets/ADA4528-1_4528-2.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADA4528-1_4528-2.pdf
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.gartner.com/newsroom/id/3598917
http://rxtx.qbang.org/wiki/index.php/Main_Page
https://www.maximintegrated.com/en/app-notes/index.mvp/id/748
https://www.maximintegrated.com/en/app-notes/index.mvp/id/748
http://ww1.microchip.com/downloads/en/DeviceDoc/doc32072.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42330-Atmel-ICE_UserGuide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42330-Atmel-ICE_UserGuide.pdf
https://www.microchip.com/mplab/avr-support/advanced-software-framework
https://www.microchip.com/mplab/avr-support/advanced-software-framework
http://www.microchip.com/mplab/avr-support/atmel-studio-7
http://www.microchip.com/mplab/avr-support/atmel-studio-7

50

[11] Atmel AVR32918: UC3-A3 Xplained Hardware User’s Guide, Microchip

Technology, Inc., 2018, p. 1. Available (accessed 02.09.2018):

http://ww1.microchip.com/downloads/en/AppNotes/doc32159.pdf

[12] NetBeans IDE, Oracle Corporation, 2018, web page. Available (accessed

15.07.2018): https://netbeans.org/

[13] K. Ruoko, Power consumption measurement hardware for portable platforms,

Tampere University of Technology, M.Sc. Thesis, 2016.

[14] ADS1278 Octal, Simultaneous Sampling, 24-Bit Analog-to-Digital Converter

Datasheet, Texas Instruments, Inc., Feb 2011, pp. 1-33. Available (accessed

02.09.2018): http://www.ti.com/lit/ds/sbas367f/sbas367f.pdf

[15] Current Sense Amplifiers Guide, Texas Instruments, Inc., 2018, pp. 2-3. Available

(accessed 01.09.2018): http://www.ti.com/lit/sg/slyb194d/slyb194d.pdf

[16] USB 2.0 Specification: USB 2.0 ECN VBUS Max Limit, USB Implementers

Forum, Inc., Aug 2014. Available (accessed 01.09.2018):

http://www.usb.org/developers/docs/usb20_docs/

http://ww1.microchip.com/downloads/en/AppNotes/doc32159.pdf
https://netbeans.org/
http://www.ti.com/lit/ds/sbas367f/sbas367f.pdf
http://www.ti.com/lit/sg/slyb194d/slyb194d.pdf
http://www.usb.org/developers/docs/usb20_docs/

51

APPENDIX A: PNP DAQ CARD SPECIFICATIONS

Parameter Test Conditions Min Typical Max Unit

Operating supply voltage 2.7 4 4.5 V

Operating supply current Supply @ 4.0V,

active state

 100 mA

Operating supply power Supply @ 4.0V,

active state

 400 mW

Measurable rails / PnP card

 8 8

Measurable rails / DUT 4 x PnP DAQ cards 32 32

Data rate µSD card enabled 33 sps

Sample rate 8 x Data rate sps

Oversampling ratio 8

ADC resolution 24 bits

Rail current shunt voltage

(differential)

 0 50 mV

Rail voltage 0 5 V

Shunt voltage gain 100 100 100

Temperature sensor resolution 0.125 °C

Temperature sensor accuracy

 ± 2

°C

Rail DC voltage accuracy ± 1 mV

Rail DC current accuracy 20mΩ shunt ± 3 mA

UART baud rate 1152000 bits/s

µSD memory card SDHC, Class 4 16 GB

52

APPENDIX B: EXTRACT FROM ATMEL AT32UC3A DATASHEET

53

54

APPENDIX C: EXTRACT FROM TEXAS INSTRUMENTS ADS1278

DATASHEET

55

