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ABSTRACT 

JUHA JÄNTTI: The embedded software of a power measurement card 
Tampere University of Technology 
Master of Science Thesis, 48 pages, 5 Appendix pages 
September 2018 
Master’s Degree Programme in Information Technology 
Major: Embedded Systems 
Examiner:  Prof. Karri Palovuori    
 
Keywords: measurement instrument, power and performance, data acquisition, 
embedded systems, firmware, software 
 

Available commercial power measurement instruments and systems did not provide a 

solution meeting project requirement in terms of size, cost, performance, features and 

usability combination. Therefore, a new power and performance measurement card 

hardware that is tightly integrated with device under test and tailored for use with product 

enabling development boards was developed. The developed power measurement card is 

based on Atmel AVR32 microcontroller unit and a discrete analog front-end and is 

capable of measuring voltage and current of eight power rails and calculating average 

power. Measurement results are stored on a memory card or streamed to a PC 

measurement software via USB adapter.  

Hardware design of the power measurement card and measurement accuracy 

characterization was done in collaboration with others and electronics design and results 

are briefly presented in this thesis. The embedded firmware of the power measurement 

card and a companion Java PC measurement application were developed as part of this 

thesis work. Accuracy and usability of the complete hardware and software solution met 

the project requirements. The developed power measurement card was successfully used 

to optimize power consumption of one product platform and enabled power 

measurements which otherwise would not have been practical to perform. 
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Markkinoilla saatavilla olevat teolliset tehonmittauslaitteet ja -järjestelmät eivät 

täyttäneet projektin vaatimuksia koon, hinnan, suorituskyvyn, ominaisuuksien ja 

käytettävyyden kokonaisuuden osalta. Tämän ratkaisemiseksi kehitettiin uusi teho ja 

suorituskyky mittalaitekortti, joka integroituu tiiviisti testattavaan tuotekehitysalustaan. 

Kehitetty tehonmittauskortti rakentuu Atmelin AVR32-mikrokontrollerista sekä 

erilliskomponenteista kasatusta analogisesta mittapäästä. Mittaustulokset tallennetaan 

muistikortille tai lähetetään tietokoneella suoritettavalle mittausohjelmalle USB-

adapterin välityksellä. 

Tehonmittauskortin elektroniikkasuunnittelu ja mittaustarkkuuden karakterisointi tehtiin 

yhteistyössä muiden kanssa ja tulokset esitetään lyhyesti tässä diplomityössä. 

Tehonmittauskortin sulautettu ohjelmisto ja Java-mittausohjelmisto tietokoneelle 

kehitettiin kokonaan tämän diplomityön puitteissa. Kehitetyn elektroniikka- ja 

ohjelmistokokonaisuuden mittaustarkkuus ja käytettävyys täyttivät projektin 

vaatimukset. Kehitettyä tehonmittauskorttia käytettiin onnistuneesti yhden 

tuotekehitysalustan tehonkulutuksen optimoinnissa ja se mahdollisti sellaisten 

tehonmittausten tekemisen, mitkä olisivat muuten olleet epäkäytännöllisiä tehdä. 
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1. INTRODUCTION 

Increasing demand from customers is driving electronics industry towards smaller and 

more power-efficient devices for what is commonly known as the Internet of Things 

(IoT). Study by Gartner forecasts that the IoT market will continue its fast growth in the 

next years especially in the consumer appliances segment [3]. Some of the newer product 

segments include smart wearable devices and smart home appliances. Because of weight, 

size and cost requirements, these wearable devices are often powered from very low 

capacity lithium-ion (Li-Ion) batteries. To achieve the best possible battery life to meet 

customer demands in this very competitive business environment, it is important to 

optimize device power consumption in various use cases by hardware selection and 

software optimizations. Longer battery life is a way to gain market advantage over the 

competing solutions. But before actions for reducing device power consumption can be 

taken, one must first have accurate measurement data of the device and its subsystems’ 

power consumption.  

Traditional measurement systems designed for high sample rate data acquisition (DAQ) 

of up to hundreds of channels can cost tens of thousands of euros and be complex 

equipment to setup and use. They are not a practical solution for a high number of users 

with varying skill sets. Based on my own experience, setting up the required measurement 

software and hardware can be difficult and require deep understanding of both the 

measurement system and the device under test (DUT) to get accurate and repeatable 

measurement results. On the other hand, simple measurement instruments like digital 

multimeters (DMMs) do exist, but usually being limited to one measurement channel at 

a time and often lacking measurement software support makes them more suited for basic 

debug and measurement tasks than platform-level power measurements. Using them also 

requires good understanding of the DUT hardware to select appropriate measurement 

points and to perform the measurement safely. 

There was a need for a power measurement system that is so easy to use that any engineer 

with a technical background, and without prior knowledge of the DUT hardware and the 

measurement system, could set it up with help of a light user manual in less than an hour. 

User should also be able to start doing meaningful measurements of the DUT right after 

setup is done. One key use case for the power measurement system would be software 

engineers doing power measurements when they make changes to a software build 

running on the DUT. Based on the measurement results, they would then know how their 

software changes affected device’s power consumption in various use cases before 

committing software changes to others eliminating obvious mistakes in the earliest 

possible stage. It would be difficult to characterize power consumption in complex use 
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cases that use multiple platform components and at the same time meeting performance 

goals unless you can know exactly how the power consumption is split between each 

subsystem component. 

This thesis follows embedded system firmware development done while working at Intel 

Finland Oy showing some of the tasks and challenges a design engineer faces when 

developing software for a new proof-of-concept (PoC) embedded measurement solution. 

Developing embedded firmware and being part of a project team to accomplish customer 

requirements provided a great and rewarding opportunity for learning new skills in the 

field of electronics hardware, low-level C language programming and combined software 

and hardware project management. The new measurement solution was then completed 

by developing a measurement application for a personal computer (PC), which simplified 

the user experience and provided much needed development support during later stages 

of firmware development and hardware validation.   

Scope of this thesis is developing the embedded firmware and the PC measurement 

software for a power and performance (PnP) measurement DAQ card. Figure 1 illustrates 

the thesis scope. The PnP DAQ card hardware was developed together with K. Ruoko 

and hardware development work is not part of this thesis. The hardware implementation 

is described in more detail in Ruoko’s thesis [13]. Testing of the DAQ card was done in 

collaboration and relevant subset of the results are included in this thesis. 

Chapter 1 lays the foundation for this thesis by giving background to the subject and 

explaining the measurement problem at hand. Chapter 2 outlines the project requirements 

and Chapter 3 describes the target hardware, the PnP DAQ card and a typical DUT 

system. In Chapter 4, development environment is setup. In chapter 5, software 

requirements are mapped to the target hardware components and firmware design is 

described. A short introduction to the PC measurement software follows in Chapter 6. 

Measurement accuracy test results are shown in Chapter 7 and Chapter 8 presents 

discovered software issues and solutions. Project execution and schedule is presented in 

Chapter 9. Finally, Chapter 10 summarizes how well targeted project requirements were 

met, and what were the key learnings from the thesis work. 
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Figure 1.  Scope of this thesis is the firmware of the power measurement card and 

the PC measurement software. Hardware design of the DAQ card, which was 

done in collaboration with others [13], and an example DUT platform are 

briefly detailed and are not the key focus of this thesis. 
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2. PROJECT REQUIREMENTS 

At first, key project requirements for the new power measurement system were identified 

from perspective of the customer and end users. Requirements set approximate 

performance targets and other focus areas, which have a high priority in the 

implementation phase of the measurement card firmware and a companion PC 

measurement software. The key project requirements are listed in Table 1. 

Table 1.  The key requirements of the power measurement system. 

# Requirement Description 

1. Easy to setup and use 

2. Reliable operation 

3. Eight measurable power rails 

4. Sample rate of > 200 samples per second, data can be averaged 

5. Raw data storage to a micro SD memory card for cordless operation 

6. Real-time wired data streaming to a PC measurement application 

7. UART-to-USB connection and API for control and data streaming 

8. Good average DC voltage and current measurement accuracy with 

calibration support  

9. A graphical PC measurement software for real-time monitoring, control and 

data logging to .csv files 

10. The measurement system is used with product-enabling development 

boards and support for product form factor devices is not required 

 

Because users of the new system may have little previous knowledge of the DUT or other 

measurement instruments, it was important to focus on usability and simple setup of the 

complete power measurement system. Expectation was set, that a new technically-minded 

engineering user would be able to setup and start measurements in less than 60 minutes 

by following a short user manual. This sets a high-quality standard for documentation, as 

well as companion PC measurement software implementation user experience. Once the 

power measurement system and documentation are ready, user testing would be 

performed to refine user manual and verify that requirements were met satisfactory. 

From performance point of view, the system would focus on good average voltage of 

direct current (DC) and current measurement accuracy at a rate of modest 200 samples 

per second or higher. Based on early design estimations, performance targets of better 

than 10 mV and 10 mA range accuracy with typical milliohm (mΩ) range current shunt 

resistor values were set. Averaging of raw sample data by factor of 10 is acceptable to 

reduce data output rate, which would otherwise be significant from eight measurable 

channels. Since hardware architecture requires multiplexing four input channels at a time 

to an analog-to-digital converter (ADC), great care would have to be taken with firmware 
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timings to prevent unwanted switching noise affecting measurements. To meet quality 

and performance standards of the end users, each power measurement card would have 

to be unit tested and possibly individually calibrated to meet the accuracy requirements. 

Software and firmware design should be built with support of at least basic offset and 

gain correction calibration for both voltage and current measurement for all channels. 

Simple calibration procedure would be made with the help from Maxim’s application 

note [6]. Calibration coefficients and unique serial number would be stored on the 

measurement card’s non-volatile electrically erasable programmable read-only memory 

(EEPROM) during production. Applying calibration coefficients may be offloaded from 

the measurement card’s microcontroller unit (MCU) to a PC measurement software, 

which reads and applies the calibration coefficients and DUT’s shunt resistor values to 

calculations during run-time. Because current and therefore also power calculations 

require knowledge of the DUT’s shunt resistor values, they should be defined in user 

modifiable configuration file read by the measurement software.  

To meet the usability requirements, and to provide a tool for development and debugging 

of the measurement system, a graphical PC measurement software with a simple enough 

user interface was required. Main supported operating systems would be 64-bit Microsoft 

Windows 7 and newer, but portability to Linux was preferred in the long run. Preferred 

Linux distributions would be Ubuntu 12.04 long term support (LTS) and 15.04 LTS. The 

PC measurement software should support at least minimum set of features to fulfill basic 

measurement tasks and provide means to log measurement results to a comma separated 

values (CSV) file.    

The new power measurement system should be able to support portable use by logging 

data to a micro secure digital (SD) memory card, from which data can then be downloaded 

to a PC. However, the main use case for the measurement system would be doing wired 

measurements by streaming in data real-time from power measurement cards to a 

computer via universal serial bus (USB) virtual serial port. 

To support basic data streaming and control features between a PC measurement software 

and the power measurement card firmware, a simple universal asynchronous 

receiver/transmitter (UART) application programming interface (API) is needed. This 

could optionally be used to integrate support of the developed power measurement cards 

to other software solutions, such as a factory automated unit test setup of a DUT hardware.   

The developed power measurement system would primarily be used with product 

enabling system-on-a-chip (SoC) platform development boards such as macro-size debug 

versions of a product platform. Support for potentially very small final product form 

factor device (FFD) is not required of the system. Major issue supporting state-of-the-art 

mobile product FFDs that have a printed circuit board (PCB) the size of only a few square 

centimeters is that addition of current sense shunt resistors makes the layout routing less 

optimal and more difficult as you would not only need to route power rails to PCB top 
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layer in order to add the shunt resistor but also route out the differential sense signals for 

external measurement card hardware. For the shunt resistors to be able to handle high 

currents, they would often need to be in larger surface-mount device (SMD) passive 

component packages such as 0805 or even 1206 in imperial units. Another difficulty 

would be connecting the current sense signals from the PCB to the measurement solution 

because there is no room for additional connectors on the product FFD. However, if the 

product form factor would not be as size constrained, the developed power measurement 

solution could be used even with FFDs.  
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3. HARDWARE DESCRIPTION 

This chapter introduces the power measurement card hardware, for which firmware was 

developed as part of this thesis. Actual hardware design is not part of this thesis work, but 

some background is given because it is important to fully understand target device 

operation before developing firmware that supports it to make sure right things are done 

the correct and optimal way to get best system performance out of the hardware and 

firmware combination.  

3.1 The PnP DAQ card 

Basic operating principle of the power measurement card is detailed in Figure 2 simplified 

high-side current measurement circuit. Reasons for choosing high-side current sensing 

are detailed in an application note by Texas Instruments [15]. A high-side sensing circuit 

is preferred when application circuit cannot tolerate ground level disturbances [15, p. 3], 

which is the case with a modern complex SoC platform. Individual power rail inputs and 

outputs to and from a power management integrated circuit (PMIC) must be measurable 

instead of total ground current, which is another reason for using a high-side sensing 

architecture. On the developed PnP DAQ card, current sense circuit was designed for 

measuring low voltage DC power rails with focus on average accuracy. A low 

temperature drift, low resistance and high accuracy shunt resistor is placed on the high-

side between a power rail supply and a load. Load current flowing through the shunt 

resistor causes a voltage drop proportional to the current. By measuring voltage drop over 

the shunt resistor and voltage on load side of the shunt, load current and finally power 

consumption can be calculated. Current I in amperes (A) is calculated with Ohm’s law 

[4, p. 4] in Equation (1). 

𝐼 =
𝑉

𝑅
  ,            (1) 

where V is voltage in volts (V) and R is resistance in ohms (Ω). Then load power 

consumption P in watts (W) can be calculated with Equation (2) [4, p. 6]. 

𝑃 = 𝑉 ∗ 𝐼 ,           (2) 

where V is voltage in volts and I is current in amperes. The ADC compares differential 

input signal to a reference voltage, and outputs digital value reflecting input signal level. 

This result can then be read by a microcontroller unit. If the ADC measures both the shunt 

resistor voltage drop, and the voltage delivered to load at the same time, instantaneous 

power can be accurately calculated. Amplifying the differential sense signal with an 

operational amplifier allows usage of lower shunt resistor values with less decrease to 

measurement accuracy at low currents by utilizing more of full-scale range of the ADC. 
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Amplification is needed because the DUT system cannot tolerate large voltage drops on 

already low voltage power rails that would happen with large shunt resistor values during 

load current spikes.   

 

ILOAD

+V_DUT_SUPPLY_RAIL

ANALOG-TO-DIGITAL 

CONVERTER

ADC_CHANNEL_1_DN

ADC_CHANNEL_1_DP

ADC_CHANNEL_2_DN

ADC_CHANNEL_2_DP
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---

+

-

+2P5V_VREF

X100

MCU 

FRAME SYNC 

& CONTROL 

< DAQ CARD >< DUT >

GND

RSHUNT

 

Figure 2.    A simplified high-side current and voltage sense circuit [15, p. 3] 

describing hardware division between a DUT and the DAQ card. Amplifier gain 

set resistors and negative feedback are omitted from the figure.  

 

Shunt resistor absolute value must be carefully selected by estimating maximum load 

current to meet DUT’s load regulation requirements and not to exceed dynamic input 

range of the DAQ card’s analog front-end (AFE) and the ADC, causing measurement to 

saturate and data to be invalid. Selection of the shunt resistor has significant effect on 

measurement accuracy, as too low value will result in a very small differential voltage 

over the shunt resistor and would not utilize full dynamic range of ADC and offset errors 

of amplifier and the ADC combined would be significant portion of measured result [15, 

p. 3]. Shunt resistor must also have a low temperature drift and good initial accuracy, 

preferably 0.5 % tolerance or less, to avoid inaccurate measurements without special 

shunt calibration process and when ambient temperature changes or the DUT is used in a 

thermal chamber for electrical validation purposes.  

In addition to offset and gain errors, due to circuit limitations measurements at near-zero 

current are more inaccurate as even rail-to-rail operational amplifiers are typically unable 

to drive output all the way to ground level when used in a single positive supply 

configuration. This can be observed for example in the Analog Devices ADA4528 

operational amplifier datasheet, which plots output low voltage versus output current [1, 

p. 10]. The ADA4528 was chosen for the DAQ card due to its low offset voltage error 
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and output noise characteristics. Since necessary external negative supply rail biasing or 

use of true-zero type amplifiers that would overcome the limitation were not implemented 

on the power measurement card hardware, the circuit design is unable to measure zero 

current precisely. Another major design limitation of this circuit is ability to perform only 

unidirectional current measurement. Bidirectional current measurement would be useful 

when measuring battery charging or USB power rail (VBUS) in on-the-go (OTG) host 

mode but would require a more complex AFE circuitry. For those measurements, battery 

and USB VBUS power rails are usually easily accessible with other external measurement 

instruments and do not require integrated support from a DUT, mitigating the DAQ card 

hardware limitation. 

A simplified hardware block diagram of the developed power measurement card is 

presented in Figure 3. The PnP DAQ card circuit is divided in three major functional 

groups. The AFE is responsible for differential input signal conditioning, input 

multiplexing and converting analog signals to digital sample values. Digital group 

handles circuit control signals, power management, communication and data processing. 

Both analog and digital groups have their own low noise supply voltage regulators 

consisting of a DC-to-DC boost converter stage followed by a low-dropout linear 

regulator (LDO). To further reduce switching noise coupled to supplies, more filtering is 

provided by ferrite beads on the individual LDO outputs. Used boost regulator input range 

accepts typical lithium battery chemistries with voltages from 2.7 V to 4.5 V, which 

means USB VBUS ranging from 4.75 V to 5.25 V or 5.5 V depending on USB 

implementation specification cannot be used directly [16]. The power measurement card 

can measure its own power consumption with a 16-bit integrated power monitor with a 

digital inter-integrated circuit (I2C) bus interface and a high-side current shunt resistor in 

series with the DAQ card power supply input. 
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Figure 3.   A simplified hardware block diagram of the developed power 

measurement card. Level of detail shows all the major integrated circuits, power 

rails, digital and analog interfaces and clocks. 
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Differential voltage from an external shunt resistor on a DUT is first going to an analog 

multiplexer component responsible of selecting group of eight signals from 16 inputs. 

Selection is done between two fixed groups of eight signals, effectively doubling 

available measurement rails from four to eight. After multiplexing, differential signals go 

to Analog Devices’ ADA4528-2 operational amplifiers [1] working in differential 

amplifier configuration performing analog voltage gain of 100 and converting signal to 

single-ended, also acting as a buffer driving the ADC input. Load side of the differential 

sense signal also bypasses amplifier stage and is directly connected to one ADC channel 

for load voltage measurement. This way the undesirable voltage drop on the current 

sensing resistor is not affecting load power measurement. By not doing buffering on the 

voltage channels, circuit size could be optimized at the cost of lower input impedance of 

AFE, which was not critical in this application as input is always from a low impedance 

power rail. If a more generic DAQ operation was required, operational amplifiers could 

be added to the voltage channels too. A Texas Instruments’ 24-bit ADS1278 ADC [14] 

was used on the power measurement card. It has eight differential inputs [14, p. 1], which 

are all referenced to a precision 2.5 V voltage reference (VREF) for input range of 0 V to 

5 V, input signal being within +/- VREF from the reference level as required by the 

ADS1278 [14, p. 3]. At current shunt sensing gain of 100, this gives maximum of 

approximately 50 mV voltage drop over a shunt resistor and 5 V for maximum 

measurable load voltage. The ADC samples all the eight inputs simultaneously measuring 

DUT’s power rail voltage and current synchronized in time. Four power rails are always 

measured at the same time and total number of available measurement channels is 

doubled by multiplexing input channels. This results in capability to measure up to eight 

power rails grouped in two alternating four rail time slots. Extract from the ADS1278 

specifications [14] can be found in Appendix C.  

The Atmel AVR32 architecture based AT32UC3A4 series microcontroller [7] and 

firmware running on it is responsible for controlling circuit components, data acquisition, 

writing and reading to a micro SD memory card with a 4-bit secure digital input output 

(SDIO) interface, I2C bus to an EEPROM and communicating with a PC via UART to 

USB connection. Block diagram and summary of the MCU specifications [7] can be 

found in Appendix B. A micro SD memory card stores measurement data in battery 

powered cordless use case. The MCU also operates a red indication light-emitting diode 

(LED) and three external general-purpose input/outputs (GPIOs), which are used for 

triggering data acquisition and two optional status LEDs on the DUT. The EEPROM chip 

has integrated I2C temperature sensor which is used for monitoring operational 

temperature of the DAQ card. The EEPROM is also used for storing calibration 

coefficients and unique serial number, which are remembered after power-loss due to 

non-volatile nature of EEPROM. The MCU is clocked from an external 27 megahertz 

(MHz) main oscillator (OSC) and a 32.768 kHz crystal (XTAL) for a real-time clock 

(RTC). The external 27 MHz clock is passed through the microcontroller’s clock phase-
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locked loop (PLL) to the ADC’s sample clock input so that the MCU can change 

operating frequency of the ADC through firmware.  

The power measurement card connects to a DUT with a 40-pin low profile Hirose DF40 

series board to board (B2B) connector. The B2B connector passes through MCU 

programming joint test action group (JTAG) signals, UART signals, external digital 

trigger signal for measurement control, eight differential analog sense signals, two digital 

GPIOs and a few ground pins. Physical size of the power measurement card's 8-layer 

PCB is 40 x 15 millimeters and SMD components are placed on both sides. Small size 

and tight integration with the DUT hardware, coupled with reasonably low average power 

consumption of 400 mW per a DAQ card as listed in Appendix A specification of the PnP 

DAQ card, enables truly portable operation while allowing measurement of multiple 

power rails. A combination, which was not possible with existing readily available 

commercial solutions. Smallest SMD component footprint used is 0201 imperial for 

selection of resistors and decoupling capacitors. The used operational amplifiers, gain 

setting resistors, critical filtering capacitors, voltage reference and ADC were all selected 

with a focus on low temperature drift characteristics. Due to selection of high-quality 

components, unit cost of a single DAQ card was approximately 150 euros in low volume 

production with total solution cost of measuring 32 power rails summing up to 

approximately 600 euros. This is still very competitive compared to other commercial 

solutions especially when the feature set is considered and could be significantly reduced 

in volume production or with architectural design improvements. A photo of the final 

revision PnP DAQ card hardware is presented in Figure 4.  

In total there were three hardware revisions, which were designed in parallel with 

firmware and PC measurement software development. First version PoC board design 

enabled validation of the design’s basic operation and firmware development, but 

extensive redesign of second revision boards added new features and changes, which had 

major impact on firmware design. Biggest changes were related to addition of EEPROM 

to store calibration information and redesign of analog front-end of the ADC. Third and 

final hardware revision was a minor correction to reduce unpowered input leakage and 

did not require any significant firmware changes.  
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Figure 4.   Photo of the final revision PnP DAQ card hardware shows both 

sides of PCB fully assembled with components. The PCB has 8-layer any-layer 

micro via high-density stack-up to meet demanding size requirements. 

 

3.2 A DUT system 

A simplified block diagram of the measurement system and a specific DUT platform is 

presented in Figure 5. Platform in this case means a product enabling development board 

used in product system design validation and not the final product FFD. Up to four DAQ 

cards are connect to the DUT with board to board connectors. In this specific case, the 

DUT has 32 current sensing shunt resistors in series with power rails. Measured rails 

could be for example a battery, SoC power rails supplied by PMIC’s switching converters 

or LDOs going to platform peripherals. Differential sense voltages over the shunt resistors 

are connected to the DAQ cards’ analog sensing inputs. The DAQ cards are powered 

separately from the DUT, through the DUT by connecting either an USB charging power 

bank or a wall charger capable of providing at least 1 ampere of peak current if four DAQ 

cards are used. This way power consumption of the DAQ cards does not affect DUT 

measurements in a significant way, although it should be noted that there is a few hundred 

µA current leakage to the DAQ card AFE. It is recommended that a low ripple switching 

DC-to-DC converter with a 4 V output and higher than 1 A peak current capability is used 
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to create the DAQ card supply on the DUT. Significant inrush current could be a problem 

when four DAQ cards are connected in parallel to same power supply and therefore a 

soft-start circuit is recommended. Power supply input switching noise effects are greatly 

reduced by the DAQ card’s two stage voltage regulation consisting of a boost switching 

converter followed by an LDO and ferrite bead filter.  

The DAQ cards’ UART interfaces go to a quad-channel UART-to-USB bridge chip and 

from there to a micro USB type B connector allowing data streaming and control with a 

PC measurement application. Start and stop of measurement can be triggered from the 

PC software over USB virtual serial port interface, a push button located on a DUT or 

from a platform SoC software controlled GPIO in active-low open-drain configuration. 

The UART connections should be power-gated with the DAQ card power supply 

preventing leakage to the DAQ card MCU pins when they are not powered. The DAQ 

cards limit input leakage current to analog sensing inputs when the DAQ card power 

supply is not present and do not require additional protection. Typical leakage current 

was measured to be below 100 µA per rail. While not optimal, this small leakage current 

poses no danger to either the DUT or the DAQ card hardware and allows normal operation 

of the DUT even without a DAQ card power supply. 

Alternatively, the DAQ cards can be used as a standalone measurement system, if a DUT 

is not designed to support embedded DAQ cards. A standalone board needs to provide 

power to the DAQ cards and have an UART converter for data USB connection to a PC. 

In this case, the DUT system must still have current sensing resistors and a way to connect 

sense signals to external systems, such as the standalone measurement system via wires, 

cables or a flexible PCB.  
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Figure 5.   A simplified block diagram of the developed power measurement 

system and how it is connected to a typical DUT. Each DUT is designed from 

the start to support the DAQ cards by having required supporting components 

and connectors. 
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4. DEVELOPMENT ENVIRONMENT 

This chapter introduces the used software development tools and the development 

environment. Hardware setup, such as a programmer and initial microcontroller 

evaluation board, is identified.  

4.1 Firmware 

Programming of the MCU firmware was done with an Atmel ICE JTAG programmer and 

software. Picture of the programmer is shown in Figure 6. [8] A DAQ card was installed 

on a purpose-built breakout board, which provided target device with power and allowed 

access to MCU’s JTAG programming pins. At first, the factory default bootloader was 

erased and then firmware was programmed and verified on the target device.   

 

 

Figure 6.   Atmel ICE JTAG programmer and adapter cables [8, p. 7] were 

used for programming the target MCU and doing in-system debugging. 

 

An Atmel Xplained series evaluation board [11] was used as a starter platform, on which 

firmware basic structure with UART debugging could be built and tested before the first 

proof-of-concept DAQ card hardware was available. Picture of the development board is 

shown in Figure 7. I2C bus functions and external GPIO interrupts were also implemented 

early on and were for the most part immediately working with the target hardware proving 

value of using an evaluation board for early firmware development to reduce hardware 

bring-up time significantly.  
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Moving the project from A3 revision MCU on the evaluation board to A4 on the target 

hardware required some modifications on the Atmel libraries because existing driver 

libraries were not yet fully compatible with the new A4 series. For the most part, A3 and 

A4 series are firmware compatible with each other [9], so moving project from 

AT32UC3A3256 to AT32UC3A4128 device was easy and did not take longer than a day. 

Most work was due to target MCU having less integrated flash memory than the one on 

evaluation board and therefore having slightly different configuration header files. 

 

 

Figure 7.   Evaluation board for AT32UC3A3256 microcontroller [11, p. 1] 

was used to start firmware development before target hardware was available 

bringing forward project schedule by a few weeks.  

 

Atmel Studio 6 integrated development environment (IDE) was used for developing 

firmware code, compiling binaries and programming MCUs. The Atmel Studio supports 

all of Atmel’s AVR and SAM series microcontrollers. The Atmel Studio allowed easy 

integration of Atmel Software Framework’s (ASF) ready driver libraries [9] to the C 

language project. In the end, the firmware project was upgraded to a newer Atmel Studio 

7 IDE version, which did not require any additional modifications. [10] 

Atmel provides extensive driver libraries for their microcontrollers. Included are many 

example projects demonstrating use of hardware peripherals helping developers to get 

started with their own firmware designs. Integrated support on the Atmel Studio helped 

with integrating needed ASF software libraries and keeping them up-to-date. Full ASF 

support for new MCU models can take some time and may require some manual 

integration work from the developer as was the case in this project work. [9] 
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4.2 PC measurement software 

Netbeans IDE was used for developing a graphical Java PC measurement software for 

the developed DAQ card. Netbeans’ built-in graphical user interface (GUI) builder tool 

was used for making a simple Java Swing user interface, requiring less manual user 

interface programming and decreasing total development time. [12] Downsides of using 

the GUI editor were ugly machine generated code blocks and hard maintenance of the 

GUI design making interface structure more difficult to modify in the future. Advantages 

of the GUI builder outweighed disadvantages in a one-man agile project, being the only 

way to meet aggressive delivery deadline when starting software development from a 

scratch.     

Pre-requisites for installing the developed software include virtual serial port drivers, 

which are needed for communication with a Future Technology Devices International 

Ltd. (FTDI) UART-to-USB bridge chip used between the DAQ cards and the PC [2].  

RXTXcomm Java libraries [5] were used for adding serial port communication support 

to the measurement application. The RXTXcomm library supports both Windows and 

Linux operating systems [5], and since it was the only third-party Java library needed, the 

developed PC measurement software has no problem supporting the required operating 

systems. 
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5. EMBEDDED FIRMWARE 

This chapter describes the power measurement card firmware design and functional 

implementation with the help of state and flow charts. Software resources are mapped to 

hardware requirements and Atmel ASF drivers [9] are utilized where applicable to reduce 

development time.      

5.1 Mapping HW/SW resources 

Firmware peripheral driver components from Atmel Software Framework libraries [9] 

were imported to project based on interfaces described in hardware block diagram in 

Figure 3  and microcontroller resources available [7, pp. 1-5], which can be found also in 

Appendix B extract from the MCU datasheet. These drivers implement functionality to 

utilize all the DAQ card’s hardware resources. High-level peripheral driver content 

diagram of the developed firmware is shown in Figure 8.  

 

UART I2C SSC SDIO RTCGPIO PLL

MCU FIRMWARE MAIN

DAQ CARD HARDWARE
 

Figure 8.   Firmware functions were built on top of the Atmel ASF peripheral 

drivers [9]. 

 

An UART interface handles serial communication with a PC measurement software over 

virtual USB serial port. PLL driver controls MCU main oscillator input and buffering of 

the clock output to the ADC. Measurement timestamp information is provided by RTC 

driver. SDIO driver utilizes a micro SD card in raw block data format for datalogging 

purposes. A synchronous serial interface is configured in a frame-sync mode to interface 

with the ADC data output. Some GPIOs were utilized for circuit control, and support for 

an external interrupt was added to trigger input signal. The firmware functions which used 

hardware peripherals were written on top of the ASF driver stack [9]. 
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5.2 Functional description 

A simple power management state machine of the developed MCU firmware is presented 

in Figure 9. The state machine has total of three states, which implement necessary 

functions controlling the hardware. After a power-on reset (POR) event, MCU enters 

‘init’ state in which hardware and digital interfaces are configured.  

 

INIT 

OK

TRIGGER 

EVENT

POWER-ON RESET

INIT

ACTIVEIDLE

 

Figure 9.  Power management state machine of the developed firmware. 

 

State transitions between idle and active states are controlled by a trigger event, which 

can be either an external GPIO interrupt or an UART command modifying state variable. 

The GPIO interrupt implements a simple one-second signal de-bouncing preventing any 

unwanted glitches caused by a button press. Based on actual user experience, the button 

de-bouncing worked well.  

Functional flowchart in Figure 10 shows how firmware executes ‘init’ state after POR. 

At first, power rails are enabled to meet power sequencing requirements of the hardware. 

Then MCU clocks are switched to an external 27 MHz oscillator and a 32 kHz RTC 

XTAL.  Next, UART communication is enabled and firmware begins to print out debug 

information regarding to power-up status. The MCU connects to several GPIOs, which 

are required to be in a pre-defined state. Firmware configures the pins from a default high 

impedance input mode [7, p. 19] to what is needed by the hardware implementation. The 

GPIO pins can have multiple different alternate functions multiplexed on them [7, pp. 8-

12], and they need to be mapped to the specific driver functions in firmware code.  
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Figure 10. Functional flowchart of the init state. 

 

A red colored status LED is turned on before more complex hardware interfaces are 

initialized, indication configuration is in progress. Firmware enables I2C bus and 

performs a simple self-check by trying to communicate with all I2C components and 

receive acknowledgements from their slave addresses. However, the slave device register 

content is not read and verified. After that, firmware enables SDIO interface and tries to 

establish communication with a micro SD memory card. Since the SD card is needed by 

following firmware operations by default, firmware halts execution and waits until the 

SD card is successfully initialized. Firmware periodically tries to power cycle the SD card 

until the SD card is successfully detected. A red LED remains on indicating user the DAQ 

card failed to initialize peripherals, and the SD card can be hot-plug removed or inserted 

at this point. After inserting a functional SD card, the firmware continues forward. After 

successful peripheral initializations, GPIO interrupts are enabled for external triggering 

support. A synchronous serial controller (SSC) is configured as a frame-sync interface 

between MCU and ADC [7, pp. 508-545], and the ADC is initialized to a correct 

operating mode with control GPIOs. Firmware then automatically enters ‘idle’ state and 

waits for interrupt by incoming UART commands or external trigger event.   
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Figure 11. Functional flowchart of the active state. 

 

Functional flowchart in Figure 11 shows ‘active’ state execution flow. When the firmware 

enters ‘active’ state, all ADC channels and frame-sync interface is enabled. After a short 

delay allowing ADC time to exit shutdown mode, measurement loop is started. MCU 

sends a synchronization pulse to the ADC starting conversion [14, pp. 27-28], while 

frame-sync interface is ready to receive data. A fixed delay is waited until ADC output 

data is valid [14, pp. 27-28], and eight successive samples from all eight ADC channels 

are read to a software buffer by polling SSC receive data register when data ready bit is 

set [7, pp. 508-545]. This was by far the most timing critical part of firmware code and 

required a lot of work to get it right, as MCU’s SSC block had trouble keeping up with 

ADC running at same 27 MHz clock as MCU without enabling hardware direct memory 
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access (DMA), which was not practical due to project schedule. An analog multiplexer 

(MUX) is then switched, and a fixed delay is waited until AFE stabilizes and ADC outputs 

stable data. Eight samples are again read from all channels to a software buffer by polling 

SSC receive data register. Analog mux is switched again to connect previous channels to 

the AFE. After reading analog inputs with main ADC, I2C power and temperature sensors 

and RTC time counter values are read.  

Raw ADC output data is post-processed by averaging eight consecutive samples to a 

single data value. Possible zero crossing in two’s complement data is detected and taken 

in to account while making averaging by a three-bit shift-right operation. Data is then 

written to a micro SD card, if it has not been specifically disabled by UART command. 

Measurement data is always streamed to the UART interface while performing 

conversion from two’s complement to one’s complement on the fly for main ADC data. 

At start of each loop iteration, breakpoint checks if state variable has been changed by 

either external GPIO interrupt trigger event or UART command. If trigger is received, 

firmware exits ‘active’ state and enters ‘idle’ state after completing the ongoing 

measurement loop cycle. Interrupts are disabled during a measurement loop iteration to 

prevent timing critical parts of the firmware execution from being halted by UART or 

GPIO event.   

YES NO

Disable ADC channels & SSC

NOPEnable ADC channels

Power Management State : Idle Mode

Power Management State : 

Active Mode

Trigger?

 

Figure 12. Functional flowchart of the idle state. 

 

Functional flowchart in Figure 12 shows ‘idle’ state execution logic. When firmware 

enters ‘idle’ state, status LED is turned off and all ADC channels are disabled for power 

savings with dedicated ADC channel shutdown control GPIOs [14, p. 29]. Firmware 

waits in a no operation loop until state variable change by trigger event is detected. After 
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loop break, the ADC channels are enabled, status LED is turned on and firmware enters 

‘active’ state.  

5.3 Configuration 

After POR event occurs and MCU is powered up, firmware switches internal low-

frequency oscillator to a 27 MHz external oscillator and configures RTC to produce time 

ticks at 1024 ticks per second rate using external 32.768 kHz XTAL as a reference. 

Firmware then performs MCU physical pin to function mapping and enables interrupt 

logic on UART receiver and external trigger GPIO. [7, pp. 1-19] 

The Texas Instruments ADS1278 ADC is controlled with a selection of GPIOs, which 

are used for selecting operating mode, data format, enabling sampling channels and 

synchronization to the rest of the hardware. Data from the eight ADC channels is 

configured in time-division multiplexed (TDM) dynamic mode by setting format pins to 

“011” and received by the MCU via a Synchronous Serial Controller (SSC) interface in 

a frame-sync mode. A 27 MHz main sample clock frequency of the ADC is generated by 

buffering MCU’s external 27 MHz oscillator with a PLL on the MCU. This allows MCU 

to synchronize precisely with the ADC and select desired sampling clock frequency 

depending on the ADC configuration used. Mode pins are set to “10” and clock divider 

to ‘1’ to select ADC low-power mode and maximum of 27 MHz clock. All eight ADC 

channels are enabled by setting logic ‘1’ on each active-low power-down pin. 

Configuration bits are explained in detail in the ADS1278 datasheet. [14, pp. 26, 30, 33]   

The MCU’s SSC frame-sync interface is configured by setting appropriate bits in the SSC 

configuration registers for a 24-bit data length and frame-sync signal active-high pulse 

polarity. These registers are explained in Atmel AVR32UC3A series datasheet. [7, pp. 

508-545] The SSC is also configured to meet timing requirements of the ADC as 

described in ADS1278 datasheet. Active-low sync pulse allows MCU to synchronize 

ADC to switching event of an analog multiplexer in the ADC input path. This sync pulse 

can be asynchronous to the ADC clock if one clock cycle variance is allowed in delay to 

valid output data. After each sync pulse, a fixed delay of at least 128 clock cycles is waited 

before ADC sample data is valid and received by MCU. This requirement is detailed in 

ADS1278 datasheet and extract from it in Figure 13, which can also be found in Appendix 

C. [14] 
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Figure 13. Frame-sync protocol timing requirements of Texas Instruments 

ADS1278 analog-to-digital converter set timing constraints to firmware 

implementation [14, p. 28]. 

 

Microcontroller’s I2C master was configured to work at 400 kHz frequency. There were 

some minor differences in communication protocol required by the I2C power monitor 

and EEPROM ICs, which meant some modifications to the example ASF I2C source 

codes [9] had to be done taking in to account for example a repeated start condition. 

The UART interface was configured at baud rate of 1.152 Mbps, which was tested to be 

the highest working speed when used with a FT4232H quad UART-to-USB bridge. Other 

parameters were set as no parity bits, normal polarity and eight data bits. The UART 

receive was handled by interrupt routine while transmit was done blocking way by 

polling. 

Simple software de-bouncing was added on external trigger pin, which was configured as 

interrupt event when voltage level transitions from high to low. DUT system connects to 

the trigger pin via open-drain transistor, pull-up resistor being on the DAQ card side. 

Measurement is triggered on or off if MCU side pin is low for one second or more. 

Retriggering will not happen until pin state has returned to high and again low over one 

second de-bouncing period, preventing accidental multiple triggers by driving trigger 

signal low for long durations.    

Microcontroller interfaces to a SD memory card via a 4-bit data width SDIO bus. SDIO 

driver automatically detects highest supported speed of the memory card. Physical hot-

plug detect feature was not used and card detection was done by polling in initialization 

phase of firmware after POR event.    
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Voltage regulator power sequencing and timing for SD card and analog front-end proved 

challenging as having up to four cards in parallel powering up at the same time caused 

significant inrush current from DAQ card’s power supply seen in measurements 

performed with hardware. The DAQ card hardware provided minor soft-start 

functionality with a resistor and a capacitor delayed enables of voltage regulators, but 

additional measurements and firmware timing changes were done to minimize startup 

current. This improved functionality with some of the cheaper USB power bank models, 

which would otherwise trigger current limitation and the DAQ card’s boost voltage 

regulators would fail to start. When used with a wall charger or power supply capable of 

delivering at least one ampere of current, cards would always start reliably even before 

soft-start delays were added.   

5.4 Arithmetic calculations 

This section details various arithmetic calculations, which are performed by the 

developed DAQ card firmware and the PC measurement software. Firmware needs to 

convert raw ADC data, which is in two’s complement format, to one’s complement for 

other calculation. The ADC’s ideal output codes related to input voltage levels are 

detailed in ADS1278 datasheet and in Figure 14 . [14, p. 24] 

 

 

Figure 14. The ADS1278 ADC’s input signal ranges and corresponding ideal 

digital output codes assuming no error sources [14, p. 24]. 

 

Firmware converts raw ADC sample data before pushing it to the PC measurement 

software via UART. Because the 24-bit ADC inputs are referenced to a VREF instead of 

ground, the data range is from -8388608 to 8388607 zero point being at 2.5 V VREF 

input. Negative two’s complement values are detected by checking if they are higher than 

0x7FFFFF in value meaning the most significant bit is one. If the two’s complement value 
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is negative, the negative sign is printed to the UART connection and conversion to one’s 

complement is done by executing bitwise exclusive-or operation with 0xFFFFFF and the 

data and adding one. Positive values can be printed without conversion. UART message 

format used is signed decimal values represented in American Standard Code for 

Information Interchange (ASCII).  The conversion of raw ADC sample data is done with 

C language code presented in Program 1. 

 

When firmware performs averaging of eight ADC samples, a bit-shift right by three bits 

is executed instead of a division to potentially optimize performance. Program 2 shows 

the C language code for the shift operation. A bit-shift operation can be used here, and its 

performance does not rely on compiler utilizing hardware divider unit, if available. 

 

The PC software receives ADC sample data ranging from -8388608 to 8388607. Digital 

output code is converted to voltage V with Equation (3), which is partially given in 

ADS1278 datasheet [14, p. 24] and Figure 14 and modified to include analog input 

reference offset of DAQ card hardware design. 

𝑉 = 𝐴𝐷𝐶𝑐𝑜𝑑𝑒 ∗ (
𝑉𝑟𝑒𝑓

223−1
) + 𝑉𝑎𝑖𝑟𝑒𝑓 ,        (3) 

1 
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// Get 24-bit ADC’s raw two’s complement data 
uint32_t adc_data = adc_data_twosc; 
 
// Detection of negative two’s complement value (MSB ‘1’)  
if( adc_data > 0x7FFFFF ) 
{ 

// Print negative sign to UART 
uart_print( “-“ ); 
// Conversion to ones’ complement 
// Exclusive OR operation 
adc_data ^= 0xFFFFFF; 
// Add one 
adc_data += 1; 

} 
// Print to UART as ASCII string 
uart_print( adc_data ); 
 

Program 1. Conversion of 24-bit two’s complement ADC sample output data to ones’ 

complement and printing to UART interface in ASCII string format. 

1 
 
adc_averaged_sample = adc_eight_samples_sum >> 3; 
 

Program 2. Divide by eight by doing a three-bit shift-right operation. 
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where ADCcode is a digital output code value from the ADC, Vref is reference voltage of 

the ADC, and Vairef is analog input reference voltage connected to negative pin of 

differential input of the ADC channel. For example, when the ADC digital output code 

reads 2796000, Vref is 2.5 V and Vairef is set to 2.5 V by the DAQ card hardware design, 

the Equation (3) gives voltage of approximately 3.33 V. Current Ishunt flowing through 

shunt resistor is calculated with Equation (4) based on Ohm’s law Equation (1) and 

including voltage gain Av of added amplifier in the signal path. 

𝐼𝑠ℎ𝑢𝑛𝑡 =

𝑉𝑠ℎ𝑢𝑛𝑡
𝑅𝑠ℎ𝑢𝑛𝑡

𝐴𝑣
  ,           (4) 

where Vshunt is voltage over shunt resistance Rshunt and Av is the ADC input amplifier 

voltage gain, which is set by the DAQ card hardware to a fixed value of 100. For example, 

when voltage over shunt is 2.5 V and the shunt resistance is 25 mΩ, the Equation (4) 

gives a current value of 1 ampere. Power rail voltage measurement error is removed and 

final calibrated rail voltage Vcal is calculated by applying gain and offset correction 

coefficients with Equation (5). 

𝑉𝑐𝑎𝑙 = 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∗ 𝐴𝑐𝑎𝑙 + 𝑉𝑜𝑓𝑓𝑠𝑒𝑡  ,       (5) 

where Vmeasured is voltage measured by ADC, Acal is gain correction coefficient and Voffset 

is offset error correction coefficient. Similarly, shunt current calibration is done by 

applying gain and offset correction coefficients by Equation (6). 

𝐼𝑐𝑎𝑙 = 𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∗ 𝐴𝑐𝑎𝑙 + 𝐼𝑜𝑓𝑓𝑠𝑒𝑡  ,       (6) 

where Imeaasured is measured shunt current, Acal is gain correction coefficient and Ioffset is 

offset error correction coefficient. Calibration procedure is further explained in Chapter 

5.6. 

5.5 UART API 

To support command and control of the DAQ card from a PC measurement application, 

a simple UART API was implemented. The API contains 17 basic commands, each meant 

to enable required base functionality for targeted use cases. More commands are easy to 

add to firmware UART receive parser if additional features are needed in the future. The 

supported firmware UART API commands are listed in Table 2. 
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Table 2. Supported UART API commands of the developed power measurement card.  

# Command Description 

1. Software system reset 

2. Trigger (toogle) 

3. Trigger (start) 

4. Trigger (stop) 

5. Read SD card content 

6. Reset RTC counter 

7. SD card writing (disable) 

8. SD card writing (enable) 

9. Read EEPROM content (all) 

10. Clear SD card data 

10. Read SD card type and size 

12. Force slow SD card read speed  

13. Read system status register  

14. LED (on) 

15. LED (off) 

16. Read EEPROM register 

17. Write EEPROM register 

 

Each ASCII format string command packet consists of three parts. First is the command 

code, then the parameter code and finally the data. The commands are terminated with a 

‘\r’ carriage return escape sequence. When firmware receives a command, a 

corresponding reply is sent back to the host application. All reply packets start with a 

string “!R” for easy parsing on the receiving PC software side. A return packet specifies 

received command code, and if the command was a data query, corresponding data is also 

sent. Table 3 describes command and Table 4 reply packet format. During active 

measurement, data packets are always pushed to UART by firmware. Data packet format 

is different from commands, and message is surrounded with starting ‘[‘, and ending ‘]’ 

brackets and has fixed positions for voltage and current measurement results from all 

eight channels separated by dots as delimiters. Packets being pushed to UART without a 

request command from the PC software is by design to reduce downstream traffic from 

the PC host and maximize the upstream data rate, which is crucial to performance of the 

DAQ card. Streaming data packages are identified with brackets and have a fixed format 

with a specific amount of separator characters for easy parsing and basic error detection. 

There is no error detection or checksum calculation built-in to the firmware, so this falls 

entirely to the PC application’s responsibility. To make communication more robust, 

error checking could be added to the commands in future. This is not strictly required 

though, as the system proved to work without glitches by relying on basic sanity checks 

of received data format and value ranges by the PC application.  
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Table 3. ASCII string format of the DAQ card UART command packets. All command 

packets are terminated with a carriage return escape sequence. For certain 

command packets, the data field may be longer than a single byte. 

START CMD ID DELIMETER PARAM DELIMETER DATA STOP 

C 12 < DOT > 34 < DOT > 56 \r 

CHAR 

HEX 

1 BYTE CHAR 

HEX 

1 BYTE CHAR 

HEX 

1 … n BYTES 

CARRIAGE 

RETURN 

 

 

Table 4. ASCII string format of the DAQ card UART reply packets. All reply packets 

are terminated with a carriage return escape sequence. For certain reply 

packets, the data field may be longer than a single byte. 

START DELIMETER CMD ID DELIMETER DATA STOP 

!R < DOT > 12  < DOT > 34 \r 

2 CHARS CHAR 

HEX  

1 BYTE CHAR 

HEX  

1 … n BYTES 

CARRIAGE 

 RETURN 

 

5.6 Calibration 

The DAQ card firmware was built to support calibration of both voltage and current 

measurement during manufacturing by storing calibration coefficients to I2C EEPROM. 

Calibration is divided in two main components, the offset and the gain error. Maxim’s 

application notes detail how these error sources affect unipolar ADC measurements, 

which is the configuration used in the designed DAQ card. Figure 15 illustrates how 

negative and positive offset errors reduce dynamic range of the ADC. [6] 
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Figure 15. Negative and positive offset errors reduce unipolar ADC full-scale 

input voltage range as explained by Maxim Integrated in an application note 

[6]. 

 

To calculate calibration coefficients for offset and gain, each DAQ card had to be 

individually tested against a reference instrument. By measuring voltage at two or more 

steps, coefficients can be calculated to first remove the offset and then adjust gain to 

match more closely ideal ADC. Figure 16 illustrates this process of eliminating offset and 

gain errors. In the case of the developed DAQ card, measurement error is driven by initial 

offset error when ADC input is low, and gain error dominates as input increases closer to 

maximum. On all tested DAQ cards, voltage measurement channels had a small positive 

offset error and current measurement channels had a small negative offset error. Initial 

gain errors were typically below 0.5 % of ADC full scale range. [6]  
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Figure 16. Gain and offset errors of an ADC can be measured, and software 

calibrated to improve measurement accuracy [6]. 

 

It is important to note that depending on hardware component thermal drift 

characteristics, the measurement instrument output may drift over ambient temperature 

change. For this reason, it may be required to make calibration measurements at a few 

different ambient temperatures. The DAQ cards were calibrated in a typical operating 

temperature of approximately 40 degrees Celsius (°C) and low thermal drift components 

guaranteed staying within specifications at operating temperature range from -20 to 60 

°C. This was validated by thermal chamber testing. When correct coefficient values are 

known, they are written to EEPROM memory chip by sending EEPROM data write 

commands from PC software to DAQ card firmware. The firmware automatically verifies 

that EEPROM register value is successfully written by reading it back and comparing to 

given data input. Each of the eight measurement channels has its own gain and offset 

coefficients. Similarly, current measurement offset and gain errors can be found by 

measuring two different test currents at opposite ends of input range, calculating 

coefficient values and writing them to EEPROM. Calibration coefficients for all voltage 

and current measurement channels are read by PC software when it is started, and 

coefficients are applied to all data received from the DAQ card. This means the 

responsibility of applying calibration is of the host PC application, and DAQ card only 

sends raw ADC data out. The coefficients are applied according to Equation (5) and 

Equation (6) in Chapter 5.4. In the developed measurement system, only one gain and 

offset coefficient was used for each voltage and current channel. This could be improved 

in future designs with multiple coefficients covering different parts of the input range and 

operating temperature for greatly enhanced measurement accuracy. 
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6. PC MEASUREMENT SOFTWARE 

Power measurement card PC measurement software was written with Java programming 

language utilizing graphical Swing libraries. Use of Java enabled easy portability of 

software to both Linux and Windows operating systems. Focus with PC software was to 

keep it simple and provide only necessary features for planned measurement use cases. 

 

MEASUREMENT SOFTWARE (JAVA)

SERIAL

PORT

SERIAL

PORT

SERIAL

PORT

SERIAL

PORT

SWING

GUI
MAIN

RXTXcomm LIBRARY

FTDI USB DRIVERS

 

Figure 17.  Instance diagram of the developed PC measurement application. 

 

High-level instance diagram of the developed Java PC application is shown in Figure 17. 

Application consists of main class, Swing GUI and four serial port class instances which 

interact with external RXTXcomm library [5] enabling communication with up to four 

DAQ cards. Each of the serial ports handles received data writing to a CSV format log 

file and pushes data to the Swing GUI updated four times a second to keep it human 

readable. Updating the shown values too fast would make it hard to read. Serial port 

instances perform 32 consecutive samples moving averaging of real-time measurement 

data shown to user on Swing GUI to further improve human readability. Main class 

instantiates the GUI and serial port classes, controls GUI updating and has functions for 

automating serial port writing to support production automation tasks. Swing GUI also 

handles user interaction by detecting mouse presses of buttons.     
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6.1 Features 

Priority in development of the PC application was first to enable critical debugging 

functionality, and later to add support for enough features to perform simple monitoring, 

control and measurement tasks with a clean looking graphical user interface. The PC 

application also proved vital for unit testing and calibration, not just debugging work 

during firmware development. Secondary benefit of the PC application was ability to 

show off more interesting live demos to promote the new DAQ system for interested 

parties. They would not have to make their own user interface, if they chose to start using 

the DAQ cards. Main features of the first PC software release are listed in Table 5.  

Table 5. Features of the developed PC measurement software 

# Feature Description 

1. Graphical user interface 

2. Data logging to CSV files with µV/µA resolution 

3. User configurable power rail names, shunt values and serial ports with a text file 

4. Built-in serial terminal and command shortcuts 

5. Production scripts for writing EEPROM registers 

6. Support of applying DAQ card calibration coefficients 

7. Real-time monitoring of voltage, current and power measurements 

8. Windows and Linux operating systems support 

 

Power rail names and shunt resistor values are configurable by user with a simple text 

file. Serial ports are also configured with a text file of their own. Configuring the serial 

port order had to be done manually by checking DAQ card serial numbers printed on PC 

software’s serial terminal. This was the most difficult step in setup process and had to be 

explained very well in user manual. Automating serial port setup could be a good addition 

in future software versions.    

Application provides raw data logging capabilities to CSV files. Real-time measurement 

data can be monitored for all available channels. Built-in serial terminal prints out serial 

messages from four DAQ cards and it is possible to control DAQ cards with UART API 

commands directly from terminal or with UI button macros. 

To speed up production of DAQ cards, support for automated EEPROM register writing 

was implemented on the PC software. This enabled for example writing calibration 

coefficients and serial number to EEPROM automatically from a text file. PC software 

supports reading calibration coefficients from DAQ cards and applying them to data, 

producing ready calibrated output for users.  
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The developed PC application was successfully tested on 64-bit Windows 7, Windows 

8.1, Ubuntu 12.04 LTS and Ubuntu 15.04 LTS. Other operating systems would likely 

work as well if Java JRE7 or newer and serial port adapter drivers are available.  

6.2 Graphical user interface 

Graphical user interface of the developed PC software was designed to be clean and 

simple looking supporting only the minimum features required for measurement and 

debug tasks. To keep the system easy to use, measurement process was made very simple 

requiring minimal user interaction. To perform measurements, user only needs to start the 

software, press a button on GUI couple times and close the software. First time 

installation of software requires installing FTDI drivers [2], Java runtime and copying 

RXTXcomm library file [5], and setting up virtual serial ports to match the FTDI bridge 

on DUT hardware.   

After starting the software by running a batch file or directly from terminal on Linux, user 

is greeted with GUI which defaults to monitor tab. On this tab, moving average real-time 

data can be monitored from all available measurement channels. Update interval of the 

GUI was set as four times a second and averaging to 32 samples, resulting in moving 

average of roughly one second at the typical sample rate of the DAQ cards. Faster update 

rate was tried through iterating various speeds, but more than four times a second made 

it hard for human to read and provided no benefits as data is anyway stored at full sample 

rate in the background.   

On the monitor tab, user can see measured voltage and current with calculated power 

value. Each power rail is identified by a name corresponding to hardware schematic net 

name, defined in a separate configuration text file.  Other miscellaneous information such 

as how many samples are received from each DAQ card, what is the DAQ card 

temperature and current RTC timestamp value and detected communication error count 

by PC software are also shown on this tab. Monitor tab has the mostly used command 

shortcut buttons for triggering measurement, clearing RTC values and resetting DAQ 

cards from software for user convenience. Based on user feedback, a button for automatic 

60 second measurement was also added to this tab. Each of the four DAQ cards are color 

coded with red, orange, purple and green to match terminal text colors on terminal tab. 

Monitor tab of the developed PC software graphical user interface is shown in Figure 18.  
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Figure 18. Monitor tab of the developed PC application shows user latest 

averaged measurement results and ability to control measurement hardware 

using command shortcut buttons. 

 

Integrating terminal to the PC software was mainly driven by debug use requirements 

during firmware development. In the end, it proved to be valuable to end users as well, 

being able to see the UART responses coming from DAQ cards. Button shortcuts for 

more advanced UART API commands were also placed on this tab for both the 

developer’s and more advanced user’s convenience. Terminal tab is shown in Figure 19. 
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Figure 19. Terminal tab of the developed PC application shows serial terminal 

outputs from measurement hardware and allows manual sending of commands 

mainly for development purposes.  

 

The settings tab was included mostly for future use, enabling more advanced features and 

settings configuration by user. Currently it only has controls for enabling and disabling 

printing of raw data packets to terminal from each DAQ card, which was useful during 

development. About tab included contact and version information of the PC software. 

Addition of more tabs to the developed software is very easy, if new features are needed 

in the future.  
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7. MEASUREMENT RESULTS 

Characterization measurements were done to validate accuracy and operation of complete 

power measurement card hardware, firmware and software design. Laboratory 

instruments such as Keysight 34401A 6.5-digit digital multimeter and a Keysight DC 

power supply were used as reference instruments. A breakout board supplying power and 

exposing DAQ card analog inputs was used as a validation vehicle, to which external 

shunt resistor between power supply and load was wired. Key results from 

characterization measurements are shown in Appendix A power measurement card 

specifications. Only the most relevant characterization measurements regarding firmware 

and software design are detailed in this chapter, because focus of this thesis work is not 

the hardware implementation.       

7.1 Voltage measurement accuracy 

A Keysight 34401A 6.5-digit digital multimeter was used as a reference instrument. A 

unit-tested and calibrated DAQ card was installed on a breakout board powered from an 

USB power bank and connected to a PC with USB for real-time measurement data 

streaming. A few minutes was waited for the DAQ card to reach typical operating 

temperature of 40 °C. Test voltage supplied from a DC power supply unit was applied on 

the DAQ card voltage measurement channel inputs, while measuring it with the Keysight 

DMM connected in parallel. Test voltage was swept from 0 mV to 4096 mV in increasing 

steps, and the difference in voltage measured by the DAQ card and the DMM was 

recorded. Measurement setup used in the DAQ card voltage measurement accuracy 

characterization is presented in Figure 20. 

Figure 21 shows that DAQ card voltage channels measured test voltage with better than 

±300 µV accuracy. Other four channels are analog multiplexed to same inputs and have 

practically same measurement accuracy based on characterization measurements. 

Multiplexing does not have significant effect on the accuracy when switching timing 

gives enough time for output voltage to stabilize. All DAQ cards are unit tested to meet 

±1 mV accuracy on all channels, so this unit was within specifications with a good margin. 

This result meets project requirements and is within design expectations. 

Additional testing revealed there was no significant drift in measurements when operating 

temperature was swept from -20 °C to 60 °C in a thermal chamber, validating DAQ card 

low temperature drift component selection performance. The low thermal drift allows use 

of embedded DAQ cards even when the whole DUT is placed in a thermal chamber for 

electrical validation work. 
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Figure 20. Measurement setup used in the DAQ card voltage measurement 

accuracy characterization consisted of a power supply unit and a voltmeter. 

 

Figure 21. The DAQ card voltage measurement accuracy characterization 

results from all four of the ADC channels used for voltage measurements. 

 

7.2 Current measurement accuracy 

Measurement setup used in the DAQ card current measurement accuracy characterization 

is presented in Figure 22. A Keysight 34401A 6.5-digit DMM was used as a reference 

ammeter instrument. A unit-tested and calibrated DAQ card was installed on a breakout 

board powered from a USB power bank and connected to a PC with USB for real-time 

measurement data streaming. A few minutes was waited for the DAQ card to reach typical 
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operating temperature of 40 °C. Test current supplied from a DC power supply unit was 

applied on a test load, which was a programmable current sink. Positive and negative side 

of an external 20 mΩ 0.1% tolerance precision shunt resistor were connected to the DAQ 

card measurement inputs. The DC power supply provided adjustable test current flowing 

through test load and shunt resistor connected in series. The Keysight DMM was 

connected in series with the load current path and used as a more precise reference 

instrument. Load current was swept from 0 mA to 1638.4 mA in increasing steps and 

difference measured by the DAQ card and the DMM was recorded.  

Selection of current shunt resistor value has significant effect on minimum accurately 

measurable current. With a 20 mΩ shunt resistor, the DAQ card typically has better than 

1% absolute measurement accuracy after 50 mA of current as is seen in Figure 23, when 

precision shunt resistor is used. This is within design expectations and could be further 

improved with better calibration, although this was enough to meet the project 

requirements in this specific case. All produced DAQ card units were tested to pass the 

±3 mA current measurement accuracy specification with a 20 mΩ shunt over the full-

scale input range. Common-mode performance was also validated by sweeping input 

voltage over the whole input range and comparing current measurement to a precision 

DMM. Results showed similarly good correlation with both instruments over the whole 

input voltage range.   
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Figure 22. Measurement setup used in the DAQ card current measurement 

accuracy characterization consisted of a power supply unit, an ammeter, a 

precision shunt resistor and an adjustable constant current sink. 
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Figure 23. The DAQ card current measurement accuracy characterization 

results with a 20 mΩ shunt resistor.  
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8. SOFTWARE ISSUES AND SOLUTIONS 

Various programming mistakes were found, root causes were identified, and appropriate 

solutions were implemented during the DAQ card firmware and PC software 

development and testing. The most critical firmware problem was discovered at a very 

late stage of doing final unit testing. In the measurement loop, firmware adds up eight 

consecutive ADC samples to a single 32-bit integer variable. The sum is then divided by 

eight to perform averaging. Because raw ADC sample data is in two’s complement 

format, and when there was a zero-crossing at middle point of the ADC input range during 

the eight-sample period, averaging by eight by shifting data right three bits produced 

unexpected results. In a typical use, this situation is unlikely to show up as averaging 

period is short, and the zero-crossing needs to happen during it. However, one of the unit 

testing voltages was selected at this strategic 2.5 V value, which is the reference voltage 

of ADC and zero-crossing point of two’s complement data, and some cards started to 

show odd results. More debugging revealed this happened only when the ADC input was 

precisely half of the full-scale input range, so that there is a good change to have a zero-

crossing event below and over the middle point. As a quick workaround, firmware 

performed a zero-crossing detection before doing averaging and took appropriate 

measures to prevent data corruption. This method proved successful eliminating the 

problem and was validated by checking raw input and averaged data on zero-crossing 

events in both directions. 

One hard to debug problem occurred when firmware was streaming contents of SD 

memory card over UART interface. During this operation, microcontroller responded to 

none of the UART interrupt commands it received. This was a minor issue with impact 

of causing possible inconvenience to some users in rare situations as operation resumed 

normally when data streaming from the SD card was over. Therefore, it was decided not 

to spend time fixing it and instead document the bug clearly in user manual. It is still the 

only known bug in the shipping firmware version more than half a year later.  

Second SD memory card related problem was related to the speed the content was being 

streamed over UART. Since hardware used no flow control because of limited connector 

pin count, it was possible to lose big chunks of data due to buffer overflow occurring on 

the UART bridge chip. Simply slowing down the data streaming by adding more loop 

delay solved the issue. If a different UART to USB bridge chip with a smaller receive and 

transmit data buffer is used, the SD card reading might have to be slowed down more. As 

a backup solution for future, a new UART API command was added to reduce SD card 

reading speed if problems were to occur with the default speed. The SD memory cards 

also had unexpectedly wildly varying write latencies, sometimes a write operation taking 

longer than multiple sample periods. This unpredictable behavior was a significant issue 
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especially with some of the cheaper SD memory card models. By picking the best SD 

memory card within reasonable cost, with least write latency variation, was good enough 

for this application but could prove to be architectural pitfall if not prepared for. Other 

memory storage options with fixed or less varying write latencies should be used if faster 

and more predictable measurement sample rates are needed, or at least provide a larger 

external buffer memory allowing larger block writes to the SD memory card mitigating 

some of the latency variations.   

Most of the PC measurement application issues were related to graphical elements acting 

unexpectedly on certain operating systems. Especially Ubuntu Linux proved problematic 

by overriding interface text elements with its own larger default font causing visual 

problems to occur on a software build, which looked as intended on a Windows system. 

Another issue related to serial data receiving was never fixed, as sometimes a single 

received data packet would not get passed to the PC measurement software until next one 

was received. This may be a library issue with the RXTXcomm or odd behavior by the 

FTDI serial driver. Thus, it may cause minor inconvenience at times when using UART 

API commands manually but is otherwise insignificant issue as no received data is lost. 

As a workaround, a flush command could be added to the UART API sending a dummy 

packet and pushing the last valid data packet through. 
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9. PROJECT EXECUTION 

Preparation for firmware development started before project requirements were fully 

known and a proof-of-concept target hardware was not yet available. Evolving system 

requirements were implemented in agile manner, selecting options which were sometimes 

faster but not necessarily better is terms of system complexity and cost.  Project schedule 

is outlined in Table 6. 

 

Table 6. Actualized project execution timeline. 

# Month Project milestone 

1. Firmware development on a development board 

2. Proof-of-concept hardware available 

3. PC measurement software development 

4. Combined HW/FW/SW validation with a new HW revision  

5. First stable FW/SW release  

6. Measurement accuracy characterization completed with final HW revision 

7. Production and delivering measurement systems to customers 

 

First few weeks of firmware development was done on a development kit of previous 

revision AVR32UC3A3 microcontroller, which was the closest available option and 

software compatible for the most parts with AVR32UC3A4 device on the target 

hardware. [7] During this time, all required Atmel Software Framework driver libraries 

[9] were imported and basic structure of firmware state machine was prepared. Out of the 

serial interfaces, UART and I2C could be fully enabled in this phase. When target 

hardware was available, project was converted to the A4 device. The Atmel Xplained 

evaluation board used in initial development [11] had the MCU in a different package. 

Because of this, and a custom pinout of the target board, almost all GPIO pin to function 

mappings had to be redone when moving to target hardware. Thanks to abstracting GPIO 

pin mapping and code variable names on a header file early on, this was easy task and 

required no changes on bulk firmware code. In total, there were three hardware revisions 

starting from early proof-of-concept work, an extensive redesign and final issue solving 

round. Major changes in firmware code needed to be done for the redesigned board 

revision.  

Debugging target hardware issues same time as enabling more complex firmware 

functions such as SDIO interface proved challenging. Especially SSC frame-sync 

interface with ADC was problematic, losing sync after only a few samples, and 

implementation was changing almost every week trying to find a way to overcome this. 



45 

Luckily the less than optimal SSC implementation proved stable and working even in a 

small-scale volume production. In total, firmware development, testing and issue solving 

took approximately three months.  

Development of PC software started when firmware was close to feature complete stage. 

If a basic application template would have been ready earlier, development of the 

firmware would likely have been faster as PC measurement software proved crucial for 

testing of the whole measurement system. Development of the PC software took 

approximately two months from start to finish and final touches to it were done as late as 

production unit testing of the DAQ cards. The PC software continued to improve after 

shipping of hardware. Firmware development was prioritized first, as doing firmware 

updates after shipping hardware would not be a trivial task. Development of the Java 

Swing based PC application proved relatively easy task compared to the DAQ card 

firmware and there were no significant issues at any phase of the development.  

When complete measurement kit with user manual was nearing completion, some kits 

were given to users with similar technical background as the expected user base but had 

no previous experience with neither the DUT hardware nor the developed measurement 

system. This refined documentation further and proved the system met usability 

requirements, as people succeeded in installing the kit and started first measurements 

within the first hour. The DAQ card measurement accuracy was verified by other users 

and it met their expectations, replicating some of the characterization measurement results 

done during the DAQ card development.    

Initially planned project schedule of five months could not be met due to combination of 

a needed new hardware revision and overly-optimistic initial expectations resulting in a 

two-month extra delay before whole measurement kit was ready. This delay however 

significantly improved quality of both the hardware and software deliverables. Good 

quality deliverables resulted in positive feedback from users and no significant issues 

were found during the project. Effort of documentation, characterization and production 

unit testing was also underestimated, and the amount of work surprised as documentation 

and testing took two months in total for two persons. This was a valuable learning and 

measures can be taken to prepare better in the future projects by starting documentation 

in parallel to design work.  

Probably the biggest challenge in the whole project was how to make users comfortable 

with the new measurement instrument and trust its results. Often people would prefer 

using older, more limited and even worse-performing instruments, because they were 

used to it and grown to trust it. With time and sharing extensive characterization results, 

and helping users to replicate them, users started to build trust on the new measurement 

system. Having more detailed data from platform subsystems than was possible before 

allowed to identify new problems with DUT’s power management software code and 

some would not like the new measurement system because the results were not what they 
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wanted to see. Some people would rather question the new measurement system instead 

of being open-minded to solving the real issues found, but thankfully they were only the 

loud minority. The benefits of the measurement system were validated when it was used 

to optimize power consumption of a real product development board, which ultimately 

met its challenging power consumption targets. The measurement system also received 

good feedback and few improvement ideas to better accommodate platform software 

engineer’s needs.  
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10. CONCLUSIONS 

Overall, the project was a challenging experience, but for the most part it was completed 

without major problems during development. At times, solving a certain issue took a few 

days, but in the end a working solution was always found, and the project could continue 

forward towards shipping to users. Some of the more notable problems during the project 

were debugging target hardware during firmware development, unit testing in small-scale 

volume production and microcontroller’s frame-sync functionality at high speeds 

required by the specific ADC chip. The amount of needed design collateral 

documentation for a measurement instrument, which had to be completed before any 

measurement kits could be delivered to users, was also a surprise and can be better 

planned for in the future projects. In total, the project took seven months to complete from 

start to finish. Most of the time was spent in firmware development, but a few months 

was spent also developing the PC measurement software, characterization testing and 

documentation to provide customers a ready and validated measurement kit. Table 7 

summarizes the project works, development time, challenges and results.  

 

Table 7.  Summary of the project goals, schedule, results and notable challenges. 

Project 

goals 

Create a firmware and a PC measurement software for the PnP DAQ card and 

meet project requirements regarding functionality, measurement accuracy and 

usability. 

Schedule Firmware: 3 months 

PC measurement software: 2 months 

Testing: 1 month 

Documentation: 1 month 

Results  The PnP DAQ card functionality, measurement accuracy and usability met 

project requirements, but the project was delayed by two months to 

accommodate a new hardware revision with design fixes. 

Notable 

challenges 

Atmel AVR32’s SSC functionality and configuration 

Voltage regulator power sequencing and inrush current 

SD memory card read/write latency 

Firmware timings and how they affect ADC measurement accuracy 

Firmware development started without target hardware 

Debugging target hardware during firmware development 

Initial project schedule was too optimistic 

Division of work between developing and documenting  

Unit testing and calibration in production 
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Project tasks included developing firmware and a PC measurement software for the DAQ 

card while meeting performance and usability requirements. Detailed characterization of 

final hardware, firmware and software combination proved that performance of the 

system met the project requirements. User testing provided much needed feedback about 

usability of the system, and validated ease of use meeting expectations for a typical 

technical-minded user base. Based on feedback from users, more features could be added 

to the PC measurement software to make automated testing easier and further improve 

usability. Makings software more generic in terms of supported DUT platforms could 

prove useful, if DAQ cards would be used in multiple projects, reducing amount of 

software support needed from developer of the power measurement system.      

The developed PnP DAQ system was successfully used in a hardware project optimizing 

a DUT’s power consumption to meet its design targets. This proved that the developed 

one, and other similar DAQ systems, are not just useful tools to have around for 

debugging purposes but are a valuable addition to any development board’s capabilities. 

The developed power measurement solution brings advanced power measurement 

capabilities to potentially every software developers’ desk giving them a powerful new 

tool to analyze hardware and software behavior in real-time. To justify additional cost of 

deploying power measurement solutions to a larger developer base, already low total cost 

of ownership of the new power measurement solution is further reduced by reusability in 

multiple projects.   

A key learning from the project would be the importance of design for testability and 

design for manufacturability. If not built to the design from the start, it is very difficult to 

ramp up production volumes as process is quickly slowed down by unit testing and 

electrical validation. The simple things like placement of test points underside of a PCB 

where they cannot be probed with an oscilloscope without soldering wires or lack of a 

breakout board to enable easier access to signals during test and development can add up 

and cause significant delays in the long run. In addition, one learned the hard way to read 

component manufacturer datasheets with a healthy skepticism as some of the fine print 

or even completely omitted details can reveal unwanted surprises with far-reaching 

consequences later in the project. 

The plans for future include development of a new proof-of-concept system which would 

add more features at lower total system cost while using a different microcontroller series 

better suited for future needs and design reuse without the need for advanced PCB 

manufacturing solutions. C++/Qt based approach to developing the PC software is also 

planned with greatly improved GUI and USB virtual serial port API without the need for 

additional UART-to-USB adapters. 
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APPENDIX A: PNP DAQ CARD SPECIFICATIONS 

 

Parameter Test Conditions Min Typical Max Unit 

Operating supply voltage   2.7 4 4.5 V 

Operating supply current Supply @ 4.0V,  

active state 

  100   mA 

Operating supply power Supply @ 4.0V,  

active state 

  400   mW 

Measurable rails / PnP card 

 

  8 8   

Measurable rails / DUT 4 x PnP DAQ cards   32 32   

Data rate µSD card enabled   33   sps 

Sample rate     8 x Data rate   sps 

Oversampling ratio     8     

ADC resolution     24   bits 

Rail current shunt voltage  

(differential) 

  0   50 mV 

Rail voltage   0   5 V 

Shunt voltage gain   100 100 100   

Temperature sensor resolution     0.125   °C 

Temperature sensor accuracy 

 

  ± 2 

 

°C 

Rail DC voltage accuracy     ± 1   mV 

Rail DC current accuracy 20mΩ shunt   ± 3   mA 

UART baud rate     1152000   bits/s 

µSD memory card SDHC, Class 4   16   GB 
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APPENDIX B: EXTRACT FROM ATMEL AT32UC3A DATASHEET 
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APPENDIX C: EXTRACT FROM TEXAS INSTRUMENTS ADS1278 

DATASHEET 
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