TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

RISTO HELINKO
GENERATING TEST CASES FROM FORMAL SPECIFICA-

TIONS

Master's thesis

Examiner: Docent Henri Hansen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 27th September 2017

ABSTRACT

RISTO HELINKO: Generating Test Cases from Formal Specifications

Tampere University of Technology

Master's thesis, 37 pages

December 2017

Master's Degree Programme in Information Technology

Major: Pervasive Systems

Examiner: Docent Henri Hansen

Keywords: QuickCheck, Property-Based Testing, Generative Testing, .NET Framework,
Quality Assurance

Quality is a persistent problem in software development. The main method for
quality assurance, testing, is a significant part of any software project. As software
development processes move towards continuous integration and deployment, there

is demand to increase the level of automation in testing.

Conventionally, test automation refers to automating the execution of tests. How-
ever, the test cases are written one-by-one, which can get very repetitive. This
is also more costly, especially in the maintenance phase. An alternative to these
example-based tests are property-based tests, where properties define sets of tests

at once. In other words test cases are generated from these properties.

Testing targets a certain interface, such as a class, an HT'TP API or a GUIL. A
set of properties — a formal specification — describes the desired behavior of the
interface. There is always a human element to specification, because correctness
largely depends on the situation and is often subjective. However, verifying that a

system adheres to that specification can be automated, at least to some extent.

Test case generation is mostly used in functional programming, but this thesis ex-
plores it in the object-oriented paradigm as well. Other means of verification are also
discussed, and central theoretical concepts are covered. A case study is described,
where test cases were generated for the M-Files API — an object-oriented .NET API.

11

THVISTELMA

RISTO HELINKO: Testitapausten generointi muodollisten spesifikaatioiden perus-
teella

Tampereen teknillinen yliopisto

Diplomityd, 37 sivua

Joulukuu 2017

Tietotekniikan koulutusohjelma

P&daaine: Pervasive Systems

Tarkastajat: Docent Henri Hansen

Avainsanat: Ominaisuuspohjainen testaus, Generoiva testaus, Laadunvarmistus

Ohjelmiston laatu on ongelma, joka tuskin tulee katoamaan. Laadunvarmistus
tapahtuu péadosin testaamalla, ja se on merkittdva osa mitd tahansa ohjelmisto-
projektia. Modernit ohjelmistokehitysprosessit perustuvat jatkuvalle integraatiolle

ja kayttoonotolle, miké vaatii testaukselta korkeampaa automaatiotasoa.

Perinteisesti testiautomaatio viittaa testien automaattiseen suoritukseen. Té&ll6in
automaatiotasossa on kuitenkin parannettavaa, silla testien kirjoittaminen voi olla
hyvinkin mekaanista toistoa. Tama taas tulee kalliiksi etenkin ohjelmiston yllépi-
tovaiheessa. Perinteisten esimerkkipohjaisten testien vaihtoehto on ominaisuuspo-
hjainen testaus, jossa yksittédisten testien sijaan méaritelldén testijoukkoja. Toisin

sanoen ominaisuudet toimivat testitapauksien generoinnin lahtokohtana.

Testaamisen kohteena on aina jokin rajapinta, kuten luokka, HTTP API tai graafinen
kayttoliittyma. Ominaisuuksien joukko — muodollinen spesifikaatio — kuvailee rajap-
innan haluttua toimintaa. Spesifikaation méérittelyssid on aina inhimillinen osuus,
silld jérjestelmén virheettémyys on aina paljolti subjektiivista. Sen varmistami-
nen, etta jarjestelmé vastaa jotain tiettyd muodollista spesifikaatiota, on kuitenkin

yleensd mahdollista automatisoida, ainakin jossain maéérin.

Testitapausten generoinnin hyodyntdminen on yleisimmilldén funktionaalisessa ohjel-
moinnissa, mutta tassa tyossa sita tarkastellaan myos olio-ohjelmoinnin yhteydessé.
Muitakin verifiointimenetelmia késitelldéan lyhyesti, seké keskeiset teoreettiset késit-
teet kiydaan lapi. Lisdksi esimerkkitapauksena tutkitaan testien generointia M-Files

APLlle, joka on oliopainotteinen .NET-rajapinta.

111

PREFACE

My thesis process started by thinking that there must be ways to make software
quality assurance more automatic. I first considered exploring static analysis and
type systems, but couldn’t find a way to examine these independently of program-
ming language. This was important for me, because I naturally preferred universal

techniques.

Whereas the power of types or any static analysis is almost by definition highly
dependent on the language, dynamic analysis, i.e. testing, is less so. Interest in
functional programming lead me to property-based testing, which could, at least in

theory, be applied to source code written in any language.

Thanks to Tero Piirainen and Minna Vallius from M-Files for believing that my
thesis was worth exploring and for giving me an opportunity to try generative testing
in a realistic setting. Thanks also to Olli Pekkola and the rest of M-Files QA team
for help in the daily work. The case study at M-Files gave this thesis much-needed

direction.

Thanks to my supervisor Henri Hansen, who gave me freedom to explore my interests

and was always willing to help, even when I had trouble articulating my problems.

I'm also grateful to my parents, who have unconditionally supported me through

my studies. You are awesome.

Tampere, November 22nd, 2017

Risto Helinko

v

TABLE OF CONTENTS

1.

2.

Introductiono 1
Generating test cases from formal specifications 6
2.1 Formal specification 6
2.1.1 Testable properties L 6
2.1.2 Preconditions and postconditions 7
2.1.3 Formalizing a specification L. 8
2.1.4 Properties of state L 10
2.2 Generating input 11
2.2.1 Generating random values 13
2.2.2 Generating random objects 14
2.2.3 Preconditions and generators 14
2.3 Post-test analysiso 15
Review of tools for the .NET Framework 17
3.1 Choosingatool 17
3.2 FsCheck 19
3.2.1 Support and license 19
3.2.2 Specification languageso 19
3.3 SpecExplorer 20
3.4 NModel 20
Exploring test generation at M-Files 22
4.1 Background 22
4.1.1 Overview of M-Files 22
4.1.2 General architecture and technologies 23
4.1.3 Issues with current QA process 23

4.1.4 Selecting the tool 24

4.2 Generating tests for the M-Files APT 25
4.2.1 Modeling the state oL 25
4.2.2 Setting up the SUT 26
4.2.3 Modeling the operations 27
4.2.4 Running the tests 29

4.3 Experiences 30
4.3.1 Testing the M-Files APT 30
4.3.2 Using FsCheck 0 31

5. Conclusions 33

5.1 State 33

5.2 Sizeof the APT 34

Bibliography 35

1. INTRODUCTION

The objective of this thesis is to explore methods that raise the level of automation
in testing. Modern software development is moving towards continuous integration
and deployment, which requires frequent verification. If developers can easily verify
changes, they are able to more often improve design by refactoring. More automation
means that scaling — adding more tests — can be done by mostly increasing computing

resources, which is easier than increasing human resources.

Verification determines whether the system is built right, whereas validation consid-
ers whether the right system is built [11]. A description of what is “right” is called
a specification. In other words, verification evaluates whether a system adheres to
its specification, whereas validation examines whether the specification is what the
stakeholders want. A stakeholder is a person or a group who is involved with the
software project, for example users, developers or management [38]. In this thesis
we focus on verification, and mostly assume an informal specification exists, whether

it is written down or not.

A formal specification is a set of properties that can be checked automatically [26].
More precisely, formality means that the specification is written in an unambiguous
language including formal syntax, semantics and rules of inference. For example

most programming languages meet this criteria.

Our chosen method of verification is testing, which means running and analysing
the actual system. In contrast, static analysis refers to examination at compile-time,
i.e. the system is not run, and model checking involves running a simplified version
of the system. Systems usually have more possible states than can be exhaustively

explored, meaning testing can give confidence but not certainty of correctness.

We also look at the system as a black box, which means we are only aware of what
is visible through the interface of the system. For simplicity we concentrate on

programming language interfaces such as modules, classes and functions, but many

1. Introduction 2

principles apply to others, as well.

There are 3 main levels of testing: unit testing, integration testing and system
testing. Unit testing is about testing the smallest testable units. This is where most
bugs (deviations from the specification) should be found, because they are cheapest
to fix. The root cause is in the smallest possible component and testing depends on
the least amount of code, so it can be done earlier in the project compared to other

forms of testing.

Unfortunately, not all bugs are visible when units are tested separately. This is
why integration testing is needed, in which the interaction of 2 or more components
is tested. However, these kinds of bugs are increasingly hard to find, because the
combined number of possible states grows exponentially as the number of separate

units grows.

The final level of testing is system testing, in which the environment mimics the
production environment as closely as possible. Here the possible states are even
greater than in integration testing. With regards to test automation, perhaps the
biggest challenge is that higher-level interfaces are less idiomatic, meaning that they

conform less strictly to conventions. This makes testing harder to automate.

Improvements in quality happen if bugs are not only found, but also fixed. To facili-
tate this, we want to find bugs as quickly as possible after they are introduced to the
system. Therefore testing should be done as often as possible during development.
To make thousands of daily tests economically feasible, they have to be automated

as much as possible.

Conventionally test automation refers to automatic execution of tests, while test
cases themselves are quite mechanically written one by one. These are called
example-based test, in contrast to the more general property-based tests. Instead
of writing the test cases directly, property-based tests are automatically generated

from the properties. The properties form a formal specification.

Test cases here can be thought of as assertions such as “foo(3) < 8”. On the other
hand they can be instances of properties that are more general, such as “foo(a) <
a + 5. Test cases are analogous to (constant) values and properties to functions,
even including the fact that functions can be values. That is, the aforementioned

test case “foo(3) < 8” can also be seen as a property, albeit a very specific one.

1. Introduction 3

Another analogy is, that properties are sets and test cases are elements. Depending
on the context, a set with a single element can be indistinguishable from a single
element. All test cases are properties, but only some properties are (single) test

cases.

The behavior of the system under test (SUT) depends on its input, and the results
of executing the program are its output. Here “system” can mean everything from
the smallest testable unit to a full system including an operating system and a set
of applications. Testability of the SUT is then determined by two things: control
of input and visibility of output. By controlling the input fully, we can bring the
SUT to any possible state. On the other hand, the more of the output is visible,

the better we can determine its correctness.

For example, while testing a graphical user interface (GUI), the best case scenario
is that all behavior is accessible and visible through the UI. However, often the
environment such as the operating system affects behavior as well, which makes
some of the input difficult to control. On the other hand, there is functionality not

visible in the Ul such as sending a text message from a server.

Need for proper testability is amplified as the level of automation is raised. It is
not a coincidence that property-based testing has its roots in functional program-
ming, which emphasizes the use of pure functions. Functions here mean the general
programming language construct, found in most languages. The mathematical def-

inition of function corresponds with pure functions.

A pure function has only controllable input and visible output. Its behavior does
not depend on any external state or environment, and it doesn’t have side-effects,

i.e. any implicit consequences not visible in the interface.

When a function depends on its environment or produces side-effects, it is not pure.
These impurities are often called state, as in “a function or object is stateful”, or it
“has state”. Having state means that the function has interaction with some global
or external state at least in one direction: the function reads the state as implicit
input and/or modifies it as implicit output. This global state can be a very general

concept, including basically the whole universe.

To express properties about state we need modeling, which in this case refers to

programming a “reference” program for the SUT to be compared to. It is the difficult

1. Introduction 4

part of generative testing, and often the main workload.

When general-purpose programming languages are used for modeling, the problem
is never about what can be modeled. Modeling is programming, and the SUT is
proof that the solution can be implemented. The problem is, that the model should
be simpler than the SUT while still retaining its relevant functionality, because any
missing functionality will not be tested. Simplicity is extremely difficult to quantify

or even to define properly.

One solution would be to construct the model deliberately with different patterns
than the SUT, to increase the chance that mistakes are not repeated. However, this
is somewhat contradictory, assuming that the SUT has been designed with suitable
methods. Then the model would be implemented in less-than-optimal ways, making

it harder to be simpler.

As long as models are as expressive as any programs, this problem is unlikely to get
easier. On the other hand, if something inherently cannot be expressed in the model,
that has to be compensated somehow. Maybe there will be a modeling language that
enforces simplicity. However, perhaps the more likely scenario is, that we just have
to avoid modeling as much as possible, and use ad hoc or domain-specific techniques

on the remaining parts.

In addition to finding bugs, tests also act as documentation. As such, examples
can be useful, but if tests are all examples, it is up to the reader to derive any
generalizations from them. Properties can more explicitly express general rules.
Also, examples can be unambiguously derived from properties, but the reverse is

not usually true.

Properties may be more robust than example-based tests, because they are more
abstract, and therefore allow more flexibility of implementation, at least in theory.
Abstraction also makes them easier to maintain, because there is less code to express
similar things. Properties also scale better because increase of testing does not

always require more development work.

Most modern tools for test generation utilize the paradigm popularized by QuickCheck
[15], in which specification is done by defining preconditions and postconditions.
This allows for a lightweight form of modeling and is also often previously familiar

to developers from concepts such as Hoare triples or Design by Contract. Another

1. Introduction 5

characteristic of the paradigm is that the test cases are generated randomly. While
briefly presenting alternatives to pre/post models and random generation, this thesis

will concentrate on the QuickCheck paradigm.

The second chapter will discuss the theoretical aspect of generating test cases, di-
vided into two main parts: formal specification and generating input. Post-test
analysis is also covered briefly. In the third chapter, we review generative testing
tools for the .NET Framework, which leads up to next chapter’s case study. In the
case study we experiment with utilizing test generation in testing an object-oriented
API at M-Files.

2. GENERATING TEST CASES FROM
FORMAL SPECIFICATIONS

Test case generation has two parts. The first is writing a formal specification — a
set of properties. The properties can have parameters, and the set of possible values
for parameters defines a set of possible test cases. These sets are usually too large
to test exhaustively, so the second step is to select a representative subset. This

selection of a representative subset is referred to as generating input.

Properties with no parameters are single test cases, and testable without generation
of input. Therefore, even though such properties might be legitimate to test, they
are trivial, and so the rest of this thesis will assume that the properties do have

parameters.

2.1 Formal specification

A formal specification is a set of properties that the system under test is supposed
to satisfy [26]. It is meant to be more abstract than the SUT by describing what
the system is supposed to do, rather than how it is to be done [33]. A formal
specification is precise in the sense that it is unambiguous and machine-readable,

but it can still allow for a diverse set of solutions.

2.1.1 Testable properties

For our purposes, simply having a formal specification is not enough. We also
need a way to generate and execute the test cases from it. There are helpful tools,
which usually will expose an interface to help define the specification, ranging from

language-specific library APIs to full-blown specification languages.

Here we will concentrate on the paradigm started by Haskell QuickCheck [15]. Tools

2.1. Formal specification 7

of this type are characterized by utilization of random input generation. The sim-
plest specifications are given as preconditions and postconditions, although more

advanced options are also available [16].

The main benefit of QuickCheck-like tools is that they are usually free and open
source software and besides knowing the programming language in question, require
little additional expertise to start using them. There also aren’t that many alterna-
tives. For example, all tools listed in [34] have since been either abandoned or have

little mentions outside marketing materials.

2.1.2 Preconditions and postconditions

Preconditions and postconditions are assertions on the input and output of the SUT,
respectively. The postcondition is expected to be true, assuming the precondition is
satisfied. The terminology is based on axiomatic semantics [22], later developed to
a software engineering methodology called Design by Contract [27]. The idea is to
form so-called Hoare triples PQR, which represents the assertion “if P is true prior

to executing QQ, then R will be true after its completion”.

For a class in C#, for example, a specification might be a set of these triples, where

each Q is a method call. There could naturally be multiple triples involving some

Q.

This type of specification is also sometimes called state-based [26], which may also
involve invariants, assuming there are objects or a similar concept in the language.

However, the conditions do not necessarily have to mention state.

If the cost of specification is not an issue, the specification should aim for weakest
preconditions and strongest postconditions possible [26]. The larger the set that fills
the condition, the weaker it is. That is, the absolute weakest condition would be

one that always evaluates as true.

Ideal specifications can be difficult to define, so in practice their cost has to be taken
into account. This is why traditional example-based test cases define very strong
preconditions when defining the input one by one. It is simply easier to come up

with examples than a more comprehensive definition.

On the other hand example-based tests might have very strong postconditions be-

2.1. Formal specification 8

cause the strong precondition makes it easier to define.

2.1.3 Formalizing a specification

Here we will assume that there already is an informal specification of some kind. It is
not always the case that there is a written description about what the system should
do, but there is some process by which design decisions are made, and therefore there

is an implicit specification.

The process of formalization, that is, coming up with properties, might require some
learning. Often the problem is to find easily definable properties. These depend
heavily on the situation: the language and available functions. For example, one
might check a definition of a mergesort algorithm by asserting it always produces the
same results as a bubblesort algorithm. This naturally assumes there is a bubblesort

version that is correct, or it is trivially implemented.

Another way of specifying a sorting algorithm would be to check that the resulting
elements are in order, and that all original elements are present in the result. These
properties might also need some extra definitions, which may or may not be readily

available and /or correct.

One novice mistake might be to look for too strong postconditions, whereas the weak
ones are often easier to define. Going for weak conditions also breaks the pattern of
trying to specify the function with a single property rather than with a set of them.
For example, a weak post-condition for the sorting algorithm could be the assertion
that the result data structure is same length as the original one. The property is
true for some incorrect implementations so it is certainly not the strongest possible

postcondition, but it is still useful to check.

Specification languages

Ideally the specification would not be dependent on what functions are available. We
would express properties, and then separately make them computable. In practice,
the amount of work needed to make them executable is a significant issue. We might
even think of it in reverse — to look what can be easily expressed (with some library,

for example), and use that as basis for defining the properties.

2.1. Formal specification 9

Put another way, in addition to specification we are also programming to make the
specification executable. There is a trade-off, where separation of these tasks might

lead to a more clear process, but seamless integration has practical advantages.

This thinking is relevant if we consider other, less language-like interfaces for spec-
ification. Unless the objective of generating arbitrary test cases can be limited,
the simplicity probably does not justify the loss of expressiveness. An example of
such limitation would be a need to only generate certain kind of test cases. How-
ever, it is probably not wise to develop this sort of domain-specific tools, but rather

general-purpose ones.

Test-based specification

During the specification and its formalization, one usually generates and runs tests
after defining any property. If tests fail, it is often caused by a bug in the property,
rather than the SUT [23,25]. This of course happens with any testing, but at least
anecdotally it seems more common with properties because unlike single examples,

properties can have cases that the tester did not consider.

For example, when testing a subtraction function for integers, one might define a
property stating that the output is always less than or equal to the first parameter.

This does not apply when the second parameter is negative.

This might seem like a downside, but it is quite the opposite. The tester plays the
part of the user, and there is actually surprisingly little difference between using the
SUT incorrectly and it being incorrect. This is especially true when we test internal
APIs, in which case it is irrelevant for the end-user which side of the API the bug

technically is.

If the API under test is public, the incorrect specification can be a sign of bad user
experience. If the API is internal, it can be a potential source of bugs caused by
misuse of the API.

The process of specification can also be more explicitly reversed by a tool such
as QuickSpec [17]. The idea is that the tool will automatically, by using testing,
generate a set of properties that will possibly hold for the implementation. “Possibly”

means that they hold only as far as they have been tested. This method is still in

2.1. Formal specification 10

an experimental stage, so it remains to be seen whether it will be further integrated

into property-based testing workflows.

Types as specifications

Perhaps the biggest difference between describing specifications in different lan-
guages is caused by their type systems. Type-checking is a form of checking proper-
ties, and the expressiveness of the type system maps to the set of possible properties
that can be defined at the type-level. In this sense test generation can be thought
of as an extension to type systems. Therefore, languages with limited type systems

and dynamic type-checking perhaps benefit the most from test generation.

The two main differences between these methods should be emphasized. Firstly,
type systems are, at least to some extent, sound. In this context, it means that a
type-checked program is guaranteed to not have type-errors at run-time [29|. This
naturally simplifies things, as any property confirmed by the type-checker is more

certain than its counter-part, checked by testing.

The other difference is expressiveness. Testing is not constrained by soundness
or possible design flaws of the type system, meaning that there are plenty more
testable properties than there are type-checkable properties. Run-time properties

can be more expressive, because they have the additional information of run-time.

Expressivity has downsides, as well. With more expressivity, we are only limited
by how much testing code we are willing to write. Since there are less technical
constraints to stop us, it becomes more of an economical problem, which has to be
solved for each case separately. In some sense it is an instance of Bjarnason’s slogan

“Constraints liberate, liberties constrain” [12].

Moving from type-checking to testing brings us expressivity, but it makes harder to
decide what to express. It also makes it harder to determine whether or not the

expressed property is actually satisfied, because there are no guarantees.

2.1.4 Properties of state

When testing stateful systems such as C+# classes, we naturally wish to check prop-

erties that refer to the state. After generating a random state there is little to say

2.2. Generating input 11

about it unless we have some reference state for comparison. We call this reference

state a model.

The model is a program that is somehow simpler than the SUT, and therefore
easier to validate. Whereas a set of properties (the specification) is bound to be
simpler than the SUT, a model as a program is much less constrained. Assuming
the modeling language is Turing-complete there are no guarantees that the model

would actually be any simpler.

Usually the results of a program are more important than how the results are com-
puted. Source code that emphasizes the results is declarative, while imperative code
describes what to do or how to compute the results. Results are described in both,

but imperative code has more information.

As we mostly care about the results, we want our model to be as declarative as possi-
ble. With regards to programming paradigms, functional and logic programming are
considered to be declarative, whereas object-oriented and procedural programming

are imperative [10].

Unfortunately, even describing just the results usually leads to a model that is too
complex. Also, the modeling languages in practice are not fully declarative, likely
because compilers cannot always figure out sufficiently efficient algorithms without
help from the programmer. This means that to simplify the SUT, some of the details

have to be ignored.

Choosing which details are modeled and which are not, in the general case, is ex-
tremely difficult [13]. One just has to choose the ones that are considered most

important, perhaps also taking into account the ease by which they can be included.

2.2 Generating input

Once there is a formal specification that can be checked for at least some subset
of executions, the only thing needed is some input. There is usually some initial
definition of possible input, such as all 32-bit integers or strings of arbitrary length.
By generating input, we choose samples of these sets. We can optimize this in two

ways: either maximizing the significance of bugs found, or the number of bugs found.

Significance is a product of severity and frequency of occurrence. Put another way,

2.2. Generating input 12

most significant bugs cause critical damage (or annoyance) and are seen often in
“real” use. Severity is difficult to define accurately, and it is probably impossible to
generate input on the basis of how severe bugs it would trigger. On the other hand,

frequency of occurrence can be targeted by making the test data more realistic.

Testing a spell-checker would be an example of this. It takes a string of characters
as input. By narrowing down the set of possible input to a set of dictionary words,
we are making the input more realistic. Therefore any bug found is probably more
significant than with completely random strings. The problem is that now some

input is excluded, and likely some bugs, too.

The other option — optimizing for the largest number of bugs found — is also dif-
ficult, especially in the general case. Predicting people’s mistakes might be im-
possible, because any patterns being recognized can cause corrections and perhaps
over-corrections. We also design new tools to mitigate and prevent these mistakes,

while possibly creating new avenues for errors.

In addition to defining the input set, assuming we cannot test it exhaustively, we also
need a generating algorithm, which in this case is perhaps more clearly a selection

algorithm.

If the specification is given as some sort of structure like a Finite State Machine, the
concrete input can be defined by structural coverage criteria that narrows down the
inputs [34]. Examples of such criteria would be “all states” or “all transitions”. The
actual inputs these lead to depend on the situation and the specific algorithm. In this
paradigm a model acts as both an oracle (helping to express stateful properties) and
as a basis for input data. Tools of this kind have yet to break into the mainstream,

and therefore we will focus on the other methods.

A problem with these structure-based approaches is that a structure is needed, which
is extra work for the tester. Also, to understand these tools deeply, one would need

to understand the selection algorithms.

The most common selection algorithms make use of randomization. In practice
it means a pseudo-random algorithm, which is unknown to the user. Usually its
distribution is known, that is, by which probability each element is chosen. The
main reason to use randomization is to avoid making assumptions with the selection

algorithm, although there are some assumptions such as the distribution.

2.2. Generating input 13

An interesting alternative to the QuickCheck way of random generation is Small-
Check and its sibling Lazy SmallCheck [31]. Instead of a sample of n values, they
use the n smallest values. Of course, for some (user-defined) types this requires a

definition but such is the case with random generation, as well.

2.2.1 Generating random values

Results of randomized algorithms depend on not only their input, but also on values
from a random-number generator (RNG) [18]. RNGs are strictly speaking usually
pseudorandom, because computers are deterministic and unable to produce true

randomization. However, for our purposes this pseudorandomness will suffice.

If a fully deterministic (non-random) algorithm were used for selection, the generated
test data would always be the same. If that data was based on some mistaken
assumption, the mistake would be repeated at every execution. By having different

data at every execution we can avoid at least some of these assumptions.

Repeating the same tests regularly might also have some advantages, but perhaps
less than it would first seem. For example, if a test fails for some build but passes
for the previous one, we can assume that changes between the builds contain the
cause. If test inputs vary, we don’t have this kind of history to examine. However,
the previous build is usually still available, and having that failing test input, we

can run the exact same test for the previous build as well.

Choosing data optimally might be impossible especially over time, because as sys-
tems develop and change, so do the inputs that trigger bugs in them. With limited
resources, decision to test with some data always means that some other data is
left untested. It would be best to make as few of these decisions as possible, and
in a way, randomization allows that. This is also an advantage in terms of user
experience of the testing tool. As there are less choices, there is less work for the

user.

The only choice is the distribution, and even that has a reasonable “default” option:
a uniform distribution. On the other hand, the distribution can be chosen in a
more advanced way. If the realistic data can be modeled statistically, we can find

compromises between the two aforementioned optimization tactics.

For example, the spell-checker input could consist of the following: 60% dictionary

2.2. Generating input 14

words, 30% alphabetic strings, 10% fully random strings of all Unicode characters.
Domain knowledge and statistical expertise will help with defining effective distri-

butions.

2.2.2 Generating random objects

In addition to input values, the behavior of a program can also depend on an external
state. We will use stateful objects as an example, but the methods are, at least to

some extent, applicable for state in general.

By stateful objects we mean Abstract Datatypes [21] (not to be confused with
Algebraic Datatypes). As users of the interface (the SUT), we are not aware of the
actual types of these objects, which means we cannot generate them directly. The
state of the objects is accessed via special functions, usually called methods. We
can then generate the objects with a sequence of calls to these functions. Minimally

this would be just a call of the constructor.

The problem is, that we cannot assume that an object constructed with some value
a would be equivalent to an object constructed with some other value, and then
modified to contain the value a. By definition the behavior of a stateful object
is determined by its history [9]. The objects shouldn’t be generated with just the
simplest sequence of calls, but with a randomly generated sequence. Similarly to
generating values, the sequence of function calls can also be made to statistically

represent some approximate user profile.

2.2.3 Preconditions and generators

In the QuickCheck paradigm, there are two modes for defining input: precondi-
tions and generators. For our purposes a generator can be thought of as a function
that produces values, even though precise definitions depend on the language: in
QuickCheck they are typeclasses and in FsCheck classes. Preconditions and gener-

ators differ in two ways, semantically and execution-wise.

The semantic difference is that a precondition is specific to a certain property,
whereas a generator defines how to produce input of some type. The generator
is run first, after which the value may or may not be discarded based on the pre-

condition. This can lead to issues with efficiency, if the generation process is costly

2.3. Post-test analysis 15

and the precondition is strict enough. The precondition can be always integrated
into the generator, but it’s bothersome (both for the implementor and the reader)

to define a generator for each property, so a balance should be sought.

Another issue with execution can arise with languages that have eager evaluation,
meaning most languages except Haskell. In FsCheck, the library evaluates each
postcondition before checking the precondition [32]. Therefore, if the property is
nonsensical without the precondition, such as a division by zero, the property fails
due to an exception being thrown. However, lazy evaluation can be forced for a

postcondition in FsCheck.

2.3 Post-test analysis

After testing, there usually needs to be two kinds of analysis: assessment of coverage
and investigation of failures. Coverage is a measure of how much of the code was
executed during testing. Because the specification and models are more abstract
and indirect than conventional tests, it is perhaps even more important to measure
coverage. However, as this analysis happens completely at runtime, the measuring
process is likely the same for both generated and hand-written tests. Therefore we

consider it to be outside the scope of this thesis.

On the other hand, investigating failures can be quite different when the tests are
generated rather than hand-written. Random data has the problem that it produces
random counter-examples. In QuickCheck, the problem is mitigated by a process
called shrinking [14].

Shrinking is a basic procedure that after a test has failed, will attempt the same
test with ever smaller input until if no longer fails. The size of user-defined types is

defined as a shrinking function, where applicable.

For example, in QuickCheck, given a value, the shrinking function returns a list of
elements of the same type [14]. These elements are in ascending order with regards
to size. QuickCheck then tries each one, and greedily chooses the first one that
makes the property fail. It then attempts to shrink again with that new value, until

there are no more fails.

There are no guarantees that the shrunk example is the smallest. It also depends

on the type and its shrinking function. For example, if a property fails with integer

2.3. Post-test analysis 16

values 4 and 20, and the original failing case is 20, the default shrinking function
of QuickCheck will not be able to successfully shrink. This is because ’shrink 20’
returns the list {0, 10, 15, 18, 19}, which for the example contains no failing values.
The guarantee would obviously be possible, but has apparently not been considered
worth the cost by the QuickCheck developers.

Another, more advanced approach is to attempt to generalize the counter-example.
This is algorithmically quite a bit more demanding task and its effectiveness is not
yet been established. However, there is a working implementation for Haskell in
SmartCheck [30].

After shrinking, the failing test case is (hopefully) similar to an example-based test
case. Further debugging is not affected by the tests being generated, and therefore

actual bug-fixing is considered to be outside the scope of this thesis.

17

3. REVIEW OF TOOLS FOR THE .NET
FRAMEWORK

In this chapter we review tools for the NET Framework, specifically with the inten-
tion of testing M-Files software. In this case the specifics of M-Files did not effect
significantly the choice of the testing tool, other than some need for support on the
NET Framework.

3.1 Choosing a tool

Criteria for tool selection can be divided in two parts. First of all, no tool can
generate tests for an arbitrary interface. Therefore there are limitations to which
back-ends a given tool supports out-of-the-box. These back-ends are usually pro-
gramming languages or graphical user interface (GUI) testing frameworks such as

Selenium.

If the tool does not support the desired back-end, it might be possible to implement
an adapter to add the support. This demands non-trivial level of commitment to a
tool without a proper trial, which is a risk. In practice, many tools can be ruled out

on the basis of back-end support.

There also might be peripheral tooling that needs support, such as a continuous
integration service. These integrations are usually less important and easier to

implement than the adapters related to the actual generation.

The previous factors are related to how the tool fits the SUT at the time of evalu-
ation. This should also be assessed in the future tense. Two main aspects can be

recognized: the license and the activity of the project.

If the tool is a closed source, proprietary product, the company is of the most
interest. Can they go bankrupt? Can they stop development and drop support for

3.1. Choosing a tool 18

the tool? Accurate answers might be difficult to find, but the size of the user base

is likely a clue, and can be estimated.

For open source software (OSS) with a permissive license, the questions relate more
to the number of users and developers. Especially deducing the number of developers
is more direct for OSS, because one can see the exact number of committers from
the repository. Also the number of people asking questions can give estimates about

non-developer users.

The second set of criteria concerns the Ul of the testing tool itself. The specification
is given in some formal language, but those languages can look quite different. They
might have graphical representations such as Statecharts, be purely textual like

conventional programming languages, or both.

Main avenues of assessment for the specification languages are their suitability
for specification (in general or regarding a certain domain) and prior skills of the
testers. The problem domain and therefore characteristics of the SUT can inform
the choice of language, but the relationships are not straight-forward. One coarse
guideline could be, that a data-oriented system is easiest specified by pre/post no-
tation, whereas a more control-oriented one would benefit from a transition-based

approach [34].

The correspondence between modeling paradigms, specification languages and tools
are not one-to-one. A tool might support multiple languages [6,16], and a language

might also support multiple modeling paradigms.

A familiar specification language will be easier to start using. Common programming
languages, such as C#, are more likely to be previously familiar. The trade-off is

that such languages will probably be less than ideal for modeling and specification.

Testers with little programming background might prefer languages with graphical
representations, or even programs that have a “non-language” interface. Any in-
terface can be seen as a language, though, even something that only has a single

button. The language in that case is just very constrained and non-expressive.

However, due to reasons discussed in the previous chapter, it is usually most conve-

nient if the specification is done with a programming language.

3.2. FsCheck 19

3.2 FsCheck

FsCheck is an open source generative testing library for NET [4]. It is a re-
implementation of Haskell’s QuickCheck [15,16]. FsCheck is written in and primarily

developed for F#, but specifications can also be written in C# and Visual Basic.

3.2.1 Support and license

FsCheck supports any SUT that exposes a .NET API. It has a BSD 3-clause license
[5], which is one of the most permissive open source licenses. The license allows
commercial use, modification and distribution, on the condition of the license and

copyright notice.

FsCheck is ran as an independent open source project, so it doesn’t have a paid
support system. It is relatively simple, though, and one can get started with the
documentation, ask questions via the Github issue tracker and as a last resort, take
a look at the source code. There are not many FsCheck-specific tutorials out there,

but if the scope is broadened to any *Check library, there should be enough.

There is decent support for CI services, namely NUnit and xUnit. NET [4]. There is
also a plug-in from the behavior-driven testing framework SpecFlow to FsCheck [28|.

Development of FsCheck is on-going and it seems to have enough developers and
users to be a viable long-term choice. The Github repository shows 50 contributors
and 457 “stars”. For comparison the popular unit testing framework NUnit has 108

contributors and 1102 stars at the time of writing [7].

3.2.2 Specification languages

As mentioned previously, specification and modeling in FsCheck can be done with
F+#, C# and VB.NET. F# is a functional language in the ML family of languages.
Being functional it is also more declarative than object-oriented languages such as
C+# and VB.NET, and therefore the closest one to formal specification languages [10].
For people with only imperative programming experience from popular languages
such as C, C++4, Java, JavaScript and Python, C# will probably be the most

familiar.

3.3. SpecExplorer 20

The multi-language support is a part of the .NET framework rather than FsCheck
itself, so it is somewhat more robust than an ad hoc solution would be. Due to
this interoperability, it also doesn’t matter which language the SUT API is in, as it

should be similarly accessible from any of the specification languages.

The documentation and user base lean towards F#, and since FsCheck is written in

it, any extensions made are likely easier to implement with F+#.

In conclusion, previous familiarity might favor C#, where as F# has better support

in the user base and is more suitable for specification.

3.3 SpecExplorer

SpecExplorer (SE) is a tool developed by Microsoft, first released in 2004 [35]. It is
designed for model-based testing of reactive object-oriented software. The models

are written in Spec#, which is an extension of C+#£.

However, the last release of SpecExplorer dates back to 2013, when support for
Visual Studio (VS) 2012 was added [8|. VS has since had major releases 2013,
2015 and 2017. There is no indication that Microsoft would add support for these

versions.

SpecExplorer is fully integrated with VS and is not usable without it. It is also fully
proprietary, which means no other organization can pick up maintaining it, unless
Microsoft decides to let them. The tool itself might be promising, but due to these

restrictions it is currently unusable.

3.4 NModel

NModel is a model-based testing tool that seems to originate from Microsoft Re-
search, even though its origins do not seem to be explicitly stated anywhere. How-
ever, it is released under a “Microsoft license” [2|, which seems to be a somewhat

standard open source license with possible exceptions related to patent claims.

Compared to SpecExplorer, NModel is more loosely coupled with other tools, which
means it doesn’t need a new release for every Visual Studio release. In that sense, it

would certainly be possible to use it. However, the problem is the lack of user base.

3.4. NDModel 21

Aside from some research activity [19,20,36,37| and a book [24] around 2008, there
seems to be no signs of anyone actually using it. The only release at Codeplex is
also dated 2008 [1], and there are basically no signs of further development anywhere

else, either.

Inactivity of the project is an indication of the quality of the tool. Even if the tool
has been misjudged by the community, an active user base is required for support
and maintenance, and therefore NModel is not a viable choice.

22

4. EXPLORING TEST GENERATION AT
M-FILES

4.1 Background

We set out to investigate the viability of test generation at M-Files. First we explored
the available tools, and then applied one of them in a proof of concept, to determine

whether it was a cost-effective method to improve quality in this case.

41.1 Overview of M-Files

M-Files is both the name of the company and its main product. The product is a
system for Enterprise Content Management (ECM). Content here means all kinds
of documents and files that businesses may want to save and distribute (mostly
internally), such as customer information or instructional material. There are also
features related to reporting, access management, collaboration, search, and version

control.

Content is saved an M-Files Vault. Companies usually have several vaults to ease
restricting access and to keep the content relevant. Pieces of content, such as doc-
uments, assignments and videos, are called objects. To separate them from C#
objects, we will call them MFObjects. They may or may not have files connected
to MFObjects. For example, an assignment can be associated to a relevant file such

as a Word document, or it can be completely 'stand-alone’.

MFObjects have properties. There are built-in properties such as class and type,
and users or administrators can add them, as well. Properties have values: an
MFObject’s class might have the value 'document’. The properties represent most

of the metadata that many other features are built upon.

4.1. Background 23

4.1.2 General architecture and technologies

The main components of M-Files are the client, server and administrative applica-
tions. There are separate clients for Microsoft Windows (desktop), Android, iOS
and web browsers. The M-Files server can be run either in company premises or
in an Azure cloud service. A graphical desktop application called MFAdmin can be

used to configure the server.

The main influence behind our choice of testing target was that we wanted to expend
most of our resources to exploring the testing technologies. In other words we
aimed to minimize time spent learning the system under test. This meant good

documentation and relative simplicity were first priorities.

Most of the M-Files codebase runs on Microsoft .NET Framework. Other possibili-
ties of test targets included HTTP APIs and GUIs, but due to available tools and
our limited resources we soon decided to concentrate on the .NET interfaces. Of
those, the best documentation was about the public API of the M-Files server called
simply the M-Files API.

M-Files API

An important part of M-Files is client-side extensibility. Additional customer re-
quirements — extensions and modifications — can be implemented by in-house per-
sonnel, but also third-party consultants. For this purpose, much of the M-Files
server functionality is exposed through the M-Files APT [3].

When the development of M-Files was first started in 2002, the .NET Framework
had just been released. Many of the problems now solved by .NET were previously
handled by the Component Object Model (COM), which ended up being the basis
of M-Files as well. The two are somewhat compatible, but limitations of COM can
still be seen in the M-Files API. For example method overloading and constructor

parameters are not supported.

4.1.3 Issues with current QA process

Quality assurance at M-Files is mainly done by the two QA teams of about 20

engineers in total. There are two sorts of automated tests: unit tests of the M-Files

4.1. Background 24

APT and UI tests of clients (desktop, web and mobile). Most of the resources are
spent on different kinds of manual testing. There is also extensive internal use of

development versions.

As the industry in general, M-Files is moving towards Continuous Delivery (CD),
which means that certain tasks in the development process, including testing, need
to be done more often than before. Therefore, it would be valuable to automate the

tasks as much as possible.

M-Files has also reached a level of maturity that has started to cause new problems.
The upcoming M-Files 2018 release includes a feature set called Intelligent Meta-
data Layer (IML), which has demanded more changes in the existing codebase than
previous features. This means that in addition to testing the new features, there is

more need for re-testing the older features than with previous releases.

4.1.4 Selecting the tool

We started by a general survey of the tools to see what is available. Management
hoped that the tool would allow testers to model the software without extensive

programming skills.

Initial resources for the case study was one person for 4-6 months, after which we
would hope to have a good sense of feasibility. This meant that most of the time
was needed to learn the tool and experiment using it with M-Files source code. In
other words, the tool needed to work “out of the box” on the .NET Framework. This
narrowed down the options to three: SpecExplorer, NModel and FsCheck.

SpecExplorer was ruled out after finding out that it was not supported in latest
versions of Visual Studio, which is an integral part of developing M-Files software.
NModel was similarly not being developed anymore, and its user base was non-

existent.

FsCheck, on the other hand, was fairly actively developed. Support-wise it was
mostly neutral, being an open source project. There are no paid support options, but

on the other hand there are no barriers to learn and develop the tool independently.

Since there were so few options for tools, we ended up not defining specific require-

ments. FsCheck was the only viable choice, so from this point on the question

4.2. Generating tests for the M-Files API 25

became, whether it could be used to improve the M-Files QA process.

4.2 Generating tests for the M-Files API

FsCheck has its roots in the world of functional programming, which means it con-
centrates on testing pure functions. There were basically no pure functions in the

M-Files API, which meant we had to rely on the more advanced features of FsCheck.

After gaining a basic understanding of FsCheck, we set out to model the most basic
operations of M-Files: create, read, update and delete (CRUD) of MFObjects in a
Vault. Update in this case means to modify the properties of an MFObject.

At the time FsCheck had two interfaces for modeling — Command and Machine.
The latter was still in an experimental stage but had more features. It had also
already been decided that Command was going to be deprecated, so we decided to

use Machine.

We chose to use C# as our modeling language due to previous familiarity within the
company. It also seemed that using the same language in modeling and elsewhere

in the codebase could be an advantage.

4.2.1 Modeling the state

The simplest model we used was a single integer denoting the number of MFObjects
in the vault. As we started to model more features, it was useful to define them
as classes instead of built-in data types. Then we could more flexibly add different
kinds of fields and methods for them.

Modeling an object-oriented API with objects obviously feels natural but at some
point starts to raise important questions. When the languages for modeling and
implementation are the same, the risk of replicating the implementation and its

bugs is increased. The languages are also at the same level of abstraction.

Put another way, simplification cannot be done on the language-level. There are
then two remaining approaches. Firstly the model can be less efficient computa-
tionally. This is mostly useful if the implementation of the SUT is complicated by

optimization. The other approach is to leave out implementation details. The choice

4.2. Generating tests for the M-Files API 26

of what to model is difficult because non-modeled features are not tested. However,

that is the situation with all testing, because not everything can be tested.

4.2.2 Setting up the SUT

At first we experimented with having two options for initialization — an empty vault
and a ’sample vault’. The sample vault is delivered with the trial version of M-
Files. It is significantly more complex compared to an empty vault: it contains a
few hundred MFObjects and about 3 times the property definitions than an empty

vault.

This metadata structure complicated the definitions of operations later. There were
two choices to implement this: either to hard-code the structure or extract it from
the SUT programmatically. A programmer’s instinct would be to avoid hard-coding,
but reading the state from the SUT into the model would blur the lines between the
SUT and the model.

The integrity of the model relies on the fact that it is separate from the SUT. The
extracted state may contain assumptions that were not intended. For example, if
there are 400 MFObjects initially, then empty vaults are never tested. Perhaps the
biggest problem is, that these assumptions are then not visible in the model code,

but in the preconstructed vaults somewhere else.

In addition to the variety of initial MFObjects, also the number of them was a
double-edged sword. Every search was now iterating through 400 MFObjects more
than 'normal’, but they were the same MFODbjects every time. Test runs took longer,

but it wasn’t clear whether we were getting a return for that time.

A sample vault seemed to give us complexity for free, but it was always the same
complexity. We also couldn’t leverage all that complexity without manually coding

it into our setup of the model.

A blank slate meant that as much of the state as possible was in our control. It
made the code more like a specification and less like a test script. Therefore we

decided to go with the minimal empty vault.

4.2. Generating tests for the M-Files API 27

4.2.3 Modeling the operations

The operations are also modeled as classes, but unlike with the state, the interface
is defined by FsCheck. We first started with modeling the operation of creating the
MFObjects.

When creating an object through the M-Files API, one has to decide which class it
belongs to. We first tried randomizing this, but creation of the MFObjects depended
on the class and made randomization complex. Specifically, one of the four built-in
classes for MFObjects had a required property, which meant it had to be dealt with

separately.

This started to look like another version of the problem with the sample vault. We
were using the existing metadata structure, and not defining our own. Therefore we

chose to ignore the special classes, at least for the time being.

Uniqueness of operations and MFQObjects

As mentioned before, random generation is actually just random selection from a
finite set. In this case, the generator is defined by a set of classes that implement
Operation interface in FsCheck [6]. However, depending on the chosen generator

type, FsCheck may or may not instantiate the operation each time it is selected.

Specifically, if the generator is defined with the method call Gen.Fresh, each opera-
tion can be a separate instance of the class, and can therefore be unique. Whereas
other generators are defined with a set of Operation objects, Gen.Fresh is defined
with a set of functions that return an Operation object. By instantiating the Oper-

ations in these functions, the set of selection becomes, in some sense, infinite.

We had to make a decision about this quite early on, without much knowledge
of how it would affect subsequent modeling. If there were some objectives about
which properties of the MFObjects we wanted to check, they could have informed
this decision. However, we were mostly after low-hanging fruit and simply checking

properties that came easy.

Using unique MFObjects seemed to give us most freedom later, so we went with

Gen.Fresh. The idea was that after creating and modifying random MFObjects,

4.2. Generating tests for the M-Files API 28

a read operation could pick a random one (or go through all) and compare the
model version to the one in the SUT. However, being able to pair the corresponding
MFObjects turned out to be harder than originally thought.

Identifying MFObjects in the Vault

When an MFObject is created through the M-Files API, the method returns an
integer 1D, by which the MFObject can later be accessed. MFObjects can natu-
rally be searched by name or other metadata as well, but the ID is the only thing

guaranteed to be unique.

It was somewhat surprising that we couldn’t just use the ID without assuming that
we know before-hand what it will be. This is similar to the problem we had during
the setup phase earlier. The correct way is to construct the model and run the SUT
correspondingly, but not the other way around. That is, data should flow only from
the model to the SUT, not from the SUT to the model, and this applies to things
like IDs as well. It could be done, but it’s clearly not intended and would lead to a

messy model at best.

We then chose to use names as our identifiers instead. Uniqueness was trivial to

achieve by using a built-in method from .NET that generates unique IDs.

Even though it first seemed otherwise, the flow of data even in the “correct” direction
is still somewhat messy to implement. The only way we came up with was to have
internal state for the operations. Naturally here the separate instances, i.e. using

Gen.Fresh, is mandatory.

Using internal state assumes that the method Operation.Run is run before Opera-
tion.Check, which is not ideal but at least it is documented behavior [6] and therefore

less likely to change.

Generating data during setup vs. at runtime

Having run into similar problems twice raises the question of its cause. Why did it

feel necessary to have data flow between the model and the SUT?

First of all, there was the choice of when to generate data. It seemed definitely easier

4.2. Generating tests for the M-Files API 29

to do at runtime, because then data can be generated purely by need. Especially
since the model itself is unaware of the size of test sequences and the number of

them, this seems like the more elegant option.

However, when we chose to generate data at runtime rather than during setup, we
had an implicit assumption that the data points should be unique. This would
make the data more random, but that does not always make it better. In fact, real
data based on natural language definitely has more collisions than random strings

of characters, which might prevent detecting bugs.

If this assumption is dropped, the extra information gained by delaying the genera-
tion to runtime is not that beneficial. On the other hand, the separation of the model

and the SUT is much more natural when as little as possible is done at runtime.

Modeling the reading operations

Defining the modifying operations such that MFObjects were unique and identifiable
made checking properties almost trivial. We had checks on two levels. On the
Vault-level we simply counted MFObjects. On the object-level we picked a random
MFObject from our model and checked that it had a corresponding MFObject in
the Vault.

4.2.4 Running the tests

By the time we reached the point of trying out longer runs, the amount of work
needed for modeling had already become apparent. This meant we did not want
to spend time developing the model anymore. If we were able to generate and run
some of the tests regularly with next to no effort, we would do it, but otherwise we

would have to abandon the idea.

The first problem was to scale the runs appropriately in terms of execution time.
This was done simply by timing a few test runs. There were some operations that
were dependent on the size of the vault. For example counting the MFObjects had
to be done by a blank search, but even that was most likely just a linear time

operation.

For reference, a set of five runs with a maximum size of 500 took about 13 minutes,

4.3. Experiences 30

whereas with 2000 it took 210 minutes. The full number of operations in the first
was about 1500 and 6000 in the second. This means the operations clearly weren’t

constant time, but more accurate analysis would have needed more runs.

The first overnight run lead to a failure due to an undocumented restriction on the
API method used for all searches. It always returned a maximum of 500 results,
which obviously demanded longer runs to surface. The real problem was actually
that this method should have been marked as deprecated, as there was another

search method that had a parameter for maximum number of results.

This was a relatively trivial to fix, but it did show that the tests weren’t as robust
as they needed to be. The longer runs also demanded more from logging because
reproduction of failures was so slow. Especially shrinking a sequence of, say, a 1000
operations takes a long time because the first level itself needs a 1000 runs, including
setting up the SUT each time.

4.3 Experiences

4.3.1 Testing the M-Files API

Structure of the API

When the level of automation is raised and more formal properties expressed of the
API, the need for regular structure is even more important than otherwise. The
M-Files API, however, caters mostly to extension scripts so re-structuring has not
been a priority. Also the process of development has been mostly adding meth-
ods whenever one is needed, rather than systematically designing and periodically

refactoring.

For example, to “get” something sometimes means an MFObject, sometimes an ID.
The ID might be of type long or type int, further complicated by the fact that these
types have different meanings in languages even inside .NET. The API also doesn’t
follow a particular language in terms of conventions, so sometimes “get” is a method

and sometimes it is implemented as a property.

These discrepancies mean that the model also has to be written in a relatively ad
hoc manner. Of course it is not merely a modeling issue, but also a more general

testability and usability problem.

4.3. Experiences 31

Documentation and lack of deprecation

Even though our test runs were fairly limited, there were two legitimate failures
during testing. Both were in some sense misuse of the API, but they could have

been easily prevented by better documentation and compiler warnings.

The first failure concerning search was described in the earlier section. The other
failure was a similar issue, in that it also was already fixed by a new and improved
method, but the old method was still available with no indication that it should not

be used.

These old methods should clearly be deprecated properly, by marking them in doc-

umentation and having them produce compiler errors when present in code.

Constructing objects

In the M-Files API there are no parameterized constructors. This means that ini-
tializing the object is removed from the creation of it. There also isn’t any other
idiom to initialize things in a consistent way. So whenever you need an object, you
have to figure out how to get it. This often leads to chains, such as object A needs
an object B, which needs an object C etc. When each object is obtained differently,
this is actually a large part of the coding effort.

4.3.2 Using FsCheck

FsCheck as a tool seemed flexible, lightweight and relatively easy to understand.
Since the whole idea of generative testing is more suited to functional programming,
using C# got in our way somewhat. Therefore perhaps using F# would have lead

to a more fair assessment of the tool itself.

C+# as a modeling language

After getting used to functional languages such as Haskell, C# was somewhat frus-
trating to use. Models should be as high-level as possible, concerned with the de-

notational rather than the operational aspect of the program. With C+#, however,

4.3. Experiences 32

there was often unnecessarily verbose definitions, which becomes especially annoying

when experimenting and therefore constantly making changes.

All the state models ended up being product types, meaning they were a compound
of other types. For example a Vault consisted of a list of type Models.Object and a
list of type Models.PropertyDef. Implementing these as classes is annoying because
all the constructors are completely trivial, listing all the parameters and assigning

them to the properties, but they still have to be written every time.

The syntax for generics in C# is also needlessly verbose, leading often to confusing
nested declarations with the angle bracket notation. Many higher-order functions
such as map and fold are included in the LINQ package which has its own peculiar-

ities.

C+# has immutable lists as a library implementation, but the syntax is quite com-
plex. In Haskell, for example, all lists are immutable,and they are denoted by
enclosing elements in square brackets. An empty (immutable) list in this notation
is simply a pair of square brackets. In C# the corresponding value is written as

“ImmutableList<SomeType>.Empty”.

Even though modern C+# has these functional features, it is not designed for them. It
is fundamentally still an imperative language. The strengths of imperative languages
— possibility of optimization and concreteness — are mostly irrelevant for modeling.
On the contrary, to facilitate validation, we would prefer to express the models as

abstractly as possible, while computational efficiency is not a priority.

33

5. CONCLUSIONS

Our main conclusion was that generating test cases was not suitable in the current
QA process at M-Files. The M-Files API was simply deemed too large, irregular

and object-oriented (as opposed to functional).

5.1 State

State is a significant issue when generating tests. For impure functions state is
implicit input and output which cannot be controlled in a consistent way — at least
not as consistent as mere arguments and return values. When something of interest
is happening concerning the state, we have to accommodate it in the state model.
In an object-oriented API such as the M-Files API, most of what happens, concerns
the state. This means that when a new property is defined, more often than not,
the model has to be extended.

It might help if the API was extremely uniform in how different classes are con-
structed. Then one might be able to reuse more of the model code. This would
likely also improve usability, but it is hard to assess whether it is worth massive

refactoring.

Not all functions have to be pure for generative testing to work. It is mostly prob-
lematic when using state is the default way of implementation, and not the other
way around. Using external state should be considered a trade-off that often makes

implementation easier, but is more difficult to verify than its pure counter-parts.

The difficulty stems from the fact that there is strictly more that an impure function
can do compared to a pure one. Then again, basically anything can be implemented
by pure functions, as any non-trivial Haskell program will show, because it has no

impure functions.

By decreasing the number of stateful functions in the SUT, the state model will

5.2. Size of the API 34

shrink, and with it, the bulk of the work related to test generation.

5.2 Size of the API

The M-Files API has hundreds of methods. A well-designed API would have the
minimum number of artifacts (classes, objects, methods) to achieve the maximum
amount of functionality. The problem is, that the M-Files API isn’t really designed.
It is simply extended by need.

Methods are added in two ways: to accommodate new functionality, and to improve
existing methods. Breaking changes are avoided, so improvements are also additions.
While the users of the API can ignore redundant methods, the testers cannot, unless

the old methods are deprecated and eventually removed.

While avoidance of changing the API is desirable, never changing the API is an
exaggeration that will eventually be detrimental. The improvements never permeate
fully to the users, and resources to enhance quality are diluted because of faster

growth than otherwise.

It is also questionable user experience to have redundant methods. At the very least,
when a new method for something is added, it should be noted in the documentation

for the previous one.

35

BIBLIOGRAPHY

[1] Codeplex: NModel. https://nmodel.codeplex.com/.

[2] Codeplex: NModel license. https://nmodel.codeplex.com/license.

[3] Documentation for the M-Files API. https://www.m-files.com/fi/api.
[4] The FsCheck Github repository. https://github.com/fscheck/FsCheck.

[5] The FsCheck Github repository: license. https://github.com/fscheck/
FsCheck/blob/master/License.txt.

[6] FsCheck online documentation. https://fscheck.github.io/FsCheck/.
[7] The NUnit Github repository. https://github.com/nunit/nunit.

[8] Visual Studio Marketplace: SpecExplorer. https://
marketplace.visualstudio.com/items?itemName=SpecExplorerTeam.
SpecExplorer2010VisualStudioPowerTool-5089.

[9] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Com-
puter Programs. MIT Press, Cambridge, MA, USA, 2nd edition, 1996.

[10] Sergio Antoy and Michael Hanus. Functional logic programming. Commun.
ACM, 53(4):74-85, April 2010.

[11] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Repre-
sentation and Mind Series). The MIT Press, 2008.

[12] Runar Bjarnason. Scala World 2015: constraints liberate, liberties constrain.
https://youtu.be/GqmsQeSzMdw.

[13] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner. Model-Based Testing of Reactive Systems: Advanced
Lectures (Lecture Notes in Computer Science). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[14] Koen Claessen. Shrinking and showing functions: (functional pearl). SIGPLAN
Not., 47(12):73-80, September 2012.

https://nmodel.codeplex.com/
https://nmodel.codeplex.com/license
https://www.m-files.com/fi/api
https://github.com/fscheck/FsCheck
https://github.com/fscheck/FsCheck/blob/master/License.txt
https://github.com/fscheck/FsCheck/blob/master/License.txt
https://fscheck.github.io/FsCheck/
https://github.com/nunit/nunit
https://marketplace.visualstudio.com/items?itemName=SpecExplorerTeam.SpecExplorer2010VisualStudioPowerTool-5089
https://marketplace.visualstudio.com/items?itemName=SpecExplorerTeam.SpecExplorer2010VisualStudioPowerTool-5089
https://marketplace.visualstudio.com/items?itemName=SpecExplorerTeam.SpecExplorer2010VisualStudioPowerTool-5089
https://youtu.be/GqmsQeSzMdw

BIBLIOGRAPHY 36

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

26]

27]

Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random
testing of haskell programs. SIGPLAN Not., 35(9):268-279, September 2000.

Koen Claessen and John Hughes. Testing monadic code with quickcheck. SIG-
PLAN Not., 37(12):47-59, December 2002.

Koen Claessen, Nicholas Smallbone, and John Hughes. Quickspec: Guess-
ing formal specifications using testing. In Proceedings of the 4th International
Conference on Tests and Proofs, TAP’10, pages 621, Berlin, Heidelberg, 2010.
Springer-Verlag.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 20009.

J. Ernits, M. Kaaramees, K. Raiend, and A. Kull. Requirements-driven model-
based testing of the ip multimedia subsystem. In 2008 11th International Bi-
ennial Baltic Electronics Conference, pages 203206, Oct 2008.

Juhan Ernits, Margus Veanes, and Johannes Helander. Model-based testing of
robots with nmodel. In TestCom/FATES 2008 Short Papers, June 2008.

Daniel P. Friedman and Mitchell Wand. Essentials of Programming Languages,
3rd Edition. The MIT Press, 3 edition, 2008.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576-580, October 1969.

John Hughes. Testing the hard stuff and staying sane. https://youtu.be/
zi0rHwfiX1Q, 2014.

Jonathan Jacky, Margus Veanes, Colin Campbell, and Wolfram Schulte. Model-
Based Software Testing and Analysis with C#. 1 edition.

Jessica Kerr. Property-based testing for better code. https://youtu.be/
shngiiBfD80, 2014.

Axel van Lamsweerde. Formal specification: A roadmap. In Proceedings of the
Conference on The Future of Software Engineering, ICSE 00, pages 147-159,
New York, NY, USA, 2000. ACM.

Bertrand Meyer. Applying "design by contract". Computer, 25(10):40-51,
October 1992.

https://youtu.be/zi0rHwfiX1Q
https://youtu.be/zi0rHwfiX1Q
https://youtu.be/shngiiBfD80
https://youtu.be/shngiiBfD80

Bibliography 37

28]

29]

130]

31

32]

3]

[34]

[35]

[36]

37]

38

Gaspar Nagy. The specflow.fscheck github repository. https://github.com/
gasparnagy/SpecFlow.FsCheck.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st
edition, 2002.

Lee Pike. Smartcheck: Automatic and efficient counterexample reduction and
generalization. SIGPLAN Not., 49(12):53-64, September 2014.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck and lazy
smallcheck: Automatic exhaustive testing for small values. SIGPLAN Not.,
44(2):37-48, September 2008.

Kurt Schelfthout. FsCheck online documentation: Properties. https://
fscheck.github.io/FsCheck/Properties.html.

J. M. Spivey. The Z Notation: A Reference Manual. Oriel College, Oxford,
OX1 4EW, England, UK, 1998.

Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Niko-
lai Tillmann, and Lev Nachmanson. Model-Based Testing of Object-Oriented
Reactive Systems with Spec Explorer, volume 4949, pages 39-76. Springer Ver-
lag, January 2008.

Margus Veanes, Juhan Ernits, and Colin Campbell. State isomorphism in model
programs with abstract data structures. volume 4574, pages 112-127. Springer
Verlag, June 2007.

Margus Veanes and Wolfram Schulte. Protocol modeling with model program

composition. volume 5048, pages 324-339. Springer Verlag, June 2008.

Karl Eugene Wiegers. Software Requirements. Microsoft Press, Redmond, WA,
USA, 3 edition, 2013.

https://github.com/gasparnagy/SpecFlow.FsCheck
https://github.com/gasparnagy/SpecFlow.FsCheck
https://fscheck.github.io/FsCheck/Properties.html
https://fscheck.github.io/FsCheck/Properties.html

	Introduction
	Generating test cases from formal specifications
	Formal specification
	Testable properties
	Preconditions and postconditions
	Formalizing a specification
	Specification languages
	Test-based specification
	Types as specifications

	Properties of state

	Generating input
	Generating random values
	Generating random objects
	Preconditions and generators

	Post-test analysis

	Review of tools for the .NET Framework
	Choosing a tool
	FsCheck
	Support and license
	Specification languages

	SpecExplorer
	NModel

	Exploring test generation at M-Files
	Background
	Overview of M-Files
	General architecture and technologies
	M-Files API

	Issues with current QA process
	Selecting the tool

	Generating tests for the M-Files API
	Modeling the state
	Setting up the SUT
	Modeling the operations
	Uniqueness of operations and MFObjects
	Identifying MFObjects in the Vault
	Generating data during setup vs. at runtime
	Modeling the reading operations

	Running the tests

	Experiences
	Testing the M-Files API
	Structure of the API
	Documentation and lack of deprecation
	Constructing objects

	Using FsCheck
	C# as a modeling language

	Conclusions
	State
	Size of the API

	Bibliography

