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ABSTRACT 
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Mobile network coverage in rural areas are usually a challenging topic for mobile network 

operators. Setting up a remote base station and operating it might not be a wise invest-

ment, since the number of customers served in the rural areas is usually low. Kuha is a 

name for a rural base station solution that is designed to tackle the issues by designing a 

business model that decreases the costs for the operators to extend their already existing 

network. This rural area connectivity is achieved by utilizing already existing hardware 

and software to some extent. 

In order to achieve this type of non-traditional connectivity, part of the software running 

on the base station has to be reimplemented. Since part of the software is reimplemented, 

it also needs to be tested. Due to the fact that this reimplemented software is very profound 

software component within the base station, the continuous integration is a wise choice 

compared to continuous delivery or continuous deployment. 

In this thesis we will explore the evolution of the mobile network technologies, and how 

Kuha is addressing the issues that the rural areas introduce. As a practical part of this 

thesis, a continuous integration system was created. Theoretical part introduces different 

types of testing and also how continuous integration fits to the traditional and modern 

software development methodologies. 

As a result of the work done, a continuous integration system was established. This sys-

tem has been in use since the project started and will be under further development even 

after this thesis. The system, at the time of writing this thesis, supports a software compi-

lation and integration testing. What it comes to the future of the system, a move towards 

continuous delivery or continuous deployment will be a next step to take. 
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Matkapuhelinverkkojen kattavuus maaseuduilla on yleensä kehno, sillä operaattorit eivät 

ole halukkaita laajentamaan verkkojaan alueille, jossa mahdollisia asiakkaita on vain vä-

hän. Tukiaseman pystytys ja operoiminen maaseuduilla saattaa tuoda enemmän kustan-

nuksia kuin tuloja operaattoreille. Kuha on tukiasemaratkaisu, joka on kehitetty tätä on-

gelmaa silmällä pitäen. Kuhan tarjoama ratkaisu alentaa käyttöönotto- sekä operoimis-

kustannuksia, joita syrjäiset asennuspaikat saattavat tuoda. Kuha osittain hyödyntää ole-

massa olevaa laitteistoa ja ohjelmistoja. 

Jotta tällainen epätyypillinen liitettävyys olisi mahdollista saavuttaa, joudutaan eräs tuki-

aseman ohjelmistokomponentista kirjoittamaan osittain uusiksi. Kun uutta ohjelmistoa 

luodaan, tulisi se myös testata. Jatkuva integraatio Kuhan tapauksessa on looginen ensim-

mäinen askel kohti automaatiota, sillä uudelleen kirjoitettu ohjelmistokomponentti on hy-

vin oleellinen osa koko tukiaseman toiminnallisuutta. 

Tämän diplomityön kirjallisuusosuus selvittää matkapuhelinverkkojen kehitystä, sekä 

minkälaisen ratkaisun Kuha tarjoaa ongelmaan jonka syrjäiset seudut aiheuttavat. Käy-

tännön osuus diplomityössä oli jatkuvan integraation järjestelmän toteuttaminen. Kirjal-

lisuusosuudessa esitellään myös miten erityyppiset ohjelmistotestausmenetelmät sopivat 

yhteen perinteisten ja modernien ohjelmistokehitysmenetelmien kanssa. 

Diplomityössä kehitetty jatkuvan integraation järjestelmä on ollut projektin käytössä pro-

jektin alusta asti. Järjestelmä tulee olemaan myös käytössä, sekä jatkuvassa kehityksessä 

tämän diplomityön jälkeenkin. Tulevaisuuden kehityssuuntana järjestelmää tullaan kehit-

tämään kohti jatkuvaa toimitusta tai jatkuvaa käyttöönottoa. 
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1. INTRODUCTION 

The continuous integration system introduced in this thesis was implemented during the 

software development of a rural base station solution. The aim for this continuous inte-

gration system was to support the development of the new software created for the pre-

existing base station solution. Since the base station hardware already exists, the testing 

part of the continuous integration would not be testing all the parts of the base station 

because it has already undergone testing during development. Therefore, the integration 

tests would be concentrating more on the use cases that this new base station solution 

provides. 

Kuha is the name for a base station solution that enables rural communities and house-

holds to have LTE mobile coverage. Kuha base stations are designed to be easy to setup 

without prior telecommunications experience. This offers a way for the mobile operators 

to decrease the costs of setting up new mobile base station sites since the base station 

would be shipped to customer, who would then perform the base station setup. Rural 

locations have previously been challenging for mobile operators since the costs of running 

a new base station exceed the benefits that it brings. 

This thesis consists of a theoretical part which dives into the theory of testing in software 

projects which supports the practical testing environment that was established. Also, very 

brief introduction to mobile network technology and how that affected the motivation 

behind Kuha base station solution.  

This thesis is constructive and the goal for this thesis is to create a continuous integration 

system by utilizing the Gitlab’s built-in continuous integration functionality. The goal for 

this continuous integration system is to be utilized to test the Kuha base station solution. 

This system should be highly automated and be easily extended into even further auto-

mation, such as continuous delivery or continuous deployment. As a part of the continu-

ous integration system, also integration test cases will be created. The goal for this con-

tinuous integration system is that it provides actual value to the software development 

team. 

Chapter 2 will be introducing the evolution of mobile networks and how the solution 

called Kuha fits into that evolution. Chapter 3 will be discussing about the software de-

velopment methodologies as well as how the development practices such as continuous 

integration can be used in cooperation with those methodologies. Chapter 4 will then in-

troduce the continuous integration system that was developed as the practical part of this 

thesis. 
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2. LTE BASE STATION SOLUTION FOR RURAL 

AREAS 

This chapter will be discussing briefly the evolution of mobile networks and some of the 

obstacles that have been introduced by this evolution. Section 2.3 introduces a mobile 

network solution called Kuha and how Kuha is planning to overcome some of these ob-

stacles. While the business solution and software behind Kuha is discussed in Section 2.3, 

the hardware side will be discussed in Section 2.4. 

2.1 From 3G to 4G and to the upcoming 5G 

The high usage of data transfer has been the driving factor for the evolution from 3G 

based UMTS networks to 4G-based LTE networks while the driving factor in the previous 

generations was the rising usage of voice calls and short message service (SMS). The 

amount of data transferred in LTE-based mobile networks has been increasing year over 

year, being almost tripled within year 2009. This type of usage switch from voice to data 

traffic has made new kind of requirements for the mobile operators, forcing them to spend 

a considerable amount of their revenue to increase the capability of their networks. From 

the network planning point of view, adopting the LTE networks meant that some neces-

sary precautions had to be made since LTE did not provide circuit-switched voice capa-

bilities like the previous generations used to provide. At first this meant that for voice 

calls, the 2G and 3G networks had to be utilized, although LTE provides a voice over 

LTE (VoLTE) capability [1]. Nowadays VoLTE has been launched in more than 125 

countries and was expected to exceed 650 million VoLTE-ready subscribers by the end 

of 2017 while LTE subscriptions are estimated to be around 2,6 billion. It has been esti-

mated that around the year 2023 the VoLTE-ready subscription amount would match the 

LTE subscription amount [2]. 

Moving away from circuit-switched to packet-switched network provided advantages in 

terms of end user applications not requiring to be used in a specific network. One common 

use case would be to provide smooth, continuous usage of the application when user was 

moving between cellular network and Wi-Fi. Common trend in the mobile phone devel-

opment has been to support this kind of uninterruptible network switch. Since upgrading 

into a new network generation requires a significant amount of time in terms of the spread 

of new mobile devices supporting the new generation as well as the installation of the 

new base stations, the networks are deployed in parallel. This means that multiple net-

work generations are deployed into the same locations as the existing ones. While LTE 

provides theoretical peak data rates from 100 Mbit/s up to 326,4 Mbit/s, the actual data 

rates are usually lower due to the limitations in the core network transport as well as the 

spectrum. [1].  
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Figure 1. LTE network architecture. Copied from [1] 

Figure 1 illustrates the LTE network architecture. The term used for base station in LTE 

is eNodeB (eNB). The S1 link connecting the base stations to the core network is usually 

established via an Ethernet. Depending on the use case, the S1 traffic can be transported 

via either a dedicated link or via public Internet. In highly populated areas, such as cities, 

the cells are distributed with a site distance between 500m and 2km. As the demand rises, 

operators may decrease the cell size and add additional hardware into the area in order to 

continue providing highspeed connectivity. It is also possible for the operators to deploy 

additional frequency bands within one cell, if they hold a license to radiate in such fre-

quencies. Higher frequency bands are used in high density, low coverage areas to provide 

higher speeds and lower frequencies in rural areas to provide coverage. To further in-

crease the capacity, temporary sites can also be used to handle cases where high demand 

is only needed for limited time, such as in case of sports events [1]. The increasing de-

mand for data traffic in the modern cellular networks has been the factor for developing 

heterogenous networks (HetNets). Traditionally the network architecture was designed 

by relying on several full-scale base stations, called macro cells, that were deployed to 
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such locations where they would serve proportional number of customers. In HetNet, 

small base stations, called small cells, are used to complement traditional macro cells by 

extending the coverage to places where the network signal used to be weak, such as in-

doors. Small cells also provide lower transmit powers from as low as 100mW to 2W while 

the macro cells were anything between 5W. and 50W [3]. Small cell deployment intro-

duces new problems to network operators since deploying high amounts of base stations 

into a single location may cause interference between the base stations. Traditionally, the 

network planning in cellular networks has been done by using problem formulations in-

cluding coverage planning, power optimization and channel assignment. However, these 

planning models are not suitable for HetNets due to their focus on traditional cellular 

network design as they only considered the placement of the new macro cells. Due to this, 

new models for cellular network planning had to implemented, where also the possible 

inter-cell interference had to be considered [4]. 

From a financial point of view, the operators need to cover the costs of acquiring licenses 

for spectrum and for buying and installing base station and the infrastructure. These kinds 

of expenses are called capital expenditure (CAPEX). Running and maintaining a network 

also creates expenses that are called operational expenses (OPEX), which are rental costs 

for installation sites and power used by the base stations. In city like environment where 

the potential user amount is high, acquiring additional infrastructure to provide connec-

tivity is easily justified. However, in rural areas, fast Internet access either via a fixed line 

or wireless connection is still rare in certain regions. The low number of potential cus-

tomers in such areas is making operator reluctant to make investments. 

 

Figure 2. LTE coverage of DNA’s network in Lapland 
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In Figure 2 a screenshot is taken from coverage tool that Finnish mobile operator DNA 

has provided. In the screenshot, the area filled with pink color represents an area where 

there is LTE coverage. Ericsson has estimated that a base station covering an area of 12 

square kilometers is financially viable in areas with population densities as low as 15 

people per square kilometers [1]. 

At the same time as new innovations and products are made, also new requirements re-

garding wireless connectivity are brought up by them. Moving on from LTE to 5G means 

that these requirements are taken into account during the design process. While LTE was 

designed to provide highspeed Internet access, the new products might not have the need 

for highspeed data transfer since they might only transmit low amounts of data occasion-

ally. Often these same devices might also work on battery, meaning that the power used 

for wireless transmission must be kept at minimum. Internet of things (IoT) is one prom-

inent area where this is a fact that has to be considered during the design process of the 

device. IoT will be discussed more in depth in the following section. 5G considers these 

highly varying requirements that the ever-evolving subscriber base has. 5G provides sup-

port for the low latency transmission that, for example, the machine-to-machine commu-

nication requires as well as the power-efficient, high latency simple data transmission that 

the IoT devices require. In order for the 5G to achieve even faster data transmission than 

what LTE provides, peak data rates being 10-20Gbps, certain measures have to be done. 

One of these measures is to use spectrum that is above 3GHz. Typically, LTE uses spec-

trum that is well below 3GHz and bandwidth of 20MHz in case carrier aggregation is not 

used. In 5G, the spectrum might go as high as 100GHz while the bandwidth is several 

hundred megahertz. Very high frequency is also a limiting factor in terms of cell coverage 

since the signal attenuation is very high, so the transmission distances will be shorter. 

Another prominent feature is beamforming, where the signal energy is directed to the 

direction where the receiving device is. Beamforming is a way to compensate for the 

signal attenuation that happens in the higher frequencies, thus allowing the range of the 

signal to be extended [1]. 

2.2 Narrowband-IoT 

Internet of things (IoT) is a term used for describing a network where previously Internet-

incapable everyday objects or devices, “things”, are now connected to the Internet. These 

devices would have capability to sense and actuate the surrounding environment to some 

extent. Also, some of these devices contain programmability capabilities. The idea behind 

the device interconnectivity would be to provide cooperation between different systems, 

hence providing new services for the customers. Studies have revealed that by the year of 

2020, more than 30 billion devices would be connected to the Internet. Despite the amount 

of data sent by one IoT device is not high, due to the fact there are millions of these 

devices, the amounts of data generated will be substantial [5]. In the US, grain farms are 

moving towards increased automation where drones would be utilized to monitor crops, 
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informing the farmer about possible pest infestation. In the ground level, the devices mon-

itor humidity and trigger watering if required [6]. 

During the design process of the IoT device, one of the most prominent design questions 

is how to connect the device to the Internet. Depending on the operational environment 

of the product, the connection can be either wired or wireless. Connectivity method is 

even more critical in the case device is operating battery-powered, since the power used 

for data transmission will be one of the factor to consider when maximizing the lifetime 

of the device. If the device is located indoors, for example in shopping malls or apart-

ments, it can utilize the existing wireless LAN (WLAN). Other possibility is to utilize the 

cellular network in such places where the WLAN coverage is not provided such as out-

doors. For low data rates and low hardware costs, General Packet Radio Service (GPRS) 

could be utilized, but operators are already upgrading their networks towards LTE. Con-

necting an IoT device to LTE network introduces new problems. The signaling between 

the device and the network can be very power-hungry for IoT devices operating on bat-

tery. To address this issue, the 3GPP standards group has developed the Narrowband IoT 

standard (NB-IoT) [6]. 

LTE uses Orthogonal Frequency Division Multiplexing (OFDM) as the modulation tech-

nique, where the data is transmitted by using multiple 180kHz wide narrowbands. Typi-

cally, the bandwidth for the LTE cell is something between 1,25 and 20MHz. Using nar-

rowbands provides a way for the LTE to scale up or down depending on the amount of 

the available spectrum. Scaling is done by increasing or decreasing the amount of used 

narrowbands. NB-IoT standard describes that one or multiple NB-IoT carriers use these 

existing narrowbands, but due to the differences in, for example, the modulation, they 

would be specifically designed for higher power efficiency. Figure 3 illustrates different 

ways to deploy a NB-IoT carrier within the already used spectrum. 

 

Figure 3. Different NB-IoT carrier deployments. Copied from [7] 

NB-IoT standard provides a simplified air interface. It does not support channel measure-

ments and, reporting and the potential raw data rate in practice is only around 200kbit/s. 

However, for many IoT devices these kind of data rates are usually sufficient. Despite the 

low throughput of the NB-IoT, it has been designed to serve up to 50 000 devices within 
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one cell. Network simulations made by 3GPP have also shown that a single NB-IoT chan-

nel would be capable of supporting this number of devices in a scenario where devices 

sent 105 bytes of data per transmission. NB-IoT also uses OFDM, but for modulation it 

utilizes Binary Phase Shift Keying modulation (BPSK) or Quadrature Phase Shift Keying 

(QPSK). These modulation techniques can transmit 1 and 2 bits respectively per trans-

mission step compared to the normal narrowbands transmitting up to 8 bits per transmis-

sion step with Quadrature Amplitude Modulation (QAM) when the radio conditions are 

ideal. This lowers the requirements for the radio processing in the devices using NB-IoT 

channel [1]. 

2.3 Kuha base station solution 

In traditional macro base station-based approach, the base station hardware is only part 

of the costs. New base station sites may require investments in the infrastructure, since 

the base stations require electricity and Internet connectivity. Macro base stations are also 

often installed at high grounds in order to maximize the coverage. In addition of the in-

vestments mentioned, installing the base station itself requires a visit of a telecommuni-

cations engineer which, in case of a rural site, may also be a significant cost. 

Kuha is a name for a rural base station solution that is designed to solve the rural connec-

tivity related problems that were mentioned in Sections 2.1 and 2.2 and to provide an easy 

method to extend LTE coverage. Kuha aims to provide a plug-and-play type of solution 

that allows base stations to be installed by anyone even without any prior telecommuni-

cations experience. The requirements for the installation are designed to be as simple as 

possible, only requiring simple set of tools for mounting the base station itself in addition 

of power and Internet connectivity. If the location does not provide a wired connection, 

Kuha can also operate over a satellite backhaul. Flexibility for the power input is also 

considered and, for example, solar panels can be considered in areas that provide enough 

electricity via solar power. Kuha base stations operate on operators’ frequency which 

means that the Kuha base stations are an extension to the already established cellular 

network. 
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Figure 4. Simple instructions are provided with the Kuha base station 

Kuha solution provides simple installation instructions that can be seen in Figure 4. This 

allows rural communities and hard-to-reach areas to gain LTE connectivity. The commu-

nity maintains the base station locally in addition to the Kuha team’s remote observing. 

Kuha Cloud OSS (operations support system) is a management system that is developed 

to maintain the Kuha base stations as well as update their software remotely. Kuha OSS 

collects certain type of data from the base stations that are installed in the field. This data 

is used to deduce the status of the Kuha base stations and it contains information such as 

base station’s internal alarms, counters, and heartbeat. This data is processed and illus-

trated in an administrator view that lists all the devices and provides an interface to do 

certain type of maintainability actions on misfunctioning devices. In the case a problem 

that cannot be handled remotely has been noticed, the local maintainer can be instructed 

to take relevant actions. Kuha type of approach allows service provides to sell LTE cov-

erage in places where it has not been profitable before. Figure 5 below illustrates the 

connectivity diagram of the Kuha base station solution.  



9 

 

Figure 5. Kuha solution architecture 

Secure connectivity between the base stations and the operator’s core network is achieved 

by IPSec, which is a security protocol for providing security to IP and upper layer proto-

cols such as UDP and TCP. IPSec is capable of protecting packets between hosts, between 

network security gateways or between hosts and security gateways. Security gateway is 

usually a router that supports IPSec or a firewall [8]. In Figure 5 the connection is between 

a host and a security gateway. 

Kuha base station solution utilizes an existing software and hardware. Hardware is dis-

cussed in detail in Section 2.4 and Chapter 4. The software handling the LTE protocol 

and the air interface will be left untouched. However, in order to achieve the plug-and-

play type of installation and non-traditional backhaul connectivity, a set of software called 

transport inside the base station needs to be reimplemented to some extent, while certain 

parts of it will be kept as is. Transport software is a term used in this thesis to describe a 

set of software that handles, for example, the IPSec connectivity handling between the 

base station and the security gateway and the base station’s network interface configura-

tion. 

Kuha project will already contain two separate versions of the transport, versions 1 and 

2. Version 1 utilizes the existing transport software with some modifications made into it 

in order to create a working device. Version 2 is more ambitious approach, where large 

parts of the transport software will be rewritten. The goals for the reimplementation are 

to speed up the reboot time of the base station and to enable more extensive management 

actions from the Kuha OSS. This thesis concentrates on the transport version 2 develop-

ment and testing. The old transport implementation also contains design decisions and 

features that are not needed within the scope of the Kuha. The continuous integration 
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system and the integration tests described in this thesis were designed to verify that the 

changes made to the transport software do not break the use cases that the legacy transport 

software provided. Some of the integration tests also include certain type of requirements 

that were designed specifically to ensure that the intended improvements regarding for 

example the reboot times were achieved. 

2.4 Flexi Zone Micro 

Flexi Zone Micro (FZM) is a base station that provides small cell solution. FZM is opti-

mized for outdoor environment. FZM has multiple hardware variants that provide support 

for different radio technologies such as frequency-division duplex (FDD) as well as time-

division duplex (TDD). FZM supports a bandwidth of up to 20MHz with varying transmit 

power as well as Multiple-Input and Multiple-Output (MIMO) method to increase the 

radio link capacity. The term “Kuha base station” in this thesis refers to a FZM although 

Kuha OSS solution also provides support for any kind of base station hardware. 
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3. TESTING AND PRACTICES IN SOFTWARE DE-

VELOPMENT 

This chapter takes a look at how the software development methodologies have developed 

throughout the years. Section 3.1 briefly discusses the software models called waterfall 

model and how it compares to agile methodology. Section 3.2 will introduce how the 

software testing is established in waterfall and agile methodologies and what benefits the 

agile methodology can bring over waterfall model. Section 3.3 introduces a software de-

velopment practice called continuous integration and how that software development pro-

jects can benefit from using it. Final section will introduce Gitlab, a version control sys-

tem that also provides functionality that can be used to implement continuous integration 

into software development project. 

3.1 Agile methodologies 

Historically, software projects used to rely on waterfall development practice in which a 

dedicated integration phase was executed usually after the development phase. In the in-

tegration phase, the software changes made by the teams of developers were merged to-

gether with the goal of outputting a working product. Figure 6 illustrates the steps of 

waterfall model. In this figure, each of the boxes represents a phase of the product and 

they are executed in order from top to down, hence the name waterfall model. Once a 

phase is completed, the project moves on to next phase and does not go back. The output 

of the previous phase is used as an input of the following phase. This means that any 

modifications made to the already completed phases would make the following phases 

unstable. [9] 

 

Figure 6. Waterfall model. Copied from [9] 
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Due to the obvious shortcomings of the waterfall model, a new software development 

concept was created. This new concept, agile methodology, have been used since the be-

ginning of the 21st century. In agile methodology as well as in the waterfall model, the 

customer was included into the very early phase of the project. What is done differently 

in agile compared to the waterfall model, the customer is being kept in the loop through-

out the project. In waterfall model, the customer requirements were frozen after the re-

quirements phase, leaving developers to create a product just with that information. Dur-

ing the implementation, the market, or the environment for which the project was created 

for may have changed significantly. This means that once the product is ready, it may 

already be obsolete and worthless for the customer. In agile, the implementation is made 

in iterative fashion, keeping the customer in the process throughout the project. Having 

constant feedback from the customer allows the project to adapt accordingly to the world 

changing around it. One iteration in agile is called a sprint and it is usually anything be-

tween 1 to 4 weeks. During the sprint, the team selects tasks from the backlog and imple-

ments them. After the sprint, customer may review the changes made and influence on 

the tasks done in the following sprints [10]. Figure 7 illustrates the process behind the 

term sprint in one of the agile methodologies called Scrum. 

 

Figure 7. Sprint process. Copied from [11] 

In Scrum the product backlog is a collection of the functional and non-functional require-

ments. These requirements undergo a process called grooming in which user stories are 

created. A user story is a basic unit of work in Scrum and usually the goal is that each 

user story can be completed within one sprint. This means that a single requirement can 

be translated into multiple user stories. In Scrum, the mentality regarding software bugs 

is that a user story should not introduce any new bugs into the product. In case the user 

story does introduce new bugs, the user story is not considered done until the newly in-

troduced bugs are resolved. User stories also usually hold an estimate, called story point, 

that is used to display how much a user story takes time to complete. After multiple 

sprints, the team may then use these estimates when they are planning how much user 
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stories they take into the sprint backlog in the beginning of each sprint. Certain types of 

charts called burn-down and burn-up are used to display the progress as well as the work 

needed to complete the project. Figure 8 illustrates how a burn-down chart could look 

like. Usually burn-down charts have two lines where one is illustrating how the linear 

progress would go and the other illustrating how the actual work is done. [12] 

 

Figure 8. Burn-down chart 

In the beginning of the sprint, a sprint planning meeting is held in which the team agrees 

on what user stories they will include into the sprint backlog. Usually the decision is made 

using the input given by the customer on what is important to have next. During the sprint, 

a short meeting, called daily, will be held in which the team members update each other 

on the progress of their user stories. The goal is to keep the daily meetings very short 

time-wise, usually only 10 to 20 minutes long. One very common way to keep the Scrum 

daily meeting short is to keep it as a standing meeting. During the daily meeting, team 

members may address any problems or risks they have noticed during the sprint regarding 

their own user stories or the project as a whole. After each sprint in Scrum, a sprint review 

and sprint retrospective meetings will be held. Sprint review meeting is used to introduce 

the newly made increments to the stakeholders who can then accept or reject the changes. 

Sprint retrospective is a team’s internal meeting held to inspect the areas that need im-

provement but also to identify the practices that brought value to the sprint process. Value 

increasing practices can be identified by studying if they improved a developer’s effi-

ciency or not. [13] 

3.2 Software testing 

As it was introduced in the previous section, in waterfall model the integration and system 

testing were an independent step and was started after the implementation of the code was 

already done. If waterfall model caused problems from in terms of budget and schedule 

being exceeded, it also caused problems in terms of testing if the development team had 

to take one or multiple steps back. Going back steps in waterfall model also meant that 
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testing had to be redone. From testing point of view also the quality, completeness and 

stability of the requirements had to be very high since any defects found in the integration 

or system testing would possibly cause delays in the delivery schedule. Delivering the 

new software into testers in the very late part of the project would also mean that testers 

were on the critical path of delivery of the software. If there were any delays during re-

quirement, design or implementation, and the delivery date is non-flexible, that would 

cause the time dedicated for testing to be very short [14]. 

The absolute goal for software testing would be to test every possible permutation that 

the software might have. However, in real world this is not possible since even the sim-

plest programs can have millions of possible input and output combinations. Even if the 

testing is not able to test all the possible combinations, testing should still bring value into 

the software development. This means that the testing should start with the assumption 

that the software contains errors and testing is used to find these problems. Testing can 

be roughly divided into two testing strategies, black-box testing and white-box testing 

[15]. Figure 9 illustrates the differences between these testing strategies. 

 

Figure 9. Black-box and white-box testing. Copied from [16] 

Black-box testing is a term used for testing that sees the program as a complete program, 

hence the name. In black-box testing, the test cases are not concerned about the internal 

workings of the software, instead only the scenarios where the program does not behave 

as expected. In black-box testing the amount of possible input-output combinations is 

almost always very high and testing may be very complex when testing programs that 

have non-volatile memory. Depending on the level in which the test case testing the sys-

tem is, it might be challenging to find the code block in which the required fix might be 

in [15]. Integration testing can be considered as one type of black-box testing. In integra-

tion testing, the complete system is built by adding modules to-be-tested into an existing 
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machine containing rest of the software. Tests are then executed against this freshly inte-

grated module. Integration testing should take place in an environment that resembles the 

final production environment. After the integration tests are executed, acceptance tests 

can be done to verify that the system fulfils the original requirements [17]. 

White-box testing is the opposite from black-box testing. In white-box testing, the code 

to be tested can be freely inspected and the test cases can be written in code unit level. 

This means that one of the goals could be to reach high test coverage. This kind of re-

quirement is also rather challenging to fulfil since the number of possible paths that the 

program might have will be very high. One type of white-box testing is unit testing and 

as the name implies, it tests the code as units such as input and output combinations of 

functions. Executing every possible permutation of a single function may bring full cov-

erage in the testing report, but in some cases, it might hide the logical faults that the 

function might have. [15] 

In software development, a software risk analysis can be done to ease up the testing pro-

cess. This analysis defines what to test, priority and the depth of testing. This can help 

identify areas that are critical and should be tested thoroughly. Software risk analysis 

should be done at a very early phase of the project, once the high-level requirements are 

clear. When the test implementation then begins, the developers and testers can refer to 

this analysis when deciding what type of test cases should be implemented and in which 

order. Test implementation in this context refers to a process in which test data is ac-

quired, test procedures are developed, and test environment is established. Testing in the 

software development contains multiple different levels in which the testing takes place. 

Moving on from unit tests towards integration or system tests, also the testing level moves 

towards from the code unit to a production-like environment. Production-like environ-

ment is important during testing since it may reveal issues within the specification or the 

code that was not noticed during the requirement gathering or implementation. One good 

approach for creating the environment that resembles the production is to use the data 

gathered from the current customers. This is of course not feasible in the scenario where 

there are thousands of customers with everyone having unique configuration or environ-

ment. In this type of scenario, the test environment could be created by gathering samples 

from the customer base and creating a series of profiles. These profiles would usually 

contain data that could be used to group the customers. The knowledge gained from this 

grouping could then be utilized when creating the test environments as this would limit 

the required amount of variations [14]. 

3.3 Continuous integration 

Waterfall approach introduced in the Section 3.1 introduced conflicts within the software 

as well as delivery delays and unplanned costs. Continuous integration was developed to 

overcome the issues presented by the waterfall model [18]. Continuous integration is a 

software engineering practice in which every commit that a developer makes is verified 



16 

by running an automated build and tests. Commit in this context represents a new commit 

in the version control system. This kind of approach allows the developer to receive al-

most instant feedback about the quality about the changes that were made in that particu-

lar commit. Continuous integration therefore helps developers to discover bugs and errors 

that might have been created during the creation of the new software or modifying an 

existing one. Fixing the errors discovered by continuous integration avoids the scenario 

where errors and bugs build up. Also fixing the errors and bugs in a software that is newly 

created or modified is easier since every commit gets tested and the amount of the changes 

that were made are usually manageable. Figure 10 illustrates the continuous integration 

workflow.  

 

Figure 10. Continuous integration workflow. Copied from [19] 

A big part of continuous integration is the version control system that is a shared reposi-

tory for the software. Nowadays, arguably Git is the de facto standard for the version 

control system, but also Subversion or CVS can be used [20]. The other big part of con-

tinuous integration are the tools that are used to achieve continuous integration environ-

ment. Nowadays there exists large variety of continuous integration tools in both open 

source as well as commercial software. Jenkins and Gitlab CI are some of the tools that 

can be used in continuous integration [21]. Gitlab is used in the practical part of this thesis 

and it will be discussed more in depth in Section 3.4 and Chapter 4. 
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While continuous integration is about risk reduction and helping to fix integration and 

regression issues faster, it also provides better visibility about the state of the project for 

both technical and non-technical members. Many continuous integration tools provide 

some sort of graphical interface that displays information about the automated the auto-

mated building and testing and how successful their execution were. An example of such 

user interface can be seen in Figure 11. 

 

 

 

Figure 11. Graphical interface illustrating continuous integration output. Cop-

ied from [22] 

Continuous integration can also open and facilitate communication channels between 

team members and enforce collaborative problem solving. The automated process pro-

vided by continuous integration can also be extended to automatic deployment where the 

changes that were accepted by the continuous integration process are also deployed for-

ward in the pipeline. This next step in the pipeline can be, for example, a staging envi-

ronment where developers can observe how the software works before it is deployed to 

end user. 

3.4 Gitlab 

Gitlab is an open source Git repository management system written in Ruby and Go pro-

gramming languages. It provides a web interface that contains tools needed for project 

work such as documentation through Wiki tools, issue tracking and code review in terms 

of merge requests. Gitlab also provides user permission management where the develop-

ers may have different roles on different repositories and these permissions define for 

example those who can add new developers to the project [23]. Some of the more prom-

inent features of Gitlab will be discussed in the following chapters.  

3.4.1 Pipelines 

Pipeline is a term used in Gitlab context to describe a group of jobs that get executed 

during processing of the pipeline itself. Between the pipeline and a job, Gitlab also has a 

term called stage. Whenever a stage is run, every job that is inside that stage get executed 

in parallel. A job can be considered as the basic unit of the Gitlab continuous integration 
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pipeline and it contains one or more commands that will be executed during the execution 

of the job itself. Often the steps are Shell commands and Gitlab also examines the return 

values of every command and if any of the commands return an error value then the exe-

cution of the job stops. 

Gitlab user interface constructs the user interface so that it is easy for the user to tell the 

order of the stages that are run as well as the jobs that were run within certain stage. The 

execution order of the jobs within a stage cannot be predetermined unlike the execution 

order of the stages. Whenever a job fails, a stage fails also unless it is specifically defined 

that a job is allowed to fail. Figure 11 in Section 3.3 is illustrating a pipeline. In that figure 

“Build”, “Test”, “Staging” and “Production” are illustrating the stages within the pipeline. 

From the figure, it can be also seen that “test1” and “test2” were the jobs that were exe-

cuted as part of the “Test” stage. Gitlab also provides an overall view of the pipelines that 

have been run. 

 

Figure 12. Overall view of the pipelines. Modified from [22] 

Figure 12 illustrates an overall view that shows the status of the latest pipelines that were 

run. The jobs that were run during pipeline may differ depending on certain rules that are 

defined. For example, a job may contain a rule that defines whether to run the pipeline 

only on certain branch [22]. In Gitlab, the pipelines are defined by using a YAML-based 

file that describes the stages and the jobs as well as the steps taken within a job. This 

configuration file is called gitlab-ci.yml and by default Gitlab searches for it from the root 

of the repository. 
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stages: 
  - build 
  - test 
  - deploy 
 
build_job: 
  stage: build 
  script: 
    - make build 
 
test_job: 
  stage: test 
  script: 
    - make test 
 
deploy_job: 
  stage: deploy 
  script: 
    - make deploy 
  when: manual 

Program 1. YAML-based file describing the Gitlab pipeline 

In program 1 above, an example of Gitlab YAML file is introduced. This file defines jobs 

“build_job”, “test_job” and “deploy_job” as well as stages “build”, “test” and “deploy”. 

The execution order in this case would follow the order of the stages that were defined in 

the beginning of the file. As it was mentioned before, jobs within a stage get executed in 

parallel. This would mean that a new job called, for example, “integration_test” could be 

added to the “test” stage and it would be executed in parallel with the “test_job”. If either 

of those jobs were to fail, the test stage would fail. 

3.4.2 Merge requests 

Merge request is a term used in Gitlab to describe a request to merge new changes into a 

certain branch. Merge requests are often coupled with Git workflow called feature branch-

ing in which the new features are implemented in a new specific feature branch that is 

branched out of the master branch. The idea behind this kind of approach is to encapsulate 

the work done by the developer so that it does not disturb the codebase of the master 

branch, and that the master branch would never contain broken code. Once the feature 

implementation is completed, a merge requests will be opened. In this new merge request 

the developer usually describes what the new feature implements, and the code differ-

ences will be compared against the master branch. Merge request allow other developers 

to review the new modifications and comment on them or initiate other kind of discussion 

related to the implementation. Once the modifications are accepted by other developers, 

the new feature gets merged into the master branch and the developer can move on to 

developing new features in a new feature branch [24]. Figure 13 below illustrates one 

possible workflow that could be utilized when merge requests are used in the software 

development. 
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Figure 13. One possible workflow when utilizing merge requests 

In the case a merge request gets accidentally accepted and merged or after merging prob-

lems are found in the master, many of the version control systems allow a possibility to 

revert the changes that were made. Gitlab provides a possibility to do a revert for the 

merge requests. Reverting a merge request undoes all the changes that were introduced 

in the new merge request, so this means that multiple commits will get reverted from the 

master branch.  

Merge requests are used in the continuous integration environment that was developed as 

a practical part of this thesis. There is not a clear definition on how many approvals does 

a merge request require before it can be merged to the master. In projects that have many 

developers, usually at least 2 approvals are required. Build and test pipeline gets executed 

for all the branches and their results are visible in the merge request itself, and the pre-

requisites for approval of merge request are an accepted review as well as a successful 

pipeline. 

3.4.3 Issue tracking 

Gitlab provides a way to map the relation between the code and the issues via issue track-

ing. Gitlab’s graphical user interface provides a possibility for developers to create new 

issues and create feature branch for implementing the needed modifications. Issue track-

ing in Gitlab context provide also a possibility to estimate the amount of work in hours 

needed for the implementation work. Issues also provide a platform for a further discus-

sion about the possible implementation approach or the validity of the issue. Issues are 

also linked to the merge requests allowing easy management of between the merge re-

quest merging and issue closure. 

3.4.4 Gitlab runners 

Gitlab Runner is a Go-based binary which handles the communication between the Gitlab 

server and the integration or the testing machine. Gitlab Runner is run on the machine 

that is used to execute the jobs defined in gitlab-ci.yml configuration file. Once the job is 

executed, Gitlab Runner also reports the results back into Gitlab server from where the 

results can be observed using the graphical interface displayed in Figures 11 and 12 on 
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pages 17 and 18. Gitlab Runner allows jobs to be executed in different kind of execution 

environments. This configuration is referred to as job executor. Possible executors in 

Gitlab are: 

• Shell 

• Docker 

• Docker Machine (auto-scaling) 

• Parallels 

• VirtualBox 

• SSH 

• Kubernetes. 

Different types of executors offer different kind of possibilities for the environment. For 

example, comparison between Docker and Shell reveals that by default, Docker offers a 

clean build environment while Shell does not. [25] 



22 

4. CONTINUOUS INTEGRATION IN KUHA 

This chapter introduces the continuous integration system that was developed as a prac-

tical part of this thesis. Section 4.1 introduces the test environment and components in it 

as well as how do the components interact with each other. Section 4.2 introduces the 

pipeline that handles software compilation and the integration test execution. In Section 

4.3 the integration tests are discussed more in depth from a technical point of view. Sec-

tion 4.4 will provide detailed view to a set of software that was implemented for utility 

actions. Last section will take a look into how the future of the system would look like. 

4.1 Test environment 

The test environment used in transport software testing consists of the base station (Flexi 

Zone Micro, FZM), user equipment (UE, in the context of this thesis, a Samsung Galaxy 

S5), a Linux server called Smokebox, a power distribution unit and two ethernet switches 

that are used for connecting the FZMs and the Smokebox. The continuous integration 

process itself is initiated by the Gitlab CI and is executed in an OpenStack cloud instance. 

This instance handles building and test initiation. There is also a supporting cloud instance 

that handles several utility activities such as providing download links to the compiled 

software. Figure 14 illustrates the interconnectivity between the physical components of 

the test environment. 

 

Figure 14. Test environment connectivity diagram 
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The communication between the UE and the FZM is handled by using the basic LTE air 

interface. Control and user plane signalling is achieved with a simulated evolved packet 

core (EPC) that handles the basic core network functionalities such as the UE attach han-

dling and UE data packet routing. The air interface between the FZM and the UE is se-

cured by having a separated radio frequency box in which the UE resides. Inside the radio 

box there are connectors for USB as well as for the radio antennas. FZM is connected to 

the radio frequency box via a radio cable. This radio frequency box works is a Faraday 

cage filtering out the incoming or outcoming signals that may be present in the laboratory 

environment. This type of setup ensures that the test cases that are testing the UE connec-

tivity, test it against the correct base station. Also, as an extra measure the UE is locked 

to the LTE frequency band in which the FZM is transmitting in. Figure 15 is a picture 

taken of the insides of the radio box. 

 

Figure 15. Contents of the radio frequency box 

All the radio connectors in the FZMs are always attenuated, even if the FZM is used by a 

radio frequency box. If the FZM is not used by any user equipment, then also a certain 

type of radio frequency terminator is used after the attenuator to minimize the amount of 

radio waves radiated. FZM that is used in the test environment are configured so that they 

use the transmit power of 24 dBm. As it can be seen from the Figure 19 in Subsection 

4.1.3 on page 27, after attenuation and the small air interface the received signal strength 

for the UE residing in radio frequency box is -78dBm. 

4.1.1 Base station 

Base station is an essential part of the testing environment setup in the continuous inte-

gration pipeline. In this testing environment the base station in use is FZM. Compiled 
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transport software gets packaged and deployed to the FZM and integration tests are then 

run against this freshly compiled software. Any errors experienced during testing phase 

will result in the whole continuous integration pipeline to fail. 

 

Figure 16. Flexi Zone Micro in the laboratory environment 

Figure 16 is a picture taken from the Flexi Zone Micro that is used to run the integration 

testing. The radio attenuators that were mentioned in Section 4.1 can also be seen con-

nected under the FZM. Due to the fact that the testing environment is indoors, and the 

building structures filter out most the GPS signals, a GPS signal repeater is set up to the 

laboratory environment. Despite this fact, the GPS signal is often too weak for the FZMs 

that are set up in the laboratory. This is why rather than just having GPS antennas in place, 

the GPS antennas are brought closer to the GPS signal repeater by having a radio cable 

between the FZM and the GPS antenna. 
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4.1.2 Power distribution unit 

The FZM receives its input power from a power distribution unit (PDU). PDU is a device 

that allows remote handling of its power sockets. The test environment uses APC 

AP7920B PDU, that provides 8 independent power sockets and control functionality for 

them. Since power outages are an expected occurrence in the environment in which the 

Kuha base station is deployed, a certain type of robustness needs to be expected from 

both the software and the hardware. PDU can be used in the integration tests to simulate 

the power outages and that the automated recovery actions are sufficient. PDU used in 

the test environment provides an SSH and Telnet interfaces that can be used to modify 

the states of the power sockets. 

 

Figure 17. SSH interface of the PDU showing the statuses of the sockets 

APC PDUs allow sockets to have custom names. Figure 17 is a screenshot taken from the 

SSH interface that the PDU provides with a command “olStatus all” given that is used to 

print the status of all the sockets. Socket 1 is currently used by the FZM that is used to 

execute the integration tests. The FZM has an identification of “fzm14” in the lab envi-

ronment which is why the socket is also named accordingly. This eases up the mapping 

between the PDU sockets and the FZMs in the test cases as well as in a scenario where 

the test environment is extended to include multiple FZMs. 

Typically, PDUs can also be used to monitor for example the current or power usage of 

all the devices connected to it. However, this kind of functionality is not a requirement 

now in the testing environment although the PDU in use provides it. The PDU is con-

nected to the Smokebox via an ethernet cable and the integration tests use SSH when 

issuing commands to the PDU. 
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Figure 18. Power distribution unit 

Figure 18 is a picture taken of the APC 8 socket power distribution unit. Currently only 

one socket is used since the testing environment only consists of one FZM. Test library 

written for the PDU state manipulation consists of functionalities such as rebooting indi-

vidual sockets as well as checking socket states. During the PDU test library initialization, 

the FZM identification is given as a parameter and the test library uses this information 

when rebooting or checking the states of the power sockets. 

4.1.3 User equipment 

User equipment (UE) used in the testing is Samsung Galaxy S5. In this thesis, the term 

UE is used to refer to a mobile phone although in LTE the term user equipment refers to 

any kind of LTE-capable mobile device, such as a mobile phone or a tablet. In the testing 

environment, the UEs can be connected to the base stations via traditional air interface or 

directly via a physical radio cable. When the radio cable connection is used, it is extremely 

important to use the radio attenuator between the connection since the transmit power 

will be a lot less attenuated compared to air interface. In the case the air interface is used, 

the radiation from base station is contained so a certain type of radio frequency (RF) box 

must be used. 

Due to the fact the base stations in the lab radiate on different LTE bands, the user equip-

ment is also locked to a certain frequency band to ensure that the tests are run towards the 

correct base station. Samsung Galaxy S5 provides functionality for frequency locking by 

using certain type of key codes in phone application to gain access to developer specific 

options. 



27 

 

Figure 19. User equipment 

The UE can be controlled remotely using a test library. This test library contains func-

tionality for issuing simple HTTP requests to the Internet. This way the integration tests 

can verify the functionality of the user plane. Also, the test library contains functionality 

that enables and disables the airplane mode in the UE. Practical experience during the 

development work suggested that this kind of functionality was necessary since the UE 

might not immediately do the cell attaching when the cell becomes available. It was seen 

that enabling and then disabling the airplane mode triggered the attaching procedure in 

the UE side. For this reason, no control plane specific commands were created since the 

attaching procedure can be used to verify control plane functionality.  

4.1.4 Smokebox 

Smokebox is a term used in the test environment and in this thesis for a Linux-based 

server that is the central piece of the testing environment. Smokebox is used to connect 

to the FZMs, UEs and to the PDU. Smokebox is a Quanta manufactured server hardware. 

The FZMs and PDU are connected to it via an Ethernet cable and the UEs via USB. 

Integration test job in Gitlab CI that is executed in the cloud utilizes an SSH connection 

to connect to the Smokebox. The test job executes the tests on FZM by using Robot 

framework. Test libraries written for the Robot Framework can be used to easily manip-

ulate the test environment’s state. Robot framework will be discussed more in depth in 
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Subsection 4.3.1. The Ethernet connectivity between the FZMs and the Smokebox in the 

test environment is achieved by two Quanta-based switches, T1048-LB9 and T3048-LY9. 

The Smokebox also runs Android Debug Bridge (ADB) which is used to issue commands 

to the UEs. ADB is a command-line tool that provides an Unix shell like connection to 

the UEs that are connected to the host computer. 

4.1.5 OpenStack cloud instances 

Software compilation is done on an OpenStack cloud instance. The connectivity and build 

triggering between the Gitlab and the cloud instance is achieved by using a Gitlab runner. 

Figure 20 is a screenshot representing the OpenStack’s graphical user interface that shows 

the overview of the created cloud instances. 

 

Figure 20. OpenStack graphical user interface displaying created instances 

The testing environment consists of two different cloud instances. The continuous inte-

gration processes, such as software compilation and test execution triggering, are exe-

cuted on the cloud instance called kuha-ci. Transport software compilation is automated 

by a build automation tool called Make, which is widely used in Unix-like operating sys-

tems. Make can be allowed to utilize all the available cores on the host machine for par-

allel execution. Therefore, the number of allocated virtual processors is kept as high as 

possible. 

Utility scripts are executed on an instance called kuha-utils. Utility scripts handle certain 

supporting tasks such as uploading new software releases into an internal S3 bucket. This 

instance also hosts a very simple webpage that lists all the aforementioned software re-

leases and provides download links to them. These utility programs are introduced in 

Section 4.4. 
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4.2 Continuous integration pipeline 

In the testing environment, the jobs are executed in a Shell executor but the build itself 

within a Docker container. The reason for this laboured approach lies within the depend-

encies of the compilation. The legacy build system has been tailored to be used in a spe-

cific compilation environment with symbolic links in the repository that point to certain 

network file shares. These network file shares then provide software libraries against 

which the compilation is made. The ready-made Docker images that Gitlab or Docker 

hub provides do not fulfil this kind of very specific requirement, which resulted a decision 

to create a custom Docker image. 

 

Figure 21. Overall picture of the build pipeline 

Figure 21 is a screenshot taken from the Gitlab web user interface illustrating the output 

of the executed pipeline. The build pipeline consists of two stages, build and test, with 

both having one job. These stages will be discussed in the following subsections. Contin-

uous integration process follows the precept illustrated in Figure 10 on page 15 where the 

continuous integration process should by triggered by a new commit in the version control 

system. Whenever developers commit their changes into the version control system, the 

continuous integration process defined in .gitlab-ci.yml ignites the continuous integration 

pipeline. This pipeline starts the execution from the software compilation and then moves 

on to the integration tests in the case the software compilation was successful.  

4.2.1 Compilation 

Before the software compilation can be started, a Docker image is downloaded from an 

S3 storage and is imported into the integration machine’s Docker service. Docker is a 

container virtualization technology. Docker is designed to overcome the overhead, that 
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the traditional virtual machines introduce into the host system. While regular virtual ma-

chine is essentially just a copy of the operating system that is running on top of a hyper-

visor in the host hardware, Docker container is a lightweight computing resource. Docker 

approach eliminates the need of having separate operating systems, for every container 

since the containers utilize the host operating system [26]. Figure 22 illustrates the differ-

ences between traditional virtual machines and Docker containers. 

 

Figure 22. Comparison between traditional virtual machines and Docker con-

tainers. Modified from [26] 

During compilation and the Docker image start-up, the necessary network file share 

mounts are made. This kind of approach was done so that the compilation could be exe-

cuted somewhat environment independently. Full environment independency is not 

achieved by this approach since the network file share mounts are part of the internal 

infrastructure and cannot be accessed from an outside network. The full environment in-

dependency in compilation could be achieved by including all the required dependencies 

within the Docker image. However, it was decided that this approach would not be used 
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due to the complexity of the legacy dependencies and due to the fact that including all the 

dependencies into one Docker image would vastly grow the size of the image itself. 

The compilation initiation is handled by a Perl script that sets certain environment varia-

bles for the build. This Perl script then invokes the actual software compilation that uses 

make. The compilation initiating Perl script also handles certain command line argu-

ments, such as “clean” that is used to clean the already compiled object files. Compilation 

phase also packages the compiled transport software into a tar package that is then usable 

by the FZM. 

4.2.2 Test stage 

Testing stage executes integration tests against the FZM with the newly compiled 

transport software. The main goal for integration tests is to test the usual use case scenar-

ios that the Kuha base station solution provides and to test the common faulty scenarios 

that it should recover from. From Gitlab CI’s point of view the configuration for the test 

stage is default in terms of failures and execution. Whenever the software compilation 

succeeds in the build stage, the compiled binaries, called build artefacts, will be passed 

forward on to the following stages. These build artefacts are also stored in the Gitlab 

server for 24 hours after a successful compilation and can be accessed via Gitlab’s web 

user interface for manual inspection. The testing stage uses the build artefact from the 

previous stage and deploys them into the FZM that is used for the integration tests and 

reboots it. After the reboot, the FZM has taken the new software into use and the execu-

tion of the integration tests can be started on Smokebox. Gitlab CI system inspects the 

return values of the build steps and fails the job in case the command that was executed 

has returned a value that indicates that an error has happened. In case the Robot command, 

that is executing the integration tests, fails also the whole test stage fails and the developer 

will be notified via email. Robot framework provides logs after every execution and these 

logs can be used to inspect the possible faults that happened during the integration test 

phase. The logs from the integration tests are stored in the Gitlab server for 1 week. The 

integration tests will be approached in more technical way in Section 4.3. 

Since the test stage or the FZM contains no logic beyond the simple fault detection, it is 

possible for the test stage to deploy a software into the FZM that does compile but does 

not work. This kind of software could drive the FZM into such state where it is not pos-

sible to use the FZM for test stages that the following build pipelines would require. This 

kind of scenario requires a manual intervention. As an improvement, a software could be 

created for the test stage that would trigger recovery actions automatically in the FZM 

side after failures. One simple recovery action would be to store a proven-to-work soft-

ware in to a safe place within the FZM’s non-volatile memory and take that into use when 

a failure during the integration tests is detected.  
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4.2.3 Baseline knife request creation 

Baseline is a term used to illustrate a complete, compiled base station software. This soft-

ware includes several subcomponents that handle all the functionality of a base station. 

Transport software is one subcomponent of a baseline. Baseline contains a security meas-

ure that can be used to verify the integrity of its contents, such as the software and the 

configuration. There are multiple ways to ensure integrity of a software in computer sys-

tems. One of the ways is to use a secure hash function to calculate the digest of a software 

whose integrity is to be ensured. For example, a hash function called MD5 produces a 

120-bit digest from the given input. The idea is that if a malicious user has somehow 

injected the software, the calculated message digest will also differ from the original one 

[27]. 

This same method is used to ensure the integrity of a baseline and its contents. The digest 

of the software that is about to be run will be calculated during the FZM boot. If the 

calculated digest does not match with the information that the FZM already has, it refuses 

to execute the software as a safety measure. Therefore, a baseline knife must be created 

to fulfil this requirement. Baseline knife is a term used to describe an official modification 

of an existing baseline. Baseline knife creation progress calculates the digest of the mod-

ified software within the baseline, outputting a new baseline version where the message 

digest will be calculated correctly. This newly outputted baseline can then reliably and 

securely be used in FZM. 

As a final stage in the Gitlab CI, a new request for the baseline knife will be created. This 

request requires information about the version from which the baseline is created as well 

as the modified software. The modified software will be contained in a zip file called 

knife.zip. The term knife.zip is also used in this thesis to describe the modified software 

that will be used in the knife build. The baseline knife does not get immediately created 

due to the fact that the baseline knife creation executes a full baseline compilation that 

takes several hours to complete. Therefore, it was decided that the baseline knife request 

creation stage would not wait for the baseline knife compilation to complete. Instead, the 

responsibility to do the necessary actions once the baseline knife creation is completed 

was moved to the supporting software that is introduced in Section 4.4. 

The baseline knife request creation is not yet included in the continuous integration pro-

cess. This is because the new transport software is not considered mature enough for the 

continuous packaging needs that the baseline knife request creation provides. However, 

moving towards the continuous baseline knife request creation can be done with very 

little effort since the scripts required for packaging the software and the knife request 

creation already exists. 
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4.3 Integration tests 

Since the transport software undergoes a massive rework, new test scenarios for verifying 

the functionality must be created. For this reason, Robot framework introduced in the 

next subsection will be utilized. As for demonstration purposes, Subsection 4.3.2 intro-

duces two of the created test scenarios. 

4.3.1 Robot framework 

Robot framework is an open source, Python-based, keyword-driven acceptance test auto-

mation framework. It is designed to be general purpose framework for acceptance test-

driven development (ATDD). Robot framework provides easy-to-use tabular test data 

files that provide certain level of abstraction to the test files and the libraries that execute 

the functions on system under test (SUT). This extensible nature of Robot framework 

makes it very easy to combine it with in for example Selenium in website development. 

[28]. Below is a figure that illustrates the modular nature that the Robot framework is 

built upon. 

 

Figure 23. Modular nature of the Robot framework. Copied from [29] 

Test libraries mentioned in Figure 23 provide the interface between the test data and the 

system under test. Test data syntax is designed to be easy to understand containing only 

the top-level keywords that define the test structure. Custom test libraries are created for 

the system that is tested. These libraries link test data keywords with the associated com-

mands in the system and, they can be used to examine and validate the output of the given 

commands or the state of the system. [30] 
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*** Settings *** 
Documentation    A test suite with a single test for valid login. 
... 
...              This test has a workflow that is created using keywords in 
...              the imported resource file. 
Resource         resource.txt 
 
*** Test Cases *** 
Valid Login 
    Open Browser To Login Page 
    Input Username    demo 
    Input Password    mode 
    Submit Credentials 
    Welcome Page Should Be Open 
    [Teardown]    Close Browser 

Program 2. An example test data file. Copied from [29] 

Program 2 above illustrates a simple Robot framework test data file. This file may contain 

a voluntary documentation field that can be used to describe the current test suite. A test 

suite is a term used to describe a set of tests that have some sort of connection between 

each other. Such test suites could be regression or smoke test. Robot framework allows 

easy execution of a certain test suite if the tester is not interested in running all the possible 

test cases. One test case consists of one or multiple keywords that define the steps that 

are done in the said test case. A keyword is a term used in Robot framework to illustrate 

a step of execution. This kind of approach allows test cases to be constructed freely. By 

using the example shown above in Program 2, a test case for testing the invalid login 

credentials could be done by using most of the keywords already used and made for the 

test case called “Valid Login”. This would mean that only the keyword “Welcome Page 

Should Be Open” needs to be changed to a keyword that verifies that the login was inva-

lid. Keyword-driven testing simplifies test case writing and allows developers to create 

generic keywords that could be utilized in many test cases, thus increasing the efficiency 

of the time used to write test cases. 

Robot framework also has a support for variables. Variables are defined with a dollar 

sign, followed by the variable name inside curly brackets. This means that with syntax 

${REBOOT_TIME} a variable called REBOOT_TIME could be defined. If a keyword 

has a return value, then the return value could be assigned into this variable and examined 

later. 

In the continuous integration system, the test libraries mentioned in Figure 23 were writ-

ten for FZM, switch, PDU and the UE. These test libraries allow the developer to manip-

ulate the state of a single device or a combination of the different devices connected to 

the testing environment. These combinations can be used to manipulate the test environ-

ment into a state that imitates real world requirements and use cases as closely as possible. 

By writing comprehensive test libraries, the developers will be able to create new test 

cases with little effort.  
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4.3.2 Test scenarios 

One of the goals for the reimplemented transport software is to achieve faster reboot times 

as well as overall plug-and-play type of operability. The integration test scenarios intro-

duced in this subsection are formatted using the high level of abstraction that the test data 

file format in Robot framework also utilizes. This subsection introduces two of the exist-

ing test cases. The following programs will be containing variables that are named with 

uppercase letters. These variables are defined in a separate resource file, but they are not 

shown in this subsection. The test case flow can be understood without knowing the val-

ues of these variables.  

Power cycle FZM in normal condition 
    ${outlet_status}    PDU.is outlet on 
    Should Be True    ${outlet_status} 
    PDU.outlet off on 
    Log    Sleep for ${POWER_CYCLE_REBOOT_TIME} 
    Sleep    ${POWER_CYCLE_REBOOT_TIME} 
    FZM.reconnect SSH to FZM 
    Make sure SSH connection is open 
    Log    Wait for ${BACKHAUL_REBOOT_TIME} 
    Sleep    ${BACKHAUL_REBOOT_TIME} 
    FZM.reconnect SSH to FZM 
    Verify backhaul connection 
    Verify backhaul connection with UE 

Program 3. Test case for power outage 

Test case written for power outage recovery testing is illustrated in Program 3. This test 

case verifies that the PDU outlet is on before cutting off the power from the FZM. The 

test keyword implemented for PDU will issue a reboot command to the power outlet. This 

delayed reboot command cuts the power from the power outlet, then waits for a pre-de-

fined time before returning the power to the outlet. The pre-defined wait time is config-

ured within the PDU and in this case, it is 5 seconds. After issuing the power reset com-

mand, the test execution will wait for the FZM to reboot itself. Finally, once the SSH 

connection can be re-established, the test case will verify the functionality of the FZM by 

testing the backhaul connectivity from within the FZM itself and from the UE’s perspec-

tive. Practical experience has shown that testing the connectivity from both the FZM as 

well as from the UE can be very beneficial when narrowing down the faulty scenarios. 

This is because during the transport development, also the logic that handles the packet 

routing within the FZM had to be reimplemented. Due to the fact that the UE data is 

routed in the user plane, it is also routed differently within the FZM and transport com-

ponent is responsible for handling this. 
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Test autoconnection 
    Verify that configuration exists 
    FZM.decommission 
    Log    Wait for the FZM to reboot and commission itself 
    Repeat Keyword    2 times    Sleep    ${REBOOT_TIME} 
    Wait Until Keyword Succeeds    3 times    ${REBOOT_TIME}    FZM.reconnect 
SSH to FZM 
    Verify that configuration exists 
    Sleep    ${BACKHAUL_REBOOT_TIME} 
    Verify backhaul connection 
    Verify backhaul connection with UE 

Program 4. Test case for autoconnection 

Program 4 illustrates a test case that tests the autoconnection functionality. Autoconnec-

tion is a term used to illustrate a procedure in which the FZM fetches the required certif-

icates as well as gets its configuration from the cloud OSS and commissions itself. Com-

missioning, in this context, indicates a procedure in which the FZM does a full base sta-

tion reconfiguration. This reconfiguration also includes parameters that are not important 

from the transport point of view, such as the radio parameters. First this test case verifies 

that the FZM does have a configuration in it. After that it will decommission the FZM, 

which in turn will trigger the autoconnection procedure. Decommissioning procedure will 

delete the existing device configuration and the certificates from the file system of the 

FZM. Once the decommissioning is executed, the test case waits for the FZM to commis-

sion itself and to fetch the required certificates. The FZM will execute a system reboot 

after the decommissioning and after the successful commissioning, which is why the 

sleep keyword is executed twice in the test case. Commissioning is triggered by a program 

that is running within the FZM. This program has certain conditions on when the com-

missioning should occur, and missing configuration is one of those conditions. Once the 

commissioning is done, the test case will verify that the new configuration is stored within 

the FZM and that the connectivity from both the FZM and the UE is working. Ideally, 

autoconnection should be done very rarely, only when the FZM is first taken into use or 

when a partition fallback occurs. Since the autoconnection is such a thorough functional-

ity, it must work. Malfunction in autoconnection will prevent the deployment of the FZM, 

thus the reason why this test case was developed. 
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Figure 24. Log created by Robot framework 

Robot framework creates log outputs whenever test cases are executed. This log can be 

used to inspect what failures happened during the test case execution. Figure 24 is a log 

output created by executing only the test case called “Test autoconnection” that was in-

troduced in Program 4. As it can be seen, all the keywords that were executed were suc-

cessful, which also means that the test case execution was successful. 

4.3.3 Software architecture in integration tests 

Some of the variables mentioned in the test case examples above, such as the “RE-

BOOT_TIME”, are defined in a common resource file that contains the definition for 

common variables. This resource file also provides some basic test keywords and is re-

sponsible for importing and initializing the test libraries that are used to issue commands 

to FZM, UE, network switches and the PDU. The resource file can be seen as a one extra 

layer of abstraction between the test data and system under test. This allows an approach 

where the test data files can be constructed in high level of abstraction, therefore increas-

ing the readability of the test data files. Figure 25 is an illustration of the dependencies 
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within the test environment. The figure is read from top to down, higher elements are 

dependent on the lower elements that their arrows are pointed to. The figure is created by 

using the Figure 23 shown in Subsection 4.3.1 as the basis. 

 

Figure 25. Software architecture in testing environment 

Test libraries are implemented in Python. They provide an interface to the system under 

test for the resource and test data files. Usually test libraries only contain very simple 

functionality, for example, a possibility to test UE data connectivity that is introduced 

below in program 5. The result from this keyword can then be used to deduce if the user 

plane works in the test case or not. Robot framework is able to utilize the functions im-

plemented in Python classes in the test data files. 

Verify backhaul connection with UE 
    ${UE_param}    Check if UE param is given 
    Run Keyword Unless    ${UE_param}    Return From Keyword 
    Log    Reconnect UE to cell in case connection was lost earlier 
    UE.reconnect to cell 
    ${UE_ping}    UE.ping    www.google.com 
    Should Be True    ${UE_ping} 
    ${UE_connectivity_state}    UE.is data and voice connected 
    Should Be True    ${UE_connectivity_state} 

Program 5. Keyword for testing UE connectivity 

Above, in program 5, the resource keyword for testing the UE data connectivity is intro-

duced. This keyword utilizes keywords provided by the Robot framework’s built-in li-

brary as well custom test libraries. This keyword first verifies whether the UE variable 

containing the UE identification is given in the Robot execution command. In the case 
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the UE variable is not defined, the keyword exits. This keyword also uses a custom-made 

test library for issuing commands to the UE. 

def reconnect_to_cell(self): 
    self.set_airplane_mode(True) 
    self.set_airplane_mode(False) 
    time.sleep(5) 
 
def set_airplane_mode(self, onOff): 
    self._execute_shell("adb -s " + self.ue + " shell 'settings put global 
airplane_mode_on %i'" % onOff) 
    self._execute_shell("adb -s " + self.ue + " shell 'am broadcast -a an-
droid.intent.action.AIRPLANE_MODE'") 

Program 6. Methods from UE test library 

Program 6 illustrates methods the UE class provides in the Python level. The methods 

introduced above utilize SSH to issue commands to the UE by using the ADB. The afore-

mentioned UE identification is given to the UE class as a parameter in the constructor. 

This ensures that the ADB commands are issued to the correct UE. 

The resource file contains also a definition for a Robot framework specific test suite 

teardown and test case setup procedure. In Robot framework, a teardown is a procedure 

that will be executed after everything else is executed. Teardown can be either at test case 

level or test suite level. Suite level teardown will be executed after every test case within 

the suite is executed or if the test suite execution is stopped because of test case failure. 

Similarly, test case teardown is executed after the test case regardless of whether the test 

case was successful or failure. Test suite and test case setups are executed before the test 

suite and test case respectively. Teardowns can be used to for example executed clean up 

procedures within the test environment after the testing has ended [29]. 

In this thesis, a test suite teardown and test case setups are utilized. The test suite teardown 

is used to set the environment back into such a state where the test case execution of the 

following pipelines is not compromised. The teardown procedure will enable the network 

switch to which the FZM’s backhaul is connected to as well as enable the power output 

from the PDU outlet. The status of the executed teardown called “Generic suite teardown” 

can be seen in Figure 24. Test case setup utilizes test library call to reset an internal FZM 

reboot counter. This is done because FZM contains certain very low-level logic that is 

used to make assumptions about the health of the hardware and the software. One indica-

tor for unhealthy hardware is that if the FZM faces software or hardware failures and has 

to reboot the system often. When the reboot counter reaches certain value, FZM will au-

tomatically execute recovery actions which are unwanted during the execution of the in-

tegration tests. Reboot counter value will also get incremented even in scenarios where 

the reboot could be considered safe, such as the case when the test case itself issues the 

reboot command. The keyword that handles the reboot counter resetting is called “Reset 

reboot counter” and its execution can also be seen in the log output in Figure 24. 
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4.4 Supporting software for the continuous integration system 

Due to the fact that the continuous integration process includes also systems that cannot 

be controlled, a set of supporting software was created. These programs allow the created 

continuous integration system to operate seamlessly with the existing system and to min-

imize the manual work that would otherwise be required after the continuous integration 

pipeline. Both introduced programs are running on the kuha-utils OpenStack cloud in-

stance that was introduced in Subsection 4.1.5. Neither of these programs have any per-

formance requirements which is why they are executed within same cloud instance with 

minimum hardware requirements. These two programs are also not under constant devel-

opment. 

This section contains two subsections that introduces the supporting software in detail. 

Subsection 4.4.1 introduces WFT sniffer (Workflow tool sniffer) that automatically 

downloads compiled software from a third-party source and uploads into Kuha managed 

network storage. Subsection 4.4.2 introduces program that hosts a website that contains 

download links to the compiled software. 

4.4.1 WFT sniffer 

WFT sniffer is a Shell script that handles the management actions that are required for 

the successfully compiled baseline knives. The requirement for this kind of software arose 

from the fact that the build system that creates the knife baselines does not store the out-

puts longer than 2 weeks. It is not feasible for the developer to monitor the status of the 

newly created baseline knife request since the baseline knife creation takes several hours 

to complete after the continuous integration pipeline has already finished. This was the 

motivation behind the development of the WFT sniffer. In brief, WFT sniffer checks the 

execution status of the baseline knife that was created at the end of the continuous inte-

gration pipeline execution and stores the baseline into S3 storage if the status indicates 

that the knife creation was successful. Information about failures during execution of the 

WFT sniffer itself will be notified via email, which enables a rapid response. WFT sniffer 

also used to include housekeeping feature that would delete the zip file used while creat-

ing the knife request, but this feature was removed since the knife.zip provides useful 

debugging information. Figure 26 illustrates the flow of execution of the WFT sniffer. 



41 

 

Figure 26. WFT sniffer activity diagram 

The internal S3 storage used in storing the baseline knives does not provide infinite stor-

age space which means that at some point the S3 storage will be full. Some logic could 

be added to the WFT sniffer so that it could do housekeeping within the S3 and check the 

used storage amount and delete the oldest baselines from it. This kind of functionality 

was not deemed necessary at this part of the project since new baseline knives are not 

created every day and it is feasible to monitor the S3 storage status manually and remove 

the old baseline knives by hand. Also, this rather simple sounding housekeeping func-

tionality requirement would very rapidly become rather complex implementation since 

one baseline knife is always related to one baseline version. The project is supporting 

multiple baseline versions which in turn means that the logic behind the housekeeping 

would have to take this fact into account. Goal for this requirement is that it should not 

be possible to end up into a situation where there would not be any baseline knives stored 
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for certain baseline version. Ideally, the actual housekeeping functionality would have to 

store at least one or multiple knives from each of the baseline version. 

 

Figure 27. Screenshot from the scheduled WFT sniffer executions 

WFT sniffer is executed periodically once in an hour using the Gitlab CI schedules that 

provides a Cron like execution possibility. The advantage of using this kind of approach 

is that it provides certain sort of transparency to the system since the execution output can 

be seen from the Gitlab UI. By default, the schedule execution will use the latest commit 

in the master branch of the WFT sniffer repository.  

4.4.2 Baseline listing 

Baseline listing is a Python-based simple web page that lists all the baselines that are 

stored in the S3 storage. The baselines are uploaded into S3 storage with access control 

privileges public within the intranet. Certain actions are made towards establishing a pro-

duction line that would enable fast uploading of the knife baseline into multiple base 

stations. The script that is being developed for this requirement uses the data visible in 

this website to download the baseline knife, creating an installer from it and uploading it 

into the base station. However, the aforementioned script is not a part of this thesis. 

 

Figure 28. Website listing all the knife baselines 
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Figure 28 is a screenshot taken from the website listing all the successful baseline knives. 

Part of the screenshot is censored due to the business-critical data contained in it. 

 

Figure 29. Baseline listing software deployments 

Whenever a new commit is made into the repository that holds the baseline listing source 

code, the Gitlab CI will automatically do the deployment of the new source code into the 

kuha-utils cloud instance. The script that handles the deployment will kill the running 

web server process from the cloud instance and starts a new process. The deployment 

itself utilizes the environments functionality that the Gitlab provides. As seen in Figure 

29, the environment’s functionality allows an easy way to rollback baseline listing de-

ployments if such action needed to be taken. This would allow to deploy working version 

back into the cloud instance while solving the issues with the version that was rolled back. 

4.5 Further development of the system 

The continuous integration system will be under further development even beyond the 

practical part of this thesis. From the development direction point of view, the following 

logical steps from the continuous integration would be to move towards continuous de-

livery and continuous deployment. Due to the fact that the new software releases require 

more extensive testing than only the automated tests created within the context of this 

thesis, the continuous deployment would not be a wise extension as of yet. Extending 

from the software introduced in this thesis, the move towards continuous delivery and 

deployment could be done by having the pipeline extended from the WFT sniffer. This 

move would render the baseline listing software introduced in Subsection 4.4.2 somewhat 

obsolete. As a result of the practical work done during this thesis, the continuous integra-

tion pipeline ends into the WFT sniffer. This is because WFT sniffer is the last component 

in the pipeline, since it monitors the status of the knife builds and uploads the finished 

knife builds into S3. From an architectural point of view, the Kuha OSS already provides 

functionality for deploying new baselines into the devices that are connected to it. With 

this in mind, instead of using WFT sniffer to just store the finished knife builds into S3, 

it could be used to also inform the Kuha OSS about the new baseline being ready for 

deployment. This allows very easy way to extend the continuous integration into contin-

uous deployment.  
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Kuha OSS software development is making a use of continuous delivery where the de-

velopment team utilizes a staging environment that is separate from the production envi-

ronment but otherwise identical. Whenever a new feature is added to the codebase, it is 

deployed to the staging environment. This approach is used to verify and test the new 

features in addition of unit and integration tests. 

 

Figure 30. Radiators 

Developers use radiators shown in Figure 30 to monitor the state of the staging and pro-

duction environments for possible faults. Both the staging and production environment 

contain some logic that monitors the state of the environment. The values received from 

the system are called metrics and these metrics are used to detect any faulty states within 

the environment. Whenever a metric breaches the threshold, an alarm will be raised. 

Every alarm of the system is represented by a box in the radiator view with the addition 

of direct alarms pushed into the team’s internal communication software. Whenever an 

alarm occurs, it causes the corresponding radiator box to go red, thus giving the visual 

feedback to the developers. Radiators also provide good and fast overall picture of the 

environment’s state. Detecting the faults already in staging environment helps to maintain 

a stable production environment. There is no specific time period defined for how long 

the new feature needs to be in staging before the release to production can be made. The 

decision on releasing is done on case by case which means that whenever the new feature 

is deemed working, it is released to production environment. 

From the integration testing point of view, development of additional test cases is an ob-

vious improvement. Furthermore, since Gitlab provides support for scheduling the pipe-

line execution, test cases could be developed utilizing that feature. One possibility would 

be to create a Gitlab schedule that would execute a certain type of test case that tests 
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robustness of the complete system. This test case could be scheduled to run during the 

weekend when there is no other software development done. Normally the test environ-

ment and the devices in it are idling during the weekend. The test case itself would for 

example test the full data transmission, from UE to the Internet. In case the test case fails 

or there are other errors found during the testing, the test script would collect the relevant 

logs from the environment and store them. This would then allow developers to investi-

gate the possible error causes during the upcoming week. This type of test case would be 

beneficial considering the environment in which the base station will eventually be in. 

The test environment does not currently test the VoLTE features, which would also be 

beneficial to test. Of course, this would require either dedicated hardware if, for example, 

the voice quality would be the passing criteria for the test case. Another possibility would 

be to create some sort of custom software that would verify the connectivity between the 

UEs performing the VoLTE call. 
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5. CONCLUSIONS 

This thesis took a deep dive into the mobile network technologies and the issues that rural 

areas are bringing to the mobile network operators. This thesis also introduced Kuha, 

which is a solution that is designed to overcome the issues related to rural connectivity. 

The theoretical part also introduced the software development practice called continuous 

integration and how it, with the help of modern methodologies, solves the issues that 

traditional software development methodologies brought. 

The continuous integration system that was created during this thesis has been in use and 

under development ever since the project started. This system will be under further de-

velopment even after this thesis. Robot framework that was used with the integration tests 

allows an easy way to extend the existing set of test cases. Test libraries written for Robot 

framework provide already an extensive control over the testing environment in which 

the integration tests will be executed. 

Further development chapters introduced the following steps that the system could take. 

At the end of the writing process of this thesis, my personal view is that the move towards 

continuous delivery seems to be quite near as the discussions within the team have had 

such trends. 

The goal of creating a continuous integration system, that was introduced in introduc-

tion chapter, was fulfilled. Integration tests are run for every new feature in order to in-

sure quality. There have been occurrences in which the integration tests have revealed 

an underlying issue that a new feature has introduced. Therefore, it can be concluded 

that the integration tests have brought value to the software development team. 
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