

Eetu Autio

DYNAMIC OVERSET CFD SIMULATION OF A PNEUMATIC

IMPACT DEVICE

Master of Science Thesis

Examiners: Professor Reijo Kouhia,
MSc Antti Mikkonen
Examiners and topic approved by the
Faculty Council of the Faculty of
Engineering Sciences
on 3rd October 2018

i

ABSTRACT

Autio, Eetu: Dynamic overset CFD simulation of a pneumatic impact device
Tampere University of Technology
Master of Science Thesis, 55 pages, 11 appendix pages
September 2018
Master’s Degree Programme in Mechanical Engineering
Major: Applied Mechanics and Thermal Sciences
Examiners: Professor Reijo Kouhia, MSc Antti Mikkonen

Keywords: numerical, CFD, pneumatics, overset grid, rigid body dynamics,
transient, transonic, axisymmetry, DTH drilling, porosity, OpenFOAM

Down-the-hole drilling is a percussive drilling technique where typically pneumatic

down-the-hole hammer is used to produce stress waves to crush overburden and rock.

Down-the-hole drilling is especially applicable in drilling deep holes, such as geothermal

wells and water wells, in hard and medium hard drilling conditions. Other common ap-

plications for down-the-hole drilling are blast hole drilling in mines and quarries and con-

struction piling.

Design of down-the-hole hammers has been based on analytical and semi-analytical mod-

els and experimental testing. The purpose of this thesis is to investigate the possibilities

of computational fluid dynamics in designing of geothermal well and water well hammers

using OpenFOAM software and its overset grid functionality. With overset method, sep-

arate grids can be placed on top of each other and information between grids is interpo-

lated. This simulation technique permits arbitrarily large determined or undetermined ob-

ject movements inside the computational domain which is hard with other types moving

mesh techniques. Flow inside the down-the-hole hammer is compressible and transient.

Piston movement inside the hammer is pressure-induced.

In this thesis, a simplified axisymmetric grid was used for the down-the-hole hammer and

with two separate simulation approaches. In the first simulation approach the clearances

between the moving piston and the walls of the down-the-hole hammer were meshed with

high-resolution grid. However, this approach was not successful because the overset grid

could not be made robust in parallel computation when the walls of the piston and the

hammer were near. In second simulation approach the hammer walls near the piston were

replaced by porous media zones to remedy the problems caused by overset grid. With this

technique the problem from the first simulation approach could be avoided and grid cell

size could be increased in the clearances.

Piston movement was simulated with porous media technique by giving the piston a

5 m/s initial velocity. However, given velocity was too high, and piston collided to the

upper pressure chamber. Pressure, temperature and flow velocity data for the down-the-

hole hammer were acquired, which would have been hard without simulation. Several

observations of flow behavior were made which will require further studies. For example,

it was noted that outflow of the hammer develops to transonic velocity producing mass

flux and temperature fluctuations.

ii

TIIVISTELMÄ

Autio, Eetu: Pneumaattisen iskulaitteen dynaaminen CFD simulaatio limitetyllä
hilalla
Tampereen teknillinen yliopisto
Diplomityö, 55 sivua, 11 liitesivua
Syyskuu 2018
Konetekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Sovellettu mekaniikka ja lämpötekniikka
Tarkastajat: professori Reijo Kouhia, DI Antti Mikkonen

Avainsanat: virtaussimulointi, CFD, pneumatiikka, limitetty hila, jäykän kappaleen
dynamiikka, transientti, transooninen, pyörähdyssymmetria, uppovasaraporaus,
huokoisuus, OpenFOAM

Uppovasaraporaus on iskuporaustekniikka, jossa tyypillisesti pneumaattisella

uppovasaralla tuotetaan kallio- ja maaperää murskaavia iskuaaltoja. Uppovasaraporaus

soveltuu erityisesti syvien reikien, kuten maalämpö- ja vesikaivojen, poraamiseen

kovassa ja keskikovassa maa- ja kallioperässä. Muita tyypillisiä uppovasaraporauksen

käyttökohteita ovat räjäytysreikien poraus kaivoksissa ja louhoksissa sekä porapaalujen

asennus.

Uppovasaroiden suunnittelu on perustunut analyyttisiin tai puolianalyyttisiin malleihin ja

kokeelliseen testaukseen. Tämän opinnäytetyön tarkoituksena on tutkia numeerisen

virtauslaskennan mahdollisuuksia maalämpö- ja vesikaivoille tarkoitettujen

uppovasaroiden suunnitteluprosessissa käyttäen OpenFOAM virtauslaskentaohjelmaa

sekä sen limitetyn hilan ominaisuutta. Limitetyssä hilassa eri laskentaverkot voidaan

sijoittaa päällekkäin ja informaatio verkkojen välillä interpoloidaan. Tämä simulointitapa

mahdollistaa mielivaltaisen suuret määrätyt tai määräämättömät kappaleiden liikkeet

laskenta-alueen sisällä, mikä on vaikeaa muilla liikkuvan laskentaverkon tekniikoilla.

Virtaus uppovasaran sisällä on kokoonpuristuvaa ja aikariippuvaa. Männän liike

upposaran sisällä on paineohjattua.

Tässä opinnäytetyössä uppovasaralle käytettiin yksinkertaistettua pyörähdyssymetristä

laskentaverkkoa sekä kahta eri lähestymistapaa vasaran simulointiin. Ensimmäisessä

lähestymistavassa uppovasaran liikkuvan männän ja vasaran seinämien välykset

verkotettiin tiheällä laskentaverkolla. Tämä lähestymistapa ei kuitenkaan onnistunut, sillä

limitetty hila ei toiminut luotettavasti rinnakkaisessa laskennassa männän ja vasaran

seinämien ollessa hyvin lähellä toisiaan. Toisessa simulaatiotavassa mäntää lähellä olevat

seinämät korvattiin huokoisilla alueilla limitetyn hilan toiminnan parantamiseksi. Tällä

tekniikalla pystyttiin välttämään limitetyn hilan numeeriset ongelmat sekä kasvattamaan

laskentaverkon elementtikokoa välyksissä.

Männän liike simuloitiin huokoisen aineen tekniikalla antamalla männälle 5 m/s

alkunopeus. Annettu nopeus oli kuitenkin liian suuri, sillä mäntä ei ehtinyt hidastua

tarpeeksi vaan osui yläpainekammioon. Paine, lämpötila ja virtausnopeusdataa saatiin

kerättyä uppovasaralle, mikä olisi ollut vaikeaa ilman virtaussimulointia. Muutamia

havaintoja virtauskäyttäytymisestä tehtiin, jotka vaativat jatkotutkimusta. Esimerkiksi

havaittiin, että vasaran virtaus ulostulossa kehittyi transooniseksi muodostaen vaihtelua

ulos menevään massavirtaan sekä lämpötilaan.

iii

PREFACE

I would like to thank Professor Reijo Kouhia for his guidance and support and all the staff

of Tampere University of Technology for exemplary teaching during the years. I would

also like to thank my colleagues for their help and advices about drilling applications.

Special thanks goes to Antti Mikkonen for his invaluable guidance about computational

fluid dynamics and OpenFOAM. I am also grateful to CSC for providing me necessary

computing resources. Lastly, I want to thank my family and friends and especially my

girlfriend Kati for being there for me.

iv

CONTENTS

1. INTRODUCTION .. 1

2. DOWN-THE-HOLE DRILLING ... 3

3. MATHEMATICAL MODELS ... 9

3.1 Balance equations ... 9

3.2 Thermodynamic equations ... 9

3.3 Turbulence modelling .. 11

3.3.1 Reynolds and Favre averaging ... 11

3.3.2 k-ω SST turbulence model ... 12

3.4 Porous media .. 14

4. NUMERICAL METHODS ... 15

4.1 Pressure-velocity coupling ... 15

4.2 Temporal discretization .. 16

4.3 Rigid body motion .. 17

4.4 Overset method .. 18

4.4.1 Hole-cutting ... 20

4.4.2 Donor-search .. 20

4.4.3 Point-type assignment .. 21

4.4.4 Interpolation ... 21

5. HIGH-RESOLUTION GRID SIMULATION SETUP .. 22

5.1 Pre-processing .. 23

5.1.1 Geometry modification .. 23

5.1.2 Meshing .. 24

5.2 Boundary conditions .. 26

5.3 Numerical schemes .. 27

5.4 CSC Taito supercluster... 27

6. TRIAL SIMULATIONS ... 28

6.1 Case 1 ... 28

6.2 Case 2 ... 29

6.3 Case 3 ... 33

7. SIMULATION WITH POROUS ZONES .. 39

7.1 Porous media verification... 41

7.2 Trial simulation with off-centered Crank Nicolson scheme 43

8. RESULTS AND DISCUSSION ... 45

9. CONCLUSIONS ... 52

BIBLIOGRAPHY ...54

APPENDIX A: OVERSET AND DYNAMIC SETUP

APPENDIX B: ADDITIONAL PIMPLE SOLVER SETTINGS

APPENDIX C: FVSCHEMES

APPENDIX D: FVSOLUTION

APPENDIX F: DYNAMICMESHDICT

v

ABBREVIATIONS AND SYMBOLS

Abbreviations

DTH Down-The-Hole

ITH In-The-Hole

CFD Computational Fluid Dynamics

OpenFOAM Open source Field Operation And Manipulation

DNS Direct Numerical Simulation

LES Large Eddy Simulation

RANS Reynolds-Averaged Navier-Stokes

SST Shear Stress Transport

STL Standard Tessellation Language

CAD Computer Assisted Design

FVM Finite Volume Method

SIMPLE Semi-Implicit-Method-Of-Pressure-Linked-Equations

PISO Pressure-Implicit-of-Split-Operations

PIMPLE Merged PISO-SIMPLE

OGA Overset Grid Assembly

STEP Standard for the Exchange of Product Data

CSC IT Center for science Ltd.

Mathematical symbols

Greek

ρ density

𝜏𝑖𝑗 viscous stress tensor

𝜇 dynamic viscosity

𝛿𝑖𝑗 Kronecker delta

λ thermal conductivity

𝜇𝑟𝑒𝑓 reference dynamic viscosity at reference temperature

γ adiabatic index

ω specific rate of dissipation

ε rate of dissipation

vi

𝜇𝑡 turbulent eddy viscosity

ν kinematic viscosity

κ the von Karman constant

η porosity

𝜅𝑖𝑗 permeability tensor

𝜅1𝑖𝑗 inertial permeability tensor

α under-relaxation factor

Roman

t time

x spatial coordinate

u velocity

p pressure

𝑓𝑖 external force

e internal energy

T temperature

𝑆𝐸 energy source term

𝑆𝑖𝑗 strain rate tensor

V volume

n amount of moles

𝑅𝑢 universal gas constant

h enthalpy

𝑐𝑝 specific heat in constant pressure

𝑇𝑟𝑒𝑓 reference temperature

𝑇𝑠 the Sutherland’s constant

Ma the Mach number

c local speed of sound

R specific gas constant

𝑞ℎ heat flux

k turbulent kinetic energy

S strain invariant

𝐹1 first blending function

𝐹2 second blending function

𝑃𝑘 production of turbulent kinetic energy

𝑦+ dimensionless wall distance

y distance from the wall

vii

𝑢𝑡 shear velocity

𝑢+ dimensionless velocity

𝑆𝑖 sink term

𝑞𝑖 the Darcy flux

𝐷𝑖𝑗 inverse of the permeability tensor

𝐹𝑖𝑗 inverse of the inertial permeability tensor

Co the Courant number

U local cell velocity

∆𝑡 time step

∆𝑥 distance between cell centres

F total force

M total moment

Uz axisymmetric swirl component

Subscripts, superscripts and oversymbols

𝑄𝑜 Value of Q in stagnated flow

Q̅ mean value

𝑄′ fluctuating value

𝑄̃ Favre averaged mean value

𝑄′′ Favre averaged fluctuating value

1

1. INTRODUCTION

Purpose of this thesis is to study down-the-hole (DTH), also known as in-the-hole (ITH),

pneumatic hammer physics and operation with computational fluid dynamics (CFD) sim-

ulation to provide a new approach to DTH hammer design process. Rigid body movement

with overset grid is used to analyse translation of the piston inside the hammer. The use

of overset grid allows to simulate arbitrarily large undetermined piston movements in-

duced by pressure forces. With other moving mesh techniques, like mesh morphing and

remeshing, only small displacements are possible. Rigid body movement with overset

grid is traditionally used to study ship physics, but in this thesis it proves to be applicable

to pneumatic applications also. Opensource software OpenFOAM v1712 was chosen for

its rigid body and overset implementations, free cost and possibility for massive parallel-

isation.

Even though first DTH hammers were developed in 1950’s [1], little is known what ac-

tually happens inside the hammer during drilling. Hammer performance can be analysed

by measuring certain drilling parameters and hammer outputs such as rate of penetration

and impact frequency. However, hammer performance is dictated by drilling conditions,

like rock hardness and amount of ground water in the drill hole, which makes the repeat-

ability of measurements hard in different locations. Most importantly, data from inside

the hammer is impossible to get with traditional measurement methods. This lack of in-

formation introduces substantial amount of trial and error to the design process. The pos-

sibility to analyse pressures, temperatures, flow velocities and other fluid flow phenome-

non inside the hammer would be beneficial for optimising existing products and poten-

tially developing entirely new ones. Well drilling DTH hammer studied in this thesis is

illustrated in the figure 1.

Figure 1. Well drilling down-the-hole hammer, from [2]

2

There are analytical and semi-analytical design and calculation tools based of system of

thermodynamic differential equations, but they cannot consider the effect complex geom-

etries and fluid flow phenomena such as turbulence and transonic flow. Most importantly,

they do not work as intended for well drilling hammers.

Using CFD to get information of the hammer operation is a relatively new approach in

drilling equipment industry. No CFD simulations of pneumatic devices could be found

using rigid body dynamics or overset grid. This is due to high computational require-

ments, immaturity of the overset technique and complexity of modelling high-speed,

high-pressure air. However, CFD simulation using moving overset grid could offer time

accurate transient data that is impossible to get without relative motion. Two distinct

methods are used to simulate DTH hammer operation.

In chapter 2, a general oversight to the DTH drilling and DTH hammer is given. Two

other drilling methods are also presented to understand DTH drilling properly. Also, stud-

ied well drilling hammer and its components are presented. Lastly, piston movement in-

side the hammer based on geometric timings is illustrated.

In chapter 3, mathematical background of this thesis is shown. Balance and thermody-

namic equations are presented first followed by theory of turbulence and porous media.

In chapter 4, numerical methods of this thesis are investigated. First, pressure-velocity

coupling algorithms are introduced followed with rigid body dynamics. Lastly, overset

method and overset grid assembly algorithm are illustrated in detail.

In chapter 5, OpenFOAM is introduced and setup for the first simulation approach using

high-resolution grid is performed. This includes pre-processing and specifying numerical

settings for the simulation.

In chapter 6, several trial simulations have been performed using various techniques.

However, high-resolution grid approach was not successful because the overset grid could

not be made robust in parallel computation in the clearances between the hammer and the

piston.

In chapter 7, porous zones were implemented to the simulation to bypass previous prob-

lems caused by the overset grid. First, grid is modified, and numerical settings are ad-

justed. Verification test for the porous media simulation approach is done.

In chapter 8, results from simulation using porous zones are presented and discussed. In

chapter 9 conclusions are made and future studies are suggested.

3

2. DOWN-THE-HOLE DRILLING

There are several drilling methods available for rock and overburden which are suited for

different kind of drilling conditions and applications. Three main applications for drilling

in general are blast hole drilling, well drilling and construction applications like pile-

driving. Most common drilling methods for these applications are down-the-hole, top

hammer and rotary drilling. Quick insight to top hammer and rotary drilling are given to

understand DTH drilling properly. Three most common drilling methods are shown in

the figure 2.

Figure 2. Most common drilling methods (a) top hammer (b) down-the-hole (c) rotary,

from [3]

In percussive top hammer drilling hydraulic hammer attached to the drill rig is used to

impact the drill string, which is assembled from multiple threaded rods. Impact, which is

used to break rock in percussive manner, is transmitted as a stress wave travelling through

the drill string to the drill bit. Because of the difference in cross section in threaded cou-

plings, portion of energy is lost and dissipated as heat as the stress wave goes through the

drill string. Energy lost at couplings varies from 3% to 10% depending on the coupling

type [4][5]. Therefore, top hammer drilling can be used to drill holes effectively only up

4

to 30 m. Also, top hammer drilling is applicable only for small holes up to 115 mm when

excluding reaming applications. Top hammer drilling is a good choice for drilling multi-

ple small shallow holes in hard rock [6].

In rotary drilling a large feed force and torque is used to transmit energy trough the drill

pipe. This drilling method crushes rock with shearing and not with percussive impact as

in top hammer drilling. Rotary drilling requires heavy drill rig to provide sufficient thrust

and does not perform well in hard drilling conditions [6]. It is most suitable for drilling

large deep holes in soft ground.

Down-the-hole drilling is also a percussive drilling method like top hammer drilling. But

instead of using the impact device on surface, hammer is placed on top of the drill bit. In

this way energy is not lost in couplings and holes can be drilled to great depths. Typically,

compressed air is used to move the piston of the DTH hammer but also water operated

hammers exist. Downside of using air as a working medium is the high compressibility.

Only about 10% of the energy utilized to compress air can be used to create piston motion

inside the hammer [1]. Because of this, compressors needed to operate DTH hammers

must be powerful. Down-the-hole drilling is not as fast in drilling multiple shallow holes

in hard rock as top hammer drilling and it is slower in soft overburden than rotary drilling

[6]. However, it offers great all-around performance in various drilling conditions with

various hole sizes. DTH drilling is excellent for deep and straight holes. It is mostly used

in drilling blast holes in quarries and mines, drilling water wells and geothermal wells

and in construction and applications. DTH drill rig used in blast hole drilling is presented

in the figure 3.

Figure 3. DTH drill rig, from [7]

5

DTH hammer is operated with drill rig and one or more air compressors. Sufficient feed

force and rotation is applied from the drilling rig to drill tubes which are connected to

DTH hammer. Compressed air is guided through the drill tubes to commence hammer

piston cycle and to flush crushed cuttings out of the hole. For well drilling simpler rigs

are typically used. Drill rig can be attached to a truck with a compressor or it can be a

small movable rig illustrated in the figure 4.

Figure 4. Well drilling rig [8]

A well drilling DTH hammer inspected in this thesis is a high-pressure, high impact rate

hammer designed to drill deep holes for water and geothermal wells in water filled ground

conditions. Well drilling hammers are typically characterized by inner cylinders and rel-

atively simple piston construction compared to conventional hammers like blast hole

drilling and construction hammers. In conventional hammers air is typically guided

through machined holes in the piston and inner cylinder is not needed. With these ham-

mers, more energy can be transmitted with one blow as the surface area where the pres-

sure accumulates under the piston is larger than in well hammers. Conventional hammers

work well when drilling in dry conditions as rock is crushed more efficiently with pow-

erful blows than with high impact rate. A well drilling hammer is compared to a conven-

tional hammer in the figure 5..

6

Figure 5. Well hammer (top) and conventional hammer (bottom), from [2][9]

Conventional hammers cannot evacuate water properly because the holes in the piston

are constraining for water flow. Construction of well hammers is superior for water

evacuation. Also, high pressure used in well hammers is desired when drilling deep

holes since it compensates back pressure forming in the drill hole from air, water and

cuttings. Well drilling hammer components are shown in table 1 and in the figure 6.

Table 1. Well drilling hammer components [2]

Part number Part name Part number Part name

1 Air feed tube 9 Make-up ring

2 Aligner 10 Piston

3 Backhead 11 Seating ring

4 Bit retaining ring 12 Wear sleeve

5 Check valve 13 Air feed tube

6 Chuck 14 Backhead 'O'-ring

7 Inner cylinder 15 Seating 'O'-ring

8 Lock ring 16 Spring

7

Figure 6. Well drilling hammer components with drill bit [2]

DTH hammer operation is characterized by piston cycle. To commence this cycle inside

the hammer, compressed air is transmitted to the hammer from the backhead through the

drill tubes. As air fills the hammer, pressure forces lift the piston due to differences in

piston surface areas. Pressurized air has different functionality depending on the piston

location inside the hammer. These different parts of the piston cycle are controlled with

timings, which are geometric constraints of flow. Timings control where and how the

flow is directed.

If the chuck of the hammer is not in contact with the drill bit, then all the air from the

compressor goes straight through the piston and hammer is in flushing mode. Direct flush-

ing is needed when there is accumulated water in the hole and it needs to be evacuated.

When feed force is applied from a drill rig, chuck and bit make contact and cycle begins.

First, air goes through the inner cylinder holes and from the sides of the piston to fill the

chamber under the piston nose. Foot valve attached to the drill bit forms a seal by blocking

the air from leaving trough the drill bit. As the chamber under the piston pressurizes,

pressure forces accelerate piston upwards. This acceleration continues until the side chan-

nels are blocked by the piston. By this point piston has significant upward velocity. High-

pressure air from the bottom chamber is released when the piston nose moves past the

foot valve. Final deceleration to piston happens in the upper pressure chamber between

the inner cylinder and air feed tube. As the piston moves upward, air is compressed in the

top chamber and the high-pressure air acts like a spring giving piston downwards mo-

mentum. Lastly, piston impacts the drill bit. Most of the impact energy is transmitted to

ground as a stress wave but some of it is transformed into piston rebound momentum.

After impact, cycle starts again. Simplified 2D presentation showing the piston cycle with

inner volume of the hammer is presented in the figure 7.

8

Figure 7. Piston cycle excluding flushing. High-pressure air is marked with red, atmos-

pheric air with light green and piston with dark green. Black arrows indicate the initial

flow direction and red arrows the discharge of high-pressure air.

9

3. MATHEMATICAL MODELS

3.1 Balance equations

Computational fluid dynamics is based on fundamental balance equations. Three princi-

pal conservation equations are continuity equation 1, momentum equation 2 and energy

equation 3 [10]. Assumptions are that that fluid is homogenous, chemically non-reactive

and Newtonian. Mass, momentum and energy balance equations can be expressed in the

local form as

𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑖

𝜕𝑥𝑖
= 0, (1)

(
𝜕𝜌𝑢𝑖

𝜕𝑡
+

𝜕𝜌𝑢𝑗𝑢𝑖

𝜕𝑥𝑗
) = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑓𝑖 , (2)

(
𝜕𝜌𝑒

𝜕𝑡
+

𝜕𝜌𝑢𝑗𝑒

𝜕𝑥𝑗
) = −

𝜕𝑝𝑢𝑗

𝜕𝑥𝑗
+

𝜕𝑢𝑖𝜏𝑗𝑖

𝜕𝑥𝑗
+

𝜕

𝜕𝑥𝑗
(𝜆

𝜕𝑇

𝜕𝑥𝑗
) + 𝑆𝐸 , (3)

where ρ is the density, t is time, x is a spatial coordinate, u is the flow velocity, p is the

pressure, 𝑓𝑖 is a body force per unit mass applied on the fluid, e is the internal energy of

the fluid, λ is the thermal conductivity, T is the temperature of the fluid, 𝑆𝐸 is an energy

source term and the viscous stress tensor is

𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 −
2

3
𝜇

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗 , (4)

where the strain rate tensor is

𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) . (5)

3.2 Thermodynamic equations

To relate pressure to density in compressible medium, state equation should be applied.

In most cases in aerodynamic and pneumatic applications fluid can be considered as a

calorically perfect gas where intermolecular effects are neglected, and heat capacity is

assumed to be constant and it can be expressed with the ideal gas equation

𝑝𝑉 = 𝑛𝑅𝑢𝑇, (6)

10

where V is the volume of the fluid, n is the number of moles and 𝑅𝑢 is the universal gas

constant. These approximations are relatively accurate even in high-compression. En-

thalpy is the total heat content of the system and it is

ℎ = 𝑐𝑝𝑇, (7)

where 𝑐𝑝 is the specific heat in constant pressure. Relation between dynamic viscosity

and temperature can be expressed with Sutherland’s law for air [11]

𝜇 = 𝜇𝑟𝑒𝑓 (
𝑇

𝑇𝑟𝑒𝑓
)

3
2 𝑇𝑟𝑒𝑓 + 𝑇𝑠

𝑇 + 𝑇𝑠
, (8)

where the reference temperature is Tref = 273.15 K, reference dynamic viscosity in the

reference temperature is µref = 1,716 ∙ 10−5(kgm/ms) and the Sutherland’s constant is

𝑇𝑠 = 110.4 K.

In high-speed compressible flows, imposed pressure forces cause relative volume

changes in fluid element and therefore significant density changes and gradients arise. It

is useful to characterize compressible flows with the Mach number, which is the ratio of

the local flow velocity to the local speed of sound

Ma =
𝑢

𝑐
, (9)

where the speed of sound is defined as a speed at which an infinitesimally small pressure

wave travels through a medium. For an ideal gas it can be expressed as

𝑐 = √𝛾𝑅𝑇, (10)

where γ is the adiabatic index and R is the specific gas constant. If Ma < 0.3, then flow

can be assumed to be incompressible. Otherwise flow can be characterized as subsonic

when Ma < 1, supersonic when Ma > 1, hypersonic when Ma >> 1 and transonic when

Ma ≅ 1 [12].

When dealing with compressible flows it is convenient to combine the enthalpy and the

kinetic energy of the fluid at a stagnation point into a single term called stagnation en-

thalpy

ℎ0 = ℎ +
𝑢2

2
, (11)

and to express stagnation temperature at the stagnation point as

𝑇0 = 𝑇 +
𝑢2

2𝑐𝑝
. (12)

11

Stagnation temperature is the temperature of an ideal gas when it is brought to rest adia-

batically. Stagnation properties for pressure and density are related to static properties by

𝑃0

𝑃
= (

𝑇0

𝑇
)

𝛾
𝛾−1

, (13)

𝜌0

𝜌
= (

𝑇0

𝑇
)

𝛾
𝛾−1

. (14)

3.3 Turbulence modelling

Turbulent flow is characterized by chaotic fluctuations and modelling of turbulence still

presents a significant problem. It is possible to simulate turbulence directly with direct

numerical simulation (DNS) or to simulate large scale fluctuations with large eddy sim-

ulation (LES). However, both methods are computationally expensive and rarely suitable

for industrial applications. Practical approach to turbulence modelling is to use Reynolds-

averaged Navier-Stokes (RANS) assumption, or shortly Reynolds averaging.

3.3.1 Reynolds and Favre averaging

The basic idea of Reynolds averaging is to decompose flow into mean and fluctuating

parts [10]. The governing equations are then solved for mean values, which are the most

important in engineering applications. Decomposed flow variables are

𝜙 = 𝜙̅ + 𝜙′. (15)

Three different forms of the Reynolds averaging are time averaging, spatial averaging

and ensemble averaging. Time averaging is appropriate for stationary turbulence and spa-

tial averaging for homogenous turbulence. Ensemble averaging is the most general one

and best suited for transient turbulence and it can be expressed as

𝜙̅ = lim
𝑁→∞

1

𝑁
∑ 𝜙

𝑁

𝑚=1

. (16)

For compressible flows density weighted Favre-averaging is used in conjunction with

Reynolds averaging. Otherwise, the averaged governing equations would become con-

siderably more complicated as the density fluctuations had to be considered. In Favre-

averaging flow variables are decomposed to mean and fluctuating parts as

𝜃 = 𝜃̃ + 𝜃′′, (17)

where 𝜃̃ = 𝜌𝜃̅̅̅̅ /𝜌̅. Therefore, 𝜃′′ includes turbulent and density fluctuations. Most con-

venient way is to use Reynolds averaging for density and pressure, and Favre averaging

12

for other flow variables such as velocity, enthalpy and temperature. Balance equations for

turbulent flow with Reynolds and Favre averaging are

𝜕𝜌̅

𝜕𝑡
+

𝜕𝜌̅𝑢̃𝑖

𝜕𝑥𝑖
= 0, (18)

𝜕𝜌̅𝑢̃𝑖

𝜕𝑡
+

𝜕𝜌̅𝑢̃𝑗𝑢̃𝑖

𝜕𝑥𝑗
= −

𝜕𝑝̅

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜏𝑖̅𝑗 − 𝜌𝑢𝑖

′′𝑢𝑗
′′̅̅ ̅̅ ̅̅ ̅̅ ̅), (19)

𝜕𝜌̅𝑒̃

𝜕𝑡
+

𝜕𝜌̅𝑢̃𝑗 𝑒̃

𝜕𝑥𝑗
= −

𝜕𝑝̅𝑢̃𝑗

𝜕𝑥𝑗
+

𝜕𝑢𝑖𝜏𝑗𝑖̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
−

𝜕𝑞̅ℎ

𝜕𝑥𝑗
−

𝜕𝑢𝑗
′′𝑝̅̅ ̅̅ ̅

𝜕𝑥𝑗
−

𝜕𝜌𝑢𝑗
′′𝑒′′̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
, (20)

where 𝑞̅ℎ is an averaged heat flux.

3.3.2 k-ω SST turbulence model

The k-ω SST turbulence model combines the positive features of the k-ω model with a

high Reynolds number k-ε model [13]. The k-ω model is implemented in the viscous

sublayer and in the logarithmic sublayer of the boundary layer. The k-ω model does not

need damping functions and because of this, it is much more stable and as accurate in the

viscous sublayer as the k-ε model [10]. In the logarithmic part of the boundary layer the

k-ω model is superior to the k-ε model for adverse pressure and compressible flows. The

k-ε model is used in the wake region of the boundary layer, as the k-ω model is sensitive

to free stream values of ω, and in free shear layers as it well represents wakes, jets and

mixing layers. The k-ω SST model also has a modified eddy-viscosity function. This

function improves the accuracy of solving flows with strong adverse pressure gradients

and pressure-induced boundary layer separations. Modified version of the k-ω SST model

is often used where the turbulent viscosity is defined with strain invariant rather than with

vorticity [14]. Transport equations for the modified k-ω SST model for k and ω are

𝜕𝜌𝑘

𝜕𝑡
+

𝜕𝜌𝑘𝑢𝑖

𝜕𝑥𝑖
= 𝑃̌𝑘 − 𝛽∗𝜌𝑘𝜔 +

𝜕

𝜕𝑥𝑖
[(𝜇 + µ𝑡𝜎𝑘)

𝜕𝑘

𝜕𝑥𝑖
] , (21)

𝜕𝜌𝜔

𝜕𝑡
+

𝜕𝜌𝜔𝑢𝑖

𝜕𝑥𝑖
= 𝛼𝑆𝑆𝑇

𝜌𝑃̌𝑘

𝜇𝑡
− 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑖
[(𝜇 + µ𝑡𝜎𝜔1)

𝜕𝜔

𝜕𝑥𝑖
]

+2(1 − 𝐹1)
𝜌𝜎𝜔2

𝜔

𝜕𝑘

𝜕𝑥𝑖

𝜕𝜔

𝜕𝑥𝑖
, (22)

where k is the turbulent kinetic energy, ω is the specific rate of dissipation, 𝐹1 is a first

blending function and 𝛼𝑆𝑆𝑇 = 𝛼1𝐹1 + 𝛼2(1 − 𝐹1). Turbulent eddy viscosity is

𝜇𝑡 =
𝜌𝑎1𝑘

max (𝑎1𝜔, 𝑆𝐹2)
, (23)

13

where 𝐹2 is a second blending function and 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 is the strain invariant. The def-

inition of the turbulent viscosity guarantees that in adverse pressure gradient boundary

layer the Bradshaw’s assumption, which states that shear stress is proportional to turbu-

lent kinetic energy, is satisfied [10]. A limiter to the production of the turbulent kinetic

energy is used in the k-ω SST model to prevent the build-up of turbulence in stagnation

regions

𝑃𝑘 = µ𝑡

𝜕𝑢𝑖

𝜕𝑥𝑗
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) , (24)

𝑃̌𝑘 = min(𝑃𝑘, 10 ∙ 𝛽∗𝜌𝑘𝜔) . (25)

Coefficients for the k-ω SST model used in the equations (21-25) are presented in table

2.

Table 2. k-ω SST coefficients [15]

𝛼1 𝛼2 𝜎𝜔1 𝜎𝜔2 𝛽1 𝛽2 𝛽∗ 𝑎1

0.85 1.0 0.5 0.856 0.075 0.0828 0.09 0.31

K-ω SST models has some drawbacks, but they are small compared to other turbulence

models. First, low Reynolds number k-ω model requires first cell from the wall to be in

the viscous sub-layer where viscous shear dominates turbulent behaviour and the shear

stress of the fluid can be assumed to be equal to the wall shear stress. Dimensionless

distance from the wall can be calculated with

𝑦+ =
𝑦𝑢𝑡

𝜐
, (26)

where y is the distance from wall, 𝑢𝑡 is the shear velocity and 𝜐 is the kinematic viscosity.

In viscous sub-layer velocity profile exhibits linear relation to the wall distance. To first

cell to be in the viscous sub-layer, requirement for 𝑦+ must satisfy at least 𝑦+ < 5 and

preferably 𝑦+ ≈ 1. This requirement can lead to excessive cell amount especially in large

3D simulations. However, an alternative to modelling viscous sub-layer is to place first

cell in the logarithmic region where velocity profile exhibits a logarithmic variation to

the wall distance. In logarithmic layer dimensionless distance is 30 < 𝑦+ < 300. In log-

arithmic layer, wall functions can be used to include the viscous effects of the viscous

sub-layer.

A good choice in computational domains where 𝑦+ cannot be kept relatively constant in

the logarithmic layer is to use Launder-Spalding wall function [16]

14

𝑦+ = 𝑢+ +
1

𝐸
[𝑒𝜅𝑢+

− 1 − 𝜅𝑢+ − 0,5(𝜅𝑢+)2 −
1

6
(𝜅𝑢+)3] , (27)

where 𝑢+ is the non-dimensional velocity and κ is the von Karman constant. It is contin-

uous, and it works in viscous sublayer, in transition region where 5 < 𝑦+ < 30 and in

logarithmic region. In transition region blending functions are implemented. Launder-

Spalding wall function provides a velocity-based condition for turbulent kinematic vis-

cosity.

3.4 Porous media

Flow in the porous media is modelled by attenuating the time derivative and adding a sink

term to the momentum equation [17]. Modified momentum equation in porous media is

𝜕𝜂𝜌𝑢𝑖

𝜕𝑡
+

𝜕𝜌𝑢𝑗𝑢𝑖

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑓𝑖 + 𝑆𝑖, (28)

where η is the porosity and sink term is

𝑆𝑖 = −(µ𝐷𝑖𝑗 + 𝜌√𝑞𝑘𝑞𝑘𝐹𝑖𝑗)𝑞𝑗 , (29)

where 𝐷𝑖𝑗 is the inverse of the permeability tensor 𝜅𝑖𝑗, 𝐹𝑖𝑗 is the inverse of the inertial

permeability tensor 𝜅1𝑖𝑗 and 𝑞𝑖 = 𝜂𝑢𝑖 is the Darcy flux. Equation 29 is called the Darcy-

Forchheimer law. Porous media creates a pressure drop that is proportional to velocity

for the viscous loss and velocity squared for the inertial loss. Consideration of non-linear

inertial loss is significant only if the velocity of the flow in porous media is high [18].

15

4. NUMERICAL METHODS

4.1 Pressure-velocity coupling

Compressible flow problems require solving of momentum, pressure and energy equa-

tions. To this system of equations to be solvable, same amount of equations and unknown

variables is necessary. However, there is a linear coupling between pressure and velocity

because velocity divergence appears in the pressure equation and pressure gradient is

present in the momentum equation. This coupling can be solved with algorithms like

SIMPLE, PISO and PIMPLE [20]. While all the algorithms solve the same governing

equations, algorithms differ how they iterate the equations.

SIMPLE (Semi-Implicit-Method-Of-Pressure-Linked-Equations) is the oldest pressure-

momentum algorithm and it is used for steady state analyses. Time derivation is not im-

plemented in SIMPLE and it is not consistent due to missing pressure term. Because of

the lack of time derivative, and therefore physical time step, there is no limiter to the

solution. This means that the equations should be under-relaxed to prevent solution insta-

bility. Under-relaxation can be presented as

𝜙𝑛+1 = 𝛼𝜙𝑛+1 + (1 − 𝛼)𝜙𝑛, (30)

where 𝜙𝑛 is the value of previous approximation, 𝜙𝑛+1 is the value of new approximation

and α is the under-relaxation factor. Pressure is under-relaxed explicitly and velocity im-

plicitly. Under-relaxation slows down convergence speed and therefore, a good estima-

tion for under-relaxation is important for optimal convergence and stability.

PISO (Pressure-Implicit-of-Split-Operations) algorithm is used in transient simulations

where temporal accuracy is important. Time derivative is included in equations and pres-

sure-momentum coupling is consistent. Under-relaxation is not needed in PISO coupling

but stability must be fulfilled by small enough Courant number, which is a dimensionless

number that contains information how fast the information travels through cells. The

Courant number is

Co =
𝑈∆𝑡

∆𝑥
, (31)

where U is the local cell velocity, ∆𝑡 is time step and ∆𝑥 is the distance between cell

centres. Typically, the Courant number should not be larger than one. If Co is less than

one, information from one cell can reach only the next neighbour cell within a single time

step. Otherwise, information could reach second or even further neighbouring cells which

is not allowed due to explicit velocity field update.

16

PIMPLE (Merged PISO-SIMPLE) is a combination of PISO and SIMPLE algorithms and

it is best suited for transient simulations with complex geometries and non-optimal mesh

quality. PIMPLE algorithm solves a steady state solution with under-relaxation in explicit

PISO outer corrector loops. PIMPLE can be used with much larger Courant number (Co

>> 1) than PISO. However, transient time scales in the simulation must be considered.

Using too large Co causes essential information to be neglected which affects solution

accuracy.

4.2 Temporal discretization

In transient flow simulations temporal derivative term determines how the solution is up-

dated in time. For velocity, temporal derivative is

𝜕𝜙

𝜕𝑡
= 𝑓(𝜙, 𝑢). (32)

Simplest discretization for temporal derivative is to use first order explicit forward Euler

method

𝜙𝑛+1 − 𝜙𝑛

∆𝑡
= 𝑓(𝜙𝑛). (33)

However, explicit discretization is rarely practical in CFD since it does not perform well

with stiff differential systems. Also, the stability of explicit methods is controlled with

Co limitation. Because of this, implicit methods are typically used. First order accurate

implicit temporal discretization is called backward Euler method and it is given by

𝜙𝑛+1 − 𝜙𝑛

∆𝑡
= 𝑓(𝜙𝑛+1). (34)

In backward Euler method, current and previous time steps are considered. It is robust,

bounded, conservative in time and stable. However, it is only first order accurate and it

will introduce noticeable discretization errors which will diffuse steep temporal gradients.

Second order discretization methods are more accurate than first order ones, but they can

exhibit unwanted numerical oscillations. In general, higher-order discretization schemes

for temporal derivatives can be used with good quality mesh and with well initialized

boundary conditions. For second order accurate discretization the Crank Nicolson method

𝜙𝑛+1 − 𝜙𝑛

∆𝑡
=

1

2
[𝑓(𝜙𝑛+1) + 𝑓(𝜙𝑛)], (35)

is a good choice [21]. It is a combination of forward Euler and backward Euler methods.

However, Crank Nicolson method is not the average of these two first order methods as

it has an implicit dependence on the solution. Crank Nicolson method can be off-centered

17

from 0 to 1 where 0 reduces equation to backward Euler method and 1 corresponds to

pure Crank Nicolson method [15] . Using off-centering factor below 1, for example 0.5,

reduces accuracy but increases stability and boundedness.

4.3 Rigid body motion

Rigid body motion describes how free or constrained rigid object will translate and rotate

according to forces acting on the object. Number of degrees of freedom will refer how

the movement of the body limited. If the body can move in all six degrees of freedom,

then it is free to translate and rotate along all three orthogonal axes of the three-dimen-

sional system. Movement can be limited by using constraints to remove degrees of free-

dom. Also, restraints like linear springs, dampers and angular springs can be used. All

possible translations and rotations in the three-dimensional space are presented in the fig-

ure 8.

Figure 8. Axes describing the 6 degrees of freedom, from [22]

Total forces and moments acting on bodies interacting with the flow field can be calcu-

lated by integrating individual forces and moments acting on cells over the bodies with

equations

𝐹 = ∫ 𝐹𝑒𝑥𝑡 + 𝐹𝑓𝑙𝑜𝑤𝑆
, (36)

𝑀 = ∫ 𝑀𝑒𝑥𝑡 + 𝑀𝑓𝑙𝑜𝑤𝑆
, (37)

where F is the total force and M is the total moment about the mass centre. A standard

numerical approach for rigid body motion is:

18

1. Velocity and pressure are solved from balance equations in an initial position of

the body. Forces and moments acting to the rigid body are obtained.

2. If the resulting moments and forces are balanced, iteration is stopped.

3. Else: The new position of the body is determined by solving the equations of mo-

tion based upon the forces and moments computed at stage 1.

4. Mesh is moved, morphed or remeshed and procedure is started again from 1.

4.4 Overset method

Typically, finite volume CFD solvers use a single continuous mesh to discretize the com-

putational domain. However, this approach raises two problems. Generating a single

structured grid for complex domain is challenging and it can be difficult for unstructured

grids also. The second problem comes from solving large relative motions of one or mul-

tiple bodies in a single grid, which is only capable of handling small motions using mesh

morphing or remeshing. Both issues can be alleviated by dividing computational domain

into separate overlapping parts, performing Overset Grid Assembly (OGA) and interpo-

lating the solution. This approach was first introduced in the early 1980’s [23] and it is

usually referred as overset method or Chimera technique due to its combination of grids

of separate components. In overset method the information between separate grids is

propagated by interpolating point or cell centre data between overlapping regions whereas

in single continuous grid data is transferred trough matching face zones.

Overset method simplifies structured mesh generation and increases grid quality for com-

putational domains because background and objects can be meshed separately. When

considering rigid or elastic bodies in relative motion, each body can be represented by its

own grid. With this approach bodies can move arbitrarily and independently of other bod-

ies if physical boundaries do not collide. Overset method therefore provides a robust sup-

port of the full range of motion within the domain. Two overlapping structured grids and

a Cartesian background mesh are illustrated in the figure 9.

Figure 9. Two overlapping grids and a background mesh [24]. Overlapping grids are

represented with grey and red.

19

Overset method has advantages particularly in simulating relative motions, but it comes

with limitations. This process is computationally intensive and can represent a large por-

tion of total computational cost in transient simulation where the domain must be reas-

sembled after every time step. Also, simulations with overset grids are proven to be hard

to parallelize as the computational load can be unevenly divided between processors caus-

ing load imbalance [25]. Overset method is also non-conservative which violates the basic

principle of finite volume method (FVM). It means that in transient simulations mass is

not perfectly conserved. Therefore, effort should be put on minimizing conservation error.

Overset method is based on algorithm called Overset Grid Assembly. The primary task

of the OGA is to assign each point one of three following properties:

• Hole point: point where no solution is computed.

• Solve point: point where the solution is computed. Contains a subset called donor

cell.

• Receptor point: point where the solution is interpolated from an overlapping cell

called donor cell.

Point data refers to cell centre values or vertex data depending on the CFD solver used.

In the figure 10 OGA algorithm is performed for the overset grid presented in the figure

9 and each point has been assigned a point property.

Figure 10. Overset grid after OGA [24]. Blue indicates solve points, grey interpolated

receptor points and red hole points.

OGA algorithm contains three main steps followed by solution interpolation. Emphasis

is in parallel algorithms.

20

4.4.1 Hole-cutting

The basic idea of hole-cutting algorithms is to identify the approximate representation of

the overset wall boundary by utilizing cutting surface and to mark all points inside the

boundary and outside the computational domain as hole points. In parallel grids, all the

cells intersecting the cutting surface generated from the overset wall surface are marked

by employing rapid point search algorithms like virtual grid searching algorithm [25] or

auxiliary grid algorithm [26]. As in parallel grid the information of the wall boundary is

spread among several processors, communication between processors is necessary which

is not a trivial problem [26].

After wall boundaries have been marked, a flood-fill algorithm is applied to points inside

the wall boundaries. For flood-filling to work, seed cells need to be identified. This can

be done with internal or outer algorithms. Outer algorithms like scan-line flood-filling

[26] have advantage over internal ones. For complicated geometries, identifying seed

cells outside the overset wall boundary is more robust than identifying seed cells inside

the object. Also, some frequently used flood-filling algorithms like ray-tracing [27] work

only for structured grids.

Hole-cutting can fail for several reasons. If internal flood-fill algorithm is used, complex-

ities in the topology or the geometry of the overset wall boundary or insufficient mesh

resolution might cause identification of bad seed cells. These cells are identified in the

computational domain instead of outside the domain. This results in flood-filling the do-

main or complete cell zones with hole points. If flood-filling failure is encountered while

using internal flood-fill algorithms, the only way to remedy the problem is to make

changes to the model [28]. Hole-cutting can also fail by hole point leakage. This occurs

when no bad seed cells are found but when overlapping meshes do not match sufficiently.

This causes flood-filling to leak out from inside of the boundary to outside causing holes

in the domain. Especially unstructured curved surfaces might create problems.

4.4.2 Donor-search

The principle of donor-search is to determine the donor-receiver pairs in the domain. First,

candidate receptor points and candidate donor cells are extracted from the grid. If the

overlapping grids do not belong to same processor, the candidate receptor points are sent

to process that owns the donor grid. Candidate points and cells are defined as: [25]

• Candidate receptor point: any point that is within a user or program specified dis-

tance from the outer boundary or from the hole point boundary defined in the hole

cutting process.

• Candidate donor cell: any cell that is within the overlap region that does not have

any hole points.

21

To search every candidate receptor point for a candidate donor cell, a line-walk search

algorithm, also known as stencil jumping or stencil walking, is used. After line-walk each

candidate receptor point has established whether it has a donor cell or not and then the

information is communicated to the processor that owns the candidate receptor point.

Complications in donor-search occur when acceptable donor points cannot be found for

interpolation, producing orphan points. These points might occur when overset grids have

insufficient overlap or when significant differences in mesh spacing between grids exist

[29]. A point is orphan when one or more of its donors is also a mandatory receptor point

requiring interpolated solution. Existence of orphan points leads to solution inaccuracy

as mandatory receptor points cannot be resolved. With moving mesh, the effect of orphan

points is emphasized as relative motion can increase the number of orphans or change

their locations over time. Orphan points can be prevented by increasing mesh resolution

and improving mesh overlap.

4.4.3 Point-type assignment

Once the donor-search has been performed and processors have exchanged their candi-

date donor cell information, unidentified points are marked as solve points or receptor

points. Hole points have been identified in the hole-cutting process earlier.

First, points in the neighbourhood of hole points are marked as mandatory receptor points,

which should always interpolate from another mesh point. This ensures that the solver

algorithm will have no invalid points in the discretization stencil of the governing partial

differential equations [26].

After identifying mandatory receptor points, solve and receptor points are distinguished

from remaining cells. The resolution of a point is compared to the resolution of all its

candidate donor cells. If the point resolution is the highest, then the point is marked as

solve point. If not, then it is a receptor point, and its donor cell is chosen as the one with

the best resolution. As for the last step, processors share the information about accepted

and rejected candidate donor cells.

4.4.4 Interpolation

After each point has been assigned a property, interpolation weights for each receptor

point associated with a donor cell are computed. After that, solution can be interpolated

to the receiver point with a simple linear combination. Interpolated solution is the

weighted average of the data points participating in solution.

22

5. HIGH-RESOLUTION GRID SIMULATION SETUP

For the numerical simulation the OpenFOAM v1712 by ESI Group is used in this thesis.

It is a free and open-source C++ toolbox for developing executables, solvers and utilities,

that use packaged functionalities contained in libraries. These applications and libraries

can be extended and modified by experienced users. OpenFOAM contains numerical

solvers and pre-/post-processing utilities for solving CFD problems, but it can also be

used for other applications such as electromagnetics and solid mechanics.

OpenFOAM is designed to run in Linux based operating systems and it uses Unix style

commands and text file dictionaries. Simulation case is run in main folder containing

time, constant and system directories. Directories for time contain initial conditions of

used variables and results corresponding to specific time steps. Constant directory has

mesh data and physical properties like turbulence and thermodynamic settings. System

directory contains settings associated with solution procedure in controlDict, fvSchemes

and in fvSolution. Run time parameters are specified in controlDict, numerical schemes

in fvSchemes and linear solver settings in fvSolution. Minimum OpenFOAM case struc-

ture is shown in the figure 11.

Figure 11. OpenFOAM case structure, from [19]

Two separate simulation approaches are used with different grids and numerical settings.

First simulation approach uses high-resolution grid in the clearances. As a solver, over-

RhoPimpleDyMFoam is used, which is a transient solver for compressible fluids with

overset and dynamic grid implementation. Overset and dynamic setting used in the high-

resolution grid simulation are presented in the appendix A and additional solver settings

in the appendix B [15].

23

5.1 Pre-processing

Simulation process is started with creating or modifying an existing CAD geometry to

suit the simulation needs. In this case a 3D geometry is simplified to 2D model to greatly

reduce computing resource requirements. Spaceclaim is used as a CAD tool because of

its flexibility and history-free direct modelling approach.

Meshing is done with opensource meshing tool cfMesh that has been implemented to the

OpenFOAM v1712. It has advantages over native OpenFOAM unconstructed meshing

tool snappyHexMesh in boundary layer generation and in user friendliness. Grid and ge-

ometry are first generated using high-resolution mesh in the clearances between piston

and hammer walls.

5.1.1 Geometry modification

As a geometry a STEP file imported from Solidworks is used and modified in Spaceclaim.

Model is first simplified to 2D to greatly reduce cell count. Some simplifications are re-

quired since the original geometry is not axisymmetric but has cyclic symmetry in sectors.

Simplified 2D geometry is presented in the figure 12.

Figure 12. Axisymmetric simplifications

Inner cylinder has been modified in two ways. Small air feed holes on top of the inner

cylinder have been removed and replaced with a simple channel. Same simplification

has been done to the air feed holes on bottom of the inner cylinder. Piston has been

changed by removing oil grooves and piston material between air channels. These sim-

plifications will change the flow characteristics of the hammer, but they can be justified

as they do not affect cycle timings.

Axisymmetric geometry has also been modified by relaxing the original CAD model to

the largest allowed tolerance limit to make clearances as loose as possible. This is bene-

ficial when using overset grid in near wall regions as the cell size in the clearance could

be increased. Small local cells impose limitation to the time step size and increase cell

count. Also, by using maximum clearance tolerances the geometry represents better the

actual hammer as the inner parts of the hammer will wear during operation.

Some additional changes to the piston geometry have been done to make overset grid

more robust. Rounded piston corners have been notched to produce more uniform Car-

tesian mesh in the near wall regions. Next, the overset boundary is created around the

piston. Overset boundary should be far enough from the piston that minimum of four

24

cells can be placed between to ensure robustness of OGA algorithm. As overset grid as-

sembly is time consuming, goal is to minimize overset cell count. Overset boundary cre-

ated around the piston is presented in the figure 13.

Figure 13. Overset boundary

2D meshing in cfMesh uses STL file in ribbon format so the surface geometry file cre-

ated in Spaceclaim must be modified and patches named accordingly. Also, the moving

piston with overset boundary must be meshed separately.

5.1.2 Meshing

Meshing is started with overset piston geometry. Mesh must be refined in the areas that

will have close proximity to hammer walls during the piston cycle. Refined mesh from

the upper part of the piston is illustrated in the figure 14.

Figure 14. Refined piston mesh

Figure 14 shows the notch created on top of the piston as well as high-resolution mesh

refinement. Accuracy of the solution will most likely suffer in the regions where transi-

tion from large cells to small cells occurs. However, this approach is necessary to create

refined enough grid for the clearances and keeping cell count in reasonable limits.

Before the background mesh is generated the alignment of the geometry to the y-sym-

metry axis must be checked as misalignment creates numerical problems in axisymmet-

ric simulations. Misalignment can be present because of rounding of errors in CAD

software or inaccuracies in surface triangulation. It can be treated by manually modify-

ing cfMesh fms geometry file and editing small negligible values to zero.

25

Background mesh is generated separately, and mesh refinements are placed to regions

which have or will have proximity to piston during simulation. Also, additional box re-

finements are placed in these areas to make dynamic mesh movement more robust.

Background mesh with patch and box refinements in the bottom of the inner cylinder is

presented in the figure 15.

Figure 15. Mesh refinements in the bottom of the inner cylinder

Two grids can be combined and then transformed into axisymmetric form by using

wedgePlease utility [30], which is based on native OpenFOAM utility flattenMesh. Best

way to simulate axisymmetric geometry is to create a wedge with sector angle of 5 de-

grees [31]. Because OpenFOAM treats 2D meshes in 3D, wedges smaller than 5 de-

grees would result in neglectable cell volumes near the symmetry axis creating numeri-

cal problems. Angles larger than 5 degrees will cause solution inaccuracy. Axisymmet-

ric mesh compared to original 2D mesh is shown in the figure 16.

Figure 16. Original 2D mesh (top) and axisymmetric wedge mesh (bottom)

Axisymmetric mesh in OpenFOAM does not neglect velocities the in surface normal di-

rection and therefore wedge geometries can produce different results than cyclic simula-

tions, which have cyclic symmetry planes.

Creating an axisymmetric mesh requires collapsing edges on the symmetry axis with

collapseEdges utility and it is controlled by collapseDict dictionary in the system folder.

This utility merges edges that have been translated from the original 2D mesh and are

overlapping. Modifying minimumEdgeLength might be necessary if cell size in the do-

main is small.

26

collapseEdgesCoeffs

{

minimumEdgeLength 1e-5;

maximumMergeAngle 179;

}

Final step in creating an axisymmetric mesh is to change the front and back boundaries

to wedges manually or by using changeDictionary utility controlled by changeDiction-

aryDict.
boundary

{

"bottomEmptyFaces.*"

{

 type wedge;

 inGroups (wedge);

}

"topEmptyFaces"

{

 type wedge;

 inGroups (wedge);

}

}

Mesh quality is checked for both piston and background grids. Most important mesh

metrics for hexahedral dominant meshes are non-orthogonality and aspect ratio. Non-

orthogonality is defined as the angular deviation of the surface normal vector from the

vector connecting two cell centres. Aspect ratio is the ratio between the longest and the

shortest face of the cell. Skewness is also checked but it is typically not a limiting factor

in hexahedral dominant meshes. For detailed mesh quality metrics definitions, see [32].

Mesh quality results for both piston and background mesh are presented in table 3.

Table 3. Mesh quality metrics for piston and background mesh

 Piston mesh Background mesh

Cell count 98699 576961

Maximum aspect ratio 8.37 8.57

Maximum non-orthogonality 45.18 53.00

Average non-orthogonality 2.61 1.60

Maximum skewness 1.36 2.33

Maximum aspect ratio and maximum non-orthogonality are in allowed limits. As cell

size in the clearances must be small, cell count will be large for 2D simulation and time

step must be small. Minimum cell size is 0.015 mm.

5.2 Boundary conditions

Specifying accurate initial values for turbulence is complicated but if the area of interest

is not close to inlet, then turbulence will level into physically right values as the flow

develops. For initial values, good practice is to use rather large amount of rate of turbulent

dissipation at the inlet [33]. This method will introduce some additional turbulent viscos-

27

ity near the inlet, but it will stabilize computation by filtering out small time scale phe-

nomena. Also, using small placeholder values for turbulence properties other than omega

is recommended at the walls. This will reduce the risk of solver crash caused by floating

point exception by division with zero.

The k-ω SST turbulence model with Launder-Spalding wall function is used with stand-

ard coefficients. Gravity is defined in negative y-direction and Sutherland’s law for vis-

cosity is used with assumptions of calorically perfect gas and constant enthalpy. Targeted

mass flow rate was chosen to be 0.475 kg/s. For simplicity, physical boundary conditions

used in the simulations are presented in tabular form when needed in the following chap-

ters.

5.3 Numerical schemes

In OpenFOAM, numerical settings must be specified by the user and new types of simu-

lations will most likely require adjusting and testing. Choice of numerical schemes has

major impact on solution accuracy and stability.

Different numerical schemes were tested. As the mesh has relatively good quality, second

order linear upwind was used for most of the divergence terms. It has good accuracy and

stability and it is not prone to oscillations. For turbulence properties, linear upwind

scheme was first used but it led to instability due to unboundedness and first order

bounded upwind scheme was chosen instead. For overset interpolation, generally recom-

mended inverse distance method is chosen [34]. For wall distance calculation, Poisson

equation is used since the mesh wave method typically used in dynamic simulations is

not supported with overset grid. As for time discretization, off-centered Crank Nicolson

0.5 scheme is chosen for the first part of the simulation where the piston motion is re-

stricted as it is less diffusive than first order backward Euler scheme. However, when

pressure has accumulated under the piston and translational movement is allowed, back-

ward Euler scheme is recommended since Crank Nicolson scheme may give non-physical

hotspots with moving mesh [34]. Numerical schemes used are presented in the appendix

C.

5.4 CSC Taito supercluster

Taito supercluster from Finnish IT center for science is used in this thesis as overset sim-

ulations even in 2D require substantial amount of computational power. In Taito, maxi-

mum of 28 nodes can be used for single simulation containing total of 672 cores. In this

thesis a single node is used with 16 to 24 cores.

28

6. TRIAL SIMULATIONS

Trial solutions are presented to illustrate different methods used for the simulation with

high-resolution mesh in the clearances. The second simulation approach is based on these

results.

6.1 Case 1

In the case 1, simulation was tried with specified inlet velocity as inlet mass flow rate was

unstable. Inlet velocity was stable only up to 150 m/s which corresponds to mass flow

rate of 0.132 kg/s with air in atmospheric density. Boundary conditions for the case 1 are

presented in table 4.

Table 4. Case 1 boundary conditions

 U (m/s) T (K) p (Pa)

internalField (0 0 0) 300 10^5

inlet fixedValue (0 -150 0) fixedValue 300 zeroGradient

outlet zeroGradient zeroGradient fixedValue 10^5

allPistonWalls movingWallVelocity (0 0 0) zeroGradient zeroGradient

allHammerWalls fixedValue (0 0 0) zeroGradient zeroGradient

 nut (m^2/s) k (m^2/s^2)

internalField 10^-9 0.1

inlet calculated 0 fixedValue 0.1

outlet calculated 0 zeroGradient

allPistonWalls nutUSpaldingWallFunction 10^-9 kqRWallFunction 0.1

allHammerWalls nutUSpaldingWallFunction 10^-9 kqRWallFunction 0.1

 alphat (kg/(m·s) omega (1/s)

internalField 0 10^5

inlet calculated 0 fixedValue 10^5

outlet zeroGradient zeroGradient

allPistonWalls
compressible:alphatWallFunction

(Prt 0.85 fixedValue 0) omegaWallFunction 10^5

allHammerWalls
compressible:alphatWallFunction

(Prt 0.85 fixedValue 0) omegaWallFunction 10^5

29

Simulation is run with specified settings.
PIMPLE

{

momentumPredictor true;

transonic false;

nOuterCorrectors 30;

nCorrectors 1;

nNonOrthogonalCorrectors 0;

oversetAdjustPhi true;

turbOnFinalIterOnly false;

}

Using this approach had serious drawbacks. Convergence could only be achieved when

using momentum predictor. However, for some reason the axisymmetric swirl compo-

nent Uz did not converge during the simulation. Coordinate system is illustrated in the

figure 12. Unconverged swirl component did not affect the accuracy or the stability of

the solution but it prevented the use of residual control. This means that specified

amount of outer corrections had to be performed for every time step despite the conver-

gence of the solution. An effort was made to remove solving of Uz by modifying the

source code, as it could be assumed that no notable swirl would develop in the DTH

hammer cycle. However, removing Uz from incompressible solver was relatively easy

but to do so for compressible solver was not successful as the relation of velocity to en-

ergy equation was too complex. Also, transonic option could not be used because of

convergence issues.

6.2 Case 2

In the case 2 the simulation was initialized by using converged axisymmetric pipe flow

solution to obtain correct velocity profile and initial values at the start. By this way the

previously unstable mass flow rate inlet condition could be used with correct inlet value.

Settings for the case 2 are presented below.

PIMPLE

{

momentumPredictor false;

transonic true;

nOuterCorrectors 150;

nCorrectors 1;

nNonOrthogonalCorrectors 0;

oversetAdjustPhi true;

turbOnFinalIterOnly false;

}

By achieving convergence without momentum predictor, the swirl component was not a

problem anymore as it was solved in the pressure equation rather than in the momentum

predictor. Careful adjustment of turbulent inlet conditions was required to obtain stable

solution with transonic option turned on. Boundary conditions are presented in table 5.

30

Table 5. Case 2 boundary conditions

 U (m/s) T (K) p (Pa)

internalField (0 0 0) 300 10^5

inlet
flowRateInletVelocity
massFlowRate 0.0066

rhoInlet 2.2
fixedValue 300 zeroGradient

outlet fluxCorrectedVelocity zeroGradient fixedValue 10^5

allPistonWalls movingWallVelocity (0 0 0) zeroGradient zeroGradient

allHammerWalls fixedValue (0 0 0) zeroGradient zeroGradient

 nut (m^2/s) k (m^2/s^2)

internalField 10^-9 50

inlet calculated 0
turbulentIntensityKineticEnergyInlet

50, intensity 0.03

outlet calculated 0 zeroGradient

allPistonWalls nutUSpaldingWallFunction 10^-9 kqRWallFunction 50

allHammerWalls nutUSpaldingWallFunction 10^-9 kqRWallFunction 50

 alphat (kg/(m·s) omega (1/s)

internalField 0 3·10^6

inlet calculated 0 fixedValue 10^4

outlet zeroGradient zeroGradient

allPistonWalls
compressible:alphatWallFunction

(Prt 0.85 fixedValue 0)
omegaWallFunction

3·10^6

allHammerWalls
compressible:alphatWallFunction

(Prt 0.85 fixedValue 0)
omegaWallFunction

3·10^6

The easiest way to initialize the flow near the inlet would have been to use steady state

solver rhoSimpleFoam. However, rhoSimpleFoam was proven to be unstable with high

velocity and transient solver rhoPimpleFoam was used instead. Velocity magnitude re-

sults for pipe flow are shown in the figure 17.

Figure 17. Pipe flow with 0.475 kg/s mass flow rate (m/s)

31

However, the velocity in the pipe was unphysical since the flow is supersonic at the last

cells next to outlet. This unphysical behaviour can be avoided by mapping the solution to

a slightly shorter pipe illustrated in the figure 18 and using that in initialization.

Figure 18. Pipe flow result used in initialization (m/s)

In the case 2 the simulation was run with stationary piston until the pressure chamber

below the piston nose was filled. Simulation was stable with stationary mesh but tem-

perature in the hammer was unphysically high. Temperatures in different part of the

hammer at time t = 2 ms are presented in the figures 19 and 20.

Figure 19. Temperature (K) near the inner cylinder in the case 2

32

Figure 20. Temperature (K) near the piston nose in the case 2

From the figure 19, the average temperature is approximately 150 °C. Average tempera-

ture in the figure 20 near the piston nose is 430 °C and the maximum value is over

900 °C in the gap between piston and foot valve.

First, thermophysical properties were investigated but no apparent reason for the high

temperatures was found. Temperature for the stagnated flow at the top of the check valve

was investigated with equation (12) and with constant values of U = 190 m/s and

Cp = 1000 J/(kgK). Theoretical temperature rise for stagnated flow was 18 °C. Stagnation

temperature at the top of the check valve is shown in the figure 21.

Figure 21. Stagnation temperature (K) at the top of the check valve

33

Stagnation temperature corresponds to theoretical value. Therefore, using ideal gas ap-

proximation with enthalpy as an energy variable should not be an incorrect approach for

high-speed compressible flows.

After further testing the reason for high temperature values was found to be the use of

relaxation in the SIMPLE loop.

relaxationFactors

{

 fields

 {

 "p|rho" 0.3;

 "(p|rho)Final" 1;

 }

 equations

 {

 "k|omega" 0.7;

 "(k|omega)Final" 1;

 }

}

It is a standard procedure to use relaxation as it helps to stabilize the simulation. Using

relaxation at the intermediate instantaneous steady state solutions should be justified

when the last iterations are performed without relaxation to obtain time accurate solution

[20]. However, this seems not to be the case for pure transient flow and works in pseudo-

transient cases only. Using relaxation seems to cause the simulation to converge in to a

wrong solution, and in this case, in to a wrong temperature.

6.3 Case 3

Simulation in the case 3 is performed without relaxation. Also, the piston is moved closer

to the bit to better represent the actual piston cycle where the piston is either in contact

with the bit or close to the bit due to impact rebound. Temperature near the inner cylinder

is presented in the figure 22.

34

Figure 22. Temperature (K) near the inner cylinder in the case 3

Temperature is lower and thus more physical than in the case 2. However, it is still im-

possible to say whether the values are correct or not without validation of the results.

Even though temperature is more reasonable, lack or relaxation lead to other problems.

Transition to small cell size in the gap surfaces causes unphysical numerical swirling

where high local velocities and neglectable densities occur. If pressure is kept constant,

decrease in density causes rise in temperature to satisfy the ideal gas equation (6). Ex-

ample of solver crash from log file due to negative density is presented below.

fieldMinMax fieldMinMax1 write:

 min(mag(U)) = 0 in cell 0 at location (0.0154367 -0.386597 1.07189e-20)

on processor 0

 max(mag(U)) = 363.062 in cell 21681 at location (0.0339755 -0.0641925 -0.0014834)

on processor 13

 min(p) = 82115.9 in cell 11578 at location (0.0339983 -0.0641694 -5.53407e-21)

on processor 13

 max(p) = 372592 in cell 339 at location (0.000128816 0.206499 1.79211e-22)

on processor 18

 min(T) = 114.793 in cell 361 at location (0.0166415 -0.38259 -9.19888e-21)

on processor 0

 max(T) = 2126.87 in cell 31167 at location (0.0164337 -0.381905 2.13662e-20)

on processor 0

smoothSolver: Solving for rho

Initial residual = 0.000383023, Final residual = 1.65308e-13, No Iterations 1

rhoEqn max/min: 6.96807 -11.0826

PIMPLE: iteration 1

smoothSolver: Solving for h

Initial residual = 0.000743294, Final residual = 1.96852e-06, No Iterations 2

DILUPBiCGStab: Solving for p

Initial residual = 0.000399309, Final residual = 4.52171e-08, No Iterations 10

smoothSolver: Solving for rho

Initial residual = 0.00023313, Final residual = 1.03658e-13, No Iterations 1

time step continuity errors:

sum local = 2.37742e-06, global = 2.29868e-06, cumulative = 0.00115805

rho max/min: 7.42103 -7.44887

PIMPLE: iteration 2

smoothSolver: Solving for h

Initial residual = 0.000524758, Final residual = 5.99462e-07, No Iterations 4

--

A process has executed an operation involving a call to the

"fork()" system call to create a child process.

35

From the log file, temperature and minimum density are extremely unphysical. Mini-

mum and maximum values for pressure are reasonable. Because of this solver instabil-

ity, limiters to temperature, velocity and density must be applied. However, limiters

must be specified in a way that they do not affect actual physical results of the simula-

tion. In the case 3, temperature is limited between 0-500 K, velocity to 0-500 m/s and

density to 0.2-10 kg/m^3. More common approach for stabilizing simulations in general

is to use pressure limiter rather than density limiter. However, in test cases the use of

pressure limiter instead of density limiter caused simulation to crash soon after start. It

seems that overRhoPimpleDyMFoam and rhoPimpleFoam in general is more sensitive

to negative values of density than negative values of pressure. Limiting both pressure

and density is not possible as it would violate mass conservation. Temperature at the

nose of the piston is presented in the figure 23.

Figure 23. Temperature (K) near the piston nose in the case 3

Even though the average temperature in the case 3 is more physical than in the case 2,

numerical swirling is notable indicated by the high maximum temperature value limited

to 500 K. More detailed illustration of swirling is presented in the figures 24-26.

36

Figure 24. Temperature (K) at small cells

Figure 25. Density (kg/m^3) at small cells

Figure 26. Velocity (m/s) at small cells

37

Swirling occurs in a larger scale starting from the sharp corner of the inner cylinder air

feed hole combined with large cell size differences. Large scale swirling is illustrated in

the figure 27.

Figure 27. Temperature (K) at the event of large scale numerical swirling

As the overset grid requires use of backward Euler temporal discretisation with moving

mesh, swirling will be diffused when movement is not restrained. Diffusion helps but

does not eliminate the problem.

Besides the numerical instability of the solution, problem from the OGA is encountered.

Even though high-resolution grid in the clearances is used to create sufficient number of

cells between walls, OGA cannot be made robust. Holes are formed into the grid quite

arbitrarily based on tests with different piston positions and mesh adjustments. Holes vi-

olate mass conservation as air can leak out of the domain and they make the simulation

unstable with moving mesh. Holes forming between piston and foot valve are presented

in the figure 28.

Figure 28. Overset holes between piston and foot valve

38

Holes in the figure 28 completely block the gap between piston and foot valve and no

air can get through. In the case 2 this was not a problem and it is likely explained by dif-

ferent piston position. Holes are also formed between piston and inner cylinder shown

in the figure 29.

Figure 29. Overset holes between piston and inner cylinder

From both figures 28 and 29, high velocities occur near the holes which indicates flow

exiting the domain. Case 2 also has OGA failures between inner cylinder and piston, but

it is not as notable.

Based on testing, OGA seems to be sensitive for domain decomposition in parallel sim-

ulations. In serial run while using only one processor, OGA was robust at least with

non-moving grid. However, when the domain is decomposed into multiple parts, holes

start to occur. Different number of processors used cause different OGA results. For ex-

ample, test simulation done with a desktop pc with 6 processor cores would result in

continuous domain with no holes while the same simulation done in a cluster with 18

cores would result in domain with multiple holes. Therefore, with unconstructed mesh

the overset simulation guideline for using at least 4 cells in the gaps is insufficient. Even

when using similar sized cell layers with 8 cells in the clearances and adjusting cell po-

sition carefully, problems still occur. Even more refined mesh in the clearances could be

tried but that would make simulation unpractical.

39

7. SIMULATION WITH POROUS ZONES

As modelling clearances using high-resolution grid was not successful, another approach

had to be found. Luckily, using porous zones to restrict flow instead of walls proved to a

be a successful technique. The use of porous zones allowed to bypass the numerical prob-

lems of the OGA in near wall regions while not significantly reducing physicality of the

solution.

Porous zones imitate wall boundaries when permeability is set to a high value. By this

way the flow velocity can be restricted to negligible values in the medium while removing

actual wall boundaries. The removal of wall boundaries eliminates near wall overset lim-

itations as porous regions are part of the continuous fluid domain. Pressure is limited with

porous pressure jump in high-permeability porous zone which acts like a zero-gradient

boundary condition. High-permeability porous zones implemented to simulation are il-

lustrated in the figure 30.

Figure 30. Implemented porous zones with blue colour

From the figure 30, parts of the wall boundaries have been removed and substituted with

porous zones. As the cell count restrictions in the clearances are removed, cell size can

be increased. Clearances are still modelled but with fewer cells in between boundaries.

Modified overset grid is presented in the figure 31.

Figure 31. Modified piston mesh

40

The smallest cell size is doubled when comparing the new piston grid to the old one in

the figure 14. Also, boundary layers have been removed from both background and pis-

ton geometries to produce higher quality mesh by improving cell transitions and reduc-

ing cell count. Removal of boundary layers is justified by analysing 𝑦+ values from pre-

vious simulations. With modified mesh, local 𝑦+ values can reach even 200 in areas

where high-speed flow deflects from wall but in general 𝑦+ values are below 100. Mesh

metrics for modified mesh are shown in table 6.

Table 6. Mesh metrics for modified mesh

 Piston mesh Background mesh

Cell count 45237 462221

Maximum aspect ratio 2.65 3.06

Maximum non-orthogonality 39.04 50.00

Average non-orthogonality 2.24 0.95

Maximum skewness 1.14 1.59

Mesh quality has been improved compared to the original mesh. Most notably, cell

count in the piston mesh has been halved, which greatly reduces time used for the OGA.

Parallel scalability test is performed to modified mesh to optimize simulation perfor-

mance compared to computational cost. Results are presented in the figure 32.

Figure 32. Parallel scalability test

Test was done by running a simulation using five PIMPLE outer correctors and wall

time for each time step was measured. It is notable that overset grid seems to be ineffi-

cient when using too few cores. By increasing core count 40% from the 10 cores, wall

time decreased 10 seconds which is 56% less than with 10 cores. Based on scalability

test, 18 cores for the simulation was chosen as with more cores performance gain starts

to decrease.

8

10

12

14

16

18

20

22

24

26

10 14 18 22

Ti
m

e
p

er
 o

n
e

ti
m

e
st

ep
 [

s]

Number of cores

41

Using porous zones requires care when used with overset grid. Simulation was tried

with different permeability settings and it was noticed that using too much permeability

causes problems in the OGA. Therefore, arbitrarily high amount of porosity cannot be

used. Porous zones with too high permeability combined with moving grid cause local

high pressures with negative pressures which will eventually crash simulation. How-

ever, using too low permeability value causes flow to go through porous zone. Also, as

porous zones are not physical wall boundaries, no-slip boundary condition for velocity

and turbulence wall functions cannot be used for these regions.

Based on previous simulation results, limiters for temperature, velocity and density have

been adjusted. Temperature is limited to 0 - 400 K, velocity to 0 - 400 m/s and density

to 0.7 - 11 kg/m^3. Based on testing, permeability in the porous zones is set to 5 ∙ 103 d

which can be considered as a good compromise between high permeability and numeri-

cal robustness. Forchheimer’s terms are neglected. Backward Euler discretization is

used for moving mesh as recommended. Acceleration relaxation and acceleration damp-

ing parameters have been tightened. Relaxation factor for h, k and ω are set to 0.9 to sta-

bilize the simulation. Other settings are used from the trial case 3.

7.1 Porous media verification

Simulation using a porous zone to restrict fluid flow was tested and compared to similar

geometry using only physical walls to verify porous media approach. Flow was studied

in 2D with 0.2 mm x 40 mm gap. Total pressure inlet with 200 kPa pressure was used

with 100 kPa fixed value outlet. Permeability in the porous zone was set to 5 · 1013 d.

Turbulence settings are same as in the trial case 2 and temperature was limited to 400 K.

Test case geometries are illustrated in the figure 33.

Figure 33. Simulation with physical wall (top) and simulation with porous zone (bot-

tom) marked with blue

Uniform Cartesian grid was constructed for the test case and two cell layers were placed

in the gap to present the mesh between piston and hammer walls. Velocity magnitude

results for the test cases are shown in the figure 34.

42

Figure 34. Velocity magnitudes (m/s) in the gaps with physical walls (top) and with po-

rous zone (bottom)

Assumption was that the flow velocity would be slower in the gap using solid walls as

wall functions and no-slip boundary condition cannot be used for porous zones. Surpris-

ingly, flow in the gap with solid walls had significantly higher velocity. To study this

behavior, fully developed flow profiles were investigated at the end of the gap for both

test cases using 2 and 20 cell layers in the gap. For both test cases, dimensionless wall

distance for 2 cell layers were 𝑦+ > 25 and for 20 layers 𝑦+ < 5. Velocity profiles are

presented in the figure 35.

Figure 35. Fully developed gap flow velocity profiles for 4 verification test cases

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0 20 40 60 80 100 120 140 160 180 200 220 240

G
ap

 h
ei

gt
h

 [
m

m
]

Velocity [m/s]

Solid walls with 2 cell layers Porous wall with 2 cell layers

Solid walls with 20 cell layers Porous wall with 20 cell layers

43

From the figure 35, using porous zone causes flow velocity to be non-zero at the porous

boundary which is expected. Also, using only two cell layers causes triangular flow pro-

files with lower velocity compared to flow profiles in refined mesh. Because of this, mass

flow rate in the gap with two cell layers is significantly less than in the gap using refined

mesh. Reason for lower flow rate in the gap using porous wall and a physical wall com-

pared to two physical walls could not be found.

Turbulence quantities in the gap are not comparable as flow velocities differ. Maximum

flow velocity in the porous zone was approximately 0.05 m/s at the left corner of the gap,

so the porous zone is practically impermeable. Some smearing of temperature and pres-

sure occurred inside the porous zone near the zone boundaries, but it did not affect the

physicality of the porous test case.

Because of lower flow rate in the gap, porous zones cannot be used to accurately simulate

gap flow with low-resolution grid. High-resolution grid slightly improves solution. How-

ever, the use of porous zones with low-resolution grid can still be justified to make the

mesh movement in the near wall regions possible and to reduce computational cost. Also,

lower flow rate in the porous zone gaps is somewhat mitigated by larger clearances used

in the simulation. A study should be made if the clearances could be made larger to com-

pensate lower mass flow and to increase minimum cell size when using low-resolution

grid.

7.2 Trial simulation with off-centered Crank Nicolson scheme

Simulation was tried with off-centered Crank Nicolson 0.5 temporal scheme. With off-

centered Crank Nicolson scheme simulation was stable up to Co = 10, but negative

pressure accumulation caused a problem where the average Courant number was re-

duced from approximately 0.12 to 0.0004. Average Co can be considered as an indicator

of computational efficiency and ideally it should be in the same order as maximum Co.

Average Co is shown in the figure 36.

44

Figure 36. Average Co for off-centered Crank Nicolson simulation

Reduction of average Co made the simulation impractical to continue. Negative pressure

accumulation in the overset region causing the problem at t = 15.5 ms is presented in the

figure 37.

Figure 37. Local negative and large positive pressures (Pa)

Simulation with backward Euler scheme was stable only up to Co = 5 but it was more

robust than with off-centered Crank Nicolson scheme and could be run without any

problems.

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 C
o

u
ra

n
t

n
u

m
b

er

Time [ms]

45

8. RESULTS AND DISCUSSION

Simulation was run with 18 cores for approximately 10 days with off-centered Crank

Nicolson temporal scheme from time zero up to t = 2.5 ms and with backward Euler

scheme from t = 2.5 ms to t = 25 ms. Most of the computational time was used for over-

set grid assembly. Maximum Co = 5 was used and average time step was

∆t = 5 ∙ 10−4 ms. Piston translation was allowed at t = 2.5 ms and initial velocity of

5 m/s was given. Validation of the results is done afterwards with DTH test rig when it

is operational. Settings used are presented in the appendices C – F.

Simulation was run up to the collision of piston to the upper pressure chamber at

t = 25 ms. Because of the collision, results up to t = 24.5 ms are used. Collision was

most likely caused by too high initial velocity given for the piston. Initial value of 5 m/s

was based on semi-analytical model designed for conventional hammers. With these

hammers the volume of air in the upper pressure chamber approaches zero as the piston

moves upwards causing downwards acceleration of the piston to approach infinity. Be-

cause of this, the piston always stops before collision. However, this is not the case for

well hammers with inner cylinders. As the piston moves upwards, the volume of air in

the upper pressure chamber is limited to a finite minimum value limiting possible decel-

eration. Piston velocity, acceleration and displacement are shown in the figures 38-40.

Figure 38. Piston velocity

3,6

3,8

4

4,2

4,4

4,6

4,8

5

5,2

5,4

2 4 6 8 10 12 14 16 18 20 22 24 26

P
is

to
n

 v
el

o
ci

ty
 [

m
/s

]

Time [ms]

46

Figure 39. Piston acceleration

Figure 40. Piston displacement

From the figure 38, piston acceleration decreases when translational movement is al-

lowed. Next, piston starts to decelerate at t = 7.5 ms when the side channels are blocked.

At t = 14 ms high-pressure air from the lower pressure chamber is discharged and at

t = 18 ms upper pressure chamber is sealed which further increases deceleration.

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

2 4 6 8 10 12 14 16 18 20 22 24 26

P
is

o
tn

 a
cc

el
er

at
io

n
 [

m
/s

^2
]

Time [ms]

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20 22 24 26

D
is

p
la

ce
m

en
t

[m
m

]

Time [ms]

47

Important metric in transient overset simulation is the cumulative mass continuity error

and it is defined for compressible simulation as

{

dimensionedScalar totalMass = fvc::domainIntegrate(rho);

scalar sumLocalContErr =

(fvc::domainIntegrate(mag(rho - thermo.rho()))/total-

Mass).value();

scalar globalContErr =

(fvc::domainIntegrate(rho - thermo.rho())/totalMass).value();

cumulativeContErr += globalContErr;

}

a deviation of mass inflow and mass outflow. However, in this simulation air is trapped

inside the hammer to produce piston motion and because of this, it is hard to say how

much of the cumulative continuity error is caused by inaccuracy of the overset interpo-

lation. Cumulative continuity error is shown in the figure 41.

Figure 41. Cumulative continuity error

As the initialization of the simulation is done using second order off-centered Crank

Nicolson temporal discretization with stationary mesh, conservation error is negligible

until t = 2.5 ms. Surprisingly, decline of acceleration shown in the figure 39 at

t = 2.5 ms is not related to error in mass conservation as error starts to increase only af-

ter t = 4 ms, even while using backward Euler discretization. Cumulative continuity er-

ror increases from t = 4 ms to t = 16 ms and stays relatively constant afterwards. Further

studies should be made to extract the cumulative continuity error caused by the overset

interpolation.

Only most important scalar results are shown for simplicity. Vector and turbulent results

are not presented as it would require large pictures for multiple time steps. Velocities

and the Mach numbers at six different time steps ranging from t = 2.5 ms to t = 24.5 ms

are given in the figures 42-43.

-1

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20 22 24 26

C
u

m
u

la
ti

ve
 c

o
n

ti
n

u
it

y
er

ro
r

Time [ms]

48

Figure 42. Velocities (m/s) in the hammer at time steps 2.5 ms, 5.0 ms, 10 ms, 15 ms,

20 ms and 24.5 ms ranging up to down

49

Figure 43. Mach number in the hammer at time steps 2.5 ms, 5.0 ms, 10 ms, 15 ms,

20 ms and 24.5 ms ranging up to down

50

Excluding numerical errors, only temperature reached limit of 400 K during the simula-

tion. This could indicate that the limit is unphysical, and it should be set higher or that

too much energy is converted to heat. Pressure and temperature are probed in the points

indicated by the figure 44.

Figure 44. Probe locations

Outflow of the hammer is studied by inspecting mass flow and average temperature at

the outlet. Mass outflow is presented in the figure 45.

Figure 45. Mass outflow at the outlet

From the figure 45, mass flow at the outlet increases as the pressure accumulates in the

lower pressure chamber and starts to decrease when the piston blocks the side channels.

Mass outflow increases again when the piston moves past the foot valve at t = 14 ms.

Surprisingly, mass flow does not decrease after the piston has blocked the side walls

and moved past the foot valve. This could be caused by inaccuracies in modelling clear-

ances with porous zones using low-resolution grid, but it could also illustrate the effect

of leakage through the gaps. Averaged temperature at the outlet is investigated and

shown in the figure 46.

-0,02

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0 2 4 6 8 10 12 14 16 18 20 22 24 26

M
as

s
fl

u
x

[k
g/

s]

Time [ms]

51

Figure 46. Averaged temperature at the outlet

Temperature has a square pulse like behaviour from t = 5.5 ms to t = 18.5 ms and after

that, fluctuations occur. The Mach number is investigated at t = 20 ms as mass flow has

large values at that instant. Ma exceeding one is also shown in the figure 43. Ma isocon-

tours are presented in the figure 47.

Figure 47. Transonic flow at the outlet with Ma isocontours

Flow at the outlet is transonic as Ma locally exceeds one which is allowed without flow

being supersonic. Also, it seems that temperature fluctuations are related to the tran-

sonic flow starting from t = 18 ms. However, transonic flow as a phenomenon is com-

plicated. Further studies would be needed to determine whether it is significant for DTH

hammer operation.

290

300

310

320

330

340

350

360

370

380

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Te
m

p
er

at
u

re
 [

K
]

Time [ms]

52

9. CONCLUSIONS

In this thesis project a simulation approach for down-the-hole hammers and pneumatic

devices with moving components in general was developed. Simulation for a well ham-

mer was done using rigid body dynamics with 2D axisymmetric overset grid with two

different approaches. First, simulation was run using high-resolution grid in the clear-

ances between the piston and the hammer walls. However, this approach failed due to

overset grid assembly robustness issues in the near wall regions in parallel simulation.

Second simulation used high-permeability porous zones in near wall regions instead of

wall boundaries. With this approach overset grid assembly issues could be eliminated

entirely.

As the main interest was to simulate piston cycle during continuous operation and not

the initial transient, a rebound velocity of 5 m/s was given to the piston. However, ini-

tial velocity was too high, and the piston collided to the upper pressure chamber. Re-

bound velocity was an educated guess based on semi-analytical DTH hammer design

tool not specifically made for well hammers. In the design tool, the air volume in the

upper pressure chamber approaches zero as the piston moves upwards causing piston

deceleration to approach infinity. However, this is not the case for studied well hammer

which has finite minimum upper pressure chamber volume.

For the results, displacement, velocity and acceleration data for the piston were acquired

which can be used to tune the DTH hammer design tool for well hammers. Also, data

for pressure, temperature and flow velocity are gathered from the simulation. Several

different flow phenomena are noticed. Most notably flow at the outlet gradually devel-

ops to transonic speed producing temperature and mass flow fluctuations.

As for the future development of overset analysis for OpenFOAM, few suggestions are

made. In parallel, overset grid assembly should be made robust. Also, zero gap imple-

mentation, like in STAR-CCM+, would be useful to simulate moving bodies in proxim-

ity when gap flow in the clearances is negligible. Lastly, plane restraint would be useful

to restrain translation in one dimension by allowing movement only up to a defined

plane.

For future work, several new studies should be made. First, simulation should be run

with lesser initial piston velocity to simulate the whole piston cycle up to the piston im-

pact to the bit. Results can be used to tune already existing design tools to correlate bet-

ter with well hammers. Second, simulation should be run in 3D with rhoPimpleFoam or

rhoCentralFoam solvers without overset grid. Also, pressure accumulation in the lower

pressure chamber and piston acceleration should be studied with and without clearances.

53

Third, gap flow causing leakage should be studied analytically and with CFD with dif-

ferent grid resolutions to investigate the possibility to use low-resolution gap mesh bet-

ter. The possibility of replacing clearances with solid walls and boundary conditions

with polynomial data fits for gap flow should be studied also. If clearances could be re-

moved without compromising moving mesh, it would greatly increase minimum cell

size and mesh quality. Fourth, if previous suggested studies are successful, LES could

be used instead of RANS in static cases if even more accurate results are required.

Lastly, simulation model must be verified and validated properly with DTH test bench

before further conclusions can be made.

54

BIBLIOGRAPHY

[1] D. Bruce, R. Lyon, S. Swartling, The history of down-the-hole drilling and the use

of water-powered hammers, 2014.

[2] J. Silver, WH4 Technical Brochure, 2017.

[3] C. Song, K. Kwon, D. Shin, W. Hwang, J. Lim, J. Cho, Trend analysis of drilling

technology for top-hammer drilling machine, 2013.

[4] P. Bordi, Top hammer workshop 2, 2018.

[5] J. Sokka, Design and implementation of factory layout renewal in South Korea,

2012.

[6] Halco, A-Z of DTH drilling, 2016.

[7] V. Pohja, General sales kit, 2011.

[8] Robit, Well drilling rig, 2018.

[9] J. Silver, Hyper 41 manual, 2018.

[10] J. Blazek, Computational fluid dynamics: principles and applications, 2005.

[11] W. Sutherland, The viscosity of gases and molecular force, Philosophical Maga-

zine, 1893, pp. 507-531.

[12] Y. Cengel, M. Boles, Thermodynamics: an engineering approach, 7th ed. 2010.

[13] F, Menter, Two-equation eddy-viscosity turbulence models for engineering applica-

tions, AIAA Journal, Vol. 32, Iss. 8, 1994, pp. 1598-1605.

[14] F, Menter, M, Kuntz, R, Langtry, Ten years of industrial experience with the SST

turbulence model, Turbulence, Heat and Mass Transfer 4, 2003, pp. 625 - 632.

[15] OpenCFD Ltd, OpenFOAM v1712 Extended Code Guide, 2017.

[16] D. Spalding, A single formula for the “law of the wall”, Vol. 28, Iss. 3, 1961, pp.

455-458.

[17] H. Hafsteinsson, Porous Media in OpenFOAM, 2009.

[18] A. Bejan, Convection Heat Transfer, 1984.

[19] The OpenFOAM Foundation, OpenFOAM v5 User Guide, 2017.

[20] T. Holzmann, Mathematics, numerics, derivations and OpenFOAM®, 2017.

55

[21] J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of

partial differential equations of the heat-conduction type, Mathematical Proceedings of

the Cambridge Philosophical Society, Vol. 43, Iss. 1, 1947, pp. 50-67.

[22] E. Ekedahl, 6-DOF VOF-solver without damping in OpenFOAM, 2009.

[23] J. Steger, J. Benek, On the use of composite grid schemes in computational aerody-

namics, Computer Methods in Applied Mechanics and Engineering, 1987, pp. 301-320.

[24] OpenCFD Ltd, New and improved numerics, 2017.

URL https://www.openfoam.com/releases/openfoam-v1706/numerics.php.

[25] G. Zagaris, M. Campbell, D. Bodony, E. Shaffer, M. Brandyberry, A toolkit for

parallel overset grid assembly targeting large-scale moving body aerodynamic simula-

tions, Springer Berlin Heidelberg, 2010, pp. 385-401.

[26] B. Roget, J. Sitaraman, Robust and efficient overset grid assembly for partitioned

unstructured meshes, Journal of Computational Physics, 2014, pp. 1-24.

[27] R. Meakin, Object X-rays for cutting holes in composite overset structured grids,

2001.

[28] Sharcnet, Diagnosing overset interface issues, 2016. URL https://www.sharcnet.ca

/Software/Ansys/17.2/en-us/help/flu_ug/flu_ug_sec_overset_issue_diagnosis.html.

[29] E. Quon, M. Smith, Advanced data transfer strategies for overset computational

methods, Computers & Fluids, 2015, pp. 88-102.

[30] K. Krebelj, wedgePlease, 2017. URL https://github.com/krebeljk/wedgePlease.

[31] CFD Online, Forum discussion, 2017. URL https://www.cfd-online.com/Fo-

rums/openfoam-meshing/186049-2d-axisymmetric-model-openfoam-4-0-

a.html#post645900.

[32] H. Jasak, Error analysis and estimation for the finite volume method with applica-

tions to fluid flows, 1996.

[33] A. Mikkonen, Discussion with thesis instructor, 2018.

[34] OpenCFD Ltd, Overset virtual course, 2018.

APPENDIX A: OVERSET AND DYNAMIC SETUP

Settings for overset simulation with moving grid are presented briefly. Overset simulation

setup is started by selecting overset grid and it is most easily done with topoSet. For a

single overset grid on a background mesh, topoSetDict can be quite generic if in-

sidePoints is not defined in the overset cell.

actions

(

{

name c0;

type cellSet;

action new;

source regionsToCell;

sourceInfo

{

insidePoints ((0.001 0 0));

}

}

{

name c1;

type cellSet;

action new;

source cellToCell;

sourceInfo

{

set c0;

}

}

{

name c1;

type cellSet;

action invert;

}

);

First the background mesh is selected, and then duplicate cell set is created with the

name c1. After that, c1 is inverted so that it only contains overset region and selected

cell sets are given field values of 0 and 1 with setFields. Lastly, overset patch must be

first in the boundary dictionary to properly activate explicit interpolation for field val-

ues when needed. Dynamic settings for high-resolution grid simulations are presented

below in dynamicMeshDict.

motionSolverLibs

(

 "libsixDoFRigidBodyMotion.so"

 "libfvMotionSolvers.so"

);

dynamicFvMesh dynamicOversetFvMesh;

solver sixDoFRigidBodyMotion;

sixDoFRigidBodyMotionCoeffs

{

 patches (pistonWalls innerClearance outerClearance);

 innerDistance 100.0;

outerDistance 101.0;

mass -----;

centreOfMass (0 -0.2327 0);

momentOfInertia (0.318 0.0054 0.0625);

 //velocity (0 0 0);

report on;

accelerationRelaxation 0.95;

 accelerationDamping 0.98;

solver

{

 type Newmark;

}

constraints

{

fixedLine1

{

sixDoFRigidBodyMotionConstraint line;

direction (0 1 0);

}

 fixedLine2

{

sixDoFRigidBodyMotionConstraint line;

direction (1 0 0);

}

 fixedOrientation

 {

 sixDoFRigidBodyMotionConstraint orientation;

 }

}

}

In overset simulation inner distance and outer distance are specified far away from the

computational domain to prevent mesh morphing. In the initial position, the piston is

fixed with three constraints which limit the degrees of freedom from six to zero. Fixing

the piston is necessary since physical walls are not allowed to collide. Constraint fix-

edLine2 can be removed to allow one dimensional translation when acceleration of the

piston has positive values in the y-direction. Initial velocity will be added to model the

rebound of the piston after hitting the bit.

APPENDIX B: ADDITIONAL PIMPLE SOLVER SETTINGS

Additional solver settings used in the simulations are presented. These settings are turned

off by default.

• momentumPredictor: solves a momentum predictor using momentum equation

and pressure from a previous time step. Momentum predictor is solved at the start

of a time step before pressure equation and it can help convergence and stability

in some cases.

• transonic: sets to solve the transonic algorithm that helps mass conservation in

transonic flows.

if (pimple.transonic())

{

phid

 (

 "phid",

(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA

);

phiHbyA -=

fvc::interpolate(psi*p)*phiHbyA/fvc::interpolate(rho);

 fvScalarMatrix pDDtEqn

 (

 fvc::ddt(rho) + psi*correction(fvm::ddt(p))

 + fvc::div(phiHbyA) + fvm::div(phid, p)

==

 fvOptions(psi, p, rho.name())

);

Transonic algorithm makes the solution sensitive to boundary conditions and re-

quires care when used. If non-orthogonality correction is used, additional term is

added to the transonic algorithm.

• oversetAdjustPhi: flux correction for overset simulations. As the overset method

is non-conservative and may lead to pressure fluctuations in closed domain, use

of flux adjustment is recommended.

• rhoMin and rhoMax: can be used to limit minimum and maximum values of den-

sity. Limiting density is a useful option to prevent unrealistic values from numer-

ical errors. Especially negative density values lead to solver crash.

• turbOnFinalIterOnly: sets to solve turbulence equations after each SIMPLE loop

increasing solution accuracy and stability. By default, turbulence equations are

solved only once at the end of the PIMPLE loop.

APPENDIX C: FVSCHEMES

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object fvSchemes;

}

// * //

ddtSchemes

{

default Euler; //CrankNicolson 0.5;

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

 grad(U) cellLimited Gauss linear 0.5;

}

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

div(phi,h) Gauss linearUpwind grad(h);

div(phi,K) Gauss linearUpwind grad(K);

div(phiv,p) Gauss linearUpwind;

div(phi,B) Gauss linearUpwind;

 div(meshPhi,p) Gauss linearUpwind grad(p);

div(B) Gauss linearUpwind;

 div(rhoPhi,U) Gauss linearUpwind;

div(U) Gauss linearUpwind;

 div(phid,p) Gauss linearUpwind grad(p);

div(phi,omega) Gauss upwind default;

div(phi,k) Gauss upwind grad(k);

div(((rho*nuEff*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1.0;

}

oversetInterpolation

{

method inverseDistance;

}

wallDist

{

method Poisson;

}

APPENDIX D: FVSOLUTION

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object fvSolution;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * //

solvers

{

p

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-07;

relTol 0;

}

pFinal

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-07;

relTol 0;

}

"(k|omega)"

{

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-6;

relTol 0;

}

 "(k|omega)Final"

 {

 solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-6;

relTol 0;

 }

 rho

 {

 solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-8;

relTol 0;

}

rhoFinal

{

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-8;

relTol 0;

}

 hFinal

 {

 solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-6;

relTol 0;

 }

h

 {

 solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-6;

relTol 0;

 }

 yPsi

 {

 solver PBiCGStab;

preconditioner DILU;

 tolerance 1e-6;

 relTol 0;

 }

}

PIMPLE

{

momentumPredictor false;

 transonic true;

 nOuterCorrectors 15;

nCorrectors 1;

nNonOrthogonalCorrectors 0;

 oversetAdjustPhi true;

 rhoMin rhoMin [1 -3 0 0 0] 0.7;

rhoMax rhoMax [1 -3 0 0 0] 11.0;

turbOnFinalIterOnly false;

residualControl

{

 h

{

 relTol 0;

 tolerance 1e-3;

}

 p

 {

 relTol 0;

 tolerance 5e-3;

 }

 "(k|omega)"

 {

 relTol 0;

 tolerance 5e-3;

 }

 rho

 {

 relTol 0;

 tolerance 5e-3;

 }

}

}

relaxationFactors

{

fields

{

 p 1;

 pFinal 1;

 rho 1;

 rhoFinal 1;

}

equations

{

 h 0.9;

 hFinal 1;

"k|omega" 0.9;

"(k|omega)Final" 1;

}

}

APPENDIX E: FVOPTIONS

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object fvOptions;

}

// * * * * * * * * * ** * * * * * * * * * * * * * * * * //

porosity1

{

type explicitPorositySource;

explicitPorositySourceCoeffs

{

selectionMode cellZone;

cellZone porousZone;

type DarcyForchheimer;

d (5e13 5e13 5e13);

f (0 0 0);

coordinateSystem

{

type cartesian;

origin (0 0 0);

coordinateRotation

{

type axesRotation;

e1 (1 0 0);

e2 (0 0 1);

}

}

}

}

source1

{

type limitTemperature;

selectionMode all;

active true;

min 270;

max 400;

}

source2

{

type limitVelocity;

selectionMode all;

active true;

min 0;

max 400;

}

APPENDIX F: DYNAMICMESHDICT

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object dynamicMeshDict;

}

// * //

motionSolverLibs

(

 "libsixDoFRigidBodyMotion.so"

 "libfvMotionSolvers.so"

);

dynamicFvMesh dynamicOversetFvMesh;

solver sixDoFRigidBodyMotion;

sixDoFRigidBodyMotionCoeffs

{

patches (pistonWalls innerClearance outerClearance);

innerDistance 100.0;

outerDistance 101.0;

 mass -----;

centreOfMass (0 -0.2327 0);

 momentOfInertia (0.318 0.0054 0.0625);

 velocity (0 5 0);

report on;

accelerationRelaxation 1;

 accelerationDamping 0.99;

solver

{

type Newmark;

}

constraints

{

fixedLine1

{

sixDoFRigidBodyMotionConstraint line;

direction (0 1 0);

}

 fixedOrientation

 {

 sixDoFRigidBodyMotionConstraint orientation;

 }

 }

}

