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ABSTRACT
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A recently discovered perturbation-induced quantum scarring phenomenon is an example of
quantum mechanical suppression of chaos. The phenomenon is seen on some eigenstates of
the system as quantum scars, which are remnants of the periodic orbits of the corresponding
unperturbed classical system.

The phenomenon allows efficient propagation of wave packets through two-dimensional
potential wells. The scarring is controllable by an external magnetic field and by mani-
pulating the properties of the perturbations, indicating exciting possibilities in quantum
transport. Exploiting this phenomenon requires knowledge about the scarred eigenstates,
found among thousands of eigenstates in the systems of interest. Therefore an automated
procedure for classifying the different types of scars and quantifying their abundance and
strength in each system is desired.

A solution generalizable to any system is sought by approaching the problem from an
unsupervised learning viewpoint, to avoid the laborious task of labeling training data in
the studied systems. An integral tool utilized in this thesis is the clustering of feature
vectors extracted from the two-dimensional probability density grids of the eigenstates.
The feature vectors are obtained by considering local probability density histograms and
by employing convolutional networks. Self-organizing maps are also utilized for forming
a representation of typical eigenstates in the system.

The methods are found to perform satisfactorily if the scarring is strong enough. Weaker
scarring poses challenges, particularly if the scars of the same kind are present in multiple
orientations and scales. In this case the number of clusters required for adequate portrayal
of the system grows impractically large. The inverse participation ratio provides a useful
measure for intra-cluster scarring strength, but it is not globally applicable to the whole
system.
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TIIVISTELMÄ
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Avainsanat: Kvanttiarpi, ohjaamaton oppiminen, klusterointi, konvoluutioverkko,
itseorganisoituva kartta

Hiljattain havaittu häiriöiden aiheuttama kvanttiarpeutumisilmiö on esimerkki, kuinka
kvanttimekaniikka voi tukahduttaa klassisen kaaoksen. Ilmiössä klassisen mekaniikan
mukaiset periodiset liikeradat häiriöttömässä systeemissä jättävät jäljen, kvanttiarven,
vastaavan kvanttimekaanisen systeemin joihinkin ominaistiloihin.

Ilmiö mahdollistaa aaltopakettien tehokkaan etenemisen kaksiulotteisissa potentiaalikai-
voissa. Arpeutumista voidaan hallita ulkoisen magneettikentän avulla ja häiriöiden omi-
naisuuksia muokkaamalla, mikä antaa odottaa ilmiöltä mielenkiintoisia mahdollisuuksia
kvanttikuljetuksen sovelluksissa. Ilmiön hyödyntäminen vaatii tietoa arpeutuneista omi-
naistiloista, jotka täytyy löytää mielenkiintoisten systeemien tuhansien ominaistilojen
joukosta. Tämän takia olisi hyödyllistä kehittää automaattinen menetelmä erityyppisten
arpien luokitteluun sekä niiden esiintymistiheyden ja voimakkuuden määrittämiseksi eri
systeemeissä.

Yleispätevän ratkaisun löytämiseksi ongelmaa lähestytään ohjaamattoman oppimisen näkö-
kulmasta, ettei jokaisessa tutkittavassa systeemissä tarvitsisi ensin käsin tehdä aikaavievää
opetusaineiston luokittelua. Työssä käytettävä keskeinen työkalu on esitysvektoreiden
klusterointi. Esitysvektorit rakennetaan tarkasteltavista ominaistiloista hyödyntäen tilo-
jen todennäköisyystiheyksiin pohjautuvia histogrammeja ja konvoluutioverkkoja. Lisäksi
itseorganisoituvien karttojen avulla luodaan esitys systeemissä esiintyvistä tyypillisistä
ominaistiloista.

Menetelmät tuottavat halutunlaisen tuloksen, jos arpeutuminen on riittävän voimakasta.
Heikompi arpeutuminen on ongelmallista, etenkin jos tietyntyyppiset arvet esiintyvät
useissa asennoissa erikokoisina. Tällöin systeemissä esiintyvien tyypillisten ominaistilojen
riittävä klusterointi vaatii liian monta luokkaa. Arpeutumisen voimakkuutta voidaan kuvata
käänteisellä osallistumissuhteella, joka ei kuitenkaan sovellu systeemin ominaistilojen
luokitteluun. Kuitenkin tämä luku osoittautuu mielekkääksi arpeutumisasteen mittariksi
eri luokkien sisällä.
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1. INTRODUCTION

Classical chaotic systems are characterized by extreme sensitivity to initial conditions,
with tiny perturbations eventually leading to completely different phase space trajectories.
Quantum systems, on the other hand, are decidedly non-chaotic in the traditional sense, as
any difference between two initial states remains constant in time. In quantum systems
chaos is manifested in the statistical properties of the eigenenergies. [1]

Quantum fingerprints of chaos can also be seen in the eigenstates themselves in the form of
quantum scars. Quantum scars are anomalous enhancements of probability density along
periodic orbits of corresponding classical systems, originally discovered on short unstable
periodic orbits of classically chaotic systems [2]. While periodic orbits exist in chaotic
systems, their total phase space volume is zero. Thus the instability of the orbits is what
differentiates scarring from any expected enhancements of the probability density due to
the correspondence principle [2].

A new kind of strong quantum scarring was recently discovered in two-dimensional
potential wells perturbed by local impurities where the scars form along the periodic orbits
of the corresponding unperturbed classical system. The appearance of the scars can be
explained with degenerate perturbation theory. [3] The theory predicts that the scarred
eigenstates extremize the overlap with the impurities, allowing some control over the
orientations of the scars for applications [3, 4].

The geometry of these perturbation-induced (PI) scars is controllable with an external mag-
netic field, and even a single perturbation is sufficient to facilitate scarring while exercising
control over the orientations of the scars [4]. The particularly strong enhancements of the
probability density in these PI scars results in especially efficient propagation of wave
packets along the scars [3]. These two properties, the controllability and efficient wave
packet propagation, indicate exciting possibilities for applications in quantum transport
[3, 4].

Exploiting this phenomenon for applications requires knowledge about the scarred states in
the studied systems. As each system contains thousands of eigenstates in the relevant energy
range, manual inspection of the states does not lend itself to large scale investigations of
different systems. Therefore an automated procedure for quantifying the abundance and
strength of different types of scars in each system is highly desired, motivating the study in
this thesis.

This thesis is structured as follows: Chapter 2 briefly explains the theory behind the
phenomenon and then proceeds with the descriptions of the methods utilized in this thesis.
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Chapter 3 explains how the methods are applied to the problem. The main results are
presented in chapter 4. The thesis concludes with chapter 5 where the results are briefly
discussed and suggestions are given for further research.
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2. THEORY

At the atomic level classical mechanics is not applicable anymore. The behavior of
particles, such as electrons, is governed by the laws of quantum mechanics. An important
consequence of the quantum theory is the abolition of exact knowledge of particle positions
and momenta. Instead, information about possible values for these observables is encoded
in a complex-valued wave function ψ describing the quantum state. [5]

When considering stationary states with time-independent observables, the wave functions
are the eigenfunction solutions of the time-independent Schrödinger equation

Ĥψ = Eψ , (2.1)

where Ĥ is the Hamiltonian operator and E is the eigenenergy associated with the eigen-
function ψ . In position basis the Hamiltonian operator for a particle in a two-dimensional
potential well V (x,y) is given by

Ĥ =− h̄2

2m

(
∂ 2

∂x2 +
∂ 2

∂y2

)
+V (x,y), (2.2)

where h̄ is the reduced Planck’s constant and m is the mass of the particle. Due to the
linearity of the equation, an eigenfunction ψ multiplied by a constant remains a solution
with the same eigenenergy. Physically meaningful eigenfunctions are square-integrable
and thus normalizable according to the condition∫∫

Ω

|ψ(x,y)|2 dxdy = 1, (2.3)

where the integration is performed over the whole domain Ω. The square modulus
|ψ(x,y)|2 of a properly normalized wave function can be interpreted as the probability
density of finding the particle at the location (x,y). [5]

For states bound by the potential, boundary conditions result in a discrete set of solutions
ψi with quantized energy levels Ei. Atomic orbitals are perhaps the most common example
of such quantized states. Only the simplest potentials permit exact analytical solution of the
equation, and in many applications numerical approximation methods must be utilized. [5]
The eigenstates studied in this thesis are calculated with the open source itp2d software,
which incorporates the most recent advances in the imaginary time propagation method
[6].

2.1 Perturbation-induced quantum scars

In two-dimensional potential wells scarring may occur if the otherwise separable system
is perturbed by local impurities. In this case some of the high-energy eigenstates form
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(a) (b) (c) (d)

Figure 2.1. Examples of scarred eigenstates. The probability densities of the states
are depicted with the brightest percentile of the probability density cut off to aid the
visualization of the scars with a linear colormap. A pentagram-shaped scar (a) with
fivefold symmetry and a “bouncing ball” type scar (b) corresponding to zero angular
momentum in a system with circularly symmetric V (r) = 1

2r5 unperturbed potential. Star-
shaped (c) and flower-like (d) scars with fivefold symmetries in a system with circularly
symmetric V (r) = 1

2r2 unperturbed potential in an external magnetic field.

scars along the periodic orbits of the unperturbed system. [3, 4] Some examples of these
perturbation-induced quantum scars are shown in Fig. 2.1.

The scarring phenomenon can be explained by degenerate perturbation theory. There are
near-degenerate eigenstates in the unperturbed system, and the scars are a result of the
small perturbations causing the eigenstates to mostly localize into subspaces spanned by
the linear combinations of these near-degenerate eigenstates. Localized perturbations, such
as small Gaussian bumps, generate scarred eigenstates from these subspaces as such states
extremize the expectation value with the perturbations, explaining the orientations of the
scars. [3]

The strength of the scarring is traditionally evaluated by propagating Gaussian wave
packets initialized on the periodic orbits of the scars, and studying the periodic peaks of
the wave packet autocorrelation function after every completed orbit [2]. The magnitude
of these peaks, i.e. the recurrence strength, is particularly strong in PI scars, exceeding
that of the unperturbed systems, especially on later recurrences [3]. The counter-intuitive
result that perturbations enhance the propagation of wave packets is another encouraging
factor for applications and further necessitates the demand for an automated procedure for
detection and classification of the scars.

The wave packet method requires knowledge about the periodic orbits. While the periodic
orbits are relatively easy to enumerate in spherically symmetric potentials, a general
solution is not readily available [3]. Indeed, a generic method is desired for the classification
that is applicable to systems with arbitrary potential wells, without the laborious task of
first manually identifying different kinds of scars.

Alternative approach for quantifying the scarring is based on the premise that in the scarred
eigenstates the probability density is localized into smaller regions. This can be measured
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by the second moment of the probability density

Ψ
4
i =

∫∫
Ω

|ψi(x,y)|4 dxdy, (2.4)

known as the inverse participation ratio (IPR) [7, ch 5.2], and denoted by Ψ4
i for the

purposes of this thesis. The IPR is computationally light approach applicable without
knowledge about the periodic orbits, but it only characterizes the localization of the wave
function and not the effectiveness of wave packet propagation.

2.2 Clustering

The problem of inferring hidden categories in data without first showing examples of
labeled data is called unsupervised learning [8, 9]. A central tool in unsupervised learning
is clustering, in which objects are grouped to common classes according to their similarity.
To mathematically assess the similarity, the properties of the objects are usually represented
by feature vectors, whose components are real numbers describing the properties in a
suitable manner. [9] Two clustering algorithms relevant for this thesis, k-means clustering
and hierarchical clustering, are described below.

2.2.1 k-means

The k-means algorithm attempts to cluster data consisting of N samples xi ∈Rn by choosing
k centroids µ i ∈ Rn that minimize the total squared distance φ between the samples and
the closest centroids. The problem is NP-hard but heuristic iterative algorithms exist and
the most common variant is described in algorithm 1. While the algorithm is simple and
generally fast, the resulting clustering can be arbitrarily far away from the true optimum.
[10]

Choosing the initial centroids appropriately can guarantee strict bounds for the expectation
value of the total squared distance φ relative to the true optimum. The k-means++ algorithm
proposes that the first centroid µ1 should be chosen uniformly at random from all samples
xi. The remaining centroids should be chosen randomly from the remaining samples in
such a way that the probability that the sample xi is chosen is proportional to its squared
distance from the closest centroid already chosen. [10]

Algorithm 1 The k-means algorithm.

1. Initialize by choosing k centroids µ i.

2. Each data point xi belongs to the closest centroid.

3. Move the centroids to the means of the data points belonging to each centroid.

4. Repeat from step 2 until convergence.
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2.2.2 Hierarchical clustering

In hierarchical clustering samples of data are hierarchically grouped together resulting
in a tree-like representation of similar samples, called a dendrogram. An agglomerative
approach is considered, where each sample starts in its own cluster and then the clusters
are combined according to their similarity. [9, p. 393]

A suitable distance metric is required to calculate the distances between pairs of samples.
Any pairwise distance may be utilized, as long as the choice can be justified for the
application in question. Additionally, a linkage criterion determines how the distances are
calculated between clusters containing more than a single element. [9, ch. 10.3.2] Three
options are discussed here: average and complete linkage, and Ward’s minimum variance
method.

In average linkage the inter-cluster distance between two clusters is defined as the arithmetic
mean of all the pairwise distances between the elements of the different clusters. In
complete linkage the maximum of the pairwise distances determines the inter-cluster
distance instead. [9, ch. 10.3.2] Ward’s method links the two clusters which results in the
smallest increase in variance within the cluster [11].

Finally, a criterion is required for extracting the desired clusters from the dendrogram. The
simplest solution is to merely stop the agglomerative grouping process after reaching a
desired number of remaining clusters. [9, ch. 10.3.2]

2.3 Convolutional networks

Convolution of a function f (t) with a convolution kernel k(t) is denoted by ( f ∗ k)(t) and
is defined as

( f ∗ k)(t) =
∞∫

−∞

f (τ)k(t − τ)dτ . (2.5)

With discrete data, the integration is replaced by summation [8, p. 327–328]. The
eigenstates are two-dimensional and convolution networks utilize multiple convolutions
with separate kernels to extract different features. These two-dimensional convolutions,
and how the kernels highlight features resembling them, is illustrated in Fig. 2.2.

With multiple kernels a third dimension, called channel, is needed to keep track of the
results of each convolution. Let fi, j,k be the input to the convolution and gi, j,k the output.
The indices i and j are the regular two-dimensional indices and k is the index of the channel.
This leads to 4-dimensional convolution kernels ki, j,k,l , where i and j are again the normal
indices to the original two-dimensional data. The indices k and l describe the connection
strength between the output channel k and input channel l. The convolution can then be
calculated by

gi, j,k = ∑
m,n,l

fi+m, j+n,lkm,n,k,l , (2.6)
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Figure 2.2. Convolution examples. The original image is shown on top left. The smaller
images depict the convolution kernels and the results of the convolutions are illustrated
below the kernels.

where the index l is summed over all the channels in the input, with m and n summed over
the regular two-dimensional part of the discrete convolution kernel. [8, p. 342]

When the data is discretized on a finite grid there are complications arising from boundary
effects. Defined as above, the result of the convolution would shrink by one element less
than the size of the kernel at each dimension. This can be compensated by zero-padding the
input function fi, j,k around the edges in such a manner that the size of the output remains
the same as the input. [8, p. 343–345]

Convolution networks usually consists of many layers with the resulting convolutions
fed as inputs for the subsequent layers. The output of the previous layer is commonly
processed with a pooling layer before proceeding to the next convolution layer. The
purpose of the pooling layer is to produce summary statistics about its input to reduce
the size of the output for computational and statistical efficiency. Pooling also makes the
output approximately invariant to small translations in the input data. The most common
type is a max pooling layer, which replaces rectangular regions in the input data with the
maximum value in that region. [8, ch. 9.3]

The coefficients of the convolution kernels are usually teachable parameters in supervised
learning when the classes are known during teaching. However, the unsupervised approach
pursued in this thesis discards that possibility. A simple solution is to populate the kernels
randomly, which function reasonably well, as the convolution layers followed by pooling
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become frequency selective and translation invariant. Other options are to design the
kernels by hand or devise an unsupervised scheme to learn them from the data. [8, p. 357]

2.4 Self-organizing maps

The self-organizing map (SOM) is a tool for visualization of high-dimensional data by
producing a similarity graph of the data in lower dimensions. The dimensionality reduction
is accomplished by converting nonlinear statistical relationships in the data into geometric
relationships in the graph; i.e. similar data will reside in neighboring nodes in the graph.
[12, p. 106]

Each node j has a model vector m j ∈ Rn associated with it. The model vectors represent
typical data at the nodes’ locations in the graph. The SOM maps samples of input data
z ∈ Rn into nodes with the most similar model vectors. Formally the best matching node c
can be defined as

c = argmin
j

{
d(z,m j)

}
, (2.7)

where d is a suitable distance metric for the problem in consideration. [12, p. 106]

The objective of the SOM algorithm is learning model vectors that result in an ordered
and descriptive mapping of the distribution of the input data [12, p. 106]. The model
vectors are traditionally initialized randomly, but similarly to k-means, the results depend
on the initialization procedure. Another alternative for initialization is principal component
analysis, which performs better for quasilinear data, whereas random initialization is
recommended for nonlinear data. [13]

After initializing the model vectors the learning process is accomplished by showing
samples of input data z and updating the model vectors m j according to the formula

m j(t +1) = m j(t)+α(t)hc j(t)
[
z−m j(t)

]
, (2.8)

where t is a discrete time coordinate, α is a learning rate factor, and hc j is a neighborhood
function that defines to what extent the nodes topologically closest to the best matching
node are translated towards the input data. [12, p. 109–111]

The neighborhood function is a crucial component of the algorithm that is responsible for
the ordering in the map. A simple choice is a discrete neighborhood function that assigns
topologically nearby nodes to the neighborhood

hc j(t) =

{
1, D(c, j)≤ β (t)

0, otherwise
, (2.9)

where D(c, j) is the topological distance between the node j and the best matching node
c. The neighborhood size is controlled by the monotonically decreasing parameter β (t).
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Another usual choice for the neighborhood is a Gaussian function

hc j(t) = e−
1
2

(
D(c, j)
β (t)

)2

, (2.10)

which provides a smoother continuous neighborhood. [12, p. 111]

The initial neighborhood size should be large enough to ensure that the map will be
ordered globally instead of being composed of locally ordered patches. On the other hand,
convergence requires that the changes to the map decrease over time. This is enforced by
having monotonically decreasing learning rate factor α(t) and neighborhood size β (t).
Some reasonable choices are linear or exponential functions. [12, p. 111–112] The
following linear functions are adopted for this thesis

α(t) = α0

(
1− t

T

)
(2.11)

β (t) = β0

(
1− t

T

)
, (2.12)

where α0 and β0 are the initial values for the learning coefficient and neighborhood size,
respectively, and T is the total learning time.

The learning process should be performed in two phases. The goal of the first phase is to
attain rough global ordering by utilizing large initial values for the learning rate factor and
neighborhood size. A good rule of thumb is that this global ordering phase should last for
the order of T (1) ≈ 1000 steps, with initial neighborhood radius β

(1)
0 being roughly half

the size of the network, and initial learning rate α
(1)
0 close to unity. [12, p. 112]

Convergence is achieved during the final phase, which should continue for an extended
number of steps T (2), at least 500 times the amount of nodes. To ensure convergence, the
learning should proceed slower than in the previous phase. The learning rate α

(2)
0 should

not exceed values of roughly 0.02 and the neighborhood radius β
(2)
0 should only contain

the nearest neighbors. [12, p. 112]

Common choices for the topology of the map include rectangular and hexagonal grids in
two dimensions and linear topologies in one dimension. The edges of the map may also
be connected, resulting in toroidal topologies in two dimensions and closed loops in one
dimension.
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3. METHODS

Two principal methods are employed for the classification: methods based on clustering
and methods based on self-organizing maps. Clustering-based methods can further be
categorized according to the methods used for extracting feature vectors from the eigensta-
tes. Initial experiments were performed with feature vectors based on probability density
histograms. Later experiments focused on feature vectors extracted with convolutional
networks.

Two different systems are considered in this study, with circularly symmetric unperturbed
potentials V2(r) = 1

2r2 and V5(r) = 1
2r5. The potentials are disturbed by Gaussian-like

bumps defined by amplitudes A2 = 4, A5 = 20 and standard deviations σ2 = 0.1, σ5 = 0.08
in Hartree atomic units. The bumps are randomly placed so that on average there are 2
bumps per unit area. The r2-system also has an external magnetic field with the strength
B2 = 1.5 in the SI-units-based convention of magnetism-related Hartree atomic units.
These parameters were chosen because the scarring phenomenon is clearly visible in these
systems [3, 4].

In both systems the first 5000 eigenstates are calculated, of which at least 4000 are required
to converge. The ground state and other lower energy states are highly distinct compared
to the higher energy states, which would complicate clustering. Additionally, the scarring
phenomenon cannot be clearly detected in the lowest energy states due to the relatively
small number of nodes in the eigenstates that are confined to a relatively small region at
the center of the system. Therefore, the 2000 lowest energy states are exempted from the
classification. The eigenstates ψi of the studied systems are calculated on a 300-by-300
grid with the open source itp2d code [6].

3.1 Preprocessing of probability density images

The classification is performed by analyzing the probability densities |ψi(x,y)|2 calculated
on a two-dimensional grid. The eigenstates ψi(x,y) are normalized such that the integral
of the probability density over the whole domain Ω is unity∫∫

Ω

|ψi(x,y)|2 dxdy = 1. (3.1)

Better classification results are facilitated by suitable preprocessing of the probability
densities prior to classification. However, these manipulations ruin the proper normalization
of the probability density. Therefore, these preprocessed probability density images are
denoted by Θi(x,y). Different preprocessing techniques are described below and their
effects are illustrated in Fig. 3.1.
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3.1.1 High intensity cutoff

The very highest values of the probability density are usually concentrated on very small
areas. Cutting off the highest peaks of the probability density increases the importance of
the overall structure of the scars instead of focusing on the very highest peaks. This also
aids the visual inspection of the scars.

The cutoff procedure is accomplished by choosing a threshold value Fc ∈ [0,1] from the
cumulative distribution function F [Θi(x,y)] of the probability density images Θi(x,y).
Values of images for which F [Θi(x,y)]> Fc are replaced with the value Θc of the image
at F(Θc) = Fc, resulting in the following mapping

Θ̃i(x,y) =

{
Θi(x,y), F [Θi(x,y)]< Fc

Θc, F [Θi(x,y)]≥ Fc
. (3.2)

In practice this means that Fc is the highest percentile of allowed pixel intensities after
which they are cut off. Values close to unity already significantly promote the visibility of
the scars, as the strongest peaks of the probability density are highly localized, as shown in
Fig. 3.1b.

The cumulative distribution function F , and consequently the value Θc, can be calculated
either globally for all the states or separately for each state i. Global cumulative distribution
is required if the relative strength of the scarring between different states is to be maintained.
However, if only the visibility of the scarring within individual states is considered, then it
is beneficial to calculate the distribution for each state individually.

3.1.2 Normalization

Instead of normalizing for the probabilistic interpretation, the images Θi are normalized
to enable efficient application of machine learning techniques. Many machine learning
algorithms are best suited for data in the unit interval [8, 9].

The normalization is performed by a simple linear mapping

Θ̃i(x,y) =
Θi(x,y)−Θmin

Θmax −Θmin
, (3.3)

where Θmin and Θmax are the minimum and maximum values of the images. Similarly to
the high intensity cutoff, the normalization may be performed globally for all states or for
each state individually, employing the corresponding minima and maxima.

3.1.3 Contrast enhancement

The scars are characterized by high probability density. Thus the prominence of the scars
can be increased by enhancing the contrast between higher and lower probability density
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(a) (b) (c) (d)

Figure 3.1. Preprocessing example. The Original 300-by-300 probability density grid
(a) is subsequently preprocessed by high intensity cutoff with Fc = 0.90 (b), contrast
enhancement with γ = 4 (c), and Gaussian blur with σ = 3 (d).

areas. The relative distances between low and high values can be increased by raising
the values to power higher than unity. For images normalized into the unit interval, the
transformation

Θ̃i(x,y) = [Θi(x,y)]
γ (3.4)

with γ > 1 retains the desired normalization.

3.1.4 Gaussian blur

The probability density has an overall two-dimensional wavelike structure consisting of
low probability density troughs within the high probability density patterns. Emphasizing
the importance of the large scale structures instead of the small scale details in the ripple
pattern can be accomplished by blurring the image. Gaussian blurring is considered an
efficient method for smoothing images, and is efficiently achieved by convolving the target
image with a two-dimensional Gaussian kernel function g(x,y;σ)

g(x,y;σ) =
1

2πσ2 e−
x2+y2

2σ2 , (3.5)

where the standard deviation σ controls the magnitude of the smoothing effect. [14, ch.
3.4.4]

3.2 Clustering of feature vectors

Calculating the eigenstates on an n-by-m grid results in an nm-dimensional representation
for the states. With n = m = 300 the direct clustering of the resulting 90000-dimensional
feature vectors is impractical. Therefore a dimensionality reduction procedure capturing
the essential features of the states is required. Two main schemes are considered for
extracting feature vectors from the eigenstates, employing probability density histograms
and convolutional networks.
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Each dimension of the feature vectors describes a single feature represented as a numeric
value. If the magnitudes of these values are not comparable to each other, the clustering
will be dominated by features with the highest absolute variance. The feature vectors may
be normalized to equalize the effect of variations within each dimension of the vectors. The
normalization is performed by subtracting the mean and dividing by the standard deviation
within each dimension, resulting in each feature having zero mean and unit variance.

3.2.1 Probability density histograms

Probability density histograms have the desirable property that they are invariant to ro-
tations, which is beneficial as the scars may occur in different orientations. The range
of probability density values is divided into Nbins bins of equal width and the number
of probability density values falling within each bin are utilized as feature vectors. It is
expected that the distribution of these bin counts may be very uneven, resulting in the
clustering being dominated by the most populated bins. Therefore the feature vectors are
normalized to zero mean and unit variance.

A single histogram calculated from the whole state may disregard too much information
about the structure of the state. This can be overcome by subdividing the state into smaller
grids and considering histograms in each subgrid. The histograms from all the subgrids,
across all the eigenstates, are first clustered by k-means. The final feature vectors for
clustering the eigenstates themselves are constructed from the clusters of the histograms
within each state. To maintain the rotational invariance only the relative frequencies of
the different clusters within each state are considered. These relative frequencies form the
final representation for the states as feature vectors.

An alternative approach is to consider the two-dimensional image formed by the labels
of the clustered histograms organized as a grid. This preserves more information about
the structure of the state at the cost of losing rotational invariance. Another issue is the
definition of a good pairwise distance metric for these images, as it is not meaningful
to consider the regular Euclidean distance when the feature vector values are indices to
different clusters. A simple solution incorporated here is to consider the total number
of different cluster labels in the corresponding elements of the two feature vectors being
compared. As a consequence of this distance metric it is not straightforward to apply the
k-means algorithm, and instead hierarchical clustering is performed.

With both approaches the histograms can be calculated at multiple scales by subdividing
the original states into smaller grids of various sizes. The final feature vector is then
obtained by simply concatenating the feature vectors of each different scale.

3.2.2 Convolutional networks

Convolutional networks are utilized for extracting feature vectors from the probability
density images. The images are normalized into unit interval prior to propagating them
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through the network, as explained in section 3.1.2. The effect of other preprocessing
techniques on the resulting feature vectors and subsequent clustering is also considered.

The network consists of five convolutional layers with uniformly random kernels. Each
layer is followed by a max pooling layer with a 2-by-2 neighborhood, and the final output
is flattened into one-dimensional vector. The structure of the network is described in Table
3.1. Each component of the resulting 648-dimensional feature vectors vi is normalized to
zero mean and unit variance before clustering. The normalized vectors are clustered with
k-means and hierarchical clustering.

Table 3.1. Structure of the convolutional network and the number of kernels and kernel
sizes for convolution layers. The first two dimensions in the output shape are the size of
the probability density grid and the final dimension is the number of channels.

Layer Kernels Kernel size Output shape

Input 300×300×1
Convolution 1 64 32×32 300×300×64
Max pooling 1 150×150×64
Convolution 2 32 16×16 150×150×32
Max pooling 2 75×75×32
Convolution 3 16 8×8 75×75×16
Max pooling 3 37×37×16
Convolution 4 8 4×4 37×37×8
Max pooling 4 18×18×8
Convolution 5 8 4×4 18×18×8
Max pooling 5 9×9×8

Flatten 648

3.2.3 Iterative clustering

An iterative approach to clustering is considered to assist in categorizing the clusters into
scarred and non-scarred clusters. The underlaying assumption for this procedure is that
scarred states are mutually more similar within a cluster than non-scarred states. Therefore
during each iteration of clustering only the most similar cluster is kept and the clustering is
repeated with the remaining data for the next iteration. The procedure is explained in more
detail in Algorithm 2.

Test vectors associated with each state are considered for determining the most similar
cluster. The feature vectors can be directly utilized for this purpose. Alternatively, the
vectorized probability density grids, or their preprocessed versions, could be employed as
test vectors.

Within each cluster the mean and the maximum values are determined for each component
of the test vectors. Then the root-mean-square differences are calculated between the mean
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and the maximum vectors of each cluster. The cluster with the smallest root-mean-square
difference is considered to be the most similar one. Comparing only the calculated mean
and maximum states eliminates the need for pairwise comparison of all the states. The
mean-max comparison also innately penalizes clusters with outliers.

Algorithm 2 Iterative clustering.

1. Cluster the data D with any clustering algorithm into many clusters nc.

2. Determine the cluster Cbest containing the most mutually similar elements according
to some suitable criterion.

3. Insert Cbest into the set of final clusters F and remove its elements from the data D .

4. Repeat from 1 with the remaining data D until a desired number of clusters Nc has
been extracted.

5. Insert all the remaining elements in the data D as their own cluster into the final
clusters F .

3.3 Self-organizing maps

Self-organizing maps are utilized for clustering by having the nodes of the map learn
typical probability density images found in the system. The nodes are arranged in a
rectangular n-by-m grid of unit length in both directions. The topological distance D(c, j)
between the nodes is then simply the Euclidean distance of the nodes from each other in
the grid:

D(c, j) =
rc − r j

 . (3.6)

The nodes directly represent probability density images with their model vectors. These
vectors, or more precisely model images m j(x,y; t) in this case, are learned by showing
downscaled probability density images from all the states at each time step t. The best
matching node c is decided according to the distances d(Θi,m j) given as the total squared
differences between the shown image Θi(x,y) and the model image:

d(Θi,m j) = ∑
x,y

[
Θi(x,y)−m j(x,y; t)

]2 . (3.7)

The model images are updated according to Eq. (2.8) with m j and Θi interpreted as
matrices.

Preprocessing is necessary to provide good results, and suitable values for the preprocessing
parameters Fc, γ and σ , are experimented with. Normalization and the computation of the
high intensity cutoff value Θc are performed globally for all the states simultaneously, so
that weaker scars are less likely to add noise to the nodes representing distinctly scarred
states.
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4. RESULTS

The IPR, or Ψ4-value, was also considered as a means to classify the eigenstates. While it
can differentiate particularly localized scars, such as “bouncing balls”, from the other states,
it is not useful measure for detecting weaker scars, e.g. pentagrams, amongst ordinary
eigenstates. However, the IPR provides a meaningful measure for ordering the eigenstates
within classes, as more prominent scars are generally more localized.

It may also be possible to characterize the scarred clusters by the distribution of the state
indices within the clusters. As can be seen in the figures in the appendices, the scarred
states are distributed somewhat evenly and the spacing appears to depend on the type of
the scar, at least to some extent. This may not be generalizable phenomenon and could
depend on the unperturbed potential being circularly symmetric homogeneous function.
Additionally the scarred states also usually appear in pairs in adjacent states.

The scars appear in a few preferred orientations, determined by the affinity to extremizing
the overlap with the perturbations. These different orientations complicate the clustering
by requiring more clusters to capture all the orientations in addition to the different kinds
of scars. Scaling is a subtler effect. The scale of the scars increases with energy, as larger
area becomes available in the potential well. This poses some difficulties for the clustering,
as the scars will also be divided into different clusters according to their energy, especially
in the r2-system, as the available area grows faster as a function of energy. Clustering the
r2-system is more complicated for other reasons as well, as the scars are generally weaker
and the shapes are more varied. Increasing the number of clusters could produce higher
quality clusters, but complicates classification.

Approximately 15 clusters seems to be a good compromise between capturing the essential
scarred states and having too many clusters. On the other hand, the number of clusters
could be increased if the methods are combined with secondary clustering after the initial
clusters have been formed. The clusters could be represented by the mean values of the
states belonging to each clusters. These mean representations could be clustered by taking
the desired symmetry operations into account by exhaustive search and comparison with
all the possible transformations applied in turn. Such brute force method may be more
suitable to the much smaller and smoother set of the mean representations than to the full
set of the calculated eigenstates.

The best clustering method depends on the utilized feature vectors. A problem with k-
means is the stochastic initialization, which adds variance to the results and complicates
reproducibility. Hierarchical clustering with Euclidean mean and Ward’s linkage criterion
is largely equivalent with deterministic results. Complete linkage is also useful, but average
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Figure 4.1. Probability density histograms. The probability density histograms with 10
bins are calculated over all the states in both the r5-system (a) and the r2-system (b).

linkage seems to be inferior in all the studied cases. The results from the different methods
are presented below.

4.1 Probability density histograms

Probability density histograms of the studied systems are shown in Fig. 4.1, with full range
of values (Fc = 1.00) and with the brightest percentile cut off (Fc = 0.99). Note that the
y-axis is logarithmic and the highest values of the probability density are very infrequent;
with them cut off the whole histogram fits inside the first bin of the full distribution. This
long and thin tail is of decisive importance for successful clustering, and the quality of the
clustering declines by removing the tail. On the other hand, normalization of the histogram
bin counts to zero mean and unit variance appears to attribute predominant importance to
the tail, as it comprises the majority of the bins.

As suspected, a single histogram from the whole state disregards too much information to
be practical for clustering. Subdividing the probability density grid into smaller grids for
higher resolution alleviates the problem to some extent. Utilizing the relative frequencies
of these subgrid histogram clusters as the feature vectors preserves rotational invariance, at
least partially. However, some mixing of scarred states still occurs and the method requires
many clusters to extract all different kinds of scars into their own clusters. Especially the
pentagram-like scars are easily mixed with other states.

An example of such clustering is presented in Fig. A.1. It can be seen that pentagrams are
partly embedded in the cluster C1, which is illustrated in more detail in Fig. A.3. Some
weaker bouncing balls are also lost to the larger clusters. The bouncing balls and circular
scars appear to be clustered according to their widths. The system also contains some
heptagram-like scars, but these are not assigned to any distinct cluster.

The most interesting results with histograms are achieved when the subgrid histogram
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clusters are considered as two-dimensional image for each eigenstate. Surprisingly the best
results are obtained when the subgrid histograms are clustered into only two clusters. This
may be due to the distance metric introduced in section 3.2.1 not being very robust. The
binary nature of the images also allows other more common metrics to be meaningfully
utilized for the pairwise distances between the eigenstates.

For the r5-system the results are shown in Fig. A.2 with hierarchical clustering utilizing
L1 metric and complete linkage. The most compelling observation is that the non-scarred
states are mostly collected into the cluster C1, which is however contaminated by some
bouncing ball scars. This cluster is visualized in more detail in Fig. A.4, which confirms
that the widest bouncing balls are also placed into that cluster. Increasing the number of
clusters would separate them, but an excessive amount of clusters is counter-productive.

The feature vectors were also clustered utilizing Euclidean metric and Ward’s linkage
criterion in hierarchical clustering. For comparison the results are illustrated in Fig. A.5.
The non-scarred states are spread over several clusters and the variance within clusters
appears to be slightly larger. However, the overall quality of the clustering is arguably
higher, as there are hardly any misclustered states.

Corresponding clustering results for the r2-system are show in Fig. A.6 and Fig. A.7. It
is immediately clear that the clustering is not as successful in this system. Strong scars
are rarer but weak scars are quite plentiful. Even though almost all the scars have fivefold
symmetry, there is a lot more variation in the exact shapes of the scars due to the magnetic
field. Scaling also becomes more crucial issue in the r2-system, as the classically allowed
area is growing significantly faster than in the r5-system. Nevertheless, the Euclidean/Ward
combination for the clustering metrics is the more successful approach for isolating the
strongest scars.

Employing high intensity cutoff reduces the effectiveness of clustering with the histogram
based methods, but the other preprocessing methods do not seem to have a significant effect.
There also appears to be no benefit to the iterative approach of section 3.2.3. Extracting
the feature vectors from multiple scales with subgrids of different sizes for concatenated
multiscale feature vectors does not seem to appreciably affect the results.

4.2 Convolutional networks

The quality of the feature vectors extracted by the convolutional network depends on
preprocessing. Moderate contrast enhancement appears to be useful. The amount may
loosely depend on the system, but for the two studied systems a value of approximately
γ ≈ 4 yields good results. High intensity cutoff is the most important preprocessing
step and a suitable threshold value Fc depends on the system. The r5-system requires
higher threshold value for good results, approximately 0.9 . Fc . 0.99, and conversely
the r2-system benefits from lower threshold values, approximately 0.8 . Fc . 0.9. The
max pooling layers reduce the necessity of applying Gaussian blur. However, it would
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appear that light blurring may encourage the clustering of the weakest scars into the
noisier non-scarred clusters. Therefore it may be beneficial to apply blur with the width of
approximately σ ≈ 3 to obtain more distinctive scarred clusters. Evaluating the effect of
the preprocessing parameters is partly overshadowed by the stochasticity introduced by
the random convolution kernels, which generates some variance to the results.

The feature vectors should also be normalized to zero mean and unit variance before
clustering. Hierarchical clustering with Euclidean metric and Ward’s linkage criterion
consistently outperforms the other considered clustering algorithms. The utilized metric
has smaller effect on the quality of the results than the linkage criterion. The average and
complete linkages are distinctly inferior choices for the present feature vectors, and the
Ward’s linkage criterion mandates the usage of the Euclidean metric.

An example of clustering the r5-system is shown in Fig. B.1. Overall the clustering seems
to slightly outperform the clusterings obtained from histograms. The fading of the scars
is noticeable as the eigenstates become less localized with decreasing Ψ4-value. It is
questionable whether the least localized states should be clustered into non-scarred clusters
instead. The weak heptagram-shaped scars are also not discernible in this clustering.

The same feature vectors are iteratively clustered in Fig. B.2. The benefit of the iterative
approach is that most non-scarred states are in a single cluster. The fading of pentagram-
scars is also illustrated in more detail in Fig. B.3 and Fig. B.4. Unfortunately there does
not appear to be any clear-cut threshold Ψ4-value to determine boundaries for scarring.

In Fig. B.5 the iterated clustering is performed by utilizing the probability density grids
as test vectors, instead of the feature vectors themselves. Some circular eigenstates are
erroneously assigned to the cluster C0, which is further illustrated in Fig. B.6. These thin
circular states with strong probability density rims are very sensitive to the scaling of the
eigenstates as a function of energy when employing direct comparison of the states for
similarity, which is probably the reason for the misclustering. The weak heptagram-shaped
scars are barely visible in the cluster C11, which is shown in more detail in Fig. B.7.

For the r2-system a clustering example is presented in Fig. B.8. However, the clustering
does not function adequately due to the reasons discussed in the previous section. The
most prominent kinds of scars are apparent but in general the intra-cluster variance is
higher than desirable. The iterative clustering approach mitigates the issue to some extent,
and the results are shown in Fig. B.9 and Fig. B.10. Nonetheless, some clearly scarred
states are left in the remainder cluster, which is inspected in greater detail in Fig. B.11 and
Fig. B.12.

4.3 Self-organizing maps

Similarly to convolutional networks, the results of the self-organizing map depend on the
preprocessing. Downscaling the probability density images is an additional preprocessing
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step performed to reduce the computational complexity of the algorithm. Downscaled
images of 50-by-50 pixels are sufficient for good clustering and computationally reasonable.
Good values for the other preprocessing parameters are approximately the same as for
convolutional networks, but the importance of light blurring is enhanced. Likewise,
different systems require preprocessing with different parameters for the best results,
which necessitates subjective judgment from the researcher.

The SOM should contain enough nodes so that all interesting scarred states are captured. In
practice a 5-by-3 grid appears to be a reasonable choice. However, this will result in many
of the nodes containing non-scarred states. Additionally, scars of the same kind, but with
different orientations, may also occupy multiple nodes. Therefore, the final classification
of the SOM nodes is left for the researcher.

An example of the model images of the SOM for the r5-system is presented in Fig. 4.2. The
global ordering property of the map can be noticed. The resulting clustering is shown in Fig.
C.1. The quality of the clustering is comparable to that of achieved by the convolutional
network. The clusters with circular states are more distinct, resulting in arguably better
clustering. The heptagram-shaped scars remain problematic and are not properly clustered
due to being too weak. It is possible to further cluster the states associated with some
particular node to gain further insight into the structure and purity of the cluster. The
states belonging to node C14 are further clustered in Fig. 4.3. This reveals scaling in the
central region of the scar, and the reason for the fuzziness around the edges in the original
node, as some states are closer to circular with some minor overlapping pentagram-like
characteristics.

Similarly an example of the model images in the r2-system are illustrated in Fig. 4.4
and the resulting clustering in Fig. C.2. It can be noticed that the SOM does not solve
the problems encountered in clustering the r2-system. Regardless, the most prominent
scars are clustered to their own nodes, while for the weaker scars the decisive factor for
clustering is the orientation of the brightest vertices at the outer edges of the scars. This is
evident in Fig. 4.5 where the node C2 has been further clustered. All the scars share the
same orientation and fivefold symmetry, while the exact shape of the scar varies.

The global ordering property of the SOM is convenient for exploring the distribution of
different states within the system. This is further illustrated in Fig. C.3 where a SOM
was taught to represent the r5-system on a 12-by-6 grid. A disadvantage of the SOMs,
especially with larger maps, is that the method is computationally more demanding than
the other studied methods.
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0: 31 (1.6%) 1: 32 (1.6%) 2: 60 (3.0%) 3: 50 (2.5%) 4: 101 (5.1%)

5: 91 (4.5%) 6: 421 (21.1%) 7: 539 (27.0%) 8: 41 (2.1%) 9: 51 (2.5%)

10: 68 (3.4%) 11: 71 (3.5%) 12: 112 (5.6%) 13: 213 (10.7%) 14: 119 (5.9%)

Figure 4.2. Example of SOM nodes the r5-system. The model images for the nodes of
the SOM are shown. The SOM was taught to cluster 50-by-50 downscaled probability
density images with preprocessing parameters Fc = 0.95, γ = 4, and σ = 3. The learning
parameters of the SOM were T (1) = 1000, α

(1)
0 = 0.9, β

(2)
0 = 0.5, T (2) = 10000, α

(2)
0 =

0.02, and β
(2)
0 = 0.05. The labels indicate the absolute and relative number of states

associated with each node.

14,0: 13 (10.9%) 14,1: 9 (7.6%) 14,2: 5 (4.2%) 14,3: 12 (10.1%) 14,4: 11 (9.2%)

14,5: 13 (10.9%) 14,6: 5 (4.2%) 14,7: 6 (5.0%) 14,8: 8 (6.7%) 14,9: 4 (3.4%)

14,10: 9 (7.6%) 14,11: 3 (2.5%) 14,12: 6 (5.0%) 14,13: 9 (7.6%) 14,14: 6 (5.0%)

Figure 4.3. Example of SOM nodes for subclustering the node C14 from Fig. 4.2.
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0: 137 (6.9%) 1: 27 (1.4%) 2: 86 (4.3%) 3: 153 (7.6%) 4: 73 (3.6%)

5: 176 (8.8%) 6: 99 (5.0%) 7: 178 (8.9%) 8: 151 (7.5%) 9: 10 (0.5%)

10: 274 (13.7%) 11: 212 (10.6%) 12: 204 (10.2%) 13: 173 (8.6%) 14: 47 (2.4%)

Figure 4.4. Example of SOM nodes the r2-system. The model images for the nodes of
the SOM are shown. The SOM was taught to cluster 50-by-50 downscaled probability
density images with preprocessing parameters Fc = 0.85, γ = 4, and σ = 3. The learning
parameters of the SOM were T (1) = 1000, α

(1)
0 = 0.9, β

(2)
0 = 0.5, T (2) = 10000, α

(2)
0 =

0.02, and β
(2)
0 = 0.05. The labels indicate the absolute and relative number of states

associated with each node.

2,0: 11 (12.8%) 2,1: 4 (4.7%) 2,2: 5 (5.8%) 2,3: 14 (16.3%) 2,4: 8 (9.3%)

2,5: 7 (8.1%) 2,6: 6 (7.0%) 2,7: 6 (7.0%) 2,8: 1 (1.2%) 2,9: 5 (5.8%)

2,10: 5 (5.8%) 2,11: 5 (5.8%) 2,12: 3 (3.5%) 2,13: 3 (3.5%) 2,14: 3 (3.5%)

Figure 4.5. Example of SOM nodes for subclustering the node C2 from Fig. 4.4.
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5. DISCUSSION AND CONCLUSIONS

During the thesis it was noticed that the general unsupervised problem of detecting and
classifying the scarred eigenstates is more complicated than expected. Nevertheless, the
investigation provides valuable insight about the challenges of the problem; inadequate ap-
proaches were recognized and promising methods for further development were identified.

Further research into histogram-based feature vectors is unlikely to result in a breakthrough,
but a more thorough investigation of convolutional networks is warranted. Besides experi-
menting with different network layouts, some elements of the network are immediately
apparent targets for improvements. While random kernels generally perform adequately [8,
p. 357], kernels adapted to the actual data are expected to provide superior performance. A
possible solution would be to cluster random segments of the images with k-means, and
utilize the learned centroids as kernels [15]. Another enhancement would be to design
the network to take desired symmetries into account. Max pooling already makes the
network invariant to small translations and minor scaling. Rotations, and other symmetry
operations, could be taken into account by constructing parallel layers in the network
where these symmetry operations have been applied to the kernels. The consecutive layers
would choose the outputs from the preceding layers with the highest activations.

Entirely different methods for constructing the feature vectors could be considered as well.
The eigenstates of the perturbed system can be approximated by a linear combination
of the eigenstates of the corresponding unperturbed system. The coefficients of these
expansions could be utilized as feature vectors. Additionally, if good quantum numbers
can be constructed for the unperturbed states, these combined with the coefficients could
be exploited for actual classification instead of merely clustering.

The self-organizing maps are also good candidates for further improvements. The number
of nodes in the maps is an important parameter that has to be adjusted by hand. It may
not be clear how many nodes are required to properly represent all the different kinds of
scars present in the system. Even though relatively low number of nodes may reveal the
prominent scar geometries, the clusters are noisier and likely to contain many outliers.
These problems could be overcome by modifying the algorithm to dynamically adjust the
number of nodes in the network, and more generally, allow the dynamic adjustment of the
network topology.

The scars form closed orbits marked by high probability density. Therefore it could be
beneficial to attempt to directly trace these orbits and form a representation for them. A
suitable approximation of the orbits could be easier to normalize for rotations, scale, and
other desired symmetries. It can be a fair assumption that in the absence of any clear orbits
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the representations would not converge towards any definite representation resembling the
orbits, allowing scarred and non-scarred states to be distinguished. Furthermore, if the
orbits are precise enough, they could allow wave packet analysis for more quantitative
study of scar strengths.

The orbit tracing was preliminarily attempted by one-dimensional SOMs with closed
loop topology for its nodes. The nodes hold (x,y)-coordinates of points in the probability
density image, learned by randomly sampling points proportionally to the probability
density. While these representations do not exactly follow the orbits, they are distinct for
different kinds of scars. Nevertheless, the subsequent clustering of these representations
was not of comparable quality to the other methods considered in this thesis, while being
significantly more expensive computationally.

Another strategy for finding the orbits could be based on convolution with suitably de-
signed kernels. As can be seen in Fig. 2.2, convolution by a kernel containing a line
element highlights areas where brighter contents of the image are aligned with the line.
Systematically rotating the kernel and following the hot spots in the convolution could
allow tracing the orbits.

If the requirement for generality is relaxed, a specialized solution could be devised for
systems with circularly symmetric unperturbed potentials. In this case the classical periodic
orbits can be enumerated relatively easily [3], which allows straightforward matching of
these orbits onto the eigenstates. Not only would this allow meaningful classification, but
also direct quantification of the strength of the scarring by the standard method of wave
packet analysis. Computationally lighter alternative could be to determine the fraction of
the probability density residing nearby the orbits.

Presently the methods rely on the researcher performing the final classification of the
produced clustering. Nevertheless, the current methods already enable further study
of the scarred systems. For example, they can be utilized for exploring the effects of
the perturbations on the scarring phenomenon. This is due to the observation that the
orientations of the scars are relatively insensitive to the amplitude and standard deviation
of the noise [3]. Therefore, as long as the bump positions remain fixed, the effects of these
parameters can be studied by the same clustering that has been once classified.
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APPENDIX A: EXAMPLES OF HISTOGRAM-BASED
CLUSTERING
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Figure A.1. Example of relative frequency subgrid histogram clustering. The probability
density grids in the r5-system were divided into 10-by-10 subgrids. Histograms with 10
bins were clustered by k-means into 10 clusters. The relative frequencies of the subgrid
histogram clusters were normalized to zero mean and unit variance, and then clustered
with hierarchical clustering utilizing L1 metric and complete linkage.
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Figure A.2. Example of subgrid histogram image clustering in the r5-system. The proba-
bility density grids were divided into 10-by-10 subgrids. Histograms with 10 bins were
clustered by k-means into 2 clusters. The histogram clusters of each state were interpreted
as binary images and were clustered with hierarchical clustering utilizing L1 metric and
complete linkage.
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Figure A.3. Cluster C1 from Fig. A.1.
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Figure A.4. Cluster C1 from Fig. A.2.
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Figure A.5. Example of subgrid histogram image clustering in the r5-system. The proba-
bility density grids were divided into 10-by-10 subgrids. Histograms with 10 bins were
clustered by k-means into 2 clusters. The histogram clusters of each state were interpreted
as binary images and were clustered with hierarchical clustering utilizing Euclidean metric
and Ward’s linkage criterion.
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Figure A.6. Example of subgrid histogram image clustering in the r2-system. The proba-
bility density grids were divided into 10-by-10 subgrids. Histograms with 10 bins were
clustered by k-means into 2 clusters. The histogram clusters of each state were interpreted
as binary images and were clustered with hierarchical clustering utilizing L1 metric and
complete linkage.
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Figure A.7. Example of subgrid histogram image clustering in the r2-system. The proba-
bility density grids were divided into 10-by-10 subgrids. Histograms with 10 bins were
clustered by k-means into 2 clusters. The histogram clusters of each state were interpreted
as binary images and were clustered with hierarchical clustering utilizing Euclidean metric
and Ward’s linkage criterion.
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APPENDIX B: EXAMPLES OF CONVOLUTIONAL
NETWORK CLUSTERING
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Figure B.1. Clustering of the r5-system by convolutional network. The probability density
images were preprocessed with parameters Fc = 0.95, γ = 4, and σ = 3 prior to ex-
tracting the feature vectors. The normalized feature vectors were clustered by hierarchical
clustering utilizing Euclidean metric and Ward’s linkage criterion.
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Figure B.2. Iterative clustering of the r5-system by convolutional network. The probability
density images were preprocessed with parameters Fc = 0.95, γ = 4, and σ = 3 prior to
extracting the feature vectors. The normalized feature vectors were iteratively clustered
with the feature vectors as test vectors. Each iteration employed hierarchical clustering
with 8 clusters. The clustering utilized Euclidean metric and Ward’s linkage criterion.
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Figure B.4. Cluster C6 from Fig. B.2.
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Figure B.5. Iterative clustering of the r5-system by convolutional network. The probability
density images were preprocessed with parameters Fc = 0.95, γ = 4, and σ = 3 prior to
extracting the feature vectors. The normalized feature vectors were iteratively clustered
with the probability density grids as test vectors. Each iteration employed hierarchical
clustering with 8 clusters. The clustering utilized Euclidean metric and Ward’s linkage
criterion.
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Figure B.6. Cluster C0 from Fig. B.5.
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Figure B.7. Cluster C11 from Fig. B.5.
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Figure B.8. Clustering of the r2-system by convolutional network. The probability density
images were preprocessed with parameters Fc = 0.85, γ = 4, and σ = 3 prior to ex-
tracting the feature vectors. The normalized feature vectors were clustered by hierarchical
clustering utilizing Euclidean metric and Ward’s linkage criterion.
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Figure B.9. Iterative clustering of the r2-system by convolutional network. The probability
density images were preprocessed with parameters Fc = 0.85, γ = 4, and σ = 3 prior to
extracting the feature vectors. The normalized feature vectors were iteratively clustered
with the feature vectors as test vectors. Each iteration employed hierarchical clustering
with 15 clusters. The clustering utilized Euclidean metric and Ward’s linkage criterion.
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Figure B.10. Iterative clustering of the r2-system by convolutional network. The probabi-
lity density images were preprocessed with parameters Fc = 0.85, γ = 4, and σ = 3 prior
to extracting the feature vectors. The normalized feature vectors were iteratively clustered
with the probability density grids as test vectors. Each iteration employed hierarchical
clustering with 15 clusters. The clustering utilized Euclidean metric and Ward’s linkage
criterion.
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Figure B.11. Cluster C0 from Fig. B.9.
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Figure B.12. Cluster C0 from Fig. B.10.
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APPENDIX C: EXAMPLES OF SOM CLUSTERING
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Figure C.1. Clustering of the r5-system by SOM. The SOM was taught to cluster 50-by-50
downscaled probability density images with preprocessing parameters Fc = 0.95, γ = 4,
and σ = 3. The learning parameters of the SOM were T (1) = 1000, α
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Figure C.2. Clustering of the r2-system by SOM. The SOM was taught to cluster 50-by-50
downscaled probability density images with preprocessing parameters Fc = 0.85, γ = 4,
and σ = 3. The learning parameters of the SOM were T (1) = 1000, α
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