
PEKKA PENNANEN

UTILISING CLOUD COMPUTING IN SOFTWARE TESTING

Master of Science thesis

Examiner: Prof. Hannu-Matti Järvinen

Examiner and topic approved by the

Faculty Council of the Faculty of

Computing and Electrical Engineering

on 1st March 2017

I

ABSTRACT

PEKKA PENNANEN: Utilising Cloud Computing in Software Testing
Tampere University of Technology

Master of Science thesis, 58 pages, 0 Appendix pages

May 2018

Master's Degree Programme in Information Technology

Major: Software Engineering

Examiner: Prof. Hannu-Matti Järvinen

Keywords: software testing, test automation, cloud computing

Cloud computing is a relatively new and growing industry [1]. In this thesis, the goal

is to �nd how cloud computing can be used for software testing. Software testing

is essential for software engineering. Its purpose is to create information about the

quality of a software product [2]. Another goal of this thesis is to start utilising cloud

computing in software testing at M-Files company.

Literature was reviewed for information on software testing, cloud computing, and

how the latter can be used to perform the former. After the literature review, a case

study was conducted with the goal to utilise cloud computing in M-Files' software

testing. The purpose was to increase M-Files' test automation capacity. In the case

study, a method of how to migrate M-Files' automated integration testing to the

cloud was identi�ed. Then the migration was executed according to the identi�ed

method. The case study is described in detail in this thesis.

The literature review found that software testing in the cloud has many bene�ts,

such as potentially signi�cant cost savings. The cloud was also found to have issues,

such as data location regulations which restrict its use. In the case study, M-Files'

automated integration testing was migrated to the cloud. The migration was done

by using Teamcity to launch virtual machines in Microsoft Azure. An already exis-

ting NUnit test set was used in the cloud. As a result of the migration project, up to

90% of tests have been run using the new cloud setup. The time it takes for test au-

tomation to complete was cut by 27% from 12.8 to 9.3 hours. The migration project

accumulated an upfront cost of 3,588 euros. In addition to the initial cost, during a

30 day follow up period, an operational cost of 160.52 euros was accumulated. The

costs were deemed acceptable.

The migration project enabled M-Files to increase the number of builds that are au-

tomatically tested. As the project's result, test automation in the cloud has become

an integral part of testing in M-Files' R&D department.

II

TIIVISTELMÄ

PEKKA PENNANEN: Pilvilaskennan hyödyntäminen ohjelmistotestauksessa
Tampereen teknillinen yliopisto

Diplomityö, 58 sivua, 0 liitesivua

Toukokuu 2018

Tietotekniikan diplomi-insinöörin tutkinto-ohjelma

Pääaine: Ohjelmistotuotanto

Tarkastaja: Prof. Hannu-Matti Järvinen

Avainsanat: ohjelmistotestaus, testiautomaatio, pilvilaskenta

Pilvilaskenta on verrattain uusi ja kasvava teollisuudenala [1]. Tässä työssä päämää-

ränä on selvittää, kuinka pilvilaskentaa voidaan hyödyntää ohjelmistotestauksessa.

Ohjelmistotestaus on välttämätön osa ohjelmistojen kehitystä. Sen tarkoituksena

on tuottaa tietoa ohjelmiston laadusta [2]. Tällä työllä on myös tavoitteena alkaa

hyödyntää pilvilaskentaa M-Files nimisen yrityksen ohjelmistotestauksessa.

Työssä tehtiin kirjallisuuskatsaus, jonka tavoitteena oli kerätä tietoa ohjelmistotes-

tauksesta, pilvilaskennasta ja miten pilvilaskentaa voi hyödyntää ohjelmistotestauk-

sessa. Kirjallisuuskatsauksen jälkeen toteutettiin tapaustutkimus. Tapaustutkimuk-

sen tavoitteena oli hyödyntää pilvilaskentaa M-Filesin testiautomaatiossa. Tarkoi-

tuksena oli kasvattaa M-Filesin testiautomaatiokapasiteettia. Tapaustutkimuksessa

määritettiin keino siirtää M-Filesin automatisoitu integraatiotestaus pilveen, minkä

jälkeen siirto toteutettiin. Tapaustutkimus esitetään yksityiskohtaisesti tässä työssä.

Kirjallisuuskatsauksessa selvisi, että ohjelmistotestauksella pilvessä on monia hyöty-

jä, kuten rahalliset säästöt. Pilven käyttöön liittyy myös ongelmia, kuten tiedon si-

jaintiin kohdistuva sääntely. Tapaustutkimuksessa M-Filesin automatisoitu integraa-

tiotestaus siirrettiin pilveen. Siirto toteutettiin käyttämällä Teamcityä, joka käyn-

nistää Microsoft Azureen virtualisoituja tietokoneita. M-Filesillä jo käytössä ole-

vaa NUnit testikokoelmaa käytettiin myös pilvessä. Siirron lopputuloksena jopa 90

prosenttia testeistä ajetaan pilvessä. Aika, jonka yksi testikokoelman suorittaminen

vaatii, laski 27 prosenttia eli 12,8 tunnista 9,3 tuntiin. Siirto kerrytti 3588 euron

etukäteiskustannuksen. Lisäksi 30 päivän seuranta-ajan aikana kertyi 160,52 euroa

käyttökuluja. Kulujen määrä todettiin hyväksyttäväksi.

Testauksen siirto pilveen on mahdollistanut M-Filesin kasvattaa automaattisesti tes-

tattavien ohjelmistoversioiden määrää. Projektin lopputuloksena pilvessä testaami-

sesta on tullut olennainen osa M-Filesin kehitysosaston toimintaa.

III

PREFACE

I would like to thank Tero Piirainen and Minna Vallius for giving me this thesis

subject. I thank Tero for reviewing the thesis and all support I've received. I also

want to thank all my colleagues in M-Files who have helped to make this thesis.

Also, thanks to Professor Hannu-Matti Järvinen for the guidance I received.

Last but not least, praise to my family and friends who have supported my studies.

Tampere, 13.5.2018

Pekka Pennanen

IV

CONTENTS

1. Introduction . 1

2. Software testing in agile development . 3

2.1 Agile software development . 3

2.2 Continuous integration and delivery 5

2.3 Software testing . 5

2.3.1 De�nition, purpose, and execution of testing 6

2.3.2 Agile testing . 8

2.4 Test automation . 8

2.4.1 Unit testing . 9

2.4.2 Integration testing . 10

2.4.3 UI test automation . 11

2.4.4 Concerns regarding test automation 12

2.5 Manual testing . 13

3. Cloud computing . 14

3.1 What is cloud computing . 14

3.2 Service models . 14

3.2.1 Infrastructure as a service . 14

3.2.2 Platform as a service . 15

3.2.3 Software as a service . 15

3.3 Deployment models . 16

3.3.1 Public cloud . 16

3.3.2 Private cloud . 16

3.3.3 Hybrid cloud . 16

3.3.4 Community cloud . 17

3.4 Cloud providers . 17

3.4.1 Amazon . 18

3.4.2 Microsoft Azure . 19

V

4. Utilising cloud computing in testing . 22

4.1 Test automation in the cloud . 22

4.2 Bene�ts of using the cloud . 23

4.3 Issues and risks of using the cloud . 24

4.4 Transition to the cloud . 24

5. Cases in a software company . 27

5.1 M-Files . 27

5.1.1 Company . 27

5.1.2 Product . 27

5.1.3 Current development and testing practices 28

5.2 Available alternatives and considerations 29

5.2.1 Cloud arrangements . 29

5.2.2 Machine setup in the cloud . 30

5.2.3 Connecting cloud machines to the company network 35

5.2.4 Security . 36

5.2.5 Azure virtual machine series . 37

5.2.6 Virtual machine startup preparation 38

5.3 Project execution . 41

5.4 Fine tuning and moving to resource manager deployment model . . . 43

5.5 Considering the project in regard to SMART-T 45

5.6 Manual testing using the cloud . 46

6. Evaluation and future development . 47

6.1 Bene�ts . 47

6.2 Issues . 47

6.3 Cost analysis . 48

6.4 Future development possibilities . 49

6.4.1 Premium disks . 49

6.4.2 Permanent disk . 50

6.4.3 Azure Blob storage repository cache 51

6.4.4 Return to using already existing virtual machines 52

VI

6.4.5 Azure Service Fabric . 52

7. Conclusions . 53

Bibliography . 54

VII

FIGURES

2.1 Agile (Scrum) project life cycle. [2] 4

2.2 CI/CD process. [8] . 5

2.3 Dynamic test processes. [2] . 7

2.4 Traditional waterfall testing and agile testing. [11] 9

2.5 Test automation pyramid. [12] . 10

3.1 Gartner Magic Quadrant from June 2017 evaluates the major cloud

providers. [22] . 18

4.1 SMART-T is a tool to help deciding whether migrating testing to the

cloud is sensible. [5] . 26

5.1 The planned system setup. Hamachi is acting as the VPN between

Teamcity CI server and the cloud while the CI server relays tra�c

between the cloud and the Git server. 36

5.2 Process �ow diagram of the cloud virtual machine setup script. 40

VIII

TABLES

5.1 Time it takes from a build entering Teamcity queue to tests starting

to run. 33

5.2 Azure virtual machine tiers, measured average time to run M-Files

NUnit and operational costs by the hour and for a single test run. . . 43

6.1 Project costs . 49

IX

LIST OF ABBREVIATIONS AND SYMBOLS

API Application programming interface (API) is a set of methods that

enable communication between software components.

AWS Amazon Web Services (AWS) is a subsidiary of Amazon.com that

provides cloud computing resources.

CD Continuous Delivery (CD) is a software engineering approach in

which teams work in short cycles, ensuring that the software is in a

condition where it can be released at any time.

CI Continuous Integration (CI) is a software development method in

which development team members integrate their work frequently.

DNS Domain Name System (DNS) is a naming system for computers,

services, or other resources connected to a network.

HDD Hard disk drive (HDD) is a data storage device which stores and

retrieves data using magnetic storage.

IaaS Infrastructure as a service (IaaS) is a model in which a service provi-

der o�ers infrastructure components, which are hosted in the cloud.

ISV Independent software vendor (ISV) is an organisation that makes

and sells software.

PaaS Platform as a service (PaaS) is a model in which a cloud service

provider o�ers an externally controlled platform for a customer's

systems and software.

R&D Research and development (R&D) refers to activities undertaken by

organisations to develop or improve services or products.

SaaS Software as a service (SaaS) is a model in which a cloud service

provider o�ers readily setup applications.

SQL Structured Query Language (SQL) is a language used in program-

ming and designed for managing data held in relational database

management systems.

SSD Solid-state drive (SSD) is a data storage device that uses integrated

circuit assemblies to store and retrieve data.

SSH Secure Shell (SSH) is a protocol used for secure data communica-

tions.

TaaS Testing as a service (TaaS) is a model in which software testing is

outsourced to a third party.

UI User interface (UI) is the space where human-computer interaction

occurs.

VM Virtual machine (VM) is an emulation of a computer system.

X

VPN Virtual private network (VPN) extends a private network across a

public network.

1

1. INTRODUCTION

Cloud computing is a relatively new and growing industry that is gaining more

traction in software business [1]. New ways to utilise this resource are constantly

developed. In this thesis, a look will be taken into one �eld that can utilise cloud

computing: software testing.

Software testing is essential for software engineering. Its purpose is to create infor-

mation about the quality of a software product [2]. Testing evaluates the features

of an application and discovers di�erences between the requirements placed for the

software and the existing condition of the software [3].

Software testing based on cloud computing can be divided into two aspects. First,

it can be software testing that is performed on an environment which resides in the

cloud. Second, it can be testing the quality of cloud. [4] In this thesis, only the �rst

de�nition is considered.

The goal of this study is to �nd how cloud computing can be used for software

testing. It also has the goal of taking the gathered information into use and start

utilising cloud computing in the software testing that the company M-Files does.

First, this thesis examines software testing, cloud computing, and how the latter can

be used to perform the former. The examination is done in the form of a literature

review. Then the thesis proceeds to a case study that aims to utilise cloud compu-

ting in software testing. The case study was done for the company M-Files. In the

case study, a method of how to migrate M-Files' test automation to the cloud was

identi�ed. Then a project to do the migration was executed based on the identi�ed

method. The case study's planning, execution, and results are described in detail in

this thesis.

The organisation of this thesis is as follows. Chapter 2 describes software testing

and agile software development. Chapter 3 de�nes cloud computing and discusses its

aspects. Chapter 4 describes utilising cloud computing in software testing, bene�ts

and issues of it and how to transition into using the cloud. In Chapter 5, a detailed

case study is given. The case study shows a description of transitioning a software

1. Introduction 2

company's testing to the cloud. Chapter 6 evaluates the results of the case study

and provides discussion about future development options. Chapter 7 concludes the

thesis with a summary of the thesis.

3

2. SOFTWARE TESTING IN AGILE

DEVELOPMENT

Software testing is the process that aims to provide information about the quality

of a software product [5]. In practice this means that a software tester tries to �nd

bugs in the software [6]. The number of bugs found compared to the number of test

cases run o�ers information about the quality.

This chapter discusses agile software development and how software testing �ts into

it.

2.1 Agile software development

Multiple di�erent agile software development methods have been developed in or-

der to answer to the need for developing functional software for customers in a

fast manner and to withstand changes to software requirements during the develop-

ment process. Many of the methods are rooted in the Manifesto for Agile Software

Development [7]. The manifesto states that:

We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on

the left more.

The manifesto conveys that for a more successful software project a more agile proce-

dure is necessary. Cooperation with the customer and a working software are more

2.1. Agile software development 4

Figure 2.1 Agile (Scrum) project life cycle. [2]

important than exhaustive documentation and contract negotiations. The point is

to be ready for change instead of strictly following premade plans and processes.

There are many agile development methods such as Extreme Programming, Scrum,

Crystal, Kanban, and Feature-Driven Development. They all follow the principles

expressed in the Agile Manifesto. Figure 2.1 describes an example of a project life

cycle in agile development in the case of Scrum. A project that follows Scrum method

is composed of many iterations which are called sprints. Each sprint usually results in

new functionality that is ready to be delivered to customers. The added functionality

can be either new functionality or enhancements to existing functionality. Sprints

normally last from one week to four weeks. Normally, the number of sprints in a

project is not de�ned at the start because in agile projects the exact requirements

are not fully understood at the beginning of a project. Customer requirements,

which are usually called user stories, are added to a product backlog. The customer

requirements evolve during the project. Product is delivered incrementally as the

result of sprints. [2]

2.2. Continuous integration and delivery 5

Figure 2.2 CI/CD process. [8]

2.2 Continuous integration and delivery

Continuous integration (CI) is a software development method in which develop-

ment team members integrate their work frequently. Typically, each team member

integrates their work at least once per day which leads to multiple daily integrations.

Each integration is then automatically built and tested in order to �nd possible er-

rors as soon as possible. This practice reduces integration problems and allows a

more rapid development of a software application. [9]

Continuous delivery (CD) is closely related. It is a software engineering approach

where teams produce software in short cycles and ensure that the software is at any

time in a condition where it can be reliably released. Continuous delivery should let

companies to quickly, e�ciently, and reliably bring improvements to their services

to market. Eventually this would allow staying ahead of competition. [10]

Figure 2.2 depicts a CI/CD process. An automated process takes developer check-

ins through the CI/CD pipeline and feedback is near-immediate.

2.3 Software testing

This section will cover what software testing is, why it is necessary, and how it is

done. Also software testing in agile software development is covered.

2.3. Software testing 6

2.3.1 De�nition, purpose, and execution of testing

Software testing is the process of inspecting a software to �nd di�erences between

the requirements placed on the software and the existing condition of the software,

the di�erence being bugs. Testing also aims to evaluate the features of the software.

To put it short, software testing is the process of analysing or executing a program

with the intention of discovering bugs. [3]

The main goal of software testing is to provide information about the quality of the

tested software. It also aims to �nd information about the residual risk of how much

of the software remains untested. Ultimately, this mitigates software stakeholders'

risk of poor product quality. [2]

Defects appear to a person using a software product because of errors in the applica-

tion. A defect that does not surface while using an application does not have any

impact on the software. Only when a defect occurs under the correct conditions,

it can cause the software to fail. A software failure may have serious consequences

such as compromised reputation of a business, endangered business or user safety

or viability of a business. [2]

It is not possible to create a software application without errors. Thus software

testing is an imperative task to be done before shipping to customers. The goal is to

minimise the possible errors in the software product. Additionally, information about

the software quality is necessary for company decision makers. Software applications

do not always do what is expected of them, so they need to be veri�ed and validated.

Software testing also needs to be done throughout the life cycle of a piece of software

and its development. [2]

There are six main principles to software testing that a software engineer should

understand in order to conduct e�ective testing [3]. The principles are the following:

• Tests need to be traceable to requirements. The purpose of this is to discover

any software errors that may cause the software to fail to meet the client's

requirements.

• Tests should be planned long beforehand test execution. After the software

requirements have been gathered, test planning can begin.

• The Pareto principle is valid for software testing. This means that 80 percent

of bugs discovered during testing are likely to be caused by 20 percent of all

software components. Thus these problematic components should be detected

and thoroughly tested.

2.3. Software testing 7

Figure 2.3 Dynamic test processes. [2]

• Testing should progress in a bottom-up manner. Testing should begin with

planning and executing tests on individual components. Later on testing should

move its focus to integrated clusters of components and lastly the entire sys-

tem.

• It is impossible for testing to cover everything. Every combination of paths

is impossible to test due to the large number of permutations. However, it is

possible to cover the software in an adequate manner.

• For e�ective testing, the tester should be an independent third party. The

software engineer who created a software item is not the best person to test it.

This is due to the developer being driven by delivery whereas an independent

tester is driven by quality.

A major challenge in software testing is to determine what parts of the software to

test and which can be left untested. Resources are not limitless and thus a major

challenge, time pressure, drives what can be tested. [5] In addition to executing tests,

designing and implementing test cases takes time. Also setting up and maintaining

test environments and composing issue reports are time consuming tasks. These

tasks are phases of dynamic test processes and they are presented in Figure 2.3.

Software testing is done in �ve phases. Testing begins during the construction of a

piece of software, during which testing is done individually to each software compo-

nent. Once the components have been combined to sub-systems, the testing e�ort

enters integration testing phase. When sub-systems have been integrated together

the system testing phase begins. Finally, when the software product is released, the

2.4. Test automation 8

testing enters the maintenance phase. In this phase, the software keeps changing

due to bug �xes and additions of new functionality. All changes to the software are

necessary to be tested to ensure that the software quality remains on an acceptable

level. [5]

2.3.2 Agile testing

In agile software development, testing does not wait for software components to be

ready before testing begins. Instead, testing contributes to the development e�ort

throughout the development cycle. [11]

See Figure 2.4 for a comparison between traditional and agile testing. In a traditional

scenario, an application is planned and developed to completion and only then tested

at the end of a project, right before shipping. Contrarily, agile testing needs to take

into account agile development methods which means developing the software in

small parts. Each small increment of coding is tested after being �nished. A single

iteration might be as short as a week. [11]

In agile testing, testing is not done based on requirements gathered at the beginning

of a project. Rather, tests need to be done based on the requirements of each story.

Moreover, agile testing also aims to ensure business value and delivering quality to

customers instead of the traditional viewpoint of only meeting requirements. In agile

testing, even if a story passes the tests that were made based on its requirements,

more testing is done to better understand the requirements and how the feature

should work. A story can only be said to be done if all testing tasks are �nished.

[11]

2.4 Test automation

This section covers the topic of test automation. The task of performing manual tes-

ting can take a great deal of time and e�ort. To amend this, software test automation

can be utilised.

There are many ways to conduct test automation. This section focuses on the th-

ree layers of test automation presented in the test automation pyramid, which is

illustrated in Figure 2.5. It describes the foundation of test automation to be unit

tests. The foundation represents the bulk of testing which supports all other layers

of testing. The second layer of tests is the integration layer. These tests operate at

the Application programming interface (API) level. [12] They are tests that verify

2.4. Test automation 9

Figure 2.4 Traditional waterfall testing and agile testing. [11]

functionality directly without using a user interface (UI) [11]. The top layer repre-

sents UI tests which should be the smallest test e�ort. They are tests that are done

using the UI. [12] Most systems also require manual testing to supplement test au-

tomation. This is shown as a cloud at the tip of the pyramid. [11] Manual testing

will be looked into in Section 2.5.

2.4.1 Unit testing

Testing on the lowest level of a software is called unit testing or module testing [6].

This means testing software components individually to ensure their correct opera-

tion. The components are tested independently without any other system compo-

nents. Unit testing focuses on veri�cation e�ort. [3] Unit testing is usually tasked to

programmers rather than a testing team [6].

There are many reasons to do unit testing. First of all, in unit testing it is easier to

isolate bugs. When a bug is found in unit testing, the tester can be certain that the

issue lies within the tested unit. Secondly, in unit testing, the tested module is small

enough that it can be attempted to be tested in an exhaustible fashion. Thirdly,

in unit testing, one can eliminate the risk of confusing the interactions of various

di�erent errors in separate parts of the software. [3]

2.4. Test automation 10

Figure 2.5 Test automation pyramid. [12]

There are many test frameworks that can be used for unit testing. For example,

NUnit is a unit testing framework for all .NET languages. The framework contains

a runner that can be used for automation of the unit tests. [13] NUnit is one of

the options that Microsoft suggests to use for unit testing when developing software

that uses their .NET framework [14].

2.4.2 Integration testing

When individual software components have been tested, they will be integrated and

integration testing is performed against groups of modules [6]. Integration testing

means testing that di�erent software components work correctly together. The tests

are designed and executed against APIs, Windows services, or any interfaces exposed

between system components. Integration tests usually need the tested application

to be installed or deployed in an environment similarly as it would be delivered in

production. [12]

Often the UI of a software is based on an API. When testing is done in the integration

layer, the variations and permutations of API calls are tested more e�ciently and

robustly than if the testing was done on the UI level. This provides a well tested

basis upon which a much smaller set of UI tests can be built. [12]

2.4. Test automation 11

Integration tests are often done using a unit test framework [12]. For example,

xUnit tools such as NUnit and JUnit can be used to perform integration tests [11].

Integration testing can be tasked either to programmers or testers [12].

2.4.3 UI test automation

User interface is the main way, and for most users the only way, users interact with

an application. Thus, user interface is an important part of software and should be

tested.

Many of both large and small scale applications have usability issues that some

groups of users face. In order to discover these issues, e�cient and e�ective means

are necessary. Automated usability or accessibility tests can provide information in

software development process while the program is being developed. With this fast

and visible feedback developers can quickly �x problems in the software. This also

enables developers to experiment with greater con�dence. UI test automation also

helps discovering potential issues in internal releases by testing each release quickly

and consistently. [15]

Layout problems are an example of UI issues that a user may encounter. They can

have an adverse e�ect on a user's perception of an application. They may also reduce

an application's usability by distracting or frustrating its users. Layout issues may be

caused by e.g. localising an application from one language to another. Traditionally

layout problem discovery has relied on human testers due to the challenge of �nding

these issues with test automation. This is no longer the case and now this is one

�eld that can bene�t from UI test automation. Some automation frameworks, such as

WebDriver, o�er the possibility to create layout tests. One way such tests are made

possible is the detection of text on a web page and then comparing the location

of said text to the detected location of text boxes and �elds. If the text meets or

overlaps the edges of a �eld, an annotated screenshot will be captured for further

review by a human tester or developer. [15]

Automated usability tests can be valuable additions to manually performed tests.

Automatic UI tests do not replace human testers but complements human testing.

E�ective test automation increases the overall value of testing by extending both

its reach and range. The large mass of automated UI tests would be impractical

to be done by human testers because of, e.g., the vast set of web pages that are

tested. Contrariwise, tests done in person can spot many issues that automated

tests struggle to detect. [15]

2.4. Test automation 12

UI test automation can, in addition to valuable information, �nd irrelevant issues.

This is a problem with test automation, as the bugs it �nds may be unlikely to be

seen by users, or developers do not see value in �xing them. [15]

For test automation to be good, it requires similar skills, practices, and passion

as software development does. Many test automation tools require their users to be

skilled in technical and programming matters in order to be able to write tests. Open

source tools may be too di�cult to use. Some test automation tools are simpli�ed

to enable more people to be able to write new tests, but this is often a bad trade-o�.

[15]

2.4.4 Concerns regarding test automation

Even though test automation is a powerful tool, it is not an answer to everything.

Following realities regarding test automation are to be considered [6]:

• The software evolves constantly. Test automation needs continuous mainte-

nance to account the changes made into the software.

• Automation does not substitute human testers. Test automation cannot ac-

hieve everything, some software issues are better noticed by humans.

• Veri�cation is hard. One needs to make sure that automated tools can e�cient-

ly handle changes.

• One can easily place too much trust on automation. Even though test auto-

mation reports zero issues that does not mean there are no bugs to be found.

• One should not spend too much time on working on automated testing tools

instead of testing the software.

• Test automation development should follow the same standards and guidelines

that the tested software follows.

• Test automation tools can be invasive and cause software failures. A bug found

by automation should be tried to be re-created by hand to �nd out if the tool

is the cause of the problem.

Because test automation is not the be-all and end-all, it is usually supplemented

with manual testing which will be looked into in the following section.

2.5. Manual testing 13

2.5 Manual testing

As mentioned above, even though test automation is a powerful tool it does not

replace manual testing performed by humans. Rather, automated tests complement

human testing. In practice, defect detection at a system level is largely dependent on

manual testing e�ort of human testers. Most of new defects are discovered by manual

testing. [16] Test automation removes the need to perform simple and repetitive

testing tasks from humans and allows manual testers to use more time on creative

testing [17].

Test documentation and planning is an important part of manual testing. The most

important deliverables are a test plan, test cases, bug reports, metrics, statistics, and

summaries. The test plan describes the method used to verify that the software meets

its speci�cation and customer needs. The plan includes at least quality objectives,

resource needs, schedules, assignments, and methods. Test cases list the speci�c

items to be tested and de�ne detailed steps that are followed in testing. Bug reports

depict issues found using the test cases. [6]

Exploratory testing is one type of manual testing. It is a testing technique in which

a software tester based on their experience designs and executes test cases sponta-

neously. The tests have a basis on the tester's earlier knowledge, prior experience

with the tested product, and heuristic methods to �nd common types of softwa-

re failure. [2] Exploratory testing is an imperative part of testing in agile software

development [11].

When exploratory testing is practised, typically test cases are not designed or docu-

mented in advance. The testing is based on the tester's own intuition, curiosity, and

the results they got from previous tests. [2]

14

3. CLOUD COMPUTING

This chapter discusses cloud computing. It explains what cloud computing is and

the di�erent ways it can be set up. The chapter also gives a look into the most major

companies providing cloud computing services.

3.1 What is cloud computing

National Institute of Standards and Technology NIST de�nes cloud computing as a

model for an omnipresent, convenient, and on-demand pool of con�gurable compu-

ting resources accessible over a network. These resources can then be rapidly both

taken into use and released. Using the resources requires minimal e�ort from both

the customer and the provider. [18]

The NIST de�nition is only one of the cloud computing de�nitions as the concept is

quite loosely de�ned. There are di�erent explanations to what cloud computing is

but the general acknowledgement is that it includes virtualised hardware, e�ectively

unlimited storage, and necessary software for a client to access the infrastructure.

[5]

3.2 Service models

Cloud computing is divided to three di�erent service models, the models being

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS). This section shortly covers the meaning of the three models. [18]

3.2.1 Infrastructure as a service

Infrastructure as a service is a model in which a service provider o�ers resources

such as servers and storage capacity. The resources are scaled according to customer

needs. Virtualisation allows the provider to share actual physical resources between

multiple customers. Amazon EC2 is a well known example of this model. [5]

3.2. Service models 15

The services that the provider delivers are not limited to only hardware. Servers,

storage, and network are accompanied by associated software such as an operating

systems virtualisation technology and a �le system. IaaS is an evolution of traditio-

nal hosting as IaaS does not require any set time of commitment from customers.

Instead, customers are able to provision resources on demand. IaaS provider does

not do much management apart from keeping their data centre operational. Users

are to deploy and manage everything else by themselves. [19]

3.2.2 Platform as a service

Platform as a service is a model that o�ers an externally controlled platform for a

customer's systems and software. The model typically includes an operating system,

software development tools, databases, and a full infrastructure including servers to

host the customer's applications. Microsoft Azure follows this service model. [5]

Platform as a service provides development and deployment applications without

the cost and complexity of purchasing and maintaining the infrastructure under-

neath. All necessary facilities for developing and delivering applications and services

are provided as a whole. A virtualised and clustered grid computing architecture is

frequently the fundament for this model. Some PaaS providers o�er a speci�c pro-

gramming language or API, such as Google AppEngine which is a PaaS o�ering

where developing is done in Python or Java. [19]

3.2.3 Software as a service

Software as a service is the simplest service model from a customer's point of view. In

this model, the customer gains access to a readily setup application that is hosted

in the cloud. The software is accessible online via a thin client interface such as

a web browser. The customer does not manage the application apart from small

user-speci�c con�gurations. SalesForce is an example of a service with this model.

[5]

In software as a service model, the customer does not purchase the software in the

traditional sense. Instead, the customer pays for what they use. Billing may be based

on user count or some other kind of consumption basis. The service provider usually

hosts and manages the application in their own data centres. Some providers choose

to provide the software while hosting it on some other provider's IaaS or PaaS model

service. [19]

3.3. Deployment models 16

3.3 Deployment models

In addition to the service models discussed in the Section 3.2, cloud services are

divided by the way their infrastructure is arranged. There are four solutions for

the infrastructure setup: public, private, hybrid, and community cloud. [18] Service

models are orthogonal to deployment models [20].

3.3.1 Public cloud

A public cloud's infrastructure is owned by the service provider and it is hosted

at the provider's premises. Customers have no control of the infrastructure which

is shared by multiple customers. [5] A public cloud service provider has its own

policy and value. The provider also has pro�t, costing, and charging models of their

own.[20]

A public cloud is available for the general public's use. Its service provider may

be a business, academic, or government organisation. Combined ownership between

di�erent kinds of organisations is possible. [18] Public cloud is the dominant form of

cloud computing deployment. Many popular cloud services, such as Amazon EC2,

follow this deployment model. [20]

3.3.2 Private cloud

A private cloud is accessible only to its owner and the owner's associates. The

infrastructure is privately owned and managed. This solution o�ers a possibility for

better customisation, standardisation, security, and privacy. The trade-o� is that a

private cloud can be more expensive than a public cloud. [5]

A private cloud can be set up within an organisation to maximise and optimise the

utilisation of existing in-house resources. Data transfer cost from local IT infrastruc-

ture to a public cloud is fairly considerable and thus evading it with a private cloud

may be preferable. A private cloud helps companies to have full control over their

mission-critical activities. [20]

3.3.3 Hybrid cloud

A hybrid cloud is a combination of public and private solutions. In regular use, the

organisation uses its own private cloud but when necessary, an over�owing peak in

3.4. Cloud providers 17

usage is covered with public cloud capacity. This is to ensure that excess load does

not jeopardise the service. [5]

Cloud-bursting is related to hybrid clouds. In this scenario, the most critical applica-

tions are hosted on a private cloud. Other not as security-sensitive applications are

hosted on a public cloud. Amazon has an example of a hybrid solution called Virtual

Private Cloud (VPC). [5]

3.3.4 Community cloud

A community cloud is solely used by organisations which all are part of a single

community. The community cloud may be owned by one or more of the participating

organisations or by a third party. [18] For example, government organisations may

share cloud infrastructure for state-related cloud needs [5].

The cloud community formulates a degree of economic scalability and democra-

tic equilibrium [20]. The organisations share common goals for the cloud, such as

security or compliance considerations [18].

3.4 Cloud providers

It has become possible to o�er cloud computing resources at prices that are compe-

titive to traditional computing costs. This has enabled cloud providers to emerge as

a new business area. The competitive pricing is possible because of the large scale

of the data centres. When considering network, storage, and administrator costs, a

data centre with approximately 50,000 servers is �ve to seven times relatively more

inexpensive to build and maintain than a smaller data centre of 1,000 servers. [21]

In this section, a look is taken at some of the companies that provide cloud computing

resources. Amazon and Microsoft are the leaders of cloud service market by a large

margin followed by a multitude of smaller players. Figure 3.1 shows the June 2017

evaluation of cloud providers by Gartner. Since 2016, Amazon and Microsoft alone

have accounted for almost all of infrastructure consumption in cloud business and

most customers will choose either of them. Thus, this section will focus on the two

market leaders. Many of the leaders' competitors face signi�cant business challenges

and their customers face notable supplier-related risks. [22]

3.4. Cloud providers 18

Figure 3.1 Gartner Magic Quadrant from June 2017 evaluates the major cloud providers.
[22]

3.4.1 Amazon

Amazon was the �rst company to start providing cloud computing capacity that

customers could use to run their own software. The most notable Amazon cloud

computing service, Amazon EC2, was announced in 2007 and it allowed anyone

to purchase cloud computing resources for 0.085 dollars per computer-hour with no

minimum or maximum purchase and no contract. [23] Amazon Web Services (AWS),

a subsidiary of Amazon, has been the market share leader in cloud providers for over

10 years. The leader position has been held by AWS in the latest Gartner evaluation

of cloud providers in June 2017. AWS o�ers XEN-virtualised single- and multitenant

computing with multitenant storage and a large variety of additional services. The

3.4. Cloud providers 19

AWS marketplace also o�ers a multitude of third-party software and services. [22]

AWS has data centres all around the globe, e.g., the U.S., Ireland, Australia, Singa-

pore, and Brazil. AWS is also willing to negotiate large-scale single-tenant solutions,

such as a dedicated U.S. federal government region. AWS strongly appeals to agility-

oriented IT buyers but is also frequently chosen by safety and e�ciency oriented IT

buyers. [22]

Amazon's biggest strength is the dominant market leader status. AWS continues

as the thought leader of the industry to which all other competitors are compared.

Amazon continues to o�er new innovations added to their already large portfolio of

services. AWS is the safe choice in the market, being the most mature, enterprise-

ready provider with the best capabilities of governing a large number of users and

resources. [22]

On the downside, AWS's large portfolio requires expertise to take into use. It is

easy to get started with AWS but optimal use, such as best practices and cost

management, can be challenging to even expert IT organisations. AWS is also the

cost leader of the market and a reference point for pricing but AWS is not interested

in being the lowest-cost bidder in competitive tendering. AWS's pricing structure is

so complex that a third-party cost management tool is highly recommended. [22]

3.4.2 Microsoft Azure

Microsoft Corporation is the leading developer of personal-computer software sys-

tems and applications. Microsoft also publishes books and multimedia titles, has

a line of hybrid tablet computers and gaming systems, o�ers e-mail services etc.

Microsoft has a global presence in both sales o�ces and research and development

(R&D) sites. [24]

Microsoft also entered the cloud business as a competitor to AWS with the launch

of Microsoft Azure virtual machines (VMs) in June 2012 and general availability in

April 2013. Azure o�ers Hyper-V-virtualised multitenant computing with multite-

nant storage. Their service portfolio is also broadened by numerous IaaS and PaaS

capabilities, such as object storage (Blob storage), Azure Container Service, and a

batch computing service (Azure Batch). Azure marketplace also o�ers third-party

software and services. [22]

Microsoft Azure is divided to two deployment models: classic and resource manager.

They represent di�erent ways of deploying and managing Azure solutions. They have

3.4. Cloud providers 20

di�erent API sets and deployed resources can contain major di�erences. The two

models are incompatible with each other. Originally, classic was the only deployment

model. In this model, all resources exist independently without any possible grouping

of related resources. Azure introduced resource manager model in 2014. It added the

concept of a resource group, which is a container for resources that share a common

lifecycle. This o�ers certain bene�ts, such as the possibility to deploy, manage, and

monitor a set of services as a group instead of handling them all individually. [25]

Some features are not currently supported by the newer resource manager model.

Migration is supported from the classic to the resource manager model.[26]

Just as AWS, Azure has data centres all around the globe, e.g. the U.S., the U.K.,

Korea, and Brazil. Azure also has six data centres dedicated to U.S. federal govern-

ment, two of which are dedicated to the Department of Defence. Microsoft Azure

appeals to both traditional safety and e�ciency oriented IT and agile IT. Traditio-

nal IT customers value the ability to use Azure to extend their Microsoft relations-

hip and investment in Microsoft technologies. Agile companies value Azure's ability

to integrate with Microsoft's development tools and technologies. Agile companies

might also be interested in Microsoft's integrated specialised PaaS capabilities, such

as Azure Machine Learning. [22]

Microsoft Azure's strengths are its large market share, being second only to AWS.

Azure has maintained a high growth rate with the estimated 2016 revenue being

3 billion US dollars. Microsoft continues to add new features to Azure with an

accelerated velocity on top of the already very capable and broad platform. Microsoft

is also adding new innovations instead of primarily copying competitor capabilities.

Microsoft is able to bundle Azure with other of their products and services. Thus

Azure is often chosen as a strategic cloud provider by customers that are already

committed to Microsoft technologies. [22]

As a drawback, Microsoft Azure's service experience is not as enterprise-ready as ex-

pected from a company with such a long history as an enterprise vendor. Microsoft

has issues with technical support, documentation, training, and breadth of the inde-

pendent software vendor (ISV) partner ecosystem. These issues are being addressed

by Microsoft and signi�cant improvements have been made. Microsoft professional

services' implementations have inconsistencies regarding quality. The issues make it

challenging for customers to gain expertise and mitigate risks. As a result, custo-

mers have an increased reluctance to deploy production applications and migrate

data centres to Azure. [22]

Also, while Microsoft keeps improving their capabilities in security, availability, per-

3.4. Cloud providers 21

formance, networking, �exibility, and user management, the functionalities are not

on the level that enterprise customers expect. Determining right implementations is

hard due to Microsoft's multiple generations of solutions which are accompanied by

unclear guidance. DevOps-oriented customers may be disappointed by the lack of

Azure support in some open-source and third-party tools and software. [22]

22

4. UTILISING CLOUD COMPUTING IN

TESTING

Software testing can be done with computing capacity residing in the cloud. An orga-

nisation debating moving software testing to a cloud environment can use SMART-T

method to determine whether the transition is feasible. The SMART-T method is

looked into in Section 4.4.

This chapter looks into how cloud computing can be utilised in software testing.

The potential of the cloud will be studied from the perspective of test automation.

Also the bene�ts and issues of the cloud will be addressed.

4.1 Test automation in the cloud

Software testing in the cloud changes the traditional testing scenario by utilising

a cloud service provider's infrastructure to gain resources in order to reduce test

execution time, increase test execution cycles available, and increase the e�cacy of

testing. The end goal is to improve the quality of the application being tested. [5]

Constructing virtual test environments in the cloud is feasible due to the on-demand

nature of the cloud. [4]

Test automation's bene�ts increase over time when test cases are used repeatedly.

These bene�ts are increased when utilising the cloud due to the larger number of

tests that can be run in cloud infrastructure compared to an on-premise solution.

Thus, the importance of test automation increases when migrating to the cloud. [5]

All levels of testing can be performed using the cloud. If a software product is based

on the cloud, testing it in the cloud can bring the test environment to be identical

or close to the production environment. [27]

Software testing in the cloud can be divided into four patterns [4]:

1. Cloud testing in a private cloud platform. In this situation, software testing

is carried out using a private cloud environment. All software testing is done

4.2. Bene�ts of using the cloud 23

by the software organisation themselves. This is a non-outsourcing model with

strong security.

2. Cloud testing in a public cloud. Software testing is done using a public cloud

environment. The cloud environment can be the same as the company's inter-

nal environment, only moved to the cloud. While implementing the testing, a

private cloud testing platform can be used. This model is also non-outsourcing

and high security.

3. Cloud testing in a private cloud while outsourcing testing to a third party. In

this model, a software organisation may be worried about the safety of source

code. A good cooperation requires that both partners share a good relationship

of trust.

4. Cloud testing is completely outsourced to a third party software testing agency.

The third party testing agencies can use public cloud platforms for the testing.

This model is the main mode of Testing as a Service (TaaS). TaaS means that

testing is viewed as a service which can be completely supplied by a third party.

Cloud computing can supply more than just the infrastructures or software

through the internet but also the related service.

4.2 Bene�ts of using the cloud

Most customers buy cloud capacity in order to gain greater business agility or to

access infrastructure capabilities that are not possible with data centres of their

own. Cloud computing can also o�er signi�cant costs savings when customers have

short-term, seasonal, disaster recovery, or batch-computing needs. Also cloud com-

puting can be a great bene�t for small companies or companies with limited funds

that cannot a�ord investing in an on-premises infrastructure. Additionally, if an or-

ganisation su�ers from non-e�ciency regarding their own infrastructure, moving to

the cloud along with streamlining and automating their operations increases the

likelihood of achieving savings. [22]

The largest-scale cloud providers continue to lower their prices and automated ma-

naged services will substantially lower the cost of infrastructure management over

time. As such, it is expected for cost advantages to continue accruing to the cloud

providers. [22]

Using cloud services is secure enough for most workloads and customers. Most major

cloud computing service providers o�er a high degree of security on their platform.

4.3. Issues and risks of using the cloud 24

Security is not only the service provider's responsibility, a customer also needs to

do their part to have their controls con�gured correctly. [22]

The natural isolation between machines in cloud virtualisation can assure that a

malfunction in one machine will not a�ect the rest of the system. This greatly inc-

reases the robustness of testing. Also dynamically allocating resources is convenient

due to the possibility of having the virtual machine con�gurations adjusted by the

system. [4]

4.3 Issues and risks of using the cloud

Customers do not always save money by using cloud computing. Many customers

start investigating the option to use cloud computing to achieve cost savings, but

in the end, most customers buy cloud computing capabilities for other reasons than

savings. For large enterprises with internal data centres, well-managed virtualised

infrastructure, e�cient IT operations teams, and a high degree of automation, uti-

lising the cloud for steady-state workloads may be more expensive than an internal

private cloud. [22]

Data location is a concern for some customers. Usually customers prefer to have their

data at the same region as their operations are in order to minimise network latency.

However, there are also regulatory concerns which may require keeping data in a

certain country. Additionally, there have been revelations about intelligence agencies

obtaining access to private data, which has increased the desire of non-U.S.-based

companies to purchase cloud services from local non-U.S. providers. However, local

providers usually lack the scale and capabilities of the global providers and thus they

may focus on providing services for small businesses. Furthermore, having the data

stored locally does not guarantee avoiding domestic or foreign surveillance. [22]

4.4 Transition to the cloud

Transition of software testing systems from on-premises to the cloud can be a la-

borious project. The cloud is not always the better option of the two and thus the

decision about migration should be carefully considered in organisations.

To ease the decision making about migrating testing to the cloud, a decision fra-

mework called SMART-T has been introduced. SMART-T consists of three parts:

business drivers, technical factors, and operational results. Each part is dedicated

to answer one of three key questions regarding migrating to the cloud. See Figure

4.1 which shows the detailed steps of SMART-T. [5]

4.4. Transition to the cloud 25

The �rst part of SMART-T is the business drivers section. It answers the question

`why migrate testing to the cloud'. This question can be answered by investigating if

cloud computing would be faster, more economic, or better compared to on-premises

computing. The investigation should lead to an answer whether the migration is

desirable from business point of view. [5]

The second part of the framework is the technical factors section. This part aims to

answer the question `when to migrate testing to the cloud'. Moving testing to the

cloud is not always the best solution and it can be costly and laborious. Not all test

cases are possible to be migrated to the cloud without changes. Some reengineering

may be required to be done on test code, libraries, and dependencies. Also the

cloud environment needs to be taken into account. The desirable characteristics of

a cloud-based environment should be gathered and the availability of such cloud

environments examined. These factors should be considered in order to �nd out if

migration to the cloud is feasible at the moment. [5]

If transitioning to the cloud is seen as feasible in the current situation, then the

last part of SMART-T begins which is the operational results section. It answers

the question `how to migrate testing to the cloud'. The section consists of a trial

migration and if the trial's results are acceptable, an actual migration. The trial mi-

gration consists of three steps: a stakeholder workshop, a pilot study, and evaluating

the initial results of the pilot study. The goal of the workshop is to agree on the

migration project details. Then a pilot study is conducted. The pilot study is meant

to be representative of the actual migration, but with reduced complexity. Once the

pilot has been �nished, its results are evaluated. [5]

If the results of the pilot study are acceptable, the last part of the operational re-

sults section begins, which is the actual migration. It consists of three steps. First,

documenting the migration guidelines and overall process takes place. Then migra-

tion estimates are adjusted based on the pilot study results and a migration plan is

formalised. Lastly, the actual migration is executed according to the migration plan.

[5]

4.4. Transition to the cloud 26

Figure 4.1 SMART-T is a tool to help deciding whether migrating testing to the cloud is
sensible. [5]

27

5. CASES IN A SOFTWARE COMPANY

As a part of this thesis, a migration of software testing from on-premises computing

capacity to the cloud was done for a software company. This chapter discusses what

was done in this case. The next chapter continues on the topic of this case by

evaluating the results.

5.1 M-Files

This section covers the company M-Files in which the case occurred. First the com-

pany itself and its product are discussed. After that a brief look on the current

development and testing practices is done.

5.1.1 Company

M-Files is a Finnish software company that specialises in enterprise information

management solutions. The company's headquarters is located in Hervanta, Tam-

pere, Finland. Other company o�ces are located in the United States, the United

Kingdom, France, Germany, Sweden, and Australia. [28]

M-Files was founded in 1988 and it employs approximately 400 personnel. The

company moved to its current industry of enterprise content management in the

year 2002. The company's revenue was 38.6 million euros in 2016. [29]

5.1.2 Product

The main product of M-Files is an enterprise content management software also

called M-Files. Instead of a traditional folder based system, M-Files organises objects

by their metadata. The important question is what a �le is, not where it is saved.

M-Files can be �exibly deployed either on-premises, in the cloud, or on a hybrid

combination of the two. The cloud solution is called M-Files Cloud Vault and it is

based on Microsoft Azure. [28]

5.1. M-Files 28

M-Files software is used by thousands of customer organisations in over a hundred

countries. Examples of well known Finnish customers are Nokian Renkaat, Patria,

and R-Kioski. [28]

5.1.3 Current development and testing practices

M-Files' research and development department follows a practice of continuous in-

tegration. A continuous integration solution called Teamcity has been selected as

the software that handles the test automation in the company. Teamcity is used to

launch NUnit and web UI tests whenever a new build has been detected. The NUnit

test set is the point of interest in this case. It consists of over 15,000 test cases that

take on average 12.8 hours to run with current on-premises test machines. The test

set performs integration tests on M-Files API.

In addition to test automation, every user story is manually tested by a quality

assurance engineer. The engineer goes through the feature with its developer, de-

signs a set of tests, and performs them. A user story can only be accepted as done

once a quality assurance engineer has completed testing and found issues have been

processed.

Before this migration project, test automation was driven solely in the company's

own server capacity that was hosted on-premises. As time had passed, the existing

on-premises capacity had become insu�cient to meet the demand that test automa-

tion has. Especially during peak times, the existing capacity could become overwor-

ked with numerous builds waiting in queue. This was not an optimal situation from

R&D point of view and thus needed to be solved.

The capacity problem was not possible to be solved by increasing the number of

on-premises servers. This was �rstly due to the fact that there were no more room

for testing server machinery in the current o�ce setup.

A second issue in increasing the on-premises capacity was that it was not viewed as

a sustainable solution because the need for computing capacity is ever increasing.

Even if the current spacing issue was to be solved, the same issue would be faced

in the near future again. A third issue was that purchasing new server equipment is

a large upfront cost and after the initial purchase, the machinery still accumulates

costs due to the maintenance that it requires.

Additionally, it is bene�cial to bring the test environment as close as possible to

production environment. M-Files Cloud Vault is a cloud product so it would be

bene�cial to test it in a cloud environment, namely in Azure.

5.2. Available alternatives and considerations 29

5.2 Available alternatives and considerations

To answer the problems discussed in Section 5.1.3, it was proposed that the additio-

nal computing capacity would be purchased from the cloud. This way there are no

upfront costs and any additional machinery maintenance costs disappear. The only

costs that happen are accumulated by the amount of usage that the cloud meets.

However, in order to gain capacity from the cloud, numerous options needed to be

considered. These options are discussed in this section.

5.2.1 Cloud arrangements

At �rst, the angle on how to utilise the cloud needed to be decided. In Section 4.1,

it is stated that software testing in the cloud can be divided into four patterns. The

patterns can be summarised as follows:

1. Testing in a private cloud platform. Testing is not outsourced.

2. Testing in a public cloud platform. Testing is not outsourced.

3. Testing in a private cloud platform. Testing is outsourced to a third party.

4. Testing is purchased as a service from a third party, which can use public cloud

platforms. This is the main mode of TaaS.

As this project is done in-house, the patterns three and four containing outsourcing

of testing can be disregarded in this case. The already existing testing practices have

been satisfying the need for testing and there was no will to transfer the testing e�ort

or managing the tests to a third party.

The company at the time had no interest in setting up a private cloud. The bene�ts

of a private cloud, such as heightened security and privacy, were not something that

this project requires. A private cloud has a higher cost than a public one and none

of a private cloud's properties were a requirement for the project. Additionally, M-

Files already uses public cloud services provided by Microsoft Azure. Due to this, the

natural direction is pattern two: moving the internal test environment to a public

cloud platform.

The next decision to consider was to choose the provider for the public cloud, the

alternatives being Microsoft Azure, Amazon, or some smaller party. Microsoft Azure

was the choice. This is due to the fact that as was previously stated, M-Files is

5.2. Available alternatives and considerations 30

already a customer of Azure on other company needs. M-Files is a Gold Cloud

Platform Partner for Microsoft [28]. There was no will to start a customership with

another provider, so Azure was a natural choice for test automation as well. M-Files

Cloud Vault product is hosted in Azure, so testing it there would be bene�cial as it

brings test and production environments closer together.

5.2.2 Machine setup in the cloud

Once the course and a platform had been settled on, there was a need to consider how

the the machines should be set up in the cloud. There were two choices determined

for the instance of Azure: Azure Automation or Teamcity Azure Plugin.

Azure Automation

Azure Automation is a service for automating management tasks in the Azure cloud.

It is based on PowerShell Work�ow. The tasks are done by creating what Microsoft

calls runbooks. The runbook automatises cloud management by allowing running

tasks in Azure. [30]

The possible runbook solution for the M-Files project would have been creating a

runbook which starts a suitable number of Azure virtual machines during the early

hours of the day. These machines would use a suitable virtual machine image which

would have everything ready for running the test automation. Once they are ready

they would automatically connect to Teamcity and be ready to be utilised for the

test automation. At the end of the work day, the machines would automatically shut

down once they are no longer utilised.

The runbook solution has both advantages and setbacks. The major advantage is

that it would be made by the project team for their speci�c purpose and thus it

would work predictably for its purpose. We could trust that the machines are there

ready and waiting when the runbook so administers.

The disadvantages for this solution would be that the machines would end up with

idle uptime. This would accumulate costs for nothing else than the purpose of being

immediately usable once a build is ready. If builds end up in the cloud rarely, the

cost of keeping idle machines might be unreasonable.

Another problem is deciding when to shut down the virtual machines after o�ce

hours. You cannot simply shut them down once the o�ce is closed, there might

5.2. Available alternatives and considerations 31

still be test runs ongoing or pending. A possible solution would be to try to get

information from the machine whether it is running a test set. If it reports itself

idle, then move forward to shut the machine down.

In the best case, the runbook solution still ends up with idle time run on the machines

and new machines cannot be started on-demand: there are only as many machines as

are started each morning. The number of machines could be tuned when experience

is gained from running the system to mitigate the problem. However, there still

would be peak times such as a new release coming out. This would mean a temporal

increase in the number of builds that need testing. This would need temporary

manual changes to the system to answer to the surge in demand.

Teamcity plugin

The already used continuous integration software Teamcity has added Azure cloud

support as a feature. This feature enables the possibility for Teamcity to automa-

tically launch test runs in the cloud. The number of machines launched in the cloud

is limited by the Teamcity licence. Adding more machines to the test pool requires a

�xed number of running instance licences to be bought and added to the Teamcity

server.

The Teamcity Azure plugin is divided to two releases: classic plugin and resource ma-

nager plugin [31], [32]. The plugins respectively support the classic and resource ma-

nager deployment models of Azure. Refer to Section 3.4.2 for the di�erence between

the two deployment models. Both plugins allow running Teamcity builds in the cloud

with virtual machines that the plugin automatically launches. The classic plugin is

in feature freeze state but is a more mature product with more options.

There are some di�erences between the features of the two plugin versions. The

classic plugin allows two types of virtual machine deployment. The �rst option is

to use already existing classic Azure virtual machines which Teamcity can start

and stop. As many machines as testing needs have to be prepared for Teamcity.

The machines need to be created individually and then con�gured to be ready to

run tests automatically upon machine startup. The machines, once ready for use,

are then con�gured to the plugin. Once a build enters the Teamcity build queue,

Teamcity will start some machine from the virtual machine pool to run the tests on.

Once the tests have been run and the virtual machine becomes idle, it will either

take the next build from the queue or if the queue is empty, it will be stopped by

Teamcity. The stopped machines are deallocated and thus do not incur any costs

5.2. Available alternatives and considerations 32

while not in use.

The second option for the classic plugin is to create new virtual machines. The

prerequisite is to create the desired target virtual machine and con�gure it to be

ready for Teamcity's usage. Once the virtual machine is ready it will be used to create

a generalised virtual machine image. This image will be saved in .vhd format to

Azure Blob storage. With this image, the Teamcity plugin can automatically create

new virtual machines on-demand and run the tests on them. The new machines will

be copies of the prerequisite virtual machine. Once the test runs are ready and no

further builds are in the queue, the virtual machine will be deleted by Teamcity.

The resource manager plugin used to lack the �rst option to use already existing

virtual machines to start and stop them. The resource manager was only able to

use stored images to create new machines. There is a later added extra option to

stop virtual machines created by the plugin and start them on-demand [33]. This

is meant to emulate the classic plugin's start and stop behaviour. However, it is

not a true a start and stop feature because it can only be utilised with machines

created by the plugin. At the time, the project personnel were not aware of this

largely undocumented, apart from a single Git issue, feature and could not consider

if it would be bene�cial. Although this feature came to knowledge later, it was then

tested and found to be too broken to be suitable for any kind of use. See Section 5.4

for more information about the feature.

In addition to the emulating feature, Teamcity much later added a true feature of

start and stop to the resource manager plugin as the �use existing virtual machine�

option [34]. This is a new feature that was added after the project had been executed.

Refer to the Section 6.4 for a suggestion to try this feature.

Considering Azure Automation and Teamcity

Azure Automation would be a simple solution, but the di�culties regarding auto-

matic utilisation of cloud resources is a major setback. Idle uptime in the cloud is

not an optimal situation. This problem is easily mitigated by Teamcity. Teamcity

has no apparent drawbacks compared to Azure Automation so the decision was to

go forward with Teamcity.

Next, the di�erent Teamcity plugin options had to be considered. Both plugin op-

tions have their pros and cons. The classic plugin is the faster option due to it being

able to start and stop existing virtual machines. Starting existing virtual machines

is much faster that to create new virtual machines each time. The already existing

5.2. Available alternatives and considerations 33

virtual machines are also simple to maintain. An administrator can start a virtual

machine and use remote desktop connection to gain quick access the machine to do

maintenance.

On the downside, with the classic plugin, maintaining multiple virtual machines

does not scale. The administrator has to individually maintain all of the machines

which can be very burdensome if there is a large number of virtual machines used

by Teamcity. Any new machines added to Teamcity's pool also have to be created

individually or the administrator can create one and make copies of it. It is much

more time consuming to add new machines manually than using automation to

create them on-demand. Thus, it is more di�cult to react to increases in testing

demand when machines are created manually.

The issue with the resource manager plugin is that the only option is to always

create new virtual machines based on virtual machine templates. This is a much

slower practice than to start already existing machines. The fact that starting a

machine is slower was obvious and later measurements were made to con�rm the

exact time di�erence it takes between the two options. The Table 5.1 shows these

measurements by comparing the time it takes to start running tests between the

two options.

Table 5.1 Time it takes from a build entering Teamcity queue to tests starting to run.

Step minutes total

Creating a new VM Create VM 7 59
VM startup script 8
Update Teamcity plugin 9
Fetch Git 35

Starting an existing VM Startup 4 43
Update Teamcity plugin 4
Fetch Git 35

As Table 5.1 shows, the resource manager plugin su�ers greatly from having only

the option to create new machines. The �aw is mitigated by the fact that this

happens only for the �rst build that the virtual machine runs. If there are builds in

Teamcity's queue the next build will have none of this delay as everything will be

left ready by the previous build. Only the correct Git branch needs to be updated

to the virtual machine but this is a minor operation taking only a maximum of a

few minutes.

The option to create new machines also has its bene�ts. It enables the administrator

to maintain a huge number of test platforms by only maintaining the template that

5.2. Available alternatives and considerations 34

is used to create all the virtual machines. Maintaining the template requires more

work than updating a single already existing virtual machine but if the number of

virtual machines created from the template is large, the trade-o� will be well worth

it.

The template creation and update procedure is such that at �rst, a new virtual

machine needs to be created. The machine will be con�gured to be ready for being

utilised by Teamcity. Once the virtual machine is ready, it will be generalised and

used to capture a template to Azure Blob storage. Teamcity can then use this

template to generate new virtual machines. The capturing is done with PowerShell.

When the template needs to be updated, a virtual machine instance of the template

needs to be launched. This instance is then maintained as any other virtual machine

would be. Then the updated instance is captured in the same manner as the �rst

time. The newly captured image needs to be updated to Teamcity's con�guration

and it will be ready to use. It is a good practice to run a test build on the new image

to see that it continues to function properly.

There are possibilities to mitigate the slowness of the resource manager plugin. See

the Section 6.4 for some consideration. If the virtual machine creation time can be

shortened, the resource manager plugin is the superior plugin choice as it brings the

best of both worlds. Additionally, the classic plugin is no longer getting any new

features.

A large bene�t the classic plugin has is that for the initial part of the project, it is

much easier to test the cloud machines when they can be made once and kept for

long periods. Testing their functioning with quickly starting and stopping the same

machine for multiple iterations is enormously faster than creating a new VM image

for each time a machine con�guration needs to be tried.

In the end, due to the lack of start and stop feature in the resource manager plugin,

the classic plugin was chosen to be tested at �rst. It was deemed that the slow start

time for testing in the resource manager version was too slow compared to the classic

plugin. Additionally, the initial scale of the project was so small, consisting of two

planned virtual machines, that maintaining them individually was of no concern.

Also, it would be easier to make the initial system with the classic plugin because it

is faster to develop when the machines can be tested without creating new images

for every time something changes. After the initial phase, moving from classic to

resource manager deployment model would be easy, if necessary in the future as

Azure supports migrating from classic to the resource manager model [26].

5.2. Available alternatives and considerations 35

5.2.3 Connecting cloud machines to the company network

Using Teamcity to launch the cloud testing machines had a problem regarding con-

necting Teamcity to Azure. This is due to Teamcity being hosted inside a �rewalled

company network. Two options were determined for solving the connection problem:

either whitelisting the cloud machines' IP addresses in the �rewall or using a virtual

private network (VPN) to ensure access from the cloud.

The �rst option was deemed problematic. First of all, the problem with dynamically

created Azure virtual machines is that they are dynamically assigned an IP address.

This would render whitelisting impossible due to the ever changing IP addresses of

the machines.

It would be possible to use ready-made cloud machines with purchased static IP

addresses but this also would lead to more problems. Firstly, this decision would limit

the possibilities of the project due to being forced to rely on only static handmade

machines and abandoning the option of dynamic machine creation on need basis. A

second issue would be that Teamcity only supports starting and stopping already

existing virtual machines when using classic Azure deployments. This is the old way

of using Azure so it would prevent moving to the new resource manager deployment

model if such would be wanted. A third problem would be that using a static IP

would also require whitelisting this external IP into the company network. This

leads to some security concerns such as can we trust to always be the only ones in

possession of this Azure IP. A bene�t of the IP whitelisting solution would be that

it does not require any external software or con�guration apart from con�gurations

in the �rewall.

The second option of using a VPN seemed to be preferable. A VPN extends the

company network to the cloud machines and as such no IP whitelisting of external

IP addresses is necessary. The VPN also adds a layer of security to the transmissions

between the cloud and on-premises. These points are clear bene�ts over using a static

IP address solution. The downside of a VPN is that it can require an application to

be installed in the machines that participate in the network. This is a minor issue

because the software needs to be installed only once and then it can be left running.

The VPN can also have a harmful e�ect on transmission speeds between the network

nodes. The VPN also accumulates costs varying by the VPN provider.

Due to the numerous issues regarding whitelisting the virtual machines' IP addresses

and the bene�ts of a VPN the latter option was chosen. M-Files IT-department

o�ered Hamachi as the VPN solution. Hamachi is a VPN solution provided by

the LogMeIn company. The service allows users to extend LAN-like networks to

5.2. Available alternatives and considerations 36

Figure 5.1 The planned system setup. Hamachi is acting as the VPN between Teamcity
CI server and the cloud while the CI server relays tra�c between the cloud and the Git
server.

distributed sites on-demand. Hamachi incorporates a 256-bit AES encryption to the

tra�c creating a secure way of communication. [35] Hamachi seemed suitable and

it was chosen to be tested with the project.

M-Files Git server is inaccessible from the cloud and has a very restricted nature.

Due to this, installing Hamachi on the Git server was not an option. Therefore, it

was decided that the Teamcity server was to be con�gured to work as a proxy server

for Git. The proxy server would operate by relaying all Git related tra�c between

the Git-server and machines connected to the VPN. Figure 5.1 depicts the planned

system setup.

5.2.4 Security

The aspect of security also needed to be considered during the project planning

phase. All the major cloud providers have high security standards and have security

audits performed on their services. [22] Microsoft Azure is no exception. Microsoft

has taken extreme measures to provide security for their cloud customers. They have

more than 20 cloud computing related security compliance certi�cates, among them

ISO 27001 and 27018. [36]

Microsoft Azure has been considered secure enough for M-Files usage in other com-

pany matters, including production services aimed towards customers [28]. With so-

me discussion among project stakeholders it was decided that Azure can be trusted

5.2. Available alternatives and considerations 37

with M-Files software testing as well.

Of course, Microsoft alone cannot provide all the security needed. The highest risk

regarding cloud services is not in the cloud, it lies internally within customer compa-

nies. Customer companies need to do their own part in being responsible with their

systems in order to gain the best security. [36] Thus some actions were planned for

the intended cloud virtual machines.

As discussed in Section 5.2.3, a VPN service was decided to be taken into use. It

adds an additional layer of security to the data communications in the system which

occur over the public internet. To bring further security, Teamcity can be con�gured

to send all its tra�c using HTTPS protocol. This will be con�gured into use.

Additionally for networking security, Azure has the option to de�ne endpoints, which

de�ne the rules to permit incoming tra�c to Azure virtual machines. The planned

system would have only two endpoints enabled: one for Hamachi and one for remote

desktop connection, which would be restricted to only company network IP addres-

ses. Virtual machine's own Windows Firewall would also be set to block any other

tra�c apart from the two endpoint using connections.

Another security aspect to consider was the fact of how to protect company source

codes. The used NUnit test set is built in a way that running the tests requires full

M-Files source code to be present. Even though the Azure virtual machines were

already deemed secure, as an extra precaution it was decided that the source code

should only be put into an encrypted drive. The goal was to ensure that no-one else,

including Microsoft, could not access the contents of the drive during use or after

it is released from the use of M-Files. Azure shares its physical resources among

its customers through virtualisation and with this solution data security could be

ensured without trusting anyone else. Microsoft o�ers a disk encryption feature

BitLocker with its Windows products which can be used to perform XTS-AES 128

or 256 encryption on disks [37]. This was deemed a suitable solution.

5.2.5 Azure virtual machine series

Once the cloud provider had been settled on, it was necessary to decide what type

of a virtual machine would be suitable for the task. Microsoft o�ers a wide selection

of di�erent virtual machine setups in their catalogue [38]. The current on-premises

machines have been well up to the task of running the test set so it was decided

that at �rst, the cloud machines should resemble them in terms of performance,

memory, and disk space. Di�erent machine setups could be experimented upon later

5.2. Available alternatives and considerations 38

to determine the best choice once a demo environment has been proved functional.

The experimentation was performed later in the project and the results can be

referred in Table 5.2 in Section 5.4.

Size D2v2 with Windows Server 2016 was chosen for the machine. D2v2 was the

most similar to the machines that currently run the test automation on-premises.

A D2v2 machine is based on a 2.4 GHz Intel Xeon E5-2673 v3 processor and has

two CPU cores, 7.00 GiB of RAM, 100 GiB of temporary hard disk storage, and

costs 0.227 euros per hour [38]. During this phase the D2-5v2 series machines were

on discount which brought the actual cost down to 0.172 euros per hour [39].

The standard virtual machine series in Azure o�ers a permanent OS-disk and a

temporary additional disk. The OS-disk is a slower hard disk drive (HDD) based

option and the temporary disk is a faster solid-state drive (SSD) based option [38].

The temporary drive only retains its data during the time the virtual machine it

is attached to is operating. When a virtual machine is restarted or shut down, the

temporary drive might get erased of data. In order to gain the most of the machines,

the testing task was decided to be done on the faster temporary disk.

5.2.6 Virtual machine startup preparation

In order to achieve encryption and opening the encryption in a fully automated

system where machines start and stop without supervision, automation was required

to perform the encryption task. Also some other tasks were necessary to be done

upon machine startup. The automation was necessary to be designed to work reliably

without any human monitoring. The goal was that when the automation is added

to a VM virtual hard disk template, new machines created from the template will

be completely automatically con�gured and taken into use. In order to achieve its

goal, the automation should do the following:

• Either enable Bitlocker encryption or if already encrypted, unlock the encryp-

tion.

• Set used DNS servers as the company DNS servers. This is necessary to be

incorporated into the script because prede�ned DNS con�guration is lost when

virtual machines are created from a template.

• Check if SQL users that the M-Files NUnit test set requires are present in

the installed SQL server. If users are not present, they need to be created.

This also needs to be in the script because the identity of a virtual machine

5.2. Available alternatives and considerations 39

is di�erent in a machine created from a template compared to the template

machine. Users created in a template machine will not work.

• Git connection check. Teamcity is unreliable when connecting to a Git server

for the �rst time. Teamcity will immediately fail the build being tested if

connection to Git fails on the �rst time, which in experience it does quite

often. This problem can be eliminated by doing a Test-NetConnection to see

if Git is available for connection. If it is not available after a few repeats there

is something wrong and automation should stop.

• Start Teamcity. Teamcity should not be allowed to start automatically during

Windows startup because of the steps that are prerequisites for it to function.

Thus, starting Teamcity should be handled by the automation task instead.

• Set SSH keys that the usage of M-Files Git requires. The keys need to be

placed into the C:\Users folder of the user that runs Teamcity. Because the

user identity is changed after new machines are created from a template, this

needs to be done during startup. Experience showed that C:\Users folder of

the user can take a surprisingly long time to be created by Windows during

initial startup in a fresh Azure machine. This can be mitigated by doing this

step as the very last task in the automation. Otherwise the script will either

fail or additional waiting needs to be introduced to slow the script.

A Microsoft PowerShell script was designed to do the task. The script is automa-

tically run on every machine startup. Figure 5.2 describes the process �ow diagram

of the script.

The script was to be incorporated to every cloud virtual machine for them to run

it during each startup. The script will then fully automatically prepare the machine

to be functional without any needed supervision.

5.2. Available alternatives and considerations 40

Figure 5.2 Process �ow diagram of the cloud virtual machine setup script.

5.3. Project execution 41

5.3 Project execution

Once the planning was done and di�erent options had been considered and decided

upon, the project entered a phase where the plan was to be executed. One virtual

machine was created in Microsoft Azure cloud for testing purposes. The goal was

to test the planned implementation on this machine. Once the machine would have

been deemed ready for actual use, it would have been used as a template to make

two production versions of the machine.

As described in Section 5.2.5, Azure D2v2 tier was chosen for the project. As per

the plan, a D2v2 machine was created to the cloud. Once the virtual machine was

deployed, the current test environment was duplicated there by hand. This was due

to the fact that the on-premises testing machines were based on Windows Server

2008 R2 and Windows Server 2012. Copying them to the cloud was not productive.

A Windows Server 2016 test machine was missing from the available on-premises test

machines so creating one to the cloud was a good opportunity to add this platform

to the test grid.

In addition to the duplicated test environment resources, such as a installation of

Microsoft SQL server, Hamachi was installed on the machine. A Hamachi network

was created and its client was installed to both the Teamcity server machine and to

the Azure virtual machine. Also the startup script introduced in Section 5.2.6 was

set to launch during each time a machine is started.

In practice Hamachi was found to be problematic. It has two working modes: relayed

and direct. Direct is the fast and preferred option. As is suggested by its name, in

the direct mode, the network tra�c is sent directly between the VPN nodes. The

other option, relayed, is used when direct mode is not possible. This may be caused

e.g. by a �rewall blocking direct communication between the nodes. The relayed

mode redirects the VPN tra�c through a relay server provided by Hamachi. [35]

This is a much slower option than direct would be. Our network was discovered to be

stuck in the relayed mode, causing the average transmission speed between a cloud

virtual machine and Teamcity server to be a measured 734 kbit/s (0.09175 MB/s)

in on-premises to cloud direction. This rendered the virtual machine useless due to

the extreme time taken to update its Teamcity plugins and fetch source codes from

Git. It would have required several days to start a test run.

There were attempts to resolve what was causing the VPN to remain in relayed

mode. Nothing was discovered and colleagues more experienced with Hamachi stated

that it often has this kind of issues with little ways to �x it. There were also additional

issues discovered in Hamachi. Hamachi requires a VPN application installed on

5.3. Project execution 42

all network nodes. In theory, this should not be a problem but practice proved

otherwise. The application consumes large quantities of memory over time. This is

not a problem for the short lived cloud machines but the always online Teamcity

server started running out of memory after every week of uptime. This lead to

a situation where the Hamachi process had to be killed and restarted weekly to

prevent the server from running out of memory. It was also discovered that opposite

to what was expected, the Hamachi application needs a speci�c installation package

for each network node. This means that two virtual machines created from the

same .vhd template cannot both connect to the VPN at the same time, otherwise

if tried, one of the two nodes gets removed from the network. This forced to create

a single template for each machine and prevented making multiple machines from

one template. This drastically reduced the intended �exibility of the system.

While trying to �nd a solution to enable the Hamachi direct mode, also a search for

other options was started with the intent of moving to some other VPN solution.

Some colleagues recommended Azure Site-to-Site VPN as a solution that has been

a positive experience in the past. Site-to-Site was deemed a suitable replacement. It

is native to Azure and no VPN clients would be needed on any machines. Instead,

Site-to-Site is separately con�gured to Azure by creating and con�guring necessary

VPN resources. The company end of the VPN needs to be con�gured into their

�rewall. The �rewall product that M-Files uses was among the solutions supported

by Azure for Site-to-Site. Site-to-Site seemed a suitable replacement for Hamachi

and the initiative was taken further. The matter was discussed with company IT-

department which agreed that Azure Site-to-Site was a desirable solution to the

problem. The IT-department made the arrangements and con�gured both the Azure

end and the company end to work with Site-to-Site. The Site-to-Site also provided

direct access from Azure to the company Git server, which allowed scrapping the

previous proxy server setup where the Teamcity server acted between the cloud and

Git. This was a welcome simpli�cation to the system.

A new virtual machine that has Site-to-Site enabled was created to test the new

solution. Site-to-Site was an immediate success and Hamachi was scrapped. Site-

to-Site achieved the measured average speed of 13.27 MB/s between the Teamcity

server and a cloud machine in on-premises to cloud direction. After the network

had been tested as functional, all software and con�gurations needed to run NUnit

were installed in the virtual machine in order to try running the NUnit test set.

The �rst results were encouraging: the VPN worked well and NUnit ran with only

minor cloud related failures. These failures were addressed in the test cases to make

them more robust in a cloud environment. The result was that now test runs were

executed with the same pass rate in both on-premises and the cloud.

5.4. Fine tuning and moving to resource manager deployment model 43

5.4 Fine tuning and moving to resource manager deployment

model

With the Site-to-Site change the Azure deployment was also changed to resource

manager deployment model. This decision was made to avoid needing to con�gure

the Site-to-Site again in the future if the classic deployment model is deprecated at

some point.

Resource manager model required a change in the virtual machine philosophy as the

start-stop feature supported by the classic Teamcity plugin was dropped by the new

resource manager plugin. Instead, in the newer plugin the goal is to automatically

create new virtual machines in Azure based on virtual machine templates. In regards

to this, Azure works as such that a virtual machine is needed to be created in the

subscription and then the virtual machine is to be generalised and created to a .vhd

template. The original virtual machine is practically destroyed in the process but

now new virtual machines can be created using the template. The resulting machines

are perfect copies of the original machine used for the template.

Table 5.2 Azure virtual machine tiers, measured average time to run M-Files NUnit and
operational costs by the hour and for a single test run.

VM tier NUnit duration e/h Test run cost (e) Notes

A3 1640 min (27.3 h) 0.274 7.48 very low-speed
D2v2 556 min (9.3 h) 0.227 2.11 low cost
D2v2 promotion 556 min (9.3 h) 0.172 1.60 discounted price
D4v3 660 min (11.0 h) 0.358 3.94 low-speed
F4 662 min (11.0 h) 0.347 3.82 low-speed
H8 474 min (7.9 h) 1.439 11.37 fast and expensive

In order to learn which would be most cost e�ective, a set of di�erent Azure virtual

machines that would be suitable for this project's purpose were set up for testing.

Each machine was tested for three times to measure the average time it takes to run

the NUnit test set. Table 5.2 presents the measured average operational times and

costs of the di�erent system setups. Costs were derived from the Azure pricing page

[38]. D2v2 virtual machine size has been discounted until further notice by Microsoft

[39]. The discount has lasted the whole duration of the project so it was included

in the table. As the table shows, the D2v2 machine is the most inexpensive of the

tested options. It is also reasonably fast in running M-Files NUnit test set, being

only second to the fastest H8 machine. H8 is highly costly in comparison but the run

times with H8 are 14.7% faster than the second fastest D2v2. In the purpose of this

project, the D2v2 machine was considered as the optimal middle ground between

5.4. Fine tuning and moving to resource manager deployment model 44

costs and performance. The test automation machines were left con�gured at D2v2

choice which was the machine tier that was selected at �rst during project planning.

To ensure a more diverse testing environment, two template virtual machines were

prepared, one with Windows Server 2016 and SQL server 2008 and other with the

same Windows and SQL server 2016. Other relevant versions are already addressed

by the on-premises test machines. The two machines were converted into virtual

machine templates and were set to be the basis for one virtual machine per template

so a total of two VMs was able to be created when needed. The system was limited

to two Azure virtual machines in addition to the two on-premises machines at a

time due to the installed Teamcity licenses that were limiting the machine number

to four. The two licenses for cloud machines had been determined to be enough for

the then current testing demand and more could be rapidly added if necessary.

The Teamcity resource manager plugin had after its release gained a feature that

adds the possibility to automatically stop virtual machines created by it and later

start them on-demand instead of always deleting created machines when they go idle

and then creating new ones. This feature emulates the classic plugin start and stop

behaviour but it still requires a VM image for an initial automatic VM creation. A

hand-made VM cannot be utilised by this feature, the plugin needs to create the

VM by itself. After the resource manager plugin was taken into use, this feature was

decided to be tested.

Unfortunately, the preservation of VMs functionality was found to be too broken for

usage. Teamcity would randomly create new virtual machines instead of starting the

stopped ones. This would result in an ever increasing number of virtual machines

accumulating in the Azure subscription which adds unwanted clutter and in the end

might �ll the subscription limit for the allowed virtual machine count. As a result,

using this option would need regular check-ups and clearing the accumulated virtual

machines.

In addition to the previous issue with the resource manager plugin feature that

preserves virtual machines, the plugin had problems with stopping the virtual mac-

hines. From time to time, the plugin would only stop the virtual machines but not

deallocate them. This is not acceptable due to stopped but allocated machines still

incurring same costs as a running virtual machine. As a result with these issues, the

resource manager plugin's option to preserve virtual machines was discarded as use-

less for our purposes for the time being. The initial thought of creating and deleting

VMs according to demand was far superior.

The cloud deployment has since been successfully left running automatically. When-

5.5. Considering the project in regard to SMART-T 45

ever the on-premises testing capacity is unable to answer to the demand, a cloud

machine is created to remedy the situation.

Afterwards M-Files' R&D changed the test automation procedure so that all de-

veloper made builds are tested by test automation. Previously, only stable branch

was tested for every build. This caused a large surge in demand for test automation

capacity and new Teamcity licenses were added. Now the test automation grid in

regards of NUnit consists of two on-premises machines and 12 licenses available for

cloud machines. The same two template virtual machines are used for all of them,

a maximum of six machines per template.

The cloud utilisation can now be seen as an integral part of the M-Files testing

system. In a 30 day follow up period, a total of 90% of stable builds were tested

using cloud machines.

5.5 Considering the project in regard to SMART-T

SMART-T, which was discussed in Section 4.4, was utilised as the work�ow that

guides the project. Business drivers for the project were obvious: testing would

be faster if builds do not need to queue for a free test machine. Additionally, the

testing would be better because M-Files is also a cloud product but had not been

automatically tested on a cloud platform. The testing platform would be more close

to production platforms. The testing could also be argued to be cheaper in the cloud

due to no upfront machinery and real estate costs which would be considerable if

on-premises capacity was to be increased. As a result, transitioning to the cloud was

deemed desirable.

For technical factors, duplicating the current test automation setup on a cloud plat-

form was deemed not a problem. The application and the testing to be done are

suitable for a cloud environment so the transition to the cloud was seen as feasible.

A trial migration was initiated. Stakeholders discussed on how to execute the task

and the framework for a pilot study was agreed upon. Pilot study's encouraging

results can be seen in Section 5.4. The pilot had acceptable results and testing

started to have a major tilt towards the cloud, resulting in 90% of the builds being

tested on a cloud machine. This should be considered as the actual migration as

the goal never was to have 100% share for cloud testing. Documentation concerning

the project was created and from SMART-T point of view the migration can be

considered as completed.

5.6. Manual testing using the cloud 46

5.6 Manual testing using the cloud

During the project, in addition to test automation, also manual testing started to

further utilise cloud computing. M-Files quality assurance team had previously had

shared cloud platforms that hosted M-Files Cloud Vaults. Testers could con�gure a

client connection to these vaults and so do manual testing with a cloud-based back

end. The shared cloud platform was a good solution because all testing was done in

a shared build to which all user story changes were merged. All user stories needed

to have at least some testing with a cloud platform but the emphasis was with the

on-premises installation of the product.

Testing procedure changed during the project and all user stories were to be tested

in their own user story code branches. This made sharing the cloud vaults di�cult

and thus all testers were instructed to create a cloud platform of their own. This was

accompanied with further encouragement to test user story features with a larger

emphasis on the cloud than before. This has transferred the quality assurance team's

manual testing e�ort to have a much heavier tilt towards cloud utilisation.

This works well with the notion of Section 2.5 that test automation only comple-

ments manual testing e�orts performed by human testers. As a result, both manual

and automatic tests are now utilising the cloud at a considerable emphasis.

47

6. EVALUATION AND FUTURE

DEVELOPMENT

In this chapter, the case study of M-Files is evaluated for its results. The bene�ts

and issues regarding the solution are discussed and a cost analysis is provided. Also

possibilities are provided on how to further develop the system.

6.1 Bene�ts

The project has allowed a large increase in concurrent test sets that can be run

without any delay. Up to 90% of builds have been run using the new cloud setup.

The number of builds that are tested has increased considerably during the project

and the number of builds that are tested in the cloud would be unsustainable to be

tested on-premises. All of this is achieved with a low cost, see Section 6.3 for a cost

analysis.

The project has also lowered the time it takes to do a test run from 12.8 to 9.3

hours with the selected D2v2 machines compared to the on-premises machines. This

means a 27% decrease in test set completion time. This is a major improvement in

performance and a large bene�t provided by transitioning to the cloud.

An additional bene�t comes from that now M-Files software is regularly automa-

tically tested in the cloud. M-Files Cloud Vault is an Azure based product. Thus

it is desirable and bene�cial to bring the test platform as close as possible to the

production platform.

6.2 Issues

The largest issue the project has is a slow startup time of virtual machines and

slowness in initiating the �rst test run on each machine. As can be seen in Table

5.1, it takes 59 minutes to start test execution on a freshly created virtual machine.

The biggest part of the problem is the large Git repository which is required to be

6.3. Cost analysis 48

downloaded before tests can be started. It takes 35 minutes to download. The issue

concerns only the �rst test run that is done on a virtual machine because fetching

new Git branches takes only seconds and at most few minutes once the repository is

present in the machine. Section 6.4 gives some thoughts about how this issue could

be mitigated in the future.

A more general issue regarding the project is the increased maintenance the test

automation requires. This is a natural cause of bringing more environments to the

test system to be maintained. The issue is minimal as automation independently

takes care of the machines. Windows updates and changes in the test environment

are the only instances of required manual maintenance.

Another issue is the costs that the system keeps accumulating for as long as it is in

use. This is also a minor issue due to the fact that the costs are very reasonable.

Further cost analysis is available in the following Section 6.3.

6.3 Cost analysis

The project has three direct sources of costs: Azure virtual machines, networking

costs, and Teamcity licenses. The virtual machine hourly cost per machine is 0.172

euros for the chosen D2v2 machine type [38]. Uptime of the virtual machines is

unpredictable due to di�ering amounts of testing required at di�erent times. Howe-

ver, after a 30 day follow up period with four cloud machines in use, it can be seen

that they were actively testing for a total of 750.96 hours. This comes to a total

cost of 129.17 euros. There is some minor overhead that should be added to this

because each machine is con�gured to wait for 30 minutes for new builds to test

before shutting down.

Networking costs are generated by the usage of the Azure Site-to-Site VPN. The

costs consist of a basic type gateway and IP address lease. A basic type gateway

costs an hourly 0.04 euros which comes to 28.8 euros for a 30 day period [40]. The

gateway is always enabled, so it accumulates the full cost. Dynamic IP addresses,

which the machines use, cost an hourly 0.0034 euros [41]. A 30 day lease for an IP

would then cost 2.4 euros. Static IP addresses are more costly and unnecessary in

this implementation. With 750.96 hours of testing during 30 days, the IP address

lease comes to 2.55 euros. Thus the total cost of the VPN is the combination of

gateway and IP costs which is 31.35 euros.

One Teamcity license costs 299 euros [42]. M-Files currently has 12 licenses available,

which brings the total license cost to 3,588 euros. Because this cost is paid upfront

6.4. Future development possibilities 49

unlike the Azure costs which are charged based on usage, this cost is the most major

part of the project expenses.

In addition to the initial license cost, Teamcity has a yearly upkeep cost of 149 euros

per license. The upkeep includes support and Teamcity upgrades. The upkeep is not

a requirement for using Teamcity. The current version remains functional even if the

subscription expires. The upkeep needs to be paid if either support or upgrades are

necessary. The initial license purchase comes with one year of subscription. [42] No

upkeep licenses have been bought during the project because the initial subscription

year of the licenses has covered the duration of the project.

Table 6.1 Project costs

Expense Upfront cost (e) Hourly cost (e/h) 30 day operational cost (e)
Azure VMs - 0.172 approximately 129.17
VPN Gateway - 0.04 28.8
IP Addresses - 0.0034 2.55
Teamcity licenses 3,588 - -

TOTAL 3,588 - 160.52

The project costs, both the upfront and the accumulating operational costs, are

miniscule for a company of the size of M-Files. The costs are gathered in Table 6.1.

Obviously, the costs are something that needs to be followed as time passes but as

of now they are acceptable.

6.4 Future development possibilities

This section covers what future development options have been considered for the

project. The options mostly try to improve testing performance. Also Azure Service

Fabric is looked into.

6.4.1 Premium disks

The current setup uses standard HDD disks for the OS disk of the virtual machines

and an SSD temporary disk for the Teamcity's work directory. The disks are the

default options for Azure virtual machines of this price tier. The SSD disk is a

temporary drive that is included in all Azure virtual machines. All data on the

temporary drive will be lost upon virtual machine shutdown. [43] Due to this, the

SQL database used in the tests is installed on the slow OS disk. It could be tested if

using a more expensive premium SSD disk for the OS disk would improve the time it

6.4. Future development possibilities 50

takes to run the test sets. In addition to the OS, the SQL database used in the tests

could perform better with a faster disk. Compared to the OS, especially the database

has potential of improving the overall performance of the test set completion.

The possible improvement is very hard to estimate beforehand. The easiest option

would be to create a test virtual machine and run some test sets in it as a trial.

6.4.2 Permanent disk

Azure has the option of creating additional permanent disks that can be attached to

virtual machines. The disks can also be detached from virtual machines with ease.

The disks can be either premium SSD-based models or standard HDD-based disks.

[44] Using this kind of disk for Teamcity's work directory instead of the default

temporary disk would greatly reduce the startup time of tests. This is due to the

fact that these disks would no longer be formatted upon virtual machine shutdown.

This practice would eliminate the need to fetch the whole repository upon machine

startup or creation.

Another possible bene�t gained from permanent disks would be that the Microsoft

SQL Server used in testing could have its database storage placed on a disk of its

own or to the same disk with Teamcity's work directory. Microsoft recommends

avoiding OS or temporary disks with SQL Server database storage or logging [45].

This practice could bring an improvement to performance.

There are two downsides to this setup. First of all the permanent disks generate

additional costs for the system. A 128Gb disk su�cient for usage would cost 18.29

euros a month for an SSD-based disk and 4.97 euros a month for an HDD-based disk

for each disk [46]. The costs are arguably very moderate. It would be necessary to

measure the test run time di�erence between SSD and HDD solution to determine

which should be used.

The second problem regarding the setup is attaching the disk to a virtual machine.

In the case of an already existing virtual machine this is not a problem but in the

case of an automatically created virtual machine it is not obvious how to do the

attaching. It was considered if attaching the disk could be automatically done with

PowerShell during machine startup sequence. This would require a �nite number of

disks prepared for the machines that would be attached based upon their availability.

This could probably be done but the required e�ort does raise concerns if it is not

worth the workload.

It is also unknown what kind of impact a permanent disk would have on performance.

6.4. Future development possibilities 51

There is a risk that moving from the temporary disk to a permanent disk, both

standard and premium models, might make the NUnit test set slower to �nish. This

is due to Microsoft stating that a temporary disk might have a higher performance

rate than persistent storage such as permanent disks. [43]

6.4.3 Azure Blob storage repository cache

Azure Blob storages enable storing any type of text or binary data in the cloud. It

is a service for storing large amounts of unstructured data that can be accessed via

HTTP or HTTPS. One common usage of Blob storage is to store �les for distributed

access. [47]

Utilising a Blob storage to cache the Git repository used for testing could be a way

to remedy the long startup time that the virtual machines are su�ering from. This

could be achieved by creating a small low-cost virtual machine to Azure with the

sole purpose of fetching the latest commits from Git and placing them to the Blob

storage. This could be done, for example, as a daily automated task.

Once the repository contents are cached in the Azure Blob storage, they would

be readily accessible by the test agent virtual machines. If a requested version is

missing from the cache, it would be prompted by the requesting virtual machine

to get it. With this system, the virtual machines would get the repository from

the cache instead of the actual Git server. This has the potential to improve the

long time it takes to fetch the repository during the virtual machine setup. The

improvement depends on Azure infrastructure to be faster in the transfer than the

Site-to-Site VPN that is now used as the transmit medium. The actual e�ectivity of

this solution is unknown until it is tested in the project as information to evaluate

the e�ect beforehand is unavailable. Azure does not state how fast a transmission

in the same region between a Blob storage and a virtual machine would be.

The cache master virtual machine could run a script or a small application that

handles the upkeep of the Blob cache. On the test automation virtual machines, the

required implementation could be included in the startup PowerShell script.

Alternatively, the cache virtual machine could act as a Git server by itself. It would

regularly get the latest changes from the main Git server. The agent virtual machines

would then use the cache virtual machine like the main Git server. This might be the

superior option, but it cannot be said for certain as the di�erence in transfer speed

between virtual machine to virtual machine and Blob storage to virtual machine is

unknown.

6.4. Future development possibilities 52

6.4.4 Return to using already existing virtual machines

In December 2017, Jetbrains added the option to start and stop already existing

virtual machines to the resource manager version of the Teamcity plugin. The feature

became part of their February 2018 release of the plugin. [34]

It should be tested if this feature could be successfully used in this project. It might

be bene�cial to have, e.g., two always ready virtual machines that the plugin can

start when necessary. Any possible over�ow could be handled by the automatically

created new virtual machines. This kind of setup would reduce the time it takes for

new test requests to proceed.

The already existing virtual machine solution still su�ers from using the temporary

disk for the Teamcity work directory because once the machine is stopped the disk

will be formatted. Thus this feature could also be combined with the permanent disk

possibility described in Section 6.4.2. With a permanent premium disk attached, the

stopped virtual machine would be ready to almost immediately start testing once

turned on because the working directory would be preserved on the premium disk.

6.4.5 Azure Service Fabric

Azure Service Fabric is an application platform that helps deploying microservice

and Docker container based applications in Azure cloud, on-premises, or in other

cloud provider's cloud [48]. M-Files Cloud Vault is moving from virtual machines

hosted in Azure Cloud Services to Azure Service Fabric. M-Files server will be hosted

in a container accompanied by numerous microservices.

Testing should take this into account and make plans to move test automation to

a similar environment. To ease this, it should be investigated if the current virtual

machines could be converted into Docker containers to provide a straightforward

transition. Docker o�ers a tool called Image2Docker which takes virtual hard disk

images and suggests a Docker�le based on the image [49].

53

7. CONCLUSIONS

The goal of this thesis was to �nd how cloud computing could be used for software

testing. It also had the goal of taking the gathered information into use and start

utilising cloud computing in the software testing that the case company does. The

literature review conducted in this study demonstrated that cloud computing is a

suitable platform for test automation that can be utilised in many ways. Software

testing in the cloud was found to have many bene�ts, such as potentially signi-

�cant cost savings. The cloud was also found to have issues, such as data location

regulations restricting its use.

After the literature review, a case study of migrating software testing to the cloud

was done. The test automation done in M-Files was studied and the means to migrate

the testing to the cloud was identi�ed. The identi�ed course was to use Teamcity to

launch virtual machines in Microsoft Azure and run the already existing NUnit test

set there. A migration of the test automation to the cloud was successfully executed

with minor changes to the original plan.

As a result of the migration project, up to 90% of tests have been run using the

new cloud setup. The time it takes for test automation to complete was cut by

27% from 12.8 to 9.3 hours with the selected cloud machines compared to the on-

premises machines. Despite the high utilisation rate of the new system, the cost of

the migration remained low. The migration project accumulated an upfront cost of

3,588 euros. In addition to the initial cost, during a 30 day follow up period, an

operational cost of 160.52 euros was accumulated.

After the cloud migration project was done, test automation in the cloud became an

integral part of testing in M-Files' R&D department. The amount of testing that is

done in the cloud would be unsustainable to be done on-premises. An additional be-

ne�t comes from that after the project was completed, M-Files software is regularly

automatically tested in the cloud. M-Files Cloud Vault is an Azure based product.

Thus it is bene�cial that the test platform is as close as possible to the production

platform. It can be concluded that the goals of the thesis were met.

54

BIBLIOGRAPHY

[1] L. Columbus, Roundup Of Cloud Computing Forecasts,

Forbes, 2017. Referenced on 14th April 2018. Available:

https://www.forbes.com/sites/louiscolumbus/2017/04/29/

roundup-of-cloud-computing-forecasts-2017/#5b7d6d8c31e8

[2] ISO/IEEE/IEC, SO/IEC/IEEE 29119-1: Software systems engineering �

software testing � part 1, 2013.

[3] B. Agarwal, S. Tayal, M. Gupta, Software engineering and testing, Jones and

Bartlett publishers, LLC, 2010.

[4] S. Liu, J. Tang, J. Chen, S. Duan, L. Li, Q. Kuang, M. Cai, D. Hu, Virtual

Software Testing Service Based on Cloud Computing, Applied Mechanics and

Materials, Vol. 529, pp 739-742, 2014.

[5] S. Tilley, T. Parveen, Software Testing in the Cloud, Springer Berlin Heidelberg,

2012.

[6] R. Patton, Software Testing, Sams Publishing, 2000.

[7] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M.

Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Je�ries, J. Kern, B. Marick,

R.C. Martin, S. Mellor, K. Schwaber, J. Sutherland, D. Thomas, Manifesto for

Agile Software Development, 2001. Referenced on 28th August 2017. Available:

http://agilemanifesto.org/.

[8] D. Scott, T. Murphy, N. Wilson, Key Bene�ts of Continuous Integration and

Delivery Combined With Cloud Computing, Gartner, 2016.

[9] M. Fowler, Continuous Integration, 2006. Referenced on 28th Au-

gust 2017. Available: http://www.martinfowler.com/articles/

continuousIntegration.html.

[10] L. Chen, Continuous Delivery: Huge Bene�ts, but Challenges Too, IEEE

Software, 32(2015)2, pp. 50-54.

[11] L. Crispin, J. Gregory, Agile Testing: A Practical Guide for Testers and Agile

Teams, Pearson Education, 2009.

[12] S. Ashman, Layers of Test Automation, QA Matters, 28th December 2014.

Available: http://qa-matters.com/

https://www.forbes.com/sites/louiscolumbus/2017/04/29/roundup-of-cloud-computing-forecasts-2017/#5b7d6d8c31e8
https://www.forbes.com/sites/louiscolumbus/2017/04/29/roundup-of-cloud-computing-forecasts-2017/#5b7d6d8c31e8
http://agilemanifesto.org/
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://qa-matters.com/

55

[13] NUnit, the website of NUnit. Referenced on 4th March 2018. Available: http:

//nunit.org/

[14] Unit Testing in .NET Core and .NET Standard, .NET Core Guide, Micro-

soft. Referenced on 4th March 2018. Available: https://docs.microsoft.com/

en-us/dotnet/core/testing/

[15] J. Harty, Finding Usability bugs with Automated Tests, Acmqueue, 9(2011)1.

Referenced on 26th February 2018. Available: http://queue.acm.org/detail.

cfm?id=1925091

[16] S. Berner, R. Weber, R. Keller, Observations and Lessons Learned from Auto-

mated Testing, Proceedings of International Conference on Software Enginee-

ring, 2005, pp. 571-579.

[17] J. Itkonen, M. Mäntylä, C. Lassenius, How do testers do it? An exploratory

study on manual testing practices, Third International Symposium on Empirical

Software Engineering and Measurement, IEEE, 2009.

[18] P. Mell, T. Grance, The NIST De�nition of Cloud Computing, US National Ins-

titute of Standards and Technology (NIST), 2011. Available: http://nvlpubs.

nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

[19] S. Bhardwaj, L. Jain, S. Jain, Cloud Computing: a Study of Infrastructure

As a Service (IAAS), International Journal of Engineering and Information

Technology, 2(2010)1, pp. 60-63.

[20] T. Dillon, C. Wu, E. Chang, Cloud Computing: Issues and Challenges, 24th

IEEE International Conference on Advanced Information Networking and

Applications, IEEE, 2010.

[21] J. Hamilton, Presentation at 2nd Large-Scale Distributed Systems and Midd-

leware (LADIS. Inf. Serv.) Workshop, 15th to 17th September 2008, White

Plains, NY.

[22] L. Leong, R. Bala, C. Lowery, D. Smith, Magic Quadrant for Cloud In-

frastructure as a Service, Worldwide, Gartner, 15th June 2017. Available:

https://www.gartner.com/doc/reprints?id=1-2G45TQU&ct=150519&st=sb

[23] A. Fox, Cloud Computing � What's in It for Me as a Scientist?, Science,

331(2011)6016, pp. 406-407. Referenced on 14th January 2018. Available: http:

//science.sciencemag.org/content/331/6016/406

http://nunit.org/
http://nunit.org/
https://docs.microsoft.com/en-us/dotnet/core/testing/
https://docs.microsoft.com/en-us/dotnet/core/testing/
http://queue.acm.org/detail.cfm?id=1925091
http://queue.acm.org/detail.cfm?id=1925091
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://www.gartner.com/doc/reprints?id=1-2G45TQU&ct=150519&st=sb
http://science.sciencemag.org/content/331/6016/406
http://science.sciencemag.org/content/331/6016/406

56

[24] M. Hall, G. Zachary, Microsoft Corporation, Encyclopedia Britannica. Re-

ferenced on 23rd February 2018. Available: https://www.britannica.com/

topic/Microsoft-Corporation

[25] T. Fitzmacken, R. Squillace, K. Crider, Azure Resource Manager

vs. classic deployment: Understand deployment models and the sta-

te of your resources, Microsoft, 15th November 2017. Available:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/

resource-manager-deployment-model

[26] K. Singh, C. Nottingham, Charwen, Platform-supported migration

of IaaS resources from classic to Azure Resource Manager, Micro-

soft, 10th October 2017. Referenced on 12th February 2018. Available:

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/

migration-classic-resource-manager-overview

[27] G. Iyer, Cloud Testing: An Overview, Encyclopedia of Cloud Computing, John

Wiley & Sons, 2016.

[28] M-Files, the website of M-Files Oy. Referenced on 24th July 2017. Available:

http://www.m-files.com/

[29] P. Pietarila, Se oikea löytyi sadan sijoittajan joukosta, Kaup-

palehti. Available: http://www.kauppalehti.fi/uutiset/

se-oikea-loytyi-sadan-sijoittajan-joukosta/xASJuduQ/

[30] Getting Started With Azure Automation � Runbook Management, Azure blog,

Microsoft. Referenced on 22nd November 2017. Available: https://azure.

microsoft.com/en-us/blog/azure-automation-runbook-management/

[31] M. Balliauw, Introducing TeamCity Azure plugin � Run builds

in the cloud, Teamcity blog, Jetbrains, 3rd November 2014.

Available: https://blog.jetbrains.com/teamcity/2014/11/

introducing-teamcity-azure-plugin-run-builds-in-the-cloud/

[32] D. Tretyakov, TeamCity brings Azure Resource Manager support, Teamcity

blog, Jetbrains, 25th April 2016. Available: https://blog.jetbrains.com/

teamcity/2016/04/teamcity-azure-resource-manager/

[33] Reuse allocated vms in clone behaviour, Jetbrains Teamcity Azure plugin

repository, GitHub. Referenced on 11th February 2018. Available: https:

//github.com/JetBrains/teamcity-azure-plugin/issues/34

https://www.britannica.com/topic/Microsoft-Corporation
https://www.britannica.com/topic/Microsoft-Corporation
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-deployment-model
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-deployment-model
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/migration-classic-resource-manager-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/migration-classic-resource-manager-overview
http://www.m-files.com/
http://www.kauppalehti.fi/uutiset/se-oikea-loytyi-sadan-sijoittajan-joukosta/xASJuduQ/
http://www.kauppalehti.fi/uutiset/se-oikea-loytyi-sadan-sijoittajan-joukosta/xASJuduQ/
https://azure.microsoft.com/en-us/blog/azure-automation-runbook-management/
https://azure.microsoft.com/en-us/blog/azure-automation-runbook-management/
https://blog.jetbrains.com/teamcity/2014/11/introducing-teamcity-azure-plugin-run-builds-in-the-cloud/
https://blog.jetbrains.com/teamcity/2014/11/introducing-teamcity-azure-plugin-run-builds-in-the-cloud/
https://blog.jetbrains.com/teamcity/2016/04/teamcity-azure-resource-manager/
https://blog.jetbrains.com/teamcity/2016/04/teamcity-azure-resource-manager/
https://github.com/JetBrains/teamcity-azure-plugin/issues/34
https://github.com/JetBrains/teamcity-azure-plugin/issues/34

57

[34] Start/stop with resource manager, Jetbrains Teamcity Azure plugin repository,

GitHub. Referenced on 11th February 2018. Available: https://github.com/

JetBrains/teamcity-azure-plugin/issues/37

[35] Hamachi, the website of Hamachi. Referenced on 14th April 2018. Available:

https://www.vpn.net/

[36] H. Haldane, Microsoft Azure Security, SaaSplaza Microsoft Cloud Solutions,

2015. Referenced on 14th April 2018. Available: http://www.saasplaza.com/

blog/microsoft-azure-security

[37] B. Lich, J. Hall, BitLocker, Microsoft, 2017. Referenced on 12th April

2018. Available: https://docs.microsoft.com/en-us/windows/security/

information-protection/bitlocker/bitlocker-overview

[38] Virtual Machine Pricing, Microsoft. Referenced on 9th October 2017.

Available: https://azure.microsoft.com/en-us/pricing/details/

virtual-machines/

[39] Price reductions on L Series and announcing next generation Hyper-

threaded virtual machines, Azure blog, Microsoft, 3rd April 2017. Refe-

renced on 9th October 2017. https://azure.microsoft.com/en-us/blog/

price-reductions-on-l-series-and-announcing-next-generation

-hyper-threaded-virtual-machines/

[40] VPN Gateway pricing, Microsoft. Referenced on 15th April 2018. Available:

https://azure.microsoft.com/en-us/pricing/details/vpn-gateway/

[41] IP Addresses pricing, Microsoft. Referenced on 15th April 2018. Available:

https://azure.microsoft.com/en-us/pricing/details/ip-addresses/

[42] Teamcity, the website of Jetbrains. Referenced on 30th March 2017. Available:

https://www.jetbrains.com/teamcity/

[43] M. Pradeep, Understanding the temporary drive on Windows Azure Virtual

Machines, Azure Support Team Blog, Microsoft, 6th December 2013. Refe-

renced on 19th February 2018. Available: https://blogs.msdn.microsoft.

com/mast/2013/12/06/understanding-the-temporary-drive-on-windows

-azure-virtual-machines/

[44] R. Kumar, I. Foulds, High-performance Premium Storage and managed disks

for VMs, Microsoft, 27th June 2017. Referenced on 19th February 2018.

Available: https://docs.microsoft.com/en-us/azure/virtual-machines/

windows/premium-storage

https://github.com/JetBrains/teamcity-azure-plugin/issues/37
https://github.com/JetBrains/teamcity-azure-plugin/issues/37
https://www.vpn.net/
http://www.saasplaza.com/blog/microsoft-azure-security
http://www.saasplaza.com/blog/microsoft-azure-security
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://azure.microsoft.com/en-us/blog/price-reductions-on-l-series-and-announcing-next-generation
https://azure.microsoft.com/en-us/blog/price-reductions-on-l-series-and-announcing-next-generation
-hyper-threaded-virtual-machines/
https://azure.microsoft.com/en-us/pricing/details/vpn-gateway/
https://azure.microsoft.com/en-us/pricing/details/ip-addresses/
https://www.jetbrains.com/teamcity/
https://blogs.msdn.microsoft.com/mast/2013/12/06/understanding-the-temporary-drive-on-windows
https://blogs.msdn.microsoft.com/mast/2013/12/06/understanding-the-temporary-drive-on-windows
-azure-virtual-machines/
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage

58

[45] J. Roth, M. McKittrick, T. Pratt, W. Eastbury, R. Squillace, I. Foulds, J. Mol-

nar, B. Harvey, L. Vargas, Performance best practices for SQL Server in Azure

Virtual Machines, Microsoft, 19th April 2018. Referenced on 22nd April 2018.

Available: https://docs.microsoft.com/en-us/azure/virtual-machines/

windows/sql/virtual-machines-windows-sql-performance

[46] Managed Disks pricing, Microsoft. Referenced on 17th April 2018. Available:

https://azure.microsoft.com/en-us/pricing/details/managed-disks/

[47] T. Myers, C. Lin, R. Shahan, T. Pratt, Get started with Azure Blob sto-

rage using .NET, Microsoft, 27th March 2017. Referenced on 19th Februa-

ry 2018. Available: https://docs.microsoft.com/en-us/azure/storage/

blobs/storage-dotnet-how-to-use-blobs

[48] Azure Service Fabric, Microsoft. Referenced on 22nd April 2018. Available:

https://azure.microsoft.com/en-us/services/service-fabric/

[49] M. Marks, Image2Docker: A New Tool for Prototyping Windows VM Con-

versions, Docker blog, 2016. Available: https://blog.docker.com/2016/09/

image2docker-prototyping-windows-vm-conversions/

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-dotnet-how-to-use-blobs
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-dotnet-how-to-use-blobs
https://azure.microsoft.com/en-us/services/service-fabric/
https://blog.docker.com/2016/09/image2docker-prototyping-windows-vm-conversions/
https://blog.docker.com/2016/09/image2docker-prototyping-windows-vm-conversions/

	Introduction
	Software testing in agile development
	Agile software development
	Continuous integration and delivery
	Software testing
	Definition, purpose, and execution of testing
	Agile testing

	Test automation
	Unit testing
	Integration testing
	UI test automation
	Concerns regarding test automation

	Manual testing

	Cloud computing
	What is cloud computing
	Service models
	Infrastructure as a service
	Platform as a service
	Software as a service

	Deployment models
	Public cloud
	Private cloud
	Hybrid cloud
	Community cloud

	Cloud providers
	Amazon
	Microsoft Azure

	Utilising cloud computing in testing
	Test automation in the cloud
	Benefits of using the cloud
	Issues and risks of using the cloud
	Transition to the cloud

	Cases in a software company
	M-Files
	Company
	Product
	Current development and testing practices

	Available alternatives and considerations
	Cloud arrangements
	Machine setup in the cloud
	Azure Automation
	Teamcity plugin
	Considering Azure Automation and Teamcity

	Connecting cloud machines to the company network
	Security
	Azure virtual machine series
	Virtual machine startup preparation

	Project execution
	Fine tuning and moving to resource manager deployment model
	Considering the project in regard to SMART-T
	Manual testing using the cloud

	Evaluation and future development
	Benefits
	Issues
	Cost analysis
	Future development possibilities
	Premium disks
	Permanent disk
	Azure Blob storage repository cache
	Return to using already existing virtual machines
	Azure Service Fabric

	Conclusions
	Bibliography

