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Factory lines are nowadays filled with intelligent systems that can perform various tasks
without human interaction. To reach the current level of intelligence and automation, The
significance of software in industrial robotics has increased dramatically. That creates
new challenges in software design for such environments, which are then tackled with
new software platforms and frameworks.

This thesis takes an existing test automation platform and designs a new architecture based
on plugins for it. The platform is used in functional testing of smartphones. The redesign
aims to increase the modularity of the architecture, and thus allow for a more flexible
deployment of the system in various hardware configurations.

To verify the successfulness of the new architecture, a modularity analysis is performed
for both the old and the new architectures. The analysis focuses on cohesion and coupling
of the classes and modules in the systems. Both the old and the new platforms are imple-
mented in Python, so the research process will evaluate the feasibility of manual modu-
larity analysis for a dynamically typed programming language, as these kind of analyses
are usually performed on a statically typed languages utilizing static analysis tools.

The new architecture was shown to increase the cohesion, and decrease the coupling of
the platform, which indicates an increase in the overall modularity of the platform. The
analysis itself was found to be tedious, and the dynamic nature of Python increases the
chance of errors in determining the coupling and cohesion of a component. A possibility
of modifying a refactoring tool to aid in a such analysis was discussed.
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Tehdaslinjastot koostuvat nykyään älykkäistä järjestelmistä, jotka kykenevät toimimaan
ilman ihmisen ohjausta. Merkittävä tekijä tämän muutoksen takana on ohjelmistojen
kehittyminen, ja niiden merkityksen kasvu teollisuudessa. Tämä luo ohjelmistosuunnit-
teluun uusia haasteita, joita on ratkottu uusilla sovellusalustoilla ja -kehyksillä.

Tässä tutkielmassa toteutetaan uusi ohjelmistoarkkitehtuuri testiautomaatiorobotille käyt-
täen liitännäisarkkitehtuuria. Tavoitteena on kasvattaa alustan modulaarisuutta, mikä
mahdollistaa sen joustavan käytön erilaisissa järjestelmissä, jotka koostuvat erilaisista
roboteista, antureista ja sensoreista.

Uuden toteutuksen soveltuvuuden varmistamiseksi tässä tutkielmassa suoritetaan modu-
laarisuusanalyysi molemmille järjestelmille. Analyysissä perehdytään järjestelmien luok-
kien ja moduulien yhteenkuuluvuuteen (eng. cohesion) sekä riippuvuuksiin (eng. cou-
pling). Järjestelmä toteutetaan Python-kielellä, joten tutkimuksessa selvitetään modu-
laarisuusanalyysin soveltuvuutta dynaamisesti tyypitetylle ohjelmointikielelle.

Tutkimuksessa todettiin luokkien yhteenkuuluvuuden kasvaneen ja moduulien riippu-
vuuksien vähentyneen, mikä kertoo järjestelmän modulaarisuuden kasvusta. Analyysi
itsessään todettiin työlääksi, ja sen huomattiin kasvattavan tulosten virhettä, koska mo-
duulien väliset vuorovaikuttamiset eivät välttämättä olleet yksikäsitteisiä. Tutkimuksessa
pohdittiin mahdollisuudesta muokata olemassa olevia refaktorointityökaluja siten, että nii-
tä voisi hyödyntää tämänkaltaisen analyysin tekemisessä.
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1. INTRODUCTION

While Internet of Things (IoT) is revolutionizing many consumer product families, Indus-
trial Internet of Things (IIoT) and Industry 4.0 are doing the same for factory equipment
[33]. Factory line machines are no longer independent and isolated, but instead connected
to a factory network through which they can be controlled and monitored.

The impact of Industry 4.0 is already huge. It is estimated that it drives the growth in
manufacturing in Germany alone €30 billion each year. It is also to increase productivity
in German manufacturing between 5 – 8% annually, one of the biggest beneficiaries being
the automotive industry [27].

Robots are a central component of any smart factory layout. They can be the manufacturer
of the factory line, in which case the robot is doing the main work performed in the line,
or they can act as transport devices, moving the products from one manufacturing step
to another. A completely autonomous factory line is such where both of these tasks are
performed by a robot. A factory that is completely operated by robots is also known as a
“dark factory”, named by its lack of need of lights to operate.

When robots get more complex, demands for their software get more intense. A simple
industrial robot can perform its task with a very simple software controller. Perhaps it
performs only a single task, and thus may require only one procedure bundled with a few
error condition handlers. However, when the process is no longer simple and the hardware
contains many varying parts, it becomes increasingly difficult to expose different types of
components in a way that is homogenous enough while still preserving enough control.

This thesis describes a research project that redesigns the software architecture of a
robotics system made for testing smartphones. The system consists of one robot, which
may have several axes, and multiple peripherals such as cameras, sensors, microphones
and speakers. Those peripherals may be attached to robot’s axis — in which case they
move along with the robot — or they can be stationary. Software for these systems needs
to be modular and configurable, because these robots are manufactured in different setups
containing varying set of peripherals. An example system with one camera as a peripheral
can be seen in figure 1.1.
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Figure 1.1 Basic overview of the sample system. (Images: Alexander Lucke 2011. SVS-VISTEK -
SVCam-ECO BlackLine - Tubus. From: [19]. Google Android 2013. Photo of the Nexus 5. From
[11]. Jo Teichmann, Augsburg, Germany (KUKA Roboter GmbH) 2011. KUKA industrial robot
arm. From: [11])

The research focuses on the architecture design from the software perspective, and does
not cover implementation details or hardware. Low-level control software for the robot
and its peripherals is only covered within the interface they provide via their plugin. Sys-
tem’s user interface is also outside of the scope of this thesis. The test application running
on the smartphone is presented in the architecture diagrams, but its internals are not cov-
ered in this thesis.

The thesis aims to answer to following research question: How to increase modularity and
configurability of a robotics system? A subproblem of this is to evaluate how well does
modularity analysis carry out with Python – a dynamically typed language – compared to
statically typed languages on which these analyses are normally conducted on.

The research compares the software architectures of the current and new systems from
the context of modularity and configurability. It describes the main pain points of the old
architecture and how the new architecture aims to asses them. The new architecture is
designed to fit more use cases than the old one, but concerning this thesis the architectural
redesign is done with the current hardware setup in mind.

Structure of the thesis is as follows. The second chapter gives background in general about
robotics systems and modularized architectures. Chapter 3 presents the current software
architecture and defines it as the context of this study. In chapter 4 the new architecture
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design is explained, and the chapter after that tells how the architecture is applied in de-
ploying the system. Finally, in chapters 5 and 6 the architecture is analyzed with methods
defined in chapter 2 and concluded with a discussion on the successfulness of the method
and thoughts on further research.
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2. SOFTWARE ARCHITECTURES AND
MODULARITY

This chapter creates a basis on the further discussion on the topic of software architec-
tures and modularity. Firstly, the concepts are defined in a more general level, and later
with Python and dynamic programming languages in mind. This chapter also presents
the methods used in the evaluation in chapter 5, and explains why those analyses were
selected.

2.1 Software architectures

In construction an architecture refers to the way a building is designed in the highest level.
In software engineering, architecture describes the exact same thing: how components are
laid out in the highest level, how they relate to each other and how they communicate.
Bass, Clements and Kazman [1] define a software architecture as a set of software struc-
tures that are held together by a relation, such as association, inheritance, or an abstraction
from the real world.

The main purpose of software architecture is to make a large piece of software easier to
manage and maintain. It aims to split the system components into groups which are tied
together by a semantical meaning. There are many approaches than are used commonly,
for example in a client-server -pattern the functionality is distributed in a way that multiple
clients can ask the server to perform work, whereas the server defines with its API what
kind of operations it provides for the clients. On the other hand, in MVC (Model-View-
Controller) -model the application is divided into the data and operations (model), user
interface and/or API (view), and handling of the input from the user or the client using the
API (controller).

Bass, Clements and Kazman [1] also discuss what are the building blocks of a good soft-
ware architecture. Their extensive list can be boiled down to four rules of thumb:

1. Value the quality attributes over the feature set
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2. Make modules well-defined and self-contained, make components interact in a pre-
dictable way

3. Stick to well-known patterns if at all possible

4. Have the high-level architecture designed by a single person

They claim that by following forementioned principles will make it more likely for the
software to fullfil its requirements both form a techical standpoint and from the business
perspective.

2.2 Measuring software modularity

The general consensus is that a good principle in software design is to have module co-
hesion as high as possible, and keep module coupling to the minimum [30, 14, 20, 4, 3],
as it leads to logical structures and few dependencies between parts that are not directly
related. Following these fundamentals results in naturally modular software components:
their modules contain only functions and attributes that have something in common, and
the modules depend only on the public interface of other modules.

Plenty of research has been done on how to measure software modularity. Dörbecker,
Böhm and Böhmann have listed in their literature review [6] a large amount of papers
that do modularity analysis on some level. They categorize the papers based on what ef-
fects of modularization they target. In the context of software most of the sources focused
on cohesion, commonality and coupling, and some additionally on redesign or reconfig-
uration. In this paper we focus on measuring only cohesion and coupling, as those are
the most common properties measured in modularity analyses, based on [6]. Chidamber
and Kemerer [3] also define cohesion and coupling as two important design comcepts of
object-oriented software design. The reconfigurability analysis is also discussed briefly.

In the following subchapters present the selected methods for the analysis. The choice of
methods was done by referring to [6], and evaluating how well the characteristics required
in the calculations are available in the target systems. In the end based on that criteria, [12]
for cohesion and [13] for coupling were selected.

2.2.1 Cohesion

Generally cohesion describes how units form a whole. In software engineering context
cohesion tells how well functions in a module belong together, and how little there exists
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functionality which does not logically need to be in the module. A high functional co-
hesion exists when all the elements of a class work together to provide some well-bound
behaviour. [10]

Chidamber and Kemerer [3] present a metrics suite for analyzing object-oriented soft-
ware designs, and define a metric for both cohesion and coupling. Of those, the method
for measuring cohesion is utilized in this research work. A similar method for cohesion
measurement is introduced in the article [12] written by Gui and Scott. They define the
cohesion of a class to be based on the similarity of the methods, the similarity being a
measure of how much the sets of the instance variables the classes access overlap. First,
we letM ≡ {M1,M2, . . .Mm} be the methods of a class C, and Vj ≡ {Vj,1, Vj,2, . . . Vj,n}
instance variables that method Mj accesses. The direct similarity SimD between two
methods can be calculated with

SimD(i, j) =
|Vi ∩ Vj|
|Vi ∪ Vj|

. (2.1)

The resulting value falls inside range [0, 1]. Gui and Scott extend the measure to take
indirect similarity into account, but in the context of this thesis, only direct cohesion is
measured. From the pairwise similarities of all the methods in the class we get to the
cohesion score ClassCoh of the whole class:

ClassCoh(C) =

m∑
i,j=1

Sim(i, j)

m2 −m
. (2.2)

Furthermore, we can calculate the cohesion of the whole application or any subset of its
classes with:

WTCoh =

n∑
j=1

ClassCoh(Cj)

n
, (2.3)

where we define C ≡ {C1, C2, . . . Cn} as the n classes of the system.

2.2.2 Coupling

Two objects have coupling if and only if one of them affects the state history of the other,
where the actions performed results in the other object to be in a different state than it
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would be without the action. In a highly modular system software components have a
loose coupling between each other. Harrold and Kolte present a quantified method for
analysing module coupling [13].

Harrold and Kolte used the method to analyze C code, but in this thesis we apply it to a
Python source. Due to Python’s dynamic nature, it is more difficult to obtain information
on bindings between modules. In C, the information can be extracted with a compiler
or even parsing the source code with regular expressions, but in Python we cannot get
ourselves to that information especially if there are no type annotations. A dynamic code
analysis tool such as Jedi [5] can be used to generate data by deducing references from
annotations and constants. However, it does not have a built-in support for this, and in the
end some of the work needs to be done manually anyway.

Myers [21] defines six levels of coupling. Harrold and Kolte add a level zero to indicate
completely independent modules. All coupling levels and their definitions are listed in
table 2.1. If a module is found to be coupled in more than one level, the level of coupling
for that module is the highest of them. Some of the level descriptions are adjusted to better
fit Python paradigms.

Table 2.1 Levels of coupling [13]

Level Name Description
0 Independent coupling No coupling between the modules.
1 Data coupling The modules pass data via function or class

parameters.
2 Stamp coupling The modules pass data via reference parameters.
3 Control coupling The modules pass a flag parameter that alters modules

behaviour.
4 External coupling The modules communicate through an external

medium such as file or a database.
5 Common coupling The modules refer to same global data.
6 Content coupling The modules access and change each others internal

data.

To calculate the coupling between two modules x and y, as presented by Fenton and
Melton [7]:

M(x, y) = i+
n

n+ 1
, (2.4)

where i is the highest level of the coupling between the modules and n is the number of
interconnections between them. Harrold and Kolte adjust the equation to makeM fall into
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interval [i, i+ 1
2
] by subtracting 1

2
from it:

M(x, y) = i+
n

n+ 1
− 1

2
= i+

n− 1

2(n+ 1)
. (2.5)

To further get to the coupling value of the whole application (or a subset of the application
modules in this paper’s case) we need to calculate the coupling scores for all modules
pairwise. [7] suggests using the median value of those scores as the total coupling of the
system, but we take the approach of [12]; calculating the weighted transitive coupling
WTCoup of the system:

WTCoup =

n∑
i,j=1

M(i, j)

n2 − n
, (2.6)

as was done when calculating the cohesion score of a single class in the previous section.

The numerical values extracted from the analysis do not tell the whole truth, though. The
analysis does not reveal a “hidden” coupling, where a module depends on another module
in a semantical level: when modifying one module, the other needs to have corresponding
modifications as well. This phenomena is analyzed manually in the chapter 5.

2.2.3 Reconfigurability

Reconfigurability refers to an ability to use the same software components to build a va-
riety of different systems. This feature can be implemented in different ways, such as
using preprocessor directives in C-language to build different binaries from the C-code,
or parametrizing Python classes during runtime with a configuration file. A common as-
pect for both is that the source code is not modified in order to produce the artifact variants.
[18]

Liebig et al. [18] study configurability in the context of refactoring engines. They focus
on how different kind of refactoring engines handle — or do not handle — configurability
implemented with C preprocessor directives. They tested 18 different refactoring engines
and discovered that 7 of them supported no proper refactoring support when static recon-
figurability is present. Thus, even with a statically typed, compiled language, increasing
configurability reduces the effectiveness of static analysis on the code base.

In this research the configurability of a system is measured on how many different hard-
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ware configurations can be supported with no modifications to the source code. As dis-
covered in [18], even a few preprocessor options increase the amount of different software
configurations quickly by a huge amount. Using a configuration file is no different, and
it does not make sense to compare whether the application has two million or two hun-
dred million different variants. That is why in this thesis instead of measuring the amount
of unique configurations, we measure the amount of configurability points; places in the
system where the configuration affects the way the software behaves.

2.2.4 Modularity in a dynamic language

The dynamic nature of Python affects some aspects of measuring coupling. Differentiating
between levels 1 and 2 is not as straight forward as it is in C, since Python does not have
a syntactic way to define pass-by-value or pass-by-reference. Instead, the type of the
parameter given to the function deduces the parameter passing style: immutable types
such as int, float, bool and tuple get passed by value, and mutable types including
list and dict get passed by reference. To pass object types by value the programmer
needs to make a copy of the object manually, which can be done either in the caller or the
callee side. For this reason the parameter passing style cannot be determined from a bare
function declaration as it can be done with C code.

Python has no real concept of private attributes. Typically private members are indicated
by defining them with a name starting with an underscore. The language, however, does
not do anything to prevent a programmer from accessing the “private” member from out-
side of the class. To make the member even more private, the programmer can use a name
which starts with two underscores 1. In this case Python triggers name mangling on that
variable and injects the name of the class into the attribute name if it is accessed outside
of the class. Again, if the programmer knows the name of the class, this attribute can be
normally accessed from the outside. [8] For this reason it may be difficult to define when
a module accesses private members of another module.

2.3 Plugin architecture

Plugin architecture is one of the ways of implementing a modular system. The main goal
of a plugin is to provide a way to add a feature, or modify an existing feature of an appli-
cation without modifying or recompiling the application itself, and to reach modularity by

1But which does not end with two underscores. Names starting and ending with double-underscores are
reserved names in Python. Again, the language does nothing to prevent naming variables with this style,
but it is considred a bad practice. [8]
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spreading separate functionalities into entirely separate components. Whereas traditional
methods for modularization such as object-orientation, procedures and components work
in the source code level, plugins reach the modularity at application level. The two are,
however, not exclusive and combining them results in software that is modular on multi-
ple levels. Obviously using a plugin architecture does not magically fix lower-level issues
in the code base or vice-versa.

The main driver for selecting plugin architecture as the design of choice in the project
was that it allows spreading the implementation details not only inside the team but inside
the company as well. It was considered superior to other options. Let us first consider
implementing the internals of the driver as a separate library. It would encapsulate the
implementation details well, and would be easy to allocate a separate team for its devel-
opment. However, to use it with the core application, a binding code needs to be written.
The binding code would not be suitable to be written inside the library, as it is not generic.
If the binding code would be added to the host application, it would make the core depen-
dent on a specific version of the library.

Another option would have been to implement the binding code as a separate controller
module. This is somewhat similar to the approach used currently in TnT Server, and it
lacks the ease of spreading the implementation of the modules to the teams that have the
greatest expertise on that specific subdomain.

Wagner et al. [32] list benefits of plugin architecture in heuristic optimization software
systems. These benefits include reduction of complexity, increase of configurability, cus-
tomizability, and expendability, and simplification of deployment. In the paper, they con-
clude that the biggest reason plugin architecture has not raised its head in heuristic opti-
mization systems is that it is really difficult to create a commonmeta-model for that kind of
tasks. By meta-model they refer to characteristics that unify common aspects of different
heuristic algorithms that can be isolated to form separate packages connected with inter-
faces. Therefore, not all software is easily spread into plugins; it may require redesigning
the core concept of the system, or it may not be feasible at all.

The core application defines what functionality it exposes to its plugins by providing them
an API. This API can consist of functions that query the state of the core program, and
“hooks” that allow the plugin to react to certain events occuring in the core application.
The core can also provide means for the plugin to create and manage their own user in-
terface elements such as toolbar buttons or context menu items. The amount of flexibility
the core allows can vary a lot: from offering a very limited set of APIs, or exposing all of
the internals for plugins to use. Coming up with a good plugin architecure is about finding
a balance between offered functionality and complexity of handling plugins’ interactions
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with core and with each other. [15]

An example implementation of a plugin system is shown in figure 2.1, which illustrates a
context-menu action plugin for the popular open-source IDE Eclipse. In the figure, a plu-
gin binds to the actionSets-interface to provide additional actions HelpContentsAction
and OpenHelpSearchPageAction. The plugin does not know – or care – how the user in-
terface elements are implemented, and the core does not need to know what functionality
is attached to the menu items, it just calls the action’s callback method when selected by
the user.

Figure 2.1 Eclipse extension framework. Adapted from [2].

Plugins allow for more flexibility in software business, too. By having features as separate
packages that are released individually from the core application, it is trivial to implement
license handling for individual features. The author can easily sell the same application
with different feature sets to different customers with different pricing models. The author
can also allow for third parties to create plugins for the application, and build business
models around that use case as well. [15]

Plugin APIs are analoguous to other kinds of software APIs when it comes to changing
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the interface. Adding functionality is always safe, but changing the behaviour of existing
methods or even removing them altogether will almost certainly cause issues with plugins
using that functionality. This is what happened with Firefox in late 2017 when they moved
into a completely new plugin API, which was way more restrictive than the old one.2

Original API was exceptionally flexible, giving the plugins access to the internals of the
browser which enabled developing rich and powerful plugins. Thew new API is more
restrictive and tries to be similar to the extension API provided by other browsers, to
allow for easier development of cross-browser extensions.

2.4 Plugins in Python

Plugin architecture can be implemented in any programming language. However, this
thesis project is implemented in Python, so implementing the architecture in Python is
discussed more thoroughly. This subchapter describes what methods Python offers to
implement a plugin-based system, and what kind of method is selected to be implemented
in the project.

Python being an interpreted language, creating a plugin in is really flexible. In its simplest
form, a plugin is just a regular source file which for example resides in a directory known
to the core application, from where it can directly import it, and call its functions. This has
a downside, though, as the file needs to be in a known location, which may be infeasible
if the modules are installed with setuptools.

In this thesis project, a plugin-API based on entry points defined using the pkg_resources-
module. This method outsources the dynamic loading of the extension code to an external
module, and makes loading plugins possible without knowing where the actual plugin is
located on disk or what module implements it.

Exposing a method or a class from a package is done in the setup.py-file with an entry
point declaration. An entry point declaration consists of three parameters: group, name
and package. The group defines the purpose of this entry point. There are built-in groups
such as console_scripts for implementing shell commands, but in case of a plugin we
can just choose a descriptive group name. The name identifies this entry point inside its
group. The same package may provide multiple entry_points with the same group but
a different name. The package tells Python what file and class/function in the module
implements this entry point. An example of an entry point definition is shown in listing
2.1.

2Mozilla announced in September 2015 [23] that Firefox will deprecate XUL and XPCOM interfaces
and force developer to use WebExtension framework to build plugins, resulting in multiple extensions using
the old APIs to stop working. These changes were released in version 57.0 in November 2017 [22, 31].
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The module can expose the entry point even if there is no application installed that uses
those entries. This is useful when the module contain other functionality in addition to the
plugin part, allowing a module to expose its functionality as a plugin while still allowing
for stand-alone use without the plugin host.

from setuptools import setup

setup(name='sample-package',
...
entry_points={

# This plugin is implemented in sample_package/plugin.py
'plugin_framework.plugin': [

'my_plugin = sample_package.plugin:MyPlugin'
]

},
...)

Listing 2.1 Entry point definition in setup.py-file

To load the extension from themain application, pkg_resources-module is utilized again.
Example code loading the plugins defined in the previous example is written in listing 2.2.
The example loads all the entrry points defined in all installed python packages. It is also
possible to load a plugin directly by its group and name.

from pkg_resources import iter_entry_points

for entry_point in iter_entry_points('plugin_framework.plugin'):

# driver_name will be 'my_plugin'
driver_name = entry_point.name
cls = entry_point.load()
driver = cls()

Listing 2.2 Code loading all entry points defined with the group name.

Definition of the API can be implemented in multiple ways. Since the method discovery
does not require any special declaration in the module itself, the simplest way to achieve a
defined API is to document what function names the module should contain and what are
their arguments. The downside for this is that the documentation becomes easily out-of-
date, and that it is impossible for an IDE to provide for example auto-completion ofmethod
names and arguments for the plugin. This project takes the subclassing approach: the core
application defines a base class for all of the plugins to specialize. This creates a two-way
link between the core and the plugin, and allows the core to easily define default behaviour
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for plugins that do not implement a specific aspect. Subclassingmethod requires the plugin
to import the base class from the core, so the programmer needs to be careful that the
base class can always be imported with the same module name between updates, and that
importing the class does not cause unexpected side-effects.
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3. METHOD AND CONTEXT

This chapter defines the research method and describes the starting point for this research.
A case study is described in software engineering context, and the current architecture is
illustrated as the context of the study. Then we introduce the field of industrial robotics —
the context of this project, and describe how it creates an environment which differs from
traditional software engineering research environments. In the end we give an overview
of the robotics system currently in use and its software architecture, and discusses its
weaknesses.

3.1 A case study

Also in software engineering context, a case study is most often conducted as a qualitative
research, as stated by Runeson and Höst in their paper on case study guidelines in the field
of software engineering [26, p. 135]. According to the article in an exploratory case study,
insights to future research are an important side aspect along with the direct results from
the study. This thesis work implements a qualitative research with an exploratory purpose.
Measurements of software modularity have been focusing on statically typed languages.
This research aims to generate ideas for more thorough modularity analysis for Python as
well as for other dynamic languages.

Case study was a clear method of choice for this research. The redesign project fits as the
subject on this study, while representing a single instance of modularization analysis. The
subject is also fairly complex, which allows for diving into smaller details which is typical
in a case study.

The project was started in the first half of year of 2018 by beginning the architecture
redesign work. Awhile later the project was found to be suitable for a modularity analysis,
since one of its targets was to increase the modularity of the system. Therefore, it was
selected as the case for the study. The research work was started in June 2018 and finished
by the fall 2018.
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3.2 Industrial robotics

Mechanincal appliances have aided humans inmany tasks that require repetition, precision
or strength. To further reduce the role a human plays in manufacturing and quality-control,
robots have started to take over the industry. The human has retreated from the front line of
the factory to the base where he designs and builds the automation systems doing the actual
work. The mechanical side is still a crucial aspect of an automation system, but more and
more of the work is targeted at the software controller and firmware of the system.

A term industrial robot does not necessarily always mean a huge robot arm capable of
lifting car parts. It can as well be a simple actuator, or an automated conveyor belt. The
common feature is always that instead of being controlled directly by a human, it is com-
manded by its software controller, or it is a part of a bigger system. These robots can
then be connected to a monitoring system and to a data gathering system which provides
automated telemetry logging, diagnostics and performance analyses.

Industrial robots are spreading The prices of industrial robots have dropped significantly
during the last few years, which has made them available to smaller scale manufacturers,
too, as it does not require a huge production throughput to overcome the expenses. As the
complexity moves from the mechanical side to the software side, it becomes possible to
utilize the same robot in multiple different use cases. [28]

This thesis focuses on test automation, which is a subdomain of industrial robotics. It aims
to replace humans responsible for quality-control with an objective qualification machine
that produces reproducible results. Its software needs to reach a high quality in both data
gathering and data analysis. The environment, being a factory line, it is often filled with
loud noises and dust particles that cause additional distortion to the collected data [17]. To
overcome that, the system has to either the implement filters to reduce the interference or
compensate for them in software, latter of which is usually the cheaper solution. It, how-
ever, creates additional requirements for the software being able to adapt to the hardware
and the environment.

Software architectures in the area of robotics have been studied before. García et al. [9]
discuss modular software architectures in robotics systems. They present a hardware con-
figuration that is similar to the one discussed in this thesis, followed by a set of targets
they try to achieve with their architecture. The robot they are using is a robot arm with
six degrees of freedom, and it is designed to be equipped with a variety of different sen-
sors and controllers. The new architecture was seen to improve the support for having
plug-and-play components in the system.
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3.3 Current system

The context of this thesis is the software architecture of OptoFidelity™ Fusion Tester. It
is an industrial robot designed for smartphone functional testing covering buttons, con-
nectors, display, speakers, cameras, microphones and sensors. It is targeted at usage as a
factory line final tester or as an all-in-one test system in refurbishment business. A Fusion
robot is presented in figure 3.1.

Figure 3.1 OptoFidelity 2018. Fusion Tester. From: Fusion product information, OptoFidelity
website. [24].

Themain selling points of the robot are its high test coverage and fast cycle time. It aims to
replace the human operator in smartphone functional testing with a fast and robust robotics
solution. Traditionally smartphone testers use device-specific mechanical adapters that
handle the differences between different DUTs (Device Under Test), but Fusion takes a
different approach. It holds onto the phone with a suction cup and handles differences
between DUTs by defining offsets in a DUT configuration file and using those offsets
when operating the device with the robot. The device placed inside the robot is recognized
with a special QR Code on the device’s display 1.

As the successor of Fusion a product called Test Factory is being developed. Test Factory
1The QR code contains the model name of the device, and IP/port-combination for establishing the

communication link to the device. From the position and orientation of the QR code the robot can determine
the position and orientation of the device in robot’s coordinate frame. [16]
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is hardware-wise similar to Fusion except that it does not necessarily aim to be an all-in-
one tester, but rather a modular test framework, where individual robots can specialize
into different testing capabilities. This way the total throughput of the factory line can be
increased by pipelining [29] together multiple robots with shorter cycle times, each doing
their own part of the whole test run. A concept picture of Test Factory system can be seen
in figure 3.2.

Figure 3.2 OptoFidelity 2018. Test Factory concept image. Test Factory product information,
OptoFidelity website. [25].

Software architecture of Fusion does not directly fit into this use case, which resulted in
this research work. Furthermore, with a successful redesign of the architecture, both sys-
tems would be able to use the same code base, which would streamline future development
of both products.

3.3.1 Architecture

Software architecture of Fusion is divided in the highest level into three parts: TnT Server,
sequencer and the dut application running in the smartphone. The main software compo-
nents of Fusion tester are laid out in figure 3.3.

TnT Server is the part which directly interacts with hardware. It is used by multiple
projects in the company, so it is designed to be very generic. It contains drivers and
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Figure 3.3 Component diagram of Fusion software architecture

controllers for all of the hardware components in the system, and exposes them through a
RESTful API to external components. To utilize the REST API from Python, TnT Server
provides a client library that can be imported in the controlling application.

TnT Server has been designed rather modularly, by dividing the application into resources
and controllers; following sort of a model-controller design pattern. A resource is prac-
tically a device driver. It implements a set of methods for the device, which can then be
used by the controllers. A resource can be a subclass of another resource and implement
the same methods, in which case both can be used with the same controllers. The con-
troller defines what features of the whole application are exposed through the REST API,
and how the features are laid out on the URL dispatcher. The features exposed by the
controller can be on a higher abstraction level than the ones implemented by the driver, or
it can merely pass the requests directly to the driver to provide a low-level control.

Initialization procedures for all hardware components are executed in TnT Server. If there
is a faulty or a misconfigured component, the REST interface with not start, and the se-
quencer will go into corresponding state.

The sequencer ties together TnT Server, a graphical user interface and the DUT application
controller, and binds them into a high-level state machine. It handles the initialization
the test cycle: moving the robot to the start position, waiting until a DUT is placed on
the holder and establishing a TCP (Transmission Control Protocol) connection with the
device. Then it loads the test set configured for that device and starts executing the cases
one by one. A class diagram of Fusion sequencer is shown in figure 3.4.
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Figure 3.4 Class diagram of Fusion Sequencer



21

In the ideal case, the state machine iterates the sequencer between two states: Wait_Start-
Button and Executing_Sequence. If there are no exceptional conditions, the sequencer
newer goes outside these two states. The state machine is a high-level state machine and
its main purpose is to prevent running two test suites simultaneously and to handle robot
errors and emergency stop presses. The state diagram of the state machine is shown in
figure 3.5.

Figure 3.5 State diagram of Fusion Sequencer’s state machine

3.3.2 Weaknesses

This section describes the issues the current architecture has more or less related to mod-
ularity. It tries to delve into the reasons why these decisions were made, and how they
affect the development of the modules now and in the future.
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Most issues regarding to modularity in Fusion root down to the tight coupling of TnT
drivers with TnT Server core and therefore also with TnT Client. When support for a new
device is added, changes are needed in several modules:

1. A new resource type or handling for additional fields in an existing resource type in
TnT Server.

2. A new controller class if no existing controller for the type of device already exists.

3. Modification to route mapping in TnT Server to make the new interface exposed
through the REST API.

4. Client-side method either in TnTClient or FusionClient, or both in the worst case.

Changes to the same modules are required each time when some driver changes its inter-
face. Just adding a new data field in the DUT configuration settins requires new methods
in several layers having nothing to do with DUT configurations. This leads to strict ver-
sion dependencies and tight coupling between the layer components, which then breaks
the modularity of the design.

Seemingly modular design of TnT Server has a major drawback as well: even though
drivers are implemented in separate Python modules inside the package, they are still all
inside the same package and code repository. This generates issues when the same com-
ponent is used in multiple projects with varying targets and hardware requirements. This
means that even a tiniest non-backwards-compatible change in some of the drivers means
branching or forking the whole package to prevent breaking other projects. This quickly
results in every project having its own flavour of the component, and those branches di-
verging quickly so far away form each other that merging becomes infeasible. Therefore
even bugfixes often have to be implemented separately in each project, and new features
can remain exclusive to a fork.

All of the hardware control is done through a single component. This does a reasonably
good job in encapsulating the hardware access behind awell-defined interface, but has lead
to a complicated design. Also, a fault in any hardware usually means that the whole system
enters into a failed state. This issue gets magnified by the design choice of initializing
all configured hardware before starting the REST interface. This means that if a faulty
or misconfigured hardware component fails to initialize, other applications see only that
TnT Server is not able to start and have no way to query which component failed and why.
Error reporting needs to be handled by either giving a generic error message to the user or
tailing the log file in real-time.

These three design choices root down to the previous iteration of TnT Server which was
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intended for a more singular use-case. The new version uses code from the old one, and
the design is changed only partially, while the biggest effort went into migrating from
Python 2 to Python 3.
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4. ARCHITECTURE DESIGN OF TEST FACTORY

This chapter illustrates the new architecure design and how it aims to achieve high level of
modularity. The design choices are compared to the old architecture on aspects that they
differ in, and the reasons behind them are explained.

4.1 Core

Test Factory spreads out TnT Server’s controller–resource -model and implements the
same functionality around plugins. Each plugin implements a specific feature that corre-
sponds to either a resource driver or a controller in TnT Server. A High-level component
diagram of Test Factory is shown in figure 4.1. The figure contains only the plugins that
are part of the modularity analysis of this thesis.

Figure 4.1 Component diagram of Test Factory software architecture

The main difference to Fusion’s architecture is the extraction of the camera driver from
TnTServer into its own separatemodule. The usage of TnT Server is reduced to coordinate
calculation and robot movement, whereas DUT configuration handling is moved to the
client side. In the future, robot control and coordinate system can also be split further into
more self-contained units.
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There are two GUI components drawn in the diagram. This illustrates how there are mul-
tiple locations to bind a user interface to. The arrow from GUI to sequencer is two-
directional, whereas the arrow from core to theGUI is one-directional. This indicates that
the GUI attached directly to the core can only be used in monitoring the state of the sys-
tem, while the Outermost GUI can also be used to control it. The outermost GUI will also
receive the same state information, as it is passed on by the client module. The intended
use case for this architecture is to have the innermost GUI bound to a single Test Factory
unit while the outermost GUI can control and monitor a whole cluster of them.

Test Factory is implemented in Python 3, as it is a well-understood and a widely used
language within the company. As described in chapter 2, Python offers great flexilibity in
modular architecture design. Some of the lower-level drivers are implemented in C and
C++, but all code in this project’s scope is implemented in Python 3.6.

Similar to Fusion, the core of Test Factory is built around cherrypy and ws4py, of which
cherrypy provides the HTTP-support and ws4py extends it to support websocket protocol.
Sending and receiving of websocket messages are bound to cherrypy’s message bus, and
the calls get routed by DriverDispatcher to the correct exposed method of the correct
driver instance. The dispatcher handles transforming procedure call parameters from ei-
ther json-rpc message or HTTP request into ones compatible with the driver function call.
It also reports the errors related to not having a required driver mounted on a path, or the
driver not implementing or exposing the given method. A class diagram of of Test Factory
Core is shown in figure 4.2.

One important aspect of the design is that TestFactoryCore itself is also a subclass of
BaseDriver. This means that it exposes its interface via the same channels as all of the
drivers and that it can be thought as built-in plugin rather than a core component. It can
thus utilize all the functionality given by the base class such as automatic documentation
generation and instance parametrization via a configuration file.

4.2 Plugin system

Setupfile for the camera driver of Test Factory is shown in listing 4.1. Note, that the
driver does not specify test_factory_core as a dependency in its install_requires-
parameter. This allows installing the driver on a system that needs only the camera driver
without installing the whole ecosystem.

The entry point camera_driver.plugin:CameraDriver defines how the class which im-
plements the driver can be imported. In this camera driver plugin the plugin class is in-
side the module plugin, and it subclasses the BaseDriver class that is implemented in
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Figure 4.2 Class diagram of Test Factory Core

"""setup for Test Factory camera driver.
"""
from setuptools import setup, find_packages

setup(name='camera-driver',
description='Camera driver for Test Factory',
packages=find_package(),
author='OptoFidelity Ltd.',
entry_points={

'test_factory.plugin': [
'camera = camera_driver.plugin:CameraDriver'

]
},
install_requires=[])

Listing 4.1 A setup.py file of a driver plugin
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Test Factory core. Low-level driver components are implemented in other modules of
the camera-driver-package, and those modules do not import the plugin-module. This
allows for importing of all the functionality not directly related to Test Factory without
having the Test Factory core installed.

4.3 Message bus

An illustrative diagram of the message bus is shown in figure 4.3. Communication be-
tween the server and client is divided into two parts: the control channel and the event
channel. The control channel is used for altering the state of the system. It supports com-
munication via either REST calls over HTTP or json-rpc -commands over a websocket.
The event channel on the other hand is only used over websockets. The channel allows
for the server to have an outgoing status API that any client can connect to and follow its
state.

Figure 4.3 Test Factory messaging interface

The control channel is intended to be used by a single instance at a time, and the com-
munication flows in both directions. This instance can be connected with either of the
supported protocols. The server does not enforce the limit of one client per session, so the
responsibility is on the programmer scripting the client side to not cause race conditions
or a conflicting state.

Exception to the previous principle are requests that do not modify the state of the server.
These include state queries and data retrievals. When using the REST interface these
methods are implemented as GET-methods and can be clearly recognized, but using the
webocket interface the “const”-methods are defined only in the documentation. These
non-state-modifying API endpoints form a third channel, data channel, that shares the
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road with control channel. Different message types supported in all three channels are
listed in table 4.1.

Table 4.1 Websocket message types

Message type Channel Purpose
Method call control/data Call a method in driver API or fetch a resource from

a driver.
Response control/data Return from a method in driver API or return the re-

quested resource.
Event event A general event in a driver. Follows the standard of

json-rpc 2.0
Exception control/event An error has occurred when executing a command. It

is sent as an event to all listeners and as a return value
to caller in control channel. Follows the standard of
json-rpc 2.0.

The event channel is a one-way communication interface that can server multiple clients
simultaneously. Unlike the control and the data channels, the communication is initiated
from server side and thus the event channel cannot be used through the RESTAPI. Drivers
can use it to publish any messages, such as log entries or error reports. Driver can also
announce that it has a new resource available through the data channel.

Messages published on the event channel are asynchronous. They get pushed to the cher-
rypy’s message bus and cherrypy will send the message when it decides to do so. This
also means that the driver can keep up executing at full speed and does not have to worry
about the time it takes to serialize the message and send it through the socket. Another
driver can hook a callback method onto a specific message type and this callback will not
affect the execution of the driver that was hooked into.

Typical use-case for the event channel is to have a graphical user interface that shows the
user what is currently happening in the system. It could for example display all the images
captured with the camera immediately without disrupting the normal test sequence. It is
also trivial to implement a log view in the GUI to see the state of the system in more detail.

4.4 Driver interface

Drivers are encouraged to implement a few standard methods. These include commands
to initialize the device, close the device and query the state of the device. By having all
drivers implement the same basic methods the system can execute these commands for
all bound drivers at once, in parallel. This is a significant improvement over the previous
system where all of the hardware drivers were initiated sequenctially and the API was
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opened only after all drivers were loaded successfully. With Test Factory, an issue with
a device driver can be detected and identified in client side as the failure in the driver’s
initialize-method occurs while the client is already listening for error events.

Sequence diagram 4.4 shows the startup steps of theAPI. The execution starts fromPython
process loading the main module of test_factory_core-module. It then creates an in-
stance of TestFactoryCorewhich then becomes the first driver instance that exists in the
process. The driver cannot be used yet, though, since there is no dispatcher active, and
cherrypy’s bus is not running. TestFactoryCore creates the DriverDispatcher on its
own and mounts it to the root of cherrypy’s tree. After it is complete, it calls the block-
method of cherrypy’s engine and thus transfer control to cherrypy.

From this point onwards the core API is open for clients to connect. If the process is
running on Linux, a message is written into systemd’s notification socket to indicate that
other units dependent on this service being up can now be launched. Everything until
this moment should be as fail-proof as possible: no hardware components are initialized,
and no configuration files are loaded yet. At this point, a client can connect to the event
channel and get information of the system’s state.

After the API has been started the server begins to wait for a client to connect to its control
channel. The first task of a connected client is to initialize the hardware components and
load configuration files. It is upto the client to select which components get initialized
and what to do in case of an error. In the example setup of figure 4.4 the initialize-
method of TestFactoryCore-driver is called by the client which triggers initialization of
all configured devices.

Figures 4.5 and 4.6 demonstrate image capturing on both the old and the new archi-
tectures. In these sequence diagrams, it is easy to see how Test Factory simplifies the
interaction between the client and the driver.

The sequnce grabs a burst of three camera frames. The target is to capture three images
with identical settings as quickly as possible. With Fusion there are two issues immediately
visible: there are five different entities that need to know that there exists a method for
taking a still image. and the whole stack needs to be traversed back and forth entirely
for every single frame. Image capture is split into two parts: grabbing a frame and then
fetching the recently grabbed frame from the driver. These two do not have to be done in
pairs; one can grab multiple frames and then fetch them after all of them are fetched.

Test Factory fixes the previouslymentioned issues by flattening the server side andmaking
the client side more dynamic. There is only one instance in the server side that needs
to know that there is a take_still-method available. The client side can use Python’s
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Figure 4.4 Sequence diagram of the startup of Test Factory

dynamic attribute access to allow it to not know about the method names provided by the
drivers mounted on the server. This results in only two locations being dependent on the
name of the method: the driver itself and the code implementing business logic by using
the client.

4.5 Configuration

The main configuration for Test Factory is done in drivers.conf-file. This file defines
what devices will be available to the system, how they are initialized and where they are
mounted in the API tree. An example of this configuration file is shown in listing 4.2.

The configuration file resides locally on the same machine as the API is running on. In
a system of multiple Test Factory units, each one of them has its own driver configura-
tion file. The configuration file can thus contain calibration values that may not be equal
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Figure 4.5 Capturing three images on Fusion

Figure 4.6 Capturing three images on Test Factory
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[main-camera]
Device = camera
FocalLength = 8
FocusDistance = 50.2
IpAddress = 10.10.0.2
PacketSize = 8192

[secondary-camera]
Device = camera
FocalLength = 4
FocusDistance = 30.15
IpAddress = 10.10.0.6
PacketSize = 8192

Listing 4.2 Sample configuration file

between the robots. In the example configuration file, one of these kind of variables is
the FocusDistance. The camera used in this project does not have a focusing system that
could be controlled programmatically, but instead it has to be adjusted manually with the
focus in on the lens. This will result in a slightly different real focus distance in each
camera, which then can be compensated with robot movement while we know the exact
focus distances.

It is also possible to define multiple devices that use the same driver with different param-
eters, and that is exactly what has been done in the example configuration. The configured
system has two cameras: the main camera and the secondary camera. These cameras are
different from hardware perspective, they have for example a different focal length.

In a system of multiple Test Factory units the configuration system can be centralized
into a common server which shares the configuration files to multiple machines. In that
system, common settings are stored in the network location, while individual units can
define the same attributes in their local configuration files overriding the global options.
This alllows storing both settings-related (values usually do not differ between units) and
calibration-related (values usually differ between units) parameters in the same file.

4.6 Logging

The new architecture design does not come without issues. When scattering the pieces
around different components — possibly even different processes — it becomes increas-
ingly difficult to implement features that require centralized control. One example of this
is logging. Logging from multiple processes easily creates multiple separate log files lay-
ing around in the file system, and following the state of the whole system is hard.
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Test Factory tries to solve this issue with several methds. Firstly, logging is tied to the
message bus architecture. Log entries are sent as events from drivers regardless of which
component or process generates them. This way the log entries can be collected in a single
place and written into a single log file. The process reading the logger events can also run
on a different machine in the network. The second method to prevent scattered log entries
is to use system journal if it is available. Since the target operating system for Test Factory
is Linux and the intended way of running the server is via a systemd service, all standard
output of the process will get written into system log locally.
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5. EVALUATION

This chapter takes the two systems introduced in the previous chapters, and performs the
modularity analysis defined in chapter 2 on them. Since increasing the modularity was
one of the main drives for the new architecture, this gives a fairly good first impression
on the successfulness of the redesign.

The complete systems containing all components that form Fusion and Test Factory have a
massive amount of modules and classes. That is why the modularity analysis is conducted
on a subset of modules that contribute to a system similar to the example system shown in
figure 1.1, which makes the scale of the research more suitable for a master’s thesis, and
makes it more feasible to perform the analysis without automated tools. The systemwe are
inspecting consists of the Test Factory core, camera driver and a stub representing the robot
driver. Robot control has been abstracted away by defining it only as RobotController in
Fusion, and RobotDriver in Test Factory context. In reality, both systems have a complex
set of modules behind that functionality. Test Factory can even use TnTClient as the
backend for robot control. From Fusion, we selected the modules that contribute to the
same functionality.

5.1 Cohesion

As defined in chapter 2.2.1, to calculate cohesion of the software architecture, we need to
measure the individual cohesion for every single method in every single class in the part
of the system which is under the analysis. Class cohesions calculated with formulas 2.1
and 2.2 are listed in table 5.1 for Fusion and 5.2 for Test Factory.

From the values listed in the forementioned tables the total cohesion of both systems can
be calculated. For Fusion it yields a score of 0.320 and for Test Factory a score of 0.598.
So Test Factory scores a significantly higher value.

Cohesion of Fusion 0.320

Cohesion of Test Factory 0.598
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Table 5.1 Cohesion of Fusion

Class Cohesion
FusionClient 0.394
FusionRobotClient 0.055
FusionCameraClient -
TnTClient 1.000
TnTRobotClient -
TnTCameraClient 0.167
RobotController -
CameraController -
Camera 0.237
Robot 0.066

Table 5.2 Cohesion of Test Factory

Class Cohesion
TestFactoryClient 0.500
DriverDispatcher 1.000
BaseDriver 0.278
TestFactoryCore 1.000
EventWS -
ControlWS -
CameraDriver 0.367
RobotDriver 0.444

There are four modules in the tables that do not have a value. This is because the classes
have no attributes, so they do not contribute to the cohesion. In Fusion’s context these
are the controller classes inside TnT Server. Those classes are implemented as cherrypy
controllers and they access all of the required objects through global functions instead
of class attributes. Measuring cohesion of a such class is not feasible with the selected
method. Instead, for each method, the signatures of the calls to those global functions
would have to be analyzed.

Fusion has classes that have a very low cohesion value (< 0.2). That is caused by the
unnecessary layers in the client-server stack of Fusion. As discussed in chapter 3.3.2,
there are several places that require changes when a new funcionality is added; this is
clearly visible in the cohesion values as these classes just pass functionality to the lower
layers and do not have any logic in themselves. Eventhough they contain a big number
of member variables, most of them are used in a single function, which uses that attribute
and nothing else.
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5.2 Coupling

Chapter 2.2.2 defines methods to calculate the total coupling of a system. Coupling for
each module in Fusion and in Test Factory are collected to tables 5.3 and 5.5, after being
calculated with formula 2.5. Descriptions for the coupling levels were shown in the table
2.1 in chapter 2.2.2.

Table 5.3 Coupling values of Fusion
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tnt_robot_client - 0 3 3 0 0 3 0 0 (3)
tnt_camera_client - 0 0 3 3 3 0 (3) 0
fusion_client - 2 0 0 0 0 0
fusion_robot_client - 0 0 0 0 0 (3)
fusion_camera_client - 0 0 0 (3) 0
controllers.camera - 0 3 3
controllers.robot - 3 3
resources.camera - 3
resources.robot -

Table 5.4 Number of interconnections in Fusion
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fusion_robot_client - 0 0 0 0 0
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controllers.camera - 15 38 7
controllers.robot - 3 42
resources.camera - 0
resources.robot -
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Table 5.5 Coupling values of Test Factory
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Table 5.6 Number of interconnections in Test Factory
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Figure 5.1 Histograms describing the distribution of coupling values of the target systems. The
blue bar represents direct coupling, and the red bar indirect coupling.

By applying the formula 2.6 we can get the total coupling of 0.527 for Fusion and 0.347
for Test Factory. The value is significantly lower for Test Factory, largely due to the client
having no direct nor indirect coupling to any of the modules in the server side.

Coupling of Fusion 0.527

Coupling of Test Factory 0.347

The histograms in figure 5.1 show how the new architecture reduces the coupling in the
system. The histogram 5.1 (a) visualizes the coupling levels in Fusion, as the histogram
5.1 (b) does the same for Test Factory. These numbers are “raw”, taken before formula
2.5 has been applied. When the numbers are considered as proportional to the number of
modules, it is clear that the amount of modules with a coupling level three has decreased,
especially when indirect coupling is taken into account.

One clear difference that is not directly visible in the numbers but is easy to spot from the
tables, is that the Test Factory achieves the same functionality with a way fewer amount
of modules. A smaller number of modules does not directly guarantee a more modular
system but it enhances the clarity and maintainability of it. The effect of indirect coupling
is also visible: even though two modules do not directly interact with each other, they are
part of a long method chain chain, all layers of which have to follow the same parameter
format. This means that the top-level client-side method in fusion_camera_client has
to know what is the parameter structure of the lowest level method in resources.camera,
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as do all the intermediate steps in between. The effect of indirect coupling in this research
was not as big as expected, though. Test Factory does not have any indirect coupling, as
its client uses dynamic attribute access and variable arguments to generate API calls, and
its class hierarchy is more flat.

5.3 Reconfigurability

The reconfigurability of the systems was not measured numerically. Instead, the recon-
figuration capabilities are judged by discussing how easy it would be to deploy the same
software with a completely different set of drivers.

TnT Server implements good configurability in itself, but the upper layers (fusion_client
in particular) expects a specific driver and hardware configuration to be present. This ren-
ders the reconfigurability of Fusion to essentially zero. Theoretically, it is possible to
leave out some hardware components while the drivers are still bundled in the system, but
that would not be reconfigurability from the software’s point of view.

Test Factory, on the other hand is reconfigurable by design. The core does not know
anything about any of the drivers, so it cannot expect anything to be present.
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6. CONCLUSION

This research aimed to answer the question: How to increase modularity and configura-
bility of a robotics system? It took two software platforms that tried to solve a similar
problem and compared them by their cohesion and coupling. The results are summarized
in the table 6.1.

Table 6.1 Summary of the research.

Fusion Test Factory
Cohesion 0.320 0.598
Coupling 0.527 0.347
Reconfigurability no yes

The new architecture was shown to increase the modularity of the system, as the amount
of cohesion increased significantly and the amount of coupling decreased a fair amount.
An equally large effect comes from the simplification the new design provided, though:
there are now much fewer modules needed to perform the same functionality and more.
These results conclude that the choice of plugin architecture was successful.

Industrial robotics and test automation were the context of this research, and their effects
on the analysis were deliberated. It was shown that the closeness to the hardware and
challenging environment of a factory line makes for a different basis to create a functional
software architecture. Error handling becomes more critical when there is a major chance
of an expensive measurement device or DUT being destroyed because of a software mal-
function.

Another target of the research was to study about the feasibility of doing the modularity
analysis to a dynamic language when there exists no compiler to automatically generate
data about the codebase. It was seen to be a lot of manual work to calculate cohesion and
coupling of modules by hand. It is sometimes hard to define how two modules are linked
to each other. With duck-typing it is possible for a module to depend on the internals of
another module, but still to be able to fallback to some other behavior when the desired
module does not have the expected internals.
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6.1 Validity of the study

There are several aspects of the research that reduce its validity. These affect the repeata-
bility and correctness of the measurements.

Firstly, instead of relying to automated tools most measurements are done by hand and
for example defining the level of coupling between two modules is purely based on the
judgement of the author. Someone else performing the research on the very same codebase
might get a slightly different results.

Secondly, Test Factory as a platform is still a work in progress and no full system has yet
been manufactured or tested. This means that the software architecture, eventhough it is
been designed fairly extensively, is still subject to change. Even minor modifications to
the architecture can massively impact the calculations performed in the previous chapter.
These changes may originate either from an internal or external need; a pilot customer
may demand a different approach, or the requirements may change from the company
side. Additionally, a new proof of concept does not have all the workarounds and hacks
that a mature system inevitably houses. Only time will tell to which direction the new
architecture will go, but at least the starting point is better than the original.

The repeatability of the research can be questioned because all of the source code in the
project is proprietary. The codebase is owned by OptoFidelity and is not available to the
public. This means that to perform the exact same research one would have to first deal
with legal issues. The author of this paper is an employee of OptoFidelity and thus has
access to all of the source code.

6.2 Further research

There is a lot of room for further research on the subject of measuring modularity of soft-
ware platfom implemented with a dynamic programming language.

Tools have been designed for Python that analyse an existing code base semantically,
one example being jedi. Jedi is a library that is designed to be used as a utility plugin
for programming editors providing auto-completion, definition-lookups, linting and basic
refactoring. It supports majority of the most used text editors and IDEs available. Its sup-
port for static code analysis could easily be leveraged in this kind of research work, as it
is able to build a semantic understanding of the codebase. Extending the tool to output
information on the modularity of the components would certainly be possible.

Python has recently introduced features that are influenced by statically typed languages.
There is now a decent support for type annotations and while they are not enforced by the
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language, they are a good hints for the programmer and makes it easier to use a library by
looking at the function declarations. As the annotations are available programmatically,
tools such as Jedi can also utilize them to provide more accurate data. Mypy-module takes
this a step further and provides a “compilation step” where it does type checking before
delivering the code.

These tools may not have a large effect on the results of the research but they would
definitely have made the modularity analysis easier. It would have at least ruled out the
human error in the measurements, and in the best case, made the analysis completely
automatic. In that case the research would be trivial to implement on a different product.
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