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ABSTRACT 

TEEMU SALO: Alternative Manufacturing and Testing Methods of Stretchable 
Electronics 
Tampere University of Technology 
Master of Science Thesis, 97 pages 
September 2018 
Master’s Degree Programme in Materials Engineering 
Major: Materials Technology 
Examiner: Professor Jukka Vanhala, Assistant Professor Mikko Kanerva  
Keywords: Stretchable electronics, module assembly, failure mechanisms,         
reliability testing 

Stretchable electronics are used in wearable applications to implement intelligent fea-

tures. The main characteristic of stretchable electronics is stretchability enabling defor-

mation required in wearable objects such as bandages and clothes. In this thesis, the 

stretchable electronics consist of elastic substrates, printed stretchable interconnections, 

adhesives and rigid modules with traditional electronic components. The modules on the 

elastic substrate form rigid islands that allow the substrate to stretch. 

Stretchable electronics can endure only a specific amount of elongation before their elec-

trical interconnections fail. Adhesion and deformation mechanisms in the joint and in the 

joint area of the module and the substrate affect elongation. The durability of stretchable 

electronics can be improved by improving adhesion and controlling the deformations via 

optimizing the structure of the joint and the joint area. 

In this thesis, the stretchable electronics were studied on several levels. A thermoplastic 

polyurethane (TPU) film was used as the elastic substrate. Wettability and effectiveness 

of pre-treatments on wettability were examined. The substrate was investigated by meas-

uring contact angles of droplets with a drop shape analyzer. Adhesion and peel behavior 

of non-conductive adhesives between the TPU-film and the rigid substrates were studied 

with a floating roller peel test setup. Finally, tensile testing was used to investigate defor-

mations and elongation of the fabricated stretchable electronics samples. In the tensile 

test samples, width of the interconnection, the amount of the conductive adhesive and the 

use of a supportive frame structure were varied. 

The tests presented new results that can be adopted alone or as whole. The wettability of 

the TPU-film improved most with a plasma pre-treatment that decreased the contact an-

gles up to 63 percent. The peel tests showed that the sample with one cyanoacrylate ad-

hesive with a primer had the highest momentary bond strength (0,5 N/mm). The high 

bond strength made the TPU-film elongate during the peeling test. Unlike the tested struc-

tural adhesives, an elastic transfer tape adhesive had the most even peeling force during 

the tests (between 0,2 – 0,3 N/mm) and was the easiest adhesive to process. 

According to the stress peaking concept, in the tensile testing, when the samples elon-

gated, stress concentrated close to the attached module and broke the samples. The strong-

est interconnection elongated 91,7 % before failure. The referred sample type had the 

supportive frame and conductive adhesive only under the contacts. Similarly, according 

to the concept, the stress exerted on this sample was more uniform compared to the other 

tensile test samples, which explains the good results. 
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Venyvää elektroniikkaa käytetään puettavissa ratkaisuissa, joissa halutaan lisätä älykkäitä 

käyttöominaisuuksia. Venyvyys on venyvän elektroniikan pääpiirre, joka mahdollistaa 

elektroniikan myötäilyn puettavissa tuotteissa kuten laastareissa ja vaatteissa. Tämän dip-

lomityön venyvä elektroniikka koostuu elastisesta substraatista, printatuista venyvistä 

johtimista, liimoista ja kovista moduuleista, joihin on kiinnitetty elektroniikkakomponen-

tit. Kiinnitetyt moduulit elastisessa kalvossa luovat kiinteitä saarekkeita, jotka eivät estä 

kalvon venymistä. 

Venyvä elektroniikka kestää vain rajatun määrän venytystä, ennen kuin sähköiset johti-

met rikkoutuvat. Adheesio ja muodonmuutosmekanismit moduulin ja substraatin liitok-

sessa ja liitosalueella vaikuttavat venyvyyteen. Venyvän elektroniikan kestävyyttä voi-

daan parantaa lisäämällä adheesiota ja rajoittamalla muodonmuutoksia muokkaamalla lii-

toksen ja liitosalueen rakennetta. 

Työssä tutkittiin venyvää elektroniikkaa monella eri tasolla. Elastisena substraattina käy-

tettiin termoplastista polyuretaani (TPU) kalvoa. TPU-kalvon vettymistä ja pintakäsitte-

lyiden vaikutusta vettymiseen tutkittiin kontaktikulmalaitteella, jolla mitattiin pisaroiden 

kontaktikulmia. Ei-johtavien liimojen adheesiota ja kuoriutumista TPU-kalvon ja kovien 

substraattien välissä tarkasteltiin 45° kulman kuoriutumistestillä. Viimeiseksi valmistet-

tiin venyvän elektroniikan rakenteen sisältäviä näytteitä, joiden venymistä ja muodon-

muutoksia tutkittiin vetotesteillä. Vetotestinäytteissä johtimien leveys, sähköä-johtavan 

liiman määrä ja kehys-tukirakenteen käyttö vaihtelivat. 

Testit osoittivat uusia tuloksia, joita voidaan soveltaa erikseen tai yhdessä. TPU-kalvon 

vettyminen parantui eniten plasmakäsittelyllä, joka pienensi pisaroiden kontaktikulmia 

jopa 63 %. Kuoriutumistesteissä näytteellä, jossa käytettiin syanoakrylaattiliimaa pohjus-

tusaineen kanssa, oli suurin hetkellinen liitoslujuus (0,5 N/mm). Korkea liitoslujuus ve-

nytti TPU-kalvoa kuoriutumisen aikana. Toisin kuin rakenneliimoilla, elastisella liima-

kalvolla oli tasaisin kuoriutumislujuus (välillä 0,2 – 0,3 N/mm) ja se oli kaikista liimoista 

helpoin käsiteltävä. 

Kehitetyn kuormittumiskonseptin mukaan vetotesteissä koekappaleiden venyessä jänni-

tys keskittyi moduulin ja kalvon liitosalueelle, mikä rikkoi näytteet. Kestävin johdin ve-

nyi 91,7 % ennen rikkoutumista. Kyseisessä näytteessä käytettiin kehys-tukirakennetta ja 

sähköä-johtavaa liimaa vain kontaktien alueella. Vastaavasti kuormituskonseptin mukaan 

jännitys jakautui näytteessä tasaisemmin kuin muissa vetotestinäytteissä, mikä selittää 

hyvät tulokset. 
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1. INTRODUCTION 

The stretchable electronics are one integration level of electronics, which are widely used 

in wearable applications. The stretchable electronics are originally evolved because the 

traditional electronics are rigid and are not easily compatible with wearable materials. As 

a matter of fact, first wearable electronics were clothes that had standard electronic com-

ponents sewed in them. Like the snowmobile suit prototype by Reima-Tutta in 2000, the 

electronics textile (e-textile) was already multifunctional at that time. However, the elec-

tronics and textile had low integration level and washability and power supply were rec-

ognized issues. [1] [2] 

Nowadays, e-textiles have better usability because the stretchable electronics have in-

creased the integration level. The stretchable electronics comply tens of percent stretch-

ing, and can be used alone on the skin as bandages or as more permanent applications in 

clothes. There are many methods to produce the stretchable electronics. The stretchable 

system can solely consist of stretchable components, or there can be small rigid islands 

on elastic substrate. The systems are complex and mechanical properties of components 

commonly vary inside the systems. The mechanical differences can lead to premature 

breakup of stretchable electronics, where cracks and weak adhesion accomplice failure 

mechanisms. [2] [3] [4] [5] 

The failure mechanisms of stretchable electronics can be studied in various levels. The 

properties of single components can be inspected separately and adhesion of adhesives 

can be tested. In addition, durability of whole stretchable electronics can be studied by 

following electrical properties of the system under loading. 

In this study, wetting properties of elastic substrate before and after pre-treatments are 

studied with a drop shape analyzer. Later on, adhesion between the substrate and adhe-

sives are examined with a floating roller peel test setup. Finally, strain tests are conducted 

to series of stretchable electronics structures to investigate how printed interconnections, 

amount of adhesion and reinforcing of the structures affect to durability. From the series, 

the most elongating stretchable electronics structure before electrical failure is founded. 

This thesis focus on stretchable electronics that consist of rigid islands and elastic sub-

strate, which are discussed in Chapter 2. Chapter 3 introduces existing attachment meth-

ods of the rigid islands on the substrate, and Chapter 4 considers adhesion and failure of 

stretchable electronics. Chapter 5 review the used methods and Chapter 6 shows the re-

sults. Finally, Chapter 7 presents conclusions about the results. 
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2. STRETCHABLE ELECTRONICS 

Stretchable electronics are electronic devices that can stretch and return to their original 

shape without breaking up [3]. There are few approaches to make stretchable electronics 

where one way is to use rigid modules and stretchable interconnections. Modules are 

component islands, which are small enough not to influence negatively to the stretchabil-

ity. The interconnections are conductive pathways between the modules and make the 

device stretchable, as seen in Figure 1. [4] 

 

Figure 1. Stretching behavior of stretchable electronics. 

 

The benefits of these kinds of stretchable electronics are compatibility with existing 

manufacturing methods and the possibility to use off-the-shelf electronic components to 

make complex modules [4]. The modules and stretchable interconnections can be done 

with standard printed circuit board (PCB) technology, which requires no further adaption 

to make PCB based modules. In addition, the interconnections can also fabricated with 

printing or textile manufacturing methods like screen-printing or knitting [4] [6] [7].  

2.1 Stretchable interconnections 

In the stretchable electronics, interconnections are conducting wires between rigid mod-

ules where the interconnections can stretch tens of percent over their original length. 

There are two principles to realize stretchable interconnections, where the other way is to 

use stretchable conductive materials and another is to shape the interconnections to a 

stretchable form. Furthermore, it is possible to shape highly stretchable material to a 

stretchable shape. [4] [8] 
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Stretchable conductive inks and pastes are one solution to make interconnections stretch-

able. They consist of stretchable polymer matrix and conductive filler or polymer [9] [10] 

[11]. Under stretching, the matrix of the ink elongate with the substrate, which makes it 

possible to print versatile patterns without shaping the interconnections. However, the 

elongation increases the length of the interconnections, which further increases the re-

sistance of linear conductors according Formula 1: 

𝑅 =
𝜌𝐿

𝐴
 ,          (1) 

where R is the resistance of a track, ρ is material resistivity of the track, L is length of the 

track and A is area of track’s cross-section. [12] Moreover, the elongation also shrinks the 

cross-section area and deforms tracks internal structure, which also affect to resistance of 

the track. [8] 

Other way to make interconnections stretchable is to modify the shapes of the tracks. 

They can be shaped as two-dimensional springs that open up during stretching. There are 

designed 2D-patterns, where the meander horseshoe shape is the most stretchable inter-

connection shape. [6] The stretchable shape allows the use of non-stretchable materials 

in the interconnections because of the elongation aims first to straighten the meandering 

shape before too much straining the material. This allows different materials and manu-

facturing methods than printable conductive inks. For instance, copper film is widely used 

material for meandering interconnections [4] [5]. The benefits of copper film are low 

resistance values and the possibility to use lamination, soldering or other conventional 

electronic fabrication methods that require higher temperatures. [5] However, stretcha-

bility of the copper meander rely only on the meander shape and has more design re-

strictions compared to printed interconnections. 

Third method to create stretchable interconnections between modules is to use conductive 

yarns in wearable electronics. The conductive yarns can be fabricated with many ways, 

where a coating with silver is a widely used method. Also, conductive fillers like carbon 

nanotubes (CNTs) can be blended to raw material of the yarn during a spinning. In addi-

tion, fibers can be entirely made from conductive material, such as stainless-steel fibers. 

[13]  

An advantage of conductive yarns is that they can be added to the fabric during normal 

production to make conductive fabric. A conventional fabric can be also enhanced with 

conductive yarns with sewing or embroidery finishes. The conductive yarns are used as 

interconnections but they can be used as sensors, for example strain sensors have been 

done with knitted silver-coated yarns. [7] [13] Table 1 shows an example about knitted 

interconnections, screen-printed and laminated interconnections and how they behave 

during straining:  
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Table 1.  Stretching behavior of different interconnections. 

 Screen-printed  

silver ink 

Copper film meander Knitted silver yarn 

Substrate Elastomer film Elastomer film Knitted fabric 

Not 

Stretched 

   

Stretched    

 

Table 1 shows that the shape of screen-printed interconnections change only little by 

small narrowing. The copper meander and knitted yarn geometries are spread and wavy 

structures have opened up. [4] [7] [14] Because of the shape and elongation of intercon-

nections affect resistance values, it is important to know resistance-strain response. Figure 

2 presents the relative resistance increase in relation to strain. 

 

Figure 2. Resistance change during straining of interconnections [4] [7] [14] 
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As seen in Table 1 and in Figure 2, the shape of printed silver ink interconnection is stable 

and the elongation increases resistance during stretching [14]. In lower elongations the 

structure of the ink elastically stretches and the resistance does not increase permanently. 

In higher elongations, the interconnection undergoes permanent deformation and cracks 

are created perpendicularly to the strain direction. The cracks increase the resistance and 

finally cause the failure. [8] However, after the release of strain the interconnection 

shrinks back to its original measures and the cracks are pressed together, which further 

can recreate conductivity in the interconnection. With some conductive inks cracked in-

terconnection can be recovered with annealing [11].  

During stretching of copper meanders, the meander shapes straighten up without major 

bulk deformations. In addition, the resistance of the meanders stays constant as long as 

the meanders can stretch with the substrate. After the critical point when the meanders 

cannot straighten up anymore, they start to crack and quickly break. [4] 

The interconnection from silver-coated yarn is knitted as consecutive loops in the knitted 

fabric. A knitted structure shapes the conductive yarn to a meandering row, where the 

loops have contact with each other. Stretching separates the loops of conductive yarn, 

which affect to conductivity of the interconnection. The loops in separation form for in-

terconnection which resistance stays approximately constant like for the copper meander 

interconnection. [7] 

When different stretchable interconnections are compared, the printed interconnects are 

the most multifunctional ones. The printing does not limit the shape of interconnections 

and there are various kinds of conductive inks and substrates available. [6] [13] Further-

more, after printing, the stretchable films with conductive patterns are laminated over 

textile substrate to create electronic textiles (e-textiles) [5]. In this thesis, the stretchable 

interconnections are screen-printed with conductive silver ink on elastic thermoplastic 

polyurethane (TPU) film. 

2.1.1 Conductive inks 

There are various kinds of conductive inks in the market, which have different composi-

tions. The composition depends mainly on the printing method of the ink. For instance, 

conductive inks for screen-printing are very viscous to prevent excess spreading in the 

process. Generally, main composition of screen-printing inks consists of polymer resin, 

conductive fillers, solvent and additives. [13] [15] 

Polymer resin is used as a binder in conductive ink to create a polymer matrix. The poly-

mer matrix works as “backbone structure” and dominates in mechanical properties of the 

ink. The matrix is cured in a heat treatment, which is done after printing. The cured matrix 

can go through high deformations by elongating viscoelastically. It binds conductive filler 

particles of the ink inside the matrix which are further formed to conductive pathways. 
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The conductive pathways deform with the matrix that induce the viscoelastic behavior 

also to the conductivity of the ink. [14] [11] 

Fillers in conductive inks are the components that make the inks conductive. These fillers 

are made from highly conductive materials, such as silver, graphene or CNTs. Especially 

silver fillers are used in the inks and pastes because of excellent optical and electrical 

properties. Furthermore, it is less expensive conductive filler material than other highly 

conductive metals. [9] [16] The shape of fillers vary and they can be designed like flakes 

or round particles in different sizes. For example, screen-printable inks have micro-size 

conductive fillers for which size varies between 2µm – 20µm [8]. There are either one 

type of conductive filler in ink [10] or more than only one kind, which can improve con-

ductivity of ink [11]. 

Solvents are used in conductive inks to decrease viscosity and make the inks more ho-

mogenous and processable. Liquids such as water, glycerol, ethanol and other volatile 

organic compounds (VOCs) are used as solvents, which are evaporated away during the 

heat treatment after printing. Time and temperature of the heat treatment vary because 

solvents have different evaporation properties. Furthermore, solvents can be absorbed 

into surface of the substrate, which may influence adhesion between the ink and substrate. 

[8] [15] 

A wide amount of additives are used to improve properties of conductive inks. There are 

for instance stabilizing agents that prevent premature agglomeration of the conductive 

fillers that further increases the useful life of the inks [15]. In another case, conductivity 

and stretchability of polyvinyl alcohol (PVA) based conductive inks are increased by 

adding phosphoric acid (H3PO4) to the polymer blend [9].  

In this thesis, stretchable interconnections are made from conductive silver ink CI-1036, 

manufactured by ECM. The CI-1036 ink is polyurethane (PU) based ink that is highly 

conductive and flexible, and it is designed for creasable circuit traces [17] [18]. More 

detailed properties of the conductive ink CI-1036 are listed in Table 2: 

 

Table 2. Properties of conductive silver ink CI-1036. [18] 

Viscosity (cP) 10000 

Total solids content (%) 66 

Electrical resistance (ohms/square, 25,4 microns) <0,010 

Typical curing time (min) 10 
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Typical curing temperature (°C) 120 

Amount of VOC (g/l) 703,8 

 

From Table 2 can be noticed that a high amount of VOC based solvent are used in the 

conductive ink CI-1036. In spite of that, viscosity of the ink can be compared to thick 

syrup [19]. The total solids content describes how much conductive silver flakes ink has, 

which is 66 % here. Some conductive inks have clearly higher amount of conductive 

fillers and better conductive properties. However, the amount of conductive filler is com-

monly trade-off between conductive and mechanical properties, which means that the ink 

CI-1036 is designed mechanically better and more stretchable. 

After the printing, the conductive inks are heat treated. During the heat treatment, solvents 

are evaporated and polymer resin starts to cross-link. The cross-linking causes strong 

(chemical) bonds between the binder polymers, filler particles and surface of the substrate 

and affect greatly the adhesion between the ink and substrate. [8] [13] 

During the heat treatment of conductive inks, the conductivity is often formed at low 

temperatures (<150 °C), which are enough for polymer to form the matrix and fillers to 

aggregate and sinter. The low temperatures also make it possible to use plastics or other 

sensitive substrates. However, the low temperatures require correspondingly longer heat 

treatments. For example, printed TPU-films are heat treated at 130 °C for 30 min in a 

heating chamber. [6] [13] [20] 

The sintering is a phenomenon where metal particles are diffused together due to heat. At 

low temperatures, the silver particles in the conductive ink are sintered at grain boundary 

level, which requires less heat than total bulk level diffusion. The sintering is especially 

related to conductive inkjet inks because they do not have strengthening polymer resin 

matrix and electrical and mechanical properties only rely on sintering. [21] 

2.1.2 Substrates 

Substrate is the bulkiest component in stretchable electronics and dominate how stretch-

able the system is. The electronics itself can be rigid islands or flexible films, which are 

added over the stretchable substrate. Interconnections can be printed on the substrate us-

ing stretchable inks, for which elongation and recovery is after all determined by sub-

strate. Total stretchability and other mechanical and chemical properties of the substrate 

are essential for stretchable electronics because of the rest of the stretchable electronics 

is built over it. [3] [14] 

All substrates that can deform elastically are not stretchable. Substrates such as some 

fabrics and plastics are classified as stretchable because they can elastically deform more 
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than few percent. Some substrates are not truly stretchable and are categorized as benda-

ble substrates. [3] The stretchability is often determined with a tensile test and finally 

stress-strain curves, where parameters stress and strain are used: 

 𝜎 =
𝐹

𝐴
 ,          (2) 

where σ is the engineering (nominal) stress, F means force and A is the initial cross-

sectional area of the sample. Strain can be estimated during tensile test as: 

𝜀 =
∆𝐿0

𝐿0
 ,          (3) 

where ε is the strain, L0 is original length of the sample and ΔL0 is the change in the 

sample’s length. [22] Plastics have different stress-strain behavior because of different 

relations between the stress and the strain components. Example curves are presented in 

Figure 3. 

 

Figure 3. Stress-strain behavior of different plastics. 

 

The behavior of plastics varies from brittle to hyper-elastic, which can be observed in 

stress-strain curves in Figure 3. Brittle plastic endure stress well but break fast at low 

strain. On the contrary, elastic plastics elongate tens of percent by a low amount of stress. 

Generally, processable hard thermoset plastics are brittle and elastomers are highly elas-

tic. Between brittle and non-linear stress-strain curves, there are irregular curves that in-

dicate moderate non-linearity. Usually, multiple times processable thermoplastic poly-

mers have a yield point, which is shown in more detail in Figure 4. 
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Figure 4. Typical stress-strain curve of thermoplastic polymer. 

 

In Figure 4, there is a typical engineering stress-strain curve of thermoplastic polymer. 

The curve shows some specific points during a tensile test; elastic limit, yield point, ulti-

mate strength and breakpoint. At small strains the plastic has linear elasticity and behaves 

elastically until the elastic limit. After the elastic limit elastic deformation changes to 

plastic deformation and covers the yield point. Definition of the elastic limit and yield 

point vary and in some cases they can be understood to be the same. Elastic deformation 

is reversible and the plastic deformation is irreversible, which is the reason why a stretch-

able substrate should be linear or non-linear elastic. [3] [22] [23] Tensile modulus 

(Young’s modulus) and Poisson’s ratio are used to describe elasticity of plastic: 

𝐸 =
∆𝜎

∆𝜀
 ,          (4) 

where E is the tensile modulus, Δσ is the elastic change of the stress and Δε is the change 

of the strain along linear portion [22] [23]. Generally, plastics have high strain at low 

stress values and, hence, low tensile modulus [3]. Poisson’s ratio is defined the following 

way: 

𝜇 = −
∆𝜀𝑛

∆𝜀𝑙
 ,          (5) 

where µ is the Poisson’s ratio, Δεn is a change of strain in a selected perpendicular direc-

tion and Δεl is an increase of strain in a selected longitudinal direction. Poisson’s ratio of 

elastomers is around 0,5, which means that perpendicular dimension can change half 

amount of the increase in the longitudinal direction. [22] [24] In some stretchable elec-

tronics applications, the Poisson’s effect during stretching can decrease the resistance of 
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interconnections by improving electrical contacts inside the interconnections in the lateral 

direction directions. [13] 

After reaching the yield point. plastics have plastic deformation. Thermoplastic plastic 

undergoes neck formation and cold drawing, where structure of plastic is thinned and 

elongated. The first elongation phase is followed by strain hardening that strengthen the 

plastic. Due to the deformation, plastic reaches ultimate strength point, where it reaches 

the maximum amount of stress. Later on after the ultimate strength point the plastic 

quickly fails at breakpoint. [22] [23] [25] 

Substrates are made from various plastics, for example polyvinyl chloride, polyimide, 

polydimethylsiloxane, and thermoplastic polyurethane (TPU) are used [4] [13]. The cho-

sen substrate in the thesis is highly stretchable TPU-film Platilon U 4201 AU by Epurex 

Films. Generally, TPU films are heat laminable, biocompatible and cost-effective. Be-

cause of their properties, TPU substrates are widely used in stretchable electronics stud-

ies. Furthermore, TPU film is already used in the traditional textile industry in the manu-

facturing of wet proof clothing. [5] [6] [20] 

Chemically, TPU is categorized as copolymer. It is composed of alternating hard and soft 

segments for which the ratio defines how rigid or flexible the film is. The hard crystalline 

segments are achieved by urethane linkages between di-isocyanates and diols or diamine 

chain extenders. The soft amorphous segments are opposite and are diols. For instance, 

ester or ether diols are often used, which affects mechanical properties of a film. For 

instance, diols with ether groups are used for elastic TPU films. [26] [27] 

The TPU-film Platilon U 4201 AU by Epurex Films is blow-molded ether grade TPU-

film that has excellent hydrolysis resistance and thermoformability. Its thickness is        

100 µm and it does not contains plasticizers. Further properties of the substrate are shown 

in Table 3: 

Table 3. Properties of TPU-film Platilon U 4201 AU [28]. 

Density (g/cm3) 1,15 

Softening Range (°C) 155-185 

Hardness (Shore A) 87 

Tensile Stress at Break (MPa) 60 

Tensile Stress at 50 % Strain (MPa) 5-7 

Tensile Strain at Break (%) 550 
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The TPU-film has relative high softening range, which makes it compatible with conduc-

tive ink CI-1036. The film has higher softening range than the curing temperature of the 

ink. Also, the film can elongate even 550 % before break, which ensures that the film 

does not limit the stretchability of printed patterns. [28] 

2.2 Modules 

Modules are intelligent islands in stretchable electronics that are made from rigid two-

sided PCBs. The top side of PCBs are loaded with integrated circuits (ICs) or other elec-

tronic components. On the other side, there are contact pads that are attached on stretch-

able interconnections on substrate. Multiple small modules, which each are designed for 

specific applications, work together and create a highly functional PCB matrix. [4] [5] 

Typical PCB is made from FR4 composite board that is based on epoxy resin and glass 

fiber, which makes it heat resistant and an electrical insulator. The board is in the most 

cases covered with an additional solder mask layer for which the purpose is to limit 

spreading of molten solder and prevent short circuits between contacts. Commonly, the 

solder mask is made from epoxy resin that is screen printed on the board. [29] Because 

of the solder mask prevents excess leaking of liquid solder, it can be also somewhat inac-

tive with other liquids. The passivity of the solder mask can affect flowing and the attach-

ment properties of adhesives and further the amount of adhesion. 

The modules are also tuned by changing their shapes. The shape is an appearance matter 

but also affects durability of the stretchable electronics matrix. During stretching of ma-

trix, the strain concentrates close to the module and the local stress in the boundary area 

is higher than elsewhere. Areas under higher stresses break earlier than areas that have 

lower stress. There are many possibilities to shape the modules and decrease the stress 

concentration phenomenon. For example, round shaped modules [5] and clover shaped 

structures [30] are used to minimize mechanical stresses in the matrix. 
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3. ATTACHMENT OF ELECTRONICS 

Nature of the module and substrate are very different and still they have to be attached 

together. Because of the differences, stress concentrations are formed around the modules 

and makes the transition area of the module and the substrate vulnerable to break [5]. The 

durability of the boundary area can be increased by making a joint endure more stress or 

distribute the stress over a wider area. The both solutions can be realized by using non-

conductive adhesives (NCAs) in the joint. The joint is made stiff with non-conductive 

structural adhesives that fasten modules and a stretchable substrate together. On the other 

hand, the stress is transmitted over a wider area with non-conductive elastic adhesives. In 

addition to NCAs, the module can be mechanically attached with a compression joint that 

uses screws, bolts, rivets or other fasteners. [31] [32] [33] 

While the module is attached firmly on the substrate, also electrical connections between 

the module and printed interconnections must be created. The electrical connections can 

be formed by locking contact pads together with NCAs or compression joint. More re-

fined electrical connections are made with conductive adhesives and soldering. However, 

the conductive adhesives and solders have poor mechanical properties and they require 

non-conductive adhesives (NCAs) to be used with them. [5] [32] [33] 

After attachment of the module on the substrate, the module and the surrounding area 

need to be protected from mechanical and electrical damage. The encapsulation is done 

with low viscose adhesive or polymer resin that forms a bubble over the module. Another 

way is to make casing with other manufacturing methods like 3D printing or injection 

molding. [32] [34] 

3.1 Structural adhesives 

Structural adhesives are categorized from other adhesives by their ability to endure high 

static and dynamic loads. Because of their durability, they can be the only load bearing 

component in the joint. Structural adhesives are one or two-component thermoset plastics, 

which are, for example anaerobic adhesives, epoxies, polyurethanes, or cyanoacrylates.  

[35] [36] [37] [38] This thesis is focused on epoxy, polyurethane and cyanoacrylate ad-

hesives. 

3.1.1 Epoxies 

Epoxy adhesives involve a thermoset epoxy resin for which molecules consist of reactive 

oxirane rings. The ring is opened with a hardener that cross-links the resin into infusible 

matrix. The epoxy resin is made from glycidyl epoxy or non-glycidyl epoxy, where di-

glycidyl ether of bisphenol-A (DGEBA) is the most often used epoxy resin. There are 
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also many options for the hardener, for which the selection affects physical and chemical 

properties of epoxies. [38] [39] [40] [41] 

The curing reaction of the resin and the hardener happens by either condensation or cat-

alytic reactions. The condensation based curing is especially sensitive, because of the 

condensation reaction must be carried out completely for a durable matrix. The conden-

sation curing reaction is the reason why mixing and dosing of two-component epoxy ad-

hesive must be precise. There are also one-component epoxy adhesives, where latent 

hardener dicyandiamide (DiCy) is added to the epoxy resin. The DiCy is insoluble to the 

epoxy resin at ambient temperatures, but at elevated temperatures starts to react with the 

resin. [38] [39] [40] 

One and two component epoxies are non-sensitive to impurities, which makes them com-

patible with various additives. Additives such as fillers, plasticizers and accelerators are 

used to enhance final properties of the epoxies. Epoxies have generally high bond strength 

and gap-filling properties. They are also heat resistant, which makes them useful in elec-

tronics applications. [38] [39] [40] Table 4 shows two different two-component epoxies 

by Permabond that are used in this thesis: 

Table 4. Permabond epoxy adhesives [42] [43]. 

 Permabond ET515 Permabond MT382 

Adhesive type Two-component epoxy Modified two-component 

epoxy 

Handling time (min) 20-30 105-120 

Full cure (d) 3 ≥3 

Curing temperature (°C) 25 25 

Hardness (Shore D) 30-50 20-30 (Shore A 55-85) 

Elongation at break by 

ISO37 (%) 

20-40 150-200 

 

Table 4 presents two-component epoxy adhesives ET515 and MT382 by Permabond. The 

ET515 adhesive is transparent, semi-flexible and toughened epoxy adhesive that has max 

40 percent elongation before failure. Correspondingly, the MT382 is more elastic black-

colored and modified epoxy adhesive. The MT382 has lower shore D hardness value and 

has to be elongated over 150 percent to break. Furthermore, the MT382 can be also used 

for sealing purposes. [42] [43] 
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3.1.2 Polyurethanes 

Polyurethane (PU) adhesives have a molecular backbone that is based on common poly-

urethane linkages. Otherwise these polymers can be modified variously like the epoxy 

adhesives, which makes PU adhesives versatile. PUs are generally made via addition re-

action of polyol and isocyanate groups, which does not produce any side products. By 

choosing between polyester polyols and polyether polyols, PU adhesives are made rigid 

or flexible. The polyester polyols are used for rigid PUs, which have good adhesion and 

high hardness. The polyether polyols are used for flexible PUs, which have low modulus. 

[38] 

Commonly used isocyanates with the polyols are methylene diphenyl di-isocyanate 

(MDI) and toluene di-isocyanate (TDI). In addition to the reaction with polyols, isocya-

nates tend to react with water molecules to form urea linkages and carbon dioxide, where 

the generated gas bubbles can weaken the adhesive. However, the reaction with water can 

be also useful and moisture curing is one way to cross-link the PU adhesives. [38] 

By using only diols and di-isocyanates, which have two reactive groups, linear TPU is 

formed. These TPUs are especially used in stretchable films. Highly cross-linked thermo-

set PU adhesives are made from by either using an excess amount of isocyanate or using 

multifunctional polyols and isocyanates. [38] 

PU adhesives have high bond strength and excellent gab-filling properties, likewise epox-

ies do. Furthermore, they are inherently flexible and resistant to moisture after bonding. 

On the other hand, they are sensitive to moisture during bonding and have poor tempera-

ture resistance compared to epoxies. [38] PU adhesives are, for example, used in automo-

tive applications. [38] In this thesis, a PU adhesive Scotch Weld™ DP610 by 3M is used, 

which is introduced Table 5:  

Table 5. 3M Scotch Weld DP610 polyurethane adhesive. [44] 

 3M Scotch Weld™ DP610 

Adhesive type Two-component polyurethane  

Handling time (min) 120 

Full cure (d) 7 

Curing temperature (°C) 23 

 

The DP610 adhesive is clear and flexible two-component PU adhesive that is suitable for 

bonding of most plastics, glass and painted or primer treated metal surfaces. DP610 at-

tains its full cure in 7 days, which can prolong with some substrates to even 30 days. [44]  
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3.1.3 Cyanoacrylates 

Cyanoacrylates are structural adhesives that are also known as instant glues. They are 

chemically 2-cyanoacrylates with additional alkyl group like methyl or ethyl. The cyano 

groups withdraw electrons eagerly, which initiate chain polymerization reaction of the 

resin. The chain polymerization starts from moisture and realizes in seconds. After the 

initiation, the polymerization of cyanoacrylate propagates until; the monomers are ex-

hausted, their diffusion is hindered by a high viscosity level or strong acid is brought to 

the system. [38] [45] 

Cyanoacrylates have rather good adhesion over many substrates. Methyl cyanoacrylates 

are viscous and good for bonding of metal and rigid surfaces. Ethyl cyanoacrylates are 

other commonly used cyanoacrylates, which are used for plastic and elastomer substrates. 

For especially difficult materials to bond, there are primers that are applied and dried over 

bondable surfaces before spreading of the adhesive. The primers enhance the polymeri-

zation of the cyanoacrylates and improve adhesion between surface and adhesive. [19] 

[38] 

Cyanoacrylates are fast-curing one-component adhesives with a high bond strength over 

various substrates, which makes them convenient to use in many applications. However, 

they are brittle by nature and sensitive to impurities that limits the usage of additives with 

them. [38] [45] Table 6 presents Loctite 406 instant glue that is used in thesis: 

Table 6. Loctite 406 cyanoacrylate adhesive. [46] 

 Loctite 406 

Adhesive type Ethyl cyanoacrylate 

Handling time (s) <5-45 

Full cure (d) ≥1 

Curing temperature (°C) 22 

 

The ethyl cyanoacrylate adhesive Loctite 406 is designed to bond plastics and elastomers. 

The instant glue reacts with atmospheric moisture and bonds plastics in ~5 seconds and 

steel in ~45 seconds. For especially difficult plastics to bond, surfaces can be treated with 

primer Loctite SF 7239 before the Loctite 406 adhesive. Loctite SF 7239 is an organic 

amine derivate and is meant for bonding of polypropylene, thermoplastic rubber materials 

and other low surface energy plastics. After spreading, the primer is let to evaporate and, 

then, surface is bonded in 10 minutes. [46] [47] 
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3.1.4 Electrical connection with NCA 

Structural adhesives are fundamentally inflexible non-conductive adhesives that besides 

non-conductive bonding, are also used to create electrical interconnections. The joint is 

realized by covering a substrate thoroughly with the adhesive and pressing substrates over 

the substrate. The substrate, component and their interconnections are clamped until the 

adhesive is fully cured and binds the conductive and non-conductive areas together. An 

example of an NCA joint is presented in Figure 5. [31] 

 

Figure 5. Forming of an NCA joint. 

 

Electrical interconnections in NCA joints are purely maintained by compression force 

that is caused by pressure from fabrication of the joints and shrinking of NCAs. Electrical 

properties of interconnections depend on the mechanical contact pressure between the 

contact pads. NCAs prevent short-circuit in the joint because they do not have conductive 

fillers. With the same reason, they have low cost compared to other adhesives in the elec-

trical industry. [31] [32] 

3.2 Elastic adhesives 

The idea of elastic adhesives in a joint is to tack tightly on surfaces and to follow move-

ment of the surfaces. Elongation of a stretchable substrate is transferred to the adhesive 

and is decreased near the rigid surface of module. One type of an elastic adhesive that is 

used in this thesis is pressure-sensitive adhesives (PSAs). 

PSAs are viscoelastic-behaving adhesives that are manufactured in form of tapes and 

films. They have rigid support films that make them possible to cut and easy to apply over 

a substrate. Furthermore, they are easy to use because they do not require mixing or acti-

vation before use. During setting the PSA, light pressing is enough to make the adhesive 

to flow and adhere with the surfaces. [48] [49] 

PSAs can be made by blending tackifier resin and rubber over a rigid support film. Ter-

penes or petroleum products are used as tackifier resins, where terpenes have the best 
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properties but are expensive. In addition, various rubbers are added in the adhesives, for 

example natural rubber and styrene-isoprene-styrene (SIS). Moreover, PSAs are also 

manufactured merely from acrylates, which have excellent properties and are used in 

high-quality tapes. [48] [49] [50] 

Generally, PSAs have uniform thickness and are easy to apply. Also, bonding can be 

reversible so that the adhesive can adhere again over the stretched substrate if it is peeled 

off by excess elongation. However, their peeling and shear strengths are poor compared 

to structural adhesives and they are unsuitable for rough surfaces. [37] [48] [49] The 

tested PSA in thesis is adhesive transfer tape 8132LE by 3M, which is introduced Table 

7. 

Table 7. Main properties of adhesive transfer tape 8132LE [51]. 

 Adhesive transfer tape 8132LE 

Adhesive type High strength acrylic 

Adhesive thickness (µm) 58 

Bonding temperature (°C) 38-54 

 

The 8132LE tape is excellent for bonding low surface energy plastics. It has liners on 

both sides for selective die-cutting, which also makes it easy to use. The adhesive transfer 

tape can be bonded at atmospheric temperature, but a higher bonding temperature          

(between 38 °C and 54 °C) and firm pressure increase the bond strength. [51] 

3.3 Conductive adhesives 

Conductive adhesives are normal adhesives that are enriched with conductive fillers. The 

fillers are metallic, carbon or metallized nano or micro particles [16] [32]. The conductive 

adhesives can be made hard or soft, which is an advantage compared to conventional 

solders. In addition, the adhesives require low temperatures to form conductive joint, 

which makes them well compatible with plastic substrates. Based on the amount of con-

ductive fillers, there are isotropic conductive adhesives (ICA) and anisotropic conductive 

adhesives (ACA). [32] 

3.3.1 Isotropic conductive adhesives 

Isotropic conductive adhesive (ICA) consists of conventional adhesive body that includes 

conductive fillers. The amount of filler particles in ICA is high, which enables continuous 

filler network and further the isotropic conductivity. The filler network is a requirement 

for high conductivity and it is formed after amount of fillers increases over the percolation 

threshold. The percolation threshold is the point when the conductivity of ICA increase 
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considerably and the filler network is created. Below the percolation threshold, there is 

no continuous filler network and conductivity is poor. However, wide filler network de-

crease the cross-linking potential of adhesive polymers, which decrease the strength of 

adhesive. The amount of fillers should be limited for a durable adhesive but still high 

enough over the percolation threshold. In commercial ICAs, the amount of conductive 

fillers is between 70 and 82 percent by weight. [32] [52] 

As in conductive inks, conductive fillers such as gold, silver and CNTs are used in ICAs. 

[38] [41]. Currently, the most used ICA type includes epoxy adhesive and one-size micro 

silver flakes [32] [52] [53]. The epoxy has great heat resistance and is compatible with 

various fillers, which makes it good resin for ICA [38]. The micro silver flakes have good 

electrical and thermal conductivity and are chemically stabile [53]. There are also options 

to use silver nanoparticles or CNTs with silver flakes, which increase conductivity of 

adhesives [53] [54]. However, they are not yet commercially used. 

Underfill is non-conductive epoxy adhesive that is commonly used in surface mount de-

vice (SMD) and flip-chip technologies. The main purpose of the underfill is mechanically 

support ICA or solder connections in electronics structure. The underfill must be heat 

treated like ICA, which can be done after establishment of conductive connections. [31] 

[32] Thermal and chemical properties of underfill and ICA should be compatible to en-

sure stabile joint. Mismatch of thermal or chemical shrinkage of the underfill and the ICA 

cause cracking, delamination or other premature joint failure. [55] Figure 6 shows the 

forming of ICA contacts after the ICA and underfill are added between substrates: 

 

Figure 6. The concept of an ICA joint. 

 

Originally ICAs are developed to miniaturize electronics and substitute traditional lead 

containing solders that are categorized as environmentally hazard problems. The ICAs 

have low curing temperatures that makes them compatible with more sensitive substrates. 
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Furthermore, they have simple process steps and are non-conductive until the heat treat-

ment. [31] [53] [56] 

3.3.2 Anisotropic conductive adhesives 

Anisotropic adhesives (ACAs) are adhesives that are selectively conductive. ACAs have 

an adhesive body and conductive fillers like the ICAs but the amount of conductive fillers 

is considerably lower. The filler quantity is below the percolation threshold (1-30 percent 

by weight), which obstructs mutual conductivity of fillers. However, by using uniformly 

dispersed big size fillers in thin adhesive layer, it is possible to create conductivity to 

normal direction of adhesive layer (z-direction). The z-direction conductivity is strength-

ened by firm pressure and heat of the bonding process, which squeezes and locks conduc-

tive particles of ACA between contact pads. Figure 7 shows an example about the forming 

of anisotropic adhesive film joint. [32] [57] 

 

 

Figure 7. The concept of an ACF joint. 

 

ACAs are provided in two different forms. There are anisotropic conductive pastes 

(ACPs) that are in liquid form and anisotropic conductive films (ACFs) that are in solid 

film form. Generally, ACPs consist epoxy based resin like ICAs and the ACFs are made 

from thermoplastic polymer or rubber. Conductive fillers in ACAs are generally fabri-

cated from nickel coated polymer particles that are further coated with gold or silver. The 

highly conductive coating and polymer core increase plasticity of the filler particles and 

decrease costs of ACA. [32] [57] 

ACAs have many advantages. Joints made with ACA require low bonding temperature 

and simple equipment. ACA joints are thin and, especially with ACF, the adhesive thick-

ness is well defined. Because of low conductive filler content, they are a low costs appli-

cation and are used, for example, in electronics industry. [57] In Table 8 is presented ACF 

tape tesa HAF 8412 that is used as the conductive adhesive in the tests: 
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Table 8. The tesa HAF 8412 ACF tape properties [58] 

 tesa HAF 8412 

Adhesive type Phenolic resin and nitrile rubber 

Thickness (µm) 45 

Lamination temperature (°C) 180 – 220 

Lamination pressure (N) 80 – 130 

Lamination time (s) 1,5 

 

The tesa HAF 8412 is designed for one step bonding process to form reliable mechanical 

and electrical bonds. The main applications of the ACF tape are to embed chip-modules 

to smart cards, where PCV, ABS and PC based cards are especially suitable. The ACF 

has support film on the other side, which makes application of the ACF easier. [58] 

3.4 Soldering 

During a soldering process, a small amount of highly conductive metal alloy is melted 

and placed between two metallic surfaces. Soldering is used in traditional electronic in-

dustry and in manufacturing PCBs. Soldering is a fast, precise and inexpensive method 

to attach components and PCBs together. [29] 

Conventional solder materials require high temperatures (>180 °C) to melt, which is a 

challenge over plastic substrates because most plastics soften or melt before that. How-

ever, normal soldering methods can be used in stretchable electronics when temperature-

resistant copper film is laminated over the plastic substrate. Especially the solderability 

is the benefit for laminated horseshoe shaped copper film interconnections. [4] [29] 

In addition to conventional solders, there are low-temperature solders that melt at much 

lower temperatures. For example, solders that contain indium or bismuth have reflow 

temperatures ranging from 115 °C to 180 °C, which allow the usage of plastic substrates 

and printed interconnections. The main disadvantage of low-temperature solders is high 

costs compared to traditional soldering materials or conductive adhesives. The expensive-

ness of rare metals that the solders requires restricts usage of these solders. [59] 

In printed stretchable electronics, the low-temperature soldering is done with furnace sol-

dering. The furnace soldering is a reflow soldering method for complicated and precise 

components, which are used in SMD applications. In the soldering, the assembled struc-

ture with a substrate, components and solid solders is put in the furnace and heated over 

liquidus temperature of the solders. At elevated temperatures, the solders reflow over 

contacts and form a joint mechanically and electrically. The process is realized rapidly to 
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avoid excess grain growth of solders, which decrease strength of the joint. However, the 

heating and cooling must be slow enough to prevent thermal shock of the components. 

[29] 

3.5 Compression joint 

A compression joint is purely mechanically formed joint without adhesives. The com-

pression joint is realized by fastening connectable substrates firmly together with fasten-

ers. The joints can be fastened permanently with rivets and nails or temporary with screws 

and bolts. The reopenable mechanism is one distinctive feature of a compression joint 

and such as press-buttons are exploited in wearable electronics. [5] [33] [60] 

The compression joints can form both non-conductive and conductive contacts. While the 

non-conductive contacts are simply made with the fasteners, the conductive contacts are 

more delicate. The conductive contacts are done either by pressing conductive pads to-

gether or by using fasteners as connectors, which are presented in Figure 8. [33] [60] 

 

Figure 8. Conductive compression joints between two rigid substrates and rigid 

and stretchable substrates. 

 

In stretchable electronics, the compression joint requires additional rigid backboard be-

cause the stretchable substrate tends to compress. Without the backboard, the substrate 

elongates away under the rigid PCB and the amount of compression is not enough for 

conductive contacts. The three-layer structure is bulkier than other joints of stretchable 

electronics. However, the ability to remove and attach rigid PCBs with compressive joints 

are taken advantage in wearable electronics to provide washability. 
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3.6 Encapsulation 

After components are set and electrical contacts are formed, they are vulnerable for ex-

ternal conditions such as moisture and heat. To make the build-up structures durable, they 

are encapsulated and isolated from environment. The encapsulation is realized with liquid 

that form glob top or solid that makes casing over the structure. [32] [33] 

Glob top is low-viscous non-conductive adhesive that spreads over components and in-

sulates them. Various polymers and adhesives can be used as glob top adhesives, for ex-

ample MT382 by Permabond. Because of the low viscosity and high surface tension, the 

glob top adhesives spread and solidify as round shaped dome over the structure. Further-

more, the glob top is used to insulate conductive interconnections outside joints. [32] [34] 

An example about the glob top is shown in Figure 9: 

 

Figure 9. The glob top concept and casing of a component. 

 

As seen in Figure 9, adhered or mechanically fastened solid casing is an alternative choice 

for liquid glob top. However, a casing is more complicate and not compatible for protec-

tion of interconnections like the easily addable glop top. Also, the casing is not as tight-

proof as the glob top and requires holes for fasteners in substrate. On the other hand, the 

casing does not need heat in the assembly and is removable, which make the casing at-

tractive to use. [33] 

When comparing the glob top and the casing in stretchable electronics, the glob top forms 

much more flexible insulation. The glob top can be used over stretchable interconnec-

tions, which makes it practical over whole stretchable electronic system. However, glob 
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top still affects to total stretchability of the structure. Because of the characteristic spread-

ing of the glob top, the glob top limits the possibilities to control final stretchability of the 

structure. [32] [34] 
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4. ADHESION 

Adhesion is defined as a phenomenon when two bodies stick together [61] [62]. The ad-

hesion is also explained as “state in which two surfaces are held together by interfacial 

bonds [36]”, what proclaims more precise how the adhesion is created. There are different 

theories and mechanisms about origin of adhesion, which have aroused since studies of 

adhesion have started to advance in the 1920s. Some simplified theories exist, for exam-

ple adsorption theory, mechanical theory, electrostatic theory, diffusion theory and weak 

boundary layer theory. In general, two substrates have a contact and form a common in-

terface, which is shown in Figure 10: 

 

Figure 10. Interface and interphase between connected bodies. 

 

The location of the interface cannot be exactly defined in the joint and is often thought as 

two-dimensional area between two separate bodies. For many cases, three-dimensional 

volume around the interface is called an interphase. Depending on materials and the shape 

of the interface, sometimes the interphase is more important than the interface. There can 

be the reactions and deformations over a wider volume than just through thin interface 

plane. For example, mechanical interlocking and diffusion of substrates happen over a 

thicker interphase. [63] [64] 

A durable interface requires good contact between the substrates so that the surfaces can 

react with each other. The maximum contact is obtained when a liquid spread over a solid 

substrate and covers the surface. Wetting is a feature for the adhesion and it is affected 

by various properties. For instance, roughness of the solid surface and the viscosity of the 

flowing medium affect adhesion. [64] [65] [66] Figure 11 presents an example joint of a 

module and stretchable substrate: 



25 

 

Figure 11. Conceptual joint of a module and substrate. 

 

Figure 11 shows that there are three different components in a stretchable structure: a 

rigid module, stretchable substrate and adhesive layer between them. There are two inter-

faces in the structure, one with the module and adhesive, and second with adhesive and 

substrate. The structure requires versatile properties from adhesive because adhesive has 

to join two different surfaces together. The surface of the module is coated with solder 

mask that is smooth and hard. On the contrary, the surface of substrate is elastic and soft. 

Under stretching, the adhesive layer against the module is stagnant, and against substrate, 

tends to move with the substrate. To solve the problem, the adhesive can be designed 

either to be strong to endure the stretching or to stretch with the substrate and distribute 

strains over bigger area. [19] [63] 

Because of materials and the topographies of the surfaces, it can be understood that ad-

hesion of stretchable electronics is formed with certain mechanisms. In this case, the ad-

hesion can originate from mechanisms that are specified by absorption theory, mechanical 

theory and diffusion theory. The adhesion can be improved with additional surface pre-

treatments. Plasma treatment is discussed with adsorption theory and abrasion is men-

tioned in mechanical theory. Also, the nature of the adhesive affect adhesion. 

After the joint is formed, it might fail in some day. The failure of polymer based joints 

starts as molecular level deformations and further develop to critical failures. The failure 

type of a joint can be recognized as adhesion failure, cohesive failure and substrate failure. 

By knowing the failure deformations and the failure pattern of the joint, the potential 

failure mechanism can be averted and durability of the joint can be improved. [25] [67] 
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4.1 Phenomenological theories of adhesion 

The adhesion in stretchable electronics is primarily explained with the absorption theory, 

mechanical theory and diffusion theory. These are affected by basic parameters of liquid 

adhesive and solid substrate. The viscosity of the adhesive describes how much it resists 

flowing: 

𝜂 =
𝜏

�̇�
 ,          (6) 

where η is viscosity, τ is shear stress and �̇� is strain rate [68]. High viscosity means that 

liquid is thick and it flows slowly. For comparison, viscosity of water is 1 centipoise (cP) 

and viscosity of thick syrup is 10000-30000 cP. The difference is about same than be-

tween conductive inkjet inks (8-25 cP) and conductive screen printing inks (10000 cP) 

[18] [69]. 

Some liquids, for example water, are independent of the strain rate and their viscosity 

stays always constant. These kind of liquids are called as Newtonian liquids. Also, there 

are non-Newtonian liquids that do not have constant viscosity. The viscosity of non-New-

tonian liquids change with temperature, which is a usable feature to modify the viscosity 

values. Elevated temperatures decrease the viscosity, which is caused by increasing 

amount of kinetic energy (Brownian motion) in the liquid. Viscosity is also decreased by 

evaporative solvents that are used in adhesives and inks. [19] 

A low viscosity of liquid eases the wetting over a solid surface. Wetting is also affected 

by the surface area and surface energy of the solid. The surface area is affected by surface 

roughness. On smooth or slightly coarse surfaces the surface roughness has very small 

effect on wetting. On coarse surfaces the effect is significant and hinders wetting. How-

ever, the surface roughness increases the surface area, which increases the surface energy 

and theoretical amount of adhesion. Therefore, the wetting of liquid over solid surface is 

basis for the adhesion and is considered in all adhesion theories. [64] 

4.1.1 Adsorption theory 

Based on an adsorption theory, molecules of the liquid and solid surfaces have interac-

tions with each other and create adhesion. The amount of interactions is directly propor-

tional to the quantity of adhesion and thus the aim is to maximize the interactions. The 

amount of interactions is at its maximum when the surfaces have as much common con-

tact area as possible, which is ensured with good wetting of the liquid. The interactions 

can be chemical bonds or temporary attractions between the molecules. Generally accord-

ing to the strength of interactions, chemical bonds are called as primary bonds and tem-

porary forces are called as secondary forces. The primary bonds are the strongest interac-

tions and the main source of adhesion. [64] [70] [71] 
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Hydrogen bonds, covalent bonds and ionic bonds of molecules are categorized as primary 

bonds. Hydrogen bonds are particular bonds between hydrogen atom and nitrogen, oxy-

gen or fluorine atom. The covalent bonds are established when two atoms share their 

electrodes with each other. Furthermore, the ionic bonds are formed because of electrical 

attraction of opposite charged ions. Theoretical strength of these primary bonds is around 

hundreds of kJ/mol. [64] [70] 

In addition to stabile primary bonds, secondary forces form weaker inconstant attractions. 

The secondary forces are mainly attractive forces between moving molecules and fluctu-

ates according to the prevailing distance of the molecules. These weak polar forces are 

commonly called as Van der Waals forces. Magnitude of their bond strength is tens of 

kJ/mol, which is many times weaker than the primary bonds. [64] [70]  

The molecular interactions between surfaces can be improved by surface activating pre-

treatments. The plasma treatment is one type of surface treatment where the surface en-

ergy of the plastic product is improved by exposing the surface directly to a cloud of 

ionized gas. The ionized gas changes the surface chemically and creates new active chem-

ical compounds. The plasma treatment is used for solid substrates to increase their inter-

actions with adhesives and inks. [72] 

4.1.2 Mechanical theory 

The mechanical theory deals how the topographies of joinable surfaces affect the adhe-

sion. To a certain point, an interface of coarser surfaces can have better adhesion and 

durability than an interface from smooth surfaces. After a certain point, when the surfaces 

come rough enough, despite the good adhesion, the durability of the interface and the 

joint decrease. The interface becomes strong with very rough surface and the failure 

mechanism changes from adhesive failure to substrate failure. Making surfaces coarser 

improves the adhesion especially when substrate in the first place has poor adhesion and 

is difficult to bond. However, with the surfaces that have already good adhesion, the ben-

efit of abrasion is not clear. [19] [64] [71] 

Improved adhesion of rougher surfaces can be explained in couple of ways. One approach 

is to consider the surface on molecular level. On uneven surface, there are molecules that 

have less bonds than same kind of molecules in the substrate. Because of the smaller 

amounts of bonds, the surface molecules have more free energy (surface free energy) and 

are more reactive. [64] 

Other approach is to inspect the size of surface area. The rougher surface has larger sur-

face area than a smooth surface. The larger area has higher total amount of surface energy. 

In addition, wider or longer bonding area increases durability of a joint force-wise. While 

the bigger joint area is larger in x and y-direction, the coarsening increase the area in z-

direction. [64] 
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Bonded rough surfaces have also better endurance under tension. A rough surface form 

wider bond area than smooth surfaces, and transmits loads over larger area. The loading 

is not subjected only to the joint area but is also carried by substrates through the uneven 

surfaces. [73] 

The roughness of surfaces can be increased by abrading before the bonding. Furthermore, 

abrasion is used to remove weak or difficult-to-bond surface layers, such as highly crys-

talline surfaces. The abrasion pre-treatment includes cleaning of surfaces before and after 

the abrasion, which removes contamination on the surfaces. The abrasion can be done 

with efficient grit blasting method, laser, or with abrasive paper. [19] [74] 

4.1.3 Diffusion theory 

The diffusion theory consists of defining two polymer based surfaces that blend and dif-

fuse together. The surfaces form an interphase, where polymer chains from both bodies 

are mixed and entangled with each other. The entanglements work like knots and bind 

polymer chains, which increase the adhesion of the joint. In order to polymers to entangle, 

they must be above their glass transition temperature. Properties such as molecular weight 

and amorphousness affect how easily polymer chains move inside polymer matrix (rep-

tate) and diffuse over a surface. In addition, process settings like temperature, time and 

pressure influence to the diffusion of plastics. [64] [75] [76] [77] 

The diffusion of polymer substrates happen in steps. According the reptation model, be-

fore the diffusion the chains are bound with entanglements in narrow tube like areas. 

When the diffusion starts, it starts partially. Segments of the chains, minor chains, relax 

and reptate over the interface and form low depth diffusion. Over the time the whole 

chains relax and reptate, which leads to reptate diffusion and entanglements of the chains 

in the interphase. [64] [75] The diffusion steps are also described in Figure 12. 
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Figure 12. Development of reptation during diffusion. 

 

The depth and time of diffusion vary with different polymers. Moreover, polymers can 

be incompatible with each other and form unstable diffusion that weaken in time. The 

compatibility is increased by using tailored copolymer compatibilizers, which attract two 

different polymer substrates together. [64] [75] [78] 

4.2 Deformation mechanisms of polymers 

Under straining, polymers go through deformations that finally lead to failure of the struc-

ture. Various parameters such as strain rate, temperature and nature of polymers affect 

the deformation mechanisms in the structure. Soft and elastic amorphous polymers have 

different deformation mechanisms than harder semicrystalline polymers. Elastomers like 

TPUs are commonly copolymers and have two or more dissimilar domains in the struc-

ture. [25] 

4.2.1 Amorphous polymers 

Amorphous polymers have randomly oriented amorphous molecular structure that does 

not have highly ordered configuration. The amorphous structure consist of entangled pol-

ymer chains that are the main source of strength of amorphous polymers. Furthermore, 

there are certain amount of free volume between randomly oriented chains, which also 

affect mechanical properties of amorphous polymers. [25] During straining, the amor-

phous polymers deform and finally form crazes and shear bands, which are presented in 

Figure 13: 
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Figure 13. Strain induced crazing and shear bands in amorphous polymer. 

 

Crazes and shear bands both consist of strips of linear polymer chains that are organized 

in sparser area. Crazes are aligned in perpendicular direction to the load and they consist 

of voids between polymer chains. Shear bands are formed in 45 degrees direction to the 

load and are densely pressed together. Moreover, the development of crazes requires just 

elongation of polymer chains contrary to the shear bands that require also slipping of the 

chains. The both deformations are unwanted because of the more sparse areas are weaker 

than bulk substrate and are pathways to crack propagation. [25] 

4.2.2 Semicrystalline polymers 

Semicrystalline polymers have highly ordered polymer chains that are arranged in a wavy 

lamellae structure. The lamellae are further oriented to roundish spherulite structures, 

where the lamellae are packed side by side towards the centre of the spherulites. The 

semicrystalline polymers have also amorphous phases along the crystalline phases, which 

exist between lamellae and spherulites. Under straining, initial deformation is mainly con-

trolled by the amorphous phases, which advances to spherulites. The straining deforms 

spherulites and causes slipping, twisting and separation of lamellae inside the spherulites, 

which are presented in Figure 14. The spherulite deformations appear as neck formation, 
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cold drawing and strain hardening of semicrystalline structure and increase ductility of 

semicrystalline polymers. [25] 

 

Figure 14. Deformation inside spherulites in polymers. 

 

The crystalline and amorphous phases consist of defects that guide damage propagation. 

The defects can be ready in the structure or created by deformations. Because of amor-

phous phases are softer than oriented crystalline phases, the damage propagation tends to 

happen along boundaries of spherulites, which leads to brittle behavior. More intensive 

propagation of damage can advance inside of spherulite, where it first attempts to travel 

in the amorphous space between lamellae before going through them. The toughness of 

semicrystalline polymers is directly transversely proportional to the amount of defects 

and proportional to stiffness of the deformation area. [25] 

4.2.3 Block copolymers 

Block copolymers are made by combining two or more different polymer chains together. 

The alternating polymer chains with different block copolymers form a polymer structure 

where distinguishable hard and soft segments exist. The segments are created by incom-

patibility and glass transition temperature (Tg) differences: hard segments are below their 

Tg and soft segments are over their Tg at ambient temperature. Orientation and phase 
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separation of the block copolymer structure is affected by shape of the polymers (linear 

or branching) and proportional quantity of the polymers. [25] [27]  

Morphology of a block copolymer such as the one in TPU includes hard segments that 

are oriented to spherulites and soft segments that separate the spherulites. The block co-

polymers have various deformation manners, which resemble deformations of amorphous 

and semicrystalline polymers. During straining, the block copolymers can form crazes 

and deform lamellae. In addition, strain can concentrate towards interface of hard and soft 

segments, which causes voids and cavities around harder particles. Voids of smaller hard 

segments or particles increase ductility, but bigger cavities spread and improve cracking. 

[25] [27] 

4.3 Failure of stretchable joint 

Every adhered joint fails when they are under high enough load. The failure starts as crack 

initiation and develops when the crack propagates in a joint. Properties such as residual 

stresses and ductility affect how the crack initiates and propagates in adhesive layer and 

substrate. Furthermore, failure and propagation of crack depend also on nature of load. 

[79] 

4.3.1 Failure patterns 

On a macro scale, failure in a joint occurs either adhesively or cohesively. It is also pos-

sible that a test specimen is locally weaker than the joint and the failure happens solely in 

the substrate. The failure patterns can be simple such as an adhesive failure on single 

interface or more complex. The examples about joint failures are presented in Figure 15. 
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Figure 15. Failure pattern models. 

 

The adhesion failure occurs when the adhesion between the substrate and the adhesive 

fails. The crack initiates at the interface between the substrate and the adhesive and     

propagates along it. The crack can propagate on one interface or jump over the adhesive 

layer to the other interface of the adhesive. The crack can change its interface single or 

multiple times during the propagation. In adhesion failure the adhesion is the weakest link 

in the joint. The durability of the joint and amount of adhesion can be increased with 

additional surface pre-treatments. [19] [67] [79] 

In the cohesion failure, the interfaces of the joint are stronger than materials and the crack 

propagates inside the materials. If the crack nucleates at the interface and cannot move 

along it, it evades and moves to the substrate or to the adhesive layer. The crack can also 

purely initiate and propagate in the adhesive layer, which is commonly the sign of a too 

thick adhesive layer. Furthermore, the failure can happen partially cohesively and par-

tially adhesively. [19] [67] [79] 

Failure of a structure does not always happen because of a weak joint. The joint can be 

durable as a whole and the substrate fails. The substrate failures occur outside the joint 

by snapping or under the joint by cohesive delamination. [19] [67] [79] 
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4.3.2 Interfacial failure 

In stretchable electronics, a rigid module is attached with an adhesive on the elastic sub-

strate. The elastic substrate elongate under the straining, which makes the deformation of 

the joint and the fracture mechanisms more complex. Figure 16 shows an example stretch-

able joint that has a module that is bonded with a NCA. 

 

Figure 16. An attached rigid module on elastic substrate. 

 

A NCA binds surfaces of rigid module and elastic substrate together and endures me-

chanical differences of the materials. The NCA can be structural adhesive or elastic ad-

hesive, which deformation behaviour vary in stretchable joint. The rigid NCA endures a 

load and prevents deformation of the surface of the substrate. On the contrary, the elastic 

NCA follows elongation of the substrate, which deform the adhesive layer. Figure 17 

displays deformations of the NCAs in stretchable joint. 

 

 

Figure 17. Stretching of the joint with different NCAs. 
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As seen in Figure 17, rigid NCAs, such as structural adhesives, do not deform during 

elongation. Because of the mechanical differences of the components, stress (and strain) 

concentrates to the boundary area of the substrate and adhesive. The stress concentration 

of the boundary area induce higher stresses to outer edges of the adhesive layer and can 

initiate damage in the adhesive layer. [19] [80] 

Contrary to the rigid adhesive, the elastic adhesive, like PSAs, deform with the elongation 

of the substrate. The elastic adhesives accomplice the movement of the substrate with 

shearing of the adhesive layer. In the joint, the adhesive gradually elongates around the 

module, which decrease the deformation differences of the substrate and the adhesive, 

and further decrease the stress concentration. However, elastic adhesives can elongate 

under small loads, which makes them shear with low stress concentrations and stand small 

amount of loads without excess deformations. [19] [80] 

The stress concentration in the boundary area can cause failure in two ways; the higher 

stresses can cause failure of the substrate at the boundary area, or the stress concentration 

initiates damage in the adhesive layer, which propagates and break the adhesive layer. In 

the more rigid structural adhesives, the stress concentration is higher than in elastic adhe-

sives, which makes the adhesive layer from the structural adhesive more sensitive to the 

damaging. [19] [80] Figure 18 presents an example about an interface crack, where stress 

distribution in the interface of two isotropic elastic substrates is sketched. 

 

Figure 18. Singularity and debonding at elastic substrate-adhesive interface. 

 

In the isotropic elastic substrates, the stress concentrates gradually until the tip of the 

crack and drives the propagation of the crack [80]. However, in the stretchable joint, there 
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are one rigid (linear-elastic) substrate and one highly non-linear elastic substrate (TPU-

film). Distribution of stress concentration in the interface crack is affected by defor-

mations in the TPU-film, which change along stress. Because of this, the interface failure 

in the stretchable joint is more complex than in Figure 18. For instance, the substrates 

have different Poisson’s ratios. The rigid substrate binds the interface of the highly elastic 

substrate (that has high Poisson’s ratio) and boosts stresses in applied direction in the 

joint. [24] [80] 

The maximum amount of stress in the tip can be enormous. Especially in the internal or 

external sharp shapes in linearly elastic materials, the theoretical maximum stress in the 

tips is infinite. These sharp shapes that have mathematically the infinite stress are also 

called as the stress singularities. The stress singularities are distinguishable in the rigid 

materials as weak spots that fail prematurely. In the elastic materials, the stress singular-

ities are also the failing areas. However, the elastic materials can have plastic flow around 

the sharp corners, which somewhat correspond to the stress singularities. [81] 
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5. METHODS  

Various methods are used to study stretchable electronics in several levels. Materials, 

adhesives and joint designs are studied to find the best way to build up the stretchable 

electronics based on stretchable substrate and rigid islands. In addition to the substrate, 

adherence of NCAs to rigid surfaces and the TPU-film is tested by floating roller peel-

test setup. Failure mechanisms of peel samples are further studied with Fourier transform 

infrared spectrometer (FTIR). 

Finally, complete joints of stretchable electronics are assembled from modules, a sub-

strate and conductive adhesives. The formed joints are reinforced with additional frames 

that are 3D-printed and attached around the modules with a NCA. The joints are tested 

by using the tensile testing and the endurance and electrical resistance development are 

analyzed and compared. 

5.1 Surface treatments and wetting 

Amount of surface energy of the substrate and effect of common surface pre-treatments 

are inspected by measuring wetting of the substrate with Krüss DSA100 drop shape ana-

lyzer. 

5.1.1 Theory of surface tension and energies 

The surface energy can be understood as excess free energy of the surface that can react 

with other materials. It is also the required amount of energy, which needs to be focused 

on the surface to break it. For good adhesion, sufficiently high surface energy is “the 

must”. Generally, polymers have low surface energies between 18-47 mJ/m2 because of 

the satisfied polymer structure. [19] [82] [83] 

In addition to the surface energy, also a term surface tension is widely used to describe 

the activity of surface. The both terms are defined with thermodynamically and are clas-

sified as two different parameters. However, on practical level the surface energy and the 

surface tension are equal and are used often as interchangeable terms. The unit of the 

surface energy is energy per area (mJ/m2) and the unit of surface tension is force per 

length (mN/m). Young has described the surface tension of solid with the following equa-

tion: 

𝛾SV = 𝛾SL + 𝛾LV cos 𝜃eq ,        (7) 

where 𝛾SV is the tension of solid and vapor interface (the surface tension), 𝛾SL is the ten-

sion of solid and liquid interface, 𝛾LV is the tension of liquid and vapor interface and 𝜃eq 
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is the contact angle of equilibrium point of the three interfaces. Small contact angle indi-

cates high spreading of liquid and good wetting. On the contrary, high contact angle tells 

that the surface is inert and has poor wetting. [19] [82] [83] Furthermore, the Young-

Dupré equation describes the work of adhesion: 

𝑊 = 𝛾𝐿𝑉(1 + cos 𝜃𝑒𝑞) ,        (8) 

where W is the work of adhesion. Universally, surface energies vary because materials 

have different chemical compositions that affect amount of free energy on surfaces. With 

the same reason, the surface energy can be split to more refined components that present 

chemical bonding of surfaces. In the most cases, surface free energy is classified to polar 

and disperse components, where the polar component includes strong interactions, such 

as primary bonds. The disperse component contains weaker secondary forces. The polar 

and disperse components can be combined with Equations 7 and 8, so that Equation 9 can 

be deduced: 

𝛾𝐿𝑉(1+cos𝜃𝑒𝑞)

2√𝛾𝐿𝑉
𝐷

= √𝛾𝑆𝑉
𝑃 [

√𝛾𝐿𝑉
𝑃

√𝛾𝐿𝑉
𝐷
] + √𝛾𝑆𝑉

𝐷  ,      (9) 

where 𝛾𝐿𝑉
𝐷  is the dispersion component of the liquid and vapor interface, 𝛾𝐿𝑉

𝑃  is the polar 

component of the liquid and vapor interface, 𝛾𝑆𝑉
𝐷  is the dispersion component of the solid 

and vapor interface and 𝛾𝑆𝑉
𝑃  is the polar component of the solid and vapor interface. The 

order of Equation 9 represents the equation of straight line: 

𝑦 = 𝑚𝑥 + 𝑐,          (10) 

where y is y coordinate, x is x coordinate, m is the slope of line and c is the intersection 

of the line and y-axis. Multiple test liquids that differ chemically and have the different 

proportions of polar and disperse components are used to calculate the surface energy. 

Combining Equation 9 and 10, the “y” and “x” components in Equation 9 can be solved. 

Each test liquid provides one point that are used to form a straight line. From the straight 

line, the polar and disperse components of the surface energy can be seen and summed to 

get the total surface energy of the surface. [82] [83] [84] [85] 

To calculate the surface energy, there has to be enough test liquids to draw the straight 

line exactly. With only few test liquids, the straight line is not precise and thus the surface 

energy value is also inaccurate. In that case, the wetting of the test liquids evaluates better 

how liquids behave on the surface. [83] [84] [85] 

5.1.2 Contact angle measurements 

The used test equipment Krüss DSA100 drop shape analyzer and the test situation is pre-

sented in Figure 19. 
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Figure 19. Krüss drop shape analyzer DSA100. 

 

The Krüss DSA100 places droplets over a sample, takes pictures from the settled droplets 

after certain time and analyzes the contact angle of the droplets in a software. The soft-

ware calculates the contact angle of the sessile drops from average of left and right side 

contact angles, which is seen in Figure 20. 
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Figure 20. Contact angle analyzing with the software of the Krüss DSA100. 

 

In the thesis, the Krüss DSA100 device is set to use 3-µl-volume water (grade 1) and 

ethylene glycol droplets on Platilon U 4201 AU TPU-film samples. Each samples are 

measured with 5 droplets of both liquids and the droplet shape analyzer pictures the drop-

lets after 2 seconds they are placed on the samples. Before the testing, the samples are 

conditioned for 24 hours at 23 °C and 50 % air humidity. 

5.1.3 Roughening 

A roughening pre-treatment is used to increase surface area and the adhesion of substrate 

and is especially effective when the substrate is naturally inert like rubbers. Generally, 

uniform roughening can be realized with sand blowing but also sandpapering is used for 

small scale coarsening. [64] [74] In this thesis, the sandpapering is exploited for the TPU-

film that is roughened with P400 coarse sandpaper.  

A sample is roughened by attaching the TPU-film over metal plate (and cleaning it with 

IPA). The sandpaper is pressed on the TPU-film with a weight that assures that the surface 

is sanded with same pressure during the roughening. The TPU-film is sanded by 20 move-

ments vertically, horizontally and circularly to achieve even coarse surface. After the 

roughening, the excess particles are removed from the film with compressed air and IPA.  
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5.1.4 Plasma pre-treatment 

A plasma pre-treatment is used to improve surface energy of substrate by exposing the 

surface directly to a cloud of ionized gas. The ionized gas change the surface chemically 

and creates new more active chemical compounds on the surface. The plasma pre-treat-

ment is exploited for example, in package manufacturing to increase adhesion between 

plastic films and inks. Moreover, there are smaller plasma devices for laboratory scale 

production. [72] For instance, the plasma tool Plasmatherm 790 is used to increase hy-

drophilicity of substrate in stretchable electronics [86]. The TPU-film sample in the sur-

face pre-treatment test is exposed with the Piezobrush PZ2 handheld plasma device. 

The Piezobrush PZ2 uses piezoelectric direct discharge technology (PDD® technology) 

to make cold atmospheric plasma. The device is meant for small-scale production to im-

prove adhesion or clean surfaces, for example in laboratories and dentistry. The PDD® 

technology does not heat surface over 50 °C, which makes the device well compatible 

with plastic substrates. [87] The used Piezobrush PZ2 is introduced in Figure 21: 

 

Figure 21. The handheld plasma device Piezobrush PZ2 

 

The plasma treatment of the sample by cleaning the TPU-film with IPA and sweeping the 

Piezobrush PZ2 two times vertically and horizontally over the sample. The device is 

handheld and distance between the nozzle and the sample is 2 mm – 10 mm. The pre-

treatment is done right before the contact angle measurement because the effect of plasma 

treatment decrease over time on non-bonded substrate [87]. 
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5.1.5 Heat treatment 

Products can undergo elevated temperatures during manufacturing processes, which may 

affect materials and change surface properties. In semicrystalline plastics, high tempera-

tures can induce re-crystallization via cooling. Uncontrolled heating and cooling of the 

plastics can increase total crystalline content of the surfaces and decrease the surface en-

ergy and the wetting. [23] 

The TPU-film substrate is attached on a metal plate and cleaned with IPA before heating. 

The cleaned sample is heated in an oven where the sample is held for 30 minutes at         

140 °C. After the heating, the sample is let to cool down in an ambient temperature. 

5.2 Peel tests 

In stretchable electronics, adhesives need to bond two different surfaces together. The 

rigid surfaces and PCBs can be joined with elastic substrates with NCA that form non-

conductive contacts. At the same time, conductive contacts are maintained via compres-

sion. The composition and properties of NCAs vary, which further affect how well they 

bond the module and stretchable substrate. Adhesion quality of NCAs can be tested with 

a peel test, which is carried out to investigate which common types of NCAs has high 

adhesion. After a peel test, also failure mechanisms of the peeled sample are examined to 

analyse possible methods to increase adhesion of NCAs in future. 
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Figure 22. The floating roller jig with a peel test sample. 

 

A peel test is done by using a floating roller method that peels the samples in a 45 degrees 

angle, which is presented in Figure 22. The floating roller jig is fixed in Instron 5967 

tensile test machine that is equipped with a 2kN load cell in this study. The samples are 

loaded at a 50 mm/min speed until failure of the samples or point of maximum movement 

of the machine. The peel test NCA samples are shown in more detail in Table 9. 
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Table 9. Peel test samples in this study. 

Series Adhesive type Manufacturer and  

adhesive name 

Handling 

time of the 

samples 

Sample 

code 

1 Epoxy Permabond ET515 30 min ET 

2 Epoxy Permabond MT382 2 h MT 

3 Polyurethane 3M DP610 2 h DP 

4 Pressure-sensitive 3M 8132LE 20 s / 50 °C LE 

5 Cyanoacrylate Loctite 406 5 min 406 

6 Cyanoacrylate with primer Loctite 406 with              

Loctite SF 7239 

5 min 724 

  

Each NCA type is applied on two different rigid substrates so that there are altogether 12 

different samples.  The each type of samples have 6 parallel samples. The samples consist 

of a 12 mm wide and 160 mm long rigid substrate, which is either from solder mask 

covered FR4 or 3D-printed polylactic acid (PLA). The FR4 substrate is coded as “F” and 

the PLA substrate is coded as “P” in the sample names. The materials and surface topog-

raphies affect adhesion on a rigid substrate; the surface of FR4 is smooth and dense and 

the surface of a PLA substrate is uneven and permeable. Furthermore, the solder mask is 

made from hard epoxy and the PLA is biodegradable plastic. The rigid substrates are 

adhered over a 12 mm wide and 210 mm long TPU-film. The TPU-film is 50 mm longer 

so that the samples can be fixed to the lower jaw of the tensile test machine. Figure 23 

shows the smooth FR4 substrate and the rough 3D-printed PLA substrate. 

 

 

Figure 23. FR4 and 3D-printed PLA substrate. 
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Before the assembly of the samples, the TPU-film and rigid samples are conditioned for 

24 h at 23 °C and 50 % air humidity. The samples are prepared by spreading adhesive 

over rigid substrates with a brush, and then pressed on the TPU-film. The samples are 

compressed with a 10,1 kg weight certain times, where the time depends on reported 

handling strength time of the adhesives. The 6 parallel samples of the two-component 

adhesives are prepared all at once because of the long handling time. The all parallel 

samples are compressed under the 10,1 kg weight at the same time. 

On the contrary to the two-component adhesives, the very short handling time possessing 

cyanoacrylate adhesive samples are compressed one at the time so that the compressive 

strength is same as with the two-component adhesives. The exception from other peel 

samples are the PSA 8132LE transfer tape samples that are pressed over the TPU-film 

with the press at 50 °C, 3 bar and 20 s. When all samples have achieved handling strength, 

they are allowed to dry 7 more days at room temperature. 

The prepared peel test samples are conditioned for 24 h at 23 °C and in 50 % relative air 

humidity before the peeling. Also, peeling of the samples is started 20 mm by hand so 

that the peeling starts evenly. In other words, initiation of a crack is done by hand and 

propagation of the crack is measured as the peeling. The peeling is measured with Instron 

5967 (load (N) and displacement (mm), where the load is changed to bond strength 

(N/mm) with equation: 

𝐺𝑝 =
𝐹

𝑏
(1 − cos 𝜃),       (11) 

where Gp is the momentary peel strength, F is measured load, b is the width of sample 

and θ is the angle of peel. In the test here, the width of the samples is 12 mm and the angle 

of the peel is 45°. Equation 11 is simplified and it ignores elongation of the peel arm that 

is highly elastic TPU-film. In addition to the elongation of the peel arm, temperature, 

strain rate and other variables affect the bond strength of samples. [88] [89] In the tests 

here, all samples are prepared and tested the same way, which makes them comparable 

with each other. 

It is notable that the unit of peel strength N/mm “seems” almost same as N/mm2 (which 

is equal to MPa), which is also used to define “strength” of interfaces. These are, however, 

not connected to each other. [36] 

5.2.1 Examination of failure mechanisms 

Failure of the peel test samples depends on how the initiated crack propagates during the 

peeling. The failure can be cohesive failure that happens solely in adhesive or substrate, 

or adhesion failure that occurs along the interface between adhesive layer and substrate. 

The failure can be also both cohesive and adhesion failure. By examining the failure 
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mechanisms in peel test samples, it is possible to determine how failures evolved and how 

their durability can be improved. [67] 

The peel test samples are analysed with an FTIR device that examines properties of sam-

ples by following how infrared radiation (IR) interfere with them. The used FTIR exploits 

a horizontal attenuated total reflection (ATR) method, which measures the surface com-

position of the samples. The ATR directs horizontally a broad range IR beam to a crystal 

that further leads the IR upwards to the surface of the sample. The IR progresses small 

distance in the sample and reflects back to the crystal. The reflected IR is compared to 

the original IR-spectrum of the crystal and the IR-spectrum of the sample is recorded. 

The IR-spectrum of the sample is comparable to the existing specimens and qualitative 

and quantitative properties of the sample can be recognized. [90] Figure 24 shows the 

ATR device GladiATR that is used with the FTIR test machine Bruker Optics Tensor 27. 

 

Figure 24. GladiATR test device and a peeled FR4 substrate with a visible adhe-

sive layer. 

 

The ATR-FTIR uses the diamond as the crystal, which can be seen as small area in the 

middle of the circular plate in Figure 24. The diamond is compatible with the commonly 

used mid-region IR-spectrum (where wavenumber varies between 4000 cm-1 –                 

400 cm-1). The mid-region IR-spectrum consist of vibration states of the most molecular 

functional groups. The IR-spectrum has generally two areas, an area between                  

4000 cm-1 – 1500 cm-1, where single chemical bonds are recognizable and an area be-

tween 1500 cm-1 – 400 cm-1, where materials have individual fingerprint vibrations. [90] 
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Furthermore, each sample is scanned 128 times with a 4 cm-1 resolution to remove noise 

from the IR-spectrums. 

5.3 Tensile testing 

While the contact angle test and the peel test study properties of local areas in stretchable 

electronics, tensile testing investigates the durability of the whole joint. The tensile testing 

examines the endurance of a sample by following force, displacement and voltage devel-

opment. The recorded values are later converted to stress, elongation and resistance val-

ues. The samples with conventional joints have a module, substrate with printed intercon-

nections and conductive adhesive. The wideness of the interconnections varies, and 2 mm 

and 1,5 mm wide tracks are tested. Also, alternative joint designs with additional rigid 

frame around the module is varied and studied in this thesis. The prepared tensile test 

samples are presented in Table 10: 

Table 10. Tensile test samples in this study. 

Series Size of the 

ACF 

Thickness of inter-

connection (mm) 

Additional compo-

nent with the module 

1 patch 2 - 

2 strips 2 - 

3 patch 2 Frame 

4 strips 2 Frame 

5 patch 1,5 - 

6 strips 1,5 - 

7 patch 1,5 Frame 

8 strips 1,5 Frame 

 

The modules are attached on a printed TPU-film with the ACF tape tesa HAF® 8412 that 

is used as strips under the contact pads and also as the module size patch under a module. 

Both the strips and the patch create electrical contacts in the joint but mechanically sup-

port the joint different amount. By varying the amount of the ACF in the joint, durability 

of the ACF can be studied in more detail. All 8 differing tensile test samples have 3 par-

allel samples. 

5.3.1 Screen-printing of interconnections 

The interconnections of the samples are screen-printed with a conductive ink on a sub-

strate. The substrate consists of a TPU-film that is attached on a supportive metal plate. 
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The used screen-print machine DEK 248 is presented in Figure 25. The DEK 248 machine 

consist of a black carriage that moves the substrate under the green-colored screen that 

has printable patterns. Over the screen are two squeezes that sweep on the screen and 

press the conductive ink through the screen to the substrate. 

 

Figure 25. Screen-printing machine DEK 248. 

 

Between the screen and the substrate, there is 1 mm gap so that only the area of the screen 

that is pressed by squeezes is in contact with the substrate. The squeezes provide 12 kg 

load towards the screen during a printing cycle. The printing cycle includes two passing 

of the squeezes, where the forward speed of a squeeze is 50 mm/s and backward speed is 

70 mm/s. 

The screen is made from polyester mesh of which thickness is 79 µm. The mesh count is 

195 (77/55) and the screen tension is 23,3 N/cm. The screen has several patterns that 

consist of nested U-shape interconnections, which are presented in Figure 26. The U-

shape interconnections form closed loops when a module is attached in the middle of the 

pattern. The loop shape makes possible to measure electrical changes in the loops when 

they are elongated. Wideness of the selected interconnections are 1,5 mm and 2 mm, 

where the 2 mm wide interconnection has better mechanical and electrical properties (be-

cause of its width). 
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Figure 26. The interconnection patterns in this study. 

  

After the screen-printing, the substrates with recently printed interconnections are heat 

treated for 30 min at 125 °C in the oven. The time of the heat treatment is long compared 

to the recommended curing time of the conductive ink CI-1036 because of bulky metal 

plates under substrate which take time to heat and cool. The TPU-film substrates with the 

prepared interconnections are cut to 29 mm wide slices, where the printed pattern is in 

the middle of the film. 

5.3.2 Modules 

In a tensile test, the square shape modules are attached on the printed substrate. The mod-

ules are two-side PCBs and are 1,6 mm thick. The size of a module is 15 mm x 15 mm 

with 2 mm rounding in the corners. On downside of the module are contact pads, which 

have a diameter of 1,5 mm. On topside of the module, there are coupling pads, where is 

soldered a pin header. Figure 27 presents the downside and topside of a module: 

 

Figure 27. Bottom and upper side of the module. 
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Modules of the tensile tests are provided in boards where they are cut separately. The cut 

sides of the modules are smoothened with sandpaper and the pin headers are soldered on 

the modules by hand. 

5.3.3 Joining of ACF samples 

The ACF tape tesa HAF® 8412 is used as strips and patches between the module and the 

TPU-film. The size of a strip is 10 mm x 2 mm and the size of a patch is square with 15 

mm sides and 2 mm rounding (which is equal to the size of the module). The ACF strips 

and patches are cut with a laser cutter to their fixed sizes. The joints are bonded by the 

ACF with a press, which is shown in Figure 28: 

 

Figure 28. The ACF press with an module. 

 

On top of the press is a heated press head and below is a fitting piece that allows pressing 

a module with soldered pin head to TPU-film. The module is bonded upside down to the 

printed TPU-film, and the bonding direction is presented in Figure 28. Heat of the press 

head is conducted through the TPU-film, which is more efficient direction to conduct the 

heat to the ACF than through the module. In the middle area of the fitting piece is an 

elevation that has a hole through in it. The elevation ensures that the press head presses 

only the module and the hole buries the pin head and keeps the module in place. The 
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fitting piece is 3D-printed with Ultimaker 3 from acrylonitrile butadiene styrene (ABS) 

plastic. 

Temperature, pressure and press time used in the press are controlled and optimized to 

bond the joints. However, the maximum temperature of the press head is 150 °C, which 

is lower than the recommended bonding temperature of the ACF (180 °C – 220 °C) [58]. 

The used parameters for the bonding are 150 °C, 1,5 bar and 7 s, where the lower tem-

perature is compensated with a longer press time. In addition, a teflon film is added be-

tween the press head and the sample because the temperature and pressure of the press 

head are high enough to deform the TPU-film over the module. 

5.3.4 3D-printed frames 

In addition to the conventional stretchable electronics joints, rigid frame components are 

added on TPU-film around the modules in this study. A frame around the module is an 

alternative method to strengthen the joint and transfer the stress concentration area further 

away from electrical contacts. Figure 29 presents differences between a framed module 

and a bare module: 

 

Figure 29. The bare module and the framed module. 

 

In principle, the framed joints have better durability than conventional joints because the 

frame increases adhered surface area of the joint. The frame makes the joint more rigid 

and hinder bending of TPU-film close to the module. Also, there is a new boundary be-

tween the module and the frame that shields the electrical contacts from direct cracking. 

If the framed joint starts to crack, the crack first initiate and propagate through the bonded 

frame before it can initiate and propagate under the module. 
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The frames are made by 3D-printing with Ultimaker 3. They are printed from transparent 

PLA plastic with a nozzle which diameter is 0,25 mm. The thickness of the frames is 0,8 

mm (half of the thickness of the module) and an inner diameter is 15,2 mm with 2 mm 

rounding to compensate dimensional errors from the 3D-printing. The width of the frame 

is 2 mm and rounding at outer sides is 1 mm. Figure 30 shows the 3D-printed frame and 

the framed tensile test sample: 

 

Figure 30. The 3D-printed frame and a framed tensile test sample. 

 

The frames are attached on TPU-film with PSA tape 8132LE by 3M that is laser cut to 

same size pieces as the frames. Frames with PSA tape are aligned over printed TPU-films 

and are fixed with a press with parameters of 50 °C, 3 bar and hold for 20 s. The press is 

a top head press and presses the samples on the substrate side (which is covered with a 

teflon film during the pressing). The frames are bonded on the TPU-films before modules 

since the frames are thinner than the modules. The frames do not hinder the bonding of 

the modules. On the contrary, they simplify alignment of the modules over contact pads 

and make preparation of the joints easier. 

5.3.5 Measurement of the samples 

The tensile test samples are loaded with a Tinius Olsen H5KT Benchtop Tester. The ten-

sile test machine measures displacement (mm) and load (N) of a sample. An original 

length of a sample is 120 mm and the speed of the test is 50 mm/min. By the original 

length of the sample, the measured displacement is converted to elongation (%). In addi-

tion, measured load is converted to stress (MPa) by dividing load with cross-sectional 

area of the sample, which is thickness of a TPU-film (0,1 mm) times a width of the sample 

(29 mm). Moreover, the tensile test is implemented 24 h after preparation of the samples. 
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In addition to displacement and load values, two NI myDAQ measuring equipment units 

by National Instruments are used to determine resistance changes in the samples. The NI 

myDAQs measure at the same time four interconnections of a sample and record voltage 

(V) in relation to time (s), which are recorded with LabVIEW 2017 Robotics program. 

By knowing the speed of the tensile test and the length of a sample, the time can be com-

puted to elongation (%). Calculated elongation values of the NI my DAQs and the tensile 

test machine are combinable with each other. Between the NI myDAQs and the module 

is a connector PCB that is attached on the pin head of module. Figure 31 shows the fab-

ricated connector PCB and the measured interconnections. 

 

Figure 31. A tensile test sample with connector PCB. 

 

Both NI myDAQs units have two channels where one channel measures voltage of single 

interconnection. The channels are measured and recorded separately so that resistance 

development of each interconnections are traceable. The voltage changes of interconnec-

tions are measured from zero to maximum voltage output, which is achieved by using 

common earth and voltage output in the NI myDAQs. The more detailed circuit diagram 

of the connector PCB is presented in Figure 32. 
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Figure 32. The circuit diagram of connector PCB in this study. 

 

The output voltage of the PCB is 5 V and it is divided to four channels. The channels 

have two resistors, where the first resistors R1, R2, R3 and R4 are 5600 Ω surface mount 

resistors. The second resistors R5, R6, R7 and R8 are printed loop interconnections of the 

sample, of which resistance values increase when the interconnections elongate. The in-

crease of resistance also increases voltages over the resistors, which are measured with 

V1, V2, V3 and V4 (that are in the NI myDAQs and LabVIEW test setup). The resistance 

is calculated by the Ohm’s circuit law: 

𝑉 = 𝑅𝐼 ,          (12) 

where V is the voltage, R is the resistance and I is the current [12]. By the rules of resistors 

in series or in parallel, the Ohm’s law is used to deduce the used Equation 13: 

𝑅2 =
𝑅1

(
𝑉1

𝑉2
)−1

 ,          (13) 

where R2 is the resistance of the printed interconnection, R1 is the resistance of the surface 

mount resistor, V1 is the output voltage of the system and V2 is the voltage over the printed 

interconnection [12]. In the NI myDAQ units, there are inherent resistances without a 

sample (without the second resistors). An initial resistance of the NI myDAQ unit one is 

8 Ω and an initial resistance of the NI myDAQ unit two is 16 Ω, which are taken into 

account and removed from the reported resistance values of a sample. 
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During testing of samples, the resistance of printed interconnections increases because 

their length increases (as seen in Equation 1) and matrix of the conductive ink deforms. 

Finally, the resistance enormously increases and the interconnection is defined to be 

failed. The failure can be caused by breakup of electrical contacts between a module and 

TPU-film or snapping of the printed interconnection. 
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6. RESULTS 

Results from the surface treatment test, the peel test and the tensile test are introduced in 

this Chapter. 

6.1 Surface treatments and wetting 

The effect of surface treatments on wetting of TPU-film is inspected with the Krüss 

DSA100 droplet shape analyzer. The results of the testing are presented in Figure 33. 

 

Figure 33. Contact angles of test liquids on Platilon U 4201 AU. 

 

Figure 33 shows that grade 1 water and ethylene glycol have high average contact angles 

on untreated Platilon U 4201 AU TPU-film. Moreover, the heat treated and the roughened 

samples have almost the same average contact angles as the untreated reference TPU-

film. The heat treated samples have slightly higher contact angles and the roughened sam-

ples have slightly lower contact angles than the reference samples. In addition to Figure 

33, the average contact angles are presented in more detail in Table 11. 
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Table 11. Listed contact angles of the TPU-film. 

 Surface CA(M) water [°] CA(M) etyl. [°] 

Untreated 103 84 

Heat treated 106 86 

Roughened 98 82 

Plasma treated 56 31 

 

The Figure 33 and Table 11 state that the plasma pre-treatment is the most efficient 

method to increase wetting of adhesives. With both test liquids that have different dis-

perse and polar proportions, the contact angles of droplets decrease tens of percent. With 

the grade 1 water, the average contact angle decreases 45 % and with the ethylene glycol, 

the average contact angle decreases 63 %. 

6.2 Peel tests 

6.2.1 Average maximum values of peel samples 

The first peel testing is carried out with six adhesives, two rigid substrates and Platilon U 

4201 AU TPU-film. Load of the samples and displacement of the tensile test machine 

vary during the peel tests and differently shaped peel curves are formed. At some point, 

the peel curves have the maximum load (N) that is converted to the maximum bond 

strength (N/mm). Average maximum bond strength of the peel samples with ranges are 

shown in Figure 34. 

 

Figure 34. Average max bond strengths and ranges of NCA peel test samples. 
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Figure 34 shows that samples with ET515 and MT382 epoxy adhesives have the lowest 

average maximum bond strengths in the peel tests. The samples with other adhesives have 

higher average bond strengths than the epoxy adhesives but their results alternate more. 

The exception is 8132LE transfer tape samples that have bond strengths between 0,2 – 

0,3 N/mm with moderate ranges. Table 12 shows in more detail the average maximum 

bond strengths and standard deviation (SD) and coefficient of variations (CoV). Moreo-

ver, the maximum averages, SD and CoV of the fixed samples are introduced. 

Table 12. Average maximum bond strength and fixed average maximum bond 

strength values with SD and CoV of peel samples with the FR4 substrates. 

Adhesive Average max 

values and SD 

(N/mm) 

CoV (%) Fixed max aver-

age values and 

SD (N/mm) 

Fixed CoV 

(%) 

ET515 0,08 ± 0,01 11 0,08 ± 0,01 11 

MT382 0,11 ± 0,01 12 0,11 ± 0,01 12 

406 0,18 ± 0,07 39 0,15 ± 0,03 21 

DP610 0,26 ± 0,07 28 0,26 ± 0,07 28 

SF 7239+406 0,26 ± 0,11 43 0,21 ± 0,03 15 

8132LE 0,28 ± 0,02 6 0,28 ± 0,02 6 

 

PU adhesive DP610, Loctite 406 cyanoacrylate with the primer Loctite SF 7239 and 

8132LE transfer tape have the highest average maximum bond strengths on FR4 substrate 

in Table 12. However, the CoV between the parallel samples are also high with most 

sample types. When the average maximum bond strength values are fixed and single dif-

fering samples from six parallel samples are removed from the calculations (the samples 

406-6F and 724-6F), the maximum average bond strength and CoV of cyanoacrylate sam-

ples decrease considerably. In addition to the FR4 substrate samples, Table 13 presents 

the average maximum bond strengths with SD and CoV of the unedited samples and the 

fixed samples with the 3D-printed PLA substrates. 
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Table 13. Average maximum bond strength and fixed average maximum bond 

strength values with SD and CoV of the PLA substrate peel samples: 

Adhesive Average max 

values and SD 

(N/mm) 

CoV (%) Fixed max av-

erage values 

and SD (N/mm) 

Fixed CoV 

(%) 

ET515 0,12 ± 0,02 18 0,11 ± 0,01 12 

MT382 0,14 ± 0,02 14 0,14 ± 0,02 14 

406 0,26 ± 0,07 26 0,26 ± 0,07 26 

DP610 0,19 ± 0,02 12 0,19 ± 0,02 12 

SF 7239+406 0,20 ± 0,04 18 0,19 ± 0,03 15 

8132LE 0,25 ± 0,03 14 0,23 ± 0,01 4 

 

The peel test samples Loctite 406 with and without the primer Loctite SF 7239 and the 

8132LE transfer tape have 0,20 N/mm or higher average bond strengths. Except the cy-

anoacrylate samples without the primer, the samples have 18 % or lower CoV. After the 

single abnormal sample of 6 parallel samples are removed from the calculations (the sam-

ples ET3-P, 724-5P and LE-4P), only the Loctite 406 and 8132LE transfer tape samples 

have the average bond strengths over 0,20 N/mm. Moreover, only the Loctite 406 samples 

have the high CoV (26 %) and the CoV of the other samples is low (15 % or less). 

In addition to the bond strength values of the peel test samples, final displacement values 

of the tensile test machine in the tests are good to take into account since they tell about 

the durability of the bond as the peeling continues. The original length of the TPU-film 

(peel arm) is 160 mm, which is shortened to 140 mm after the peeling is started by hand. 

The final displacement of the peel tests can be compared to the shortened length of TPU-

film to see how much the length of the elastic TPU-film is changed in the peel tests. The 

maximum displacement and bond strength values describe together behavior of NCAs 

during the peeling process. Figure 35 presents fixed average maximum (final) displace-

ment of the peel test samples. 
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Figure 35. Fixed average max displacements of peel test samples. 

 

Figure 35 describes the fixed average maximum displacement of the loading head of the 

tensile test machine in the peel tests. In the fixed results in Figure 35, the same samples 

are ignored as in average bond strength values in Table 12 and 13.  Figure 35 shows that 

the TPU-films in the structural adhesive samples hardly elongate, except in the PU adhe-

sive samples with the FR4 substrates. In the elastic pressure-sensitive adhesive 8132LE 

samples, the TPU-films elongate during the peel tests. With few samples, final displace-

ment in the tests is 300 mm that is the limit of the tensile test machine. In the peel tests of 

the samples, the displacement of the tests would have been bigger if the tests could have 

been finished. 

6.2.2 Epoxy adhesive samples 

The epoxy adhesives ET515 and MT382 by Permabond have same degree adhesion over 

the rigid substrates and their peeling realizes in same manner. The both adhesives peel 

different way over the FR4 substrate and the PLA substrate, where the realized peeling 

curves of samples with ET515 adhesive and the FR4 substrate are shown in Figure 36. 
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Figure 36. Peel test results of epoxy adhesive ET515 with FR4 substrate. 

 

Figure 36 presents that the ET515 epoxy adhesive samples with the FR4 substrate have 

even zigzag shaped peeling curves. The FR4 substrate have smooth solder masked surface 

that attracts the epoxy adhesives and the peeling happens visibly in the interface of adhe-

sive and TPU-film. Figure 37 presents a TPU-film from the FR4 substrate sample and a 

TPU-film from the PLA substrate sample. 

 

Figure 37. TPU-films of FR4 (A) and PLA (B) substrates that are adhered with 

black colored MT382 epoxy adhesive. 

 

A B 
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As seen in Figure 37A, the epoxy adhesive on the FR4 substrate peels in the adhesive-

TPU-film interface leaving no adhesive residues over the TPU-film. On the contrary to 

the FR4 substrate samples, the PLA substrate samples have varying failure mode upon 

peeling, which is shown in Figure 37B. The peeling happens on both interfaces of the 

adhesive, which increases bond strength of samples. The results are displayed in Figure 

38. 

 

Figure 38. Peel test results of epoxy adhesive ET515 with PLA substrate. 

 

The results of the epoxy adhesive samples with PLA substrate are more varying than the 

results of FR4 substrate samples. The unevenness increases when the peeling advances 

and bond strength can double during the testing. 

6.2.3 Polyurethane adhesive samples 

The polyurethane adhesive samples have 0,19 N/mm average bond strength on the PLA 

substrate while the peel tests have 148 mm average displacement. For the FR4 substrate, 

the average bond strength is 0,26 N/mm with 190 mm average displacement during the 

tests. The DP610 adhesive makes distinct adhesion to the FR4 substrate, which is noted 

during the peeling of 20 mm start of the samples by hand. The peel curves of DP610 

adhesive with the FR4 substrate are shown in Figure 39. 
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Figure 39. Peel test results of polyurethane adhesive DP610 with FR4 substrate. 

 

There are two kinds of results in Figure 39. Four of the samples, (DP-F samples 1, 2, 3 

and 6) have approximately 0,2 N/mm maximum bond strengths and they form regular 

zigzag curves. On the contrary, the two samples (DP-F samples 4 and 5) have higher bond 

strengths and their peel tests have longer displacements (duration).  Especially the sample 

5 lasts throughout the test machine displacement range. 

During the peel tests, it can be observed that the samples have two different types of 

peeling behavior that comply with the peel curves in Figure 39. The weaker samples peel 

solely in the adhesive-TPU-film interface and the adhesive layer remains completely on 

the FR4 substrate. In the more durable samples, the majority of peeling happen in the 

adhesive-TPU-film interface, but there are also minor amount of peeling in the other in-

terface of the adhesive. The peeling in the substrate-adhesive interface is realized as single 

or multiple thin longitudinal stripes, which is shown in Figure 40A. 
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Figure 40. Peeled track in FR4 and DP610 adhesive interface (A) and a TPU-film 

of PLA substrate that is covered partly with DP610 (B). 

 

Figure 40A shows a sample that has major peel in the adhesive-TPU interface and minor 

stripe-shaped peel in the substrate-adhesive interface. Adjacent Figure 40B presents the 

peeled TPU-film from a PLA substrate sample, which has the distinct irregular adhesive 

layer on it. The peel curves of DP610 adhesive samples with the PLA substrate is seen 

below in Figure 41. 

 

Figure 41. Peel test results of polyurethane adhesive DP610 with PLA substrate. 

 

For the comparison, Figure 41 is in the same scale as Figure 39. The samples in Figure 

41 have occasional bond strength peaks in 0,2 N/mm while having constant more lower 

A B 
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bond strength values. In addition, the peel tests of the samples have limited displacement, 

which tells that length of the TPU-films are hardly changed. 

6.2.4 Cyanoacrylate adhesive samples 

The rigid substrate and usage of the primer affect the peeling of the cyanoacrylate sam-

ples. The average maximum bond strength of Loctite 406 samples with the FR4 substrate 

is 0,18 N/mm and with the PLA substrate 0,26 N/mm, while the both kinds of peel tests 

have low displacements. On the contrary, the average maximum bond strength of Loctite 

406 with the primer SF 7239 with the FR4 substrate increases to 0,26 N/mm and with the 

PLA substrate decreases to 0,20 N/mm. Moreover, one primed FR4 substrate sample is 

an exception and has 0,50 N/mm maximum bond strength, which is the highest bond 

strength value in the peel tests. Figure 42 presents the results of Loctite 406 on the FR4 

substrate. 

 

Figure 42. Loctite 406 cyanoacrylate adhesive in FR4 substrate. 

 

The bond strength of the samples varies, which can be seen in the peeling curves in Figure 

42 and in the observations in Figures 43A and 43B. Figure 43A shows the peeled TPU-

film of a sample that had low bond strength values. Figure 43B presents the TPU-film of 

the sample 406-6F that had high bond strength values. The both films have distinct adhe-

sive layers on them. The weak peeling has not left traces to the adhesive layer unlike the 

stronger peeling. The perpendicular stripes in Figure 43B shows that the peeling propa-

gates in stages. 
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Figure 43. Observations of peeled TPU-films of cyanoacrylate adhered samples. 

 

The peeled TPU-film in Figure 43C has uneven surface, which is typical for the samples 

with the PLA substrate. Figure 43D presents a TPU-film during the peel test, which is 

curved broadways under tension rather longitudinal elongation and necking. The peel 

curves of Loctite 406 samples on the PLA substrate are shown in Figure 44. 

 

Figure 44. Peel test results of PLA substrate peel samples with Loctite 406. 

 

The bond strengths of Loctite 406 adhesive in the PLA substrate samples vary and could 

reach to 0,3 N/mm. Compared to the FR4 substrate samples, the PLA substrate samples 

are more unstable yet can momentarily reach a high level of peel force. Furthermore, 

priming the samples with Loctite SF 7239 before applying the adhesive seems to increase 

A B C D 
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unevenness of the adhesive layer. In Figure 45A, the primed Loctite 406 sample with the 

FR4 substrate has additional small dots in the adhesive layer. 

 

Figure 45. Loctite 406 with Loctite SF 7239 primer. 

 

Figure 45B displays the close up from the peeling of the sample 724-6F that has abnormal 

bond strength results. The peeling of the sample stopped completely to the displayed spot 

and the film started to elongate plastically. The high bond strength of the sample 724-6F 

is also seen in the peel curve in Figure 46. 

 

Figure 46. Peel test results of FR4 substrate samples with Loctite 406 and Loctite 

SF 7239 primer. 

A B 
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6.2.5 Pressure sensitive adhesive samples 

The peel curves of the 8132LE tape samples with the FR4 substrate are below in Figure 

47. The results present that the 8132LE tape samples have relative high average bond 

strengths and their peel tests have longer displacements than the original length of the 

peel arms (140 mm). 

 

Figure 47. Peel test results of FR4 substrate samples with 8132LE. 

 

Figure 47 shows that the peel behavior of the PSA tape differs from that of structural 

adhesives. After the start of the test, the peeling force remains constant (value between 

0,2 – 0,3 N/mm bond strengths) until the failure of the sample. As the exception in Figure 

47, the bond strength of sample LE2-F decreases almost zero at the middle of test. Figure 

48 shows how the sample LE2-F is peeled. 
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Figure 48. Uneven peeling of the 8132LE sample LE2-F. 

 

In the peel test of the 8132LE samples with the FR4 substrate, it is noticeable that the 

peeling that happens in the substrate-adhesive interface is constant (LE-F samples 1, 3, 4 

and 6). In some cases, the peeling varies between the interfaces, which causes the lower 

and more unstable peel curves (LE-F samples 2 and 5). Figure 48 presents the unstable 

peeling of the sample LE2-F where the interface of the PSA tape change temporary. Be-

fore the interface change, the PSA tape elongates between the both interfaces and after 

some elongation snaps instantly, which is seen as the collapse of bond strength in Figure 

47. The PSA tape samples with the PLA substrate are presented in Figure 49. 

 

Figure 49. Peel test results of PLA and TPU samples with 8132LE. 
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The peeling behavior in the 8132LE samples with the PLA substrate is wavy and stays 

around 0,2 N/mm when the adhesive remains on the TPU-film (LE-P samples 2, 3, 5 and 

6). In the sample LE1-P, the peeling happens in the adhesive-TPU interface and the PSA 

tape remains on the PLA substrate. The TPU-film is peeled in jerks and between the in-

tervals starts to elongate from zero to the critical peeling point. Furthermore to the simple 

peeling on an interface, the peeling of the sample LE4-P begins exceptionally in multiple 

interfaces, which increases the maximum bond strength of the sample over 0,3 N/mm. 

6.2.6 Failure modes of peel test samples 

The peeled peel samples are analyzed visually and with the ATR-FTIR that tells chemical 

composition of peeled surfaces. The results of the ATR-FTIR inspection from the peeled 

samples are compared with each other and with unused reference samples; this gives a 

procedure that can tell where the failure locus is on a microscale. Existence or absence of 

adhesive residues can be used to deduce failure mechanisms of the samples. In some 

cases, the adhesive residues are visible but in case of transparent or non-obvious adhe-

sives the ATR-FTIR analysis is clarifying method. The example about the ATR-FTIR 

results are shown in Figure 50. 

 

Figure 50. ATR-FTIR analysis of reference FR4 substrate (blue) and FR4 substrate from 

the sample 1 of 406 cyanoacrylate adhesive (red). 

 

The results of ATR-FTIR analysis can be easy to interpret that surfaces either consist of 

same or different chemical compositions. In Figure 50, the surface of FR4 substrate from 

a 406 cyanoacrylate sample has clearly different IR-spectrum compared to the unglued 
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reference sample and thus has different chemical composition. As the comparison for 

Figure 50, different kind of ATR-FTIR result is presented in Figure 51. 

 

Figure 51. ATR-FTIR analysis of reference TPU-film (red) and TPU-film from the sample 

1 of DP610 PU adhesive (blue). 

 

The peeled TPU-film from PU adhesive DP610 sample has same IR-spectrum as the un-

glued reference TPU-film sample. The result indicates that surface of the TPU-film in the 

sample is unchanged and the peeling happened cleanly in the adhesive-TPU interface. 

The small difference in the middle of Figure 51 is the error that is caused by the diamond 

in the ATR machine. The most common failure types of the peel samples that are solved 

by visual estimation and the ATR-FTIR analyses are presented in Table 14: 
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Table 14. Failure mechanisms of peel samples. 

Sample Rigid 

substrate 

Failure type Failure mechanism 

ET515 epoxy adhesive FR4 Adhesion failure  

ET515 epoxy adhesive PLA Adhesion failure  

MT382 epoxy adhesive FR4 Adhesion failure  

MT382 epoxy adhesive PLA Adhesion failure  

DP610 polyurethane adhesive  FR4 Adhesion failure  

DP610 polyurethane adhesive  PLA Adhesion failure  

406 cyanoacrylate adhesive FR4 Cohesive failure  

406 cyanoacrylate adhesive PLA Cohesive failure  

406 cyanoacrylate adhesive 

with SF 7239 primer 

FR4 Cohesive failure  

406 cyanoacrylate adhesive 

with SF 7239 primer 

PLA Cohesive failure  

8132LE transfer tape FR4 Adhesion failure  

8132LE transfer tape PLA Adhesion failure  

 

Table 14 shows the failure type of peel samples either as adhesion failure or as cohesive 

failure. Furthermore, the failure mechanisms are illustrated in more detail, where the rigid 

substrate is colored in green, the TPU-film in light blue and the NCA in blue. The failure 

mechanisms of the samples are taken into account when the results are considered. 
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6.3 Tensile testing with modules 

6.3.1 Reading of module test graphs 

The tensile test is implemented with samples that have three variables: 

1. Supportive frame structure can be added around the module. 

2. The ACF is used as module size patch or as small strips just under the contacts. 

3. The wideness of the interconnections (tracks) is either 2 mm or 1,5 mm. 

Altogether, there are eight differing samples that each have three parallel samples. The 

samples consist of four measurable tracks that are presented in Figure 31. The results of 

the samples form the figures where the resistance of the tracks increase evenly before 

sudden increase that is read as the failure. Figure 52 presents an example graph about the 

results:  

 

Figure 52. The tensile test results of the sample 1F. 

 

In Figure 52, the final stress, elongation and resistance values of the sample before failure 

are seen. For example, from Figure 52 can be read that the lower inner track of the sample 

1F is broken first at 35 % elongation. The failure required 2 MPa stress and the last re-

sistance value before the failure was approximately 300 Ω. Moreover, the results are not 
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always as smooth as in Figure 52 and they can have irregularities. Figure 53 presents the 

more varying results. 

 

Figure 53. The tensile test results of the sample 6S with the 1,5 mm tracks and the 

ACF strips. 

 

Figure 53 displays results of the sample 6S from series 6 that have thin 1,5 mm intercon-

nections and ACF strips. The inner tracks have more steep resistance increase than the 

outer tracks. Also, the upper inner track has a high initial resistance and unstable re-

sistance increase. In the results of the tensile test samples, the final elongation of tracks 

before the failure are the most interesting results. 

The decreasing resistance values in the end of Figures 52 and 53 are the resistance values 

after the tensile test and the stress-strain curve (recording) ends before them. After the 

tensile test, the test machine returns quickly to the starting position, which decreases rap-

idly the elongation of the sample. The decreasing resistance values mainly tells that the 

failures of the tracks are not permanent and the conductivity can restore after the elonga-

tion. 

6.3.2 Results of tensile tests with modules 

Table 15 shows average values of elongation defined by the level that was required to 

break the tracks. 
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Table 15. Average elongation of tensile test samples. 

Series Size of 

the 

ACF 

Width of 

the 

tracks 

(mm) 

Support 

structure 

Lower 

outer 

track 

(%) 

Lower 

inner 

track 

(%) 

Upper 

inner 

track 

(%) 

Upper 

outer 

track 

(%) 

1 patch 2 - 56.7 58.8 63.4 48.6 

2 strips 2 - 46.3 47.2 41.0 34.0 

3 patch 2 frame 51.6 49.3 58.8 49.8 

4 strips 2 frame 68.5 71.3 52.8 56.9 

5 patch 1.5 - 39.4 40.0 36.6 33.1 

6 strips 1.5 - 38.4 25.0 34.5 35.4 

7 patch 1.5 frame 37.5 34.0 38.9 34.3 

8 strips 1.5 frame 38.9 33.8 33.3 39.1 

 

By comparing the results, various observations can be made. The width of the tracks af-

fects clearly the elongation and the thicker tracks of series 1-4 stand higher elongations 

than thinner tracks of series 5-8. 

In case of the samples with 2 mm wide tracks, the inner tracks of series 1 endure slightly 

higher elongations than the outer tracks. Furthermore, series 1 has higher average elon-

gations than series 2 and 3. Series 4 has the highest average elongation except the elon-

gation of the upper inner tracks. 

Series 5-8 endure approximately same amount of elongation before failures. However, it 

is noticeable that the inner tracks of the series 6 and 8 last less elongation than the outer 

tracks. In series 5 and 7, the average elongation is divided more evenly between the in-

terconnections than in series 6 and 8. Table 16 shows more detailed results about the 

weakest track of each tensile test sample: 
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Table 16.  The weakest interconnection of each tensile test sample. 

Se-

ries 

Sample 

name 

Size of 

the ACF 

Width of 

the 

tracks 

(mm) 

Support 

structure 

The lowest 

elongation be-

fore failure of 

a track (%) 

Failuring 

track 

 sample 1 patch 2 - 45,8 Upper outer 

1 sample 2 patch 2 - 48,6 Upper outer 

 sample 3 patch 2 - 48,6 Lower outer 

 sample 1S strips 2 - 18,7 Upper outer 

2 sample 2S strips 2 - 45,8 Lower outer 

 sample 3S strips 2 - 35,4 Upper outer 

 sample 1F patch 2 frame 35,4 Lower inner 

3 sample 2F patch 2 frame 29,9 Lower outer 

 sample 3F patch 2 frame 41,0 Upper outer 

 sample 1SF strips 2 frame 29,2 Lower outer 

4 sample 2SF strips 2 frame 47,2 Upper inner 

 sample 3SF strips 2 frame 48,6 Upper inner 

 sample 4 patch 1,5 - 36,1 Upper outer 

5 sample 5 patch 1,5 - 30,6 Lower outer 

 sample 6 patch 1,5 - 22,9 Upper outer 

 sample 4S strips 1,5 - 16,0 Lower inner 

6 sample 5S strips 1,5 - 27,8 Lower inner 

 sample 6S strips 1,5 - 31,3 Lower inner 

 sample 4F patch 1,5 frame 14,6 Lower inner 

7 sample 5F patch 1,5 frame 39,6 Upper outer 

 sample 6F patch 1,5 frame 22,9 Upper inner 

 sample 4SF strips 1,5 frame 41,0 Lower inner 

8 sample 5SF strips 1,5 frame 19,4 Lower inner & 

Upper inner 

 sample 6SF strips 1,5 frame 23,6 Upper inner 
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Table 16 is arranged so that three parallel samples of series are in same columns. Table 

16 displays that series 1 has the most even lowest elongation values required to cause 

failure in outer tracks. In addition, it seems that the samples do not necessarily get weaker 

when the amount of ACF under the module is decreased to the ACF strip size. However, 

the lowest elongation of the other series (except series 1) is commonly lower and has 

higher variation. Figure 54 names the ten weakest tracks in the tensile testing. 

 

Figure 54. The weakest 10 interconnections in the tensile test. 

 

Out of the ten weakest samples and tracks, the six samples are framed and the six samples 

have the ACF strips. Moreover, seven samples out from the ten have thinner 1,5 mm wide 

tracks. The weakest track in the tensile testing is the lower track of the sample 4F from 

series 7, which fails after 14,6 % elongation. As Table 15 and 16 list the weakest inter-

connections of the tensile test samples, Table 17 presents the highest elongating intercon-

nections of the samples. 
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Table 17. The strongest interconnection of each tensile test sample. 

Se-

ries 

Sample 

name 

Size of 

the ACF 

Width of 

the 

tracks 

(mm) 

Support 

structure 

The highest 

elongation be-

fore failure of 

a track (%) 

Failuring 

track 

 sample 1 patch 2 - 78,5 Upper inner 

1 sample 2 patch 2 - 54,9 Upper inner 

 sample 3 patch 2 - 63,9 Lower inner 

 sample 1S strips 2 - 47,9 Lower outer 

2 sample 2S strips 2 - 57,6 Lower inner 

 sample 3S strips 2 - 46,5 Lower inner 

 sample 1F patch 2 frame 63,9 Lower outer 

3 sample 2F patch 2 frame 80,6 Upper inner 

 sample 3F patch 2 frame 68,7 Upper inner 

 sample 1SF strips 2 frame 66,7 Lower inner 

4 sample 2SF strips 2 frame 91,7 Lower outer 

 sample 3SF strips 2 frame 84,7 Lower outer & 

Lower inner 

 sample 4 patch 1,5 - 49,3 Lower outer 

5 sample 5 patch 1,5 - 40,3 Upper outer 

 sample 6 patch 1,5 - 42,4 Lower inner 

 sample 4S strips 1,5 - 32,6 Lower outer 

6 sample 5S strips 1,5 - 46,5 Lower outer 

 sample 6S strips 1,5 - 41,7 Upper inner 

 sample 4F patch 1,5 frame 43,1 Upper inner 

7 sample 5F patch 1,5 frame 52,8 Lower inner 

 sample 6F patch 1,5 frame 34,7 Lower inner 

 sample 4SF strips 1,5 frame 56,9 Upper inner 

8 sample 5SF strips 1,5 frame 27,1 Upper outer 

 sample 6SF strips 1,5 frame 53,5 Lower outer 
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Table 17 accompany the other tensile testing results that series 1-4 with wider tracks last 

longer than series 5-8 with thinner tracks. Also, adding of the frame does not lead any 

lower highest elongation values. The framed samples have either similar level of highest 

elongation or somewhat higher values. Figure 55 shows the ten strongest tracks of the 

tensile test. 

 

Figure 55.  The strongest 10 interconnections in the tensile test. 

 

Figure 55 presents clearly that from the ten most durable tracks, nine of them are 2 mm 

wide and only one is 1,5 mm wide. In addition, seven samples out from the ten have the 

frame, where series 4 is altogether presented. Based on Table 17 and Figure 55, the frame 

can increase maximum elongation of the samples, especially when only small amount of 

ACF tape is used. 

6.3.3 Deformations of tensile test samples 

During the tensile testing, the samples undergo deformations when they elongate. The 

thickness of interconnections and the amount of ACF affects the occurring deformations. 

Furthermore, the frame around the module change the situation. Figure 56 displays, how 

a sample with ACF patch deforms during tensile testing. 
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Figure 56. Deformation of the sample with 1,5 mm wide tracks and the ACF patch. 

 

When the test advances, damage near edge of the module onsets in the interconnections. 

Especially, the outer interconnections seems have higher damage than the inner intercon-

nections. The same phenomenon can be seen in Figure 57. 

 

Figure 57. Deformation of the sample with 2 mm wide tracks and the ACF strips. 

 

Figure 57 presents a samples with the ACF strips. Like in Figure 56, the outer intercon-

nections have higher damage than the inner interconnections. In addition, only the area 

of contacts hold the module in place on the TPU-film. The film can elongate under the 

module, which can be seen as folding of the film. The deformation of the film is different 

when the frame is still attached in the sample, as shown in Figure 58. 
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Figure 58. Failure pattern of the sample with 1,5 mm wide tracks, the ACF patch 

and the frame. 

 

As Figure 58 displays, the framed module has significantly bigger adhered area than the 

non-framed module. The frame affect the deformation of the interconnections and the 

outer and inner interconnections tend to elongate quite evenly. 
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7. DISCUSSION 

In this Chapter, the presented results from the wetting tests, the peel tests and the tensile 

tests are discussed in more detail. 

7.1 Surface treatments and wetting 

As in Figure 33 and Table 11 have shown, the heat treating and the coarsening affect 

slightly to the contact angles of the test liquids. The heat treated samples have slightly 

higher contact angles, which can be caused by structural changes of the surface. The heat 

treatment can have triggered additional deformation of polymer structure in the TPU-

film, which leads to higher crystallization on the surface. The more crystallized surface 

is more passive and have lower surface energy than the untreated TPU-film. Moreover, 

additives of the film are also considered. If a film consist of additives, also migration of 

the additives can be initiated during the heat treatment. The additives migrate and accu-

mulate to the surfaces of the film and can make the surface more inactive. [23] 

Correspondingly, the roughened samples have slightly lower contact angles, which are 

results from more uneven surface. Theoretically, higher amount of surface area increases 

surface activity and thus decreases contact angles of droplets. The roughing also makes 

the surface topography more irregular, which affects spreading of liquid and setting of 

the droplets, which becomes more irregular as well. Furthermore, the roughening always 

produces excess debris that is removed after the surface treatment. Despite the cleaning 

of the surface, some debris can remain in the grooves and affect to wetting and the contact 

angles. 

The plasma pre-treatment is effective surface treatment method to increase activity of the 

surface, which realizes as lower contact angles of the droplets. For example, the contact 

angle of grade 1 water decrease 45 % and the contact angle of ethylene glycol decrease 

63 %. The method how the plasma treatment is done affect greatly to the results. More 

intense plasma treatment improves the efficiency of the treatment. More powerful plasma 

treatment can be done by increasing exposure time or setting optimal distance between 

the plasma beam and the surface. Moreover, the effectiveness of the plasma treatment 

decreases over time because the treated surface reacts with environment. The imperma-

nent nature of the treatment means that the treatment should be done right before applying 

adhesive or ink. 

7.2 Peel tests 

The peel tests provide numerical results about bond strength, visual observations consid-

ering peel behavior and comparison of chemical composition of the samples. The results 
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are combined and general conclusion about the realized peeling are made. Moreover, the 

samples show the optimal peeling conditions that should be pursued to maximize bond 

strength of NCAs. 

7.2.1 Epoxy and polyurethane adhesive samples 

Peeling of the epoxy adhesives ET515 and MT382 and the polyurethane adhesive DP610 

resemble each other and they follow the same pattern. With the FR4 substrate, the peeling 

happens solely or mostly in one interface. In the PLA substrate samples, the peeling real-

izes in both interface and the adhesive layer tears randomly and leaves adhesive residues 

on both surfaces (on PLA substrate and on TPU-film). The roughness of the rigid sub-

strate affect the peeling of the sample, where the rough substrate encourage multi-inter-

face peeling of NCAs.  

The bond strength of the samples varies and it can be interpret that the degree of the multi-

interface peeling affects the bond strength of the samples. When the samples peel in one 

interface of adhesive (the amount of multi-interface peeling is zero or low), adhesion of 

the interface govern the peeling and define bond strength of the sample. On the contrary, 

when the samples clearly peel from both interfaces, properties of adhesive layer increase 

bond strength of the samples. In multi-interface peeling, there are adhesion failures in 

both interfaces and tearing of adhesive layer when the crack change the interface. The 

tearing of adhesive layer consume additional load that increase bond strength of the sam-

ple. However, the peeling in multiple interfaces increase the bond strength only limited 

amount and it cannot replace originally weak adhesion of NCA (like in the epoxy adhe-

sive samples). 

The polyurethane adhesive DP610 samples with FR4 substrate present that it is useful to 

increase amount of the multi-interface peeling when the original adhesion is the NCA is 

at sufficient level. Furthermore, tearing resistance of adhesive layers vary and it can be 

affected, for example, by thickness and chemical composition of adhesive layer. For in-

stance, bond strength of the epoxy adhesive samples with PLA substrate (which have high 

amount of multi-interface peeling) increase 0,04 N/mm that is 50 % of the original bond 

strength of the samples. In addition, in polyurethane adhesive samples with FR4 substrate, 

the minor amount of multi-interface peeling can also increase the bond strength by 50 %, 

which is 0,1 N/mm. Compared to the FR4 substrate samples, the PLA substrate samples 

of the polyurethane adhesive have lower bond strength values. The lower bond strength 

can be explained by possible poor compatibility of PLA and PU, thickness variation of 

adhesive layer or stiffened TPU-film. 

The PLA substrate has rough surface that increases unevenness and thickness variation 

of the adhesive layer. The varying thickness can allow forming of weak “easy paths” in 

the adhesive layer that guide propagation of the crack. The effect of “easy paths” depends 
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on the peel speed of sample, where at the low peel speed the crack has more time to 

develop along the weak route. 

Moreover, TPU-films of the PLA substrate samples have adhesive residues that stiffen 

the film and hinder elongation of the film. The elongation is “an additional deformation” 

in the peeling that needs load to happen. When the film elongates in the tests, some load 

is consumed to the elongation, which decreases load in the crack tip. 

Despite the good results of the polyurethane adhesive samples with the FR4 substrate, 

two disadvantages are discovered during preparation of the samples. The curing time of 

the DP610 adhesive is seven days, which is long compared to other available adhesives 

and do not support fast manufacturing. Secondly, the adhesive is highly sensitive to mois-

ture. The used sample materials are conditioned before the assembly and the remained 

moisture in the materials reacted with the adhesive. The adhesive formed few gas bubbles 

with moisture, which stayed inside the adhesive layer while the adhesive hardened. 

7.2.2 Cyanoacrylate adhesive samples 

The color of the cyanoacrylate adhesive is more or less transparent and its fracture mech-

anism is not as simply to define as other adhesives. Still, by the FTIR-ATR inspection, 

the cyanoacrylate adhesive samples with or without primer have the same failure patterns. 

The chemical composition of peeled FR4 and PLA substrates are same although they are 

different materials. Also, the peeled TPU-films have chemically same surface with each 

other. Based on the results, the cyanoacrylate samples fail cohesively, which means their 

adhesive layer break. 

The cyanoacrylate samples can fail cleanly or unevenly, which leave tracks in the peeled 

adhesive layer on the TPU-films. The weak samples peel easily and leave clear TPU-film 

without marks (Figure 43A). Some samples require higher bond strength and the peeling 

leaves light stripes in the peeled adhesive layer, which can indicate periodic high defor-

mations in the sample (Figure 43B). Moreover, the adhesive layer change properties of 

the TPU-film and blocks its elongation. In Figure 43D, the film curves transversely rather 

than elongates longitudinally. The stiff TPU-film affects the bond strength values of the 

samples different way than the elongating TPU-film. 

Especially the cyanoacrylate samples with the PLA substrate have irregular looking ad-

hesive layers. The samples are thoroughly covered with the adhesive, which means that 

the adhesive thickness varies in the PLA substrate samples. Varying adhesive thickness 

indicates that the cohesive peeling inside the samples happen more irregularly. Generally, 

clean peeling happen easier than the uneven peel, which can partially explain the higher 

bond strength values of the PLA substrate samples. 
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Because of permeable and rough nature of the PLA substrate, the thickness of the adhe-

sive layer varies spontaneously. The cyanoacrylate adhesive layer has thicker and thinner 

areas, where the thinner areas create the high bond strength of the samples [19]  [38] [91]. 

However, presence of the thicker areas make the PLA substrate samples unstable. The 

unstableness is also increased when Loctite SF 7239 primer is applied on substrate and 

TPU-film before Loctite 406 cyanoacrylate adhesive. Theoretically, the primer increase 

bond strength and shortens the curing time of the adhesive. [38] [45]. 

Adding the primer to the samples increase unevenness of adhesive layers. For example, 

there are small dots in the TPU-film in Figure 45A that shows that the adhesive layer has 

cured unevenly. The primer can also increase bond strength of the samples. From Figure 

45B that displays the strongest sample in the peel test (724-6F), the FR4 substrate and the 

TPU-film have irregularities on their surfaces, which indicates changes in thickness of 

the adhesive layer. Likely, the sample has optimally thin adhesive layer in the spot and it 

achieved 0,5 N/mm bond strength. The behavior of TPU-film in the sample 724-6F pre-

sents that the optimal bond strength of NCAs is 0,5 N/mm or little less. The high bond 

strength makes the TPU-film elongate plastically, which deform and damage the film.  

Consequently, the primer did not leave chemical traces on the surfaces, which means the 

primer did not change the surface chemistry of materials. The primer reacted only with 

the adhesive. The main variable in the samples is the thickness of the adhesive layer, 

which varies because of the very short curing time of the adhesive and the used applying 

method. After thin and even cyanoacrylate adhesive layer is achieved, it can form samples 

that have very high bond strengths. 

7.2.3 Pressure-sensitive adhesive tape samples 

The pressure sensitive adhesive tape 8132LE differs from other NCAs and can elongate 

elastically like the TPU-film (Figure 48). Even the PSA tape remains on the TPU-film 

after peeling, the PSA tape does not hinder the elongation of the film (and allows high 

displacement in the tests). Peeling of the samples can vary or stay stagnant, which de-

pends on failure mechanism and surface roughness of the samples. 

The results of PSA tape in Chapter 6.2.4 can be interpret straightforwardly. Generally, 

the PSA tape tends to peel in single interface at time. The stabile peeling realizes when 

the PSA tape remains on the TPU-film (peeling in substrate-adhesive interface), which 

stableness is governed by the roughness of the surface from where the PSA tape is peeled 

off. Even surface of the FR4 substrate has smooth peeling and rough surface of PLA 

substrate has wavy peeling. If the peeling happens in the other interface, in adhesive-

TPU-film interface, the peeling realizes in jerks. [92] 
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Compared to the structural adhesives, the PSA tape can be laser cut and pressed on sub-

strates, which makes it easy to apply. Moreover, thickness of the PSA tape does not al-

ternate like the other adhesives that are spread over substrate in liquid form. Because the 

tackiness and viscoelastic behavior of the tape, it can somewhat re-attach on surfaces after 

peel off. 

The PSA tape is easy to apply and re-attachable after peel off, which makes the long-term 

durability of the adhesive questionable. Altogether, there are permanent and detachable 

PSAs [93]. The tested PSA tape 8132LE by 3M can be used in applications such as in 

membrane switches and in attachment of graphics [51], which makes the PSA tape pos-

sibly usable in stretchable electronics applications. Furthermore, to attach PSA perma-

nently and durably, the plasma pre-treatment should be used to maximize adhesion in 

joints. 

7.3 Tensile testing 

The tensile testing is used to measure resistance, stress and elongation of the tensile test 

samples. The stress and elongation are tested with the tensile test machine and the test 

setup for the resistance measurement of the interconnections have been presented in Fig-

ure 31. The numerical results can be compared with visual findings and effects of the 

varied properties of the samples can be analyzed. The behavior of the interconnections, 

the ACF pieces and the frame are studied. 

7.3.1 Effect of the interconnections to failure of the samples 

The sample in the tensile testing deforms and it affects the interconnections. Because the 

sample includes the highly elastic TPU-film and the rather stiff module, the elongation is 

not simple to interpret. In Figure 56, the attached module on the TPU-film obstructs uni-

form longitudinal elongation of the film. Next to the module, in the lengthwise of the 

sample, elongation of the film is high just before the edge of the module, which can be 

seen as folding of the film. To the longitudinal direction, the module hinders elongation 

that gradually decrease to zero against the module. The elongation differences show up 

as stress concentrations around the module. 

The stress concentration around the module makes the inner and outer interconnections 

elongate different way. The inner tracks are completely under the stress concentration 

effect and they elongate uniformly at longitudinal direction. The outer tracks have 45° 

turns that go under the module to the contact pads (Figure 26). The stress concentration 

affects to the tilted part of the outer tracks, and the effect decrease when the outer tracks 

spread away from the module. The outer tracks spread over wider width than the module, 

which induces the higher longitudinal elongation of the sample sides also to the outer 

tracks. Consequently, starts of the outer tracks that are tilted in 45° are affected by the 

stress concentration effect and the straight lines of the tracks elongate more freely. 
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Elongation affect to the interconnections and can damage them unevenly, which can be 

seen in Figures 56 and 57. Typically, the highest deformation related to the elongation 

realizes in the edges of module. The inner tracks have simple longitudinal elongation, 

which form first small pre-cracks that do not go through the tracks. Later, with higher 

elongation, microscopic cracks onset and grow into the distinctive cracks that go through 

the tracks and can cause the failure. The pre-cracks and cracks are formed in the perpen-

dicular direction to the strain. With the outer tracks, the elongation and damaging are 

more complex in their nature. 

Like in the inner tracks, low elongation form small perpendicular pre-cracks to the outer 

tracks. However, when the elongation increase, the 45° tilted outer tracks (with the per-

pendicular pre-cracks) tend to straighten longitudinally to the strain direction. The 

straightening also moves the pre-cracks in the interconnections. The pre-cracks deform 

from the perpendicular direction to 45° angle toward the module. The pre-cracks guide 

formation of the distinctive cracks that are tilted according, how much the outer tracks 

are straightened. Figure 59 inspects the damage in the tracks in more detail and presents 

the observations in inverted colors. 
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Figure 59. Deformation of the interconnections under high elongation in inverted 

colors. 

 

The sample in Figure 59 has 1,5 mm wide interconnections and the ACF patch. At lower 

elongation, there are small pre-cracks that twist and grow through the interconnections. 

The twisting phenomenon makes the outer tracks tear from the edge of the module une-

venly. The tearing develops from outside to inside of the sample. The tearing can break 

the outer tracks earlier than the inner tracks, which is also presented in Figure 57. 
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The thickness of the interconnections affect the cracking, where the thicker 2 mm wide 

tracks are more durable. Generally, when the width of the track increase, the durability of 

the tracks increase. In the wider tracks, the cracks (damage) have to propagate longer 

distances to cause electrical failure. Furthermore, even the shape of the interconnections 

is not originally perpendicular to the elongation, the cracks are still formed perpendicu-

larly. The tilted tracks can be locally wider than the straight tracks in the perpendicular 

direction, which makes the tilted tracks more durable. However, if the tilted tracks are 

close to the module (in the stress concentration area), they can twist and fail prematurely. 

The twisting behavior is affected by the elongation of the film, which is further affected 

by width of the film. The width of the TPU-film in the tensile test samples is 29 mm and 

the results can be different if the wider film is used. With the wider film, the distance of 

measured interconnections to the sides of the film would be longer and the elongation 

distribution in the sides (and in the interconnections) would be different. 

In addition to the width of the interconnections, also their length affect the results. The 

outer tracks are longer and they tend to straighten during the elongation, which increase 

potential elongation of the outer tracks. On the contrary, the inner tracks are shorter and 

they are already formed like the straight line, which decrease their potential elongation. 

The stresses induced by the elongation affect faster to the inner tracks, which can be seen 

as higher amount of cracks (in the stress concentration area). The higher cracking is also 

observed as the faster resistance increase of the inner tracks. The phenomenon is detected 

especially in the inner interconnections of the sample 6S in Figure 53. Furthermore, the 

irregularities of the upper inner track in Figure 53 are caused by poor electrical contacts 

of ACF strips. 

7.3.2 Effect of the frame to failure of the samples 

The frame is attached on the TPU-film with the PSA tape 8132LE that can deform and 

elongate with the TPU-film. The used PSA tape is the main component of the frame that 

affects to the sample. In other words, the frame is the holder of the PSA tape that restricts 

the elongation of the film. The PSA tape is flexible adhesive by nature and it is more 

compliant than the used ACF. The PSA tape elongates along the TPU-film while main-

taining the stiff contact to the frame. Figure 58 presents that the PSA tape can move easily 

with the film and slips beyond the frame. At first, the PSA tape slips from the corners of 

the frame, which later expands over whole width of the frame. From the movement of the 

PSA, it can be concluded that the sides of the sample must have higher elongation than 

the middle of the sample. 

The frame covers bigger area then bare module and restricts elongation of the film close 

to the module. As lengthwise, the frame shields inner and outer interconnections and there 

are no same kind of folding like in Figures 56 and 57. As longitudinal, starts of the inter-

connections remain under the frame and their deformation is hindered by PSA tape. The 
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part of tracks under the module elongate and straighten slower and initiation and propa-

gation of the cracks is obstructed. 

The purpose of the frame around of the module is to decrease the stress concentration 

effect and prevent detachment of the ACF. As a component the frame is simple, but still 

affect distinctly to the elongation values of the samples. The both minimum and maxi-

mum elongating interconnections of the tensile tests are in the framed samples, which 

express that the frame can change the samples either positively or negatively. 

In the framed samples, cracks in the interconnections develop in the same way than in the 

unframed tensile test samples. However, the outer tracks have less unhindered 45° tilted 

part to straighten, which decreases the straightening of the outer tracks and makes them 

crack more perpendicularly (like the inner tracks). Figure 60 displays cracking of the 

sample with 2 mm wide interconnections, the ACF strips and the frame (series 4) in in-

verted colors. 

 

 

Figure 60. Deformation of the tracks of the sample with 2 mm tracks, the ACF 

strips and the frame in inverted colors. 

 



91 

In Figure 60, the cracks grow from the outside of the frame to under the frame. In addition, 

also flaws close to the ACF strip develop. The PSA tape do not block the advance of 

cracks like the ACF. The PSA tape hinders the cracking and smoothens the stress con-

centration area as a “stress concentration reducing component” around the module. 

Still, there are the stress concentrations in the framed samples and, especially, the ACF 

patch samples (series 3 and 7) tend to fail prematurely. The failure of the samples can be 

caused either by the elongation of the interconnections or pre-cracks between the frame 

and the ACF patch. The pre-cracks between the module and the frame in the ACF patch 

sample is shown in Figure 61 in inverted colors. 

 

Figure 61. Elongated interconnections that have damage between the module and 

the frame. 

 

In Figure 61, the elongation of the interconnections is not propagated enough to cause the 

perpendicular cracks between the module and the frame, which means that the cracks are 

not done by the elongation of the sample. The pre-cracks are formed during the prepara-

tion of the samples, when the module with the ACF patch is pressed over the sample (that 

has already the frame attached). The attachment of the module in the frame stresses the 

interconnections because the pre-attached frame hinders their elongation during the press-

ing. The pre-damage between the module and the frame explains the weakest intercon-

nection of the tensile testing, which elongates 14,6 % and belongs to the sample from 

series 7. 

In case of the frame with the ACF strips, Figures 60 and 61 display that there are not pre-

damages between the frame and ACF strips. Actually, the referred sample type (from 

series 4) has the most elongating interconnections that can elongate even 91,7 % before 

failure. In the samples, the ACF strips do not cover the whole area under the frame and 
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the interconnections can elongate (during the preparation and testing), which prevents the 

cracking inside the frame. Furthermore, it can be thought that in the framed ACF strips 

joint elongates differently than the unframed samples, which is sketched in Figure 62. 

 

Figure 62. Two-step elongation peaking for framed ACF strips joint.  

 

There are an area of non-bonded TPU-film between the PSA tape and the ACF strip ad-

hesives. The adhesives are attached on the TPU-film and hinder elongation of the film. 

At the same time, the area between the adhesives is not anyhow fixed in place. The inter-

space can elongate more than the adhered TPU-film under the adhesives, which changes 

elongation behavior of the joint. Still, the elongation of the interspace is affected by stiff-

ness of the adhesives and elasticity of the TPU-film. 

Moreover, the framed ACF strips sample have less amount of ACF (and mechanical sup-

port) under the module than the ACF patch sample and thus has smaller rigid area under 

the module. Therefore, in the ACF strips samples, the stress concentration affects over 

smaller area than in the ACF patch samples. 

Despite the high elongation, there are still some flaws in the ACF strips samples, which 

are located close to the ACF. The flaws indicate that the pressing of the ACF stresses the 

interconnections at any rate and forms the flaws that may in some point advance to the 

failures of tracks. However, the results show that the framed samples increase the elon-

gation of the samples when the ACF is not fitted too tightly inside the frame. 
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7.3.3 Effect of the ACF to failure of the samples 

Compared to the interconnection failure, the failure of the electrical contacts is difficult 

to assess from visual data. The failure of the contacts can happen if the contacts are prem-

aturely poor or are damaged during elongation of the sample. From the results, excep-

tional resistance increases indicate the contact failure. 

The amount of the ACF affects to durability of the sample, where higher amount of ACF 

supports the sample mechanically better and forms more stable contacts. The ACF patch 

adheres completely the module on the TPU-film and has some adhered area between the 

contacts and the edges of module. The excess ACF between the contacts and the edges 

protects the contacts from deformations. Moreover, the ACF patch binds the TPU-film 

under the module and restricts its movement. 

Unlike the large ACF patch, the ACF strips are small ACF pieces that cover only the 

electrical contacts. With the ACF strips, stresses are directly induced to the contacts, 

which make the contacts more vulnerable to the damages. For example, in Figure 57, the 

ACF strips are moved. That indicates that the ACF strips have deformed and the contacts 

may have damaged. Moreover, TPU-film under the module is not anyhow supported and 

it deforms. The elongation stresses the outer contacts and forms curved folding next to 

the contacts, which can be also seen in Figure 57. 

Adding the frame around the module change stress concentration away from the ACF. In 

principle, in the framed ACF patch samples, the frame is additional protection of the con-

tacts and increases the durability of the joint. However, the preparation process of the 

framed ACF patch samples can damage the interconnections and cancel the benefits of 

the frame. 

The benefits of the frame are introduced best in the ACF strips samples, for which con-

tacts normally do not last. The frame shields the contacts and decrease the stress concen-

tration effect toward them. In addition, the framed ACF strips last better than the framed 

ACF patch samples because the strips are not packed too tightly inside the frame and 

there remain some non-bonded TPU-film that can comply the elongation. 

In addition to the amount of the adhesive, the surface properties of the contacts and the 

solder masked PCB is different. The contacts are composed of thin layer of copper, which 

can have different adhesion to the ACF than the green colored solder mask. For instance, 

during the lamination of the ACF, the copper contacts conduct heat much better than the 

solder masked area. Good heat conductivity of the contacts can increase adherence of the 

ACF to the contacts. High adhesion between the contacts and ACF could explain the 

surprisingly good results of the ACF strips. 

Furthermore, the preparation process affects to the quality of the contacts. The ACF 

patch samples are easier to prepare than the ACF strips samples, which can make the 
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contacts of the ACF patch samples more durable and behave in a more stabile way. If 

the preparation of the ACF strips samples is improved, some random irregularities of 

the samples can be removed.  
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8. CONCLUSIONS AND FOLLOW-UP WORK 

8.1 Conclusions 

This thesis investigated properties of stretchable electronics in multiple levels. The wet-

tability of the elastic substrate and effect of the pre-treatments to the substrate were ex-

amined. The wettability improves the most with the plasma pre-treatment that increases 

the wettability tens of percent. The droplets of grade 1 water spread 45 % and ethylene 

glycol spread 63 % more on the plasma treated surface compared to the untreated surface. 

Adhesion and peel behaviour of six NCAs between the elastic substrate and rigid sub-

strates were studied in the peel tests. The failure of the epoxy adhesives and the polyure-

thane adhesive samples were affected by surface roughness of rigid substrates. The com-

plex adhesion failure increased bond strength of the samples. The other structural adhe-

sive samples, the cyanoacrylate samples, had cohesive failure. The cohesive failure was 

primary affected by thickness of the adhesive layer. The short curing time of the adhesive 

accomplice thickness variations of the adhesive layer, which also caused the variations to 

the results. The adding of primer shortened the curing time of the cyanoacrylate adhesive. 

When the adhesive layer thickness was optimal, the cyanoacrylate sample achieved high 

bond strength (0,5 N/mm). The PSA tape had the most constant peel force (between 0,2 

– 0,3 N/mm) when the peeling realized as adhesion failure in the substrate-adhesive in-

terface. In the PSA samples, the TPU-film elongated during the peel tests, which can 

affect the results. 

The tensile testing of the stretchable electronics samples presented that wider intercon-

nections lasted better than thinner interconnections. In addition, the shape of the intercon-

nections affected the deformation of interconnections. Without the frame, the samples 

with the larger amount of ACF were more durable than the samples with the low amount 

of ACF. However, the maximum elongating interconnection of the ACF strips samples 

regularly elongated over 40 % before failure, what were significant results for the sam-

ples. 

The frame in the tensile test samples increased or decreased the elongation of intercon-

nections. The frame decreased the elongation because the preparation of framed samples 

created damages in the interconnections. According to the stress peaking concept, the 

frame increased the elongation because it smoothened the stress concentration near the 

module and protected the contacts. The framed ACF strips samples had high maximum 

elongations (up to 91,7 %) because the small amount of ACF bound small amount of 

TPU-film in place inside the frame (and thus had the smaller stress concentration. Mini-

mizing and spreading the stress concentration in the stretchable electronics increase elon-

gation of the interconnections. 



96 

8.2 Follow-up work 

The object was to introduce different kinds of testing methods to the field of stretchable 

electronics, which can be used to examine applicability of materials and design of stretch-

able structures. The results of the implemented tests point out improvable matters that can 

be taken into account as alone or as whole. 

In future, the plasma pre-treatment can be used to increase wettability of the TPU-film, 

which makes easier to evenly apply liquid adhesive on the substrate. The plasma pre-

treatment could be used to control adhesive layer thickness of the cyanoacrylate adhesive 

samples or to ensure more durable substrate-adhesive interface adhesion failure in the 

PSA tape samples. Furthermore, the plasma pre-treatment can increase adherence of the 

conductive ink and make the interconnections more durable. 

In addition to the usage of plasma pre-treatment, benefits of the frame structure around 

the rigid islands (or modules) need more study. The NCA under the frame hinders defor-

mation of elastic substrate. By developing fabrication processes and choosing the best 

NCA under the frame (via peel tests), the effect of the frame can be optimized. The frame 

makes deformations of the stretchable electronics structure more complex, which should 

be examined in more detail, especially when there are unbounded highly elastic substrate 

between the frame and conductive adhesive. Moreover, the shape of the frame can be 

varied, for example, to the clover shape [30]. The shape can be used to control elongation 

of elastic substrate outside the frame. 
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