

ESA HYTTINEN

3D TRACKING OF OBJECTS IN REAL TIME

Master of Science Thesis

Examiners: prof. Jouni Mattila, prof.
Matti Vilkko
Examiner and topic approved on 31
May 2017

i

ABSTRACT

ESA HYTTINEN: 3D tracking of objects in real time
Tampere University of Technology
Master of Science Thesis, 39 pages
April 2018
Master’s Degree Programme in Automation Technology
Major: Process Automation
Examiners: Professor Jouni Mattila, professor Matti Vilkko

Keywords: object tracking, object recognition, point cloud

This thesis aims to explore the problem of object tracking. This included reviewing ex-

isting applications and technologies related to the problem, and testing one approach via

setting up a system that tracks obstacle location. Also, the suitability of the selected hard-

ware was to be assessed. Obstacle tracking solutions could be used in various tasks with

autonomous mobile machines, for example avoiding collisions with the environment.

The system built for this project consisted of a two-dimensional laser scanner mounted

on a rotating shaft. Shaft was rotated giving the scanner a nodding motion and therefore

making possible to scan a three-dimensional point cloud. The point cloud was used for

obstacle position estimation and tracking using tools provided by Point Cloud Library.

The system performance was evaluated using a physical object whose position was esti-

mated using the scanner, and moving the object in a controlled and measurable manner.

The system tested within this project was able to track obstacle location. The error in

obstacle position was up to 0.15 m, and tracking was delayed up to 0.5 s. The position

estimation also tended to have high sudden variations not related to the real movement of

the obstacle. The performance was not quite what modern hardware used in similar tasks

is capable of, and suggests that either the approach presented here is not optimal, or that

there are several areas that have to be improved. The issue with high variation in the

position estimate must also be investigated should this line of research be continued in

the future.

ii

TIIVISTELMÄ

ESA HYTTINEN: Esineiden 3D-seuranta reaaliajassa
Tampereen teknillinen yliopisto
Diplomityö, 39 sivua
Huhtikuu 2018
Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Prosessien hallinta
Tarkastajat: professori Jouni Mattila, professori Matti Vilkko

Avainsanat: esineiden seuranta, esineiden tunnistus, pistepilvi

Tämä opinnäytetyö käsitteli esineiden 3D-seurantaa. Tämä sisälsi olemassa olevien tek-

nologioiden ja ratkaisujen selvitystä, sekä erään menetelmän testaamista pystyttämällä

järjestelmä joka seuraa esimerkki esineen sijaintia. Lisäksi, järjestelmän soveltuvuutta

esineiden seurantaan tutkittiin ylipäätään. Esineiden seurantaa on mahdollista hyödyntää

eri sovelluskohteissa, kuten esimerkiksi esteiden väistämisessä autonomisten työkonei-

den tapauksessa.

Järjestelmä, joka rakennettiin tätä projektia varten, käsitti laserskannerin kiinnitettynä ni-

velöityyn alustaan. Alustaa liikuteltiin niin, että skanneri tuotti kolmiulotteisen pistepil-

ven ympäristöstään. Pistepilven avulla selvitettiin esineen sijainti ja seurattiin sitä. Tämä

tapahtui Point Cloud Library –nimisen työkalun avulla. Järjestelmän suorituskykyä ja toi-

mintaa arvioitiin liikuttelemalla fyysisitä esinettä järjestelmän työalueella siten, että esi-

neen paikka mitattiin samalla kun järjestelmä seurasi esineen sijaintia.

Lopputuloksena todettakoon, että järjestelmä kykeni seuraamaan esineen sijaintia. Virhe

sijainnissa oli noin 0,15 m, ja viive esineen liikkeiden seurannassa noin 0,5 s. Järjestelmän

tuottama sijainnin estimaatti lisäksi vaihteli nopeassa tahdissa, vaikka esine itsessään py-

syi paikallaan. Suorituskyky ei ollut sitä, mikä olisi ollut laitteiston ominaisuuksien pe-

rusteella odotettava, ja tämä antaa ymmärtää, että joko valittu lähestymistapa ei ole opti-

maalinen tahi useilla osa-alueilla on parannettavaa. Erityisesti sijaintitiedon vaihtelu on

seikka, joka täytyy korjata mikäli tämänkaltaista järjestelmää aiotaan jatkokehittää.

iii

PREFACE

I must thank professors Jouni Mattila and Matti Vilkko, as well as Laboratory of Auto-

mation and Hydraulics, for providing the opportunity to do this thesis and for the input

necessary for its completion.

Thanks also go to other people I have the privilege of knowing, including, but not limited

to, family and friends. Even though some are not even aware of this thesis, their contri-

bution to my well-being has been important.

Tampere, 24.4.2018

Esa Hyttinen

iv

CONTENTS

1. INTRODUCTION .. 1

2. METHODS ... 4

2.1 Laser scanner technology .. 4

2.2 Point cloud ... 4

2.3 Kinematics.. 5

2.4 Object detection and tracking .. 8

3. SETUP .. 12

3.1 Laser scanner .. 12

3.2 Scanner base ... 13

3.3 Obstacle base .. 14

3.4 Microautobox and Simulink model ... 16

3.5 Point cloud processing .. 23

3.6 Communication overview ... 25

4. CONDUCTED EXPERIMENTS .. 27

4.1 General properties of the experiment and setup ... 28

4.2 Test with smoothing ... 30

5. RESULTS ... 31

6. CONCLUSIONS ... 38

REFERENCES ... 40

v

LIST OF SYMBOLS AND ABBREVIATIONS

CAN Controller Area Network

DATMO Detection And Tracking of Moving Objects

FOV Field Of View

ICP Iterative Closest Point

LaDAR Light imaging, Detection And Ranging

LiDAR Light imaging, Detection And Ranging

PCL Point Cloud library

SLAM Simultaneous Localization And Mapping

UDP User Datagram Protocol

1

1. INTRODUCTION

Mapping the environment and avoiding obstacles are common problems in robotics, and

different approaches have been taken to solve them. The increased interest in autonomous

vehicles, both cars and other types, is also increasing their relevance. Avoiding obstacles

requires that they are first detected somehow, and this requires that there is a sensor for

sensing the environment. Currently, a variety of sensors for such tasks are available, for

example a digital camera, a radar, or a laser scanner.

The goal of this project was to investigate the problem of tracking object position and

orientation real-time in three dimensions. This includes finding out available solutions

for this type of task, creating one possible setup and testing its performance and suitability

for the task. A great deal of work done within this thesis was to implement a tracking

system with resources available, and make it as fast and reliable as possible.

The object tracking researched within this thesis could be used as part of projects regard-

ing autonomous mobile machines. Aim of such project would be for example to make the

machine beam to automatically dodge obstacles that are in its working area. Information

about obstacle position is obviously a key component for that.

In this thesis, the key components of a system which aims to track a moving obstacle in

real time are presented. System performance is thereafter tested with a real setting, and

further fields of improvement are discussed.

The system consists of a two-dimensional laser scanner mounted on a rotating shaft. The

scanner itself is capable of measuring distances horizontally on a single plane, and since

three-dimensional measurements are required, the scanner shaft is rotated to move the

scanner in a nodding motion. This will also mean that the dynamics and dimensions of

the scanner base rotation must be taken into account. Scanner resolution depends on scan-

ning frequency, and there is a trade-off between them: higher frequency gives faster re-

sponse, but yields lower resolution.

The scanner data is combined into a point cloud, which represents the environment. The

point cloud is then utilized in order to track the obstacle pose within the environment.

Point clouds are processed using Point Cloud Library (PCL) [1]. It is an open-source

framework designed for handling point cloud data.

Aside from laser scanners, other option for producing point cloud data from environment

is a depth camera, which produces depth information (that is, distance from camera to

2

each point in the picture) in addition to regular image. A notable example of one is Mi-

crosoft Kinect, whose introduction has made it easy for hobbyists to start building point

cloud applications of their own.

There are also devices available that are based on time-of-flight camera technology. These

have also capability to produce a full 3D-point cloud at each interval. Time-of-flight cam-

eras rely on infra-red illumination they produce themselves, and bright sunlight can pose

a problem with that. They are also more susceptible to dirt and other optical occlusions

than laser scanners.

Documentation for PCL describes a method for object tracking [2], however, in that ex-

ample the data comes from a Kinect camera, so it’s not directly suitable for this project.

Both Kinect and PCL have been used in small scale projects working with point clouds

[6].

The hardware requirements for the system are a big issue, since it has to be able to handle

large amounts of data in short timeframe, as the goal is to have obstacle tracking running

live. Another issue is also finding suitable tools and methods to process the point cloud.

The system’s mechanical properties set some limitations. Oscillating motion of the scan-

ner cannot be very fast, because its structure does not permit arbitrarily large acceleration,

which gives a limit to how fast the tracking can be. Another possible problem is that as

the scanner has a fixed location, the data it can acquire from the environment may be

incomplete if there are multiple obstacles in front of each other.

Tracking obstacles in two dimensions would be an easier task in many ways. The laser

scanner could be stationary, and it would be sufficient to use two-dimensional point cloud.

In several applications that track pedestrians, this kind of system is used. Two dimen-

sional point clouds tend to require fewer points to contain necessary information, and

therefore the point cloud processing time would be shorter. In addition to that, assuming

that the obstacle essentially moves only in two dimensions makes it easier to estimate its

movement.

Laser scanners are often used in applications where dimensional attributes or geometry

of the environment needs to be measured. Examples include mapping of geological for-

mations, or building interiors and exteriors. Geological mapping especially may require

high scanning range, and laser scanners often provide that. Measures [3] mentions the

following examples, as early as 1984: measuring water depth from a helicopter, cloud

movement or concentration of certain substances in atmosphere locally.

Nowadays laser scanners are also commonly used in autonomous vehicle development,

for sensing the environment and localizing the vehicle itself. Also, detecting and tracking

pedestrians and other traffic in an outdoor traffic environment is an often-researched ap-

plication of obstacle detection and tracking. One such example is a review from Mertz et

al [11], which gives an overview of their DATMO–system (Detection And Tracking of

3

Moving Objects), and also lists several other papers researching the same subject. A.

Azim and O. Aycard [10] also have done research about situations, where pedestrians and

vehicles are tracked in an outdoor environment.

In the case of traffic obstacle tracking, any data about the obstacles is not known before-

hand, and both their sizes and locations have to be estimated. There are, however, a num-

ber of helpful assumptions that can be made in such scenarios: First, all of the obstacles

are located on the ground; second, it can be assumed that they have a certain minimum

height, as cars and humans usually are higher than 1m. These mean that horizontally

scanning two dimensional laser scanner at a correct level can provide sufficient data for

the task. Indeed, most of the papers listed by Mertz et al [11] use one or more 2D laser

scanners.

The approach to get 3D point clouds in this thesis is to mount laser scanner in a rotating

platform, and apply a nodding-type motion to it. A similar approach is used by A. Harri-

son and P. Newman [15]. Thielemann et al. [14] explores the possibility to use an external

rotating mirror in front of a static 2D laser scanner instead of moving the laser scanner

itself, and use the mirror to deflect the beam and acquire three dimensional point cloud.

In their paper, however, they only speculate with the idea while their actual setup has a

rotating scanner.

A different approach is to move laser scanner in a “roundly swinging” pattern, presented

by Yoshida et al. [16]. Their solution also makes it possible to adjust the point density in

specific region, allowing the system to better focus on interesting features in the environ-

ment.

A thesis with quite similar subject was done in Tampere University of Technology in

2014 [17]. That project was in many ways similar to this thesis. Its goal was obstacle

tracking, within the context of mobile machines. The system used here had an indoor test

setup with a moving obstacle and laser scanner mounted on fixed platform, whereas the

other project had the scanner mounted on a mobile vehicle that was tested outdoors.

This work has relevance considering current interest towards autonomous vehicles,

though highest interest on that field is directed towards people transport instead of utility

machines. It is almost sure that the ever-growing level of automation will eventually

spread into other fields, and interest towards them will also rise.

This thesis is organized as follows: chapter two presents computational and other methods

used to generate and process point cloud data, and also methods that are used to register

point clouds and subsequently to track the obstacle. Chapter three lists hardware compo-

nents of the tracking system, and goes through the application specific mathematics. Ex-

periments that are used to test the tracking system are listed in chapter 4, and results of

them in chapter 5. Chapter 6 contains conclusions of the thesis and this project overall.

4

2. METHODS

This chapter gives an overview of the procedures that are relevant with this thesis. First,

a short overview to laser scanner technology is given. Point clouds and methods for point

cloud processing are another important topic. Also, system kinematics and algorithms,

most importantly Kalman filter are presented.

2.1 Laser scanner technology

A laser scanner, in the context of this thesis, is a device that measures distances to objects

using a laser beam. Other names along laser scanner include laser range finder [11], or

more often either LIDAR or LADAR [3], [11]. A term LIDAR is an acronym from light

detection and ranging, and LADAR is used as a synonym for that. Usually, a laser scanner

can measure distances almost-simultaneously in many directions. This is done using a

rotating mirror that directs the beam radially on a single plane. An example of this type

of LIDAR is SICK LMS-511, [5]. There are also devices that can get range measurements

from multiple angles in two directions (e.g. horizontally and vertically). That requires

more refined mechanics, and the devices capable of that are also more expensive. One

such device is manufactured by Velodyne [18].

A laser scanner measures distance by emitting a laser pulse into certain direction, and

measuring time until a reflection returns. The distance to nearest obstacle in that direction

is then calculated based knowing laser pulse flight time and speed of light. According to

this concept, the devices are said to operate with time-of-flight principle. Another possible

operating principle is phase shift, which uses continuously illuminating laser with ampli-

tude modulation. [4]

2.2 Point cloud

A point 𝑃 is an object with three coordinate values. It represents location in Euclidean

space. There is not a standard way of formulating a point, but it could be defined as fol-

lows:

𝑝 = {𝑥, 𝑦, 𝑧} (1)

Where 𝑥, 𝑦 and 𝑧 are the respective coordinates. Exact definition of a point is ultimately

application specific, and it is possible that a point contains other data in addition to loca-

tion. Extra data could be, for example, a surface normal vector heading, or colour infor-

mation. In such case, the point formulation could be

𝑝 = {𝑥, 𝑦, 𝑧, 𝑥𝑛, 𝑦𝑛 , 𝑧𝑛 } (2)

5

where 𝑥𝑛, 𝑦𝑛 and 𝑧𝑛 are components of the normal vector. A point cloud 𝐶 can then be

defined as a set of 𝑛 points:

𝐶 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛} (3)

If points are acquired from an actual object or an environment, the point cloud then can

contain information about the geometry of the object or environment. Points can either

be only sampled from surfaces, or there can also be points that represent the inside of

objects. Usually, the order of individual points in the cloud is not important, as the points

together represent the object or environment in whole.

2.2.1 Filtering of point clouds

Depending of application and use case, a point cloud may contain unwanted data. There

are at least two such scenarios: points may be sampled with an unnecessarily high density,

and there may exist points that lie outside the region of interest. Both of these issues are

relatively straightforward to solve, though.

The problem with extra points outside wanted range is that algorithms that try to find

specific features from the cloud will have more possibilities for mismatches. Assuming

that the coordinates for region of interest are known, points with coordinates outside that

region can simply be discarded. This method is further called pass-through filtering.

The problem with point cloud of too high point density is that it requires more processing

power than otherwise similar point cloud with lower point density. Addressing this prob-

lem is more complicated. One method is to divide the region into cubic sections of iden-

tical size. The size should be chosen so that the desired density is acquired while there

exists one point within a section. Then, for each section, all points that are inside the

section are discarded and replaced with a single point whose position is arithmetic mean

of the discarded points’ positions. The result is a point cloud with a point density specified

by the cubic section size, and which somewhat represents the original data. This method

is briefly explained also in [19], and is called down sampling.

2.3 Kinematics

This section defines some geometric properties, which are further needed when generat-

ing point clouds and executing obstacle tracking. First, a method for expressing rotating

operations of points in Euclidean space is defined. A point, 𝒙, consists of three coordinate

values that form a vector:

𝒙 = [
𝑥
𝑦
𝑧
] (4)

6

Rotating the point around origin can be achieved by multiplying the vector by a certain

matrix, hereby called a rotational matrix 𝑅.

𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] (5)

𝒙′ = 𝑅 ∗ 𝒙 (6)

In the equation above, 𝒙′ is the coordinate vector after rotation. A group of multiple points

can be rotated around origin in similar fashion, by multiplying the matrix containing the

points by the rotation matrix.

Any rotation can also be thought to be a result from a combination of elementary rotations

applied around x, y and z-axes. If elementary rotations are known, rotation matrices for

each axis can be constructed as follows:

𝑅𝑥 = [
cos𝛼 sin 𝛼 0
sin 𝛼 −cos 𝛼 0

0 0 1
] (7)

𝑅𝑦 = [
cos𝛽 0 sin 𝛽

0 1 0
− sin 𝛽 0 cos𝛽

] (8)

𝑅𝑧 = [
1 0 0
0 cos 𝛾 −sin 𝛾
0 sin 𝛾 cos 𝛾

] (9)

Variables 𝛼, 𝛽 and 𝛾 are rotation angles around respective axis. Multiplying these matri-

ces in order results a rotation matrix that represents combination of those three rotations:

𝑅 = 𝑅𝑥 ∗ 𝑅𝑦 ∗ 𝑅𝑧 (10)

This process is also reversible. It is, however, important to make sure that the order in

which the rotations are applied is always the same, as not doing that will lead to incorrect

results. Equations for getting the rotation angles from a rotation matrix are the following:

𝛼 = 𝑎𝑡𝑎𝑛2(𝑟21, 𝑟11) (11)

𝛽 = 𝑎𝑡𝑎𝑛2(−𝑟31, √𝑟32
2 , 𝑟33

2) (12)

𝛾 = 𝑎𝑡𝑎𝑛2(𝑟21, 𝑟11) (13)

Variables 𝛼, 𝛽 and 𝛾 are, again, rotation angles around coordinate axes. Function 𝑎𝑡𝑎𝑛2

is multi-valued inverse tangent.

7

In some corner cases, using rotation matrixes and individual rotation angles does not suf-

ficiently describe the system, and a degree of freedom is lost. This is referred often as a

gimbal lock –problem. Aside from that, rotation matrix can represent any possible rota-

tion, and therefore any possible orientation.

Next, a method for expressing combination of rotation and lateral translation is presented.

In case of an object that contains many points, this combination can be called object’s

pose. A common way to do this is to use a transformation matrix:

𝑇 = [

𝑟11 𝑟12 𝑟13 𝑇𝑥

𝑟21 𝑟22 𝑟23 𝑇𝑦

𝑟31 𝑟32 𝑟33 𝑇𝑧

0 0 0 1

] (14)

Transformation matrix 𝑇 consists of a 3x3 rotation matrix (in top-left corner) defining the

rotation, and three scalars, 𝑇𝑥 , 𝑇𝑦 and 𝑇𝑧 defining the translation. Bottom row is required

only to make sure that matrix multiplication can be used to easily calculate transfor-

mations, as with rotation matrices. Also the coordinate vector must be of form

𝒙 = [

𝑥
𝑦
𝑧
1

] (15)

since transformation matrix size is 4x4.

Transformation matrix can be thought of combining two operations: rotation and transla-

tion. If a point is first rotated around the origin and then moved laterally, the resulting

coordinate vector can be calculated with transformation matrix. Also, as with rotation

matrices, multiplying several transformation matrices yield a transformation matrix that

represents those transformations applied in multiplication order:

𝒙′′ = 𝑇2 ∗ 𝑇1 ∗ 𝒙 = (𝑇2 ∗ 𝑇1) ∗ 𝒙 (16)

where 𝒙′′ is the point after transformation.

Transformation matrices can be also used to apply translation and rotation to group of

points, or, an object. If the object’s initial location and orientation are known, its location

and orientation after the transformation can be calculated. This makes it possible to use a

transformation matrix to store and represent information about object’s location and ori-

entation. Any changes in location or orientation can be represented by a transformation

matrix as well.

8

2.4 Object detection and tracking

Detecting an object from an environment, and subsequently tracking its location, is a cen-

tral problem in many applications. This section explains object detection and tracking

from the perspective that there exists a point cloud of the environment.

There are different ways to detect objects from point clouds. The selection of method

depends on the situation in general, but also greatly on what is known about the obstacle

beforehand. If only a vague description of the object is known, the algorithm must be

highly sophisticated, and if the object’s properties are well known, less sophisticated al-

gorithms may suffice.

If it is possible to create a point cloud from the object, it will be possible to use that for

object detection and tracking. This approach leads to what is called point cloud registra-

tion, registration meaning the process of finding out transformation between two or more

clouds acquired from one environment [1], [8]. A successful registration means that the

point clouds are aligned, or that the features in the two clouds “match”. This requires that

other point cloud is a model of the object, while the other is a cloud from the environment

including the object. Finding the translation between those two will give object’s location

within the environment. Tracking based on point cloud registration should work well with

obstacle of any shape, provided that a reference model is available. If there is only a single

object that needs to be tracked, having a guess about object’s initial location can also help.

Other methods for obstacle recognition may be based on extracting specific features from

the point cloud. For example, building facades can be reconstructed from a point cloud

using feature detection [21]. These features may include sharp edges and corners, or cer-

tain shapes like a ball, cylinder or a plane. For example, in an application where the aim

is to recognize and track pedestrians, a cylinder can be used as an approximation for the

shape. This method is only good for situations in which obstacle is composed of relatively

simple shapes. Obstacles with more complicated geometry will require more refined

methods to extract the features.

Point cloud can also be segmented or clustered, e.g. separated into clusters that likely

contain points from single object or feature. Clustering methods are used with two-di-

mensional point clouds, but according to Klasing [9] there is little research for three-

dimensional cloud clustering. Segmenting can be done before other methods are used,

which may help especially if the point clouds are large.

9

2.4.1 Iterative closest point -algorithm

Iterative Closest Point (ICP) is an algorithm for point cloud registration. It was first pre-

sented by P. J. Besl and N. D. McKay [7] 1. This section aims to explain ICP and its

properties.

An example of two point clouds matched with ICP is presented in Figure 1. The figure is

based on screenshots from PCL visualizer. Point cloud on the left contains points that are

sampled from a surface of a box, and point cloud on the right represents points sampled

from the environment. The point cloud below is a combination of those two.

Figure 1. Matching two point clouds with Iterative Closest Point-algorithm

ICP takes two point clouds, let’s say point cloud 𝐴 and point cloud 𝐵, as its input. The

algorithm has essentially two phases. The first phase iterates over every point in 𝐴, and

for each point finds out the best corresponding point in 𝐵 using correspondence metric.

That is used to test how well the two clouds match. The most straightforward metric is

the Euclidean distance between two points. If the point clouds are perfectly aligned and

have reasonably high point density, for each point in cloud 𝐴 there is supposedly a point

nearby from cloud 𝐵. Therefore, the smaller distances between point pairs, the better

matched the clouds are.

1 Often, "Object modelling by registration of multiple range images" (1991) by Yang Chen and Gerard

Medioni is mentioned as another source for ICP-algorithm.

10

Second phase is to calculate a rigid transformation that best minimizes the distance, or

correspondence difference for each pair of points. Then, the transformation is applied to

the point cloud, and the cycle is started over again: new corresponding pairs are picked,

and new transformation is calculated. Each iteration should “move” the point clouds to a

more aligned pose. ICP is executed until a defined threshold is achieved. It can be an

upper limit for number of iterations, or a lower limit for how small the consecutive trans-

formation can be.

The algorithm may include some additional restrictions. For example, it is possible to

completely ignore point pairs whose initial distance is too high, as these are likely incor-

rect pairs anyway. Also, it is possible to use additional metrics for correspondence. One

of them is using information about surface normal vector, if that is available.

2.4.2 Kalman filter

Kalman filter is a well-known technique to estimate process states in a situation where

measurements are noisy. Thrun et al. [12], p.81 states that is was originated by Rudolf

Kalman and Peter Swerling in 1960 and 1958, respectively. The filter and its derivatives

are widely used in a variety of engineering problems, including obstacle tracking [11].

Theory for Kalman filter is available in detailed form by Thrun in [12] and Labbe in [13],

the latter being especially designed for being easy to approach. It is not a major topic in

this thesis, and thus only a superficial description is presented here.

Let 𝒙𝑘 be a vector of 𝑛 system states at time step 𝑘. Kalman filter assumes that states at

time step 𝑘 follow the equation:

𝒙𝑘 = 𝑭 ∗ 𝒙𝑘−1 + 𝑩 ∗ 𝒖𝑘 + 𝒘𝑘 , (17)

where 𝑭 is a state-transition matrix, 𝒖𝑘 a vector composed of system inputs if applicable,

𝑩 the control-input model, and 𝒘𝑘 a vector of process noise.

Kalman filter operates with state estimates rather than actual states. Vector 𝒙̂ represents

the state estimate. Based on the equation above, kalman filter predicts the state estimate

from previous estimate:

𝒙̂𝑘|𝑘−1 = 𝑭 ∗ 𝒙̂𝑘−1|𝑘−1 + 𝑩 ∗ 𝒖𝑘 . (18)

Additionally, a matrix 𝑷 containing estimated state error covariance, is defined. Matrix

𝑷 is similarly predicted:

𝑷𝑘|𝑘−1 = 𝑭 ∗ 𝑷𝑘−1|𝑘−1 ∗ 𝑭𝑇 + 𝑸, (19)

where 𝑸 is covariance of the process noise.

11

Equations 18 and 19 form the first step of kalman filter algorithm, and are called predic-

tion step. This step basically tries to predict state values and their error covariance based

on previous data and system model.

The second step also takes measurements into account, and adjusts estimates accordingly.

First, a residual 𝒚̃𝑘 is calculated from state estimate 𝒙̂𝑘|𝑘−1 and measurement 𝒛𝑘:

𝒚̃𝑘 = 𝒛𝑘 − 𝑯 ∗ 𝒙̂𝑘|𝑘−1, (20)

Above, matrix 𝑯 is observation matrix, and it defines the observation model that repre-

sents relation of measurements to states. Then, Kalman gain 𝑲𝑘 is calculated as follows:

𝑺𝑘 = 𝑯 ∗ 𝑷𝑘|𝑘−1 ∗ 𝑯𝑇 + 𝑹, (21)

𝑲𝑘 = 𝑷𝑘|𝑘−1 ∗ 𝑯𝑇 ∗ 𝑺𝑘
−1. (22)

Matrix 𝑹 is covariance of observation noise. The state estimate is updated using newly-

calculated Kalman gain:

𝒙̂𝑘|𝑘 = 𝒙̂𝑘|𝑘−1 + 𝑲𝑘 ∗ 𝒚̃𝑘 . (23)

Also, estimate of state error covariance is also updated:

𝑷𝑘|𝑘 = (𝑰 − 𝑲𝑘 ∗ 𝑯) ∗ 𝑷𝑘|𝑘−1. (24)

Equations 20 - 24 form what is usually called the update step of the Kalman filter. As the

name could imply, update step updates state estimate and error covariance acquired in

prediction step, using new information provided by measurements.

12

3. SETUP

In this chapter, hardware components of the tracking system and its overall structure are

presented. The purpose of this system is to execute the actual tracking process and to have

an option to measure how well it performs. The entire architecture is presented in Figure

2, and the subchapters here are arranged similarly. Figure 2 also shows the communica-

tion buses between system components.

Figure 2. Full system architecture

The system contains a laser scanner and laser scanner base to get point cloud data, a point

cloud data processor to track the obstacle, and a moving platform that serves as obstacle

base that can be used to move obstacle and to verify tracking results. A dSpace Microau-

tobox functions as a central processor and provides the communication interfaces neces-

sary for other components. Experiments in which the system is tested are described in

chapter 4.

3.1 Laser scanner

Scanner used in this project is a SICK LMS511-20100 PRO laser measurement sensor. It

measures distances based on time-of-flight –principle, and has maximum range of 80 m.

Scanner operation is based on a rotating mirror, which deflects the laser beam to desired

13

direction. A scan is executed at each full rotation of scanner’s rotating mirror, and con-

tains measured distances to points within scanner range. The actual measuring area can

either be scanner’s maximum field of view, or be set by user. This is shown in Figure 6.

Scanning frequency, determining how often scans are executed can be also chosen by

user. Higher frequencies require lower angular resolutions. The frequency-resolution

combinations available are presented in Table 1.

Table 1. Laser scanner resolution and frequency options [5]

Scanning frequency Angular resolution Max. Distance

25 Hz 0.1667° 65 m

25 Hz 0.25° 80 m

35 Hz 0.25° 65 m

35 Hz 0.5° 80 m

50 Hz 0.3333° 65 m

50 Hz 0.5° 80 m

75 Hz 0.5° 65 m

75 Hz 1° 80 m

100 Hz 0.6667° 65 m

100 Hz 1° 80 m

Scanner output is distance values in millimetres, and the data type is 16-bit unsigned in-

teger. Distance values are sent enclosed in UDP packets, one packet containing data for

one scan Accuracy of distance measurement is up to ± 25 𝑚𝑚 [5]. Figure 3 shows both

laser scanner and the rotating base it is attached to.

The maximum range of the laser scanner is over 60m, and higher that the project would

require, as the scanner and obstacle are placed within few meters from each other. This

means that the scanner will get data from an area around the working area. Fortunately,

most of the generated points can be directly discarded, because the obstacle’s approxi-

mate position and movement area limits are well known beforehand.

3.2 Scanner base

Scanner is mounted on a horizontal rotating shaft, which is rotated by an electronic motor.

There is an absolute encoder attached to the end of the shaft to provide data about shaft

angle. Motor is driven by a motor controller. The components are listed in Table 2, and

most of them are visible in Figure 3. The motor controller is given commands via CAN

bus. Also, the encoder output is read via CAN bus.

14

Table 2. Scanner base components

Motor controller Maxon ePos 2 24/5

Motor Maxon brushed DC motor

Gear Maxon planetary gear, ratio 113:1

Absolute encoder Posital Fraba, 16 bit

The scanner shaft is rotated alternating the movement between clockwise and counter-

clockwise. The result is a motion best described as nodding, and a similar concept is used

in [15]. End position angles can bet set freely, but are limited somewhat by the base as-

sembly structure. Nodding motion range directly defines the vertical field of view of the

tracking system, and was approximately 30 degrees while testing.

Figure 3. Laser scanner and rotating base

3.3 Obstacle base

In order to test functionality of tracking, there is a moving platform to which the object is

attached. The platform serves two functions: First, it gives an easy way to move the object

in a controlled manner, and second, it gives accurate data about object position at the

15

same time. Tracking results can be verified by comparing position data against tracking

data. Part of the moving platform is shown in Figure 4.

Figure 4. Linear slide motor and position measurement device

Moving platform consists of an electric motor, motor controller and a linear slide, which

is operated by the motor. A cable length measurement device is used to measure position

of the linear slide. The motor assembly and one end of the linear slide are shown in Figure

6. The components are also listed in Table 3.

Table 3. Moving platform components

Motor controller Maxon ePos 2 24/5

Motor Maxon brushless DC motor

Gear Maxon planetary gear, ratio 15:1

Cable length measurement device Pepperl+Fuchs SL3002-X1/GS80

Rotary encoder Pepperl+Fuchs RVI58N

Motor controller is a similar one than used in the laser scanner base. Similarly, CAN is

used as a primary communication method with it; that is, the operating commands to the

motor are sent via CAN. Linear slide position measurement is realized by a retracting

16

cable that is wound around a drum. Drum rotation is measured by a rotary encoder. En-

coder output is a standard two-channel encoder pulse output.

3.4 Microautobox and Simulink model

CAN communication, laser scanner data gathering and encoders’ measurements are done

by a dSpace microautobox 1401. CAN communication is used to send drive commands

to motor controllers for both scanner rotating base and linear slide. CAN is also used to

read absolute encoder data from scanner rotation. Laser scanner transmits its scan data

via UDP, which is then read by Microautobox and converted to point coordinates accord-

ing to calculations in section 3.4.1. Microautobox also sends the point data forward via

Ethernet/UDP connection.

Usage of the microautobox is closely tied to matlab. The software was developed by com-

piling the Simulink model into a real-time executable for the microautobox.In this project,

the Simulink model incorporates the following: laser scanner data reading, encoder data

reading, calculating coordinates based on the former two, and finally filtering of the pose

measurement. In addition to that, it does the most of additional communication duties,

like sending appropriate drive commands to the motors.

3.4.1 Kinematics

Scanner was rotated to get three dimension scans. Absolute encoder provides accurate

data of scanner rotation angle 𝜙. Combining that with rotating mirror angle 𝜃 and distance

𝑑 for each point, it is possible to calculate Cartesian coordinates for each point.

Coordinates of the points in point clouds will be calculated in relation to one global base

coordinate system. Coordinates will be acquired by taking into account rotation of laser

scanner internal mirror, offsets of scanner base, scanner rotation, and finally offsets to

global base coordination from scanner base. Figure 5 presents an overview of the basic

idea behind calculations below and simplified representation of the scanner system.

17

Figure 5. Scanner base in relation to global origin

Measured points of one scan are located on a plane, since the scanner operates in 2D. The

scanning direction is tied to scanner pose. Angle 𝜃 for each point along scanner’s internal

mirror rotation can be calculated if user-defined measurement area and scanner’s angular

resolution are known. Figure 6 shows a not-in-scale example of laser measurement in

relation to measurement area and scanner maximum measurement area.

18

Figure 6. Laser scanner measurement area, scanner drawn pointing upwards

Scanner internal mirror angle 𝜃 and scanner base rotation angle 𝜙 are set so that when

both would be zero, the laser would point straight upwards. This leads to rotation 𝜃 being

around y-axis and rotation 𝜙 being around x-axis. Rotation matrices 𝑅𝜃 and 𝑅𝜙 for 𝜃 and

𝜙 can be then defined as follows:

𝑅𝜃 = [
cos(𝜃) 0 sin(𝜃)

0 1 0
− sin(𝜃) 0 cos(𝜃)

] (25)

𝑅𝜙 = [
1 0 0
0 cos(𝜙) −sin (𝜙)
0 sin (𝜙) cos (𝜙)

] (26)

Transformations from global origin to scanner base origin 𝑇𝑏𝑎𝑠𝑒 and from scanner base

origin to scanner optical origin 𝑇𝑠𝑐𝑎𝑛𝑛𝑒𝑟 are both translations, so the orientation won’t

change. They can therefore be defined as x, y and z offsets. Translation matrix 𝑇𝑠𝑐𝑎𝑛𝑛𝑒𝑟

for scanner optical origin offset from scanner base origin, shown in Figure 7, is simply

 𝑇𝑠𝑐𝑎𝑛𝑛𝑒𝑟 = [
0

0.027
0.117

] (𝑚) (27)

And translation matrix 𝑇𝑏𝑎𝑠𝑒 (Figure 5)

 𝑇𝑏𝑎𝑠𝑒 = [
−0.41
0.46

−0.15
] (𝑚) (28)

Figure 7. Scanner optical origin in relation to scanner base origin, side view

19

As laser is considered to point upwards before applying any rotation or transformation,

the distance value 𝑑 represents z-coordinate of initial coordinates 𝑋𝑖𝑛𝑖𝑡 :

 𝑋𝑖𝑛𝑖𝑡 = [
0
0
𝑑
] (29)

Final coordinates 𝑋𝑓𝑖𝑛𝑎𝑙 can be calculated by first applying rotation 𝑅𝜃 , then translation

𝑇𝑠𝑐𝑎𝑛𝑛𝑒𝑟, then rotation 𝑅𝜙 and finally translation 𝑇𝑏𝑎𝑠𝑒 to initial coordinates 𝑋𝑖𝑛𝑖𝑡 :

 𝑋𝑓𝑖𝑛𝑎𝑙 = 𝑇𝑏𝑎𝑠𝑒 + {𝑅𝜙 ∗ [𝑇𝑠𝑐𝑎𝑛𝑛𝑒𝑟 + (𝑅𝜃 ∗ 𝑋𝑖𝑛𝑖𝑡)]} (30)

3.4.2 Rotation compensation

Rotating movement of the scanner causes two problems, which have to be taken into

account. First, as there is certainly a delay between scanning and sending the data via

UDP, the encoder data does not correspond fully to scanner data. Second, as scanner’s

internal rotating mirror has finite speed, different points in single scan are actually

scanned in different time and therefore different scanner shaft angle. The latter won’t be

too much of a problem, if rotation speed is low enough. The former, however must be

compensated, especially if the point cloud is to contain points from scans in which the

rotation direction is different. If rotation direction and speed would be constant all the

time, the delay could be compensated by adding offset into angle measurements.

The chosen scanning frequency for laser scanner was 75 Hz. It is assumed that this is also

the rotation frequency for scanner’s internal mirror. The duration 𝑇𝑟𝑜𝑡 for one full rotation

is then

𝑇𝑟𝑜𝑡 =
1

75 𝐻𝑧
= 13.3 𝑚𝑠. (40)

As the scanner has a field of view of 190 degrees, the time 𝑇𝐹𝑂𝑉 between the first and the

last point of single scan is

𝑇𝐹𝑂𝑉 =
190

360
∗ 𝑇𝑟𝑜𝑡 = 7.0 𝑚𝑠. (41)

This is a bare minimum estimate for full delay; there is also delay originating from the

internal processing time within scanner, and delay from communication, in this case

UDP.

Nodding movement periodic time was 0.6 seconds, and the sequence had a motion pattern

that resembles sine wave. The rotation speed 𝜔𝑟𝑜𝑡 at its maximum was

20

𝜔𝑟𝑜𝑡 = 3.09
𝑟𝑎𝑑

𝑠𝑒𝑐
. (42)

This value was manually set at the motor controller, and is a result of sine-like motion

pattern and the aforementioned 30-degree angle difference.

If we assume an arbitrary delay 𝑇𝑑𝑒𝑙𝑎𝑦 of 10 ms, the positional error 𝑥𝑒𝑟𝑟 would be ap-

proximately

𝑥𝑑𝑒𝑙𝑎𝑦 = 2 𝑚 ∗ sin(𝜔𝑟𝑜𝑡 ∗ 𝑇𝑑𝑒𝑙𝑎𝑦) = 0.062 𝑚, (43)

assuming also arbitrary obstacle distance of two meters from scanner.

The problem was clearly visible while doing initial testing with the scanner system, and

applying a correction did provide clear improvement to the quality of the point clouds.

Unfortunately, the exact quantity of delays are difficult to find out. The solution here was

to pick a compensation value by hand, and adjust it so that the point cloud looked as

correct as possible.

In this application it is assumed that the delay for sending measurements of each scan is

constant. Also is assumed that sample time of angle 𝜙 measurement is higher than the

delay. Compensation for delay is made so that instead of using the latest measurement for

angle (𝜙𝑡), a weighted average of two most recent values (𝜙𝑡 and 𝜙𝑡−1
) is used:

 𝜙𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 = 𝑤𝑜𝑙𝑑 ∗ 𝜙𝑡−1
+ 𝑤𝑛𝑒𝑤 ∗ 𝜙𝑡 (44)

 𝑤𝑜𝑙𝑑 + 𝑤𝑛𝑒𝑤 = 1 (45)

where 𝑤𝑜𝑙𝑑 is weight of old measurement, 𝑤𝑛𝑒𝑤 is weight of new measurement and

𝜙𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 is delay compensated value of angle measurement. This results a linear in-

terpolation, which is a good approximation especially if rotating speed is near constant.

A fundamental problem with rotating scanner is that there are contradicting goals to op-

timize shaft rotation speed and therefore nodding motion periodic time. Obviously, if the

shaft rotation is faster, the scanner can get data from the scanning region faster, and over-

all response time to changes in environment, or in this case more specifically to move-

ment of the obstacle, is faster. However, lowering rotation speed will reduce the need to

compensate for delays between rotation angle and laser scanner measurements. Thus, the

higher the rotation speed, also higher is the need to artificially compensate measurement

delays. There is significant pressure to make rotation speed as high as possible, since it is

a major source of the overall system delay.

The system also features a compensation for scanner rotation between individual laser

pulses. The error that comes from that would be quite small; given frequency of 75 𝐻𝑧

and resolution of 0.5°, the time 𝑇𝑝𝑢𝑙𝑠𝑒 between two pulses is

21

𝑇𝑝𝑢𝑙𝑠𝑒 =
1

75 𝐻𝑧
∗

0.5°

360°
= 18,5 𝜇𝑠 (46)

and positional error as above

𝑋𝑝𝑢𝑙𝑠𝑒 = 2 𝑚 ∗ sin(𝜔𝑟𝑜𝑡 ∗ 𝑇𝑝𝑢𝑙𝑠𝑒) = 0.114 𝑚𝑚 (47)

3.4.3 Kalman filter implementation

The point cloud registration gives obstacle pose estimate as a 4x4 transformation matrix.

It was noticed that the estimate, while otherwise reasonably accurate, was quite noisy. A

Kalman filter, described in chapter 2.4.2, was constructed to get rid of excess noise in the

position estimate. The filter was implemented in the Simulink model running on micro-

autobox. It could have been incorporated into the linux pc as well, but doing it in matlab

was more straightforward.

As Kalman filter works with linear state and observation models, there is actually no

guarantee that a Kalman filter would be a best solution for this project. Especially obstacle

rotation model is certainly nonlinear, so a filter with better capability to handle nonline-

arity, like an extended Kalman filter, would most likely be a better solution. However,

there are a few reasons why Kalman was chosen: Plain Kalman filter was sufficiently

easy option to implement, and it proved improved results even while likely not optimal.

Also, designing the best possible filter specifically for tracking was not a main objective

of this thesis, and in that sense using resources for other, possibly better solutions was not

necessary. If the project would be addressed more carefully, and if requirements for ob-

stacle tracking results would be stricter, researching for other types of filters would have

a higher priority.

The system was modeled around obstacle motion. Obstacle was considered to move in

any direction, and to have any arbitrary rotation. The x, y, and z – coordinates were fil-

tered individually, and rotation was filtered with one filter. Filtering rotation was done by

first calculating elementary rotation angles from the 3x3 rotation matrix, and using them

as measurement with the Kalman filter to estimate said angles.

System states were obstacle position, velocity and acceleration in each direction, along

with rotation velocities and accelerations around x-, y-, and z-axes. Position, velocity and

acceleration are here denoted by 𝑥, 𝑥̇, 𝑥̈, 𝑦, 𝑦̇ and so on; rotation angles and angular

velocities by 𝛼, 𝛼̇, 𝛽, 𝛽̇, 𝛾, 𝛾̇.

Kalman filter system states for position estimate were (only the filter for x-direction is

presented here, y and z were fully similar)

𝒙 = [
𝑥
𝑥̇
𝑥̈
]. (48)

22

The system model for Kalman filter assumed constant acceleration, therefore system ma-

trix 𝑭 would be

𝑭 = [
1 𝑠 0
0 1 𝑠
0 0 1

], (49)

where 𝑠 was system sample time. This motion model does not describe the real situation

perfectly: Even though acceleration was most of the time constant, zero or nonzero, it

would change occasionally. The only way for the model to take that into account is via

process noise.

Matrix 𝑩 contained only zeroes, since this system is considered to have no inputs. For

process noise covariance 𝑸, a suitable value was found with experimenting. The same

was true for observation noise covariance 𝑹. The following values were used for 𝑸 and

𝑹:

𝑸 = [
1 ∗ 10−6 0 0

0 1 ∗ 10−6 0
0 0 1 ∗ 10−6

] (50)

𝑹 = 0.1 (51)

A separate Kalman filter was added for orientation estimate smoothing, represented by

elementary rotation angles 𝛼, 𝛽 and 𝛾. States of the system were angles and angular ve-

locities, and the system model assumed that the angular velocities would stay constant.

𝒙 =

[

𝛼
𝛽
𝛾
𝛼̇
𝛽̇
𝛾̇]

 (52)

𝑭 =

[

1 0 0 𝑠 0 0
0 1 0 0 𝑠 0
0 0 1 0 0 𝑠
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 (53)

23

𝑸 =

[

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

∗ 10−7 (54)

𝑹 = 0.25 (55)

3.5 Point cloud processing

This section focuses on processing of actual point clouds. There are two main areas to

govern: hardware and software and algorithmic details. The hardware was realized as a

virtual PC running Ubuntu Linux. Software and therefore algorithms were implemented

using Point Cloud Library.

3.5.1 Point cloud construction

Points obtained from a single scan of the laser scanner lie at a plane, and also the amount

of them is very low, 761 at maximum [5]. Therefore points from multiple scans taken

with different scanner orientation must be combined to form a three dimensional point

cloud. This is also needed in order to have enough points to locate and track the object.

The real time constraints require that point cloud must be kept constantly updated.

In this project, the point cloud used basically contains a buffer of fixed amount of previous

scans. Updating the cloud can be done simply by inserting points from new scan into

cloud and discarding points that are from the oldest scan. In this approach, the relevance

of data inside point cloud varies, depending on how old the point in question is.

3.5.2 Linux Pc

Point Cloud Library is essentially a collection of C++ code. The environment to run it

under was chosen to be a PC with a linux as operating system. Its operating system was

Ubuntu 14.04, which was chosen for its long time support. Code was compiled using tools

shipped with default Ubuntu installation. Operations done with PCL include forming

point cloud from points of multiple scans, using ICP-algorithm to register scanned point

cloud and reference model point cloud, and storing information about current estimate of

tracked object position.

24

The PC was a virtual PC running under windows operating system. It does not fulfil strict

real-time requirements. Ideally, a real-time computer, for example a sufficiently powerful

soft-PLC, or a real-time Linux kernel, would be more suitable for this kind of task. It was

apparent that the capability of the virtual machine was not as high as would have been

desired. However, problems that occurred were not such that they would be directly

caused by the environment being non-real-time.

3.5.3 Point cloud library

Point cloud library (PCL) is an open-source C++ library providing operations for point

cloud data processing. PCL was presented in 2011 by Radu B. Rusu and Steve Cousins

[1]. The latest version at the time of writing this thesis was 1.8, which was first released

in 2016. In this thesis, however, version 1.7 was used.

PCL has a multitude of features. It provides means to store and visualize point clouds,

and has many point cloud processing algorithms implemented. In this thesis the PCL is

used to store point cloud data, filter out points in located unwanted area, down sample

point clouds to smaller amount of points, and to register two clouds using ICP-algorithm.

All these features have an existing implementation in PCL, which made it an easy task to

use them.

3.5.4 Iterative closest point

In this project the tracking realized by registration of two point clouds, as mentioned

above. There is a variety of algorithms available for point cloud registration. One of them

is ICP (Iterative Closest Point) [7]. It is default point cloud registration function in Matlab,

and Mitra [7] mentions it being “popular”. Basic functionality of ICP is introduced in

subchapter 2.4.1. Its purpose is essentially to find the rigid transformation between two

point clouds that most accurately “matches” their points.

There are also other algorithms for similar task, that do not focus on points, but rather

some features that are estimated from a point cloud. They tend to be more complicated,

and might require different strategies depending on the features that the user expects to

find. For example, if the scene contains a lot of straight surfaces, it could be beneficial to

look for them. ICP, On the other hand, does not care about underlying geometry. There

is also an option to use surface normal vectors in addition to just point coordinates. An

example of point cloud with surface normals is shown in Figure 8. ICP was chosen here

over other algorithms due to its ease of implementation, and because it proved to be fast

enough for the hardware used.

25

Figure 8. A point cloud with normal vectors shown, taken from [20].

The output of ICP-algorithm in PCL is a 4x4 transformation matrix. The matrix represents

the reference point cloud’s position and orientation after matching it with the environ-

ment. If the initial position and orientation are known, the current position and orientation

can be calculated with the transformation matrix. An example of two point clouds

matched with ICP is shown in Figure 1.

The ICP-algorithm allows adjusting of several parameters: maximum number of itera-

tions, minimum transformation threshold, minimum distance threshold, and maximum

correspondence distance. Maximum number of iterations is simply an upper limit for it-

erations, after which the algorithm is expected to be converged. Minimum transformation

threshold also gives a limit for how long the algorithm runs: if point clouds are already

matched well together, the new transformation is very small and algorithm can be as-

sumed to have converged. The same goes for minimum distance threshold: if point clouds

are well matched, the distance between corresponding points is small and algorithm is

considered to be converged.

3.6 Communication overview

Distance data is transmitted from the laser scanner to microautobox over UDP protocol.

The laser scanner data sheet specifies the details on how the data structure is formed [5].

Essentially one scan produces one UDP packet, in which there are some general config-

uration parameters, and the distance values for each configured points one after another.

26

UDP is also used in communication between microautobox and linux-pc. Microautobox

sends simply the three coordinates for each point, but due to technical limitations the

coordinates have to be sent in two packets.

The rotary encoder information is accessed via a can bus. CAN is also used to control

laser scanner rotation and the linear slide. Both of them utilize a similar Maxon ePos

motor controller, which uses CANopen as its communication protocol. The CAN mes-

saging happens mostly in one direction, that is, the microautobox sends control messages

as needed, and doesn’t mostly care about what the devices send back. CANopen messages

are composed within the simullink code that runs on microautobox.

27

4. CONDUCTED EXPERIMENTS

This chapter contains description about the experiments with which the tracking system

was tested. The test setup overview is presented in Error! Reference source not found.. I

t consists of a laser scanner, a scanner rotating base, and a moving platform with obstacle.

Experiments were executed by running the tracking system, and simultaneously moving

the obstacle using the moving platform. Position measurement from moving platform was

recorded along with tracking system’s estimate about the position. This allowed the com-

parison of the two values, and therefore evaluation of the tracking performance.

There were two different experiments. The main difference between the two is that the

implementation in first one does not have any additional smoothing of position estimate.

Instead, the tracking estimate is directly data from point cloud matching algorithm. Sec-

ond test featured an additional Kalman filter smoothing the position estimate. Other pa-

rameters and test setup overall were largely similar between the two experiments.

Figure 9. Overview of the test setup

The goal of the experiments was to get object tracking work in some level. No speed

constraints for object movement were given, and also tracking rate (response time) was

accepted to be low. The results are reviewed in chapter 5.

28

4.1 General properties of the experiment and setup

The experiments were conducted using the system setup described in chapter 3. Using

single test setup means that most properties were similar throughout all of the experi-

ments. Some minor details did vary, and variations are listed in this chapter. Also, some

details could have been varied, but were kept similar.

4.1.1 Reference cloud

The obstacle used in these experiments was an actual rectangular box, so it was easy to

make a reference point cloud based on its dimensions. The reference cloud contained

randomly sampled points at all six faces of an ideal box shape. The amount of points on

each surface was the same, which resulted different point density at each surface; how-

ever, applying down sampling to the cloud did lessen this effect.

As the scanner gets points from the surface of the environment, the reference had only

points at box surface. Depending on the obstacle orientation, the scanner can only see one

side of the obstacle at a time. The obstacle was positioned so that three faces were visible

towards the scanner at all times. Also, the viewing direction in relation of the obstacle did

not change while obstacle moved. This did likely make position tracking easier, opposed

to situation where only two or one sides of the obstacle would be visible.

4.1.2 Initial pose

With all of the tests, the obstacle’s initial pose was known to a certain degree. All three

coordinates 𝑥, 𝑦 and 𝑧 were known with an error of less than 0.5m, and orientation with

errors in either rotation angle of less than 20 degrees. Within the limits of this project,

knowing initial pose is an acceptable assumption. This might not be the case with real

applications.

Knowing the initial pose was critical part of the success in the first place. If the initial

pose was too much incorrect, the registration algorithm had a tendency to either not con-

verge at all, or to converge to pose that did not correspond with obstacle’s real location.

4.1.3 Measurements and Simulink model configuration

Acquiring measurements was done using Microautobox and ControlDesk-software. The

software provided means of recording values of any variables from the Simulink model.

In these experiments, the following variables were recorded: Obstacle pose from the

tracking system, obstacle pose after applying a filter, and position measurement from

moving platform. Obstacle pose was represented as a 4x4 matrix in both cases, and mov-

ing platform position was a scalar value. Sampling frequency for the measurements was

determined by the Simulink system sample time, which was 4ms.

29

4.1.4 Linear slide movement, test sequence

The tests were conducted using the linear slide to move obstacle, and to get accurate

measurement from the position. While the system would, in theory, be able to track all

kinds of movements including rotation, this setup had some limitations. Like the name

implies, linear slide can provide only linear motion. Moving obstacle with non-linear

track was therefore not tested. Another uncertainty will remain on whether and how well

the system could track obstacle rotations. This couldn’t be tested, because the linear slide

was not able to rotate the obstacle. Linear slide was positioned so that its movement di-

rection matched as close as possible to one of the selected global coordinate frame axes.

This was done because it would help analysing the recorded data, since only one coordi-

nate value in estimate should change. Moreover, the orientation estimate should stay con-

stant.

The linear slide had a fixed maximum speed, and tracking performance above that could

not be tested. The test sequence consisted of movement from middle position to one end

of the slide, then movement to other end of the slide and then movement back to starting

position in the middle. The movement speed was constant and similar in each experiment,

though the direction changed.

Moving platform was moved from one end to another, according to a certain sequence.

Sequence consisted of a constant acceleration to a constant speed, and a similar deceler-

ation to halt. Maximum speed in either direction was about 0.1 m/s. The sequence dura-

tion was about 30 seconds. During the sequence, tracking system was active and provided

estimate of the obstacle pose.

4.1.5 Adjustable parameters

There are quite many parameters that could be adjusted in the testing process. They can

be sorted into different categories based on which system component they affect. The

linear slide, for example, can have different motion profiles, of which the ones that were

used are described above. Laser scanner has scanning settings, PCL has parameters for

ICP-algorithm and point cloud configuration etc. The most important ones for the tests

are listed in this section.

Laser scanner was set to operate at a scanning frequency of 75 Hz. Scanning resolution

was 0.5 degrees, and horizontal field of view was limited between 0 and 90 degrees. Fre-

quency and resolution are connected so that higher resolution would mean lower fre-

quency. Resolution directly affects horizontal point density, and frequency respectively

affects vertical point density. The chosen combination brought sufficient amount of points

in horizontal direction while maintaining a sufficient resolution in vertical direction.

30

Nodding movement of the scanner had a periodic time of 0.6 seconds. Movement range

was approximately 30 degrees. Movement profile was nearly sinusoidal. The period was

detected as a sweet spot addressing scanning vertical resolution, overall tracking response

time and also mechanical properties. Trying a lower period with similar range resulted in

higher rotation velocity, and eventually slippage of the scanner shaft.

A number of most recent scans were combined as a point cloud, which was further used

in tracking. The amount of scans was, in both tests, 45. This appeared to be a good choice,

as it resulted a buffer length being same as the period of the nodding movement:

45

75 𝐻𝑧
= 0.6 𝑠

This way, each point cloud would theoretically contain a similar set of data from the

environment. If this were not the case, the buffer would have different areas from the

environment scanned with different density or not at all, depending on at which point of

the nodding cycle the buffer is sampled.

The point cloud was filtered using the methods mentioned in 2.2.1. Because only a certain

region of the scanned environment was interesting, point cloud was pass-through-filtered

to contain only the interesting region. Region was about 3m wide, 3m long and 1m high,

and was located so that the obstacle was about in the middle of it. In addition to that, both

the reference cloud and the scanned cloud were down sampled in order to reduce the

amount of points and thus computational load with ICP-algorithm. Down sample filtering

density was 0.09m in all of the experiments. A noticeable lag was observed if the points

were sampled more densely, which hints that the point density does affect computation

time, and that the system processing power is an important design aspect.

4.2 Test with smoothing

Another experiment featured similar motion sequence with moving platform. The differ-

ence was that the Kalman filter application was used to reduce output variations. The

system model and covariance matrices used with the Kalman filter are presented in sec-

tion 3.4.3. The system model was relatively simple, and assumed that there was constant

acceleration and rotation. Values of covariance matrices was a result of trial and error,

and it is unlikely that they are very well optimized for the solution. This is an area with a

lot of opportunities to improvement; however, even with sub-optimal parameters an im-

provement of results was achieved.

31

5. RESULTS

This chapter references the results that were achieved with tests depicted in chapter 4.

There were essentially two tests: one with a tracking implemented, using point cloud

matching with ICP, and second with otherwise similar configuration, but enhanced with

a kalman filter to smooth position estimate noise. A general idea about system perfor-

mance can be derived from the first data set, and the second is the best result that was

achieved with resources and methods used in this thesis.

There was a relatively large problem with getting points from all possible three faces of

the box. Because box’s top face was close to laser scanner height, the scanner could not

have accurate measurements from the top face. This made point cloud matching more

difficult, and subsequently the result worse. If the obstacle would be allowed to move

freely, it would be possible that there are even less faces visible towards the scanner. In

optimal situation, the system would be so robust that it could work with such issues as

well.

It was seen that the initial guess of the pose estimate needs to be relatively close (e.g.

within 10-20 cm) from the true value. Otherwise the algorithm might easily find a local

minimum that is not a valid match. Once that happens, it is very unlikely that the pose

estimate ever converges to correct value, because the previous, bad result is given as an

input for new iteration and algorithm will end up in the same local minimum.

Increasing both buffer size and rotation period to a similar amount did lessen the disturba-

tions with pose estimate. There were still some unknown sudden changes while the ob-

stacle was moving, but with stationary obstacle the result was clearly better. Lowering

the obstacle speed did reduce measurement noise as expected; looks like noise is relative

to the movement speed.

Results for both the case with only the tracking algorithm as the estimation source, and

the case with additional filter that was to smooth the measurements are presented here. It

is worth noting that those are two entirely different measurements, and therefore for ex-

ample the obstacle moving sequence is not completely identical between them.

This is also visible in some of the measurements, where the average value is not same

even though it theoretically should be.

First, Figure 10 shows both cases’ position estimates of y-coordinate, along with a posi-

tion measurement obtained from the linear slide moving the obstacle. These two together

allow the evaluation of the tracking performance.

32

Figure 10. Position measurement and tracking estimate

There was a significant amount of noise in the resulting pose estimate. A position estimate

in one dimension could jump suddenly up to 10 cm. Another problem was that there was

a certain delay after the estimate would react to real obstacle movement. The delay was

approximately 0.5 seconds, and that would result a locational error being approximately

0.05 m, as obstacle speed was 0.1 m / second.

It can be seen that using a Kalman filter does suppress some of the estimate noise, espe-

cially when measuring the direction of obstacle movement. However, there is still visible

delay of approximately one second. Also, delay and the presence of some noise still leads

to tracking error of up to more than 0.15m.

Overall, based on the result in Figure 10, the tracking appears to work. Position estimate

follows actual position with some accuracy, and at a quick glance the biggest issue seems

33

to be that there is delay between position estimate and linear slide position measurement.

The linear slide measurement is assumed to be accurate and to have insignificant delay.

The error between linear slide measurement and the estimate, shown in Figure 11, reveals

some important issues: the estimate, even though it would be correct in average, varies

fast within a short period of time.

Figure 11. Tracking position estimate error

The error can move up to 0.1 m in a time less than a second. Such behavior is highly non-

desirable. Moreover, the obstacle itself does not move that fast, and the variations present

are not related to real world situation.

With the filter added, tracking error stays within ±0.1m, except for one peak at approxi-

mately 17 seconds into the sequence. Error also is somewhat originated from delay, be-

cause it slightly depends on movement direction.

34

Position estimates in other directions are presented in Figure 12 and Figure 13. There is

no other measurement available as reference, but both should stay constant, because the

moving platform moved the obstacle in only the direction corresponding to y-axis.

Figure 12. X-coordinate of position estimate

35

Figure 13. Z-coordinate of position estimate

The estimate for z-coordinate is the clearly more noisy than estimates for x or y. The

difference between minimum and maximum value exceeds 0.2 m, whereas with x-coor-

dinate (Figure 12) it was approximately 0.14 m.

In addition to obstacle position, its orientation was estimated. Since the linear slide did

not provide any means to rotate the obstacle, the orientation stayed constant, and the es-

timate should also do so. Orientation was acquired as a 3x3 rotation matrix, but for visu-

alization of the data it was converted to three angles, representing rotations around x, y,

and z-axes. The results are shown in Figure 14, Figure 15 and Figure 16, respectively.

36

Figure 14. Rotation angle estimate around x-axis

There is noise in the rotation angle estimates also. In both cases, the variations in rotation

estimate are less than 0.08 radians. This results to errors of similar range of less than in

the position estimate itself: If we assume that obstacle position estimate is correct, orien-

tation estimate error is 0.04 radians and obstacle dimension is 1 m, the result is approxi-

mately 0.04 m of error, at most, due to incorrect rotation

The smoothing effect of the filter is not as clearly visible as with positional coordinates.

All other rotation measurements share these properties.

37

Figure 15. Rotation angle estimate around y-axis

Figure 16. Rotation angle estimate around z-axis

38

6. CONCLUSIONS

This project addressed the topic of three-dimensional obstacle tracking. The aim was to

find out whether obstacle tracking is realizable goal using a laser scanner, and to find out

aspects that have to be taken into account while doing so. The work is relevant as there is

a growing trend of autonomous machinery and automation in general within the industry,

and obstacle tracking as a problem is important component and research question with

those.

During the course of this project, a tracking system using a laser scanner was built. The

system components and theoretic background were introduced in chapters 2 and 3. Also,

other options for the laser scanning sensor were shortly reviewed, and various methods

for the sensor data processing were reviewed. System functionality was tested using a

physical obstacle and tracking its position. Results from the tests were reviewed, and

compared to similar research done before. Based on the experiences learnt via system

building and testing, possible future improvements for the current system were proposed.

Tracking system used a rotated laser scanner to produce three-dimensional point cloud

from the environment. From this point cloud, the obstacle position was extracted using

Iterative Closest Point –algorithm. The resulting coordinate value variations were

smoothed using a Kalman filter.

Test setup featured a box-shaped obstacle moving along a linear track. Obstacle was

moved while the system was actively tracking it position. The linear track provided meas-

urement of the obstacle position, which made it possible to evaluate tracking perfor-

mance.

The system did track obstacle position with maximum error of 0.15 m. The tracking delay

was approximately one second. While testing the tracking without coordinate value

smoothing, it became evident that there were significant fluctuations in the obstacle po-

sition estimates, especially while the obstacle was moving. These fluctuations were not

similar in each direction, but did exceed 0.1 m from the assumed correct value, and hap-

pened under a period of one second. There were similar kind of fluctuations in the orien-

tation estimate as well; expressed in rotation angles the amount was up to 0.04 radians.

This leads to two thoughts. First is that there are some design or configuration flaws in

the laser scanner system, point cloud generation process or the tracking algorithm itself.

For example, scanner movement could lead to point cloud not representing the environ-

ment correctly, and this cloud directly lead to obstacle position estimate to fluctuate as

well. The second thought is that if the goal is an accurate position estimate, that goal can

39

be achieved via smoothing out the fluctuations. Using a Kalman filter to smooth the fluc-

tuations did improve actual tracking results.

One major problem was response rate of the tracking system. The 3D scan can’t be in-

stantaneous due to physical limits with the laser scanner rotation assembly. Modifying

the system so that the scanner rotation is faster would reduce overall delays. The draw-

back there is that the significance of rotation measurement and scanner delay compensa-

tion grows, and that aspect should be properly fixed until speed increase would give any

benefits. One possibility is to use a laser scanner with native three-dimensional scanning

ability. That would remove the need to rotate the scanner, and eliminate all errors that

come from rotation process. The downside of that solution is a higher price.

The results obtained with this project show that it is possible to realize obstacle tracking

with system based on laser scanner. However, the actual performance of the system at

this point isn’t what one would expect with the technology available. Scanner accuracy

would imply higher tracking accuracy than obtained, and scanning frequency would im-

ply higher response rate than what was achieved.

40

REFERENCES

[1] R. B. Rusu and S. Cousins, 3D is here: Point Cloud Library (PCL), 2011 IEEE In-

ternational Conference on Robotics and Automation, Shanghai, 2011, pp. 1-4.

[2] Tracking object in real time, Point Cloud Library documentation, Available:

http://pointclouds.org/documentation/tutorials/tracking.php.

[3] R. M. Measures, Laser Remote Sensing: Fundamentals and Applications. New

York: Wiley, 1984.

[4] A. Kukko, Mobile Laser Scanning – System development, performance and appli-

cations, Doctoral dissertation, Finnish Geodetic Institute, 2013, pp. 31-33.

[5] Operating Instructions, LMS5xx Laser Measurement Sensors, SICK AG, Ger-

many, 2015, Available: https://www.sick.com/media/dox/4/14/514/Operating_in-

structions_Laser_Measurement_Sensors_of_the_LMS5xx_Product_Fam-

ily_en_IM0037514.PDF.

[6] K. Litomisky and B. Bhanu, Removing Moving Objects from Point Cloud Scenes,

in Advances in Depth Image Analysis and Applications. Lecture Notes in Com-

puter Science, vol 7854, Springer, Berlin, Heidelberg, 2013.

[7] N. J. Mitra, N. Gelfand, H. Pottmann, and L.Guibas, Registration of point cloud

data from a geometric optimization perspective, in Proceedings of the 2004 Eu-

rographics/ACM SIGGRAPH symposium on Geometry processing (SGP '04),

ACM, New York, NY, USA, 2004, pp. 22-31.

[8] P. J. Besl and N. D. McKay, A method for registration of 3-D shapes, in IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, 1992,

pp. 239-256.

[9] K. Klasing, D. Wollherr and M. Buss, A clustering method for efficient segmenta-

tion of 3D laser data, 2008 IEEE International Conference on Robotics and Auto-

mation, Pasadena, CA, 2008, pp. 4043-4048.

[10] A. Azim and O. Aycard, Detection, classification and tracking of moving objects

in a 3D environment, 2012 IEEE Intelligent Vehicles Symposium, Alcala de He-

nares, 2012, pp. 802-807.

[11] C. Mertz et al., Moving object detection with laser scanners, Journal of Field Ro-

botics, vol. 30, 2013, pp. 17–43.

http://pointclouds.org/documentation/tutorials/tracking.php
https://www.sick.com/media/dox/4/14/514/Operating_instructions_Laser_Measurement_Sensors_of_the_LMS5xx_Product_Family_en_IM0037514.PDF
https://www.sick.com/media/dox/4/14/514/Operating_instructions_Laser_Measurement_Sensors_of_the_LMS5xx_Product_Family_en_IM0037514.PDF
https://www.sick.com/media/dox/4/14/514/Operating_instructions_Laser_Measurement_Sensors_of_the_LMS5xx_Product_Family_en_IM0037514.PDF

41

[12] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics, MIT Press, Cambridge,

MA, 2005.

[13] R. Labbe, Kalman and Bayesian filters in Python, 2017, Available:

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python.

[14] J. T. Thielemann, A. Berge, Ø. Skotheim and T. Kirkhus, Fast high resolution 3D

laser scanning by real-time object tracking and segmentation, 2012 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, Vilamoura, 2012, pp.

3899-3906.

[15] A. Harrison and P. Newman, High quality 3D laser ranging under general vehicle

motion, 2008 IEEE International Conference on Robotics and Automation, Pasa-

dena, CA, 2008, pp. 7-12.

[16] T. Yoshida, K. Irie, E. Koyanagi and M. Tomono, 3D laser scanner with gazing

ability, 2011 IEEE International Conference on Robotics and Automation, Shang-

hai, 2011, pp. 3098-3103.

[17] F. A. Estiri, 3D Object Detection and Tracking Based On Point Cloud Library

Special Application In Pallet Picking For Autonomous Mobile Machines, Mas-

ter’s thesis, Tampere University of Technology, 2014.

[18] Data sheet, Velodyne HDL-64E, 2017, Available: http://velodyneli-

dar.com/docs/datasheet/63-9194_Rev-F_HDL-64E_S3_Data%20Sheet_Web.pdf.

[19] Downsampling a PointCloud using a VoxelGrid filter, Point Cloud Library doc-

umaentation, Available: http://pointclouds.org/documentation/tutori-

als/voxel_grid.php#voxelgrid.

[20] S. Holzer, et al. Adaptive neighborhood selection for real-time surface normal es-

timation from organized point cloud data using integral images, 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2012, pp. 2684-2689.

[21] S. Pu, G. Vosselman, Knowledge based reconstruction of building models from

terrestrial laser scanning data, ISPRS Journal of Photogrammetry and Remote

Sensing, Volume 64, Issue 6, 2009, pp 575-584.

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
http://velodynelidar.com/docs/datasheet/63-9194_Rev-F_HDL-64E_S3_Data%20Sheet_Web.pdf
http://velodynelidar.com/docs/datasheet/63-9194_Rev-F_HDL-64E_S3_Data%20Sheet_Web.pdf
http://pointclouds.org/documentation/tutorials/voxel_grid.php%23voxelgrid
http://pointclouds.org/documentation/tutorials/voxel_grid.php%23voxelgrid

