
OSSI MARTIKAINEN
COLLABORATIVE SENSING WITH LIDAR IN AUTOMATED
VEHICLES

Diplomityö

Tarkastaja: professori Karri Palovuori
Tarkastaja ja aihe hyväksytty
9. elokuuta 2017

i

ABSTRACT

OSSI MARTIKAINEN: Collaborative sensing with LiDAR in automated vehicles
Tampere University of Technology
Master of Science Thesis, 65 pages
January 2018
Master’s Degree Programme in Electrical engineering
Major: Embedded systems
Examiner: Professor Karri Palovuori

Keywords: collaborative sensing, cooperative sensing, LiDAR, automated
vehicles, 5G, ITS-G5

In recent years, traditional car manufacturers as well as other technology companies have
been developing vehicles with an increasing number of automated functions. Their
ultimate goal is to create an affordable, fully autonomous vehicle. One key element of
autonomous vehicles is their ability to sense their surroundings. This can be done with
the vehicle’s own sensors but their capabilities in various scenarios can be limited. One
way to tackle this problem is to exchange the sensory data between vehicles, thus
improving the perception abilities of the vehicles. The method of exchanging sensory data
is called collaborative sensing.

This thesis studied the different elements of collaborative sensing in automated vehicles.
The work was carried out at VTT Technical Research Centre of Finland in Automated
Vehicles team. In this thesis, a collaborative sensing software was implemented on VTT’s
two automated vehicles. The implementation utilized ranging laser scanners, LiDARs, to
gather information about the vehicles’ environment. Various communication methods
were tested to enable the collaborative characteristics of the system.

Essential information was gathered about the LiDAR and the various communication
methods. Two software test platforms were developed as well as an independent
positioning module that was used in the collaborative sensing implementation. The sensor
system was also tested in various weather conditions and two inventions reports were
submitted regarding the use of LiDARs in adverse weather.

ii

TIIVISTELMÄ

OSSI MARTIKAINEN: Collaborative sensing with LiDAR in automated vehicles
Tampereen teknillinen yliopisto
Diplomityö, 65 sivua
Tammikuu 2018
Sähkötekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Sulautetut järjestelmät
Tarkastaja: professori Karri Palovuori

Avainsanat: yhteistoiminnallinen havainnointi, LiDAR, automatisoidut ajoneuvot,
5G, ITS-G5

Perinteiset autonvalmistajat muiden teknologiayhtiöiden rinnalla ovat viime vuosien
aikana alkaneet kehittää yhä pidemmälle automatisoituja ajoneuvoja. Jokaisen tavoitteena
on lopulta tuottaa edullinen, täysin autonominen ajoneuvo. Autonomisten ajoneuvojen
tärkeimpiä ominaisuuksia on niiden kyky havainnoida ympäristöään. Ympäristön
havainnointi voidaan toteuttaa ajoneuvoon asennetuilla antureilla, mutta niiden
suorituskyky voi tilanteesta riippuen olla rajattu. Eräs ratkaisu suorituskyvyn
parantamiseen on kasvattaa datan määrää jakamalla anturidataa usean ajoneuvon välillä.
Tätä toimintatapaa kutsutaan yhteistoiminnalliseksi havainnoinniksi.

Tässä työssä tutkittiin yhteistoiminnallisen havainnoinnin osa-alueita automatisoiduissa
ajoneuvoissa. Työ tehtiin Teknologian Tutkimuskeskus VTT:llä Automated Vehicles
tiimissä. VTT:n kahteen automatisoituun ajoneuvoon toteutettiin yhteistoiminnallisen
havainnoinnin mahdollistava järjestelmä. Ympäristön havainnoinnissa hyödynnettiin
ajoneuvoihin asennettuja laserskannereita, LiDAReita. Ajoneuvojen välistä
kommunikaatiota testattiin useilla menetelmillä ja näiden menetelmien soveltuvuutta
yhteistoiminnalliseen havainnointiin arvioitiin erilaisin kriteerein.

Työn aikana saatiin olennaista tietoa sekä LiDARin toiminnasta että erilaisista
kommunikaatiomenetelmistä. Yhteistoiminnallisen havainnoinnin testaukseen kehitettiin
kaksi testausalustaa. Tämän lisäksi ajoneuvoihin toteutettiin erillinen paikannusmoduli,
jota käytettiin tämän työn lisäksi muissa VTT:n automatisoitujen ajoneuvojen
projekteissa. Ajoneuvojen anturijärjestelmiä testattiin myös vaihtelevissa
keliolosuhteissa ja näiden testien tuloksena tehtiin kaksi keksintöilmoitusta, jotka
käsittelivät LiDARin hyödyntämistä haastavissa keliolosuhteissa.

iii

PREFACE

This thesis was carried out at VTT Technical Research Centre of Finland in the
Automated Vehicles team. I would like to thank the whole team for giving me their full
support during the making of this thesis. Especially my supervisor Pasi Pyykönen and my
colleague Ari Virtanen provided invaluable knowledge without which this thesis would
not have been successful. Finally, I extend my thanks to my wife Taru, who has supported
me through the entire process of this thesis.

Ossi Martikainen
Tampere, 30.1.2018

iv

CONTENTS

1. INTRODUCTION .. 1
1.1 Needs and requirements .. 1
1.2 Research projects .. 3

1.2.1 RobustSENSE ... 3
1.2.2 5G-SAFE .. 3

1.3 Structure of the thesis ... 3
2. STATE OF THE ART ... 5

2.1 Research areas .. 5
2.2 Collaborative sensing in automated vehicle development 5

3. AUTOMATED VEHICLE DEVELOPMENT .. 7
3.1 Automated vehicle platforms .. 7
3.2 LiDAR.. 7

3.2.1 Operating principle ... 7
3.2.2 Sick LD-MRS ... 8

3.3 Other sensor technologies in vehicle platforms ... 11
3.3.1 Radars ... 11
3.3.2 Cameras .. 12
3.3.3 GNSS.. 12
3.3.4 Inertial measurements and odometry ... 12

3.4 Communication systems ... 12
3.5 Environment considerations .. 13

4. ENVIRONMENT PERCEPTION SOFTWARE ... 14
4.1 Software overview .. 14
4.2 Theoretical background .. 16

4.2.1 Sorting algorithms ... 16
4.2.2 Linearization ... 17
4.2.3 Coordinate system transforms ... 21
4.2.4 Kalman filter ... 23

4.3 Object detection implementation ... 24
4.3.1 Preceding software and modifications ... 24
4.3.2 Sorting measurement points .. 24
4.3.3 Clustering ... 25
4.3.4 Linearization ... 25

4.4 Tracking and recognition implementation ... 29
4.4.1 Kalman filter for tracking .. 29
4.4.2 Integration with inertial measurements .. 30
4.4.3 Voting algorithm for object recognition....................................... 30

4.5 Playback software for recorded LiDAR measurements 31
5. VEHICLE-TO-VEHICLE COMMUNICATION .. 33

5.1 Implementation options .. 33

v

5.2 5G technology .. 33
5.3 DDS ... 34
5.4 MQTT .. 35
5.5 ITS-G5 ... 36

6. COLLISION WARNING SOFTWARE .. 37
6.1 Collaborative sensing .. 37
6.2 Collision estimation .. 38
6.3 Collision warnings .. 40

7. IMPLEMENTATION PERFORMANCE .. 41
7.1 Object tracking and recognition module .. 41

7.1.1 Sorting .. 41
7.1.2 Clustering ... 41
7.1.3 Linearization ... 42
7.1.4 Object tracking.. 43
7.1.5 Object recognition ... 44

7.2 V2X communication ... 45
7.2.1 MQTT Mosquitto .. 45
7.2.2 ITS-G5 .. 49

7.3 Collision warning module ... 50
7.3.1 Positioning accuracy ... 50
7.3.2 Warning accuracy ... 51

7.4 Harsh weather conditions .. 51
8. CONCLUSIONS ... 61
REFERENCES ... 63

vi

LIST OF FIGURES

Figure 1. Automated vehicle platforms. Marilyn is on the left and Martti on the
right.[14] ... 7

Figure 2. Sick LD-MRS LiDAR mounted on Marilyn’s front bumper............................. 8
Figure 3. Measurement plane angles of a single LiDAR device. 9
Figure 4. Sick LD-MRS operating range dependency on object reflectivity. The

upper red curve represents standard LD-MRS sensor and the lower
blue curve LD-MRS HD sensor.[16] .. 10

Figure 5. Sick LD-MRS relation of view angle to operating range.[16] 10
Figure 6. Example of measurement point linearization. .. 14
Figure 7. Flow chart of the object tracking and recognition module. 16
Figure 8. Example of a RANSAC trial model. ... 19
Figure 9. Visualization of the Douglas-Peucker algorithm. ... 20
Figure 10. Vehicle’s coordinate system. ... 22
Figure 11. Combination of RANSAC and linear regression. 27
Figure 12. Example output of clustering and linearization. ... 28
Figure 13. Playback software for LiDAR measurements. .. 31
Figure 14. DDS network structure when using OpenDDS information

repository.[32] ... 34
Figure 15. Collision warning software user interface. .. 39
Figure 16. Example of trajectory projection. .. 39
Figure 17. Visualization of the measurement point linearization. 43
Figure 18. Ghost image created by synchronization.. 44
Figure 19. Transmission time of sending ten objects’ information from 100

publishers to one subscriber. .. 47
Figure 20. Average transmission time relation to number of publishers. 49
Figure 21. Transmission time of a single object’s information at 1 kHz

transmission rate using ITS-G5. ... 50
Figure 22. Regular Sick LD-MRS measurements in snowy conditions. 52
Figure 23. Sick LD-MRS HD measurements in snowy conditions. 53
Figure 24. Measurement environment in snow tests. ... 53
Figure 25. Echo pulse widths of Sick LD-MRS measurement points in snowy

conditions... 55
Figure 26. Ratio between first and second measurement points’ echo pulse widths

in different scenarios. ... 56
Figure 27. Mean LiDAR pulse width ratio on an urban area drive. 57
Figure 28. LiDAR view of a pedestrian standing in snow. ... 58
Figure 29. Output of the first version of the weather filter. ... 58
Figure 30. Output of the second version of the weather filter. 59
Figure 31. Final version of the weather filter. ... 59

vii

LIST OF SYMBOLS AND ABBREVIATIONS

5G Fifth generation of mobile communication technology

API Application Programming Interface

CAN Controller Area Network

CCC Collaborative Cruise Control, also known as Cooperative
Adaptive Cruise Control (CACC)

DDS Data Distribution Service

ENU East North Up

ETSI European Telecommunications Standard Institute

GNSS Global Navigation Satellite System

IDL Interface Description Language

IMU Inertial Measurement Unit

ITS Intelligent Transportation System

ITS-G5 Communication technology designed for ITS

LiDAR Light Detection And Ranging

MEC Mobile Edge Computing

MQTT Message Queue Transport Telemetry

OCI Object Computing Inc.

OMG Object Management Group

UTM Universal Transverse Mercator

V2V Vehicle-to-Vehicle

WAN Wide Area Network

WGS World Geodetic System

Qt A cross-platform software framework

1

1. INTRODUCTION

Collaborative sensing is a concept in which data from multiple sensors from multiple
actors is gathered and used collectively. One of its application areas is the automotive
industry. Modern cars use radars to adjust the cruise control speed to match that of the
vehicle in front of them. Collaborative sensing continues from where the field of view of
the car ends. It enables the car to see past obstacles and through harsh weather conditions
by utilizing the sensory data provided by other vehicles and intelligent infrastructure near
it. This is especially useful as car manufacturers are trying to develop automated vehicles.
The more the vehicle sees and understands about its surroundings, the safer its actions
can be.

1.1 Needs and requirements

This thesis is tightly coupled with the VTT Technical Research Centre of Finland
automated vehicle development. The ultimate goal of VTT’s automated vehicle research
is not to produce a completed self-driving vehicle for the market but to study the world
of automated driving and its challenges. The goal of the thesis is to expand VTT’s
development platforms so that collaborative sensing can also be studied in automated
vehicle environment.

Automated vehicles require three main components: actuators for controlling the vehicle
without a human driver, sensors to perceive the vehicle’s surroundings and the vehicle
itself and finally a processing component to make rational decisions on how to control
the vehicle. Human brain can process visual data amazingly fast. It can derive and predict
essential information in a way that the most sophisticated artificial intelligence cannot.
This needs to be compensated by the automated vehicle with advanced environment
perception produced by intelligent processing of data from different sensors. Although
sensor technology keeps evolving, it will always have its limits. Line of sight is crucial
for many sensors and in various traffic scenarios the line of sight to important objects can
be lost. Collaborative sensing is one way of tackling this problem.

The need for collaborative sensing is best explained with an example scenario. Lane
changing is a vital function for an automated vehicle in an urban environment. Changing
a lane requires a good knowledge of the free space around the vehicle. For an automated
vehicle, this means that it should have a 360° field of view with its sensors. Even if the
vehicle’s sensors could cover its surroundings, the line of sight to the direction of the lane
change could be blocked by another vehicle. If another vehicle nearby equipped with
sensors could provide additional situational awareness through collaborative sensing, the

2

lane change could be completed much safer. Automated vehicles should be able to drive
without the assistance of collaborative sensing since sometimes there is no traffic around
or there are no external sensors to collaborate with. Nevertheless, it is a safety increasing
technology and it should be acknowledged in the development of automated vehicles. It
should be noted that the collaborative sensing technology could prove to be useful in more
limited scenarios where multiple collaborative vehicles are controlled by the same actor.
These scenarios could include for example an intelligent transportation fleet on public
roads or automated traffic in industrial environments where the traffic is mainly
controlled by a property owner.

An implementation of collaborative sensing with laser scanners was developed for this
thesis project. The implementation provides a mean of testing the main research question:
How well does the combination of modern sensor and communication technology meet
the requirements of collaborative sensing in automated vehicles? This question has to be
separated into two aspects: collaboration and environment perception.

Three key requirements for collaboration were tested in this thesis. First requirement is
an accurate positioning system. All measurements have to be tied down to a single
coordinate system so that every vehicle using the sensory data from external sources can
understand where the measurements were made[1]. This is a requirement for both the
sender of the sensory data and its receiver. The other two requirements deal with
communication. The second requirement is that the transfer speeds of the communication
methods have to be high enough to support the sending of sensor data from one
collaborative actor to another. The third tested requirement is the low communication
latency. The data needs to be sent fast enough, otherwise the environment could have
changed between sending the data and receiving it. For example, a view of an intersection
area could be totally useless if it is received two seconds after the measurement is made.
Multiple vehicles could have come to the field of view of the sensor after the measurement
was made. That would make the sent data not only useless but dangerous if assumptions
about the state of the intersection are made based on it.

The overall performance of the sensor data processing in evaluated in order to find the
challenges and possibilities of environment perception with LiDARs. This evaluation
includes environmental considerations as well as an analysis of the object tracking and
recognition software. Speed, accuracy and robustness of the system are critical. If
movement of dynamic objects can be estimated well, longer latencies can be accepted
assuming that the information about the movements of all the objects can be included in
the sent sensor data. There are also many other requirements for collaborative sensing in
automated driving such as security issues[2] but they are left outside the scope of this
thesis.

3

1.2 Research projects

This thesis is part of two ongoing VTT projects: RobustSENSE and 5G-Safe.
RobustSENSE is an EU ECSEL funded project with an aim to set the ground for
automated driving in all weather conditions. 5G-Safe is a Tekes Challenge Finland project
that is carried out by a consortium of 10 Finnish companies with an aim to improve
different traffic related services and road safety with 5G communication technology.

1.2.1 RobustSENSE

RobustSENSE approaches the challenge of harsh weather conditions by developing a
sensor platform that is able to self-monitor its operation and adapt to changes in the
weather. The sensor platform is developed so that it can be utilized in all levels of vehicle
operation from driver assistance to automated driving. Self-driving vehicles are being
developed around the world by several companies and consortia but until the challenges
of operating in all weather conditions have been overcome, fully automatic driving cannot
be accomplished. By bringing together experts from digital data and transportation
RobustSENSE advances the robustness of automated driving and creates new ideas for
automotive industry. LiDAR software developed in this thesis project is one of the
practical outcomes of the RobustSENSE project.[3]

1.2.2 5G-SAFE

5G-Safe’s mission is to find new practical applications that new 5G technology enables
in traffic and road safety. Data gathering services are developed to collect information
about vehicles, roads, weather and other traffic related issues. This information is
processed in centralized servers as well as Mobile Edge Computing (MEC) servers. The
project includes several use cases whose aim is to validate the technologies possibly
enabled by the 5G mobile communication technology.[4]

1.3 Structure of the thesis

Chapter 2 introduces the state of the art research in the collaborative sensing in
automotive applications. It focuses on research related with automated vehicle
development since the collaborative sensing implementation of this thesis is based on
that.

Chapter 3 introduces the automated vehicle development and the automated vehicles used
in this thesis. It also presents the different sensors used in the automated vehicles and
covers the operating principle of LiDARs.

4

Chapter 4 explains the design of the sensing software for the LiDAR. The software
includes object tracking and recognition modules that utilize the measurements of the
LiDARs in VTT’s automated vehicles.

Chapter 5 discusses the different communication methods used for vehicle-to-vehicle
communication. These methods include DDS, MQTT and ITS-G5.

Chapter 6 explains the design of the collision warning software. This software module
includes the practical collaborative sensing elements of the thesis.

Chapter 7 includes the performance assessments of all the software and hardware
components developed and used in this thesis.

Chapter 8 presents the conclusions on how well the developed sensing system and
communication system work as a whole.

5

2. STATE OF THE ART

2.1 Research areas

Research of collaborative sensing in automotive applications can be divided into two
perspectives. The narrower perspective looks at direct applications that the collaborative
sensing enables. Connected Cruise Control (CCC) is a good example of such an
application. In CCC a fleet of vehicles exchanges speed and acceleration information so
that the accelerations and decelerations of the vehicles can be optimized reducing the risk
of collision, minimizing fuel consumption and improving traffic fluency. A vehicle in the
fleet can measure the speed of the vehicle in front of it and broadcast that information to
the vehicles behind it even if the vehicle in front doesn’t have any communication
capability. The vehicles behind the sensing vehicle can adjust their velocity accordingly
if there are changes in the velocities of other vehicles in the fleet even though they cannot
see the changes themselves. The accelerations and decelerations can also be planned
ahead so that unnecessary braking can be avoided.[5]

The wider perspective deals with more abstract problems of collaborative sensing. These
problems include challenges such as real-time requirements[1], restrictions in the field of
view of a vehicle[6] and authentication of the data received with vehicle-to-vehicle (V2V)
communication[2]. This thesis focuses on the wider perspective and provides an
implementation of sharing sensory information from one vehicle to another.

Many European research projects in automated vehicles are based on the Intelligent
Transportation System (ITS) standards. The subdivision of the ITS standard for
collaborative sensing is the Collaborative ITS or C-ITS standards. Even though these
standards have been developed since the 1980’s they are still under constant refinement.
The implementation of collaborative sensing developed in this thesis utilizes the same
technology and information as described in the C-ITS standards, but is not fully
compatible with the standards. The implementation’s focus is in the practical tests and
evaluations but it can easily be modified to be compatible with the standards.[7]

2.2 Collaborative sensing in automated vehicle development

Even though automated vehicle producers such as Tesla have presented advanced
autonomous driving functions, the advances of collaborative sensing in automated
vehicles are still limited to research projects. Separate collaborative sensing functions
have been researched by simulations[5], [6], [8] and actual vehicles[1], [2], [9]. The
communication protocols have also been tested and developed in many studies[10]–[12].

6

Thomaidis et al. developed an object tracking system[1] that merged the data from an
ego-vehicle radar with a location information sent by a collaborating vehicle. They
demonstrated that using a Wi-Fi connection, it is possible for two vehicles to share their
information and to synchronize the transferred data so that it is valid even after latencies
created by the transmission. This also proved that the positioning system of an automated
vehicle can be accurate enough for the collaborative sensing purposes.

Obst et al. described a method of checking the plausibility of objects whose information
has been received through V2V communication[2]. Their system analyzed the
surroundings with a commercial MobilEye camera and gave an estimate of the
plausibility of received V2V messages including position data of another vehicle. They
demonstrated that off-the-shelf products can be used to accurately verify the validity of
information received by V2V communication by using object tracking algorithms. This
result indicates that the object tracking software implemented in this thesis could also be
used for V2V validation.

Different traffic scenarios have been modeled in [5], [6] and [8]. The simulation results
show promising results for the benefits of collaborative sensing even in scenarios where
multiple surrounding vehicles are incapable of receiving or sending V2V data. The
scenarios modeled include collaborative control of multiple vehicles and lane changes by
sharing local maps with adjacent vehicles.

An advanced environment perception system using LiDARs was developed by
Maclachlan and Mertz.[13] Their work included an object tracking software developed
for a moving vehicle. Their work showed the challenges such as feature extractions in
object tracking with LiDARs in automotive applications. Their system was able to create
collision warnings for a moving vehicle equipped with LiDARs. They tested their
software on 263 hours of recorded LiDAR measurements. The resulting software was
able to correctly generate warnings but it was far from ideal. 60 % of the high risk
warnings generated were false positive. Greatest reason for the false positives was an
error in the velocity estimations of the tracked objects. The study was conducted with a
similar LiDAR as in this thesis and it shows well how demanding the task of object
tracking with LiDARs is.

This thesis is unique in a way that it incorporates fully functional automated vehicles with
complete sensor setups that enable comprehensive environment perception, high-
performance positioning and communication between vehicles. The only limitation is that
the thesis is restricted to using only two communicating vehicles and any large-scale tests
cannot be performed in practice.

7

3. AUTOMATED VEHICLE DEVELOPMENT

3.1 Automated vehicle platforms

Two robot cars were under development at VTT during the making of this thesis. The
cars were the main development platforms on which the environment perception software
was built. These vehicles were named Marilyn and Martti because it was necessary to
separate the automated vehicle development from the original vehicle manufacturers,
who did not have a part in the development of the automated functions.

Marilyn is based on a Citroën C4 and Martti on a Volkswagen Touareg. Both vehicles
have automatic gear boxes for ease of actuator installations. The vehicles serve as
research platforms for multiple VTT projects. Marilyn’s focus is on projects involving
automated driving in urban environments whereas Martti’s development focuses on
projects where automated driving is performed outside urban areas. The vehicles are
presented in figure 1.

Figure 1. Automated vehicle platforms. Marilyn is on the left and Martti on the right.[14]

Various sensors were installed on both of the vehicles to handle mainly positioning and
front side environment perception. These sensors are presented in chapter 2.3. Plans were
made to increase the number of sensors to cover the rear side of the vehicles and also
update the sensors to produce more robust environment perception. Main computer model
for both vehicles is the Compulab IPC2 which is designed for industrial use. Both vehicles
are equipped with five of these computers running Linux operating systems.

3.2 LiDAR

3.2.1 Operating principle

LiDAR is short for Light Detection And Ranging. It is a distance measuring sensor
equipped with a laser transmitter and a light detecting receiver. LiDAR measures distance

8

by measuring the time of flight of a reflected laser pulse. LiDARs can be equipped with
a rotating mirror that allows measurements in multiple directions with a single set of a
transmitter and a receiver. Additional transmitters and receivers can also be installed to
increase the number of scanning planes. [15]

3.2.2 Sick LD-MRS

The LiDAR used in the VTT project RobustSENSE was The Sick LD-MRS 800001
although some of the software development was conducted with almost identical IBEO
LUX LiDAR. The developed tracking and object recognition software works with both
LiDARs because they have identical APIs. The Sick LiDAR mounted on Marilyn is
shown in figure 2.

Figure 2. Sick LD-MRS LiDAR mounted on Marilyn’s front bumper.

The Sick LD-MRS information is based on the Operating instructions datasheet[16] from
Sick AG. The LD-MRS LiDAR provides advanced range measurements simultaneously
in eight layers. The eight layers are produced from two integrated four-layer scanners.
The central scanning range of a single four-layer scanner is 85° but the measurements can
be extended to 110°. Scanning outside the central scanning range provides measurements
only in 2 planes from each scanner. The orientation of the scanning planes of the 8-layered
LiDARs is asymmetrical. The angle between two planes of the LiDAR is roughly 1°, but

9

the value varies based on which two planes are compared and at which horizontal angle.
The maximum angle difference between the highest and lowest measurement plane is
6.4°. The plane angles of a single Sick LiDAR device are visualized in figure 3.

Figure 3. Measurement plane angles of a single LiDAR device.

The scanning frequency of the sensor can be adjusted, but it affects the resolution. The
horizontal resolution range is between 0.125° and 0.5° depending on the scanning area
and frequency. Central scanning area provides a higher resolution when lower scanning
frequencies are used but the resolution is reduced to 0.5° in the whole field of view if the
frequency is increased to the maximum value. The frequency can be adjusted between
12.5 Hz and 50 Hz. It is worth noting that a single scan provides measurements only from
one device meaning that only 4 layers are measured simultaneously. The nominal
operating range of the LD-MRS is from 0.5 to 300 meters but the actual maximum range
is much smaller and it depends on the reflectivity of the surroundings. The actual
maximum distance according to the data sheet is presented in figure 4.

10

Figure 4. Sick LD-MRS operating range dependency on object reflectivity. The upper red
curve represents standard LD-MRS sensor and the lower blue curve LD-MRS HD
sensor.[16]

The range depends also on the horizontal angle of the current measurement point because
of the design of measurement optics. The relation of measurement angle and maximum
distance is presented in figure 5.

Figure 5. Sick LD-MRS relation of view angle to operating range.[16]

11

Vertical axis describes the ratio of maximum measurement distance for the angle and the
absolute maximum measurement distance. Horizontal axis describes the horizontal angle
of the measured point in the LiDAR’s coordinates.

The sensor’s operating principle is improved by measuring multiple echoes from a single
laser pulse. This allows the sensor to detect objects that are located behind transparent
surfaces. This also improves the sensor’s performance in harsh weather conditions such
as rain since the sensor also detects objects after the laser pulse has first reflected off a
rain drop.

One heavy duty version Sick LD-MRS HD LiDAR was installed on robot car Martti. The
sensing distance of the heavy duty version of the LiDAR is limited when compared to the
regular version, but it is much less affected by weather conditions. The heavy duty LiDAR
on Martti serves simultaneously as a reference sensor for the regular LiDARs and as a
backup for harsh weather conditions, where the visibility to close proximity is very
limited with the regular sensors.

3.3 Other sensor technologies in vehicle platforms

It is necessary to describe the other sensor technologies on the vehicle platforms because
environment perception is deeply connected to sensor fusion. Many other sensors are used
to support the operation of environment perception with LiDARs and ultimately the goal
is to combine all sensor input to create a robust situational awareness.

A navigation module was developed alongside the main thesis project. The module
combines positioning data with inertial measurements and odometry to produce valid
position data between GNSS measurements and even during short periods when GNSS
signal is lost or when the GNSS data is invalid. The output of the module is improved by
an online inertial sensor calibration based on GNSS data. The module is the first fully
functional and independent sensor fusion module for the VTT’s current vehicle platforms.

The sensor setup of the vehicles was nearly identical. Both vehicles included LiDARs,
thermal and stereo cameras, positioning sensors and inertial measurement units (IMUs).
Data in the vehicles’ CAN buses were also read but no control signals were sent to the
CAN buses for safety reasons.

3.3.1 Radars

Both of the vehicles were equipped with two types of radars for measurements in shorter
and longer distances. The longer range measurements are covered with a Bosch LLR2 77
GHz radar that can produce measurements from up to 200 meters. Shorter ranges are
measured with a Continental SRR 20X radar. The Continental radar is used alongside the

12

long range radar because of its wider 150° field of view as opposed to the 16° of Bosch’s
radar.

3.3.2 Cameras

Both automated vehicles are equipped with a stereo camera system including infrared
sensitive cameras and two infrared light sources. Marilyn is equipped with IDS HDR
system that is installed right behind its wind shield. The cameras are independent and the
stereo camera functionality is gained programmatically. A VisLab 3DV-E system is
mounted on Martti’s front bumper. The VisLab system provides a 636×476 disparity
resolution. The maximum nominal operating range of the system is 88 meters but in
automated vehicle scenarios the valid operating range is roughly 30 meters.[17]

Marilyn is also equipped with two FLIR thermal cameras. These cameras are used to
identify warm objects and differentiate moving objects such as pedestrians and vehicles
from the background.

3.3.3 GNSS

Both vehicles are equipped with two GNSS systems with separate antennas using GPS
and GLONASS for positioning. The reason for using two systems is to validate the
received location data. Since the antennas have fixed positions on the vehicles’ roofs the
distance between them is known. If the measured distance between the two is much
greater than the actual distance, the measurements are known to be invalid.

3.3.4 Inertial measurements and odometry

An XSENS AHRS unit is used to measure the inertial movements of the vehicles. It
provides measurements in all 6 dimensions: 3 for accelerations in its rest frame and 3 for
rotations. It measures magnetic fields and works also as a compass for the vehicles.

Odometry measurements can be gathered via the CAN buses of the vehicles. Wheel
velocities are the key measurements from the bus but it is also possible to read other
important messages from the bus such as steering wheel and gas pedal position.

3.4 Communication systems

The vehicles are equipped with 2 communication systems for different purposes. Shorter
distance communication is handled with an ITS-G5 system with small latency but also a
small capacity. Larger data transfers are handled with a 4G LTE system. The 4G LTE
system is also compatible with future 5G networks and it allows the testing of 5G
technology still under development. Currently the 4G LTE network is used for reading
GNSS correction data and aiding with software development.

13

All raw and processed sensor data inside the vehicles is handled with a Data Distribution
Service (DDS) network. DDS is a reliable, high-performance protocol that is ideal for the
real-time requirements of automated driving. The communication systems are covered
more deeply in chapter 5.

3.5 Environment considerations

The research on automated vehicles at VTT is specialized in dealing with harsh weather
conditions especially in Nordic weather. Rain, snow and fog bring out many challenges
in automated driving. Some sensors are rendered useless by these different weather
conditions but the automated vehicle should still be able to operate based on the valid
data from other sensors.[18]

The challenges that weather conditions produce can be approached in three ways. The
automated vehicles can be equipped with different kinds of sensors that can handle
various weather conditions as a combination. The second option is to design individual
sensors and processing of their data so that they can handle larger variety of weather
conditions. Final option is to expand the field of view with collaborative sensing. VTT’s
two vehicle platforms utilize all of the approaches. They are equipped with sensors that
can operate even in the harshest weather and in addition VTT is involved in projects
where sensors are improved to handle specific weather challenges. For example, a LiDAR
operating at longer wavelengths is under development. The longer wavelength has less
absorption in water thus providing less noisy measurements in foggy and rainy weather
situations. Finally, this thesis project provides the starting point for collaborative sensing
between the two vehicles.

14

4. ENVIRONMENT PERCEPTION SOFTWARE

4.1 Software overview

The developed environment perception software consists of four main parts which are
raw data processing, object tracking, object recognition and integration with inertial
measurements. These parts are used to generate an entity that tracks and predicts the
movements of nearby objects in the LiDAR’s field of view.

Raw data processing covers all the steps that are taken to transform the raw point cloud
data into trackable objects with simplified features. The steps include sorting the points
based on their azimuth angle, filtering out measurements points coming from the ground,
clustering the measurement points to separate objects and linearizing the clusters to create
more robust and simplified tracking and recognition. Linearization in this thesis is a
process where a set of measurement points is transformed into one or more linear models.
The linearization process reduces the amount of handled data and creates insight on the
shape of the sets of measurement points. The models created by the linearization represent
the edges of the perceived objects. For example, a car seen by a LiDAR is typically shown
as one or two lines, depending on the point of view. These lines can be represented as
linear models. An example of a vehicle seen by a LiDAR with linearized measurement
points is show in figure 6.

Figure 6. Example of measurement point linearization.

15

The measurement points created by the LiDAR are shown as dots and the linear models
as lines. The software also projects two other models on clusters that appear to be vehicles
to estimate the rest of the vehicle’s edges.

The object tracking is implemented with a Kalman filter. Tracking enables predictions of
the trajectories of perceived objects. Trajectory information can be utilized in e.g.
predicting collisions[19].

Object recognition is implemented with a voting algorithm. The objects are divided into
five classes: undefined, car, pedestrian, bike and obstacle. Each class has specific size,
shape and movement characteristics. If a tracked object has the same characteristics as
one of the classes the algorithm votes for that class. If a class gets a vast majority of the
votes the object is set to that class. Similar voting algorithm was used by Mendes et al.
for LiDAR data classification[19]. The object recognition could later on be used to
estimate the possible movement of the object in the near future. For example, vehicles
cannot move sideways but pedestrians can almost freely move in 2 dimensional space.

Since the software is to be used in a moving vehicle it needs to take into account the
movement of the vehicle the LiDAR is attached to. Inertial measurements are produced
with a separate positioning module which uses GNSS, inertial measurements from an
IMU and odometry measurements from the vehicle wheels through the vehicle’s CAN
bus. Previous measurements from the LiDAR are transformed to the vehicle’s coordinate
each time a new measurement is received based on the movement of the vehicle.

In figure 7 an overview of the software operation is presented. The objects that the
overview discusses are entities that are tracked aver multiple measurements with the
LiDARs. The software is described in detail in chapter 4.3.

16

Figure 7. Flow chart of the object tracking and recognition module.

4.2 Theoretical background

The theoretical background of the environment perception covers four different areas:
sorting algorithms, linearization, coordinate system transformations and tracking with
Kalman filter. These areas are presented in the same order as they are utilized in the
software. This subchapter gives a theoretical view of the algorithms used. The
implementations and more detailed explanations of their characteristics are described in
the chapter 4.3.

4.2.1 Sorting algorithms

Two sorting algorithms are implemented in this thesis: insertion sort and merge sort.
These two algorithms are called comparison sorts. They define the order of elements in a
data set by comparing a chosen attribute of an element. The performance of these sorting
algorithms is typically defined by worst-case running time and average running time. The
running times are expressed as the function of the number of elements in an input data

17

set. For example, insertion sort’s worst-case and average running times are n2, where n is
the number of elements in the data set. Merge sort’s worst-case and average running times
are n · log (n). These estimations of running times do not represent the actual time of
running the algorithm with small data sets because they only take into account the most
significant factors in the formulas. By increasing the number of elements in the input data
set, the estimations become more accurate. They only give estimates on how the
processing time increases when the number of elements in the data set is increased since
absolute processing time depends on a number of different factors in the software and
hardware.[20]

Insertion sort is an efficient sorting algorithm for small data sets. Its intuitive sorting
method takes a single element from an unsorted data set one by one and finds a correct
position for it in the sorted data set. The sorted position of the new element is found by
iteratively comparing its chosen value to those of the sorted data set. In best-case scenario,
the new element is placed in the first position in the sorted data set requiring only one
comparison between the chosen values. In the worst-case scenario, the new element is
positioned in the back of the sorted data set. This means that the comparison of values
has to be done for each element in the sorted data set. It is crucial then to know if the
values of the original unsorted data set are already in some sort of order. The best-case
scenario, where the elements are already in order, the running time is linear.[20]

Merge sort is a more complex sorting algorithm. It is a recursive algorithm meaning that
the sorting problem is first split into smaller problems until the problem of sorting
becomes trivial. In merge sort, the input data set is split into smaller data sets until the
remaining split data sets are sorted. For completely unsorted input data set, this means
that each split data set contains only one element, thus being sorted. After the splitting,
each remaining data set is merged with another data set. Since the two merged data sets
are already in order, only the first elements in the two data sets need to be compared. The
merge sort is an efficient sorting algorithm especially when combining two sorted data
sets together and it is especially useful in this thesis when merging multiple already sorted
sets of LiDAR data into one larger data set.[20]

4.2.2 Linearization

Linearization is used in the software to simplify the point clouds that the LiDAR
produces. Two main linearization methods were implemented and tested. First tested
linearization method utilized a combination linear regression and Random Sample
Consensus (RANSAC) algorithms. The second algorithm tested was the Douglas-Peucker
algorithm. Linearization aims to produce one or more linear models that fit the point cloud
data as well as possible. A single linear model can be described by the following formula.

18

= + (1)

The x and y represent coordinates in Cartesian coordinate system. The differences
between the algorithms used arise from the different assumptions on the raw data. Linear
regression produces the least squares fit to the available data but it assumes that the whole
data set given to the algorithm belongs to the model[21]. The Douglas-Peucker algorithm
also assumes that all data belongs to the model but it operates recursively based on a given
threshold distance to produce an undefined number of linear models. RANSAC on the
other hand allows the data set contain outliers – points that are not included in the model.
It seeks for the model that contains the most inliers through iterative process.[22], [23]

Linear regression produces a single least squares fit by iterating twice over the given data
set. Means of the x and y coordinates are calculated on the first iteration. On the second
iteration variance of x and covariance of x and y are calculated. The values are used to
calculate the value of b in the linear model with the following formula.[21]

= 	∑ (̅)()
∑ (̅)

(2)

̅ and are the means of the x and y coordinates of points in the data set. ∑ (− ̅)
is the standard deviation of the x coordinates and	∑ (− ̅)(−) is the covariance
of x and y. The value of a in the linear model can be calculated with the following
formula.[21]

= − ̅. (3)

The RANSAC algorithm is not the optimal solution for finding the best model but it
allows finding multiple models in a single data set. The algorithm contains four elements.
The first element is trial model creation. A trial model is created with a small data set.
The original algorithm doesn’t take a stand on how the model is produced. The second
element is inlier counting. The algorithm is given a distance threshold and if a point in
the data set is within that distance from the model line, it is an inlier. The third element is
iteration. Model creation and inlier counting are iterated a given number of times.
Increasing the number of iterations increases the possibility of finding the best possible
model containing maximum amount of inliers for a linear model. The final element is
model validation. If the number of inliers exceeds a given threshold, the model is
accepted. This threshold can be an absolute value or a ratio of inliers to total number of
points. The algorithm itself can be iterated by giving the outlier points of previous
iteration to the current iteration’s data set, thus allowing multiple models to be found. An
example of one RANSAC trial is shown in figure 8. In the figure measurement points are
shown as dots, trial model is shown as a solid line and the threshold distance is visualized
by two dashed lines.[23]

19

Figure 8. Example of a RANSAC trial model.

The figure shows a scenario where the complete data set containing all the measurement
points does not show a clear line. Using linear regression would result in a random linear
model, but RANSAC is able to produce a model that makes over half of the measurement
points inliers. Finding a well-fitting model presented in the example figure on the other
hand requires excessive iteration since there are over 250 different ways to choose a trial
set of two measurement points and most of the trials result in poorly fitting models.

The Douglas-Peucker algorithm is an efficient method of reducing the number of data
points in a set. In this application it is used to produce linear models of the LiDAR
measurements. This algorithm assumes that all of the data points are organized by some
property of the data. The LiDAR measurement points are organized by azimuth angle and
thus they fit the algorithm without further processing. The algorithm works by examining
a subset of the original data set on each recursive round. This data set is initially set to
contain all of the points in the original data set. The recursive round begins by creating a
line between the first and last points of the current data set. Then distances to each other
point of the current data set are calculated. The point furthest from the line is taken under
inspection. If the point is further away from the line than a given threshold value, it is set
as the last point of the next recursive round’s data set. If the point is closer than the
threshold, the last point of the current data set is set as a corner point and the subset is

20

updated for the next recursive round. The first point of the next round is the new corner
point and the last point is the last point of the original data set. The recursion will continue
until the latest created corner point is the last point of the original data. A simple example
of the algorithm is given in the figure 9.

Figure 9. Visualization of the Douglas-Peucker algorithm.

The figure 9 represents four recursive rounds of the algorithm. The algorithm begins from
the figure 9 a) where a line is drawn from the first point of the original data set to the last
point of the original data set. The furthest point is sought and the distance d f to it is
calculated to exceed the threshold distance. The furthest point is thus set as the end point
of the next round’s data set. The next round is represented in figure 9 b). This round
differs from the first round only in the way that the last point of the current data set is not
the last point of the original data set. In figure 9 c) that represents the third recursive
round, the threshold distance is not exceeded. This means that the created model is valid

21

and the data set for the next round is updated. End point of the current round’s data set
becomes the first point of the next round’s data set and the last point of the original data
set becomes the last point of the next round’s data set in figure 9 d).

The comparison between the two linearization methods is covered in the chapter 7.1.3.

4.2.3 Coordinate system transforms

Coordinate system transforms are made in multiple parts of the software. The LiDAR
expresses measurements in polar coordinates which are transformed into Cartesian
coordinates. This transform is not necessary for the operation of the software, but it makes
the calculations and functions of the software easier to comprehend. The other, necessary
transforms are rotations. Two of the LiDARs in front of the robot cars are facing away
from the center line of the vehicles. All measurements in the vehicle environment are
represented in the vehicle’s coordinate systems and thus all measurement points from
these LiDARs must be rotated. The second need for rotation arises when the vehicle turns.
This leads to the effect where objects appear to be moving in the LiDAR’s field of view
between two measurements even if they are stationary. This is corrected by performing
another rotation to the previously perceived objects according to the change of heading
read from the vehicle’s location module. The vehicle can rotate around all three axes since
a typical road is not completely horizontal. In the vehicle’s coordinate system rotation
around y axis is called pitch, rotation around x axis is called roll and rotation around z
axis is called yaw. The coordinate system is presented in figure 10. The coordinate system
is Cartesian and the positive direction of z axis is up. The y axis goes through the rear
axle of the vehicle and the x axis runs through the center of the vehicle. Driving direction
is to the positive direction of x axis.

22

Figure 10. Vehicle’s coordinate system.

The rotations are calculated with rotation matrices. Each rotation is calculated around a
single axis. This means that three rotation matrices are needed when roll, pitch and yaw
are transformed into changes in the Cartesian coordinates. The rotations in three
dimensions are given with matrix Rx for rotation around the x axis, Ry for the rotation
around the y axis and Rz for the rotation around z axis. These matrices are defined as
follows.[24]

() = 	
1 0 0
0 cos	() −sin	()
0 sin	() cos	()

(4)

() = 	
cos	() 0 sin	()

0 1 0
−sin	() 0 cos	()

(5)

() = 	
cos	() −sin	() 0
sin	() cos	() 0

0 0 1
(6)

The variables α, β and γ represent the angle of rotation around the x, y and z axes. The
rotated coordinates are calculated by matrix product of the original coordinate vector and
the rotation matrix. The coordinate vector x is defined as follows.[24]

= 	 (7)

23

These rotations are performed around the origin. For filtering purposes it is also necessary
to perform rotations around other fixed coordinates. These rotations are explained in more
detail in chapter 4.4.1.

4.2.4 Kalman filter

The Kalman filter is an algorithm designed to provide optimal estimation of a state of the
examined system. The filter reads measurements and recursively produces an estimate of
the current state and a prediction of the next state of the system. The recursive nature of
the algorithm allows it to be used in real-time applications. The estimates produced by
the algorithm are typically more accurate than the measurements if they contain noise.
One of the advantages of the algorithm is that it makes very few assumptions on the
system. It only requires the system variables to have finite means and covariances. It also
assumes that the noise in the system is zero-mean Gaussian noise, but it can also perform
well in other cases such as the tracking of objects in this thesis.[25]

The core principles of one iteration of the algorithm are presented to express the
underlying functions of the Kalman filter. One iteration of the algorithm consist of
reading the measured state variables, calculating Kalman gains and covariance matrices,
estimating the current state of the system, predicting the next state and re-evaluating the
covariance matrices. In addition to these steps it is also necessary to determine the
variances and covariances of the measurements. The covariance matrices describe the
errors in the measurements and the estimations. These matrices describe what the errors
of each measured and estimated state variable are and how the errors in one variable affect
the errors in other variables. The estimations and the measurements have their own
covariance matrices.[25]

After the measurements have been read, Kalman gains are calculated by comparing the
covariance matrices of the measurements and the estimations. Kalman gain represents the
confidence on the measurements and the estimations. Higher values of the Kalman gain
indicate that more weight is given on the measured values and the estimations are less
accurate. Lower values of the Kalman gain indicate a higher confidence in the
estimations. The estimation errors are updated twice during each iteration. The first
update is based on the Kalman gain and it represents how the estimations become more
accurate after reading more measurements. The second update takes into account how the
covariance of the state variables affects the errors. [25]

The current state of the system is also the main output of the Kalman filter. The current
state is calculated as a weighted mean of the measured and estimated values. Kalman
gains determine which values are given more weight. After calculating the current state
an estimation of the next state is made. Estimation of the next state is based on the current
state variables and their derivatives. For example, if the state variables of a system are the
distance of an object and its velocity, the estimated next state is determined by taking into

24

account the acceleration of the object and calculating the movement of the object before
next measurement. Even though the underlying mathematics are complex, the actual
implementation of the Kalman filter is fairly simple and it can produce robust results.[25]

4.3 Object detection implementation

Object detection is the first step of the process in environment perception. The detection
phase includes transforming the data into Cartesian coordinates, dividing the
measurement points into clusters and linearizing the data from the clusters so that the
tracking and recognition are easier to handle.

4.3.1 Preceding software and modifications

The developed software for the environment perception was built on two layers of API’s.
The first API was provided by the sensor itself and the second was an extension to the
sensor API that was developed before the thesis work at VTT. The sensor provides the
API through an Ethernet interface. After starting the sensor with an Ethernet command it
will start sending measurement data after each measurement scan. Each Ethernet message
contains raw measurement data from a single scan and a single measurement point is
presented in polar coordinates.[16]

The API developed at VTT handles the reading of the raw measurement data and
categorizes it into two classes: Observation and ObsPoint. Single measurement points are
processed by the API and transformed from polar coordinates to Cartesian coordinates.
The data of a single measurement point is stored in ObsPoint class instantiation. Points
of each scan are stored to Observation class instantiation. After transformation to the
Cartesian coordinate system the measurement points are rotated to match the vehicle’s
coordinate system which is presented in figure 10.

The API was redesigned for vehicle use because all of the sensor data is transferred
through the DDS system in the vehicle. The new design included a publisher software
that reads the Ethernet messages from the vehicles’ LiDARs and sends them to the DDS
network. The application also required a subscriber to read the data coming from the DDS
network. The DDS network and other communication related software are described in
more detail in chapter 5. The software was also updated to combine measurements from
multiple LiDARs into a single Observation.

4.3.2 Sorting measurement points

The measurement point sorting was implemented in two phases to minimize the
processing time. First organizing phase took place in the LiDAR’s driver. This sorting

25

was necessary only for the 8-layer LiDARs with two sensor devices in them. Since the
measurements of a single device are in order, the most natural selection for the sorting
was merge sort algorithm[20]. Measurement points from each device were gathered into
separate lists. A sorted list was created by comparing the first measurement points of each
device list and then choosing the one to put on the sorted list based on its azimuth value.
The point added to the sorted list was removed from the device list. The second sorting
phase was implemented in the object tracking software. First tested implementation was
the insertion sort. The LiDARs could be read in an order, where the measurement points
are almost sorted, insertion sort was a fast and easy way to test the sorting. To improve
the sorting speed, a merge sort was also implemented to be compared with the initial
insertion sort implementation. The comparison results are described in chapter 7.1.1.

4.3.3 Clustering

After the points have been transformed into Cartesian coordinates they are divided into
clusters. The clusters are managed by Cluster class. These clusters try to define which
points are from the same object. The algorithm used for the clustering took advantage of
the order in which the measurement point data is saved in the Observation class. The
order was based on the azimuth angle of the measurement points. The algorithm takes a
single point and calculates its distance to 100 former points. If the distance is within a
threshold, the point is added to the same cluster as the point it was close to. A new cluster
is created if there are no points within the threshold distance.

One of the challenges for clustering is to define the threshold distance. While the depth
resolution is not distance dependent, the horizontal resolution becomes worse with
distance. A simple solution for this problem was to use a distance dependent threshold
which included a small constant for a more robust operation in small distances. A similar
method has also been used by Thuy and Léon in their research[26].

4.3.4 Linearization

It is possible to track the clusters without further data processing but linearizing the
clusters by creating simple models from a set of measurement points, the recognition
process becomes much easier. The tracking can also include the direction of the cluster if
the clusters are linearized even if the perceived object is motionless. The linearization
process has also been used in former studies about LiDARs in automotive applications
and it is proven to be a better solution than simpler bounding box[13], [27].

Two versions of the software were implemented with different linearization methods that
were explained in chapter 3.2.1. The Douglas-Peucker algorithm’s implementation was
thoroughly explained in the theoretical background. The combination of RANSAC and
simple linear regression is described next in more detail.

26

Application of the RANSAC algorithm is implemented as follows. All of the trial models
are produced by choosing two points from the cluster and calculating a model that fits the
two points. If the number of points in the cluster is small enough, all of the different two
point combinations are tested. Clusters containing larger number of points are handled by
randomly choosing two cluster points near each other. The randomness allows fewer
number of iterations but it also creates the possibility that a fitting model that could be
found is not found. This possibility of error can be lowered to almost zero with a large
number of iterations. Even if the model cannot be formed, a single undefined model
between two successful models can be handled by the tracker and object recognizer
without major effects. After the model is formed, distances from all the cluster points to
the model line are calculated. The point is considered to be inlier if the distance is within
the threshold of 15 cm. The best model is chosen by the number of inliers. For the first
model, at least one third of the cluster points need to be inliers. If there are none or a few
outliers the model is considered to be valid by itself. If there are more outliers it is required
that a second model is found. The second model is calculated again with RANSAC but it
only takes the first model outlier points as input. The second model requires at least half
of the points to be inliers to be considered as valid.

Linear regression is utilized after a model is found with RANSAC. By including only
inlier points of RANSAC model it is possible to eliminate points that don’t have a good
fit from the model. Linear regression creates a model with least squares method[21] which
allows a more accurate model to be created especially with small amount of model points.
Consider the following situation of the figure 11. RANSAC can create a valid model that
does not represent the data well since it only takes the first two points as input. Linear
regression on the other hand can form a more fitting model by utilizing the whole data
set.

27

Figure 11. Combination of RANSAC and linear regression.

If two valid models are found they are validated once more by calculating the angle
between the two lines they form. Typical trackable objects with multiple models in
automotive applications are vehicles whose two model lines are perpendicular to each
other. The angle between the formed lines has to be between 60° and 120° for the
algorithm to accept them. The allowed angle range is large because the combination of
measurement noise and randomness of linearization can create large errors in the
coefficient b of the model.

After the linearization process the algorithm creates corner points for the cluster. The
Douglas-Peucker algorithm produces the corner points as its output but the linear
regression and RANSAC require additional calculations. First, the algorithm finds the
minimum and maximum values of inlier point coordinates. Depending on the coefficient
b it chooses either x or y coordinates. Values of b that are closer to 0 represent more
perpendicular lines and it is more accurate to use minimum and maximum values of y
coordinates that are also perpendicular. Values of b that are further from 0 are more
accurate to calculate with minimum and maximum value of x coordinate. Corners are
simple to calculate with minimum and maximum values for a cluster that has only one
model. Cluster with 2 models is more complex since the orientation can vary and the
starting point and ending point cannot be defined. The algorithm solves the problem by
first calculating the intersection point of the two models. Then it calculates minimum and
maximum points along both of the model lines and finally chooses the ones that are
furthest from the intersection.

Other analyses are performed also on the cluster to make the recognition process more
robust. A common problem for measurements with LiDARs is occlusion of objects. When

28

an object comes between the LiDAR and another object, the further object becomes
partially or fully occluded. The size of the further object is reduced and it can even split
into two separate clusters.[13]

To find partially occluded objects the software uses a method demonstrated by
Maclachlan in [28]. In this method each point is marked as occluded or not occluded. A
measurement point is occluded if either of its adjacent points is closer to the sensor and
the closer point belongs to another cluster. After determining occlusion for each point the
same is done for clusters. A cluster is occluded if its first or last point is occluded.

Another analysis for the clusters with two models is determining whether they appear as
convex or concave from the LiDAR’s point of view. Vehicles and other trackable objects
appear always as straight lines or convex corners. Concave corners are thus easy to
identify as static obstacles. To determine whether a corner is convex or concave a
following method is implemented. A line is created from the first corner point to the last.
If the middle corner point is further from the LiDAR than the line, the corner is concave.
Otherwise it is convex.

The output of clustering and linearization in a real traffic scenario is shown in figure 12.

Figure 12. Example output of clustering and linearization.

The clusters in the figure are separated by unique identification numbers. Models created
by the Douglas-Peucker algorithm are presented as lines. The figure shows a good
example of the challenges in LiDAR measurement processing. Uneven ground creates

29

great challenges for the point filtering and results in errors. Some ground points are seen
as actual objects, because they seem to be well above ground from the LiDAR’s point of
view. Object number 2911 is created by ground measurements. These measurements
typically result in clusters that have much more corner points than actual objects and can
be filtered out. On the other hand, some objects appear partially as ground points. The
vehicle that is marked as object number 2927 on the right hand side of the figure is only
partially interpreted as a real object as some of the measurement point are filtered away.

4.4 Tracking and recognition implementation

Tracking and pattern recognition are handled by two classes: Tracker and Object. Tracker
gets fed the clusters every time they are processed and converts them into Objects.
Movement of the objects is predicted with a Kalman filter that is handled inside
instantiations of Objects. The tracker is run on a separate thread because the clustering
and linearization requires a lot of processing time. For this reason the cache for clusters
is protected with a semaphore structure.

After processing the objects with Kalman filter they are sent to a pattern recognition
algorithm. The algorithm utilizes a voting principle that tries to categorize Objects into
different types such as pedestrians and cars. The algorithm is more thoroughly explained
in section 4.4.3.

4.4.1 Kalman filter for tracking

The object tracking is handled with Kalman filter. The filter tracks the center point of the
Objects’ corners. The tracking by center of corner points is not ideal since the shape of
the object can change radically. This happens for example when a car’s side becomes
visible and one corner point is added to the Object. Introduction of new corner points and
the change of the center point can create a false sense of acceleration. These situations
have to be handled with special methods that are explained later.[13]

First step of object tracking from point cloud data is associating the clusters with the
tracked objects. The Kalman filter needs to know what the current measured positions of
the tracked objects are in order to continue the tracking. The connection between tracked
objects and new clusters is made by comparing the center point location of each cluster
to the predicted center points of all tracked objects. The cluster’s center point is assigned
as the new measured position of the object that it is closest to if the distance between the
object and the cluster is small enough. If the distance between the cluster and the closest
object exceeds the given threshold value, a new tracked object is created and its initial
state is set according to the cluster’s information.

The Kalman filter in this software has six state variables: x and y coordinates, velocities
in x and y direction, angle and angular velocity. The acceleration was initially also

30

included in the state of the Object but it turned out to be too unstable to track. The Kalman
filter is initialized when an Object is associated with a new cluster for the first time. This
allows the initial state to be fairly accurate since the velocity of the object is also included
in it. An iteration of the Kalman filter ends in predicting the next state. This allows a more
accurate association of the Objects and clusters for the next set of measurements.

One of the key problems for the Kalman filter is that the measurements are very noisy
and the linearization algorithm is not capable of reducing it enough. This was discovered
after testing first versions of the filter. The object’s dimensions don’t typically change
because of noise but the angle of the object is much more unstable. Two improvements
were made to mitigate this problem. First was an algorithm that forces all found corner
models to be perpendicular. The algorithm recalculates the intersection of two linear
model lines by altering the linear model that creates shorter line. This produces a small
improvement but it is not enough yet. The second improvement is filtering the corner
point locations based on the angle of the object. The Kalman filter calculates the angle
first and then rotates the corner points around the center point of the object.

4.4.2 Integration with inertial measurements

The movement of the ego-vehicle must be accounted for when processing LiDAR
measurements. The movement can be split into two categories which are the rotation and
the movement in the xy-plane. The pitch and roll angles of the vehicle and the LiDAR
are handled by the Observation class and the angle information is transformed into
changes of x, y and z coordinates of the ObsPoints. Pitch and roll affect how the sensor
sees the shapes and that is why they need to be handled before the clustering. Hillsides
create an exception for the rotations. On longer hills the rotation would cause all points
to be considered as ground or sky since the car is tilted. The actual situation is that the
LiDAR lasers point nearly parallel to the ground and it is not necessary to perform the
pitch rotation. This scenario can be handled by tracking the pitch rate. If pitch rate is near
zero for a longer period of time, the rotations are not necessary. The yaw angle on the
other hand affects the location of the Objects but it doesn’t distort their shapes. The
resulting view from the current measurement after the rotations with roll and pitch
describes the actual surroundings. That is why the information of the yaw angle change
needs to be added to the last Objects’ locations.

4.4.3 Voting algorithm for object recognition

Many studies have been done on object classification with LiDAR but they are often only
superficially explained consider only specific seen objects such as pedestrians [19], [29],
[30]. A simple voting algorithm was developed to classify seen objects into five different
categories: cars, bikes, pedestrians, obstacles and undefined objects. Each tracked object
is initialized with voting counters for each category. Votes are given for or against each

31

category by increasing or decreasing the category’s counter. Votes are based on the
object’s size, shape and movement. For example, a 5 meter long object traveling at the
speed of 50 km/h is much more likely to be a car than a pedestrian. The voting algorithm
also takes into account the occlusion of the object. If the inspected object is partially
occluded, the category counters are influenced less than if the object was fully in sight.

4.5 Playback software for recorded LiDAR measurements

Testing of the object tracking and recognition with the vehicles is time consuming and
often impossible because of other development work done on the vehicles. For this
reason, a playback software was developed for testing the object tracking and recognition
based on recorded LiDAR measurements. The user interface of the software is shown in
figure 13.

Figure 13. Playback software for LiDAR measurements.

The software is integrated within the object tracking software meaning that it can either
listen to the LiDAR measurements received from the vehicle network or it can read the
measurements from a file. Measurement points and perceived objects are shown on a 2D
map of the vehicle’s surroundings. The playback module emulates actual LiDAR
measurements so the recorded information can be run through all the algorithms in the
same way as the actual measurements. The interface also allows tuning of different
algorithm variables online. This makes it easier to test various configurations. The
playback speed can also be altered. This information is fed to the Kalman filter so that it
can manage the tracking accurately in different playback speeds. The recording of the
measurements is also handled with the same software.

Multiple display options were also added to the user interface. The user can toggle
different layers of the LiDAR on and off. Also the display of multiple echoes can be

32

toggled. Multiple different attributes such as ID numbers and velocities of perceived
objects can be shown over their location on the map.

33

5. VEHICLE-TO-VEHICLE COMMUNICATION

5.1 Implementation options

Communication between vehicles could be implemented with many different
technologies. For this thesis, three different options were studied. The options were
publish-subscribe-based DDS, Message Queue Telemetry Transport (MQTT) which is
also a publish-subscribe-based messaging protocol, and finally the radio based
automotive communication protocol ITS-G5. There were no prior experience at VTT on
using OpenDDS over internet but since the same messaging protocol is used in VTT
automated vehicles’ internal networks, it was an interesting option to study for vehicle-
to-vehicle communication. MQTT on the other hand had been used at VTT in automotive
applications and it was a natural option for this thesis. The ITS-G5 had been also used in
automotive applications and since it is designed for automotive communication, it was
also a natural option.

5.2 5G technology

Even though 5G technology was only briefly tested during this thesis, it needs to be
acknowledged as a key component for collaborative sensing in the future. 5G is the
telecommunication standard expected to enter the consumer markets in the year 2020.
The main goal for 5G technology is simple: improve the current 4G telecommunication
methods to meet the increasing requirements for network capacity. The increasing
requirements also apply for collaborative sensing. As vehicles become smarter and start
to exchange information, the need for low-latency, high throughput network is
considerable. Data sent to vehicles from other vehicles or infrastructure is extremely time-
critical. In addition, the number of vehicles exchanging the data in a small area can be
very high. 5G technology can possibly answer the needs of the collaborative sensing.[31]

Even though the goal for the 5G technology is simple, there are many different aspects
on tackling the challenge. One of the key technologies studied at VTT is mobile edge
computing (MEC). MEC is a technology where transferring and processing the sent data
is moved closer to the radio access nodes to which all the clients of the network connect.
The technology reduces the latencies, takes some of the load off the core network and
makes a more spatially confined communication possible. These advantages can all help
the development of collaborative sensing in automotive applications. For example, typical
data sent to a collaborating vehicle is only useful in a small area nearby the vehicle. There
is no use then to send the data to the core network if only the nearby vehicles can utilize
it. The latency requirements are also easier to handle with a more compact network. MEC
technology will be tested further at VTT in the future.[31]

34

5.3 DDS

DDS is a standard created by Object Management Group (OMG) for distributed systems.
It enables reliable, high-performance machine-to-machine communication. There are
many implementations of DDS and the one chosen for VTT’s automated vehicles is an
open-source implementation OpenDDS managed by Object Computing Inc (OCI).
OpenDDS is highly configurable and allows fast and efficient communication. The
messaging is controlled by assigning a topic for every sent message. A message sent by
a publisher with a certain topic can only be listened by a subscriber listening to that topic.
The messages are pre-defined with Interface Description Language (IDL). The IDL
supports many different data types such as integers, floating point numbers and character
arrays. It also enables easy serialization of data arrays and thus allows sending large
amounts of data efficiently.[32]

OpenDDS was also an interesting implementation because of its own server structure
called Data Centric Publish-Subscribe Information Repository (DCPSInfoRepo) that
handle client discovery. The DCPSInfoRepo works as a server connecting publishers and
subscribers but it doesn’t deal with the data transportation. As all data is transferred point-
to-point it is an ideal protocol to test the performance of communication networks since
the server itself won’t affect the data transfer speeds. The discovery architecture is shown
in figure 14.[32]

Figure 14. DDS network structure when using OpenDDS information repository.[32]

The communication architecture could be simply implemented by creating a public
DCPSInfoRepo server available from anywhere. The vehicles could connect through the
server with other clients of the server such as cars and traffic information service
providers. This design raised questions about the security of the data because then clients
would be listening to data coming from all other clients, even malicious ones. Since the

35

data sent and received through the server connections is pre-defined, this was not seen as
a problem at least in the testing phase.

When OpenDDS was more deeply studied, it came clear that it is designed to be used in
local networks. All examples for using OpenDDS cover only cases where all network
components are inside the same network. The developer’s guides for OpenDDS do not
include the necessary configuration information needed for operating over the internet.
By consulting OCI we were able to configure the DCPSInfoRepo so that the publishers
and subscribers could connect to it. The server, publishers and subscribers indicate their
IP addresses by writing them to a file and sending them when first connections are made.
By default, all of the components in the OpenDDS network write their local addresses to
the file and thus become unreachable for other components outside their network. The
DCPSInfoRepo could be configured to force its IP address as a public IP address in the
file but the same thing was not achieved with the publishers and subscribers. Time limits
of this thesis forced to drop OpenDDS as an option for vehicle-to-vehicle communication
but it would be a good subject to study later on.

5.4 MQTT

MQTT has a similar publisher-subscriber-method as DDS. Each message sent by a
publisher contains a topic and only subscribers listening to that topic can read the
messages. The main difference between MQTT and OpenDDS is that all messages go
through a message broker in MQTT whereas the OpenDDS uses point-to-point
messaging. The message structure is also different since MQTT only supports sending of
text messages instead of pre-defined data structures. This allows more flexible
communication but it also makes the communication more inefficient because all numeric
data has to be converted into characters by publishers and back to numeric data by
subscribers. The message payloads are more inefficient since encoded text takes up more
space than raw numeric data. Conversions from numeric data to text and vice versa also
require additional processing that is not necessary when using OpenDDS. Another
practical difference between MQTT and OpenDDS is the topic structure. In OpenDDS
all topics are unique and they contain no structures. An MQTT topic on the other hand
has a hierarchy. Publishers can send messages and subscribers can listen to topics on
different hierarchy levels indicated with a backslash. For example, a temperature reading
of a certain room in a building could be published with a topic:

Building1/2ndFloor/Room221/Temperature

Subscribers could either listen to that specific topic or some broader topics such as all
data from Building1 or all temperature measurements from the second floor of any
building. The data management becomes easier with advanced topic hierarchies
especially when there are more components in the network.

36

The chosen implementation of MQTT in this thesis was Mosquitto. It is an open-source
message broker. C++ based client libraries have also been added to Mosquitto and they
are also used to create the MQTT publishers and subscribers. There are many different
implementations of MQTT but almost all of them are commercial products or provide
only public brokers that allow limited testing of the MQTT protocol. Mosquitto as an
open-source project is better suited for the automated vehicle development at VTT
especially in early testing phase since it doesn’t require any economical commitments.
Downside of Mosquitto is its performance. It is more focused on providing easy usage
than high data throughput. A benchmark test[33] of different MQTT brokers by a
commercial MQTT implementation provider indicated that latencies increase in linear
fashion with the amount of sent data for Mosquitto when commercial products can deal
with almost constant smaller latencies. The suitability of Mosquitto for vehicle-to-vehicle
communication in automated driving is covered in more detail in chapter 6.

5.5 ITS-G5

The ITS-G5 is based on ETSI standard EN 302 663[34] for vehicle-to-vehicle
communication in 5.9 GHz frequency band allocated in Europe. The EN 302 663 standard
is based on the 802.11p wireless communication standard. The ITS-G5 is the main
technology in Intelligent Transport Systems (ITS) for vehicle-to-vehicle communications
in time-critical applications. Despite the low latencies, the performance of the ITS-G5
can be limited in urban environments if there is no line of sight between the message
sender and receiver. This needs to be considered when implementing critical applications
in automated vehicles.[35]

By its definition the ITS-G5 is an ideal protocol for sending data between vehicles. Even
though it is designed for the task, it can fail in many scenarios and thus it is important to
validate also other communication methods. For comparison purposes, the ITS-G5
communication performance is tested in this thesis.

37

6. COLLISION WARNING SOFTWARE

The collision warning system introduces the element of collaborative sensing to VTT’s
automated vehicles. The software listens to the object tracking data produced by the ego-
vehicle as well as other vehicles that are connected to the same communication platform.
The risk of collision is analyzed by projecting the ego-vehicle’s and tracked objects’
trajectories and calculating if they intersect in the near future.

6.1 Collaborative sensing

The final version of the collaborative sensing in this thesis was implemented with a
MQTT Mosquitto broker. Each vehicle connected to the Mosquitto broker can share the
objects it has tracked and receive data from other vehicles that have their own object
tracking systems. The test environment includes a Mosquitto broker that is hosted on
VTT’s server.

Vehicles that are connected to the Mosquitto broker need to have a common coordinate
system in order to interpret each other’s object tracking information. The first step for
sharing the tracked object information is to perform coordinate system transformations
from the ego-vehicle’s coordinate system to global coordinate system. The
transformations include transformations of the object’s locations from the Cartesian
coordinate system of the vehicle to World Geodetic System (WGS). WGS84 was chosen
for this implementation as the global coordinate system because of its commonness and
accuracy in all parts of the world. The second required transformation is the rotation of
objects’ headings from the ego-vehicle’s coordinate system to universal East North Up
(ENU) heading. ENU based heading was chosen because the rest of the vehicle’s software
also utilizes the same system.[36]

Calculating the global coordinates of each object is performed with another
transformation to Universal Transverse Mercator (UTM) projection. In the UTM
projection, Earth is divided into 60 zones. Locations are expressed as a combination of
zone numbers and the accurate location in the zone described by easting and northing
values. Each zone has a center meridian from which the easting is calculated. The
northing is calculated from the equator. The advantage of the UTM projection is that it
presents the position in meters rather than in angles. This allows fairly simple calculation
of the objects’ global positions with a single rotation of original x and y coordinates and
addition of the rotated coordinates to the ego-vehicles UTM coordinates. The UTM
coordinate system is not used for transmitting the objects’ locations because UTM
coordinates are more complex to present than WGS84 coordinates and they contain more
error especially on the edges of the zones. WGS84 coordinates contain only two values,

38

latitude and longitude, which are expressed in degrees. UTM coordinates on the other
hand require two distance values, northing and easting, as well as a zone identifier
number. The accuracy of the UTM projection probably wouldn’t have much effect since
the use of the object tracking data is restricted to a relatively small area around the sensing
vehicle. The message efficiency on the other hand is critical when limited performance
communication system such as Mosquitto is used.[36]

6.2 Collision estimation

Collision estimation is based on projecting the path of each perceived dynamic object and
the ego-vehicle and then examining if any of the objects paths intersect with the ego-
vehicle’s path. The input for the system comes from the vehicle’s own object tracking as
a DDS message as well as from external sources as MQTT messages. The objects’
locations and headings are first converted to the vehicle’s coordinate system. Then each
object’s trajectory is projected based on the location, heading and curvature of the object.
The projection has to be processed by integrating the curvature effect on the path. The
integration time used is 0.2 seconds and each object is tracked for 4 seconds into the
future. The collision estimation must also take into account the possible delays between
measuring the object and projecting its track. To synchronize the measurements between
the different software components and measurements from external sources, a common,
globally available GNSS based time stamp is used. In addition to the 4 second projection
to the future, the trajectories between the measurements time and the processing time
need to be calculated.

Checking of the possible collision is made by comparing the border lines of the object
and the vehicle on each given time stamp from current time to 4 seconds ahead. Width
and length is determined for each object. All objects are marked as rectangular boxes and
the border lines are defined as linear models. Similar models were used in software
described in chapter 4.2.1. If any of the ego-vehicle’s border lines intersect with any
border lines of an object, a collision warning is created. The software informs the
estimated time stamp of the collision as well as the direction of the colliding vehicle.

A test software was developed to assist in the collision warning system development. The
user interface of the software is shown in figure 15.

39

Figure 15. Collision warning software user interface.

The interface displays the object information received from other vehicles and the ego-
vehicle on separate windows. It can also be used to create simulated objects with a simple
tool. The tool was used to verify the accuracy of the collision warnings. An example of
two simulated moving objects is shown in figure 16.

Figure 16. Example of trajectory projection.

The track of two simulated vehicles is projected for four seconds in the figure. The
software takes into account the location, speed, heading, curvature and size of the objects.
Producing all of the information for the collision warning software is a great challenge.
Especially the curvature is hard to define accurately.

The collision estimation could be improved in many ways. First improvement would be
a more accurate collision detection. If a smaller object collides with a larger object, it is
possible that the border lines do not intersect at all but the all of the smaller object’s border

40

lines are inside the border lines of the larger object. Second improvement could be an
estimation of the projection validity. Any changes in the heading, speed or curvature of
the object lead to errors in the projection. The further the trajectory is projected, the higher
the chance is for these changes. Any errors in the initial state of the object also cumulate
over time and the projection becomes less accurate after each integration round. The
current performance of the collision estimation is presented in chapter 7.3.

6.3 Collision warnings

The collision warning itself can be used for many purposes. Even non-automated vehicles
can utilize the feature by creating a warning for the driver and creating a more alert state
of mind. For automated vehicles, the collision warnings can be used by reacting to the
threat of collision by adjusting the vehicle controls. By knowing the estimated collision
time and place and the movement of the possibly colliding object, it is possible to redesign
the route for near future thus lowering the risk of the collision or making it less dangerous.
The DDS network enables the easy use of this information in later development phases
of the automated vehicles. The collision warnings can be produced as DDS messages and
all software modules can utilize it in a suitable way.

41

7. IMPLEMENTATION PERFORMANCE

This chapter describes how the software and hardware components developed and used
in this thesis were tested and how they performed. Each module of the software is covered
individually and the hardware components associated with the software modules are
included in the corresponding module review. The three different software modules of
this chapter are the Object tracking and recognition module, V2V communication module
and Collision warning module. All software tests were performed on the Compulab IPC2
computers on the automated vehicles Marilyn and Martti.

7.1 Object tracking and recognition module

7.1.1 Sorting

The first sorting method used a single insertion sort that read measurement points from
multiple LiDARs and combined them online. This method took on average tens of
milliseconds and could not keep up with the LiDAR measurements in some scenarios
where the LiDARs produced more than average number of measurement points. This
implementation could not be used because of the poor performance.

The first improved sorting method used a combination of merge sort and insertion sort.
Merge sort was used to combine the measurement points of a single LiDAR and insertion
sort was used to combine the sorted measurements of multiple LiDARs. This sorting
method took on average 13 milliseconds. This was already acceptable performance for
the sorting but a final improvement was tested to get near-optimal performance. The final
improvement utilized merge sort algorithms both in sorting the points of a single LiDAR
and combining the points from multiple LiDARs. The average processing time of this
implementation was roughly 1 millisecond and was ultimately used in the software.

7.1.2 Clustering

The performance of the clustering proved to be excellent in ideal situations but very
challenging in actual driving scenarios. The accuracy of the LiDARs allow a reliable
separation of small objects even within a meter apart from each other. The challenges of
the clustering come from drippy points and ground hits. Drippy points are one problem
addressed also by MacLachlan in his article[28]. Measurement points seem to appear
between objects that are next to each other but are slightly in different distances from the
sensor. This can cause the objects to merge and produce invalid sense of movement.

42

While the dripping is a significant challenge, the main challenge of clustering is the
filtering of ground hits. On an even ground, it is easy to determine which of the
measurement points are from ground since the height of the measured point can be
determined in relation to the LiDAR. Uneven surfaces on the other hand could produce
different size clusters that appear to be even a meter above the ground level. When the
ego-vehicle moves, these clusters can appear to be moving. These clusters have to be
filtered out with some sort of sensor fusion because they do not differ from other types of
objects. Any static map can’t be used as a solution because many objects of this type are
created by changing environmental factors such as piles of snow. Possible solution could
be an integration with a stereo camera system. Each tracked object could be fed to the
stereo cameras to be identified. This on the other increases the vital latency of creating an
observation of an object. The stereo camera system could also be used to sense gradient
changes in the area of the perceived obstacle. Another possible other solution could be to
use LiDARs with higher number of layers. This would enable gradient-based estimation
of which measurement points are from ground.

7.1.3 Linearization

The two linearization methods were tested by measuring the average processing times
with different sensor and algorithm configurations and evaluating how their outputs
corresponded with the original measurements points. The performance of the
combination of RANSAC and linear regression produced good output results but even
with fewer iterations the algorithm was far too slow and it could not process the data from
multiple sensors. With a single 4-layer LiDAR a single linearization round of all clusters
took between 50 and 150 milliseconds. Input from two 8-layer LiDARs were so intense
on the algorithm that it could not perform the linearization between measurements. It was
thus necessary to create another method for the linearization.

The Douglas-Peucker algorithm was a good solution for the linearization. It yields good
output results and the processing time with two 8-layer LiDAR takes 4 milliseconds on
average making it a valid choice for the linearization. Output of the linearization is shown
in figure 17.

43

Figure 17. Visualization of the measurement point linearization.

LiDAR’s measurements are shown as dots and the linearized models with lines between
their corner points. Clusters that contain three corners and form a convex corner are
processed further by projecting a fourth corner point. This is done to balance the center
point of the vehicle and make the visualization of vehicles clearer.

The Douglas-Peucker algorithm has also a downside. It requires the points to be sorted
by their coordinates. Sorting the points requires more processing time even though the
individual LiDAR devices produce measurements that are in order. The two devices of a
single 8-layered Sick LD-MRS LiDAR provide measurements that fully overlap. Another
overlap happens at the center line of the vehicle’s heading where the fields of view of the
two LiDARs overlap. These overlaps increase the randomness of the order by coordinates
and that leads to more processing time. The challenge was overcome with the two-phased
merge sort algorithm and the final implementation was performing well.

7.1.4 Object tracking

The object tracking works successfully on clearly defined objects. Typically small objects
such as pedestrians have stable positions in the LiDAR’s field of view after the
linearization because their shape doesn’t change much even if they are perceived from
different angles. Larger objects such as vehicles and static obstacles on the other hand
created problems. The shape change caused by perceiving an object from a different angle
can cause a sense of movement. Even though this effect can be diminished by increasing
the weight of the predicted location in the Kalman filter, some level of movement still
persists. This makes it especially hard for determining whether an object is static or not.
This information is crucial for object recognition because the movements of an object

44

define a large portion of the object’s characteristics alongside its size and shape. The static
flag would also serve as a good filter for sending the object’s information to the Collision
warning module.

The problem of defining whether an object is static or not was addressed by adding a
filtering counter. If the velocity of the object exceeded a threshold, it would increase a
counter. If the counter increased on multiple consecutive measurements, the object was
determined to be non-static. This served as a partial solution but did not solve the final
problem. In cases where two objects merge, the merging object will receive the static flag
status of the object it is merging to. A fully working solution was not found for this
challenge.

7.1.5 Object recognition

The object recognition module was not successful at recognizing objects at real traffic
scenarios. The greatest problem for the module was the synchronizing of the two devices
of a single LiDAR. Because the measurements from the two devices come in turns, the
combination of the two measurements creates a ghost image whenever the objects in the
LiDAR’s field of view have relative movement to the LiDAR. The synchronization
problem is especially challenging with vehicles that are driving towards the ego-vehicle
because their relative movement is the added speed of their velocity and the ego-vehicle’s
velocity. Figure 18 shows the effects of the synchronization on a perceived vehicle that
is moving towards the moving ego-vehicle.

Figure 18. Ghost image created by synchronization.

The problem with synchronization could be compensated by three different methods. The
first solution would be to increase the sampling rate of the LiDAR. This would make the
time between the measurements of the two devices shorter and the errors would be
smaller. The sampling rate could be increased to 50 Hz from the current 12.5 Hz so the

45

error would be reduced to one quarter of the original. Increasing the sampling rate would
decrease the LiDAR’s resolution and the same problem would persist on greater velocities
so it would not be an ideal solution. In addition, other system modules using LiDARs
would be affected by the lowered resolution and that could lead to more problems
elsewhere in the vehicle.

The second option would be to compensate the ego-vehicle’s movement for the first
device measurement. This could be performed with good results but it would not solve
the problem of the moving objects in the LiDAR’s field of view since their movement
could not be compensated.

Third option would be to use individual tracking software for each device. A vehicle using
three 8-layered LiDARs would then run six individual tracking modules. This method
would make the sensor fusion much harder to implement. Using the combined devices
creates the advantage of having a more comprehensive view of the surrounding objects.
Even if an object is on the edge of the field of view of a single LiDAR, it can be perceived
fully if the adjacent LiDAR can also see it. This makes the object recognition much easier
because then there are more information about the objects on the edges of the field of
view. The challenging implementation and the reduced performance make this method
also a poor choice but it would be the only option that would mitigate all errors created
by the synchronization.

If the synchronization problem would be solved, the object recognition module could
provide some results. For example, pedestrian recognition can be achieved with some
accuracy if the ego-vehicle is stationary. The voting algorithm creates some false positive
recognitions for pedestrians if small stationary objects are seen but a combination of
thermal camera image and LiDAR could provide recognition with reasonable accuracy.
In conclusion, the LiDARs that produce point clouds that are close to 2 dimensional, such
as Sick LD-MRS, are not the ideal sensors for object recognition. When even a human
eye has trouble recognizing the objects from the LiDARs point cloud, it is very difficult
to teach a machine to produce accurate recognition.

7.2 V2X communication

7.2.1 MQTT Mosquitto

The MQTT Mosquitto implementation was tested with different kinds of network
configurations to measure the performance of each component in the MQTT setup. The
goal of the measurements was to find the limitations the MQTT implementation poses
and define how well it scales for larger scenarios.

The performance tests focused on testing the Mosquitto broker. The performance was
tested by sending messages containing the same amount of information as would be

46

needed to send the data of one dynamic object. The data was ASCII coded and contained
the information described in table 1.

Table 1. Number of characters in an ASCII coded dynamic object data.
Information Typical number of characters

Latitude 9 – 10

Longitude 9 – 10

Object width 3 – 4

Object length 3 – 4

Heading 5

Curvature 5 – 6

Speed 4 – 5

ID 1 – 8

When the values of the ASCII coded object information are separated with commas and
different objects are separated with new lines, the number of characters needed to transfer
data of a single dynamic objects is approximately 50 to 60 characters. The number of
object lines in a single message was also varied to test how the broker throughput is
affected by the size of individual messages.

The broker was tested with a varying number of publishers ranging from 1 to 200. The
publishers were initialized in a single QT terminal software. The test were conducted in
VTT’s local network so that the network connection would not be a limiting factor in the
tests. Mean, minimum and maximum transmission times were measured for each
configuration. Each publisher was made to send a message every 20 milliseconds which
is close to the object tracking software’s output frequency.

The performance of the Mosquitto broker was very limited in the scope of exchanging
object data in large-scale scenarios. Even in local network the broker could not provide
reliable communication if 50 publishers and subscribers were connected to it. The
latencies started to grow uncontrollably when a critical amount of data was sent through
the broker. Figure 19 shows the time it takes for 10 objects’ information to be sent in a
network configuration of 100 publishers and 1 subscriber.

47

Figure 19. Transmission time of sending ten objects’ information from 100 publishers to
one subscriber.

Latencies in this scenario are too long for the broker to be useful in real-time applications
of this scale. The latencies for different configurations are shown in tables 2, 3 and 4.

Table 2. Mosquitto broker performance with 1 subscriber and 1 sent object in every
transmission.
Publishers Mean transmission

time (ms)
Minimum
transmission time (ms)

Maximum
transmission time (ms)

1 21,16 13 215

10 63,22 13 1692

100 413,01 19 2773

200 383,47 33 2367

48

Table 3. Mosquitto broker performance with 1 subscriber and 10 sent object in every
transmission.
Publishers Mean transmission

time (ms)
Minimum
transmission time (ms)

Maximum
transmission time (ms)

1 22,46 13 157

10 37,78 13 1106

20 152,46 30 3599

40 383,47 33 2367

70 2884,34 18 151576

100 3563,89 61 7815

Table 4. Mosquitto broker performance with equal amount of subscribers and publishers
sending and receiving 1 object in every transmission.
Publishers
and
subscribers

Mean
transmission time
(ms)

Minimum
transmission time
(ms)

Maximum
transmission time
(ms)

10 160,11 14 3217

20 222,49 186 1749

50 25451,00 197 51916

The measurement result tables show that the Mosquitto broker can manage some smaller
scenarios and it can well be used in testing the V2X-communication with a small number
of clients connected to it. Larger number of clients start to overload the broker and
increase latencies. The scenario of 10 publishers sending data to one subscriber is
presented as a graph in figure 20.

49

Figure 20. Average transmission time relation to number of publishers.

The figure shows that increasing the number of publishers even up to 70 leads to latencies
of several seconds. If the number of subscribers is increased, even 50 publishers and
subscribers is too much for the broker. Optimization of the sent data, longer intervals
between observations and hardware improvements on the broker PC would possibly
allow larger scale tests but for commercial products, a higher performance
communication method would be necessary.

In addition to the controlled tests in VTT’s local network, the Mosquitto was tested on
multiple V2X demonstrations. The Mosquitto configuration was not working robustly
enough in the demonstrations. It occasionally produced tenfold latencies for individual
topics and typically disconnected the publishers of that topic. A reconnection to the broker
took tens of seconds after the forced disconnection by the Mosquitto broker. The
demonstrations contained only a few publishers and a single subscriber for each topic.
Increasing the throughput resulted in more frequent disconnection. This would implicate
that the larger data throughput also affected the Mosquitto broker by making its
connections more unstable.

Other MQTT implementations were inspected for further testing of the V2V
communication. Open-source projects such as VerneMQ and EMQ were found to be
promising solutions because of their scalability.

7.2.2 ITS-G5

The ITS-G5 modules were not the core components of this thesis but their performance
was tested for a simple comparison with the MQTT implementation. The performance of
the vehicles’ ITS-G5 modules were tested by sending ad hoc messages ITS-G5 messages
that contained almost identical information as the test messages for the MQTT

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120

M
ea

n
tr

an
sm

iss
io

n
tim

e
(m

s)

Number of publishers

50

implementation. The transmission frequency could controllably be set to 1 kHz. Each
message contained information about a single perceived object. The transmission
latencies were measured by taking the time stamp information from the GNSS modules
and comparing them at the receiving end. The GNSS time stamps were received only
every 0.5 seconds so the time stamps in between the GNSS based time stamps were
created using Qt’s QElapsedTimer class. The timer increased the time stamp accuracy in
theory to 1 millisecond. The latencies were monitored for 60 seconds and the results are
shown in figure 21.

Figure 21. Transmission time of a single object’s information at 1 kHz transmission rate
using ITS-G5.

The latencies were extremely small and the time stamp inaccuracy actually became a
problem for the measurements. Many measurements actually showed negative
transmission time. This is probably caused by latencies in the receiving vehicle’s internal
network. At maximum controlled transmission rate, the latencies of the transmission were
extremely short. ITS-G5 could be a valid option for collaborative sensing if the packet
losses due to obstructed line of sight were acceptable.

7.3 Collision warning module

7.3.1 Positioning accuracy

Positioning is a critical part for the software because the movements of the ego-vehicle
affect the analysis of dynamic objects from the ego-vehicle as well as from external
sources. The critical components of the position information are the heading, speed and
coordinates. Coordinates affect only the processing of dynamic objects from external

-120

-100

-80

-60

-40

-20

0

20

40

1
17

83
35

65
53

47
71

29
89

11
10

69
3

12
47

5
14

25
7

16
03

9
17

82
1

19
60

3
21

38
5

23
16

7
24

94
9

26
73

1
28

51
3

30
29

5
32

07
7

33
85

9
35

64
1

37
42

3
39

20
5

40
98

7
42

76
9

44
55

1
46

33
3

48
11

5
49

89
7

51
67

9
53

46
1

55
24

3

Tr
an

sm
iss

io
n

tim
e

(m
s)

Message number

51

sources because all data processing inside the ego-vehicle is made in the vehicle’s own
coordinate system. Heading and speed on the other hand affect the ego-vehicles own
measurements.

Creating an accurate heading was the greatest challenge of positioning. Even an error of
a few degrees can lead to errors of several meters if the perceived object is further away.
For example, an error of 1° in heading leads to an error of 0.87 meters when the object is
50 meters away. An error of 5° creates an error of 4.36 meters for objects 50 meters away.
It also affects the projected trajectories of the dynamic objects.

The IMU units on both vehicles had many performance issues. The raw heading value
contained a non-constant offset and turning the vehicle caused non-linear errors on the
heading based on which direction the vehicle turned. The navigation sensor fusion
module was used to analyze the performance of the IMU. The module reads GNSS
measurements and projects the path of the vehicle between them using the IMU and the
odometry data from the vehicle’s CAN bus. The measurements showed a steady 7° offset
when turning right but when the vehicle was turned right the offset varied between 11°
and 21°. Calibrating the IMU seemed to reduce the non-linear offset but its effects would
not last long. This level of offset is too large for the object tracking software since it can
lead to errors of over 10 meters in the perception of objects and also create false
approximations of movements of the objects when turning. A much more accurate sensor
would be necessary for the needs of the object tracking software.

7.3.2 Warning accuracy

First warning accuracy tests revealed many challenges. The first tests were conducted
outdoors when it was snowing and the weather created major challenges to the software.
Even a light snow created a lot of noise near the sensors and created constant false positive
warnings. The performance harsh weather conditions is covered in chapter 7.4. Other
false positives were also a challenge. Vaguely perceived objects created the sense of
movement to the tracking software and that lead to false alarms.

The solution for these challenges was intelligent filtering of the objects. Many demands
were made for the objects to be accepted to the collision warning module. Size,
movement, weather conditions and time of tracking were checked before the object data
was sent to the collision warning module to be analyzed. Even with the filtering the
tracking was not performing well enough for the collision warning module to produce
accurate warnings.

7.4 Harsh weather conditions

Rain, snow, fog and dirt affect the performances of the LiDARs used in this thesis. All
these weather conditions create noise in the measurements that needs to be considered

52

when automated driving related software is developed. During the thesis, it was possible
to measure the effects of rain and snow on the LiDARs in real harsh weather conditions.
Based on these measurements, a weather monitoring system was implemented on the
vehicles with an attempt to filter out noise created by harsh weather conditions.

The effects of harsh weather conditions seemed to be restricted to within 10 meters of the
LiDARs. Depending on the harshness, a varying amount of noise observations occurred
near the sensors. The heavy duty version of the Sick’s LiDAR showed much less noise
even in heavy snow. Snow measurements were conducted with the robot car Martti in
which the LiDARs’ outputs could be simultaneously recorded. Figures 22 and 23 show
point clouds created by the two sensors. The regular version of the LiDAR is facing to
the left in 60° angle to the driving direction and the heavy duty version is facing straight
ahead. Figure 24 shows the parking lot environment where the measurements were made.
At the time of the measurements, the LiDAR angles were poorly calibrated resulting in a
visualization of too small angle of the regular version of the Sick LiDAR facing left. This
only affected the visualization and had no other effects on the measurements.

Figure 22. Regular Sick LD-MRS measurements in snowy conditions.

53

Figure 23. Sick LD-MRS HD measurements in snowy conditions.

Figure 24. Measurement environment in snow tests.

The regular Sick LiDAR is showing ground hits from roughly 8 to 20 meters which appear
as uneven lines. The noise created by the snow is seen as an intense cloud of measurement
points within the 10 meter circle. The heavy duty version on the other hand shows only a
few noise points near the 10 meter circle. Both of the sensors are mounted on the front
bumper of the vehicle half a meter from each other so they are exposed to identical

54

weather conditions. The amount of snow was also recorded from the Finnish
Meteorological Institute websites[37] that reported 1.1 millimeter of water per hour as
the amount of snow.

The next step was to analyze the characteristics of the noise created by the weather to
enable noise filtering. Each weather scenario was measured for at least one minute with
a regular Sick LiDAR. Results of the analysis are shown in table 5.

Table 5. LiDAR measurement attributes in different weather conditions.
Dry weather Rain Snow

Mean signal strength 165,06 139,96 196,71

Mean number of
echoes

1,13 1,15 1,33

Maximum pulse
width

432 372 656

Relative number of
measurement points
within 1 meter

0 0,0018 0,0275

Relative number of
measurement points
within 0,5 meters

0 0,00037698 0,0069

Relative number of
measurement points
within 0,2 meters

0 0,00018849 0,00020539

Closest second echo
(m)

4,95 2,38 0,45

Closest third echo
(m)

5,1 36,24 1,82

The signal strength of the noise measurements was indistinguishable from actual
measurement points. The number of echoes increased in snowy conditions but in rain, the
value dropped. Maximum pulse width was also inconclusive. The only value
distinguishing the weather conditions from each other was the number of measurement
points near the sensors. This value on the other hand is also inconclusive because there
might be an actual object near the LiDAR. This challenge can be overcome to some extent

55

in VTT’s automated vehicles by reading all the regular LiDAR measurements and
checking if there are measurement points near each sensor. This could be applied
especially to Marilyn, where the LiDARs are mounted on the front as well as on the rear
of the vehicle. Measurement points near one or two LiDARs could indicate a real object
but points near all three sensors would mean that the performance of the sensors is limited
due to weather. This approach enables auxiliary use of LiDAR’s in harsh weather
conditions but it cannot be used exclusively since the close proximity of the vehicle
becomes invisible for the LiDARs when filtering is applied.

Since the straight-forward approach of analyzing the different average values provided
merely partial solutions, more complex analyses were made. This lead to new discoveries
about the Sick’s LiDARs characteristics. The premise of the analysis was that noisy
measurement points created by weather only appear within 10 meters of the sensor. This
characteristic of the weather noise was used to isolate the noise points and analyze them
further. The first test were made in an open field where only noise points appeared near
the LiDARs. The tests were made when it was snowing. The signal strength in relation to
the distance of the corresponding measurement points from the sensor was measured and
the results are shown in figure 25. The signal strength value is the detected measurement
point’s echo pulse width in centimeters.

Figure 25. Echo pulse widths of Sick LD-MRS measurement points in snowy conditions.

The measurement points within roughly 7 meters were examined to be noise based on the
LiDAR’s visualization. The signal strength peaks at roughly 7-16 meters were observed
to be from ground hits. This measurement showed exactly the same results as the mean

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90

Ec
ho

Pu
lse

w
id

th
(c

m
)

Distance from LiDAR (m)

56

signal strength measurements. The signal strength of a noise point created by weather
doesn’t differ from any real measurement point based on this measurement.

Since the environment is almost fully observable even in heavy snow, it means that the
noise measurement points created by weather are mainly “transparent”. That means the
same laser pulse that creates the noise, creates also other points behind the noise point.
Both points have individual signal strengths so it was possible to measure the ratio of a
noise measurement point and the actual measurement point received behind it. A point
was defined to be a noise measurement point if the observation came within 10 meters
and was transparent. The average ratio of 30 consecutive measurements was recorded in
different weather conditions and also before a fully windowed wall. The windowed wall
was tested because it also can create transparent points within 10 meters of the sensors.
If no transparent measurement points were found within 10 meters, the ratio was set to 0
for a single scan. The results are shown in figure 26.

Figure 26. Ratio between first and second measurement points’ echo pulse widths in
different scenarios.

Control measurements were also made on dry weather but since there were no transparent
objects, the ratio stayed at zero. These measurements showed indications that transparent
points created by weather noise could be distinguished from real transparent objects such
as windows.

0

0,5

1

1,5

2

2,5

3

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

Ec
ho

pu
lse

w
id

th
ra

tio

Measurement index

Medium rain Medium snow Heavy snow Window

57

The ratio tests were also conducted on LiDAR measurements taken in an urban
environment. The temperature during the measurements stayed unfortunately close to
0 °C and there was snow on the ground so it was not possible to create a good control
measurement to test false positive weather recognition. Fortunately, the measurements
showed that slush splashing on the LiDARs also creates a similar effect on the pulse width
ratios as snow and rain. A filtered pulse width ratio from the urban measurements is
shown in figure 27.

Figure 27. Mean LiDAR pulse width ratio on an urban area drive.

The roughly 5 minute drive in the Hervanta center consisted of multiple cases where slush
got thrown in the LiDAR’s field of view. Each of these cases can be seen as a spike in the
signal pulse width ratio. This measurement indicates that creating an accurate evaluation
about the weather solely with LiDARs requires more filtering. It also shows that the signal
pulse width ratio can be used to detect other cases than rain or snow that require
measurement point filtering. This is critical information especially in places like Finland,
where the roads can be covered with slush for several months each year.

More measurements have to be made to create an algorithm that accurately detects the
weather type with LiDARs. The first measurements showed promise in its development.
The same methods will be tested with various weather scenarios and environments in the
future.

The next step in this thesis was to find out whether the pulse width ratio could be used to
filter out the noise created by weather. The first version of the filter removed all
transparent measurement points within 10 meters of the LiDARs. The threshold distance
for weather effects was later on discovered to be 6.5 meters. The first version of the filter
reduced the amount of noise to roughly a third. The unfiltered test scenario where a

0

0,5

1

1,5

2

2,5

3

3,5

1 81 16
1

24
1

32
1

40
1

48
1

56
1

64
1

72
1

80
1

88
1

96
1

10
41

11
21

12
01

12
81

13
61

14
41

15
21

16
01

16
81

17
61

18
41

19
21

20
01

20
81

21
61

M
ea

n
pu

lse
w

id
th

ra
tio

Measurement index

58

pedestrian is standing in snow is show in figure 28 and the output of the first version of
the filter is shown on figure 29.

Figure 28. LiDAR view of a pedestrian standing in snow.

Figure 29. Output of the first version of the weather filter.

The next step was to filter also the measurement points within the threshold distance that
came from the same laser pulse but weren’t transparent. This reduced the amount of noise
but did not considerably affect the perceived pedestrian. The output of the second version
of the filter is shown in figure 30.

59

Figure 30. Output of the second version of the weather filter.

The second version of the filter performed well but some noise was still left in the
measurements. The signal pulse widths of the filtered measurements were inspected and
the rest of the noise points appeared to have relatively small pulse widths. After testing
various pulse width filters, a value was found that left most of the pedestrian’s
measurement points intact but removed all of the weather created noise. Final filtering
result is shown in figure 31.

Figure 31. Final version of the weather filter.

The developed weather filtering should ideally be used only in cases where weather is
creating noise in the measurements because it removes the lowest pulse width points. It
should not affect the perceiving of real objects but there can be situations where critical
information about the surroundings is lost. The combination of the signal pulse width
ratio based weather detection and the filtering could prove to be valuable assets in
development of automated vehicles. As VTT’s automated vehicle development is focused
on operating in harsh weather conditions, this filtering method is an important step
forward. Two invention reports were filed at VTT regarding the estimation of the weather
state and the filtering of noisy measurements.

60

These algorithm for weather analysis and noise filtering answer the needs of all automated
vehicle developers. Much research has been published on the different kinds of utilization
of LiDARs. These include such as clustering[38], negative obstacle detection[39] and
object tracking[13]. All of these systems are rendered useless by harsh weather conditions
if sufficient filtering is not used. The proposed algorithm provide a good start for the
development of smart weather filtering with LiDARs.

61

8. CONCLUSIONS

The software developed for this thesis served as a good platform to seek the challenges
of environment perception in automated vehicles. By the time of finishing this thesis, the
collision avoidance software was not able to create accurate collision warnings in all
situations. Despite the lack of fully functional software, the work in this thesis was
successful in the way of developing the automated vehicle systems. Especially the work
on automated vehicle’s internal and external communication was useful in developing
more advanced system modules. Vital information about the operating principles of the
Sick’s LiDARs was also gathered for this thesis and was later applied to other LiDAR-
based perception modules. The information also led to filing of two invention reports at
VTT regarding weather analysis and noise filtering.

This thesis also provided valuable information about systems that are not fitting for
automated vehicles or possess limitations in their dedicated fields. For example, DDS
system was exceptionally well performing when used in a local network but
communication through a WAN would have required excessive configurations and
special software and hardware solutions such as static IP-addresses which would not be
available for large-scale commercial applications.

As a fully functional system was not finished, it is not possible to determine whether it
would have been possible to create working collaborative sensing implementation with
the modern sensor and communication technology. Challenges faced during the thesis
implicate that the sensor setup used in VTT’s automated vehicles is insufficient to enable
robust object tracking with LiDARs in all scenarios. The communication on the other
hand proved to be possible with a good choice of protocol. If the automated vehicle is
concerned, data transfer capacity is sufficient enough for collaborative sensing. The
challenge lies in the server end. Large-scale collaborative sensing requires the capability
to manage hundreds or even thousands of connections and offer transfer rates with low
latencies. The hierarchical structure of future’s 5G networks are a plausible solution for
the challenges of the collaborative sensing. As the data processing and transferring is
handled more locally, the requirements for performance drastically decrease as opposed
to centralized data processing and transferring.

Since the communication systems are capable of enabling collaborative sensing in the
near future, the relevant question becomes what kind of other useful information can be
exchanged between intelligent vehicles if the LiDAR’s object tracking data is too
unreliable. First commercial applications are probably going to deal with static
observations of the environment. Information about an abnormal road condition or
changed traffic arrangement could be easily exchanged with nearby vehicles since they
are not as time-critical as an object tracking service. As the data processing and the sensor

62

technology of LiDARs advances, it will be a good sensor to rely on even in harshest
weathers.

63

REFERENCES

[1] G. Thomaidis, K. Vassilis, P. Lytrivis, M. Tsogas, G. Karaseitanidis, and A.
Amditis, “Target tracking and fusion in vehicular networks,” in IEEE Intelligent
Vehicles Symposium (IV), 2011, pp. 1080–1085.

[2] M. Obst, L. Hobert, and P. Reisdorf, “Multi-sensor data fusion for checking
plausibility of V2V communications by vision-based multiple-object tracking,” in
Vehicular Network Conference (VNC), 2014, no. January, pp. 143–150.

[3] “RobustSENSE web page.” [Online]. Available: https://www.robustsense.eu/.
[Accessed: 28-Sep-2017].

[4] “5G-SAFE web page.” [Online]. Available: http://5gsafe.fmi.fi/index. [Accessed:
28-Sep-2017].

[5] M. Wang, W. Daamen, S. P. Hoogendoorn, and B. van Arem, “Rolling horizon
control framework for driver assistance systems. Part II: Cooperative sensing and
cooperative control,” Transportation Research Part C: Emerging Technologies,
vol. 40, pp. 290–311, 2014.

[6] M. Röckl, T. Strang, and M. Kranz, “V2V communications in automotive multi-
sensor multi-target tracking,” in 2008 IEEE 68th Vehicular Technology
Conference (VTC), 2008, pp. 1–5.

[7] A. Festag, “Cooperative intelligent transport systems standards in Europe,” IEEE
Communications Magazine, vol. 52, no. 12, pp. 166–172, 2014.

[8] G. Ozbilgin, U. Ozguner, O. Altintas, H. Kremo, and J. Maroli, “Evaluating the
requirements of communicating vehicles in collaborative automated driving,” in
Intelligent Vehicles Symposium (IVS), 2016, vol. August, pp. 1066–1071.

[9] M. Vasic, D. Mansolino, and A. Martinoli, “A system implementation and
evaluation of a cooperative fusion and tracking algorithm based on a Gaussian
Mixture PHD filter,” in Intelligent Robots and Systems (IROS), 2016, vol.
November, pp. 4172–4179.

[10] Zheng Song, Yazhi Liu, Ran Ma, Xiangyang Gong, and Wendong Wang, “Short
paper: Multi-task-oriented dynamic participant selection for collaborative vehicle
sensing,” in 2013 IEEE Vehicular Networking Conference, 2013, pp. 214–217.

[11] L. Hobert, A. Festag, I. Llatser, L. Altomare, F. Visintainer, and A. Kovacs,
“Enhancements of V2X communication in support of cooperative autonomous
driving,” IEEE Communications Magazine, vol. 53, no. 12, pp. 64–70, Dec. 2015.

[12] I. Llatser, S. Kuhlmorgen, A. Festag, and G. Fettweis, “Greedy algorithms for
information dissemination within groups of autonomous vehicles,” in 2015 IEEE
Intelligent Vehicles Symposium (IV), 2015, pp. 1322–1327.

64

[13] R. A. MacLachlan and C. Mertz, “Tracking of moving objects from a moving
vehicle using a scanning laser rangefinder,” in IEEE Conference on Intelligent
Transportation Systems (ITSC), 2006, pp. 301–306.

[14] “VTT | VTT’s autonomous cars take to public roads and start communicating with
each other,” VTT Web page, 2017. [Online]. Available:
http://www.vttresearch.com/media/news/vtts-autonomous-cars-take-to-public-
roads-and-start-communicating-with-each-other. [Accessed: 26-Sep-2017].

[15] G. Brooker, Introduction to sensors for ranging and imaging. Institution of
Engineering and Technology, 2009.

[16] Sick AG, “Operating instructions, LD-MRS.” 2009.

[17] VisLab, “3DV-E system.” [Online]. Available: http://vislab.it/products/3dv-e-
system/. [Accessed: 19-Dec-2017].

[18] M. Kutila, P. Pyykönen, W. Ritter, O. Sawade, and B. Schäufele, “Automotive
LIDAR sensor development scenarios for harsh weather conditions,” in
International Conference on Intelligent Transportation Systems (ITSC), 2016, pp.
265–270.

[19] A. Mendes, L. C. Bento, and U. Nunes, “Multi-target detection and tracking with
a laserscanner,” in IEEE Intelligent Vehicles Symposium (IV), 2004, pp. 796–801.

[20] T. H. Cormen, Introduction to algorithms. MIT Press, 2009.

[21] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear
Regression Analysis, 5th ed. New Jersey: John Wiley & Sons, 2012.

[22] D. H. Douglas and T. K. Peucker, “Algorithms for the Reduction of the Number
of Points Required to Represent a Digitized Line or its Caricature,” John Wiley
and Sons, 2011, pp. 15–28.

[23] M. A. Fischler and R. C. Bolles, “Random sample consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography,”
Communications of the ACM, vol. 24, no. 6, 1981.

[24] I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Mühlig, Handbook of
mathematics, 6th ed. Springer Berlin Heidelberg, 2015.

[25] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with applications to
tracking and navigation. Wiley, 2001.

[26] M. Thuy and F. P. León, “Non-linear, shape independent object tracking based on
2D lidar data,” in IEEE Intelligent Vehicles Symposium (IV), 2009, pp. 532–537.

[27] C. Mertz et al., “Moving object detection with laser scanners,” Journal of Field
Robotics, vol. 30, no. 1, 2013.

[28] R. Maclachlan, “Tracking Moving Objects From a Moving Vehicle Using a Laser
Scanner.” Carnegie Mellon University, 2005.

65

[29] K. C. Fuerstenberg, K. C. J. Dietmayer, and V. Willhoeft, “Pedestrian recognition
in urban traffic using a vehicle based multilayer laserscanner,” in IEEE Intelligent
Vehicles Symposium (IV), 2003, vol. 1, pp. 31–35.

[30] D. Stroller, K. Furstenberg, and K. Dietmayer, “Vehicle and object models for
robust tracking in traffic scenes using laser range images,” in IEEE Conference on
Intelligent Transportation Systems (ITSC), 2002, pp. 118–123.

[31] B. Badic, C. Drewes, I. Karls, and M. Mueck, Rolling out 5G: Use cases,
applications, and technology solutions. Apress Media LLC, 2016.

[32] “OpenDDS developer’s guide, OpenDDS Version 3.11.” Object Computing Inc.,
2017.

[33] ScalAgent, “Benchmark of MQTT servers, version 1.1,” 2011.

[34] ETSI, “EN 302 663, Intelligent Transport Systems (ITS); Access layer
specification for Intelligent Transport Systems operating in the 5 GHz frequency
band.” 2013.

[35] M. Jutila, J. Scholliers, M. Valta, and K. Kujanpää, “ITS-G5 performance
improvement and evaluation for vulnerable road user safety services,” IET
Intelligent Transport Systems, vol. 11, no. 3, pp. 126–133, 2017.

[36] Z. Lu, S. Qiao, and Y. Qu, Geodesy : introduction to geodetic datum and geodetic
systems. Springer-Verlag Berlin Heidelberg, 2014.

[37] “Ilmatieteen laitos.” [Online]. Available: http://ilmatieteenlaitos.fi/. [Accessed:
23-Dec-2017].

[38] D. O. Rubio, A. Lenskiy, and J.-H. Ryu, “Connected components for a fast and
robust 2D lidar data segmentation,” in Asia Modelling Symposium 2013: 7th Asia
International Conference on Mathematical Modelling and Computer Simulation
(AMS), 2013, pp. 160–165.

[39] J. Larson and M. Trivedi, “Lidar based off-road negative obstacle detection and
analysis,” in 4th International IEEE Conference on Intelligent Transportation
Systems (ITSC), 2011, pp. 192–197.

	1. INTRODUCTION
	1.1 Needs and requirements
	1.2 Research projects
	1.2.1 RobustSENSE
	1.2.2 5G-SAFE

	1.3 Structure of the thesis

	2. STATE OF THE ART
	2.1 Research areas
	2.2 Collaborative sensing in automated vehicle development

	3. AUTOMATED VEHICLE DEVELOPMENT
	3.1 Automated vehicle platforms
	3.2 LiDAR
	3.2.1 Operating principle
	3.2.2 Sick LD-MRS

	3.3 Other sensor technologies in vehicle platforms
	3.3.1 Radars
	3.3.2 Cameras
	3.3.3 GNSS
	3.3.4 Inertial measurements and odometry

	3.4 Communication systems
	3.5 Environment considerations

	4. ENVIRONMENT PERCEPTION SOFTWARE
	4.1 Software overview
	4.2 Theoretical background
	4.2.1 Sorting algorithms
	4.2.2 Linearization
	4.2.3 Coordinate system transforms
	4.2.4 Kalman filter

	4.3 Object detection implementation
	4.3.1 Preceding software and modifications
	4.3.2 Sorting measurement points
	4.3.3 Clustering
	4.3.4 Linearization

	4.4 Tracking and recognition implementation
	4.4.1 Kalman filter for tracking
	4.4.2 Integration with inertial measurements
	4.4.3 Voting algorithm for object recognition

	4.5 Playback software for recorded LiDAR measurements

	5. VEHICLE-TO-VEHICLE COMMUNICATION
	5.1 Implementation options
	5.2 5G technology
	5.3 DDS
	5.4 MQTT
	5.5 ITS-G5

	6. COLLISION WARNING SOFTWARE
	6.1 Collaborative sensing
	6.2 Collision estimation
	6.3 Collision warnings

	7. IMPLEMENTATION PERFORMANCE
	7.1 Object tracking and recognition module
	7.1.1 Sorting
	7.1.2 Clustering
	7.1.3 Linearization
	7.1.4 Object tracking
	7.1.5 Object recognition

	7.2 V2X communication
	7.2.1 MQTT Mosquitto
	7.2.2 ITS-G5

	7.3 Collision warning module
	7.3.1 Positioning accuracy
	7.3.2 Warning accuracy

	7.4 Harsh weather conditions

	8. CONCLUSIONS
	REFERENCES

