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ABSTRACT 
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External beam radiotherapy is the most often used radiation therapy method in curative 
and palliative cancer treatment. Since the discovery of X-rays, radiotherapy has devel-
oped to highly sophisticated treatment system consisting of multiple phases and chal-
lenges. Successful cancer treatment requires expertise and continuous co-operation across 
different professions. Today’s radiotherapy methods aim for optimal dose delivery with 
dynamically conformed field shapes, minimizing the harmful dose effects in surrounding 
normal tissue.  

In this Master of Science thesis the radiotherapy plans were constructed for intensity-
modulated radiotherapy (IMRT) and volumetric arc therapy (VMAT) using Rapidplan 
(RP), a knowledge-based treatment planning (KBTP) system. Without KBTP, the planner 
must interactively guide the plan optimization. This is time consuming and may produce 
lower plan coherence between different planners. Previous studies have shown that RP 
generated plans shorten the planning time, increase planning coherence within hospitals 
and can generate clinically acceptable plans with proper organs at risk (OAR) sparing. 

In this thesis two head and neck cancer- (HNC) and a prostate model were built in RP. In 
addition, a previously built robust prostate model was modified for further validation. 
Prostate models were trained using 126 and 38 plans and HNC models were trained with 
156 plans. Model evaluation statistics were used as guiding indicators and most OAR 
structures yielded good model fit statistics (𝑅2 > 0.7, 𝑋2 < 1.1). Only the robust prostate 
model had large deviations (∆𝑅2 > 0.1) from the guidelines.  

The model validation against clinical plans showed similar results to previous research. 
All RP models could create individual plans meeting the clinical dose-volume constraints 
and were mainly comparable with the clinical validation plans with no statistically sig-
nificant deviations (𝑝 < 0.05). Differences were found in higher PTV doses for prostate 
and for those OAR structures, which have high sparing priority in clinical planning. This 
thesis shows that RP models can produce clinically acceptable plans with proper OAR 
sparing and conformal PTV dose distributions.  As a conclusion, RP-generated plans can 
be used in treatment planning directly or as a starting point for manual optimization. 
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Avainsanat: Rapidplan, dataan perustuva hoitosuunnittelu, intensiteetti moduloitu 
sädehoito, kaari-sädehoito, sädehoitomalli, sädehoitomallin harjoittaminen, vali-
dointi, optimointi. 

Ulkoinen sädehoito on yleisimmin käytetty sädehoidon tekniikka sekä parantumiseen täh-
täävässä, että palliatiivisessa syövän hoidossa. Menetelmänä sädehoito on kehittynyt aina 
röntgensäteilyn löytymisestä asti yhdeksi teknologialtaan hienostuneimmista hoitomene-
telmistä. Sädehoito koostuu useasta eri vaiheesta sekä haasteista, joiden toteuttamiseen ja 
ratkaisemiseen tarvitaan usean eri ammattiryhmän yhteistyötä. Tänä päivänä sädehoito 
tähtää optimaaliseen annoksen kohdistamiseen, jossa hyödynnetään dynaamista sädehoi-
tokentän modulointia, tarkoituksena minimoida haitallinen tervekudoksen annos. 

Tässä opinnäytetyössä sädehoitosuunnitelmat luodaan intensiteetti modulaatio- (IMRT) 
ja kaari-menetelmille hyödyntäen Rapidplan (RP) sädehoitosuunnittelu-ohjelmaa. 
RP luo automaattisesti hoitosuunnitelmaan vaadittavat optimointiparametrit ilman hoito-
suunnittelijan interaktiivista ohjausta. Optimoinnin manuaalinen ohjaus on aikaa vievää 
ja voi johtaa alentuneeseen yhtenäisyyteen hoitosuunnitelmien välillä. Aikaisemmat tut-
kimukset osoittavat, että RP:n avulla luodut hoitosuunnitelmat lyhentävät suunnitteluai-
kaa ja lisäävät koherenssia, luoden myös kliinisesti hyväksyttyjä hoitosuunnitelmia riit-
tävällä tervekudossäästöllä. 

Työssä luotiin kaksi RP-mallia pään- ja kaulan alueen syöville (HNC) sekä yksi prostata 
syövälle. Myös yhtä aiemmin luotua prostata-mallia muokattiin validointia varten. Pros-
tata mallit harjoitettiin 126 ja 38 kliinisellä suunnitelmalla. HNC-mallit harjoitettiin käyt-
täen 156 suunnitelmaa. Lopullisten regressiomallien ennusteet kuvasivat hyvin harjoitus-
dataa (𝑅2 > 0.7, 𝑋2 < 1.1). Vain yleisen prostata-mallin tulokset poikkesivat suuresti ta-
voitteesta (∆𝑅2 > 0.1). 

Mallin luomien suunnitelmien vertailu kliinisiin suunnitelmiin tuotti aikaisempiin tutki-
muksiin verrattavia tuloksia. Kaikki RP-mallit pystyivät luomaan kliinisesti hyväksyttä-
viä sädehoitosuunnitelmia, jotka eivät suurilta osin eronneet (𝑝 < 0.05) kliinisistä suun-
nitelmista. Eroja esiintyi osittain korkean annoksen kohderakenteissa sekä IMRT suunni-
telmissa prostatalle. Myös riskielimet, joiden matala annos priorisoitiin korkealle, poik-
kesivat tilastollisesti kliinisistä suunnitelmista pääasiassa RP-suunnitelmien korkeam-
milla annoksella prostatelle ja HNC:lle. Tämän opinnäytetyön perusteella voidaan kui-
tenkin todeta, että RP-pohjaiset suunnitelmat voivat luoda kliinisesti hyväksyttyjä suun-
nitelmia riittävällä tervekudossäästöllä. 
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1. INTRODUCTION 

During the past years, Knowledge Based Treatment Planning (KBTP) has attracted inter-
est among clinicians, physicists, and other medical professionals in the field of radiother-
apy (RT). The term knowledge-based treatment planning derives from the core idea be-
hind the method, which is to use tens or even hundreds of clinical radiotherapy plans to 
create and train a single estimation model. The model holds and uses the wide range of 
clinical planning experience to create individually defined optimization objectives. The 
objectives are then used for plan optimization generating plans, which reflect the hospitals 
planning conventions.  

There are several steps before a patient with radiotherapy prescription can be treated. 
Often the most time-consuming step is to create the treatment plan, which must meet the 
prescribed dose requirements and yet spare surrounding tissues and organs from. Differ-
ent cancers require different levels of complexity from the treatment plans, e.g. in general 
a treatment plan for prostate cancer may be considered relatively simple compared to head 
and neck area. Creating a complex plan with multiple organs at risk (OAR) may consume 
hours of work and several re-planning iterations, which is one of the main motivators 
behind development of automated treatment planning software. 

Multiple large medical companies, including e.g. Varian (Palo Alto, USA) and Philips 
(Amsterdam, The Netherlands) have released their automated planning systems. (Schu-
bert 2017) Also, a variety of research have been published by companies and research 
groups around the world including several different types of cancer, such as breast-, head 
and neck- and cervical cancer. (Wang 2017) (Tol 2015) (Wu 2016) (Fogliata 2015, 2017) 
Developers of the automated KBTP algorithms have proposed that use of KBTP in RT -
treatment planning would increase plan coherence between different planners, within and 
between hospitals. Additionally, the developers propose decreased treatment planning 
time. (Krauenbuehl 2015) 

Shortly described, KBTP algorithm takes organ structures and further features from the 
training plans and uses them to create a model which can reconstruct the plan’s dose 
volume histograms (DVH) with a small error margin. The model is then later used to 
create DVH estimations and optimization objectives for completely new patients. In cur-
rently used automatic interactive optimization (AIO) the user must dynamically change 
the optimization objectives for optimal optimization result. When KBTP software’s au-
tomatically generated planning objectives are used, the planner is no longer required to 
interactively guide the optimization process. The plan can be validated or used as a start-
ing point for a manual optimization. Even though a substantial portion of the previous 
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research have demonstrated better planning target coverage and normal tissue sparing, 
KBTP is not claimed to produce superior plans in comparison to individual manual plans, 
but rather increase the planning quality in wider scale. (Eclipse IOU 2015) (Fogliata 
2015) (Tol 2015) 

In this thesis work the Varian’s KBTP system named Rapidplan (RP) is studied for its 
capabilities in treatment planning. RP generated plans are compared to their clinical coun-
terparts and to each other and the plan quality is measured with different parameters, such 
as target volume’s conformity index (CI) and monitor unit (MU) delivery. Plans are also 
tested against the Tampere University Hospital’s (TAYS) planning constraints and guide-
lines for further confirmation whether RP can create clinically acceptable RT plans. 

The first objective of this thesis work is to test several rebuilt RP models for prostate 
cancer and head and neck cancer (HNC). The models will be ranked by preliminary DVH 
comparisons using small validation data sets. The second objective is to choose and im-
prove the best performing model for later validation against the clinical plan. The third 
and the main goal of this thesis work is to build and validate completely new prostate- 
and HNC models. Additional objectives are to build an analysis program with Matlab, 
which can be used in model testing and in validation stages. Finally, the second round, 
iteratively trained RP model is studied for its capabilities of producing either higher OAR 
sparing or target coverage compared to the clinical plans and to the original HNC model. 

The necessary theoretical background of this thesis work is presented in chapter 2. Chap-
ter 2 includes general information about RT and RT-planning, the used programs, algo-
rithms and their functions, and a review of previous research. The materials and methods 
of this thesis work are presented in chapter 3, which roughly divides in three sections; the 
methods used in model building, model estimation and model validation. Chapter 4 con-
sists of the results acquired with the methods mentioned above. The results are divided in 
2 main parts, prostate model and HNC model, which include several subsections consid-
ering model evaluation, dose- and statistical analysis. In chapter 5, the results are analyzed 
with more depth together with observations from previous research and possible reasons 
are further discussed. Finally, conclusions are presented in chapter 6. 
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2. THEORETICAL BACKGROUND 

In this chapter the necessary theoretical background for this thesis is presented. The chap-
ter is an overview of radiotherapy care path and of the two treatment methods used in this 
work. Chapter also provides insight for Eclipse treatment planning software and for the 
Rapidplan software, including an algorithm overview, dose analysis and optimization sec-
tions. For optimization, an illustrative example for radiotherapy optimization problem 
construction is presented. The theoretical background for this work focuses strongly to-
wards the computerized treatment planning, rather than in the physics or biological effects 
behind radiotherapy. 

2.1 Radiotherapy 

Radiotherapy is a cancer treatment method including several steps and sub-methods. The 
physical radiotherapy treatment is based on the biological tissue response for ionizing 
radiation. Radiotherapy may be divided in two main types: internal radiotherapy and ex-
ternal radiotherapy. (Tenhunen 2007) In this thesis, we focus only on the latter.  

In early 20th century, after the discovery of X-rays, scientists found that the negative nor-
mal tissue responses to radiation decreased when the total dose was delivered in fractions 
rather than all at once.  Later it was also discovered that different tissues have character-
istic dose-time responses to radiation and the treatment result with number of unwanted 
effects of radiation can be controlled by careful treatment planning. (Moonen 1994) The 
number of fractions is usually between 15 to 35 and the single fraction dose is typically 
1.8 𝐺𝑦 –  2.0 𝐺𝑦 (Tenhunen 2007). 

The macroscopic effect of radiation therapy is measured with normal tissue complication 
probability (NTCP) and with tumor control probability (TCP) as function on dose. There 
are several methods to define mathematically the dose response, where the two parame-
ters are considered. One way to represent the dose response probability is presented in 
equation 1. 

𝑃(𝐷) =
1

1+(
𝐷50

𝐷
)

𝑘 .         (1) 

Here 𝐷50 is the dose, which causes the chosen response (NTCP or TCP) with 50 % prob-
ability, 𝐷 is the dose and 𝑘 describes the steepness of the curve. (Tenhunen 2007) (Bau-
mann 2005) The most important point of equation 1 may not be the exactness, but rather 
the general characteristic of increased small probability with small doses and the rapid 
increase in probability after a certain tissue dependent threshold. (Tenhunen 2007) 



4 

A definition of a good radiotherapy treatment plan is case dependent, but number of gen-
eral metrics apply in every treatment plan. It is important that the delivered (prescribed) 
dose is conformal for the target volume and the dose distribution inside the planning target 
volume (PTV) is homogenous. Also, the radiation dose in surrounding tissues and OARs 
should be minimized (Yoon 2007) (Oh 2007). The radiation doses are prescribed by a 
physician and the dose constraints for different tissues and organs are defined either by 
physician, guidelines based on research, or both. 

2.1.1 Radiotherapy care path 

Radiotherapy care path can be considered as an iterative loop, which starts from the di-
agnosis of the disease and ends to the treatment delivery. The status of the patient is fol-
lowed though-out the treatment and the treatment planning (prescription, structure con-
touring, computed plan etc.) is modified according to the progress if needed.  

 

Figure 1. Author’s perception of the radiotherapy care path. 

As mentioned above, the first stage is the diagnosis of the cancer. This stage is often done 
by medical imaging or possibly biopsy from the tumor (Galimberti 2002). The next stage 
is to use computed tomography (CT) imaging while the patient is in planned treatment 
position. The acquired CT stack is then used to locate and contour the target tissue/tissues, 
normal tissue, and organs at risk. Physician who also prescribes the radiation dose per-
forms contouring. Next, the radiotherapy treatment technique is chosen prior to dose-
volume optimization and dose calculation. In this thesis, these steps are concluded in the 
Eclipse Software (see chapter 2.3). When the treatment plan is ready, the patient is imaged 
in the treatment position at the linear accelerator or LINAC (treatment machine). The 
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final step in the treatment chain loop is treatment session itself, where the fractionated 
dose is delivered to the target volume. After the final step the loop return to status check-
ing and starts over. (Mayles 2007) 

2.1.2 Intensity Modulated Radiation Therapy 

In this thesis the treatment plans and the treatment model were constructed for 2 radio-
therapy treatment methods, intensity modulated radiation therapy (IMRT) and volumetric 
arc therapy (VMAT). IMRT is based on multi leaf collimator (MLC) controlled beam 
intensity modulation, where the collimator leaves absorb the excess radiation surrounding 
the PTV (planning target volume), shaping the incoming radiation field. Unlike in tradi-
tional radiation therapy such as 3-dimensional conformal therapy (3D CRT) or in confor-
mal arc therapy (CAT), IMRT offers possibility to simultaneous field shape modulation 
and intensity modulation. (Bortfield 2006) 3D CRT and CAT techniques use fields con-
formed for the PTV shape, but the shapes are not dynamically modulated but manually 
chosen (in CRT) by the treatment planner along with other beam parameters. IMRT has 
been shown to have superior OAR sparing compared to conformal methods, but also to 
have increased monitor units during the treatments. (Bakiu 2003) (Maier 2016) (Palma 
2008) Another advantageous feature connected to intensity modulating techniques is the 
simultaneous integrated boost (SIB)-technique, which allows the treatment of multiple 
target volumes with different dose prescriptions during the same treatment fraction (Or-
landi 2016).  

The leaves positions are changed by multiple motors to achieve the approximate shape of 
the radiated target volume and the intensity of beams is increased for the rays that do not 
penetrate any OARs and lowered to those which do. (Bortfield 2006) Beam intensities, 
number of the beams and the radiation angles depend on the location of the tumor and 
OAR’s. The goal is to minimize the dose around the PTV and maximize the dose inside 
the PTV. In figure 2 is illustrated an example of MLC system.  
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Figure 2. Multi-leaf collimator (MLC). (Bortfield 2006) 

As seen in the figure 2. MLC resolution is limited by the leaf width. Increasing the number 
of beams will have a positive effect on the dose distributions at the target volume, but 
only until a certain level. According to Bortfield (2010) by dismissing the variance of 
scattering by depth and by assuming flat dose-depth profile the mathematical formulation 
for IMRT fields yields a result which supports this claim. 

Usually, IMRT planning is done as inverse planning, where the leaf positions are opti-
mized according to the prescribed dose to target areas. This kind of problem is commonly 
treated as an optimization problem. Inverse IMRT optimization result depends largely on 
the prescription plan and without a consistent plan optimization result may be far away 
from optimal or not meeting the minimum optimization goals. This leads to a technique 
called as iterative planning, which is used dynamically together with the inverse optimi-
zation. In iterative planning the prescription is modified to improve the optimization al-
gorithms performance. In Eclipse’s DVH optimization similar iterative loop is used to 
help the optimization, but instead of tweaking the prescription, the output parameter ob-
jectives such as mean dose, generalized equivalent uniform dose (gEUD) and maximum 
dose of the optimization are modified. (Bortfield 2006) (Eclipse Algorithm 2015) 

In this thesis work IMRT is the one of the two techniques used in treatment planning. 
Approximately half of the cases for both, prostate and head and neck models were IMRT 
plans and the built models can produce plans for both treatment techniques. In future 
VMAT is becoming more common in TAYS treatment planning, but IMRT, CAT and 
3D CRT remain as an option.  
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2.1.3 Volumetric Arc Therapy 

Volumetric Arc Therapy is an advanced form of IMRT. Similar to IMRT, VMAT delivers 
the prescribed dose by modulating the intensity of the fields from different angles, but 
instead of multiple fixed fields, VMAT operates dynamically over gantry rotation (360 
degrees) around the patient. The final dose can be delivered completely during the rota-
tion, which also decreases the delivery time. (Ghandour 2014) Varian’s Eclipse uses the 
direct aperture optimization in VMAT planning. Instead of multiple fixed fields, VMAT 
plan consists of arc or arcs, which cover the prescribed dose using several field shapes 
inside the arc. Typically, single arc is used e.g. for prostate plan, but as the complexity 
and target size increase the number of arcs needed increases because several arcs allow 
more shapes for the same gantry angle and thus, for large targets multiple arcs instead of 
single arc may increase the target coverage. (Cao) (Nithya 2014) (Teoh 2011) Figure 3 
presents the comparison between 1 and 2 arcs used for the same HNC case.  

 

Figure 3. Comparison between single and 2 arc VMAT DVH plan. (Cao) 

The figure includes 3 target volumes (green, blue and red) and 4 OARs. The higher target 
coverage for multiple arcs is visible especially in 2 lower dose PTVs (blue and red) and 
increased uniformity. The effect of adding yet another arc for this HNC case is presented 
in figure 4.   
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Figure 4. Comparison between 2 and 3 arc VMAT DVH plan. (Cao) 

As seen in figure 4, the third arc does not bring additional benefit to the target coverage 
in this case and the OAR sparing is ambiguous for higher doses. One should also take in 
account the increased delivery time for each added arc, (Cao) or more trivial aspects such 
as, increasing number of arcs to increase the delivery time so that larger shape modula-
tions are allowed by the optimization algorithm (Tol 2014).  

2.1.4 Dose-volume histograms 

Understanding dose-volume histograms is an essential requirement in understanding the 
results of this thesis work. DVH can be defined as a quantitative tool in evaluating radi-
otherapy treatment plans (Ting 1997). The figure 5. Presents an example of a dose volume 
histogram produced from HNC treatment plan. 
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Figure 5. Example of DVH plot from HNC treatment plan. 

As seen in figure 5, covered volume percentage is plotted as a function of the absolute 
dose in grays (Gy). The different curves in the figure represent different structures, which 
can be divided in this thesis as target volumes and OAR. Targets are structures that have 
a prescribed dose, which must be delivered in certain volume. In this work the PTV struc-
tures in DVH analysis were used. PTV is defined as the true volume of the tumor with 
excluded margins covering the uncertainty and variability in patient positioning and beam 
adjustment (Grosu 2006) (Burned 2004) (Radiotherapy Board 2015) 

OARs are structures that are aimed to be spared from radiation but are located near the 
target-volume (Grosu 2006) Thus, an ideal DVH curve would show 100 % volume fill 
in the target-volume at the prescribed dose, and no dose to the OARs.  

The colors in figure 5 present the different structures and the line-symbol presents the 
model used to produce the line, but in this example different models may be omitted. The 
three targets in this case are located at higher doses (56 –  70 𝐺𝑦). The steep angle in the 
PTV curve indicated high conformity and dose coverage in the volume. For example, 95 
𝑣𝑜𝑙 − % of the highest dose PTVs receive approximately 68 𝐺𝑦 doses, which is 97 % 
from the prescribed 70 𝐺𝑦 dose. 

Unlike for PTVs, it is important that OARs doses are minimized in radiotherapy plan 
(Mao 2015). Because the OARs (by definition) are organs which lay near the high dose 
structures, it is impossible with current technology to achieve complete OAR sparing. 
Thus, some prioritization must be made during treatment planning. In general, organs 
may be separated in two groups, serial and parallel organs. Serial organs are prone to 
complications when even a small volume inside the organ receives high dosage. Parallel 
organ complication is more dependent on the total volume that receives the radiation. 
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(Fiorino 2009) Dose objectives for DVH curves are usually set with complication types 
in mind, especially if the planner uses gEUD objectives (chapter 2.3.3). For the resulting 
DVH curve this is seen as serial organs having higher mean dose, with steeper decrease 
before the maximum (e.g. medulla in figure 5). Parallel organs may show higher dose 
maximums because usually the mean dose is minimized (e.g. parotid gland).  

As mentioned above, the OAR structures in figure 5 are represented by the curves under 
PTVs (high dose curves). If the OAR is located near the target volume the dose is in-
creased e.g. by the dose spillover and penumbra (Sasane 1981) and the OARs DVH curve 
is expanded to the higher doses. In figure 6 this effect is shown clearly for submandibular 
glands (purple and gray curves). 

 

Figure 6. DVH curve example for HNC case. 

The opposite effect for OAR locating far from PTV/PTVs is clear in case of lung DVH 
curves in figure 6 (located in lower left corner). Note also that the figures represent the 
total cumulative dose over the whole treatment instead of dose per fraction. 

Even though the DVH curve representation is generally considered as a good evaluation 
tool and has a major role in this work, there has been some criticism about the method. 
For example, Ting’s group in their study Dose-Volume histograms for bladder and rectum 
concluded that DVH concept may not be accurate representation of the dose distribution, 
since the DVH treats the structures as solid volumetric objects instead of the shell-like 
nature of some organs. (Ting 1997) But the DVH accuracy deviations depend largely on 
the system and algorithm in use and the deviations were found to be low in Linac-based 
treatment planning system (max error 1.7 %) by Grossmann’s group when using a proper 
quality assurance method (Grossmann 2010). 
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2.1.5 Dose analysis parameters 

In this thesis work, the dose analysis is performed using statistical metrics treating the 
DVH constrains, dose-volume point values, delivered monitor units and conformity indi-
ces. This chapter reviews only the necessary theory of the latter two. Theory considering 
DVH curves and dose-volume objectives are reviewed in chapters 2.1.4 and 2.3.3 respec-
tively. 

Conformity index is a measure of dose coverage in the target volume and it generally 
presents the ratio between the isodose volume and the target volume. Or in other words, 
it indicates as one numerical value how well the actual dose meeting a chosen dose-level 
is covering the total target volume. (Feuvret 2006) CI has multiple slightly different def-
initions, but in this work the Radiation Therapy Oncology Group’s (RTOG) definition is 
used. 

𝐶𝐼𝑅𝑇𝑂𝐺 =
𝑉𝑅𝐼

𝑇𝑉
 ,        (2) 

where 𝑉𝑅𝐼 is the reference volume/isodose and 𝑇𝑉 is the planned target volume. 
(Petkovska 2010) (Feuvret 2006) The 𝑉𝑅𝐼 was defined in this work as the isodose covering 
95 % of the prescribed dose for each PTV separately. The detailed explanation of the 
procedure is presented in chapter 3.4.5. 

The second parameter used in dose analysis apart from DVH statistics is the Monitor unit. 
For sake of simplicity, MU can be considered as a treatment machine -specific calibrated 
unit, which controls accurately the dose output of each field or arc. (Bourdland 2016) The 
maximum error has been stated by International Commission on Radiation Units and 
Measurements (ICRU) to be 5 % for any dose delivery system (Gibbons 2001).   The 
monitor unit for photons is formulated in Eclipse as 

𝑀𝑈 =
𝑅𝐹×𝑊𝐹

𝑇𝑀𝑅𝑎𝑣𝑒×𝑂𝐹𝑇𝑀𝑅𝑚𝑎𝑥(𝑆)×𝐷𝑅𝑟𝑒𝑓
 .                (3) 

Here 𝑅𝐹 is the repeat factor, 𝑊𝐹 is the weight factor, 𝑇𝑀𝑅 the tissue maximum ratio and 
𝑂𝐹𝑇𝑀𝑅𝑚𝑎𝑥

(𝑆) × 𝐷𝑅𝑟𝑒𝑓 contributes as calibration factor. The denominator of equation (3) 
corresponds to the absolute dose from and arc to isocenter and 𝑇𝑀𝑅𝑎𝑣𝑒 is the average 
tissue maximum ratio from the edge of body contour to the isocenter. (Eclipse Algo-
rithms) In TAYS the monitor unit is defined so that 100 MUs correspond to 1 𝐺𝑦 open 
field dose. Monitor units are calculated by the Eclipse Software and the resulting values 
from individual IMRT fields or VMAT arcs can be added together to achieve the total 
monitor units. 
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2.2 Knowledge-Based Treatment Planning 

Knowledge-Based Treatment Planning is a relatively new method to produce radiothera-
peutic treatment plans. Even though RT treatment planning is rapidly developing towards 
automated planning, still multiple steps are done manually, e.g. optimization objectives 
and structure contouring. (Wang 2017) Because the conventions and experiences vary 
between different planners, hospitals and regions, manual treatment planning may de-
crease coherence between treatment plans. (Schubert 2017) 

The idea behind Rapidplan or in any KBTP system is to create a trained model, which 
automatically produces DVH estimations and optimization constrains for a given (new) 
patient. These constraints and estimations are further used in optimization process to pro-
duce the final dose-volume distributions. Typical size for a model’s training set is be-
tween 20-150 plans depending on the cancer type and expected plan feature variation and 
complexity. The training set’s planning parameters are then used to create a general 
model, which is further can generate individualized DVH optimization objectives. Ac-
cording to Varian Medical, optimized plans based on RP can increase the plan coherence 
and shorten the planning time (Eclipse Algorithms 2015)(Eclipse IOU 2015) 

2.3 The Eclipse Software 

Varian’s Eclipse is a radiotherapy treatment planning software, which allows physicians 
and physicist to create, visualize and optimize treatment plans in clinical use, based on 
CT- or magnetic resonance image (MRI) data. Eclipse uses the CT stack, or the pseudo 
CT stack created from MRI data to calculate the Hounsfield unit (HU) values (see chapter 
2.3.2). Eclipse includes a wide range of functionality, including 3D CRT, IMRT, VMAT, 
conformal arc, proton planning, several optimization algorithms, dose calculation, 
knowledge-based planning (Rapidplan) and plan evaluation. (Eclipse Algorithms 2015) 
(Eclipse IOU 2015) In this thesis work KBTP is used to create IMRT and VMAT treat-
ment plans and the dose-volume histograms are further analyzed. All the plans and mod-
els are built with external beam, 6 𝑀𝑉 photon energy and thus, other algorithms consid-
ering other methods, such as electron treatment are excluded. 

2.3.1 Optimization 

Optimization is a mathematical procedure where the goal is to find the most suitable (op-
timal) solution from a group of possible solutions. An optimization problem can be gen-
erally formulized as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑜(𝑥)  
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖(𝑥) ≤ 𝑏𝑖, 𝑙 = 1, … , 𝑚.      (4) 
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In equation 4, 𝑥 is a vector containing 𝑛 variables and is defined as the optimization var-
iable, and 𝑓𝑜(𝑥) is the objective function (or cost function) of the problem. The problem 
is constrained by the constraint functions, 𝑙 = 1, … , 𝑚 and the constraint functions are 
limited by the bounds 𝑏𝑖 = 𝑏1, 𝑏2, … , 𝑏𝑚. The vector 𝑥 is the solution for the optimization 
problem when it satisfies all the constrains. Thus, the optimal solution is vector 𝑥𝑜𝑝𝑡, 
which yields the minimal value for the objective function amongst all the solutions. (Boyd 
2004) The optimization problems in this work are divided in linear and nonlinear optimi-
zation problems. Linear optimization problem is defined by the linear nature of the ob-
jective and constraint functions. Linear optimization problems are usually simpler than 
nonlinear problems (Boyd 2014). An example optimization problem derived from these 
rules is presented in figure 7. 

 

Figure 7. Schematic of the simplified optimization problem arrangement (a) and MLC bottom 
view schematic (b). 

As an imaginary example we can consider simplified dose-optimization problem. Visu-
alization of the arrangement (side view) is presented in figure 7a and bottom view of the 
MLC alone is presented in figure 7 b. For the optimization problem the constrains could 
be e.g. the possible MLC leaf positions and required dose-volume delivery to the target 
volume, so that the solution vector becomes 

𝑥 = [𝑥1 𝑥2 … 𝑥𝑛].  

Here 𝑥𝑖 is the leaf position for the 𝑖th MLC leaf, when the leaves are counted from top 
left (𝑖) to right (𝑖 + 1) and then left and down (𝑖 + 2). The leaf positions are limited by 

 0 ≤ 𝑥𝑖 ≤ 𝑥max, 
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which is the first constraint. The second constraint could then be the prescribed dose de-
livery to the target volume, 

 𝐷𝑡𝑎𝑟𝑔𝑒𝑡(𝑥) ≥ 𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑑𝑜𝑠𝑒 

And the objective function would be the dose in OAR volume (to be minimized). 

𝑓𝑜(𝑥) = 𝐷𝑂𝐴𝑅(𝑥), 

Where variable 𝑥 was again the vector containing the MLC leaf positions and since 𝑥 
holds all the leaf positions, the total area of the aperture would then be 

𝐴 = ∑ (2𝑥𝑚𝑎𝑥 −  𝑥𝑖)𝜏𝑛
𝑖=1 ,        (6) 

where 𝜏 is the leaf thickness and 𝑛 is the total number of leaves. The modulated field size 
can then be assumed to be linear with respect to 𝐴 and thus 𝑥.  If all organs in figure 6 (a) 
would have constant thickness, absorption properties and uniform shapes, and all the po-
sition depended parameters would be omitted, such as field profile and scattering; the 
objective function and the constrain function would also then be linear and the whole 
optimization problem would become linear (Tenhunen 2007). 

However, if these parameters are not omitted, the constraint functions and objective func-
tion become nonlinear with respect to 𝑥, which makes the problem also to a nonlinear 
optimization problem (by definition) (Boyd 2004) (Tenhunen 2007). When considering 
these two examples, the linear version is much simpler than the nonlinear version. 

Linear optimization does not have an analytical solution, but effective algorithms have 
been developed for finding the global optimal solution. Most common are the Simplex 
method and interior point methods. The same is not true for nonlinear optimization, and 
instead of trying to find the global minimum for the objective function, the algorithms try 
to find the best solution to locally minimize the objective function. Or in other words, the 
algorithm tries to find the optimal solution from a smaller group of possible solutions and 
after a while of trying, is satisfied by the best solution inside the limited group. (Boyd 
2004)  

The eclipse software uses Simplex method to solve a linear optimization problem for 
example in fluence optimization. The Photon optimizer (PO) algorithm uses iterative op-
timization to find the local minima of the objective function. In PO algorithm the objec-
tive function is defined as the sum of dose-volume objectives and other user defined ob-
jectives. The algorithm also calculates intermediate dose during the optimization and uses 
the result to calculate the difference to the first optimization result. This can be used to 
compensate for the next optimization iteration round. (Eclipse Algorithms 2015)(Eclipse 
IOU 2015) In figure 8 is presented the PO view of Eclipse software. 
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Figure 8. PO optimizer screen view in Eclipse Software. (Eclipse v.13.6 2015) 

In the left side of the figure are presented the organs matched to the Rapidplan model, 
which defines the DVH objectives. In the middle of the image are the DVH curves, which 
present the optimization process in real time. The curves confining the colored areas in 
the DVH plot are DVH estimations generated by Rapidplan. Convergence of the optimi-
zation is presented below the DVH curves. Next to the convergence plot (right side) are 
presented the objective function values for each structure represented as bars. Finally, 
above the objective functions are CT slice images of from the patient with colored isodose 
areas. (Eclipse Algorithms 2015) 

In this work, Eclipse Software was set to use photon optimization in DVH optimization, 
Anisotropic Analytical Algorithm (AAA) algorithm for final dose calculation and DVH 
estimation algorithm for Rapidplan. Note that the example presented above was not an 
optimization problem that is used in eclipse, but merely a simplified example for com-
prehensive demonstration of optimization problem construction. 

2.3.2 Dose calculation 

Eclipse has several alternative dose calculation algorithms. As described in the validation 
workflow, dose calculation algorithm must be chosen before calculating the final doses. 
Suitable algorithms for external beam planning for photons are Acuros XB and AAA. 
(Eclipse Algorithms 2015) (Herman 2011) 

The AAA algorithm uses the CT calibration curve to transform the HU values from CT 
images to electron densities and truncates the exceeding HU values to the maximum HU 
values in the CT calibration data.  Acuros XB algorithm does the same procedure but the 
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calculation is halted if CT image’s HU values exceed the maximum HU from the calibra-
tion curves. Also, the information is transformed to mass density in Acuros XB instead 
of electron density. (Eclipse Algorithms 2015) (Eclipse Instructions 2015) In this work 
the AAA algorithm was used for dose calculation. The accuracy of AAA algorithm is 
presented in figure 9. 

 

Figure 9. Depth dose curve comparison with calculated and measured for AAA, where a) shows 
the depth-dose difference and b) presents the corresponding gamma error. Modified from 

(Eclipse Algorithms 2015) 

The accuracy of the dose calculation algorithms in Eclipse are measured by comparing 
the measured depth dose in water phantom to calculated depth dose using gamma error, 
which is the shortest distance in 4-dimension space where percentage depth dose (PDD) 
represents the 4th dimension (Eclipse Algorithms 2015). The AAA algorithm is divided 
in two main parts, configuration algorithm and final dose calculation algorithm. The con-
figuration phase configures different parameters for further fluence, energy and scattering 
computations. The properties are defined in water equivalent medium. (Sievinen) 

The actual dose calculation algorithm calculation is based on beam superposition-convo-
lution using 3-dimensional pencil beams. The algorithm models the primary beam pho-
tons and the secondary (scattering) photons. The final dose is the calculated as dose-su-
perpositions from convoluted photons and electrons. (Eclipse Algorithms 2015) 
(Sievinen)(Herman 2011) 

2.3.3 Optimization objectives 

In Eclipse Software the optimization objective function is defined by dose objectives and 
user generated objectives. PO algorithm supports upper, lower, mean and three different 
biological optimization objectives. (Fogliata, 2017) The upper objective is used to define 
the desired upper dose limit for a certain volume. Similarly, the lower objective is used 
to set the lowest dose for chosen volume and the mean objective to define the maximum 
mean dose for the structure. The objectives are shown in the DVH curve figure 10 and 



17 

may be manually changed during the optimization to achieve better optimization results. 
Objectives and DVH plot in Eclipse are presented in figure 10. (Eclipse Algorithms 
2015)(Eclipse instructions 2015) 

 

Figure 10. PO optimizer’s DVH with dose objectives. The dose objectives are highlighted with 
white circles. The upper objectives are diagonal arrows pointing down, lower objectives diago-
nal arrows pointing up, mean objectives are represented by the diamond shape object and gen-

eralized equivalent uniform dose (gEUD) objectives are presented with left pointing arrows.  
Modified from (Eclipse Software) 

Rapidplan also generates its own dose-volume line objectives, which are limiting the dose 
across the whole structure’s volume. The line objectives are chosen during the RP model 
construction for desired OARs. Objectives are then generated prior to optimization, if the 
given structure exists in the patient’s structure set. (Eclipse Algorithms 2015) 
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As mentioned above, the PO algorithm has the possibility to use gEUD objectives. The 
mean objective is a trivial case of gEUD. The formulation of EUD is presented in equation 
7 (Apinorasethkul 2017) (Eclipse Algorithms 2015) (Eclipse instructions 2015) 

𝐸𝑈𝐷 = (∑ 𝑣𝑖𝐷𝑖
𝑎

𝑖 )
1

𝑎,         (7) 

Where 𝑣𝑖 is the 𝑖: 𝑡ℎ fractional organ volume, 𝐷𝑖 the corresponding dose to the fraction 𝑖 
and 𝑎 is the parameter describing the dose-induced volume effect to a specific tissue. 
GEUD objective can be added to the plan optimization by defining the target dose, 𝑎 
parameter and the priority relative to the other objectives. Parameter 𝑎 roughly defines 
the section of the DVH curve where the objective weights, so that a low (absolute) value 
of 𝑎 contributes to the mean DVH (𝑎 = 1) and high absolute values of 𝑎 (|𝑎| ≤ 40) con-
tribute to high doses.  It is meaningful to treat the target dose as a function of 𝑎, since 
increasing the parameter will increase the affected dose-section. (Apinorasethkul 2017) 
(Eclipse photon 2015) (Sovik 2008) 

Higher values of 𝑎 shift the weight towards higher doses. The values of 𝑎 -parameter 
range from -40 to 40 with 1 corresponding to the mean target. In chapter 2.1.4 OAR 
structures were generally divided in two groups, serial and parallel. Serial organ compli-
cation was more dependent on the maximal dose and more invariant from volume. From 
perspective of gEUD, the 𝑎 -parameter should be >1 for all the serial organs to affect the 
DVH curve around the maximal dose-area and thus, reduce the risk of complication 
(Claudio 2009). For parallel organs, as described in chapter 2.1.4. the complication risk 
is proportional to the volume receiving dose, leading to conclusion that gEUD for parallel 
organs should be set to affect the mean DVH. (Claudio 2009) (Fogliata 2018) (Zinchenko 
2008) (Åste 2008) In this work no lower gEUD objectives were used. 

2.4 Rapidplan algorithm 

The Rapidplan algorithm is an integrated part of Eclipse software and is used to generate 
DVH estimations, which are further transferred to plan objectives in the optimization 
stage. The motivation for the algorithm is to speed up and increase the coherence in the 
planning process between different planners and hospitals. The RP algorithm is divided 
in two parts: Model configuration- and DVH estimation part. (Eclipse Algorithms 2015) 
(Tol 2015) 

2.4.1 RP model configuration 

The first part of the RP algorithm is the model configuration part, which consists of two 
phases and prepares or permits further steps in DVH estimation part. The configuration 
is further divided in data extraction phase and model training phase. The model configu-
ration is also part of the model building. First, the plans are extracted to the RP model. 
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Plan information consists of structure sets, dose prescription and dose matrices, which are 
saved as binary information in the model. (Eclipse Algorithms 2015) 

The structures in structure sets are divided to voxels with 2.5 𝑚𝑚 resolution. The voxels 
for matched OAR structures are then classified belonging in one of the four regions which 
together cover the whole organ volume. The regions are: out of field region, leaf trans-
mission region, in-field region and overlap region.  The first two are defined by the visi-
bility from the jaw aperture, the third by the targets field projection over the OAR and the 
last by the structure overlapping. Next, relative volume, cumulative volume histograms 
are calculated, and the geometric distributions of the regions are evaluated as cumulative 
volume histograms of geometry-base expected dose (GED). (Eclipse Algorithms 2015) 

After the data extraction the DVH model can be trained. The histogram information is 
used to create a set of DVH estimation models for the matched OARs. The GEDs of the 
OARs are processed with Principal component analysis (PCA) to create number of PCA 
scores from which the DVH can be reconstructed with error less than 5 %. Finally, the 
PCA scores are combined with OAR voxel and anatomical feature information. The re-
sults are then used to create a regression model through forward and backward iterations 
until convergence. The final PCA-regression model consists of the mean and principal 
components of GED and DVHs for each OAR, regression model, statistical parameters 
for further outlier detection and the range of target coverages from the training set. 
(Eclipse Algorithms 2015) 

2.4.2 RP DVH estimation 

DVH estimation part consists of two phases, estimation- and objective generation phases 
that are performed before the plan optimization. The estimation algorithm takes the RP 
model’s previously generated estimation models, structures from the plan to be optimized 
and target dose levels. The same metrics are then calculated in estimation generation 
phase as in model configuration part, excluding the DVH metrics. Anatomical features 
are considered to have major deviations from the training set and flagged if the geometric 
feature’s value (𝑋) is either smaller than the minimum value in the training set (𝑋𝑚𝑖𝑛) or 
larger than the maximum value in the training set (𝑋𝑚𝑎𝑥), or one of the following equa-
tions is satisfied 

𝑋−𝑋𝑚𝑒𝑑

𝑋90−𝑋𝑚𝑒𝑑
> 1.56          (8) 

𝑋−𝑋𝑚𝑒𝑑

𝑋𝑚𝑒𝑑−𝑋10
> 1.56         (9) 

Where 𝑋90 is the 90 % percentile of the values in the training set, 𝑋10 the 10 % percentile 
and 𝑋𝑚𝑒𝑑 is the median of the training set. Next, the PCA-regression model described in 
chapter 2.4.1 is used to generate the parametrized GED histogram and to calculate the 
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DVH principal component scores. The most probable DVH is reconstructed from this 
information and the upper and lower bounds are generated from the most probable esti-
mate.   Finally, the final variation curve is computed using the regression model and point 
wise square root. In the end different regions are summed together weighted by the rela-
tive volume (Eclipse Algorithms 2015) 

The last phase is the optimization objective generation phase, which uses the upper and 
lower bounds of the DVH estimation as objectives, i.e. the optimization goal is to achieve 
the estimated DVH. (Eclipse Algorithms 2015) 

2.5  Validation workflow with Rapidplan in Eclipse Software 

In this chapter the validation workflow when using RP model is shortly described based 
on the planning procedure used in this thesis work. The main steps, depending on the RP 
model type, are importing the patient data, plan duplication and modification, structure 
addition and cropping, plan optimization, dose calculation and data exportation and anal-
ysis. The workflow here is described in the case where the clinical plan (manual) has been 
made and can be re-planned with RP. 

Planning workflow in Eclipse system starts from the 4th step in the radiotherapy care path 
described in chapter 2.1.1 figure 1, when the patient’s CT stack has been imported to the 
system together with the structures and dose prescription. The patient data is loaded in 
external beam planning program integrated in Eclipse. The desired clinical plan is chosen 
and duplicated together with the CT stack and structure set.  

After the new duplicated plan is renamed, the structures may be modified to meet the 
requirements of the RP model. For example, if the RP model training set’s PTV structures 
are drawn with a certain margin to the skin surface, as in the HNC model in this thesis, 
the patient’s structures must be cropped with same guidelines. Structure modification is 
done with a cropping tool in Eclipse. 

When the structures match the RP model, the plan can be optimized. In this thesis work 
PO algorithm was used in optimization. RP model includes the predefined dose objectives 
and generated the possible additional objectives and line objectives for chosen OARs. 
Before the optimization DVH estimation model is calculated for the plan. Next, the plan 
is optimized by starting either the IMRT or VMAT optimization. Also, an Intermediate 
dose computation can be chosen to help the optimization process. (Zacarias 2009) 

When the optimization has converged, Eclipse returns to the External beam planning pro-
gram and calculates the dose using the AAA algorithm. The dose normalization point is 
chosen by the user and the final DVH curves can then be collected to the same DVH plot. 
Other plans DVH data also may be added for DVH comparison and exportation. 
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Finally, the data is exported as a text file, which includes the DVH data (as absolute dose) 
for chosen organs, conformity index, homogeneity index, etc. The MU values are added 
together from Eclipse and added to the text file, which is then ready to be analyzed. 

2.6 Previous research 

Rapidplan’s implementation and validation in clinical use has been lately the focus of 
several studies. Previous research included here consists of prostate, HNC, breast and 
lung cancer models. The model types vary from robust models with large (>150) training 
sets to coherent models with small carefully chosen training sets (20). 

In 2017 Fogliata’s head and neck cancer group built 2 HNC models using 83 clinical 
treatment plans as training set. The clinical plans were narrowed only to VMAT SIB 
technique with 3 PTV levels. The PTVs included user defined upper and lower limits with 
high priorities, all OAR optimization objectives were generated using RP. The model 
validation was concluded with validation set of 20 patients using DVH analysis. 10 of 
patients were chosen from the training set and 10 plans outside of the training set, yet all 
the plans resembled the 83 plans used in training. (Fogliata 2017) Similar to the HNC 
group, Fogliata’s bilateral breast cancer group (2015) used only VMAT SIB plans in 
training. Now the training set size larger with 150 clinical plans with no plans from the 
training set. The validation data size was 70 patients with 50 single- and 20 bilateral cases, 
chosen from different hospitals. The validation methods were also similar using dosimet-
ric validation. Both models could create acceptable clinical plans, meeting the DVH con-
straint set for the studies. HNC plans generated by the model improved the planning qual-
ity with significantly increased OAR sparing. Breast cancer model was also able to create 
plans meeting the dose constraints but not with superior or comparable dose distributions 
to the clinical plans. (Fogliata 2015) (Fogliata 2017) 

Wu’s group (2016) studied the RPs capabilities to generate DVH estimation and optimi-
zation objectives for rectal cancer, when the RP model is trained with 81 clinical VMAT 
plans but validated with (30) IMRT plans. The model performance was first validated 
with 10 VMAT plans similar to the training set. The results showed that VMAT plan 
generation with the RP model created sufficient target dose distributions and improved 
significantly OAR sparing. IMRT validation group showed also improvement in OAR 
sparing for bladder and femoral heads. Both techniques changed target dose conformity, 
either slightly (≤0.01) for VMAT or significantly for IMRT (Δ = 0.17, P < 0.01). Wu con-
cludes that RP can be used for IMRT planning even though the model is trained com-
pletely with VMAT plans. (Wu 2016) 
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Tol’s HNC group (2015) used 90 AIO optimized clinical HNC treatment plans to train an 
RP model for quality assurance purposes. Unlike in Fogliata’s or Wu’s groups, the train-
ing set was chosen arbitrarily from HNC patient pool. Model fit and model goodness 
statistics (𝑅2 and 𝜒2) were used for outlier detection, validation and exclusion. Validation 
plans were re-planned with the model and analyzed with DVH analysis. The study shows 
that Rapidplan can accurately predict the achievable doses, even though generally the 
estimated OAR sparing was higher than actual. (Tol 2015) 

Similar to Tol’s group, Wang’s (2017) breast cancer group used 80 largely varying patient 
plans in model training. All the patients were previously treated with IMRT SIB tech-
nique, but the training set included large variance in geometrical features such as different 
breast sizes. The final model was constructed for left side breast cancer treatment. The 
validation set was constructed by 6 planners with different experiences (beginner, junior 
and senior planners). The results showed that all the RP generated plans could fulfill the 
dose prescription requirements and could improve OAR sparing compared to beginner 
and junior planners with statistical significance. OAR sparing was found either inferior 
or similar to the plans optimized by senior planners. (Wang 2017) 

Berry’s group (2016) studied the inter-campus treatment plan consistency with based RP 
based models. The research used 58 esophagus RT treatment plans for model training and 
was validated using 172 clinical plans. The analysis was concluded by DVH band com-
parison between RP based and clinical plans. The validation group was divided in 4 re-
gional (RS) sites. The results showed that the first RS group’s RP plans had the most 
deviations from the RP model and less OAR sparing and variation especially for liver 
doses compared to clinical plans. Second RS group generated best matching plans com-
pared to the RP model. 3rd RS group had high variance between RP plan and model, but 
the OAR sparing for final plans was comparable to the clinical version. The final RS 
group presented no statistical significance because of small sample size. Berry concludes 
that based on the results RP can be used to identify increased need for planning coherence 
in institutions. (Berry 2016) 

Finally, Ma’s group (2017) used small and coherent set of cervical cancer plans used 
clinically to train an IMRT RP model. The model was validated using 19 clinical patients. 
The RP model generated plans highly comparable (statistically) to the clinical plans with 
proper OAR sparing. Ma emphasizes that RP can produce high quality treatment plans 
even with small training data. (Ma 2017) 
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3. MATERIALS AND METHODS 

3.1 Patient data 

All patient data used in this thesis work was collected from TAYS database and all the 
patients in both, prostate and HNC models were previously planned and treated in TAYS. 
Based on previous research and Varian’s preference, none of the data used in model train-
ing was used in model validation stage. Note that the HNC model’s training set re-plan-
ning data (chapter 4.2.4) was not performed as part of the model validation. 

3.1.1 Prostate cancer model training and validation data 

The initial goal was to test and build a prostate cancer model that is robust but still can 
produce plans comparable to the clinical plans. It was also preferred that the model could 
create DVH predictions with minimal number of additional structures to complete OARs 
and PTVs. The reason for this was that generation of extra structures increase the planning 
time. 

Number of training plans must be much higher than the minimum of 20 plans to build a 
robust model that could create DVH predictions within the dose-volume constrains. Ini-
tially 5 different previous built models were compared and further several model modifi-
cations were made and competed against each other to find the most applicable option. 
One of the 5 models provided with the software, 2 were built by a physicist from TAYS 
hospital and 1 was built as part of this thesis work. 

First of the TAYS-made models (TAYS tot) included 104 training plans, randomly cho-
sen from treated prostate cases. Only excluded patient cases included either prosthesis or 
significant outliers (see chapter 3.4.3). The plans included different sized (empty and full) 
bladders and rectums, varying target to organ distances, plans with and without seminal 
vesicles and plans with and without 46 Gy PTV-structure. The guideline in TAYS is to 
have ‘fairly full’ bladder and empty rectum during imaging and treatment, but the actual-
ization is patient dependent. Majority of the training data consisted of 7 field IMRT plans, 
rest were 1 or 2 arc VMAT plans. The model was trained by using the total OAR struc-
tures from the plans. The second TAYS model (TAYS crop) included the same training 
set as the first model, but now the model was trained by using modified OAR structures, 
where the OAR and PTV overlapping was subtracted from the final OARs. 

The model built as part of this thesis included training data of 38 plans, chosen coherently 
compared to random selection in TAYS tot. The model was then analyzed with the re-
gression- and residual plots and with a set of model fit statistics (see chapter 3.4). The 
training set was further cleaned from verified outliers to achieve higher coherence. 
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Model comparison in this stage was performed to a set of 9 patients (4 IMRT and 5 
VMAT) chosen by random selection (excluding prostheses). Overall best performing 
model (TAYS tot) was then chosen for further optimization and training. Outlier detec-
tion, further training and DVH objectives modification resulted in several versions of the 
original TAYS tot -model, which were again competed against each other and compared 
to the original treatment plans. Comparison method was DVH value comparisons based 
on TAYS conventions and DVH limits using DVH analysis -Matlab program made for 
this thesis (see chapter 3.3). Final model version was trained with 126 out from 150, 
mostly randomly selected plans with 10 outliers for rectum and 2 outliers for bladder. 
Experience from previous validation rounds indicated that the model-fit and model good-
ness statistics cannot predict accurately the model performance, especially when the train-
ing and validation sets have high variance. Thus, fit and goodness statistics were used to 
only exclude the most significant outliers. Therefore, the final model remained robust 
with highly variating, yet numerous training set. 

The second tested model was the coherent model built as part of this thesis work. The 
model was trained with 38 seemingly coherent plans and cleaned from significant outli-
ers. All the plans were 7 field IMRT plans with 6 MeV photon energy with similar dose-
volume histograms. The main goal for this model was to find out the effect of higher 
coherence in training, thus only IMRT plans were tested in validation stage. Initial testing 
with VMAT plans indicated that the model cannot compete in OAR sparing nor in PTV 
filling with the TAYS tot or with the clinical plan. The IMRT validation set was the same 
as for the TAYS tot -model. 
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3.1.2 Prostate model optimization objectives 

Prostate model’s DVH optimization objectives were primarily set according to TAYS’s 
dose-volume limits. All the prostate plans were divided in 20 fractions having 3 Gy dose 
per fraction. The limits for prostate model are presented in table 1.  

Table 1. Prostate model’s optimization objectives for both prostate models 

Structure Limit type Vol [%] Dose [Gy] from 
prescribed 

Priority 

PTV high Upper 0 60.0  100 
Lower 100 59.4  135 

PTV intermediate Upper 15 46.2  95 
Upper 0 57.0  105 
Lower 100 45.6  105 

Bladder Upper 0 60.0  80 
Upper 10 30.0  36 
Upper 30 18.0  36 
Line Generated Generated 50 

Rectum Upper 10 30.0  44 
Upper 0 60.0  80 
Upper 30 9.0  44 
Upper 50 1.8  36 
Line Generated Generated 50 

Prostate Upper 0 60.1  115 
Lower 100 60  135 

 

The dose is presented as grays in table 1. but both, dose and volume were originally de-
fined as percentages from the prescribed dose, so that the model could be used in principle 
to produce plans also with different target dose prescription for single target dose-level. 

3.1.3 Head and neck cancer training and validation data 

Head and neck model’s training data included 156 patient patients with HNC located in 
neck and mouth area.  All the training set’s patients were treated with VMAT technique 
and only bilateral (PTV area) treatment plans were chosen with individually selected arc 
geometries. Training plans included either 2, 3 or 4 PTVs with combinations of 
70/56 𝐺𝑦, 66/54 𝐺𝑦, 70/63/56 𝐺𝑦, 66/60/54 𝐺𝑦 and 70/66/63/56 𝐺𝑦. Other com-
binations and dose levels were excluded from the training set. This decreased the number 
of validation plans, since most of suitable clinical cases treated in TAYS hospital were 
used in training stage and as mentioned before, validation data and training data is rec-
ommended to be kept separated. 19 IMRT and 13 VMAT cases were used in validation 
stage. Number is small compared to the training set but is not significantly different in 
comparison with previous research.  
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In model iteration stage, the whole training set was re-planned with the HNC model and 
the re-planned data was then used to retrain the model. This left large amount of model 
planning data from the original HNC model, which may have valuable information of the 
model performance. 148 of re-planned DVHs were exported and analyzed with paired 
sample testing (Wilcoxon). Because the cases are part of the training set the results are 
treated independently from the validation results. 

3.1.4 Head and neck cancer model building and objectives 

Rapidplan is in theory capable to separate overlapping structures, e.g. between high and 
low dose-level PTVs (Fogliata 2017), but pre-contouring is also possible and may support 
the optimization process (Eclipse Algorithms). Hence, the PTV structures were modified 
before the data extraction to the model. PTV structures are usually cropped with certain 
margin to the skin surface to prevent the optimization algorithm filling the skin dose, 
which is not desired nor possible. Margins are also constructed between PTVs with dif-
ferent dose levels, so the dose boundaries will not become too steep for optimization. 
TAYS conventions are not defining the exact values for these margins, which leads to 
small differences between different planners. Thus, all the PTVs in each plan were re-
cropped for the HNC model with following guidelines: 

• High dose PTV is cropped so that a 4mm margin is left between PTV and the skin 
surface. 

• Intermediate dose PTV is cropped 4mm from the skin surface and 3 𝑚𝑚 from 
high dose PTV. 

• Low dose PTV is cropped 4mm from the skin surface, 3 𝑚𝑚 from intermediate 
dose PTV- and 6mm from high dose PTV structure. 

PTVs were cropped and matched to the model’s PTV high-, PTV intermediate- and PTV 
Low structures, so that PTVs with dose prescriptions of 70 and 66 𝐺𝑦 corresponded to 
PTV High, 63 and 60 𝐺𝑦 corresponded to PTV intermediate and 56 and 54 𝐺𝑦 dose 
levels corresponded to PTV Low. Plans including 4 PTVs were excluded from the vali-
dation set, because the optimization algorithm supports maximum of 3 PTVs. It is also 
important to note that the validation set’s PTV structures are cropped by same guidelines 
as the training set (Fogliata 2017). 

Unlike PTVs, the OAR structures were chosen to be extracted with the original contour-
ing without cropping. The reason for this is that the HNC model includes several OARs 
(5 − 12) compared e.g. to the prostate model and in future generation of additional struc-
tures slows down the planning process. Also, in prostate model testing there was no indi-
cation of benefits in additional OAR cropping. OAR structures used in model training 
with model objectives and priorities are presented in table 2.   
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Table 2. HNC model optimization objectives for PTVs 

Structure Limit type Vol [%] Dose [%] priority 
PTV high Upper 0 105 120 

Lower 100 103  143 
PTV intermediate Upper 0 105  120 

Lower 100 103  143 
PTV lower Upper 0 105  120 

Lower 0 103  143 

 

Again, as in prostate model the PTV dose objective is defined as percentage of the pre-
scribed dose. This means, that the model can be used for different dose prescriptions. 
(Eclipse Algorithms 2015) The optimization objectives for OAR structure are presented 
in table 3. 

Table 3. HNC model optimization objectives for OAR structures. Note that the dose is now de-
fined in grays and 𝑎 -parameter is used for gEUD objectives. 

Structure Limit type Vol [%] Dose [Gy] Priority 𝒂 parame-
ter 

Brain Upper 0 48 55 - 
Line Generated Generated 30 - 

Brainstem Upper 0 50 120 - 
Line Generated Generated 30 - 

Chiasm Upper 0 54 105 - 
Inner ears Mean N/A 45 55 - 
Larynx Upper 25 60 55 - 

Upper 65 50 50 - 
Mean N/A 35 50 - 
Line Generated Generated 40 - 

Lungs Mean N/A 25 25 - 
Mandible Upper 0 70 85 - 

Upper 30 60 50 - 
gEUD N/A 50 35 10.0 
Line Generated Generated 35 - 

Neck Mean N/A 25 30 - 
Optic nerves Line Generated Generated 120 - 
Oral cavity Mean N/A 26 37 - 

Line Generated Generated 40 - 
Parotids Mean N/A 22 35 - 

gEUD N/A 17 35 1.0 
Line Generated Generated 45 - 

Pharynx Upper 70 25 40 - 
Upper 60 50 50 - 
Mean N/A 38 40 - 
gEUD N/A 30 35 2.0 
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Line Generated Generated 35 - 
Spinal cord Upper 0.0 42 120 - 

gEUD N/A 25 35 1.0 
Line Generated Generated 35 - 

Submandibular 
glands 

Mean N/A 35 35 - 
gEUD N/A 15 35 1.0 
Line Generated Generated Generated - 

 

Model’s upper objectives were chosen based on TAYS dose-volume limits, previous re-
search and planning experience (Fogliata 2017) (Snyder 2016) (Wang 2017). Other ob-
jectives were chosen for maximizing OAR sparing, based on previous research and expe-
rience. OARs such as submandibular- and parotid glands were optimized with upper 
gEUD objectives in addition to mean objectives. GEUD objectives are used to affect dif-
ferent parts of the DVH curve by changing the constant 𝑎 in gEUD (equation 7). GEUD 
objectives allow weighted optimization of the DVH curves, e.g. by lowering the dose-
volume levels for OARs only in higher doses. Note that objectives in table 3 are valid 
only if the corresponding structure is matched with the model’s structure before optimi-
zation. The HNC model covers several types of cancer in head and neck area, hence not 
all the structures are included in all structure sets and thus can’t be matched with the 
model. 

3.2 Iterative training of the HNC model 

After HNC model training and validation a duplicate HNC model was created. Varian’s 
consultation suggested that iterative training of the existing model with the already trained 
plans could increase the planning uniformity. All the objectives and existing training data 
were kept unchanged for the duplicate plan.  

The optimized HNC plans were reoptimized with the original model and the resulted 
plans were used to train the duplicate model. The matched dataset was the same as with 
the original model, except a neck structure was included in retraining to avoid excess dose 
spilling to the normal tissue. After the iteration process the duplicate model included 312 
HNC plans from which the old training set and outliers were excluded. The final model 
was then trained with 126 plans and was used to re-optimize the validation set. The main 
goal for this stage was to inspect if reiteration increases the coherence in planning quality. 
All the results were exported to text files and analyzed with Matlab DVH analyzing pro-
gram (see chapter 3.3) SPSS 23 (Armonk, NY) and R 3.5.0 (Vienna, Austria). 

3.3 RP data-analysis program 

As part of this thesis work a Matlab analysis-program was written for the analyzation of 
the validation data. Eclipse has the possibility to extract patient’s DVH data for each 
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model in a single text file. The file includes the conformity indices, gradient measures, 
absolute doses, relative doses, and the corresponding volume values for each organ and 
for each plan included in the exported DVH plot. Additionally, each plan’s MU values 
were summed together and included in the text file. The data can be thousands of lines 
long and dozens of patients were analyzed in the verification stage and over 150 patients 
in iterated HNC model evaluation stage thus, it was essential to use an automated algo-
rithm for data analysis. 

The program includes a user interface (UI), where the user can choose the source folder 
including the text file or files. The model is chosen from a dropdown-menu (prostate or 
head and neck) and dose or volume points and limits can be manually inputted. Otherwise 
they are automatically set according to the TAYS conventions. The data can then be an-
alyzed. The program finds and arranges the data from all the text files in the source folder, 
so that the chosen DVH-values, computed mean values, conformity indices and MU-val-
ues are sorted for each model and structure under each patient. The program also com-
pares and displays, if the computed DVH values meet the dose-volume limits. In the end 
of the resulted file the mean values for each structure in every model are presented as a 
summary. Additionally, the program computes the DVH plots for each patient which can 
be browsed and analyzed in the UI. The UI with an example plot is presented in figure 
11. 

 

Figure 11. DVH analysis program UI. 

In figure 11 the structures volume percentage is plotted as a function of absolute dose 
[Gy]. The color code of the curves indicates the structure, e.g. in the figure, gray color 
corresponds to bladder and the line-symbol identifies the model, so that a gray line with 
“+”-symbol presents the bladder’s DVH data from manually generated treatment plan 
named “prostate”. Figure 12 presents a section from the resulted text file. 
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Figure 12. DVH analysis program generated result table for a single patient.  

The patients are sorted successively in the text file. In the end of the file, the mean results 
are computed and sorted for each model similarly as for single patient in figure 12. The 
figure presents the patient number (personal information is deleted in the analysis) and 
the structures. In figure 12, the structures are rectum, bladder, 60 Gy planned target vol-
ume (PTV60) and the femoral heads. Only the structures that have defined limits are pre-
sented in the results, but all exported structures are displayed in the DVH plot. Below the 
structure is the OARs dose (volume for targets), for which the corresponding volume (or 
dose) -value is desired. The volume-% values are presented in the columns under the 
model names. The program informs the user with a star (*) -symbol for values which do 
not meet the constrains. In figure 12 this can be seen under model “Pros_coherent” for 60 
Gy rectum dose. 

3.4 Model evaluation and validation methods 

The prostate and HNC model construction and optimization required several training it-
erations and modified number of patient data. Potential outliers were identified by using 
the Rapidplan’s data-analysis tools including DVH-, regression- and residual plots, and 
outlier statistics; cook’s distance, studentized residual, differential area and modified Z-
score. Outlier statistics are further explained in chapter 3.4.3. The Outliers were verified 
by excluding the potential outlier structures from the training set and retraining the model. 
After retraining the 𝑅2 and 𝜒2-values were compared to the previous training set’s values 
and mean squared error (MSE) was evaluated for model goodness. The prediction power 
(model goodness) of the model had tendency to decrease while the model fit increased 
(when outliers were excluded). Thus,  𝑅2 and 𝜒2 were used only as directional indicators. 

The model evaluation consisted of 5 stages, evaluation of model goodness and model fit, 
outlier analysis, dose- and statistical analysis in the validation stage. Model goodness, 
model fit, and outlier analysis were conducted with the Eclipse’s model configuration -
program. Matlab, SPSS and R were used for dose- and statistical analysis. 
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3.4.1 Model fit 

Model fit is a statistical concept, included in the Rapidplan’s model evaluation which 
consists of multiple parameters. The idea of model fit statistics is to indicate numerically 
how well the trained model represents the training data. The metrics used for the model 
fit were the 𝜒2 and 𝑅2 values. Both values represent the model-goodness-of-fit. 𝜒2 (or 
chi square) measures the squared distance between the clinical plan and the model’s esti-
mation. Chi square is the sum over squared differences between observation and expected 
result relative to the expected result. The definition of 𝜒2 is presented in equation 10 

𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑁
𝑖=1        (10) 

Where 𝑂𝑖 is the 𝑖th observation and 𝐸𝑖 is the 𝑖th expected result. (Humpfrey 2016) (Liu 
2016) 

 According to Varian Medical, the goodness of fit -statistics are determined by the dis-
tance from unity. 𝑅2, or the coefficient of determination measures the data representabil-
ity of the regression line, or in other words it describes the model’s ability to explain the 
variance in the data set. The value ranges [0,1], where values closer to 1 (or 𝑅2 > 0.7) 
are considered as close to optimal (Henseler 2009) (Moore 2013). Data overfitting was 
considered by inspecting the combination of 𝑅2 and 𝜒2. For example, high 𝑅2 and low 
𝜒2 values may indicate overfitting (Legates 1999). 

The values were analyzed during every step of model training and modification. For 
TAYS tot-model, the weight of model fit -statistics was considered small, since the model 
was built as robust by randomly chosen plans. Highly robust models require large da-
tasets, and even though the data set was relatively large compared to other models, good 
model fit could have not been expected. Also, 𝜒2 and 𝑅2 reflect only the model fit for the 
training set, not the estimation power of the model for new plans. (Eclipse Algorithms 
2015)  

Unlike for TAYS tot-model, the coherent model was trained with high priority of 𝑅2 and 
by moderate priority of  𝜒2. The values were used as part of the coherence measure with 
aim of 𝑅2 ≥ 0.7 and 1.0 < 𝜒2 < 1.1. Although, the training set was relatively small, the 
coherence is high which compensates for the model fit and good results may be expected. 
Again, the model fit alone does not predict the estimation power, but now a good reflec-
tion of the planning conventions was desired. 
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Figure 13. Regression plot of HNC model’s mandible structure with 𝑅2 > 0.7 and 𝜒2 < 1.1. 
(Eclipse v.13.6 2015) 

Note that the regression plot in figure 13. is presented through DVH and geometric prin-
cipal component scores as explained in chapter 2.4. 

3.4.2 Model goodness 

The model goodness or predictive power is evaluated by MSE between the plan and the 
model’s estimation. Rapidplan algorithm uses the training set to estimate the MSE by 
fractionating the training set into plans used in training and to plans to evaluation. (Eclipse 
Algorithms 2015) The mean squared error is calculated to evaluate the regression model, 
so that values closer to zero indicate higher predictive power. (Ivanescu 2005) In practice 
this is done by calculating the error of DVH principal component score 1 between the 
regression model’s predictions and every observation (see figure 13). The total error is 
then the squared sum over the number of observations (𝑛). 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

− 𝑌𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
)

2
𝑛
𝑖=1       (11) 

Where 𝑌𝑖𝑋
 represents either the predicted value or the observed value. (Wackerly 2008) 
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3.4.3 Outlier detection and verification 

In this work statistical outliers were identified mainly by following the Varian’s guide-
lines for outlier detection and identification. First, the model fit was robustly evaluated 
by 𝑅2 and 𝜒2 parameters, defined in chapter 3.4.1. Next, Rapidplan’s outlier statistics and 
the regression plots were evaluated for each structure with line objective. Varian has sug-
gested that Cook’s distance larger than 10.0 and studentized residual larger than 3.0 are 
potential outliers. This suggestion was used as a guideline for outlier detection. Also 2 
other outlier parameters were used in evaluation, Areal Difference of Estimate (aA) and 
modified Z-statistic, but only as support for the main parameters. In figure 13, the blue 
“+”-sign in the top left corner is considered as a potential outlier by Cook’s (CD) distance 
> 10. (Hao 2016) (Eclipse IOU 2015) 

Figure 14. Regression plot for an example HNC structure with potential outlier marked as blue 
“+”. (Eclipse v.13.6 2015) 

Cook’s distance is defined as the sum over the changes in the regression model when the 
value/observation is removed from the data set. High value of Cook’s distance corre-
sponds to large change of the model when the point is removed or added, thus CD can be 
considered more intuitively as leverage or amount of influence of the point. High CD 
values may help in outlier detection since outliers usually deviate considerably from the 
regression line and simultaneously increase the leverage. It is also clear that a single data 
point should not alone contribute to the model excessively. Points fluctuating >2 standard 
deviations from the regression line were considered as potential outliers.  
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After detecting the potential outlier from elevated CD and (or) from regression plot, re-
sidual plot, in field DVHs, other outlier metrics like standard deviation (SD) or dA and 
geometrical statistics were used to verify the outlier. In figure 15 is presented the residual 
plot from the same case as in figure 15. The potential outlier is again marked as blue “+” 
sign.  

Figure 15. The structure’s (as in figure 14) residual plot with the potential outlier marked as 
blue “+”. Modified from (Eclipse v.13.6 2015) 

After the evaluation of the outlier statistics, the case was evaluated from the in field -
DVH plots and geometrical plots. Next, the point was excluded from the data set and the 
model was retrained without the potential outlier. 𝑅2 and 𝜒2 values were inspected for 
change so that 𝑅1

2 > 𝑅2
2 and 𝜒1

2 < 𝜒2
2  indicated better model fit and thus, supported the 

outlier assumption. In figures 14 and 15, the assumption of potential outlier was refuted. 

3.4.4 Statistical methods 

The final number of validation patients for the prostate model was 16 patients for IMRT 
and 31 patients for VMAT treatment. VMAT validation was emphasized since, in future 
the treatment convention in TAYS is expected to incline towards VMAT. It was also 
interesting to see how mostly IMRT trained RP model handles VMAT plans. Statistical 
analysis was made for the PTVs and OARs, for which TAYS’s radiotherapeutic unit has 
predefined minimum dose-volume constraint recommendations. PTV (60 𝐺𝑦) was ana-
lyzed by the doses that cover 98 and 2 −percent of the PTV’s volume. OAR structures 
were statistically tested by comparing the volume-values at given dose points, excluding 
femoral heads, for which mean doses were compared. Reason for this was, that the vol-
umes at the TAYS limit doses were generally zero for femoral heads, which makes nu-
merical comparison irrelevant. 

Validation set size for HNC model was 19 IMRT plans and 13 VMAT plans. The robust-
ness of the validation set must be close to the robustness of the training set, so the valida-
tion set was narrowed to the neck and lower jaw area, excluding single sided PTVs and 
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including only full rotation or near full rotation arc geometry for VMAT. This resulted to 
shortage of applicable patient data in validation stage. Hence, the small sample size. 

The small number of samples (𝑛 < 30) resulted in use of paired sample- and single tailed 
t-tests and Wilcoxon signed rank test in model comparison (RP vs manual) and evalua-
tion. Three different null hypotheses were defined for the statistical analysis: 

1. 𝐻0: RP generated DVHs are equivalent to the manual plans 
(𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 0). 

   𝐻1: RP generated DVHs are not equivalent to manual plans. 
2. 𝐻0: TAYS dose constrains are not met by RP generated DVH-values. 

 𝐻1: RP generated DVH-values are higher for PTVs and lower for OARs than 
TAYS constrains (plans meet the dose constrains). 

3. 𝐻0: RP generated conformity indices are comparable to clinical plans 
(𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 0). 
𝐻1: RP generated conformity indices differ from clinical plans. 

The first null-hypothesis tests the robustness and planning convention representability of 
the model. All the clinical plans were validated and used in curative treatments. Thus, if 
the null hypothesis cannot be rejected, it implies that RP can statistically generate similar 
models from the manual plans and hence, the model represents the planning conventions 
of the hospital within the statistical constraints. The 2nd hypothesis tests the suitability of 
RP algorithm in clinical use by testing if the generated plans meet statistically the DVH 
constrains set by the hospital. Finally, the 3rd hypothesis defines whether the model can 
create acceptable dose conformalities for the target volumes in the test groups. 𝛼 < 0.05 
was considered as a proper indicator of statistically significant difference and 𝛼 < 0.01 
as highly significant difference resulting to null-hypothesis rejection (Dahiru 2008). 

Paired sample t-test or Wilcoxon signed rank test were used for the model comparison 
(1st hypothesis) depending on the normality of the data. These tests are applicable for this 
purpose, since paired samples test is used directly from the RP generated and manual plan 
DVHs i.e. the same patient, giving the significance of the mean difference between the 
models. (Kim 2015). The t-test was chosen for normally distributed data because of the 
small sample size (𝑛 < 30). Normality of the data was determined by Shapiro-Wilk test 
in SPSS and in R. For non-normal data distributions Wilcoxon signed rank test was used. 
Also, additional Bland-Altman plots were created in SPSS from the prostate sample pairs 
which did not indicate statistically significant difference. The trend around the mean dif-
ference was evaluated visually and with data regression analysis. 

The 2nd hypothesis used single tailed t-test. The t test was again chosen because of the 
small sample size. It is sufficient to use single tailed t-test since, only one directional 
values are important. The test was performed and analyzed in R. 
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Similar to the 1st hypothesis, paired samples t-test or Wilcoxon signed rank test was used 
for the 3rd hypothesis (data was tested to be normally distributed). 𝛼 = 0.05 was again 
considered as statistically significant and 𝛼 = 0.01 as highly significant. 

HNC models were also tested with Friedman’s non-parametric test. The goal of this test 
was to determine if the original RP model or the iteration model produced means deviate 
from original plans or from each other. Friedman’s test tests the null hypothesis of groups 
having the same means (comparable to hypothesis no. 1 above) and indicates if there is 
significant statistical difference between the plans. The test does not provide any addi-
tional information about the deviating plan nor identify the plan. For this purpose, com-
plementary post hoc test was carried out with Bonferroni method. Friedman and post hoc 
tests were computed and analyzed in Matlab, producing the p-value for Friedman’s test 
and p-values with visual presentation for post hoc. Post hoc results were acquired by using 
the multi-compare -Matlab function included in the Statistics and Machine Learning -
Toolbox. The critical value for the multiple comparisons test is defined by Bonferroni 
method presented in equation 12. 

|𝑡| =
|𝑦𝑖̅−𝑦𝑗̅̅ ̅|

√𝑀𝑆𝐸(
1

𝑛𝑖
−

1

𝑛𝑗
)

> 𝑡𝛼

2
(

𝑚
2

),𝑁−𝑚
       (12) 

Here 𝑁 − 𝑚 is the difference between the number of total observations and groups, 𝑀𝑆𝐸 
is the mean squared error and 𝑦𝑥 is the observation (MathWorks 2018). Bonferroni 
method uses the Student’s t-distribution to find the critical values. Method also compen-
sates for type-I error caused by multiple comparisons by correcting the significance level 
as presented in equation 13 

𝛼𝑐𝑜𝑟 =
𝛼

2
(

𝑚
2

)           (13) 

Here 𝛼 is the original significance level and 𝑚 is the number of comparisons. (Math-
Works 2018) 

3.4.5 Additional dose analysis 

Statistical analysis focuses in model specific mean values over the whole validation set, 
but the interest concentrates also in the patient specific and individual DVH point-results. 
Hence, an additional dose analysis was concluded. The analysis compares the DVH re-
sults, conformity indices and MU values between patients. Also, different plans were 
tested with Friedman’s test for differences between groups and further with multiple com-
parison Post hoc test similarly as described in chapter 3.4.4. For conformity indices paired 
sample t-test was concluded after the data was confirmed as normally distributed with 
Shapiro-Wilk test. The RTOG protocol defines CI to be in acceptable region if 1 ≤ 𝐶𝐼 ≤

2. (Stanley 2011) (Petkovska 2010) 
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MU values were computed from the eclipse planning software by adding the MU values 
from each field (or arc). The values were included in the exported text file for each patient. 
For prostate model, the CI values were exported for the PTV high structure directly from 
the Eclipse Software. However, the HNC plans included at least 2 target volumes. The 
Eclipse Software calculates the CI values based on the prescribed dose (PTV high) from 
equation 7, so the conformity indices of the lower dose level PTV cannot be directly 
calculated. To achieve this, additional 95 % isodose structures were created for each pa-
tient, which were used as the reference volume in equation 7. 
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4. RESULTS 

In this chapter the results of this thesis work are presented. The results are divided in two 
main sections; to prostate model and to HNC model, which are further divided to statis-
tical analysis and to additional dose analysis. HNC model includes also the comparison 
results of the re-planned training set of the original HNC RP model against the training 
set consisted of clinical plans.  

4.1 Prostate model 

One of the prior goals in this thesis work was to find and improve, and to create a 
Rapidplan prostate model, which can generate acceptable DVH predictions for varying 
group of prostate cancer patients. The results considering the final prostate models are 
presented in this chapter. 

4.1.1 Prostate model evaluation results  

The prostate models were evaluated mainly with model fit and model good statistics as 
described in chapters 3.4. The model fit, and model goodness results are presented in table 
4 for the Tays tot -model. 

Table 4. Model evaluation results for the TAYS tot model. Both bladder and rectum showed rel-
atively low level of model fit considering values for 𝑅2. 

Structure Training 
set’s size 

MSE 𝑹𝟐 𝑿𝟐 Outliers 

Bladder 126 0.00184 0.444 1.057 10 
Rectum 126 0.00300 0.379 1.033 2 

 

Total number of excluded plans was 23 (126 from 149). The model was trained for 126 
PTV high and prostate targets and for 40 PTV intermediate targets. In table 5 are pre-
sented the model fit and model goodness statistics for the coherent prostate model (TAYS 
coh). 
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Table 5. Model evaluation results for the TAYS coh model. Coherence of the training 
set data had improving effect to model fit. 

Structure Training 
set’s size 

MSE 𝑹𝟐 𝑿𝟐 Outliers 

Bladder 34 0.00186 0.497 1.020 0 

Rectum 34 0.00348 0.827 1.214 2 

Femoral head L 25 0.00666 0.811 1.009 9 

Femoral head R 25 0.00457 0.883 1.141 11 
 

TAYS coh model was trained with 36 plans, from which 36 PTV high and prostate struc-
tures were matched with the model. PTV intermediate structures were matched with 10 
plans. Coherent model was trained with 36 out of 36 extracted plans, which means that 
no outliers were excluded. 

4.1.2 Statistical analysis of the prostate model 

Table 6 presents the prostate model results with IMRT validation set for the 1st and 2nd 
null hypothesis (chapter 3.4.4) concerning model equivalence and DVH constraints re-
spectively. 

Table 6. Paired samples t-test results for the prostate model with IMRT validation set. PTV re-
sults are presented as volume-doses and OAR results as dose-volumes, excluding femoral heads 

for which mean doses were computed. 

Structure Dose con-
straint 

Original 
plan 

(𝒎𝒆𝒂𝒏 ± 𝑺𝑫) 

TAYS tot 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫) 

TAYS coh 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫) 

Df 

PTV D98 [Gy] 𝐷98 ≥ 57 57.79 ± 0.34 57.55 ± 0.47 57.88 ± 0.12 15 

PTV D2 [Gy] 𝐷2 ≥ 60 61.07 ± 0.21 61.09 ± 0.36 61.28 ± 0.17 15 

Rectum 𝑉60𝑤 [%] 𝑉60 < 3 0.87 ± 0.72 1.35 ± 0.69∗∗ 1,36 ± 0.65∗ 15 

Rectum 𝑉58 [%] 𝑉58 < 5 3.46 ± 1.42 3.64 ± 1.8 3.47 ± 1.47 15 

Rectum 𝑉54 [%] 𝑉54 < 20 6.40 ± 2.02 6.66 ± 1.70 5.34 ± 1.59∗∗ 15 

Rectum 𝑉46 [%] 𝑉46 < 35 11.67 ± 3.51 12.14 ± 2.46 9.13 ± 2.29∗∗ 15 
Rectum 𝑉38.5 [%] 𝑉38.5 < 50 19.03 ± 6.32 19.86 ± 5.00 14.34 ± 3.98∗∗ 15 
Bladder 𝑉49𝑤 [%] 𝑉49 < 25 6.52 ± 4.08 6.76 ± 3.28 8.37 ± 3.64∗∗ 15 

Bladder 𝑉38.5 [%] 𝑉38.5 < 50 11.30 ± 6.44 12.35 ± 5.81∗ 14.31 ± 6.66∗∗ 15 

Femoral head (L) 
𝐷𝑚𝑒𝑎𝑛 𝑤

 [Gy] 
- 10.14 ± 4.56 10.55 ± 4.87 10.88 ± 4.74∗ 10 

Femoral head (R) 
𝐷𝑚𝑒𝑎𝑛  [Gy] 

- 10.78 ± 5.06 10.62 ± 5.37 10.78 ± 5.06 9 

*: 𝑝 < 0.05         **: 𝑝 < 0.01 †: Dose constraint is not met 
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Table 6 includes the mean (over the validation group) of the OAR structures and the dose 
values for PTVs with SD and degrees of freedom (Df). Wilcoxon signed rank tested struc-
tures are marked with “lowercase 𝑤”. 

Similar to table 6, table 7 presents the statistical results for the VMAT validation plans. 

Table 7. Paired samples t-test results for the prostate model with VMAT validation set. PTV re-
sults are presented as volume-doses and OAR results as dose-volumes, excluding femoral heads 

for which mean doses were computed. 

Structure Dose-volume 
constraint 

 

Original plan 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫) 

RP model (TAYS 
tot) 

(𝒎𝒆𝒂𝒏 ± 𝑺𝑫) 

Df 

PTV D98w [Gy] 𝐷98 ≥ 57 58.16 ± 0.50 58.40 ± 0.49∗ 29 

PTV D2w [Gy] 𝐷2 ≥ 60 61.65 ± 0.39 62.27 ± 0.47∗ 30 

Rectum 𝑉60𝑤 [%] 𝑉60 < 3 1.68 ± 1.13 2.33 ± 1.09∗ 30 

Rectum 𝑉58 [%] 𝑉58 < 5 4.05 ± 1.56 4.32 ± 1.39 30 

Rectum 𝑉54 [%] 𝑉54 < 20 7.01 ± 2.31 7.00 ± 1.87 30 

Rectum 𝑉46 [%] 𝑉46 < 35 11.56 ± 3.73 11.63 ± 2.75 30 
Rectum 𝑉38.5 [%] 𝑉38.5 < 5 17.79 ± 5.86 17.63 ± 4.17 30 
Bladder 𝑉49 [%] 𝑉49 < 2 9.27 ± 6.90 8.93 ± 6.26 30 

Bladder 𝑉38.5 [%] 𝑉38.5 < 50 15.31 ± 10.99 14.93 ± 9.99 30 

Femoral head (L) 
𝐷𝑚𝑒𝑎𝑛  [Gy] 

- 15.45 ± 5.45 14.71 ± 4.62 12 

Femoral head (R) 
𝐷𝑚𝑒𝑎𝑛  [Gy] 

- 14.31 ± 5.30 10.62 ± 5.37 12 

*: 𝑝 < 0.05         **: 𝑝 < 0.01 †: Dose constraint is not met 

Original number of validation plans was 31, but one plan had to be discarded for PTV60 
as outlier. Wilcoxon signed rank tested structures are again marked with “lowercase 𝑤”. 
Note that for femoral heads the mean doses are presented in tables 6 and 7 instead of 
volumes corresponding to the DVH constraint. Femoral heads DVHs met the TAYS con-
straints clearly in every case, hence mean dose was measured for further comparison. 

Results, which had no statistical difference in t-test or Wilcoxon rank tests, were further 
analyzed by creating Bland-Altman plots from the difference data. Plots were primarily 
analyzed visually and unclear cases additionally by linear regression. Figure 16a shows 
an example case of a Bland-Altman plot for PTV60 structure (VMAT). Figure 16b shows 
an example from IMRT PTV60 structure. 
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Figure 16. Bland-Altman plots for PTV60-structures for VMAT (a) and IMRT (b) plans. Neither 
of the plots show bias. 

Bland-Altman plot includes the scatter point differences between the two plans, where y-
axis is the difference value and x-axis the mean. The middle line represents the mean 
difference of the data and the upper and lower lines represent the 95% confidence interval. 
Figure 16a was analyzed as having no indication of a trend, since the data scatters ap-
proximately evenly around the mean difference. This was confirmed by linear regression 
in SPSS, having 𝑝 = 0.851 for mean, which strongly indicated that there is no propor-
tional bias (𝛼 = 0.05). Unlike figure 16, figure 17a indicates visually a trend in the re-
sults, having 11 data points below the mean and only 5 data points above the mean with 
one potential outlier. 

 

Figure 17. Bland-Altman plots for bladder (a) and left femoral head (b). The bladder plot (a) 
shows signs of bias. 

This may be a result e.g. from proportional bias, outliers or from too small data set. Plot’s 
scatter characteristics (large in diff-axis and semi-random) may suggest that the data set 
is too small for such a large variating data set. 
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4.1.3 MU and CI values for the prostate models 

The CI values inside the region (1 − 2) have no deviation from the RTOG’s protocol. 
Values 0.9 − 1.0 and 2.0 − 2.5 are classified having minor deviations and values out 
from this range are considered as majorly deviating. (Stanley 2011) Table 8 presents the 
results for the CI single sample- and paired sample t-tests respectively. 

Table 8. Paired samples t-test results for TAYS tot and TAYS coh model’s conformity indices. 

Target 𝐎𝐫𝐢𝐠𝐢𝐧𝐚𝐥𝐢𝐦𝐫𝐭 
(𝐦𝐞𝐚𝐧 ± 𝐒𝐃) 

𝐓𝐀𝐘𝐒 𝐭𝐨𝐭𝐢𝐦𝐫𝐭  
(𝐦𝐞𝐚𝐧 ± 𝐒𝐃) 

𝐓𝐀𝐘𝐒 𝐜𝐨𝐡𝐢𝐦𝐫𝐭 
(𝐦𝐞𝐚𝐧 ± 𝐒𝐃) 

𝐎𝐫𝐢𝐠𝐢𝐧𝐚𝐥𝐯𝐦𝐚𝐭 
(𝐦𝐞𝐚𝐧 ± 𝐒𝐃) 

𝐓𝐀𝐘𝐒 𝐭𝐨𝐭𝐯𝐦𝐚𝐭 
(𝐦𝐞𝐚𝐧 ± 𝐒𝐃) 

PTV high 1.52 ± 0.19 1.66 ± 1.17 1.73 ± 0.17∗ 1.70 ± 0.05 1.49 ± 0.04∗∗ 

*: 𝑝 < 0.05         **: 𝑝 < 0.01 

For IMRT plans 𝑝 > 𝛼, where 𝛼 = 0.05 is again considered as the threshold for statisti-
cally significant deviation. 

MU values were compared with Friedman’s test and multiple comparisons post hoc in 
Matlab. The resulting box plots are presented in figure 18. 

 

Figure 18. MU comparison box plots for prostate IMRT and VMAT validation. 

In comparison between IMRT plans, the coherent model’s produced MU values exceeded 
both, the original plan and the TAYS_TOT (RP) plans MU values in all except one case. 
Comparison statistics are presented in table 9. 

Table 9. MU value comparison results for IMRT plans. 
Model Mean MU SD ∆𝒎𝒆𝒂𝒏 from ori-

ginal 
Original 916.53 141.35 0 

TAYS tot 878.3 117.66 -38.20 

TAYS coh 1113.9 175.99 197.40 
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Results for Friedman’s test and multiple comparison post hoc with Bonferroni correction 
are presented in table 10. 

Table 10. Friedman tests results for IMRT plan MU comparisons. 
Friedman test’s p-va-

lue 
Orig vs RP p-value Orig vs coh. p-

value 
RP vs coh. p-value 

0.0000 0.820 0.003 0.000 

 

In table 11. is presented the MU comparison results for the VMAT plans and the result 
for the paired sample t-test. 

Table 11. MU value comparison results for VMAT plans. 

 

VMAT validation included 30 prostate plans and the IMRT validation 15 plans. Statistical 
significance for the statistical testing was again chosen as 0.05. In 90 % of the cases the 
original (manual made) plan produced lower MU values than the RP model. 

  

Model Mean MU SD ∆𝒎𝒆𝒂𝒏 from 
original 

p-value (t-
test) 

Original 932.66 85.76 0  

TAYS tot 987.71 67.08 55.05 0.001 
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4.2 HNC models 

The final goal in this work was to build, test and evaluate a head and neck cancer model. 
Additional goal was to iteratively re-plan and re-train the model. The model evaluation 
results are presented in chapter 4.2.1. The model performance was evaluated by several 
statistical methods presented in chapter 4.2.2. and for individual patients presented in 
chapter 4.2.3. The results for the iteratively built model are presented together with the 
original model and original clinical plans. Finally, additional data from the iterative re-
planning (not used in validation) is presented in chapter 4.2.4. 

4.2.1 HNC model evaluation results 

Model evaluation results for model fit (𝑅2 and 𝑋2) and model goodness (𝑀𝑆𝐸) statistics 
are presented in table 12.  

Table 12. Model evaluation results for the first RP HNC model. 

Structure Training 
set’s size 

MSE 𝑹𝟐 𝑿𝟐 Possible 
outliers 

Parotid (R) 149 0.00830 0.606 1.047 9 
Parotid (L) 146 0.00856 0.606 1.036 9 

Submandibu-
lar gland (R) 

64 0.02604 0.776 1.076 4 

Submandibu-
lar gland (L) 

70 0.02202 0.777 1.146 1 

Medulla 150 0.01050 0.309 1.034 8 
Mandible 85 0.00620 0.838 1.065 13 
Larynx 107 0.01583 0.306 1.030 9 
Brain 38 0.00964 0.806 1.144 8 

Brainstem 37 0.01411 0.618 1.046 4 
Inner ear (R) 35 0.05803 0.786 1.092 6 
Inner ear (L) 37 0.02146 0.630 1.015 2 
Oral cavity 124 0.00930 0.660 1.018 22 
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Table 13 shows the results for model fit and model goodness statistics for the iteratively 
trained HNC model. 

Table 13. Results for the iteratively trained HNC model. The statistics reflect better model fit 
than with the original model and smaller MSE values. 

Structure Training 
set’s size 

MSE  𝑹𝟐  𝑿𝟐  Possible outli-
ers 

Parotid (R) 138 0.00383 0.830 1.062 23 
Parotid (L) 135 0.00370 0.820 1.034 22 

Submandibu-
lar gland (R) 

59 0.01483 0.912 1.176 8 

Submandibu-
lar gland (L) 

63 0.01333 0.869 1.121 7 

Medulla 133 0.00245 0.479 1.045 29 
Mandible 78 0.00526 0.927 1.085 18 
Larynx 100 0.00661 0.623 1.061 17 
Brain 34 0.01519 0.911 1.210 17 

Brainstem 32 0.01301 0.848 1.177 8 
Inner ear (R) 31 0.01987 0.782 1.148 18 
Inner ear (L) 33 0.00900 0.806 1.056 21 
Oral cavity 113 0.00311 0.923 1.074 36 

Neck 132 0.00322 0.725 1.033 11 

 

  



46 

4.2.2 Statistical analysis of the HNC model 

All the HNC paired sample tests where thus made by non-parametric Wilcoxon signed 
rank tests. This also makes the 𝑝 − value comparison between structures more convenient 
than between parametric and non-parametric tests. The paired sample test results for 
IMRT plans are presented in table 14. 

Table 14. The non-parametric paired sample test for IMRT plans. Table presents the mean±𝑆𝐷 
values for each model and structure and the tested constraint guideline. 

Structure Constraint 
[Gy] 

Clinical plans 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫 

[Gy]) 

RP model 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫 

[Gy]) 

Iterated model 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫 

[Gy]) 

Df 

PTV 70 𝐷95 ≥ 66.5 67.64 ± 0.74 68.97 ± 0.64 67.78 ± 0.70 9 

PTV 66 𝐷95 ≥ 62.7 61.07 ± 0.21 

 

61.09 ± 0.36 61.28 ± 0.17 15 

PTV 63 𝐷95 ≥ 59.9 60.18 ± 0.91 61.03 ± 0.65 61.06 ± 0.65 4 

PTV 60 𝐷95 ≥ 57.0 58.07 ± 0.37 

 

58.56 ± 0.38 58.73 ± 0.28 4 

PTV 56 𝐷95 ≥ 53.2 53.78 ± 0.53 54.47 ± 0.67 54.46 ± 0.67 9 

PTV 54 𝐷95 ≥ 51.3 52.38 ± 0.38 52.79 ± 0.35 

 

52.81 ± 38 4 

Submandibular 
gland (R) 

𝐷𝑚𝑒𝑎𝑛 < 45 53.82 ± 9.85 46.99 ± 9.98∗ 56.79 ± 9.47 6 

Submandibular 
gland (L) 

𝐷𝑚𝑒𝑎𝑛 < 45 52.96 ± 15.40 48.97 ± 14.89 48.64 ± 14.64 4 

Parotid (R) 𝐷𝑚𝑒𝑎𝑛 < 26 32.37 ± 9.99 31.48 ± 8.36 32.44 ± 8.03 14 

Parotid (L) 𝐷𝑚𝑒𝑎𝑛 < 26 33.05 ± 8.63 33.15 ± 8.63 33.05 ± 10.08 13 

Medulla 𝐷𝑚𝑎𝑥 < 50 46.78 ± 6.41 46.89 ± 3.80 48.15 ± 3.79 14 

Brain - 18.93 ± 3.15 28.05 ± 2.15∗ 28.36 ± 1.52∗ 4 

Brainstem 𝐷𝑚𝑎𝑥 < 55 50.80 ± 3.22 50.24 ± 1.42 50.04 ± 1.52 4 

Oral Cavity 𝐷𝑚𝑒𝑎𝑛 < 26 33.29 ± 7.41 30.67 ± 8.53 30.94 ± 9.00 5 

Mandibula 𝐷𝑚𝑎𝑥 < 70 53.08 ± 5.32 53.64 ± 5.12 53.53 ± 4.79 9 

Larynx 𝐷𝑚𝑒𝑎𝑛 < 45 49.69 ± 6.91 39.29 ± 4.11∗∗ 39.93 ± 2.97∗ 8 

*: 𝑝 < 0.05         **: 𝑝 < 0.01        †: Dose constraint is met 

Table 14 presents the results for Wilcoxon ranked sign test for the IMRT treatment plans 
for related samples. Structures including less than 5 samples were excluded from statisti-
cal testing. Note that the degrees of freedom (Df) in table 14. is defined as 𝑁 − 1, where 
𝑁 is the total sample size. The results for paired sample statistical testing for VMAT plans 
are presented in table 15. 
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Table 15. The non-parametric paired sample test for VMAT plans. Table presents the mean±𝑆𝐷 
values for each model and structure and the constraint guideline. 

Structure Constraint 
[Gy] 

Clinical plans 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫 

[Gy]) 

RP model 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫 

[Gy]) 

Iterated RP 
model 

(𝒎𝒆𝒂𝒏 ± 𝑺𝑫 
[Gy]) 

Df 

PTV 70 𝐷95 ≥ 66.5 67.82 ± 0.50 68.05 ± 0.68 67.98 ± 0.70 9 

PTV 66 𝐷95 ≥ 62.7 61.07 ± 0.21 

 

61.01 ± 0.36 61.28 ± 0.17 4 

PTV 63 𝐷95 ≥ 59.9 60.94 ± 0.38 60.83 ± 0.69 60.79 ± 0.57 6 

PTV 60 𝐷95 ≥ 57.0 58.07 ± 0.37 

 

58.56 ± 0.38 58.73 ± 0.28 4 

PTV 56 𝐷95 ≥ 53.2 54.28 ± 0.40 54.05 ± 0.52 53.82 ± 0.84 9 

PTV 54 𝐷95 ≥ 51.3 52.38 ± 0.38 52.79 ± 0.35 

 

52.81 ± 38 4 
 

Submandibular 
gland (R) 

𝐷𝑚𝑒𝑎𝑛 < 45 43.82 ± 18.08 41.93 ± 15.99 41.25 ± 16.73 8 

Submandibular 
gland (L) 

𝐷𝑚𝑒𝑎𝑛 < 45 42.45 ± 14.22 43.92 ± 13.62 40.97 ± 13.09 9 

Parotid (R) 𝐷𝑚𝑒𝑎𝑛 < 26 30.21 ± 10.78 29.95 ± 9.22 30.85 ± 9.37 12 

Parotid (L) 𝐷𝑚𝑒𝑎𝑛 < 26 24.46 ± 6.62 25.95 ± 6.17 30.84 ± 5.91∗ 12 

Medulla 𝐷𝑚𝑎𝑥 < 50 44.59 ± 3.36 43.93 ± 1.60† 43.83 ± 1.71† 12 

Brain - 18.93 ± 3.15 28.05 ± 2.15∗ 28.36 ± 1.52∗ 4 

Brainstem 𝐷𝑚𝑎𝑥 < 55 50.80 ± 3.22† 50.24 ± 1.42† 50.04 ± 1.52† 4 

Oral Cavity 𝐷𝑚𝑒𝑎𝑛 < 26 29.41 ± 7.22 30.29 ± 6.66 30.29 ± 6.79 7 

Mandibula 𝐷𝑚𝑎𝑥 < 70 40.74 ± 14.83 40.74 ± 14.42 39.97 ± 15.02 5 

Larynx 𝐷𝑚𝑒𝑎𝑛 < 45 44.18 ± 8.18 44.95 ± 6.91 45.47 ± 5.97 4 

*: 𝑝 < 0.05         **: 𝑝 < 0.01        †: Dose constraint is met 

Again, structures with less than 5 samples were excluded from the analysis. Due to small 
sample sizes, the IMRT and VMAT data was combined and tested once more with non-
parametric Wilcoxon test. The results are presented in table 16.  
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Table 16. The non-parametric paired sample test for all the HNC plans combined. Table pre-
sents the mean±𝑆𝐷 values for each model and structure. 

Structure Dose con-
straint [Gy] 

Original plan 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫 

[Gy]) 

RP model 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫 

[Gy]) 

Iterated RP mo-
del 

(𝒎𝒆𝒂𝒏 ± 𝑺𝑫 
[Gy]) 

Df 

PTV 70 𝐷95 ≥ 66.5 67.73 ± 0.62 68.01 ± 0.64 67.88 ± 0.69 19 
PTV 66 𝐷95 ≥ 62.7 63.15 ± 0.86 

 

64.34 ± 1.26 64.38 ± 1.27 7 

PTV 63 𝐷95 ≥ 59.9 60.63 ± 0.73 

 

60.91 ± 0.65∗ 60.90 ± 0.59∗ 11 

PTV 60 𝐷95 ≥ 57.0 57.61 ± 0.87 

 

58.32 ± 1.83 58.40 ± 1.94 6 

PTV 56 𝐷95 ≥ 53.2 53.82 ± 0.62 54.26 ± 0.62 54.139 ± 0.8 19 
PTV 54 𝐷95 ≥ 51.3 52.02 ± 0.86 52.79 ± 1.13∗ 

 

52.522 ± 1.71 7 

Submandibular 
gland (R) 

𝐷𝑚𝑒𝑎𝑛 < 45 48.20 ± 15.47 44.14 ± 13.52∗∗ 43.71 ± 13.89∗∗ 15 

Submandibular 
gland (L) 

𝐷𝑚𝑒𝑎𝑛 < 45 45.96 ± 14.97 45.60 ± 13.74 45.53 ± 13.78 14 

Parotid (R) 𝐷𝑚𝑒𝑎𝑛 < 26 31.37 ± 8.55 30.77 ± 8.63 31.70 ± 10.22 27 
Parotid (L) 𝐷𝑚𝑒𝑎𝑛 < 26 28.91 ± 9.50 29.68 ± 8.27 30.66 ± 7.93∗ 26 

Medulla 𝐷𝑚𝑎𝑥 < 50 45.77 ± 3.68 45.52 ± 3.30 46.15 ± 5.24 26 
Brain - 18.93 ± 3.15 28.05 ± 2.15∗ 28.36 ± 1.52∗ 6 

Brainstem 𝐷𝑚𝑎𝑥 < 55 50.80 ± 3.22 50.24 ± 1.42 50.04 ± 1.52 4 
Oral Cavity 𝐷𝑚𝑒𝑎𝑛 < 26 31.01 ± 7.27 30.45 ± 7.20 30.57 ± 7.49 13 
Mandibula 𝐷𝑚𝑎𝑥 < 70 48.45 ± 10.90 48.80 ± 11.25 48.44 ± 11.62 15 

Larynx 𝐷𝑚𝑒𝑎𝑛 < 45 47.72 ± 7.58 41.31 ± 5.74∗ 41.91 ± 4.90∗ 13 
*: 𝑝 < 0.05         **: 𝑝 < 0.01        †: Dose constraint is met 



49 

Finally, a small script was written for the test to run one-way Friedman and post hoc tests 
for the three models. The resulted box plots are presented in figures 19, 20 and 21. 

Figure 19. Box plots for PTVs. The Friedman test showed no statistically significant difference 
between the plans (*: p<0.05, **- p<0.01). IMRT and VMAT data was combined for Friedman 

and Post hoc tests. 

Figure 19 presents the results for planned target volumes between the clinical plans (orig), 
first HNC RP model and the iterative HNC model (iter). Box plots were created with 
Matlab, and the plots consists of the central red line which is the median, box bottom and 
top edge represent the 25 and 75 percentile values and the whiskers are the lowest and 
highest values in the group. (MathWorks 2018) Outliers are marked with red “+” -symbol.  
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In figure 20 are presented the box plots for combined VMAT and IMRT data for subman-
dibular- and parotid glands, medulla and mandible. 

Figure 20. Box plots for submandibular (a) and parotid glands (b), medulla (c) and mandible 
(d). The post hoc test showed statistically significant difference for submandibular and parotid 

glands (* p<0.05, ** p<0.01). 

The last remaining OAR structures analyzed with multiple comparisons are presented in 
figure 20. 

Figure 21. Box plots for oral cavity (a), larynx (b), brainstem (c) and brain (d). The post hoc 
test showed statistically significant difference for brain (* p<0.05, ** p<0.01) 
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The numeric statistical results for the Friedman’s test and post hoc tests are presented in 
table 17. 

Table 17. Statistical results for the Friedman and post hoc tests for all patients. 
Structure Friedman 

(p-value) 
Post hoc 

Iter-RP (p-
value) 

Post hoc 
Iter-Orig (p-

value) 

Post hoc 
RP-Orig (p-

value) 

Plan/plans 
differ (p-

value) 
Parotids 0.002 

 
0.002 0.033 1.000 Yes 

Submandibu-
lar glands 

0.000 0.067 0.000 0.170 Yes 

Medulla 0.156 1.000 0.544 0.184 No 
Brainstem 0.247 0.342 0.618 1.000 No 

Brain 0.021 1.000 0.049 0.049 Yes 
Mandible 1.000 1.000 1.000 1.000 No 
Larynx 0.010 0.392 0.392 0.008 Yes 

Oral Cavity 0.947 1.000 1.000 1.000 No 
PTV54 0.197 1.000 0.240 0.634 No 
PTV56 0.951 1.000 1.000 1.000 No 
PTV60 0.277 1.000 0.326 1.000 No 
PTV63 0.339 1.000 0.459 0.922 No 
PTV66 0.197 1.000 0.24 0.634 No 
PTV70 0.047 1.000 0.081 0.120 No 

 

Table 17. presents the p-value for Friedman’s test, with 𝛼 = 0.05. Probability 𝑝 < 0.05 
indicates that at least one group’s mean deviates significantly from the other groups. Post-
hoc results show the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for each comparison between individual groups. The crit-
ical value for this comparison was defined by the Bonferroni method defined by equation 
13. 

4.2.3 CI and MU values for the HNC models 

Results for VMAT conformity indices are presented in table 18. 

Table 18. Paired sample comparison for conformity indices. (VMAT) 
Target Original plan CI 

(𝒎𝒆𝒂𝒏 𝑪𝑰 ± 𝑺𝑫) 
RP model CI 

(𝒎𝒆𝒂𝒏 𝑪𝑰 ± 𝑺𝑫) 
Iterated RP model 

CI 
(𝒎𝒆𝒂𝒏 𝑪𝑰 ± 𝑺𝑫) 

Df 

PTV high 1.19±0.14 1.24±0.17 1.24±0.17 15 

PTV intermediate 1.38±0.19 

 
1.51±0.19* 1.46±0.19 8 

PTV low 1.37±0.14 
 

1.46±0.21* 1.44±0.22 15 
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Table 19 presents the same CI comparison for IMRT plans. 

Table 19. Paired sample comparison for conformity indices. (IMRT) 
Target Original plan 

(𝒎𝒆𝒂𝒏 𝑪𝑰 ± 𝑺𝑫) 
RP model 

(𝒎𝒆𝒂𝒏 𝑪𝑰 ± 𝑺𝑫) 
Iterated RP model 

(𝒎𝒆𝒂𝒏 𝑪𝑰 ± 𝑺𝑫) 
Df 

PTV high 1.23±0.34 1.27±0.10 1.26±0.08 15 

PTV intermediate 1.33±0.09 

 
1.52±0.10** 1.52±0.11** 8 

PTV low 1.44±0.13 
 

1.67±0.17** 1.67±0.17** 15 

 

MU values were compared with same methods as for prostate models. The resulted box 
plots are presented in figure 22. 

 

Figure 22. Box plots for HNC model MU value comparison. 

Comparison statistics for VMAT validation plans are presented in table 20. 

Table 20. MU value comparison results for VMAT plans. 

 
Results for Friedman’s test and multiple comparison post hoc with Bonferroni correction 
are presented in table 21. 

Table 21. Friedman test’s results for VMAT plans. 
Friedman test’s p-

value 
Orig vs RP p-value Orig vs iterated p-

value 
RP vs iterated p-

value 
0.004 0.074 0.003 0.922 

 

Model Mean MU SD ∆𝒎𝒆𝒂𝒏 from ori-
ginal 

Original 550.7 117.6 0 
HNC (RP) 498.2 1095 -52.5 

Iterated model 482.0 105.9 -68.7 
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In table 22 is presented the MU comparison results for the IMRT plans and the result for 
the paired sample t-test. 

Table 22. MU value comparison results for IMRT plans. 

 

In table 23 are presented the Friedman and post hoc test results for IMRT plans. 

Table 23. Friedman test’s results for IMRT plans. 
Friedman test’s p-
value 

Orig vs RP p-value Orig vs iterated p-
value 

RP vs iterated p-
value 

0.001 0.001 0.009 0.301 
 

For IMRT plans 87 % of the cases, both RP created plans exceeded the original plan’s 
MU values. VMAT plans the results were contrary to IMRT, and the original plan ex-
ceeded both RP model produced plans MU values in 75 % of the cases. 

  

Model Mean MU SD ∆𝒎𝒆𝒂𝒏 from 
original 

Original 1197.9 194.7 0 
HNC (RP) 1586.9 337.6 389.0 
Iterated 1566.4 316.4 368.0 
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4.2.4 Statistical results for retrained training set plans 

All the data was could have not been considered normally distributed due to Shapiro-
Wilk test. The results for paired sample Wilcoxon signed rank test are presented in table 
24.  

Table 24. The non-parametric paired sample test for all the HNC plans combined. Table pre-
sents the mean±𝑆𝐷∗∗ values for each model and structure, where the possible * or ** -super-

script indicates the significance level. The statistical significance is *p<0.05 and highly signifi-
cant deviation **p<0.01. 

Structure Constraint [Gy] Original plan 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫 [𝑮𝒚]) 

RP model 
(𝒎𝒆𝒂𝒏 ± 𝑺𝑫 [𝑮𝒚]) 

Df 

PTV 70 𝐷95 ≥ 66.5 67.70±1.30 67.97±0.55 78 

PTV 66 𝐷95 ≥ 62.7 62.37±8.11 
 

62.47±8.17 55 

PTV 63 𝐷95 ≥ 59.9 60.71±0.68 
 

60.61±0.98* 55 

PTV 60 𝐷95 ≥ 57.0 56.18±7.98 

 
56.30±7.92 47 

PTV 56 𝐷95 ≥ 53.2 53.94±0.59 53.60±1.63* 78 

PTV 54 𝐷95 ≥ 51.3 50.32±7.64 50.41±7.44 57 

Submandibular 
gland (R) 

𝐷𝑚𝑒𝑎𝑛 < 45 48.10±11.65 45.37±11.27** 55 

Submandibular 
gland (L) 

𝐷𝑚𝑒𝑎𝑛 < 45 46.05±10.69 43.30±10.30** 61 

Parotid (R) 𝐷𝑚𝑒𝑎𝑛 < 26 28.40±9.41 30.52±9.06** 139 

Parotid (L) 𝐷𝑚𝑒𝑎𝑛 < 26 28.21±9.54 30.22±8.64** 135 

Medulla 𝐷𝑚𝑎𝑥 < 50 42.88±5.45 43.57±7.95 139 

Brainstem - 47.00±5.45 47.46±4.36** 32 

Oral Cavity 𝐷𝑚𝑎𝑥 < 55 34.04±10.35 33.32±10.91* 114 

Mandible 𝐷𝑚𝑒𝑎𝑛 < 26 41.21±9.77 40.55±9.88** 72 

Larynx 𝐷𝑚𝑎𝑥 < 70 40.10±7.58 39.52±6.50 98 

Inner ear (R) 𝐷𝑚𝑒𝑎𝑛 < 45 15.31±9.33 11.50±7.81** 33 

Inner ear (L) 𝐷𝑚𝑒𝑎𝑛 < 45 14.72±7.99 9.57±6.26** 35 
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As seen in table 24. PTV 56 (PTV low) and PTV 63 (PTV intermediate) showed statistical 
significance between the plans. From OARs the statistical significance was high for 8 
structures and only 2 structures had 𝑝 > 0.05. Mean differences between OARs are <

 6.6 % from the higher dose for all except for inner years mean differences are relatively 
large (> 30 %). MU and CI values were not evaluated for the training set’s plans. 
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5. DISCUSSION 

In this thesis work the main objective was to find, test, improve and build KBTP models 
for prostate cancer and head and neck cancer with RP software integrated in Eclipse treat-
ment planning software. Secondary objectives were to build a DVH analysis program for 
computer aided analysis and to build an iteratively retrained HNC model, and to study 
whether the iterative training increases OAR sparing or plan coherence. The model per-
formance was studied using clinical treatment plans constructed as validation sets. In this 
chapter, the results presented in chapter 4 are further discussed with consideration of the 
objectives, previous research and Varian’s proposed benefits for Rapidplan in clinical 
use. 

5.1  Evaluation of the models 

Prostate models 

Model goodness and model fit statistics are comparable between the final prostate models 
only regarding rectum and bladder structures, since only the TAYS coh (coherent) model 
included femoral heads for line objective generation in RP. Model fit statistics presented 
in table 4 indicate that the coherent model explains the data’s variance better (≈ 12 % 
higher). The same was true for the rectum structure where the rectum’s 𝑅2-value was 
almost twice as high (≈ 46 %) which is a substantial increase. The explanation for this is 
possibly related to the training set’s higher coherence between plans, because the values 
are determined from the training set itself as explained in chapter 2.4.1. This also led to 
the conclusion that model fit statistic do not describe the true model performance for plans 
outside of the training set. These values should thus be used only as indicators, especially 
for models including small and coherent training sets. The robust model included also 
varying amount of bladder and rectum filling. This reflects to model fit statistics by in-
creasing the variance and number of potential outliers, which were 10 for the TAYS tot 
and 0 for TAYS coh model for bladder. In general, one should consider the relevance of 
a given model fit statistic for structures, which’s size is dependent mostly on physiology 
and may change between subsequent treatment fractions. 

The model performance was measured with MSE, which had no major differences be-
tween the RP models; approximately 1 % for bladder and 8.6 % for rectum, i.e. TAYS 
tot’s MSE -values were lower indicating higher predictive power. This was predictable, 
because training set’s size also contributes to descriptive model statistics (see chapter 
3.4), and TAYS tot model’s training set was almost 4 times larger than in coherent model, 
including plans with higher variation in geometry. 
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When comparing the model fit statistics to previous research, the robust prostate model 
showed lower or similar fit for bladder and lower fit for rectum. The coherent model 
showed similar or higher results for prostate. The averages from previous research were 
𝑅2 = 0.556, 𝑋2 = 1.095 for rectum and 𝑅2 = 0.832 and 𝑋2 =1.071 for bladder. Femo-
ral head model fit statistics presented in table 5 were similar between the model generated 
plans and previous research with less than 15 % difference. (Aviles 2018) (Botti 2015) 
The TAYS tot model was built by mostly random selection. Plan exclusion was done with 
loose boundaries compared to previous research or TAYS coh models, which could partly 
explain the differences in model fit. Though, high coherence in training set may lead to 
data overfitting in the regression model and affect negatively to the model’s predictive 
power. Comparison of the model fit statistics and previous inspection of the regression 
data (not presented) showed that none of the models validated in this thesis had data over-
fitting.  

As mentioned before, the model should not be modified just to get better descriptive 
model fit statistics. Also, rectum and bladder are hollow structures, which vary daily in 
size and shape. Aiming for high model fit statistics may thus not be meaningful especially 
for the robust model. The results show that higher model fit for TAYS coh model did not 
improve the model performance considering mean doses nor the dose variance compared 
to TAYS tot model. 

Head and neck models 

Model fit for HNC RP model can be considered optimal (𝑅2 > 0.7, 𝑋2 < 1.1) or close 
to optimal to all OARs except for medulla and larynx. For the iteratively trained model 
only medulla (𝑅2 = 0.479) showed considerably lower model fit. Again, the model fit 
statistics should be and were used only as guiding indicators in model training, and in 
outlier detection and -validation. The iteratively trained model showed generally higher 
model fit, which is partly caused by further outlier exclusion. Matched OARs differed 
also slightly because of the additional neck structure in iteratively trained model. In com-
parison to previous research, 𝑅2 was higher for the HNC RP model and considerably 
higher for HNC iter model (∆𝑅2 ≈ 0.2). 

MSE values were considerably higher for the HNC RP model for every OAR structure, 
excluding larynx, mandible and brainstem. The latter two yielded similar results between 
the two RP models. Only larynx’s MSE was higher in HNC iter model. Lower MSE val-
ues again indicate higher predictive power. The mean difference between OAR MSE val-
ues was 116 % in favor of HNC iter model. One could expect that such high decrease in 
MSE would translate to smaller variation in the final DVHs, but the dose comparison 
results showed no sign of such benefit. 
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5.2 Prostate model dose comparison 

IMRT plans 

The TAYS tot model showed statistically significant deviations from the clinical IMRT 
plans for bladder’s 38.5 𝐺𝑦 dose level with higher volume coverage. Also, rectum’s high 
dose (60 Gy) showed statistically (highly) significant difference between RP and clinical 
plan with higher dose-volume. 

TAYS coh model deviated also significantly from the clinical plans with all bladder dose 
levels and high rectum dose with higher mean values (table 6). For lower dose levels the 
TAYS coh model’s volume coverage was lower with high statistical significance. This 
means that the RP models could not limit the dose spreading from the PTV to rectum as 
efficiently as the clinical optimization. The increased high dose coverage is then compen-
sated in optimization by limiting the spread of low dose levels.  

Femoral heads in both models showed no statistically significant deviations from the clin-
ical plans. Unlike rectum and bladder, femoral heads are structures with constant geom-
etry with similar features between patients. Also, the physical distance from PTV is rela-
tively large. Thus, the structure is not as problematic for RP DVH optimization. 

VMAT plans 

VMAT plan comparison presented statistically significant deviations between TAYS tot 
and clinical plans for PTV structures and highest rectum dose. Again, the clinical plans 
are optimized with high priority for rectum’s high dose sparing and RP models are un-
likely to produce same level of sparing near PTVs.  

For VMAT, only the TAYS tot (robust) model was compared to clinical plans and both 
measured volumes (𝐷2 and 𝐷98) had slightly higher mean dose coverage for the RP gen-
erated plan. This also explains the increased (60 gy) rectum dose-volume. Otherwise the 
VMAT plan doses were statistically similar to the clinical plans. TAYS coh model was 
not validated with VMAT plans. 

Further discussion 

VMAT results showed overall surprisingly high similarities with the clinical plans. The 
prostate model was constructed using almost only IMRT plans, which would explain the 
differences in VMAT plan validation. Even though RP algorithm can construct VMAT 
plans from IMRT-trained model, the characteristic dose distributions are different be-
tween VMAT and IMRT plans, and the DVH prediction model may not apply sufficiently 
in these cases. However, this does not explain the large differences between clinical and 
RP based IMRT plans. The result could be explained by the high IMRT planning quality 
and routine in TAYS with high priority in OAR sparing. Furthermore, RP algorithms are 
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designed to generate coherent plans reflecting the hospitals conventions, rather than to 
produce highly individualized plans competing in OAR sparing with their clinical coun-
terparts. 

Generally, the clinical IMRT plans showed better OAR sparing compared to RP gener-
ated plans. As mentioned before, only for rectum’s lower doses the volume exposure was 
smaller for RP plans when considering the mean values. The Bland-Altman plots con-
structed for additional mean-dose comparison for similar plans showed either no bias or 
unclear bias. Because of the small validation data set the plots did not bring additional 
insight to the statistical testing. 

The results for prostate correspond to previous research in case of PTV coverage, which 
was generally found to be either the same (statistical sense) or higher in comparison with 
original plans. OAR sparing was also generally found higher in previous research, which 
was not the case in this thesis for prostate model. One reason might be the optimization 
objectives for PTVs, which were prioritized higher relative to OARs than generally in 
previous research. Also, only upper- and lower objectives were used as OAR optimization 
objectives instead e.g. combination of mean and gEUD objectives.  All objectives were 
also chosen manually instead of letting RP to generate the objectives, which would have 
been justifiable considering the goals of this thesis work. Even though statistically the RP 
prostate model could not produce higher OAR sparing, the significance testing against 
the dose constraints set by the hospital showed that all prostate models are able to produce 
clinically acceptable plans. 

5.3 HNC model dose comparison 

PTV structures 

The HNC models showed no statistically significant differences for IMRT nor VMAT 
plans for PTV structures in paired testing against the clinical plan (table 14 and table 15). 
The HNC comparison with combined VMAT and IMRT plans (table 16) showed statis-
tically significant deviation for both RP plans with one dose level (63 𝐺𝑦), and for the 
original HNC RP plan with second dose level (54 𝐺𝑦). RP plans had higher mean dose 
coverage compared to clinical plans with similar deviations. 

OAR structures 

HNC model comparisons for OAR structures showed no statistical significance except 
for submandibular glands, larynx, and brain. From the basis of dose-means, OAR sparing 
was higher for both RP model generated plans for VMAT and IMRT. The HNC RP model 
had no statistical significant difference in OAR sparing (excluding brain) to clinical plans. 
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Paired tests and multiple comparisons results showed highly statistically significant dif-
ferences for brain structure in all cases. However, the relevance of the results for brain 
should be reconsidered for 3 reasons: 

1. The brain’s dose measured only as mean value instead of maximum dose, which 
would be reasonable for serial organs.  

2. The data set size for brain was small for statistical testing.  
3. Brain structure geometry, optimization relevance and size vary much between dif-

ferent cancer cases. 

Nevertheless, the brain structure with mean objectives was included in the models and 
had an effect to the plan optimization. For validation, the effect though remains relatively 
small, because the number of validation plans including brain structure was also relatively 
small (7 from 28 plans) and the upper dose objective was set as high (55 𝐺𝑦) with average 
priority. The mean dose for brain was considerably smaller than the placed objective, 
which means that the objective is easily achieved during the optimization without high 
expenses in PTV filling nor OARs sparing. Also, the RP generated line objective for brain 
and brainstem had the lowest priorities compared to other OAR line objectives (table 3). 

Further discussion 

The results for the HNC models were comparable to previous plans. Previous research 
mainly indicated either no statistically significant difference between RP and clinical 
plans or RP creating superior plans in PTV coverage and OAR sparing. The latter can be 
considered true only for few structures in this thesis work considering the statistical sig-
nificance together with mean values and individual DVHs. The statistical testing indi-
cated that both, HNC RP and HNC iter models can produce clinically acceptable plans 
with proper OAR sparing. Take note that in some individual RP HNC plan OARs with 
high dose variation (gland structures) usually exceeded the hospital’s dose constraints. 
High variation between plans was caused by different cancer cases, where the OAR struc-
tures are physically close or overlapping the PTV and by different organ geometries. 
(Eclipse Algorithms 2015) Since additional structures were not included for OARs, e.g. 
due to overlapping, the total OAR received higher doses because PTV coverage had the 
highest priority. The same was true for clinical plans. Though, clinical plans had majorly 
higher level of OAR sparing for parotid glands compared to RP. Gland structures are 
spared during the manual optimization with high priority and the optimization is usually 
proceeded until the OAR sparing is maximized. The operation principle of RP does not 
always support same level of OAR optimization polishing which mostly explains the dif-
ference. RP plans spared the submandibular gland receiving lower total dose with statis-
tical significance compared to clinical plans. Submandibular gland receiving higher dose 
was usually spared more by the clinical plan with high statistical significance (tables 14-
16). 
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The multiple comparison results showed no statistical differences between any of the 
models for PTVs (figure 19). Though, it is important to notice that for the lower dose 
level PTVs the sample size was relatively small, and the data points classified as possible 
outliers in RP generated plans may thus have excessive leverage in statistical analysis. 

One could consider dividing the validation set to more coherent cancer cases and then 
conclude the analysis case-wise. In this thesis work this was not possible for HNC model 
because of limited validation set size. The relevance of the constraint comparison results 
for parallel organs should be reconsidered for the reasons mentioned above, and because 
the constraints are not always considered as absolute, but rather as guidelines. Thus, the 
conclusion should be based more on the comparison between the accepted clinical plan 
and RP plans and with the serial organ constraints, which are considered more as absolute 
maximum values. 

5.4 Dose conformity in target structures and MU values 

Target conformity 

The CI values in tables 18-19 were found statistically similar between all HNC model 
generated plans and original plans for the highest dose level (PTV high). For PTV inter-
mediate and PTV low the CI values could be considered similar only for the TAYS iter 
model-generated VMAT plans. Otherwise the CI value significance level was 0.01 <

𝑝 < 0,05 for VMAT plans and 𝑝 < 0,01 for all IMRT plans. The difference could be 
explained by the fact that the HNC models were trained using mostly VMAT plans. Cre-
ating an IMRT plan from VMAT based model might not be optimal considering the dose 
distributions and conformity, especially in lower PTV dose levels. When considering the 
RTOG protocol (see chapter 2.1.5) for CI, every plan created by each model stayed inside 
the proposed constraints for acceptance (1≤ 𝐶𝐼 ≤ 2). The results for conformity indices 
are in line with previous research, where the CI values were also in acceptable limits. 

MU values 

Finally, the MU multiple comparison results in tables 9-11 and 20-13 and in figure 18 
and figure 22, showed that for prostate and HNC RP -model’s plans had generally higher 
MU values compared to the original plans. Only exception was the TAYS tot model for 
prostate which had statistically similar MU values compared to original plans. Between 
the RP models, TAYS tot had significantly lower MU values compared to the coherent 
plan for prostate cancer. HNC models did not differ from each other. One possible reason 
for these results are the multiple optimization objectives including gEUD objectives and 
other high priority objectives. This may result to higher number of leaf positions and thus 
increasing delivery time which in turn increases the MU -values. 



62 

5.5 Effects of HNC model’s iterative retraining 

The HNC iter model was trained iteratively by re-planning the original model’s training 
set as described in chapter 3.2. Varian’s consultation suggested that this may increase the 
plan quality and coherence. As described in chapter 5.1, HNC iter had better model fit 
compared to the HNC RP model and generally lower MSE values, which indicated higher 
predictive power. The multiple comparison post-hoc test results (figures 19-21 & table 
17) showed that HNC iter-generated plans had statistically same level of OAR sparing 
except for parotid glands which HNC RP spared slightly more (mean comparison). Oth-
erwise the dose results were similar for both models. Similar to HNC RP model, HNC 
iter had higher (mean) OAR sparing for submandibular glands and larynx with high sta-
tistical significance compared to the clinical plan. This was not predicted because as men-
tioned before, submandibular gland’s dose optimization has high priority in clinical plan-
ning. 

CI values yielded similar results to clinical plans with no statistically significant differ-
ence for VMAT- and highest dose PTV for IMRT plans. IMRT plan PTVs with lower 
dose levels showed statistically significant difference between HNC iter and clinical plan. 
However, all CI values were inside the RTOGs limits for acceptance (chapter 2.1.5). In 
general, HNC iter produced more similar plans to clinical versions than the original HNC 
RP model. MU value comparisons did not show statistical significance between HNC RP 
and HNC iter models. The average (absolute) MUs for HNC iter- were slightly lower that 
for HNC RP model. 

5.6 Limitations and recommendations 

Specification of an optimal- or simply a better plan is not straight-forward, because of the 
multiple factors affecting to the plan evaluation. Individual cancer cases deviate largely 
and building a model, which covers even some of the deviation is a challenging process. 
The most challenging part is to define the plans which construct the model and to choose 
the features and cases, which are included and excluded from the model. In this thesis 
work the initial specification for each training set could have been defined more accu-
rately for consistency. Also, in later testing of the model it was noticed that better results 
are achieved if additional ring structures are added around PTVs for normal tissue dose 
minimization. Additionally, HNC iter model’s neck structure objectives would have been 
more sufficient to define with maximum dose constraint instead of mean dose.  

As emphasized before, RP does not aim to compete with absolute OAR sparing with the 
clinical plans and in many cases, this is not possible with the program’s architecture. If a 
given plan is manually optimized with special consideration to certain OARs, it is very 
probable that RP based plan yields lower OAR sparing for the same structures. When 
considering the coherence of RP model’s, the standard deviation for OAR structures was 
smaller in majority of the cases for both, HNC and prostate models. The coherent RP 
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model for prostate was expected to show higher coherence, but in table 6 the SD values 
are comparable to the robust model. However, this kind of result was predicted because 
higher planning coherence demands also coherence in the validation set, and in this thesis 
the validation set was robustly chosen for prostate cancer. For HNC model the iteratively 
trained model showed no sign for better coherence in means of SD for OAR structures 
compared to the original RP model. Again, the validation set included several different 
types of cancer in head and neck region without further classification, which could be an 
explanatory factor together with small number of validation plans. 

The final models have been used for some further testing by TAYS physicist and it is 
probable that the models will be used in future as support in clinical planning. Before this, 
the HNC model’s user defined optimization objectives should be reconsidered especially 
for the brain structure. Also, additional testing and modifications are recommended. 

Some of the previous research included validation groups, which include plans from the 
model’s training set. This is not recommended in future model building. The model’s 
training set and validation groups should be chosen so that they also represent the target 
group. This can be achieved either by constructing a robust general model or multiple 
coherent models. Plans generated using RP do not always correspond to manually opti-
mized plans but can be used as a starting point to manual optimization. 
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6. CONCLUSIONS 

The main objective of this master’s thesis included prostate and HNC Rapidplan model 
implementation in Tampere University Hospital. Implementation was concluded by test-
ing and modifying previously made models and by building new models based on TAYS 
constraints and planning conventions. Additional objectives were to create DVH data 
analysis program for data handling, presentation and analysis, and to build iteratively 
trained HNC model from the first model version by re-planning the model’s training set. 

Preliminary model testing yielded a suitable robust prostate model built by TAYS physi-
cist. The model was then further trained and modified. Also, a prostate model with small 
and coherent training set was built as part of this thesis. Both models were able to generate 
DVH estimations and optimization objectives, which led to clinically acceptable VMAT 
plans based on statistical results. The RP generated IMRT plans met also all the DVH 
constraints, but the OAR sparing was found to be lower in RP generated plans.  

HNC model building and training set’s retraining resulted in 2 final models. The treatment 
plans generated using the HNC models were mostly comparable to previous research and 
clinical plans with proper OAR sparing and PTV filling. The iterative HNC model devi-
ated only slightly from the original RP model. Only significant differences were found in 
PTV conformity indices and with dose differences mainly in parotid glands. Considering 
the required time for re-planning of the training set, these improvements are considered 
rather trivial. Data analysis was concluded with the miscellaneous DVH analysis pro-
gram, which was built as part of this thesis and successfully used throughout the project. 

As conclusion all the objectives set for this master’s thesis were met. In future the models 
are planned to be tested further and included as support in clinical planning. The results 
show that the models can generate optimization objectives leading to clinically acceptable 
treatment plans after optimization. Depending on the case and the model training, the plan 
based on the RP model could be used clinically as such, or as starting point for standard 
AIO optimization. 
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