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ABSTRACT 
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In this work, our focus is on the real-time development of a smile recognition system on 

low resource computational devices utilizing deep learning algorithms which could be 

simply further developed to address issues in mentioned areas. 

We have primarily used the Looking at People (LAP) dataset for training and testing 

various neural network architectures. Images in this dataset have been pre-processed at 

first by acts of cropping around the facial area and face alignment. Then six pre-trained 

deep learning network architectures were finetuned for this purpose.  

The fine-tuned models were deployed on Nvidia’s embedded platform and we were em-

ploying an asynchronous design to provide smoother frame rate through parallelization 

and multithreading. Accuracy and speed of these models were retrieved letting us com-

pare them to each other and choose the most suitable ones for this task. Our research 

shows that modern low complexity architectures could almost reach the older or bulkier 

ones’ performance. 
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1. INTRODUCTION 

1.1 Background & problem overview 

An assessment of emotions in a person can be obtained from observing his//her facial 

expressions, so recognition of them would come handy and are applicable in many areas 

like making safer assisting cars, emotion detection during interviews, diagnosing psycho-

logical problems and disorders, consumer behavior research, market research, etc. There-

fore, detecting facial expression from real-time image data streams has become one fa-

vored research topic in computer vision during few past years. Many recent commercial 

technologies including Google Cloud Vision API1, Amazon Rekognition2, and Microsoft 

Azure Face API3 are primarily using cloud computing and hence unsuitable in cases that 

should provide low latency and are meant to be real time. Further, like other image anal-

ysis tasks changes in direction, brightness, illumination, and other imaging conditions 

would have effects on the results and makes it more challenging and difficult to achieve 

desired results in real-time embedded systems. 

Nowadays, deep convolutional neural networks have become a major tool in many ma-

chine learning areas like computer vision and image analysis [1]. Since Convolutional 

Neural Networks(CNN) emerge, most of the scientists have been working to increase the 

accuracy of deep neural network architectures and it is only recently that researchers have 

partially directed their focus towards more efficient and faster implementations [2, 3] that 

could be executed on embedded platforms with limited resources. Furthermore, most 

research focus on improving efficiency of individual parts of different systems and only 

a small number of them study through system level implementations. 

This thesis explains a system level architecture employing deep learning algorithms for 

smile recognition, which has several applications such as customer satisfaction measure-

ment [4] and clinical quantification of emotional state in patients [5]. This system also 

could be considered as an ideal case for designing a system level architecture. In this 

system, we would have several modules with various computational complexities such as 

frame grabber, face locator, smile recognizer, and a module for drawing and showing 

results. However, deep learning models might not keep up with other modules’ in terms 

                                                 
1 Google Cloud Vision API. Available: https://cloud.google.com/vision/. 
2 Amazon Rekognition, Amazon Rekognition announces real-time face recognition, text in image recogni-

tion, and improved face detection, https://aws.amazon.com/rekognition/, 
3 Microsoft Azure, Face API, https://docs.microsoft.com/enus/azure/cognitive-services/face/ 
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of frame rate processing, the outcome from the system should still seem to be real-time 

while depicting it. A sample output of the implemented system is illustrated in Figure 1. 

 

Figure 1. Sample outcome from the implemented system. A none-smiling face with 95% 

recognition accuracy and a smiling face with 92% recognition accuracy. [6]  

1.2 Related works & applications 

1.2.1 Related works 

First attempts for robust and fast detection of faces were done in early years of this century 

[7]. And yet many real-time face detection algorithms [8-10] are using the OpenCV li-

brary which is employing the Viola-Jones algorithm [7]. By the rise of deep learning, 

methods have been reported for detecting and recognizing faces with much better accu-

racy and in the past few years, various algorithms based on CNNs have been developed 

for face detection [11-15] and recognition [16-19].  

First implementations of facial recognition systems were based on locating several land-

mark points, e.g. eyes, ears, nose, lips, etc. Then, the relative location of these points was 

utilized for classification problems, for example, categorizing smiling and non-smiling 

faces. Recent deep learning algorithms give unprocessed pixel data from face images to 

a deep CNN as input. This representation from a cropped face area carries more infor-

mation with itself since it is retrieving information from the whole face region. 

Many works around detection of age, gender and mood employing deep CNNs have been 

done, for example [20], smile detection for image data of young children [21], and re-

cently a neural network architecture known as SmileNet [22] for smile detection. Another 

multipurpose framework HyperFace uses deep learning and is able to offer landmarks 

localization, face detection, and gender detection all at the same time [23].  

Even so, we are facing the challenge of achieving real-time execution speed for continu-

ous data where different components of our system have distinctive execution times. Sim-
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ultaneously, this system should still maintain working at an acceptable accuracy in com-

parison with post-processing systems. Traditionally Haar feature-based cascade classifi-

ers [7] is used for face and especially object detection. Besides those kinds of detectors, 

there are also several customized deep network structures only for face detection purposes 

which can run on embedded platforms smoothly. FaceBoxes is an example for detecting 

faces with high accuracy executing real-time using CPU [24], whilst LCDet provides an 

8-bit fixed-point TensorFlow detector running on top of embedded platforms [25] and 

OpenFace introduces a general-purpose library for face recognition tasks in mobile ap-

plications [26]. 

1.2.2 Applications 

Facial expression recognition has been already employed by several organizations to 

measure users’ feelings about their services in both digital and real worlds. In real-world 

scenarios, customers interact with products and services in different environments and 

these interactions are still challenging for assessing their responses automatically. Re-

trieving emotions out of facial expressions making use of ML techniques could be a fea-

sible choice for automatically measuring customers’ engagement with their services. 

Here, we explain and give examples how emotion recognition -which is the general case 

of smile recognition- can be used to address various real-world use cases competently. 

Healthcare 

From the health-care point of view, the inference of this technology is that machine learn-

ing would be an aid for doctors to trace their patients’ wellbeing by quantizing emotional 

state of patients [5]. Other possible applications in medicine include: help monitoring for 

elderly people, retrieving patient’s feelings about treatment, helping in perceiving facial 

expressions from children with autism [27]. 

Marketing 

Before this, verbal practices like surveys was used to do researches in marketing for find-

ing the customer’s needs. Although, these practices expect that customers are able to ex-

press their desires verbally and the those relate to their upcoming activities which might 

not always be true. 

Nowadays, employing behavioral practices are employed as another method in the market 

research industry for observing customers’ response towards a product or service. We 

believe these techniques are more objective than verbal ones. Video streams of customers 

could be employed while interacting with the service and then put into further inspection 

for studying their responses and feelings. Facial expression detection systems can auto-

matically measure states of facial emotions and interpret them into meaningful and sen-

sible results [4]. 
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Law 

There are situations we need to estimate emotions level in people, for example, a system 

could be employed as an integration tool with suspects of criminal activities or candidates 

for sensitive sector employment. Police departments generally are interested in using such 

systems to interrogate suspects and also analyze employees. An interviewee ‘s commu-

nication is vulnerable to many parameters like language interpretation, cognitive biases, 

and the lying context in between. AI might come handy here, it would be able to assess 

interviewee’s facial expressions to understand his/her emotions and based on them deter-

mine their personality characteristics, moods, and many other needed information. 

This system can also help recruiters. It can evaluate the overall confidence level of an 

interviewee which enables employers to decide if the interviewee is well-suited for the 

current job position or not. Such a system can be also used to find out whether or not the 

person is answering all questions honestly by screening changes in his/her emotions dur-

ing the interview. This system can also help with estimating employees’ morale by check-

ing and scanning their interactions. 

Monitoring 

Globally automobile manufacturers have made the production of safer and personalized 

cars a focus of attention. For making a car with smarter features, they make use of AI in 

perceiving our emotions. Detection of facial expressions let these smart cars notify pas-

sengers whenever the driver is feeling sleepy or suspicion of driving under the influence. 

Errors in driving cause around 95% of most fatal road accidents in the US[28]. Facial 

expression recognition would be able to detect slight changes in micro facial expressions 

that come before sleepiness, warn the driver and ask him/her to pull over for a short nap 

or coffee. 

1.3 Contributions 

In this thesis we are offering an architecture implemented on top of low resource compu-

tational environments like NVidia Jetson embedded platform and this architecture would 

be suitable for achieving real-time execution of deep learning methods in such systems. 

We deployed a smile recognition system as a sample use case and tested it employing 

thirteen deep CNN architectures using images from three well-known image datasets. To 

be specific, we studied their performances using three different computation resources: a 

desktop CPU, a desktop GPU, and Nvidia Jetson, and then we analyzed the tradeoff be-

tween their speed and accuracy. It is obvious that different network structures require 

significantly different computational power, but consequently, we concluded from our 

examinations that accuracies for many models are relatively close to each other. On one 

hand, in the image datasets we were working with the ground truth could be corrupted 
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since categorizing distinctive levels of smiling into just two ‘smiling’ and ‘non-smiling’ 

categories are difficult, and this might raise some questions about how significant they 

affect the observed accuracies. On the other hand, someone would hold that more recent 

deep CNN architectures like Mobilenets surpass the earlier ones (like VGG) in speed/ac-

curacy tradeoff, and they should not be used for real-time purposes. 

We implemented an asynchronous system capable of integrating other detection modules 

easily. The suggested system level design on top of NVidia Jetson let us reach the execu-

tion time of 27.3 fps in average which could be considered as real-time performance. 

The proposed method and implementation would offer almost three times faster pro-

cessing time than the mentioned modern smile detectors. In addition, our system’s accu-

racy is so similar to that of the modern approaches. 
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2. THEORY 

2.1 Convolutional neural network 

Convolutional neural networks (ConvNet or CNN) are a part of Machine Learning (ML) 

and more specifically a subset of deep, feed-forward artificial neural networks. They are 

majorly used in computer vision tasks, natural language processing, and recommender 

systems.  

ConvNets employ various multilayer perceptrons, besides they are recognized as space 

invariant or shift invariant ANNs because of their architecture sharing weights and sup-

porting translation invariance. The idea behind the CNNs originally came from biologi-

cal processes in which the associations and links between neurons are attempting to 

mimic the structure of living organisms’ visual cortex. CNNs are designed to use fairly 

small pre-processing in comparison with other methods developed for image classifica-

tion. This is the same as the fact that in neural networks, filters are learned and eventually 

tend to their optimum while in older methods they were hand-engineered. [29]  

ConvNets are similar to ordinary ANNs in the manner that they are made from neurons 

which are able to learn and change for new weights and biases. Every neuron accepts 

some inputs then performs a dot product operation on them and after that, a non-linearity 

module may come optionally. This kind of networks defines differentiable score functions 

in such a way that raw images, in numerical form, enter as inputs from one end and the 

function generate class scores at the other end. In CNNs There exists a loss function in 

their last FC layer [29]. As mentioned earlier CNNs structure assume that the inputs for 

the model are images. This fact lets us encode particular configurations into their structure 

and make more efficient implementation of the forward functions, then, as a result, reduce 

the number of learnable parameters enormously.  

2.1.1 Images as three-dimensional tensors 

CNNs deal with images as tensors, this means they consider images as matrices of nu-

merical values that might have more than two dimensions. One number is also called a 

scalar a and list of numbers is called a vector. A matrix consists of several vectors, with 

the same length, concatenated in the second dimension which makes a grid of scalars. We 

assume that a scalar has zero dimensionality, a vector has dimensionality one, a matrix is 

a plane and has two dimensionalities, and consequently, a bunch of matrices makes a cube 

which is three-dimensional. The fourth dimension could be defined when each element 

of these matrices is a stack of matrices. This way of nesting can continue infinitely making 

any desired number of dimensions which we are not capable of visualizing. CNNs mostly 
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deal with three-order (3-Dimensional) tensors and in Figure 2 you can see three different 

channels of a color image are presented as the depth dimension.  

  

Figure 2. 3-D tensor for an RGB image. 

Images have height, width, and depth. It is easy to understand their width and height and 

the depth means layers or channels, i.e. in RGB(Red-Green-Blue) case images are con-

sisting of three channels. Through convolution, every channel(layer) makes a bunch of 

feature maps (clarified in CONVOLUTION section), which exist in the third dimension. 

2.1.2 Definition of convolution operation 

Convolution is a mathematical operation between two functions and gives another func-

tion which outputs the integral from the pointwise multiplication of the two functions 

where one of the two first functions is translated. In another word, it is the integral of two 

overlapping functions when one passes over the other one. [29]  

 

    = 
 

 

= 
 

Mathematically convolution is considered close to cross-correlation. Convolution opera-

tion on real-valued signals can be performed by flipping one of the sequences before 

performing the correlating. A visualization of this is illustrated in Figure 3. 
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Figure 3. Illustration of comparison between convolution and cross-correlation opera-

tions. [30]  

This operation has applications in many areas of science including probabilities and sta-

tistics, image and signal processing, computer vision, natural language processing, etc. 

In image analysis tasks the input image being analyzed acts as the underlying function 

which is static and the second function which passes over the first one is known as the 

kernel or filter. This enables us to retrieve a particular feature or signal from the input 

image. 

It should be denoted that in convolutional networks many different kernels are passed 

over an individual image and each one of them is meant to retrieve a different feature. In 

the first few layers, someone could consider passing kernels associating with vertical, 

horizontal, diagonal lines to get a view from edges in the input image. 

CNNs get a map of places that a specific feature occurs by applying kernels on various 

parts of the image’s feature space. By learning different portions of a feature space, con-

volutional nets allow for easily scalable and robust feature engineering.[29]  

2.1.3 Structure 

Regular NNs receive an individual vector as input and process it through some hidden 

layers [29]. In every hidden layer, we would have artificial neurons, where each of them 

is connected to all other ones in the former layer and every neuron in any layer would 

function independently. They are not able to scale well to full large images. For example, 

consider a 224×224×3 image, it would result in neurons with 224*224*3 = 150,528 num-

ber of weights. This kind of full connectivity between subsequent layers is a waste of 

resources and this enormous number of parameters would most probably cause overfit-

ting.  
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CNNs are made of an input and an output layer, and a number of hidden layers in between. 

Typically, hidden layers in a CNN include convolutional layers, pooling layers, fully con-

nected layers, and normalization layers. They take this into account that inputs are images, 

therefore their architecture is reformed in a sensible way to serve tasks related to images. 

In general, layers in a CNN are consisting of neurons organized in three dimensions: 

width, height, depth. And we will explain soon that neurons in one layer will be connected 

just to a small area of the previous layer unlike the full connected manner in normal 

NNs[29]. The structure of regular NNs and CNNs is shown in Figure 4. 

 

 

Figure 4. Left: A regular NN with 2 hidden layers. Right: A CNN organizing its neurons 

in three dimensions (width, height, depth), as drawn in the right hidden layer. CNNs 

transform a three-dimensional volume to a three-dimensional volume of neuron activa-

tions in every hidden layer. In this figure the image is depicted in red as the input layer, 

so the dimensions of the image are the input layer width and height, and its depth is 3 

because of RGB channels. [31]  

2.2 Layers in CNNs 

2.2.1 Convolutional Layer 

This layer is the major building block of a CNN which is responsible for almost all of the 

heavy computations. 

The learnable parameters in a convolutional layer are actually making filters or kernels. 

Each kernel is small spatially in terms of width and height although it is extended as the 

input’s depth. As an example, a typical kernel size in the first hidden layer of a CNN 

would be 5×5×3, meaning it has width and height of five pixels and depth of three which 

is same as number of the color channels. For passing tensors forward between layers, 

every kernel is convolved with the width and height of the input tensor by sliding the 

kernel across the current tensor and computing products of the elements of the kernel and 

the tensor at any position. When moving the kernel all over the width and height of the 

tensor a 2-D activation map is created by collecting responses from performing that kernel 

at every position. By this, the network is able to learn kernels capable of recognizing 

particular visual features like edges in the horizontal direction or a mark with a specific 

color in the first few layers, and eventually a complete object or more generally a pattern 

in the layers that come later network. In CNNs a collection of kernels in every convolution 



10 

layer exists and each is producing a 2-D activation map. By stacking these activation 

maps after each other the output tensor from the convolution layer is made. [29]  

As we explained it is inappropriate to have connections between neurons in one layer and 

those in the following/previous in places that we are facing inputs with high dimension-

ality like images. Instead, it is better to have the connection from each neuron to a smaller 

area of the input tensor. It is up to us to choose the spatial extent of these connections and 

we call this hyperparameter neuron’s receptive field (size of kernel). The depth parameter 

for this hyperparameter is always the same as the depth of the input tensor. 

As an example, consider an input tensor with 32×32×3 size and kernel size (receptive 

field) of 5×5. Then in the convolution layer, every neuron would have weights associated 

with a region, with 5*5*3 = 75 (plus 1 bias parameter) parameters, from the input tensor. 

Because of the depth of the input tensor which is 3, the depth of this connection should 

also be 3. 

  

Figure 5. Left: A sample image tensor in red with 32×32×3 size and a set of neurons in 

the conv layer (in blue). Each neuron in this layer has connections to the full depth but 

only with a small area in the input tenor. It is notable that as in this example a number of 

neurons, in here 5, are all operating at the same area in the tensor. Right: The neurons 

still perform a dot product operation on the input and their weights and then a non-line-

arity would follow it. [31]  

It’s time to explain how neurons in the output tensor are arranged and how they affect the 

size of the output tensor. There are three hyperparameters involved in changing the size: 

the depth, stride, and zero-padding. 

1. The depth would be equal to the number of kernels we use and each of them 

would be able to look for some specific pattern in the input tensor. For example, 

if the input for one conv layer is an unprocessed image then various neurons in 

the depth axis might sense the presence of edges with different directions or color.  

2. Stride is the number of pixels that we slide the kernel at a time, e.g. when it is 1 

the kernel slides 1 pixel and when the stride is 2 then it jumps over 1 pixel (slide 

2 pixels). By choosing the stride more than one then a smaller output tensor would 

be produced spatially. 
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3. Sometimes having zeros around the input tensor border is more convenient for 

processing the input. In here, the size of the padded area with zero (zero-padding) 

acts as a hyperparameter. Zero-padding enables us to control the size of the out-

put tensor and in most cases, we try to keep its size the same as size of the input. 

The size of the output tensor could be computed using the parameters: the filter size in 

convolution layer (F), the stride size (S), the size of zero-padding used (P), and the input 

tensor size (W). We can reach the formula for computing the output tensor size: 
𝑊−𝐹+2𝑃

𝑆
+ 1. As an example, we can consider images with size 227×227×3 in the first 

layer. Then in the next layer (which is a conv layer), assume neuros have filter size (re-

ceptive field) F=11, stride size S=4, and without zero-padding (P=0). Output size of the 

first convolution layer will be a tensor with (227 - 11)/4 + 1 = 55 size spatially. Again, 

assume the depth of the convolution layer is K=96, therefore, the output tensor would 

have the size of 55×55×96 and then each neuron (among these 55*55*96 neurons) would 

be connected to a part of the input tensor with the size of 11x11x3. Figure 6 is an illus-

tration of a convolution operation with W=5, F=3, S=2, and P=1. 

 

Figure 6. Applying con-

volution operation on an 

input tensor with size 

5×5×3 (with padding it is 

7×7×3) and the output 

tensor will be in 3x3x2 

size since number of fil-

ters (each filter is in 

3×3×3 size) are 2. [31]  

 

 

Now we can discuss parameter sharing in convolution layers which helps a lot in reducing 

the number of parameters. In the above example, in the first convolution layer, we had 

55*55*96 = 290,400 neurons and each of them has 11*11*3 = 363 weights (plus one 

bias). Easily we can see only on the first layer of the convolution layer we have 

290,400 * 364 = 105,705,600 parameters which obviously is a very large number. [29]   

We would be able to reduce the number of parameters to a considerable extent by making 

only one simple assumption and that would be: constraining neurons that are in one depth 

slice to have the same weights. This is originated from the idea that if a feature is useful 

at a specific position, then it is also useful in other positions. For example, consider a 

2-D slice depth wise (e.g. we have 96 depth slices in a tensor with 55×55×96 size and 
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every one of them is in 55×55 size). Now in the last example and in the first convolution 

layer, for all depth slices, we would have 96*(11*11*3 +1) = 34,944 parameters. [29]  

It is notable that assuming parameter sharing would not always be the best choice. Espe-

cially in situations that input images have certain information in specific locations, e.g. 

where images consist of faces in the center of them. We might expect that the network 

might learn facial features and their existence in specific places. In here, it is usual to 

relax parameter sharing meaning that allowing the network to search for a feature only in 

a particular area. 

Backpropagation is another term in convolution layers that needs explanation. ANNs are 

similar to newborn babies in the essence of the fact they are uneducated and untrained in 

the first place, and when they are exposed to the outside world it is then that they eventu-

ally become aware and skilled. The world is expressed in form of data. By attempting to 

train an ANN with a specific dataset, indeed we are trying to reduce its ignorance and we 

can assess its progress by calculating the number of errors it made. [32]  

It is an ANN’s weights that enables it to grasp knowledge about the world, they modify 

input tensor’s information while it's moving towards the network’s last layer who is re-

sponsible for making a decision about the first input tensor. When the network is imma-

ture, its decisions are mostly wrong since the weights, that is altering the input in different 

layers, are not optimized. It is clear that these parameters (weights) are correlated with 

the error rate in the network and by changing them the error rate changes as well. An 

optimization algorithm, gradient descent, is employed to alter these parameters. This 

method comes handy when we want to find the minimum of a function. Our main inten-

tion here is to reduce the error as much as possible, which is a function called loss function 

or objective function. The input data is sent through the network’s weights towards its 

last layer for decision making, and after that network sends back (backpropagate) error 

information through the network towards its first layers for modifying its weights. [32]  

A gradient is a slope that can be shown a relation among ‘x’ and ‘y’ and we can estimate 

its slope. In here, ‘x’ is dependent on the weights and ‘y’ would be the error made by the 

network. By this, we will have changes of ‘y’ with respect to ‘x’ and will be able to get 

closer to the minimum value for the error by using differential calculus and taking the 

partial derivatives of each parameter contributing in error changes. 

Deep CNNs are prone to suffer for the vanishing gradient problem. This would happen 

when we want to train an ANN model employing optimization techniques based on the 

gradient.  In general, when we add more hidden layers to the network, it helps the network 

in learning more complex functions and patterns and then letting it predict results with 

better precision. Then we employ the back-propagation method to calculate gradients of 

error with respect to the weights, the gradients will eventually get smaller when moving 

backward in the network. This causes the learning rate of neurons in the preceding layers 
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to be small in comparison with the neurons in the later layers. Neurons in the preceding 

layers are important to the model since they detect and learn the simpler patterns. So, if 

they generate inaccurate outputs then the next layers and therefore the whole network will 

not be able to predict accurately. [33]  

1×1 convolution is the last idea from convolution layers we cover in this part. Some peo-

ple, especially those with signal processing background get confused when they are told 

about 1×1 convolution. The reason is that typically a signal is 2-D, so 1×1 convolution 

operation on a 2-D signal would be equivalent to normal multiplication. Although in con-

volution networks, it is different since the operation is performed on 3-D tensors, which 

means the depth for the 1×1 convolution would be extended as the depth of the input 

tensor and as discussed before, the output tensors depth would be equal to the number of 

filters convolved with the input tensor.  

2.2.2 Pooling Layer 

Pooling layers could be inserted periodically between convolution layers in a network. 

They gradually decrease the size of the input in order to have fewer parameters, as well 

as avoiding overfitting. This Layer operates individually on all depth slices of the input 

tensor and resizes it, usually using the MAX operation for this purpose. A pooling layer 

with 2×2 sized windows (filters) with stride 2 is the most common one which downsam-

ples the input tensor in all of its depth slices by 2 along both width and height (keeping 

only 25% of the activations). In this case, the third dimension (depth) does not change 

and the MAX function would be operated over a small 2×2 area [31]. Some details about 

the pooling layer could be listed as below:  

• Their input is a 3-D tensor in 𝑊𝑖 × 𝐻𝑖 × 𝐷𝑖 size. 

• They have two hyperparameters: their spatial size (F) and stride (S). 

• They will make a tensor in size Wo×Ho×Do: 

o Wo = 
Wi-F

S
+1 

o Ho=
Hi-F

S
+1 

o Do=Di 

• It does not add any parameters. 

Other than max pooling function, there are other functions that a pooling layer can per-

form like average pooling or L2-norm pooling. It has been shown that max pooling oper-

ation gives more accurate results in practice than the average pooling was employed tra-

ditionally. In Figure 7 you can see some visual demonstration from pooling layers. 
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2.2.3 Activation function and ReLU layer 

Like other ANNs, in CNNs we also employ activation function to produce a non-linear 

output. In a CNN, the output tensor from convolution layers is sent to the activation func-

tion, e.g. ReLU, Sigmoid, and SoftMax activation functions. 

Rectified Linear Units or ReLU layer performs a non-saturating activation function, 

which is defined as f(x)=max(0,x), and the size of the tensor would also be kept same. 

This helps in having a decision function and overall the network with more nonlinear 

characteristics. ReLU is used more than other activation functions since it is much faster, 

and it does not have a major drawback or effect on generalization factor. [31, 34]  

The Sigmoid function generates a curve, which visually looks like a ‘S’. This function is 

used mainly for the reason that it always exists between zero and one. So, it is useful 

particularly when we out to predict the probability of an event. In Figure 8 the sigmoid 

function curve and its mathematical formula are presented.  

 

Figure 8. Sigmoid activation function. [35]  

 
 

Figure 7.  Left: The input tensor with 224×224×64 size is passed through pooling layer 

with F=2 and S=2, as a result, the output tensor will be in 112×112×64 size. Right: The 

most used downsampling method is the max, and now it is used to pool the input with 

again F=2 and S=2. Then max of every 2×2 square is computed and replaced with that 

square. [31]  
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The Sigmoid function is differentiable, which enables us to find the Sigmoid curve’s slope 

at any position. 

It is worth mentioning here that the SoftMax activation function is a more generalized 

form of the Sigmoid activation function and it is employed for multiclass classification. 

2.2.4 Normalization Layer 

In image process and signal processing field, ‘normalization’ is also referred as histogram 

stretching or contrast stretching. Several kinds of normalization layers have been em-

ployed and suggested to normalize the input in CNN architectures. These layers are not 

so popular anymore since in practice they have very little contribution. [31]  

2.2.5 Fully-connected layer 

In fully-connected (FC) layer we are evaluating the class scores vector, which is the same 

length as the number of classes. And like regular ANNs, every neuron in the FC layer has 

connections with all the activations in the former layer. Therefore, their activations are 

calculated using matrix multiplication. [31]  

These transformations from input images to vector of class scores in FC layers are a func-

tion of both activations in the input tensor and also weights of neurons. Gradient descent 

is used in this layer for learning the weights and biases, so the class scores evaluated by 

the CNN are compatible with the labels for the images in the training set. 

So, Convolutional Neural networks could be summarized as this: 

• CNN structures are based on multiple layers stacked along each other which ins 

simplest case is transforming the image input into an output tensor like a vector 

of class scores. 

• Various kinds of layers exist, and the most common ones are Convolution, Nor-

malization, Activation(ReLU), Pooling, and Fully connected layers. 

• Some layers have parameters, and some do not. For example, convolution or FC 

layers have and activations (ReLU) or pooling do not. 

• Some layers have additional hyperparameters, and some do not. For example, 

convolution, FC, and pooling layers have and activations (ReLU) does not. 

• Layers receive a 3-D tensor as input, process it and produce another 3-D tensor as 

output. 
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2.3 Major building blocks of CNNs 

As described before we can think of Convolutional Neural Networks as a specific type of 

ANNs with multiple layers which are meant for computer vision tasks like recognition of 

visual patterns in RGB images with minimum effort and pre-processing. 

A major part of recent progress in deep learning algorithms related to computer vision 

area could be outlined as several neural network architectures. So, in this section, we will 

give an adequate explanation about different blocks contributing in a few numbers of 

these CNN architectures such as ResNet, Inception, VGG, Xception, Inception-resnet, 

and in more efficient ones like Mobilenet that we used in our experiments. 

In this part, we explain what the most common building blocks of the efficient ANN 

architectures before are before explaining any particular CNN architecture. We would see 

the computational cost of these blocks and check how they differ from the original con-

volution operation.  

 

Figure 9. Convolving a= 3-D input tensor with a 3-D filter. [36]  

In Figure 9 the size of the input, a tensor is equal to H×W which has N channels. Con-

sider M number of convolution kernels in size of K×K with depth size of N. the result-

ing output tensor from this convolution operation will be in size of H×W with M chan-

nels. This is a normal convolution operation which would have the computational cost 

of H*W*N*K²*M. 

The key point in the standard convolution operation is that the computational cost is pro-

portional to the size of the input tensor (H×W), the size of the filter (K×K), depth of these 

two (N), and the numbers of filters (M). We can speed up this process in CNNs by fac-

torizing this convolution which will be explained soon. 

2.3.1 Depthwise convolution 

In the standard convolution, we perform the operation over multiple channels by making 

use of filters with the same depth as the input tensor. In the Depthwise we convolve 2-D 
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filters with each depth slice of input tensor individually[37]. This is shown the upper part 

of Figure 10. 

 

 

Figure 10. Up: Depthwise convolution. Down: Pointwise convolution. [37]  

2.3.2 Pointwise Convolution 

Pointwise convolution is same as 1×1 convolution where as shown in downer part of 

Figure 9, we convolve each pixel (1×1 element) including all of its channels with a filter 

in size 1×1 with the same number of channels. Primary characteristics of this operation: 

Changing the dimensionality and also enables us to apply nonlinearity afterward again. 

An example might make it clearer: if we have an input in size 224×224×3 and we apply 

pointwise convolution with 10 of the 1×1 filter, where each has depth 3, then we will have 

output with 224×224×10 size. 

2.3.3 Depthwise separable convolution 

This type of convolution which is used in many architectures is consist of both depthwise 

convolution and respectively pointwise convolution. Multiple outputs from the depthwise 

convolution layer would be stacked to each other making a 3-D tensor which is the input 

for the pointwise convolution layer. Then the pointwise convolution layer takes this 3-D 

tensor and applies coevolution operation with multiple 1×1 filters resulting in an output 

with the same size but with the desired depth. The block which is used in Inception net-

work is also similar with this block, the difference is that in here at first, we apply depth-

wise and then pointwise convolution, while in Inception module we apply the pointwise 
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convolution first. Usually, depthwise separable convolutions are used without non-line-

arities [37]. Recently this method has become interesting to researchers working in deep 

ANNs area since: 

1. It will produce fewer parameters than standard convolutional operation, so it needs 

fewer computations and thus it would be faster and cheaper.  

2. Since it has fewer parameters, the model will be less prone to overfitting. 

Now we can check the difference between the computation cost of standard and this type 

of convolution. We assume: 

• H×W: Input’s dimensionality. 

• K: Width/height of the filter. 

• N: Number of input channels. 

• M: Number of output channels. 

As mentioned before, in a standard convolution the computational cost is H*W*N*K²*M. 

In depthwise convolutions, for each channel, the computational cost is H*W*K² and  

then in total in the depthwise layer, the number would be H*W*N*K². And in the  

pointwise convolution layer, the computational cost would be H*W*N*M. It is obvious 

that the sum of these two is significantly smaller than in standard convolution:  

H*W*N*K²*M >> H*W*N*K² + H*W*N*M = H*W*N*(K²+M). 

2.3.4 Inception module 

The idea originally comes from the fact that we have to choose what type of convolution 

should be used in each layer, i.e. a 3×3, a 5×5 or 7×7? Another solution is that to have all 

of them and let the model choose between them. This would be possible by performing 

each of those convolutions in parallel and then stack results to make a new feature map 

as input for the next layer [38]. A single inception module is shown in Figure 11. 

 

Figure 11. Inception module.[38]  
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As you can see we have various convolutions, e.g. we would use a 3×3 max pooling 

beside 1×1, 3×3, and 5×5 convolutions. The max pooling operation is part of the Inception 

module just because traditionally accurate networks have pooling. When convolutions 

become larger, they also become more computationally expensive, so in the Inception 

module at first, a 1×1 convolution operation is performed to reduce the dimensionality of 

the input feature map, and then pass it through a ReLU. Now we are able to perform the 

larger convolution with less computational cost on the result.  

2.3.5 Residual block 

When the depth of a network increases, its accuracy gets worse and then it reduces 

quickly. surprisingly this reduction in accuracy is not because of overfitting and stacking 

more layers to such models would result in a higher error during training.  

The inventors of ResNet try to address this issue by making a single hypothesis: it is 

difficult to learn direct mappings. So they suggested: Instead of expecting that some lay-

ers could estimate the desired underlying mapping function, they offer that these layers 

estimate a residual function  F(x) = H(x)-x. therefore the original mapping could be de-

rived by a simple adding operation: F(x)+x. The idea behind this method is that it is easier 

to optimize this residual mapping than the original one. As the extreme case consider that 

for making an optimal identity mapping, it is more efficient and accurate to move the 

residual to zero than approximating an identity mapping by several nonlinear layers[39].  

The two types of this block are depicted in Figure 12. 

 

Figure 12. Left: ResNet block with two layers (ResNet 18, 34) 

Right: ResNet block with three layers( ResNet 50, 101, 152) 

Acknowledging the mentioned core blocks of neural networks, now we discuss mostly 

used neural network structures. 
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2.4 Mostly used neural network architectures 

2.4.1 VGG16  

This architecture of neural networks makes some improvement over the state-of-the-art 

method prior to it, Alex Net, by substituting large filters, i.e. size of 11 and 5, with several 

3×3 filters. When the receptive field is clear then stacking a number of smaller kernels 

works better than a larger size one since they increase the model depth and therefore 

allowing it to learn more complex features efficiently [40]. The network architecture is 

shown in Figure 13.  

 

Figure 13. VGG-16 structure.[41]  

VGG-16 [40] architecture is simpler than ones developed recently as it does not have 

many hyperparameters. In convolution layers, it is mostly employing 3×3 sized kernels 

with stride 1 and in pooling, layers 2×2 kernels with same padding and stride 2. At the 

beginning of VGG structure hierarchy, the width of the network is 64 which is relatively 

small and this increases after each pooling layer by factor of two and three fully connected 

layers come in the end after all the convolutional layers. This structure achieved the ac-

curacy of 92.3 % on ImageNet. 

2.4.2 Mobilenet   

The core block in the MobileNet [3] structure is depthwise separable kernels that we in-

troduced earlier as Depthwise Separable Convolutions. The structure of the network itself 

is playing a significant role in boosting the performance and it is shown in Table 1. 
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There are two additional hyperparameters in Mobilenet: Width Multiplier which is em-

ployed to reduces the number of the channels and the Resolution Multiplier which is em-

ployed to reduce the spatial size of the input image [3]. There is a trade-off between ac-

curacy and latency and we can tune those two hyperparameters to achieve a balanced 

result.  

Table 1. Structure of MobileNet. [42]  

 

In summary, Mobilenet structure is mainly contributing in two ways:  

• MobileNet architecture is suitable for computer vision applications executing 

on mobile phones or embedded devices since it is an efficient deep neural net-

work structure based on a streamlined architecture making use of depthwise 

separable convolutions. 

• MobileNet architecture has two simple hyperparameters that establish an effi-

cient trade-off between accuracy and latency. 

2.4.3 Inception V3   

An ANN architecture was constructed by using the inception module. If we assume we 

have an Inception module in the next layer as well, then as explained before, each feature 

map would be passed through a combination of convolution operations and all results 
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would be concatenated to make an input for the next layer. This structure of a network 

would enable the model to understand both high abstracted features and local features by 

making use of bigger convolution filter sizes and smaller convolution filters respectively. 

It is obvious that the Inception V3 [43] has a pretty deep structure and like any other very 

deep network, it is prone to the issue of vanishing gradient. 

In Figure 14 A you can see the structure of this model. Authors [43]  presented an auxil-

iary classifier. They performed SoftMax to the result from one of the inception modules 

located about in the middle of layers’ hierarchy and calculate its loss which we can call 

auxiliary loss. The total loss function would be calculated as a weighted sum of the real 

loss in the last layer and the auxiliary loss. 

For reducing the computational costs, in this structure, 7×7 and 5×5 convolutions are 

factorized to a couple of smaller convolution operations. This might look counterintuitive 

but a single 5×5 convolution operation is approximately 2.8 times slower than one 3x3 

convolution. Therefore, concatenating two separate 3×3 convolution operations helps in 

boosting the performance. This is depicted in Figure 14 B. 

As shown in Figure 14 C convolution of a filter with n×n size is factorized to a mixture 

of n×1 and 1×n convolutions. For instance, a 3×3 convolution operation is the same as 

performing a 1×3 convolution at first and then a 3×1 convolution operation on the previ-

ous result. This way of expanding convolution is approximately 33% faster than one 3×3 

convolution. 

In Figure 14 D you can see that this model is expanding the filter banks by making them 

wider, i.e. not deeper, to avoid loss of data. It means if the module becomes deeper, the 

model will suffer from excessive dimension reduction which is equivalent to information 

loss. 
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A. Inception V3 structure. 

 

B. 5×5 convolution factorized to two 3×3 convolutions. 

 

C. Converting the n×n convolution to 1×n and n×1 

 

D. Making filter banks wider rather than deeper 

Figure 14. Inception network and its modules.[38, 44]  
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2.4.4 ResNet-50  

Looking at the residual block that is employed in ResNet-50 [45] is a good place to start 

studying this model and comparing it to other ones. 

As shown in Figure 15, residual blocks in this model are made of 1×1, 3×3, and 1×1 

convolution filters. At the beginning of this block, a 1×1 convolution reduces the dimen-

sionality of the input tensor, which helps a lot in the computational cost of the following 

3x3 convolution which is relatively expensive. The last 1×1 convolution is responsible 

for recovering the dimensionality of the output tensor. 

 

 

Figure 15. Left: Resnet building block. Right: Connections in this block. [36, 45]  

Each of these blocks in this architecture is made up of a sequence of layers and there is a 

shortcut adding the input tensor to the output tensor. While performing this element-wise 

add operation if the input size is different than the output size, 1×1 convolutions or zero-

padding should be employed to match their dimensions.  

In practice, this method works notably well. Before this deep ANNs usually suffered from 

the vanishing gradients issue, where gradients from the loss function reduce exponentially 

while they were backpropagated to preceding layers in the hierarchy. In fact, in practice 

when the errors moved backward to the preceding layers, they have become such small 

that makes the learning procedure impossible for the network.[45]  

The gradient in ResNet architecture is able to move back to preceding layers using the 

shortcuts, and this enables us to build deeper networks, i.e. with 50, 100, 150, and even 

1000+ layers, that still operate stunningly good.  

This architecture of ANNs was a major breakthrough after its previous state-of-the-art 

method, GoogleNet/Inception V1, which had 22 layers and won ILSVRC 2014 challenge. 

It fundamentally changed our understanding of ANNS and their learning mechanism. 

2.4.5 Inception-resnet V2  

Inception-ResNet V2 [46] is a CNN engineered by Google researchers in hope of 

progressing in the field. This model actually reached higher accuracy on the ILSVRC 
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image classification benchmark. In short, it is a version of the Inception V3 architecture 

that is borrowing the main idea of residual blocks. This idea enables shortcuts between 

some layers and therefore training deeper and deeper ANNs with better performance [46].  

This has also helped the Inception blocks to be simplified. 

 

Figure 16. Inception-resnet V2 architecture. [44]  

You can see the complete network on top of Figure 16, which is noticeably deeper than 

the original Inception V3. You can also see in the downer part of this figure, which has 

the residual blocks compacted in one block, that the inception blocks are simpler than the 

original Inception V3 and they have fewer parallel connections. 

The authors claimed that this model is more accurate than its previous state of the art 

model while it only needs about twice the computational power and memory than the 

original Inception V3. 

2.4.6 XCeption  

The module shown in Figure 17 is the major building block of Xception [47]. This module 

there is a pointwise convolution and then a separate convolution on each depth slice. This 

process is almost same as depthwise separable convolution and there exist only two slight 

differences between them: First is the order of the two operations and the second one is 

that in this module these operations are followed by ReLU non-linearity. Having convo-

lutions for every output channel of the 1×1 convolution could be considered as an extreme 

version of Inception module and that is the underlying idea for naming ‘Xception’ archi-

tecture which means ‘Extreme Inception’. [47]  
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Figure 17. Xception module. [47]  

The Xception architecture is illustrated in Figure 18 which shows this model is simply 

series of separable convolution layers which are also bundled with residual connections.  

 

Figure 18. Xception architecture. [48]   
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3. TOOLS AND METHODS 

In this study, we have used TensorFlow framework as the backend and on top of that, 

Keras API for developing and implementing our smile recognition system, with Python 

programming language, in low resource environments and devices. In this section at first, 

we will explain these two popular libraries and then describe two other steps of prepro-

cessing images and system level architecture. 

3.1 Frameworks and APIs 

3.1.1 TensorFlow 

TensorFlow1 is a framework developed by Google for machine learning purposes and 

more specifically designing and building of deep learning models. The first client pro-

gramming language that TensorFlow supports was Python but currently, many of its func-

tionalities have been moved into the TensorFlow core which is implemented in C++, 

therefore other programming languages could be used through their foreign function in-

terfaces to call the C API for having TensorFlow functionality. 

TensorFlow at its core is a library for dataflow programming. It is employing several 

optimization techniques to transform mathematical operations and calculations into more 

efficient and easier ones. The main task of TensorFlow library is to do numerical compu-

tations making use of data flow graphs in which nodes are representing mathematical 

operations and the data, which mostly is multidimensional tensors, is represented as the 

edges which are the connections between nodes. TensorFlow key features could be sum-

marized as this: 

• It is capable of doing mathematical operations efficiently on tensors or multi-

dimensional arrays. 

• Supports deep ANNs and other machine learning methods widely. 

• It is capable of executing a program on both GPU and CPU. 

• It is highly scalable in terms of splitting computations across multiple ma-

chines and also extra-large sets of data. 

As you probably have noticed, Google got the name for ‘TensorFlow’ from the operations 

that are performed on tensors in ANNs. And now we explain basic concepts involved in 

TensorFlow. 

 

                                                 
1 https://www.tensorflow.org 
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Tensors 

A tensor could be considered as a general form of vectors and matrices which might have 

high dimensionality. Internally, TensorFlow represents tensors as n-dimensional arrays 

of base datatypes. Tensors major specifications are explained below. 

1. Rank 

The number of a tensor’s dimensions is its rank which is also called degree, order, 

and n-dimension. This is important to notice that rank in TensorFlow tensor is not 

equivalent to the rank defined for matrices in mathematics. Table 2 is showing  that 

tensor’s different ranks in TF correlate to which mathematical concept: 

Table 2. Ranks in TensorFlow 

Rank Mathematical form 

0 Scalar (magnitude only) 

1 Vector (magnitude and direction) 

2 Matrix (table of numbers) 

3 3-dimensional Tensor (cube of numbers) 

n n-dimensional Tensor 

2. Shape 

The number of elements in every dimension of a tensor is called its shape. Shapes 

of tensors are calculated during construction of graphs in TensorFlow. In the Ten-

sorFlow documentation, three notations are used to express dimensionality: shape, 

rank, and dimension number. Table 3 explains the correlation between them. 

Table 3. Shapes in TensorFlow 

Rank Shape Dimension number 

0 [] 0-D 

1 [D0] 1-D 

2 [D0, D1] 2-D 

3 [D0, D1, D2] 3-D 

n [D0, D1, ... Dn-1] n-D 
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3. Data types 

In TensorFlow, a data type is assigned to tensors and you cannot have multiple 

data types for a tensor, however, it is possible to convert different data types 

to strings and store them a tensor. You also can cast tensors one datatype to an-

other, inspect a tensor data type, and specify the datatype when making a new ten-

sor and if you don't, a datatype by which the data could be represented would be 

chosen automatically by TensorFlow. TensorFlow transforms Python integers to a 

type defined by TensorFlow itself, tf.int32, and floating points to tf.float32 Ten-

sorFlow type and other data types are converted with the same rules as are used 

for array conversions in Numpy library. 

Data Flow Graphs 

TensorFlow Core includes two separate parts. First building the computational graph and 

then by using a session it runs that computational graph. A computational graph has been 

illustrated in Figure 19.  

 

Figure 19. Data flow graph. 

Dataflow graphs in TensorFlow are one big advantage in TensorFlow which is allowing 

separation of the execution model from the execution itself, which could be performed 

on GPU or CPU. It is also good that there is no explicit need to instantiate Graph objects 

when building the computation graph. As mentioned earlier a computational graph is a 

number of operations formed as a graph. This graph is made of two kinds of objects. 

• Operations that consume and produce tensors and perform calculations. They 

are nodes of the graph. 

• Tensors that flow through the graph and represent the values. They are edges 

in the graph. 
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Now let’s first look at few lines of code in TensorFlow: 

import tensorflow as tf 
 
# Initializing two constants 
C1 = tf.constant([1,2,3]) 
C2 = tf.constant([4,5,6]) 
 
# Add 
R = C1 + C2 
 
# Printing the result 
print(R) 

In the above code snippet, we have defined constants. There are two other value types in 

TensorFlow. Firstly, the variables that their values can be changed and secondly place-

holders that are unassigned values and would be initialized when we run the session. No-

tice that we need to feed the placeholder tensor with data during the session runtime and 

if we forget to do so the placeholder generates an error. The major advantage of using 

placeholders is that they enable developers to create operations and therefore the compu-

tational graph itself; So, there would be no need in delivering the data to the graph in 

advance and TensorFlow can fill with the data received from external sources during ex-

ecution time. 

TensorFlow has a lazy evaluation and it means the output of these lines of code is an 

abstract tensor from the computational graph and the result has not been calculated actu-

ally. The code has defined the model only and does not compute the result. For retrieving 

the actual result, we should run this code within a session as demonstrated here: 

import tensorflow as tf 
 
# Initializing two constants 
C1 = tf.constant([1,2,3,]) 
C2 = tf.constant([4,5,6]) 
 
# Add 
R=C1,C2 
 
# Initializing the Session 
S = tf.Session() 
 
# Printing the result 
print(S.run(R)) 
 
# Closing the session 
S.close() 

“A Session object encapsulates the environment in which Operation objects are exe-

cuted, and Tensor objects are evaluated.” is the explanation given about sessions in the 

TensorFlow documentation.1 

                                                 
1 https://www.tensorflow.org/api_docs/python/tf/Session 
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3.1.2 Keras 

The main idea behind creating Keras1 was enabling fast experimentation leading to the 

transformation of ideas to results with no frustrating delay. So, it could be explained as a 

high-level API for neural networks in Python programming language which runs on top 

of different backends including TensorFlow, Theano2, Microsoft Cognitive Toolkit 

(CNTK)3, and Amazon is working on creating a MXNet4 backend currently. Keras em-

ploys TensorFlow by default for manipulating tensors. 

There are plenty of deep learning frameworks so why does someone prefer to use Keras 

than other alternatives? Here we mention some areas in which Keras is favored among 

developer. 

• Keras is a user-friendly API designed for human beings. It provides simple and 

consistent APIs and clear feedbacks for user errors. That is why we say Keras 

is easy to use or learn. Users would become more productive since Keras al-

lows faster implementation of their ideas. 

• It supports modular programming. In Keras a model is assumed as a series of 

modules which are fully configurable and able to be attached together with the 

least possible restrictions. In total, all layers including neural layers, loss func-

tions, activation functions, regularization schemes, optimizers, and initializa-

tion schemes are independent modules that could be mixed in diverse ways to 

develop new architectures of ANNs. 

• It is easy to extend which means we can simply add new modules, as new 

functions or classes.  

• It is flexible in terms of integrating with lower-level deep learning APIs, in 

particular, TensorFlow, and this lets us develop things that one could build 

using the lower-level API. In addition, A Keras model would be portable across 

all backends just if it uses built-in layers. This means if we train a model using 

one backend then we would be able to load it with another.  

• Models are expressed in Python language which makes the debugging process 

easier and also there would be no need for individual configuration files for 

declaring models. 

• It is easy to deploy the models created in Keras across a wide range of plat-

forms: on iOS using Apple’s CoreML5, on Android using the TensorFlow An-

droid runtime, on browsers using GPU-accelerated JavaScript runtimes such 

as Keras.js6 and WebDNN7, on Google Cloud using TensorFlow-Serving8, on 

a Python web application backend like a Flask application, on the JVM using 

                                                 
1 https://keras.io/ 
2 http://deeplearning.net/software/theano/ 
3 https://www.microsoft.com/en-us/cognitive-toolkit/ 
4 https://github.com/awslabs/keras-apache-mxnet 
5 https://developer.apple.com/documentation/coreml 
6 https://transcranial.github.io/keras-js 
7 https://mil-tokyo.github.io/webdnn/ 
8 https://www.tensorflow.org/serving/ 
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DL4J model import provided by SkyMind1, and on embedded devices such as 

Raspberry Pi2 and NVIDIA Jetson. 

• We can train Keras models on different platforms including CPUs, NVIDIA 

GPUs, Google TPUs using TensorFlow backend and Google Cloud, and using 

the PlaidML3 Keras backend with OpenCL-enabled GPUs. 

• Keras supports training via distributed platforms and multiple GPUs, e.g. it has 

built-in support for data parallelism on multiple GPUs, or we can convert mod-

els in Keras to TensorFlow Estimators and then train them using clusters of 

GPUs, and it can also be run on top of Spark via Elephas4 and Dist-Keras5. 

By November 2017 Keras had over 200,000 individual users which rank second after 

TensorFlow itself in terms of being employed among both the industry and the research 

community, and it should not be neglected that Keras is usually used with TensorFlow 

backend. [49]  

Keras is used by many famous products like Netflix, Uber, Yelp and by many startups 

using deep learning. Figure 20 is showing that Keras ranks second in terms of a total 

number of mentions in scientific papers published in arXiv6 and therefore is also popular 

among deep learning scientists. [49] 

 

 

Figure 20. Use of Keras framework among researchers. [49]  

                                                 
1 https://deeplearning4j.org/model-import-keras 
2 https://www.raspberrypi.org/ 
3 https://github.com/plaidml/plaidml 
4 https://github.com/maxpumperla/elephas 
5 https://github.com/cerndb/dist-keras 
6 https://arxiv.org/ 
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3.2 Image pre-processing (geometrical transformations) 

For training, any machine learning model data is needed and as mentioned earlier we 

employed a couple of image datasets for training different neural network architectures 

in order to create models capable of smile detection. All the images we used were not 

fully annotated and therefore need pre-processing. This made us perform firstly face de-

tection algorithms on the face images enabling us to retrieve salient parts in the images, 

i.e. the rectangles surrounding faces. Another employed method that helped us to achieve 

higher accuracy in the final result was face alignment. In this section, we would explain 

these two steps of image processing in more details. 

1) Face Detection: First step in detecting smile is, of course, finding the location of the 

face in an image. Because of computational power restrictions we had on the chosen plat-

form, we decided to use the classical and fast Viola-Jones detector [7] in the deployment 

stage. As far as our goal was to implement a real-time detector, lower accuracy of this 

method would not be a significant issue since a few numbers of missed detections is not 

critical within a sequence of frames.  

It should be considered that it was not crucial to us to reach a good execution speed during 

the training procedure, therefore we employed a more sophisticated face detector [50] in 

this phase in order to take the most out of the training images. Using two different algo-

rithms for training and deployment stages would not make any problem since this step is 

followed by the alignment step which would compensate for their different behavior. 

2) Face Alignment: An essential part of the proposed smile detection system is face align-

ment. Face alignment is an act of normalizing the input face image in a way that various 

parts of the face are always at the same relative location. This lets the network to trust 

that for example lips are all the time at the same location in different images. This method 

also takes care of distortion issues images might suffer from such as rotation and scale 

which most probably would lead to drops in the accuracy. 

The employed alignment method is well suited for real time applications. For reducing 

consumption of computational power in this method, we used a landmark-based approach 

[51] which locates the position of a predefined number of landmarks with an ensemble of 

regression trees and then matches a reference landmark set [52] with the obtained ones. 

Figure 21 is depicting the landmark template set that we used here, which was retrieved 

from the landmarks of a randomly selected training image and then normalized to have 

horizontal symmetry. A symmetric landmark set allowed data augmentation by left right-

flips for training images. The alignment procedure could be described as an affine trans-

formation matrix which would look like this in homogeneous coordinates: 
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Figure 21. Pairs of symmetric landmarks for alignment are connected by dashed lines. 

As you can see in Figure 22, if an affine transformation is too intense visually we have 

found out the geometry of faces in output image could suffer from distortions which 

would lead to degradation in accuracy. Therefore, a suitable similarity transformation is 

needed that has more restrictions than a full affine transformation. The allowed transfor-

mation in the proposed alignment method are an only rotation, scaling, and translation 

and not shearing. Moreover, we avoid considerable extent of distortions by calculating 

the ratio of the maximum and minimum eigenvalues from the employed transformation 

matrix. So, if the ratio is more than 2 we do not perform the transformation [52]. 

  

  

  

Figure 22. Left: Aligning images without restrictions. 

Right: Face alignment with restrictions. 
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3.3 System level architecture 

Our target platform for the smile detection system is an embedded device named NVidia 

Jetson TX2 with six ARM CPU cores and an embedded GPU with 256 CUDA cores. In 

addition to this device, we deployed the system on a Desktop computer with and without 

a GPU for the sake of comparison whose results and benchmarks are given in the exper-

imental section.  

Implementation of the smile detection system is based on asynchronous communications 

and multithreading which allows computation parallelization. The software architecture 

of our system, which is shown in Figure 23, includes a main thread and couple of worker 

threads, each of which is responsible for a specific task in the pipeline, i.e. grabbing, face 

detection, smile detection, etc. All worker threads are instantiated within the main thread 

and asynchronously poll frames from a stresam of frames. When a worker thread requires 

a frame then it would get access to the most recent one provided by the main thread 

through a shared data structure between threads. Additionally, all grabbed frames have to 

meet the necessary prerequisites, e.g. all frames should be processed during the face de-

tection step and the passed to other threads. Worker threads would attach the output of 

their process into the frame.  

 

Figure 23. Software architecture diagram for the smile detector. 
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The boxes drawn with a dashed outline, in Figure 21, are some potential future extensions, 

such as age detection, that could be added to the system easily thanks to its modular ar-

chitecture. The modularity architecture also allows balancing the task loads by prioritiz-

ing the threads and by allocating more workers for a crucial task.  

As said earlier threads communicate with each other asynchronously and therefore there 

would be no need that they start and finish computations at the same time. As far as all 

threads are performing almost at the same speed, the system is stable and is able to grab 

and draw frames between 20 and 25 fps, which, as we experienced, is just a little below 

inference rate of more efficient network architectures as Mobilenet. Figure 24 is illustrat-

ing the sequence diagram for the proposed thread communications. 

 

Figure 24.  Sequence diagram for the system architecture. 
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4. EXPERIMENTS AND RESULTS 

4.1 Datasets 

Analysing people’s postures and facial expressions is considered as a heavy computer 

vision or machine learning (ML) task which requires many distortions to be taken care of 

since human body and facial arrangements make a vast space area: changes in illumina-

tion, blocking, changing the viewpoints, or deformations, etc and that is why the field of 

Computer Vision and Machine Learning has grasped so much attention from researchers 

recently. But before further investigation, we need information and its where we under-

stand the importance of datasets. A dataset is a collection of data which is gathered for a 

particular use. It should also come proper documentation files well describing its usage. 

We mainly used three different face image datasets in our experiments: 1) ChaLearn 

Looking at People (LAP) 2016 dataset1, 2) GENKI-4K dataset2, and 3) CelebFaces At-

tributes dataset3. 

4.1.1 LAP 

ChaLearn team claims that ‘Looking at People’ was a challenging research area since 

it mainly focuses on human detection and recognition in images, including detection 

of different human body parts, recognizing actions or gestures from images or motion 

pictures, and taking into account multimodal data. Field of ‘Looking at People’ is 

associated with any case of visual human analysis.  

Multiple sub-fields have been defined recently within the LAP like Affective Com-

puting, Social Signal Processing, Human Behavior Analysis, or Social Robotics. The 

effort that has been made in this field will pay off shortly since it has a prospective 

future and even currently it has many potential applications in markets such as TV 

production, analysis of multimedia content, educational purposes, researches in soci-

ology, security and surveillance, giving automatic assistance, monitoring, etc. 

The subset of the LAP dataset that we used is annotated images of face initially pre-

sented for the ‘Looking at People’ competition in ICCV2015, which is also open for 

public use. We used the CVPR 2016 version of that dataset which contains 7,591 

images. Facial images in this dataset in comparison to the similar datasets are captured 

in unconstrained environments, therefore their backgrounds are more natural and di-

verse. 

                                                 
1 http://chalearnlap.cvc.uab.es/ 
2 http://mplab.ucsd.edu 
3 http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html 
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4.1.2 GENKI-4K 

GENKI database from the MPLab is a growing collection containing face images with 

various ethnic groups, geographical places, personal identities, and illumination en-

vironments. Every updated version includes all images from the previous versions, 

therefore it is backward compatible. This dataset is partitioned to overlapping sub-

spaces and every one of them has its specific descriptions and labels. For instance, the 

GENKI-4K batch has four thousand images of faces categorized by human as ‘smil-

ing’ or ‘not smiling’.  Almost all faces’ postures found to be frontal with help of an 

automatic face detector. The GENKI-SZSL batch has 3500 face images which have 

information about faces location and size. All the images are allowed for public use. 

In our experiments, we used GENKI-4K dataset which, as mentioned, is a subset of 

MPLab GENKI image dataset. This dataset is including 4,000 images of faces which 

are subject to vast selection of illumination, facial appearance, geographical places, 

background environments, and camera types. Images are categorized into two cate-

gories of ‘smiling’ and ‘not smiling’ and they also have information on the Head pos-

ture and rotation (yaw, pitch, and roll parameters, in radians). 

4.1.3 CelebFaces 

CelebFaces Attributes Dataset (CelebA) is a huge dataset of face postures which has 

more than 200,000 images from celebrities worldwide, and every image has annota-

tions for 40 characteristics. CelebA dataset contains images spanning a wide range of 

postures and backgrounds. This dataset is truly diverse, huge, and rich in terms of 

annotations. It contains 202,599 images from faces, 10,177 different identities, and 5 

landmark locations. Each image has 40 binary attributes annotations and can be used 

for computer vision problems such as facial expression recognition, face detection, 

and landmark localization. The dataset is allowed only for non-commercial research 

purposes.  

MMLAB declares that all images in this dataset are retrieved from the Internet, there-

fore images are not owned by the MMLAB and it is not responsible for the content 

nor the meaning of these images. 

4.2 Setup 

For implementing our system, we employed ANN structures which were pre-trained on 

ImageNet dataset.  For this purpose, we removed the last layer from the pre-trained net-

work and replaced it with a fully connected layer, a dense layer with sigmoid activation 

function allowing a binary classification. We experienced that binary classification pro-

duced slightly more accurate results. 
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Moreover, we performed data augmentation for generalizing the trained model more and 

better. The methods for augmenting the input images include zooming, shearing, and flip-

ping horizontally. 

4.3 Evaluation 

For measuring our system’s running speed in addition to the embedded platform Nvidia 

Jetson TX2 we deployed the system on two more platforms: Two desktop computers, one 

equipped with Intel Core i5-6200U CPU and 8G of RAM and another one with K40 

Desktop GPU. We employed these three different measures (1) model size (number of 

parameters), (2) frames per second (FPS), and (3) the number of floating-point operations 

(FLO) for assessing the computational performance of our smile detector system utilizing 

the multiple network topologies.  

Furthermore, we carried out performance of the system in terms of accuracy by means of 

two other metrics. First, the accuracy which is calculated as this: 

 

and then AUC which is the area under the ROC curve. These two measures are effective 

ways of summarizing the accuracy of smile detection in our system. 

4.4 Results 

Table 3 is summarizing the running speed of the compared models on different platforms. 

Order of the tested networks in this table is by the number of required FPOs for a single 

frame to process.  

Table 4. Running speed and network size of the experienced trained network architec-

tures for smile detection. The network structures are ordered by the number of floating 

point operations per frame (FLO column). 
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There are huge differences, as you have probably noticed, between models: VGG16 as 

the bulkiest network owns about 750 times more FPOs than the lightest variant of Mo-

bilenet. Since processors are performing computation parallelization, it is noticeable that 

other performance measures are not so distinct from each other. Moreover, we were not 

able to execute huge models on Jetson TX2 device because of memory limits on this 

platform. 

For enabling comparison between our approach in the implementation of this smile de-

tection system and state of the art methods we had to think of more steps. For example, 

in the SmileNet [22] as a complete smile detection pipeline, face localization is also per-

formed. Therefore, for assessing models within a complete pipeline, we add a ViolaJones 

face detector step before the smile detector stage. With this setup, the execution speed of 

our system on the K40 GPU would reach between 40 and 60 FPS, which is also depended 

on the input image resolution and is about twice faster than that of the SmileNet which 

was reported as 21.15 FPS[22]. It is true that our approach could not reach the accuracy 

shown for the state-of-the-art methods, such as the one shown in Table 5, but it should 

also be noticed that these algorithms are cannot run in real time or even are not able to 

run on low resource devices like Jetson TX2 embedded devices because of the computa-

tional power and memory limitations we have on these platforms. 

Table 5.  Comparison of Mobilenet (α = 1; ρ = 1) with Smile-Net method in terms of ac-

curacy 

 

Even on platforms with limited resources, it makes sense to perform face localization 

since it improves the accuracy of the smile detection procedure. Figure 25 is showing the 

smile detection accuracies, after locating faces, on the GENKI-4K dataset. Summary of 

these results was shown in Table 5, which was comparing the proposed method and 

Smile-Net on images from CelebA and GENKI-4K datasets. As it is clear the perfor-

mance of the smile detection method from our experiments is so close to the recent de-

tectors in terms of accuracy while it runs much faster than them. Here is good to 

emphasise this again that networks such as Smile-Net are not able to run smoothly or real-

time on an embedded device because of their high memory consumption. 
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Figure 25.  

ACC and AUC 

measures. They are 

drawn with respect to 

the running time for the 

studied models.  

Results from VGG-16, 

ACC: 91.2% and AUC: 

90.5%, and Inception-

resnet-V2, with ACC: 

92.8% and AUC: 

98.0%, models are not 

shown since their large 

memory consumption 

does not let us deploy 

them on NVidia Jetson-

TX2. 
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5. CONCLUSIONS AND POTENTIAL FUTURE 

WORK 

In this work, we have proposed suitable deep learning architectures for real-time deploy-

ment of computer vision related applications on low resource platforms such as NVidia 

Jetson TX2. We implemented and deployed a smile detector system as a use case of this 

purpose and assessed it by utilizing thirteen different deep CNN topologies and three 

image datasets. Particularly, we compared their execution speeds on three devices: Nvidia 

Jetson, a desktop CPU, and a desktop GPU. And at last, we studied the tradeoff between 

speed and accuracy of these thirteen models and a state-of-the-art method and showed 

that these models produce comparable results in terms of accuracies while they are run-

ning at significantly different speed because of the dramatic difference in their computa-

tional demand.  

The ground truth in our experiments the could be considered rather noisy, i.e. smile is not 

easy to annotate because there are multiple stages between no smile and a full smile and 

as a result the importance of the differences in prediction accuracies are questionable. 

Considering everything, we could claim that the Mobilenets excel in accuracy/complexity 

tradeoff and the earlier CNN architectures, like VGG variants, or even recent networks, 

like SmileNet, should not be utilized in a real-time use cases. 

Moreover, we implemented an asynchronous software system which allows easy expan-

sion and of the entire system by simple integration with future detection modules. The 

proposed pipeline which originally was planned to be deployed on NVidia Jetson embed-

ded platform would let us reach the execution time of 27.3 FPS on average. This is con-

sidered as real-time performance to humans’ visual system. 

We have considered integrating other detection modules, such as age and gender detec-

tion, with this system as the first future supplement. In addition to this,  the next addition 

to the current system would be the integration of the smile detector into a software frame-

work, such as PRUNE [53], that handles data transfers and synchronization between CPU 

and the GPU cores. Utilizing a framework like this would improve the software modular-

ity and in addition, allows us to concentrate on the algorithms instead of multiprocessing 

during the development stage. This would also enable even higher gains in processing 

time on a platform specifically designed for streaming data processing. Another potential 

future addition in this research would be attempting to reduce the encoding precision of 

neural network weights or activations, e.g. by having a reduction in the number of bits or 

employing fixed point instead of floating points. Matrix multiplication operations could 

be quite expensive to implement and need several logic gates. So, devices with limited 
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resources might not be able to implement floating point operations efficiently. It is obvi-

ous that using, for example, 8-bit values instead of 32-bit ones would reduce the memory 

consumption and computation costs. Therefore, for weakening the mentioned issue, we 

can compress and map the floating-point input or output values into a fixed-point repre-

sentation. 

According to our smile detector application, the proposed approach would provide almost 

even three times faster average processing times on GPU than the reported state–off–the–

art smile detectors. Besides, the smile detection accuracy of our method is close to that of 

the state–off–the–art methods. 
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