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This thesis considers the automatization of a rock breaker boom equipped with a
hydraulic hammer. The studied use case of an automatized breaker boom consists of
trajectory generation from a standby position to preprogrammed locations on a steel
grid. The operator shall be able to choose a specific location of the grid from a user
interface and the boom shall automatically move above the chosen location, do an
approach movement towards the grid and switch the hydraulic hammer on when con-
tact with an external object is detected. During this sequence the angle of the rock

hammer should be constantly maintained at vertical orientation relative to the grid.

The developed solution for contact detection is based on impedance control, which is
a form of indirect force control built on top of an underlying operational-space tool
centre control scheme. To implement impedance control for hydraulic manipulators,
pressure sensors and knowledge of boom kinematics and dynamics are necessary. In
its simplest form, modeled configuration-dependent gravitational forces affecting the
hydraulic cylinders are subtracted from pressure readings and mapped into forces af-
fecting in Cartesian space to yield a rough estimate of contact forces affecting on the
manipulator. The estimated contact forces are then filtered into a position modifi-
cation that indirectly regulates the force affecting on the tool tip of the manipulator.
The force tracking performance is dependent on the underlying position controller,

which is why the control scheme is referred to as position-based impedance control.

In this thesis, an impedance controller was developed for a four degrees-of-freedom
hydraulic manipulator and it was verified using a simulation model of the manip-
ulator. The sequence was implemented on the actual breaker plant and a simple
position controller was tuned, but the original objective of identifying dynamic pa-
rameters and testing of the impedance controller for contact detection as a part of

the automatic sequence was not met.
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Tama diplomityo kasittelee hydraulivasaralla varustetun kivenrikotuspuomin auto-
matisointia. Tutkittu kdyttotapaus koostuu liikeratojen muodostamisesta alkuasen-
nosta ennaltaméariteltyihin pisteisiin metalliristikolla. Koneenkéyttédjian tulee kyeté
valitsemaan kayttoliittymasta haluttu sijainti ristikolla, jolloin puomi paikottaa it-
sensd kyseisen aseman ylapuolelle, tekee lahestymisliikkeen kohti ristikkoa ja kyt-
kee hydraulivasaran péaélle havaitessaan kontaktin ulkoisen esteen kanssa. Koko
sekvenssin aikana kivivasaran orientaatio tulee pitdéd kohtisuorana ristikkoon nah-

den.

Kontaktin havaitsemiseen kehitetty ratkaisu perustuu impedanssisaatoon, joka on
asemasadtimen pohjalle rakennettu epésuora voimasaddin. Impedanssisaadon to-
teuttaminen hydraulisille puomeille vaatii tyypillisesti paineanturointia seké puomin
kinematiikan ja dynamiikan tuntemusta. Yksinkertaisimmillaan tunnetut hydrauli-
sylintereihin vaikuttavat asemariippuvaiset gravitaatiovoimat vihennetdédn paine-
mittauksista ja muunnetaan karteesisessa avaruudessa vaikuttaviksi voimakompo-
nenteiksi, jolloin saadaan karkea arvio puomiin vaikuttavista ulkoisista voimista.
Voimaestimaatti suodatetaan tdmain jdlkeen asemareferenssia poikkeuttavaksi ase-
mamyodoksi, miké epasuorasti sdételee puomin kirkeen kohdistuvia voimia. Voiman
regulointitarkkuus riippuu puomin asemasaétimen suorituskyvysta, minka johdosta

sdatorakennetta kutsutaan asemapohjaiseksi impedanssisaadoksi.

Tyosséa kehitettiin impedanssisddadin neljan vapausasteen hydrauliselle puomille ja
sen toiminta verifioitiin puomin simulointimallia kiyttden. Sekvenssi toteutettiin
todelliselle puomille ja puomille viritettiin yksinkertainen asemaséadin, mutta tyon
alkuperéisestd tavoitteesta poiketen puomin dynaamisten parametrien identifiointi
sekd impedanssisadtimen testaaminen kontaktin havaitsemiseen osana automaattista

rikotussekvenssia jaivat tyon ulkopuolelle.
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1. INTRODUCTION

Booms equipped with hydraulic impact hammers are extensively used in the mining
industry for controlled size reduction of mineral ore, most notably in close proxim-
ity of mobile jaw crushers and mining ore silos. These so called breaker booms (see
Fig. 1.1) are essential to handle inevitably occuring material buildups and blockages
caused by too coarse material that gets stuck on a screening media (i.e. a steel grate,
also called a grizzly) while being fed to crushers or ore passes. The material that
cannot pass through the openings of the screening media should be broken with the
hydraulic hammer. This process is referred to as screening and is an essential step
in crushing, turning unprocessed run-of-mine ore into a finer substance suitable for

further treatment. [Metso Mining and Construction, 2015]

Figure 1.1 A pedestal hydraulic rock breaker boom. [http: //mrbbooms. com/ |

The economical justification for such booms is to reduce delays and ensure a steady
material flow, leading to minimal process downtime and thereby having a positive
impact on productivity. Whenever oversized rocks are caught on the grizzly struc-
ture, the rock hammer is used to reduce their size. This temporarily halts the

material flow, for example when an ore truck has to stop feeding material to the silo
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until the operator of the breaker boom has broken the oversized rocks into smaller
particles that can pass trough the grizzly. If the boom cannot execute its task during
a limited time window, the rock has to be temporarily pushed aside from the grid
for later processing and the arm should return to rest position. Rock breaker booms
are currently mostly operated by manual open-loop control each joint separately,
making them inergonomic and non-intuitive to use from the point of view of the
operator, which increases accident-proneness. Operator-induced accidents account

for almost three out of four out of all crane accidents [Lovgren, 2004].

As for other applications, heavy-duty hydraulic manipulators on non-road mobile
machinery (e.g. agriculture, construction and forestry) have seen developments of
robotization in an increasing degree during the last years. Examples include John
Deere Intelligent Boom Control' in forestry cranes and HIAB Crane Tip Control? in
loader cranes, which both provide the operator with the opportunity to control the
tool tip of the boom instead of separate joint control. Such coordinated operational-
space control schemes are expected to decrease the cognitive burden of the operator,
providing comfort and ease of operation. These recent developments indicate that
there is room for improvement and open possibilities to apply robotic control in
order to automatize rock breaking tasks, with the aim of making breaker booms

safer, faster and more efficient.

1.1 Problem statement and use case description

A critical issue in rock breaking is to make contact with the rock in a controlled
manner and applying a correct force, which requires a skilled operator. The hammer
tip should be held in a 90 degree angle relative to the object (see Fig. 1.2) to avoid
misalignment and nonideal distribution of impact forces. A lot of attention and
effort goes into avoiding dangerous situations — for example, when the rock breaks,
resulting idle strokes in air or collision with the ground can have a deteriorating effect

on the hammer, shortening its lifespan. [Sandvik Mining and Construction, 2016]

Automatization of the breaker boom to solve the issues stated above requires the
application of operational-space control and automatically generated motion trajec-
tories. The studied use case for an automatized breaker boom is presented on the

following page.

!See: https://www.deere.com/en/forwvarders/
2See: https://www.hiab.com/en/company/newsroom/news/hiab-crane-tip-control/

Accessed 10 November 2017


https://www.deere.com/en/forwarders/
https://www.hiab.com/en/company/newsroom/news/hiab-crane-tip-control/

1.1. Problem statement and use case description 3

Figure 1.2 Correct usage of the hammer. [Sandvik Mining and Construction, 2016]

1. The boom has to automatically unfold itself from a rest position and move to a
standby position beside the grid, the hammer being in a 90 degree orientation

with respect to the grid.

2. In standby position, the operator should be able to choose a specific location
of the grid from an intuitive graphical user interface, and the boom shall
automatically move above that preprogrammed position with the angle of the
rock hammer being constantly maintained at 90 degree vertical orientation

relative to the grid.

3. The boom shall then do an approach move towards the grid maintaining the
desired 90 degree tool orientation, and switch the rock hammer on when con-
tact with an external object is detected. Special attention should be put into
avoiding hitting the grid and not starting too far from the material’s edge,

which both could be equally detrimental for the equipment.

4. After having cleared the rock, the boom shall return to the rest position to

wait for the next user commanded target.

The arising question in this use case is how to detect contact with a rock, since the
hammer should automatically start its operation before a certain force threshold is
exceeded. In heavy-duty hydraulic booms, the usage of six degrees of freedom force
and torque sensors is not feasible, since they are known to be sensitive to shocks
and overloading |Koivuméki, 2016, p. 5|. Instead, either pressure sensors should be
used for sensing external contact forces or inertial measurement units for detecting
impacts. Another open question is whether it is necessary to provide some additional
compliance by software for very fast movements of the boom, although the tip of

the hydraulic hammer is equipped with a mechanical spring that complies in face of
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obstacles. Fast movements of the boom could be an argument for using some form

of contact control in addition to plain impact detection.

1.2 Objective and structure of thesis

The objective of this thesis is study the feasibility of impedance control in rock
breaking applications. This thesis aims to develop an automatic rock breaking con-
trol scheme for a heavy-duty pedestal hydraulic rock breaker boom. The developed
solutions should be based on either indirect force sensing by means of pressure
transmitters or impact detection based on acceleration measurements from inertial
measurement units attached to the links of the manipulator. The main question
of research is whether active compliance would bring any added value to the rock

breaking sequence.

This thesis consists of five chapters. In Chapter 2, kinematic and dynamic models
of the boom are derived. Chapter 3 provides a general outlook on different ap-
proaches to impedance control, namely position-based impedance control and force-
based impedance control, in the context of hydraulically actuated manipulators. It
introduces the reader into the principles and concepts related to cascaded compli-
ance control, including a comparison between the position-based and force-based
approaches and their respective tradeoffs regarding stability and performance. A
simplistic impedance control scheme for hydraulic manipulators is also presented.
Chapter 4 presents measurements from experiments carried on the actual breaker
boom plant. Finally, a summary of results together with conclusions is provided in
Chapter 5.



2. BOOM KINEMATICS AND DYNAMICS

For the purpose of estimating contact forces from cylinder chamber pressures, an
accurate model of the dynamic behaviour of the boom is needed. In this chapter the
theoretical background will be provided for deriving forward kinematics following
the Denavit-Hartenberg convention and manipulator dynamics following the Euler-

Lagrange formulation, both standard practices in the field of robotics.

2.1 Kinematic modeling of the manipulator

Denavit-Hartenberg (DH) convention is followed to assign coordinate frames from
the base to the tool center point, which allows expressing coordinate transforms by
means of four parameters [Sciavicco et al., 2000, p. 42]. Frame assignment for the

boom is illustrated in Figure 2.1.

i) {T}

Figure 2.1 Frame assignment for X88-540R.
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Three of the four DH parameters are always constants, which means each coordinate
transform is a function of one joint variable — rotation 6; in case of a revolute
joint, or extension d; in case of a prismatic joint. Based on these four parameters,
coordinate transforms can be expressed with a standardized transformation matrix,
which consists of a 3 x 3 rotation matrix for expressing change in orientation and
a 3 x 1 translation vector for expressing change in location (see Eq. 2.1 below).
[Sciavicco et al., 2000, p. 45|

cos(#;) —sin(6;) - cos(ay)  sin(;) - sin(ay)  a; - cos(6;)
T~ sin(6;) cos(&l-.) ~cos(ay)  —cos(#;) - sin(a;)  a; - sin(6;) (2.1)
0 sin(oy) cos(;) d;
0 0 0 1

The orientation and location of the end-effector frame {T} relative to a fixed base
coordinate frame {B} can be expressed by means of matrix multiplication of the

successive coordinate transforms as

T{y =T T3 T3 T3 T} (2.2)

DH parameters corresponding to the assigned frames are presented in Table 2.1.

Table 2.1 DH parameters for X88-540R. Joint variables denoted with an asterisk.

il a o d; 0
1|-Ly § di 0
2 Ly 0 0 6
3| Ly 0 0 65
41 Ly 0 0 063
5/ L -5 0 3

Elements (1,4), (2,4) and (3, 4) of the resulting transformation matrix Tg}i describe
the location of the tool tip in operational space as

sin(67) - ( — L1+La cos(f2) + L3 cos(02 + 03) + Ly cos(02 + 03 + 04) — Lg sin(f2 + 63 + 64) )

di+Lo Sin(@z) + L3 Sin(@g =+ 93) + Ly Sin(@g + 03 + 94) + Lg COS(@Q + 603 + 94)

D cos(61) - ( — L1+Lo> cos(62) + L3 cos(02 + 03) + La cos(02 + 03 + 04) — Lg sin(f2 + 03 + 64) )
Py | =
D=z

The mapping from cylinder stroke ¢, to joint angle ¢, is acquired from the law of

cosines as

c%—ai—kbi)

n — 2 bz_znbn n = n = _1(
en =02 + b2 a cos(qn) (n = COS e b,

(2.3)
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The relation between cylinder extensions and DH angles is illustrated in Fig. 2.2.

Cy

////////
rr77777

(a) Second cylinder and joint (b) Third cylinder and joint

Figure 2.2 Relation between cylinder extensions and joint angles.

G2 =02+ a3 — [
@G3="0s+7—a3— [
Gu=01+7m—0y— Bu

2.1.1 Inverse kinematics of X88-540R

An algebraic solution technique exists for inverse kinematics of three-link planar
arms [Sciavicco et al., 2000, p. 67-68]. The target orientation angle ¢ of the arm

relative to the ground is defined as
gb = ‘92 + 83 + 04 (24)
We can express the location of the fourth joint (3, z3) in two alternate ways:

x3 =py — Ly - cos(¢) = Ly - cos(6y) + L3 - cos(fz + 63)

(2.5)
23 =p, — Ly - sin(¢) = Ly - sin(fy) + L3 - sin(fy + 03)

Squaring and summing the pair of equations yields

$2+22—L2—L2
w3+ = L3+ L3+2-Ly- Ly-cos(f3) &  cos(fs) = = 2'3L2~l2}3 ;

Applying the well-known trigonometric identity sin(x)? 4 cos(z)? = 1, we can solve

for sin(f3). In our case, only the solution in the so called elbow-up posture is



2.1. Kinematic modeling of the manipulator 8

viable, so the solution candidate with a positive sign is neglected. Using the two-
argument arctangent function (atan2) automatically handles placing the solution to
the appropriate quadrant depending on the signs of the arguments. Now we have a

solution for the third joint angle as

03 = atan2 <COS(¢93), —\/TSZ(QL’»)>

Substituting #3 into the pair of equations 2.5 above, the unknowns sin(fs) and cos(f2)

can be solved in a similar fashion as

COS(QQ) _ x3.[L2+L3-coi(QGi)z};-zg-Lg-sin(eg) |
‘[Lo+Lsg- (; )]i -L3-sin(03) = 92 = atan2 <COS<92), Sln(02)>
sin(f,) = zlletls Cozgizg @3-Ly-sin(03

Finally, the angle 6, that leads to the specified orientation ¢ of the arm can be

solved from Eq. 2.4 as
0 =¢ — 0 — 03

The workspace of the arm in 90 degree tool orientation is illustrated in Fig. 2.3.

P

/P2 + D2

Figure 2.3 Workspace of the planar arm in a vertical tool orientation.

2.1.2 Differential kinematics of X88-540R

The end-effector Jacobian J, relates angular joint velocities 6 to the Cartesian ve-
locity @ of the boom tip. It is derived by differentiating the end-effector location
vector [ pr py p. |* from the previously derived forward kinematic transformation
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matrix, in terms of each joint variable. [Sciavicco et al., 2000, p. 101]

Ops Opz Opa 9

r— Ry — 9Py OGPy  OPy

T = Jz<9) 0 90, 205 00, 9‘3 (26)
Op= Op2 Opz 64

00> 003 004

Angular acceleration can be solved from linear acceleration by differentiation with
chain rule

0=3.10) (3 —J.0) 0)

T

The relation between joint velocities and cylinder velocities is acquired by differenti-

ating the previously derived mapping between cylinder extensions and joint angles.

ocy, ey, _% 2 ap by - _Sin(qﬂ> _ Qn- by - Sin(qﬂ)

90, 00w S+ B2 —2-ay by cos(qn) Cn

The actuator Jacobian J. in this case is a diagonal matrix, since there is no coupling

between cylinder velocities (i.e. no parallel structure is present in the manipulator).

G20 0 | [6

. 602 .
c=J.(0)-0=| 0 % 0 0 (2.7)
0 0 2«6,

004

Based on the principle of virtual work [Craig, 2005, p. 157|, the Jacobian trans-
pose can be used to map forces between actuator space, configuration space and

operational space as

where T is the vector of joint torques, f. is the vector of piston forces and F, is
the vector of forces in operational space. Combining all the results derived so far,
we have the following relations between velocities and forces in actuator space and

operational space:

¢:Jwy¢:(hwajw0-é
é:J”wy¢:<%H®~Lw»~i

fo=370)- F. = (310)-3.70)) - Fx
Fo=3700)- f.= (1.°0)-350) - /.
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2.2 Dynamic equation of the boom

For deriving the manipulator dynamics, the energy-based Euler-Lagrange formalism
will be followed. It is often preferred due to its intuitive and systematic nature,
although computationally inefficient for manipulators with increasing complexity,
which has motivated the development of the subsystem-based control known as
virtual decomposition control, relying on the alternative recursive Newton-Euler
method [De Schutter et al., 1997, p. 12|. The closed-form equations acquired from
Lagrange’s equations represent an ideal serial manipulator and lack some precision

since they do not model cylinder mechanics separately.

The general dynamic equation of manipulators in configuration-space assumes the

form
T=1(0) - 0 + CH7 + G(0) + Tews

where I(f) is the configuration-dependent matrix of inertial terms, G(f) is the
configuration-dependent vector of gravity torques and 7., is the vector of external
torques affecting to the manipulator. Assuming small operating velocities, Coriolis

and centrifugal terms C(6, 9) can be neglected to simplify the dynamic equation.

Only two-dimensional dynamics along the plane formed by the arm joints (namely
lift, tilt and breaker) will be considered in this thesis. The Langrangian £ of the

system is defined as

L=K(0,0)—P®), (2.8)

where K and P denote total kinetic and potential energies of the manipulator,

respectively. The required driving torque for the n:th joint can be calculated from
d (oL oL d [ OK oK  oP
T,=——|—-———=—— |- =— - =— (2.9)
dt \ 96, 00, dt\ 96, a0, 06,

For this purpose, one has to calculate the global velocities (i.e. the velocity with
respect to the base) of each point mass m,,, by deriving the centre-of-mass (COM)
Jacobian J,,, with respect to the configuration-dependent location p,, of each link
mass. |Jazar, 2010, p. 620-625]

. OTm,  OTm,  OTm,
=™ o ao-|EEE] ew
zmn 802 393 8‘94

Locations of each COM from the driving joint along the link are ry, r3 and 7.
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Figure 2.4 DH angles and link masses illustrated. Note that 03 < 0 and 04 < 0.

Total potential energy P of the planar arm is calculated as

P==Y g B) = g (2.11)

where g, is the gravity acceleration vector, in this particular case gi = [ 0 —g |,
since gravity affects in the direction of the base Z-axis [Sciavicco et al., 2000, p.
139-140]. The gravitational torque Tyquityn affecting link n can be calculated from
the equation
4 4
P _ : :
Tgravityn = W = - Z <mz : gE)r . Jm19> = Z (mz g Zml> (212)

=n i=n

The calculations for gravity torques resulting from the previous equation are pre-

sented below.

Tgravity,a =My ~ G- Tq - COS<92 + 6)3 + 84)
Tgravity,3 = Tgravity,4 +my-g- L3 : COS(QQ + 03) +mg-g-rs- COS(QQ + 93)

Tgra'uity,Q = Tgr(wity,B + (m4 + m3) g L2 . COS(62) + my - g-Tro- COS<62)
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The configuration-dependent gravity vector G(6) is written as

my-g-[rs-cos(fz+ 03+ 604) + Ls - cos(fa + 03) + Lo - cos(f2) ]
+m3-g- [ rs - COS(GQ + 93) + Lo - 008(02) ] +mgo-g-To- 008(02)

my-g-[ry-cos(fa+ 03+ 6s) + Ly -cos(fs+05) | +mg-g-rs-cos(fz + 63)

my - g-ry-cos(fa + 03+ 64)

Rotational and translational kinetic energy K of the planar arm is

K

Il
-
N
N[ —=

[\

T 6 L ome (3,0)T (3,0))

@
el

|
/N
D=

.Ii-é§+§~mi.(j;,%%+z';i))

@
Il
N

where I; is the moment of inertia of the i:th link along its axis of rotation. The

inertial torque Tipertian affecting link n can be calculated from the equation

d oK Tinertia,Q B '
Tinertia,n = E (6_0“> = Tinertia,S = I(9> -0 + w/e )

TinertiaA

and can also be expressed in matrix form, where I(6) is referred to as the robot
inertia matrix |Lewis et al., 1993, p. 76]. As mentioned before, only acceleration-
dependent terms will be taken into account, while velocity-dependent terms are
neglected. The inertial torques resulting from the previous equation are presented

below.

Tinertia,4 - [ I4 +my - Ti ] : (02 + é3 + 94)

+[m4'T4'L2'COS(63+64>]'é2+[m4'T4'L3'COS<84)]'(ég‘i‘ég)

Tinertia,3 = Tinertia,4 + [ Is +mj - 7"?2) +my - Lg ] . (92 + (93)
+[mg-ry- Lo-cos(03) ] -6y +[my-Ly- Ly - cos(fs) | - s
+[m4'T4'L3'COS(04) ] (92+93+94)

Tinertia,2 = Tinertia,3 + [ Iy +msy - T% + (m4 + m3) ’ Lg } ’ éQ
+[ms-rs- Ly-cos(fs) |- (fa+ 6s) + [ my - Ly - Ls - cos(s) | - (B + 65)
—I—[m4-7’4-L2'COS(93—|—94) ] (92+93+94)
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The inertia matrix of the three-link planar arm is written as

May Mas Moy
1(9) = M3y Mss Msy )
Myo Mys My

where

M22 == (I4+H147"i) + (13—|—m37"§ +m4L§) -+ (IQ +m2r§ —|—m3L§+m4L§)
+ 2 my L2 T4 COS(03 + 04) + 2 my L2 L3 COS(Q3)
+2m3 Lyrs cos(f3) +2my Ly ry cos(by)

Mgg = M32 = (]4 —+ my T‘i) + (]3 + ms T‘§ + my Lg) + my LQ Lg COS(@g)
+2my Lyry cos(0y) + mg Lo cos(f3) + my Lo ry cos(05 + 64)

M24 = M42 = (I4 + my Ti) + my L2 Ty COS(93 + 04) —+ my L3 T4 COS(04)
Masg = (Iy +my73) + (I3 + mgr3 +my L3) + 2my Ly 7y cos(6y)
M34 = M43 = <I4 + my TZ) + my L3 T4 COS(94)

M44:I4+m4ri

Matlab-code of the inverse dynamics including Coriolis and centrifugal terms is
provided in Appendix A. The dynamic equations were verified using a Simscape
Multibody —model of the boom forward dynamics as a reference and seem to catch

the essence of the dynamic behaviour of the boom, as can be seen from Figure 2.5.

However, the parameters acquired from geometric models are not accurate and do
not take friction into account, which is why the dynamic parameters should be iden-
tified experimentally. Linear parametrization of the dynamic equation is achieved

by separating inverse dynamics into the form
T=1(0)-0+GO) +I'-F(¢)=Y(6,0,0) - ¢, (2.13)

where Y is the regressor matrix, ¢ is the parameter vector and F is a model of

cylinder friction [Lewis et al., 1993, p. 89|.
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Figure 2.5 Inverse dynamics (black line) compared to model (dashed red line).

A difference of joint torques in the form T; — ;1 can be used instead of the absolute
value of measured joint torques, which results in better numerical precision than us-
ing the coupled equations, since the regression matrix has more zero-valued elements
[Tafazoli, 1997, p. 110]. The matrix Y4 below is the inertial and gravitational part

of the regressor matrix and ¢, its parameter vector.

Tg — T3
T3 — Ty | = Ya(6,0,0) - g
—_— =

Ty € R3x6 € RS
bz 0 0 g - cos(02) Ly - cos(03) - (2 + 03) Ly - cos(83 + 04) - (62 + O3 + 64)
0 g + é3 0 0 Lo - cos(03) - 0o + g - cos(02 + 03) L3 - cos(04) - ((92 + ég + 94)
0 0 0o + 03 + 04 0 0 Lo - cos(03 + 64) - b2

+L3 - cos(64) - (62 + 63)
+g - cos(f2 + 03 + 04)

Io +mg 12 + (m3 + my) - L3
I3+m3~r§+m4~L§
I4+71L4-7‘§
mso -T2 + (m3 + my) - Lo
mg - r3 +my - L3
my - T4
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If only sliding friction is considered including static friction and viscous friction

terms, the frictional part of the regressor matrix Yy and its parameter vector ¢y

can be expressed as

Jo - Ye(e) - oy

——
c R3%6 c R6
sgn(éa) ¢ —sgn(éz) —és 0
=J: - 0 0 sgn(¢s) ¢z —sgn(c)
0 0 0 0  sgn(éy)

Notice how friction of the distal link is substracted in the torque difference form, since
friction is a local phenomenon in each actuator and does not affect the load pressure
of the adjacent link. For asymmetric cylinders, two different friction coefficients

(fs for static friction and f, for viscous friction) could be separately identified for

extension and retraction movements to increase accuracy.

fs2
Juz
fs3
s
[
Joa
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3. IMPEDANCE SHAPING CONTROL

Contact forces between the manipulator and an environment impose constraints on
the motion of the manipulator, which introduces conflicting goals between position
and force control objectives. Position-controlled manipulators treat contact with
the environment as a disturbance and try to satisfy commanded position goals at all
costs, leading to excessive force buildup that could possibly damage the manipulator
[Craig, 2005, p. 13]. Exchange of mechanical work between the manipulator and the
environment equals the product of force and velocity — if exchange of energy between
the systems is not negligible, controlling only one power variable (i.e. explicit force
control or pure motion control) might not suffice to guarantee stable interaction

between the two systems |Craig, 2005, p. 317].

Therefore, in order to successfully execute contact tasks, the ability of robots to
comply with their surroundings becomes a critical issue. Traditionally, this matter
has been dealt with by increasing the intrisic compliance of robots with additional
hardware — passive compliance devices, such as spring elements attached to the end-
effector [Craig, 2005, p. 333|. A more novel approach to the problem of compliant
manipulation is to accommodate the manipulator to external forces based on sensory

information, which is referred to as active compliance and is illustrated in Fig. 3.1.

Active compliance

— AAAA— /" Commanded trajectory
|
1

Robotic manipulator

Figure 3.1 Active compliance in the form of programmable stiffness and viscosity.

This has motivated an approach to manipulation known as impedance control, which
aims at controlling port behaviour — impedance or admittance — rather than either
of the power variables explicitly. Mechanical impedance Z is a dynamic relation

which generates force as a function of motion, while mechanical admittance relates
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motion to force. Impedance and admittance can describe arbitrarily complex dy-
namic behavior, but are most often adopted in the second-order form, consisting of
damping (i.e. resistance to change of velocity) and inertia (i.e. resistance to change

of acceleration) in addition to stiffness [Buerger and Hogan, 2005, p. 6.

gkt
x

An impedance controller acts to minimize deviations from a reference target model,
which specifies the desired dynamic response of the manipulator when interact-
ing with the environment. Impedance controllers effectively attempt to mask the
impedance of the manipulator by introducing a virtual bumper to its end-effector,
mimicking the behaviour of a mass-spring-damper system (see Fig 3.2) with arbi-
trarily chosen inertia, damping and stiffness. The range of achievable impedances
is limited by the physical capabilities of the manipulator and the bandwidth of its
control system, which is why the target model is only realizable over some limited

frequency range.
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Figure 3.2 1-DOF example of a mechanism interacting with an environment. Character-
istics of a stiff contact surface can be modeled as a spring-damper without inertia.

Target impedance specifies the objective dynamics by establishing a dynamical re-
lationship between contact force and position deviation, e.g. by creating a motion
response to a sensed contact force, which alters the trajectory of the manipulator.
Target impedance is most often adopted in the form of a linear time-invariant mass-
spring-damper system to facilitate control design, in which case the impedance is
the algebraic inverse of admittance and vice versa. The second-order impedance is

expressed as

Feot =mg- (Zo — Z) + by (2o — &) + ka - (xg — ) , (3.1)
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where F,,; is the sensed contact force, my the desired inertia, by the desired damping
and kg the desired stiffness. The desired values for inertia, damping and stiffness
are collectively referred to as impedance parameters. [Vukobratovic et al., 2009, p.
18|

Since impedance control regulates the relationship between force and motion, it
does not explicitly control force or motion, but instead these two power variables
are implicitly determined by the desired port behaviour. Impedance control falls
into the category of indirect force control, which means achieving force control by
means of motion control. It differs from other interaction control schemes — namely
hybrid and parallel control, which both are forms of explicit force control — in it’s
motion constraint paradigm, by establishing dynamic constraints rather than geo-
metric constraints [De Schutter et al., 1997, p. 7]. The recognized advantages of
impedance control compared to pure motion control or explicit force control include
achieving inherent robustness with respect to uncertain environments. Moreover,
compliance by software allows the impedance parameters to be varied programmati-
cally on the fly, making the manipulator more versatile with regard to different types

of environments and allowing adaptive and learning strategies to be employed.

A drawback of impedance control is the need for more complex and expensive addi-
tional hardware due to force and torque sensing requirements, although the contact
force could be estimated by means of observers, and in hydraulic systems pressure-
based force sensing is relatively cost-effective. Compared to passive compliance
devices which have energy storage capability and effectively unlimited bandwidth,
an active compliance controller has limited bandwidth, consumes energy in achieving
compliant behaviour and cannot store energy in its actuation system. Therefore it
cannot absord shocks except for a limited range of frequencies, yet on the other hand,
there are no risks related to the sudden and uncontrollable release of energy stored
in springs [Boaventura et al., 2015]. Finally, the absence of a general framework for
the synthesis of controller parameters that would ensure stability and performance

makes the control design process unsystematic [Vukobratovic et al., 2009, p. 65].

3.1 Cascaded compliance control

Cascaded compliance control, or inner/outer loop impedance control, is based on
nested position and force feedback loops. The manipulator and its environment are
represented as impedances and admittances — if the manipulator assumes the form
of an impedance, the environment will assume the form of an admittance and vice
versa. Thereby two alternative implementations of cascaded impedance control can

be distinguished, depending in which manner the feedback loops are nested — the
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manipulator can be either a motion source or a force source, and respectively the
controller will be an admittance or an impedance. In case of a position-controlled
manipulator, the controller assumes the form of an admittance and the control
scheme is referred to as position-based impedance control (PBIC), or admittance
control. [Ott et al., 2015]

Alternatively, if the manipulator is force-controlled, the control scheme is known
as force-based impedance control (FBIC) or explicit impedance control, since the
controller modulates impedance. FBIC is based on an inner force feedback loop
and an outer motion feedback loop, where the inner loop complies the manipulator
while the outer loop stiffens the manipulator (see Fig. 3.3). In other words, an
explicit impedance controller stiffens the force command of a soft force source, and

acceleration and velocity feedbacks are required in addition to position feedback.

Feact
Ty —f 0 T Manipulator 0
Impedance | "¢/ | Inverse ref apd
- n
. controller dynamics ) .
To — environment 2]
X X
| I
| b e e e e — - - -
|
|
|
|
T
Forward
T | kinematics

Figure 3.3 Force-based impedance control. [Boaventura et al., 2015/

The force control loop is active even in free-space motion, which is why FBIC suf-
fers from poor position control performance in free-space, due to unmodeled dy-
namics such as friction [Muhammad et al., 2009]. Therefore FBIC would inevitably
require a switching law to transition from stiff position control to impedance regu-
lation, when contact with the environment is detected. Force control of hydraulic
actuators is a strongly nonlinear and therefore challenging problem, adding to the

inconvenience of implementing a force-based impedance controller.

Choosing on causality between impedance and admittance depends strongly on the
properties of the manipulator and nature of the task. Most environments of interest

act as rigid kinematic contraints with nearly infinite impedance, which can only be
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represented as an admittance — an argument for making the manipulator behave as
an impedance source. But since in most cases the inertial properties of the manipu-
lator dominate its response, in practice it is more feasible to make the manipulator

appear as an admittance. [Buerger and Hogan, 2005, p. 10]

3.1.1 Position-based impedance control

In contrast to FBIC, only position feedback is needed to implement PBIC, which
makes it attractive since acceleration and velocity information is often either of poor
quality or not available at all. PBIC allows exploiting readily existing position con-
trollers without significant modifications, which makes it a more generally applicable
control scheme in industrial robotics. The majority of commercially available ma-
nipulators are designed as positioning devices and do not allow receiving force or

torque commands directly. [Vukobratovic et al., 2009, p. 262]

PBIC is based on an inner position feedback loop nested inside an outer force feed-
back loop — the inner loop stiffens the manipulator and the outer loop complies the
manipulator, so the target admittance filter effectively softens the position command
of a stiff position source. The outer force-feedback loop is depicted in Fig. 3.4 and

the inner position-feedback loop is depicted in Fig. 3.5.

J—T
F T
o
FO Fext 1 Lmod l Tref
— Zy (s) O Gp
0
_Fgravity
9(0)

Figure 3.4 Block diagram of the outer Cartesian force control loop. Gp signifies the
position-controlled plant, ZEI the target impedance filter and g(0) gravity compensation.

In free-space motion, assuming inertial and gravitational forces are fully compen-
sated, the sensed external contact force ﬁewt and the position modification x,,.,q are
close to zero and the outer force control loop is effectively passive. In such a case

position reference x,.; equals nominal position reference . The nominal reference
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should only be reached when in unconstrained motion, when no external contact

forces are acting on the manipulator.

The outer force feedback loop closes naturally when contact occurs and the feedback
compensator Z, ! creates a position adjustment corresponding to the sensed exter-
nal forces, leading to a modified position reference which differs from the nominal
position reference. The feedback compensator used to regulate impedance or admit-
tance is generally referred to as the target impedance filter. The impedance filter
Zz' modifies the position reference based on the sensed contact forces, according to
the equation

-1 B
Lref = To + Tmod = mO_’_ZT : Fext

The purpose of the modified position reference is to indirectly regulate the contact
force imposed by the manipulator to the environment, by locating the reference tra-
jectory of the end-effector within the object. While this modified position reference
is not supposed to be reached by the manipulator, it is nevertheless useful in regulat-
ing the force applied to the environment. The modified position reference does not

necessarily need to be realizable nor even inside the workspace of the manipulator.

T
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Figure 3.5 Block diagram of the inner joint position control loop.

The impedance filter implements low-pass filtering behaviour with a small cutoff
frequency [Vukobratovic et al., 2009, p. 410]. It can be expressed in the Laplace-

domain as
_ X(s) 1

F(S) :md~s2+bd~5+kd’

Zy'(s) (3.2)

from which we can see that admittance, unlike impedance, has the advantage of

being a proper rational function.

3.1.2 Performance/robustness -tradeoff

In feedback-based impedance control, a tradeoff exists between impedance tracking

accuracy and stability in face of changing environments. Due to a lower sampling
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frequency, the outer loop is more limited in its ability to change system behaviour
than the inner loop, as the outer loop rolls off at higher frequencies and is unable

to modify the inherent dynamics of the plant [Colgate, 1989].

This means PBIC in general provides an excessively stiff response and suffers from
an inability to provide very soft impedances with low values of stiffness and damp-
ing, making it prone to instability when facing rigid environments that require the
manipulator to be highly compliant. In contrast, FBIC provides a too soft response
and therefore suffers from an inability to provide very large impedances when mak-
ing contact with elastic environments. This complementary nature of PBIC and

FBIC with regard to performance and robustness is illustrated in Fig. 3.6.

Ideal controller

Performance

Environment stiffness
Figure 3.6 Characteristics of PBIC and FBIC, after [Ott et al., 2015].

This tradeoff between performance and robustness is due to feedback controllers
introducing their own impedance to the system, which leads to unideally realized
impedance. The effects of feedback-induced impedance errors can be separated
into the inherent mechanical impedance of the inner feedback controller, which is
dominant at high frequencies, and the mechanical impedance introduced by the

target model, which is dominant at low frequencies |Colgate, 1989].

Because the actuators are never ideal motion or force sources, the inner feedback
controller introduces its own impedance to the system. In PBIC, whenever the
actual position of the manipulator differs from the desired one, the position controller
introduces its own impedance to the system. This inherent impedance of the position
controller is determined by its control gains, which are typically tuned in a way
to minimize positioning errors in free-space motion — not in order to achieve best
possible impedance tracking performance when in contact. This leads to a conflict
in achieving positioning accuracy requirements in free-space and impedance tracking

requirements in contact regime. [Valency and Zacksenhouse, 2003|
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To illustrate the sources of impedance errors, the impedance error in PBIC is written

as

1 P Cp-P

P - S U AL S 7
1+Cp-P x0+1+CP~P Y ire, P YT !

ep=7=Top—T
where the first two terms describe the free-space dynamics, including load dynamics,
and the last term describes the target model realization error. We can define from
Fig. 3.5 Gp = Hcg% as the closed-loop transfer function of the position-controlled

plant and Sp = as its sensivity function. [Vukobratovic et al., 2009, p. 267

1
1+Cp-P

The position of the manipulator is then written as
x:GP'(xO_ZEI'Fext)+SP'P'Fext7

and the realized closed-loop admittance equals to

T
Fea:t

=Gp- 27"+ 5p- P,

which would equal to Z;', if an ideal controller with Gp = 1 and Sp = 0 was
used. Since an ideal controller is unrealizable in practice, the impedance realization
performance of PBIC is determined by the bandwidth and accuracy of the posi-
tion controller, while in FBIC the same applies with respect to the force controller
[Koivisto et al., 2005].

3.1.3 Stability region of impedance parameters

Stability analysis of mechanical interaction between the manipulator and an envi-
ronment is based on thermodynamic passivity. A realistic assumption is that the
environment is passive — it can dissipate and store energy, but cannot create any
on its own. The manipulator on the other hand can inject energy into the system,
because compliance is created actively by feedback. For the interaction to be stable,
the manipulator should therefore be made to behave passively, which means no more

energy should be injected into the system than the system can naturally exhaust.

Impedance width, or Z-width, is a concept originating from the field of haptic tele-
operation. Z-width is defined as the space of stable target impedance parameters,
which means combinations of stiffness and damping that can be passively rendered
by a certain mechanism [Boaventura et al., 2015]. Z-width can be graphically rep-
resented by using stiffness-damping plots, where the stability condition for a given

frequency and sampling time is a line in the (k, b) -plane, which is illustrated in
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Fig. 3.7. A more inclusive way to present Z-width would be a set of curves showing
the upper and lower bounds of passively achievable impedances as a function of

frequency.

e Stable
7 Unstable

ka [5]

Figure 3.7 Z-width illustrated, after [Koivumdki, 2016, p. 32].

Effect of control gains on stability

Closed-loop bandwidth and steady-state error of the inner feedback loop has a major
influence on both stability and performance of the outer feedback loop, which is
why tuning of the inner loop is of critical importance for the impedance tracking

capability and robustness of the impedance controller.

Lowering inner loop gains might improve stability, but at the cost of jeopardizing the
inner loop performance and thus restricting the compliant behaviour of the manip-
ulator. Respectively, increasing inner loop gains has a positive effect on impedance
tracking performance, as it enlarges the closed-loop bandwidth and therefore range
of frequencies for which the desired impedance can be emulated by the actuators.
However, in cascade control both the inner and the outer control loop contribute
to the total loop gain — in case the inner loop gain increases, the outer loop gain
should reduce to maintain closed-loop stability. Gain scheduling could be applied to
the control gains of the inner loop to adapt the bandwidth of the inner loop based

on the chosen impedance parameters. [Focchi et al., 2016]

Consequently, trying to achieve higher bandwidth by increasing inner loop gains
could reduce the region of stable impedance parameters. Therefore a compromise
has to be made to find gains that provide a bandwidth high enough to ensure good
impedance tracking and low enough to maintain a wide range of stable impedance

parameters.
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Effect of environment on stability

Environments can be divided into two extremes based on their low-frequency be-
haviour — springs act as impedances (|Zg(0)] = oo), while masses are equal to
admittances (|Zg(0)| = 0). Free space can be described as a mass-like inertial envi-
ronment, while a rigid surface is a spring-like capacitive environment — the inverse
of a capacitive system is inertial and vice versa. Capacitive environments ideally
require force-controlled manipulators to make the manipulator inertial by feedback,
while inertial environments require position-controlled manipulators to make the

manipulator capacitive by feedback. [Lewis et al., 1993, p. 359-363]

Restriction to linear systems allows exploiting the various analytical tools provided
by linear control theory. The literature concerning impedance control is rich in
applying linear methods to analyze stability, and while these methods might not
have much practical use in the controller design process, they nevertheless provide

valuable insight on what sort of environments cause instability.

Coupled stability concerns interaction when the manipulator is mechanically cou-
pled with an environment. If two objects are coupled, their interaction is equivalent
to a unity-gain negative feedback connection of their impedance and admittance,
illustrated in Fig. 3.8 below. Since coupling of two passive systems is guaranteed
to be stable, the interaction is stable for any passive environment if the driving

impedance of the manipulator is passive. [Buerger and Hogan, 2005, p. 10-11]

-F

s 7' (s)

L Zg(s)

Figure 3.8 Coupled manipulator-environment system.

Coupled stability analysis is most often performed as serial connection of an ideally
realized target impedance (assuming an ideal inner loop controller, i.e. a position-
controller with Gp = 1 and Sp = 0) and a passive environment impedance, which
is too conservative to be of use in practical contact tasks, considering the effects of
unmodeled dynamics or communication and computation delays related to digital
controller implementation [Vukobratovic et al., 2009, p. 48|.
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Analyzing stability boundaries of an impedance controller can be done by studying
closed-loop impedance parameters. The ideal characteristic equation of the closed-

loop system is
Zp(s) + Zp(s) =ma-8° + (bg+be) - s+ (kg + ko) =0,

[Salcudean et al., 2002| and for the system to be nominally stable, all the coupled
system poles (i.e. solutions to the characteristic polynomial above) must lie in the
left half-plane.

Another technique for analyzing coupled stability is the so called worst environment
root locus test. Most challenging passive environments in terms of stability are loss-
less environments, which solely consist of energy-conserving elements (i.e. masses
and springs) without energy-dissipating elements (i.e. dampers). Environments
consisting of only masses or springs are therefore called most destabilizing envi-
ronments. If the manipulator is stable when coupled to these troublesome ‘worst
environments’, it is stable coupled to all passive environments. This remark allows
analyzing coupled stability by means of two root locus plots — one parametrized by
mass of a purely inertial environment and the other by the stiffness of a purely ca-
pacitive environment [Buerger and Hogan, 2005, p. 13|. This allows an alternative
formulation of the coupled stability criterion to be derived — a sufficient condition
for the plant to be stable when coupled to any arbitrary passive environment is that

it is stable when coupled to all possible linear masses and all possible linear springs.

3.2 Controller implementation

Performance criteria for an impedance controller are shortly listed below, according
to [Vukobratovic et al., 2009, p. 46]

e Accurate positioning in unconstrained free-space motion (i.e. when not in

contact with the environment).

e A smooth contact transition to and from free-space motion (i.e. no oscillation
or loss of contact after initial impact with the environment). Contact transition
stability should be maintained interacting with the largest possible class of
environments. Ideally contact transition stability is achieved when breaking
and making contact with both high impedance environments (e.g. rocks) as

well as with low impedance environments (e.g. sand).

e Exerting an appropriate force profile post-contact. The steady-state contact
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force profile should correspond to the nominal force reference and impedance

should increase to reflect how must the environment resists deformation.

In electrically actuated robots, due to linear current-torque -characteristics, so called
disturbance observers can be used to estimate contact forces from current input and
known robot dynamics. Impedance control without force sensing of any kind is not
feasible in hydraulics, since the force produced by hydraulic cylinder is not solely
dependent on valve control signal. A pressure-sensorless implementation would rely
on knowing the environment characteristics precisely apriori and having an ideal

position controller, both of which are practically infeasible assumptions.

The majority of literature concerning the application of impedance control for hy-
draulically actuated manipulators employs the position-based scheme. Therefore
the position-based approach will also be followed in this thesis, since it has been
found to be more suitable for hydraulic manipulators. A simple PBIC scheme for
an excavator arm, in which the desired impedance of the end-effector is mapped
onto the hydraulic cylinders using the arm Jacobian and a model of the arm gravity

torques, is presented in Fig. 3.9.
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Figure 3.9 Position-based impedance control, from [Salcudean et al., 2002].

Gravity-compensated piston forces are mapped into end-effector forces by using
the transposed inverse of arm Jacobian and the inverse Jacobian is used to map
compliance to cylinder position commands. An explanation of the symbols in Fig.

3.9 is provided below:
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fo is the vector of nominal force references
JT is the transpose of the joint Jacobian
T, is the vector of gravitational joint torques
JT is the transpose of the cylinder Jacobian
J T is the inverse transpose of the Jacobian
10-1 is the target impedance filter
Zo is the nominal position reference provided by the operator
I(q) is the kinematic mapping from joint space to cylinder space

P~1 is a stable inverse of the position control transfer function

3.2.1 Pressure-based contact force estimation

Force sensing for hydraulic cylinders can be realized either with load pins or in-
directly by measuring chamber pressures. Load pins have a more sensitive and
accurate response to external loads, but can be an order of magnitude more expen-
sive and more problematic in terms of mechanical assembly [Salcudean et al., 2002].
Pressure sensors respond faster to changes in valve input, but have poor sensitivity
for external forces and lower static accuracy mainly due to seal friction, which can

practically never be fully compensated [Koivisto et al., 2005].

The piston force produced by a hydraulic cylinder equals to
Je=pi- Al —p2- Ay,

where p;, A1, p2 and A, symbolize the chamber pressures and effective areas on the
piston and rod sides of the cylinder, respectively. The contact force can be roughly
estimated by subtracting the effects of gravity, inertia and friction from the piston

force as

femt = fc - fgravity - finertia - ffriction

If high force control precision is not a required and slow velocities and accelerations
can be assumed, only a model of gravity torques might suffice, since motion torques
can be assumed to be of negligible influence in contact situations. [Koivumaéki, 2016,
p. 10]
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By combining the pressure signals from actuator space and the dynamic equations
derived in configuration space and applying force transformations based on kine-
matics, we can separate the estimated contact force into directional components

affecting in the workspace.

~

Fow = 3,7(0)-310) - | pr-Ar—po- 42 | = 3,70)- [ 10)- 6+ G(O) | (33)

The acquired force estimate should be low-pass filtered before being used for iden-

tification or control purposes.

3.2.2 Selection of impedance parameters

The design process for an impedance controller can be divided into two separate
subtasks. The first task is to ensure proper realization and tracking of the tar-
get impedance, which concerns tuning of the inner loop controller. The second
task is the stabilization of the target model, which means ensuring that chosen
impedance parameters lead to stable establishment of contact, which is generally
considered to be the most critical design issue in impedance controller synthesis.
[Vukobratovic et al., 2009, p. 266]

When impedance is controlled separately in each direction of the operational space,
the target impedance is chosen for each direction independently — high values for
stiffness are selected in directions where positioning accuracy is important and the
environment complies [Lawrence, 1988|. Accordingly, we shall choose the impedance
along the Z-axis to be compliant, while the impedance along X-axis and Y-axis can
be chosen relatively stiff. While coupling between impedances is possible, only
uncoupled impedances will be considered in this thesis, which means matrices of
impedance parameters My, By and K, are diagonal. Since only the impedance
along Z-axis will be considered in this thesis, the impedance transfer function matrix

assumes the simple form

1
_Md'82+Bd'S+Kd_

Z:'(s) 0 0

1
mg-s2+bg-s+kg

Parametrization of the transfer functions in order to achieve certain contact dynam-
ics is unintuitive as-is, but can be easened by expressing the target impedance by
means of the generalized second-order system transfer function and solving it with
respect to desired natural frequency wy and desired damping ratio (3. Only taking

into account the physical limitations of the manipulator and its control system is
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not sufficient — at least a rough estimate of the environment dynamics is needed

beforehand to achieve certain desired contact dynamics [Salcudean et al., 2002].

2
Wa
$2+2-(q-wa- s+ w?

kq + ke
= md:\/%7 ba + be = Ca - 2¢/ma - (ka + ke)
d

Certain considerations apply when tuning the impedance parameters in a way to

mg- 5>+ (bg+be) -5+ (kg + k) =

ensure contact stability. Most importantly, the inner position feedback loop has
a finite control bandwidth, so natural frequency has to be chosen accordingly —
realizable natural frequencies for target impedance are practically only up to half of
the position controller bandwidth. Secondly, physical capacity of the manipulator

is a limiting factor to maximum attainable impedance.

An overdamped response is highly desirable for achieving contact stability, but the
damping factor should not be chosen too large or otherwise sluggish behaviour shall
cause force overshoot when establishing contact |[Vukobratovic et al., 2009, p. 309].
For example, with a known valve control bandwidth of 2 Hz, and a desired end-

00X

effector stiffness of 10°2° and an overdamped desired damping ratio of 1,5, we end

up with the following continuous-time transfer function

1
6333 -5242,387-105- 5+ 106’

Z'(s)

with a settling time to within £1% of the steady-state response of

4,6
2fseti&ling = —Cd g =~ 0, 85 s

For digital controller implementation, the continuous-time impedance filter transfer
function is discretized by means of bilinear transform (Tustin’s approximation). The

discretized transfer function is attained by replacing the Laplace-variable s by the

: _ 2 (z-1
relation s = T (ZJrl

The resulting discrete transfer function is an infinite impulse response (IIR) filter,

), where T} is the sampling time of the digital control system.

which takes the following form

~1,134-107%- 22 +2,268-107% - 2 4+ 1,134 - 10°®
N 22 — 1,413 - 2 40,4587 ’

ZiH(2)

when using a sample period of 20 milliseconds.
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The impedance control scheme described above was tested in simulation and it
worked as intended. The impedance controller was successful in limiting external

contact forces when the end-effector came into contact with a rigid contact surface.
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4. EXPERIMENTS AND RESULTS

Due to a delay in the delivery and installation of pressure sensors on to the breaker
plant, the initial objective of identifying dynamic parameters of the boom and test-
ing the impedance controller couldn’t be met. Therefore, the experimental part of
this thesis consists of developing an automatic motion sequence for rock breaking
applications tuning position control gains and times-of-flight (TOF') of motion tra-
jectories, and finally determining the static and dynamic accuracy of the boom. A

picture of the studied breaker boom is provided below in Fig. 4.1.

Figure 4.1 The pedestal rock breaker boom studied in this thesis.

Specific dimensions and components are confidential and cannot be openly pub-
lished. The hardware setup consisted of a ASPACE MicroAutoBox II control system,
which allows code generation from Mathworks’ Matlab/Simulink models. dSPACE
ControlDesk software was used for data visualization and to create a user interface
from which the user can initiate the motion sequence by selecting locations from the
grizzly. Joint angles were measured using absolute rotary encoders and a sample

time of 10 ms was used throughout the experiments.
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Since proportional valves are characterized by significant positive overlap of the
spools, without deadzone compensation, large control action would be needed to
get the valve over deadband area, which would require high gains and consequently
result in a rough control signal [Miinzer and Pedersen, 2002|. An overlap model,
i.e. a lookup table describing the relation of spool position to volumetric flow, was
identified! and is used as a compensation term, in order to lessen the effect valve

nonlinearities and improve the dynamic response of the position controller.

4.1 Generation of the motion sequence

The sequence consists of movements between standby position to above the grid, an
approach and a return movement along Z-axis, and a movement back to standby
position. Quintic (i.e. fifth-order) polynomial trajectories [Jazar, 2010, p. 736] along
Cartesian axes X, Y and Z were formed from the standby position to preprogrammed
target points. The change of direction between the approach and return movements
is a critical point, since in the worst case position overshoot could lead to the hammer
hitting the grizzly. The highest point of the grizzly is located on ground level (at 0
meters expressed in the base coordinate frame Z-axis of the boom), which somewhat
restricts the workspace of the planar arm along axes X and Y. A top-view of the
grizzly screen and the locations of the standby position and the target points to be

studied are illustrated in Fig. 4.2 below.

O Standby position

L [ ]
23
[ ]
31 35
[ [ ]

43 m

Figure 4.2 Studied target points on the 6 X 6 grizzly screen.

'For further information, see: Automated feed-forward learning for pressure-compensated mobile
hydraulic valves with significant dead-zone, Nurmi J., Mattila J. (2017), ASME/BATH Symposium
on Fluid Power and Motion Control
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The performance was first tested with velocity feedforward only, the desired cylinder
velocity being numerically differentiated from the cylinder position reference. Ini-
tially the TOF of the approach movement along Z-axis was chosen to be 8 seconds,
while the TOF of the movement from standby position to above the target point 11

was fixed at 15 seconds. The result can seen in Fig. 4.3 below, where valve control

signals are presented in the last plot.
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Figure 4.3 Response with pure velocity feedforward.
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As the third plot of Fig. 4.3 shows, at around 25 second the tilt cylinder cannot follow
the desired velocity propely, although its valve opening is not close to saturation.
The models of spool flow acquired by idenfitication don’t seem to match with reality

what comes to positive control signals of the rotation motor and tilt cylinder.

When position feedback was applied, the results suggested that the initial TOF
of 15 seconds seems to be too short the farthest target point, causing significant
dynamic error of up to 0,5 meters in addition to visible jerk during movement.
The TOFs should be dynamically determined based on the distance to the specific
target point, but this is left for future optimization and for now suitable values were
chosen as a compromise, in order to ensure desired velocities that are achievable
even when reaching for the farthest target point. In the following sections, a position
feedback controller is tuned and tested, first separately and finally in combination

with velocity feedforward for comparison.

4.2 Tuning of the position controller

After introducing deadzone compensation, which allows loosening the gains to get
the same performance, there still exists ways to increase control gains without facing
instability. Compared to conventional P-control, filtered P-control allows increasing
proportional gains K twice or thrice at low frequencies since the high-frequency gain
is filtered out. Time constants 7 of the first-order low-pass filter can be selected with
a rule of thumb which suggests that 7 should be two to three times the mimimum

hydraulic natural frequency wp, min. |Linjama, 1996, p. 80-81]

2.3

Wh,min

T =

The resulting position control transfer function matrix is

o0 00
0 is 0 0
C s) = T2-5+1
S I R R
0 0 0 _ Ky

T4-5+1

The natural frequency of a hydraulic cylinder is a function of piston position — for an
asymmetric cylinder, the maximum natural frequency is achieved in the negative end
of the cylinder, when the piston is fully retracted. The minimum natural frequency
is achieved slightly on the positive side from the middle position of the piston, from

where it increases slowly when extending the cylinder. [Lammela, 1990, p. 6]
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The minimum natural frequency was experimentally identified by moving the actu-
ators at fast pace and applying a sudden change of direction in order to get them
to oscillate. The largest period of oscillation was found to be around 0,7 seconds,
which corresponds to a minimum frequency of 8,9760 rad/s and a filter time constant

between 0,2228 to 0,3342 seconds. The tuned controller parameters are presented
in Table 4.1.

Table 4.1 Tuned filter time constants and proportional gains for each joint.

n 91 92 6)3 84
Tn 0,2228 0,2228 0,2228 0,2228
K, 0,5 0,7 0,7 0,6

Used performance measures for path tracking are the maximum value of Cartesian

position error AC' of the tool tip (i.e. dynamic accuracy), which is calculated as

AC = /(zg — )2 + (yo — y)2 + (20 — 2)2 ,

and Cartesian steady-state position error (i.e. static accuracy). The TOF of the
approach movement along Z-axis was fixed at 10 seconds, while the TOF of the
movement from standby position to above the target point 11 was fixed at 15 seconds
and the TOF of the movement from standby position to above the target point 35
was fixed at 20 seconds. The response with filtered P-control for target point 11 is
presented in Fig. 4.4 and 4.5, and for target point 35 in Fig. 4.6 and 4.7. Similar
plotted responses for the rest of the studied target points using filtered P-control
tuned with the parameters presented in Table 4.1 can be found in Appendix B.

The results suggest that the rotation motor is a significant source of tracking error
in closed-loop control. We can see from Fig. 4.7 that the Y-axis has a steady-state
error of about 3 cm is solely due to the rotation motor. Meanwhile, in the last
plot of Fig. 4.6 the control signal of the rotation valve is oscillating around zero,
which would suggest that too high control gains are being used. It can be noted
from the first plots of Fig. 4.4 and Fig. 4.6 that the response of the rotation motor
has significant lag on positive openings, which causes dynamic error during motion.
Meanwhile the negative openings seem to track position well during motion, but
ends up with notable steady-state error at rest. Since the response for positive
and negative openings is asymmetric, most of the poor performance can likely be
attributed to poorly identified and thus uncompensated deadband of the positive

opening of the rotation valve.
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Figure /.4 Tracking performance for target point 11 with filtered P-control.
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Next, the response for equivalent trajectories with filtered P-control combined with
velocity feedforward was evaluated. The results for target point 11 are presented
in Fig. 4.8 and 4.9, and for target point 35 in Fig. 4.10 and 4.11. It can be
concluded introducing velocity feedforward had a slightly negative effect on the
dynamic accuracy of the boom in this particular case. However, velocity feedforward
did smoothen the control signal of the rotation valve, while the static accuracy

remained practically the same.

Tuning parameters in a way to ensure performance and stability in the whole
workspace of the manipulator was shown to be a challenging task. The maximum
Cartesian error of the hammer tip was up to 17 cm, which leaves some room for
improvement. In this application, the dynamic accuracy is not of greatest impor-
tance when moving from standby position to above the target points and could be
compromised, as long as the steady-state error remains low. The Cartesian static
error as well as the Cartesian dynamic error was mainly due to the poor performance
of the rotation motor, which resulted in disproportionately large tracking errors on

the Cartesian Y-axis.

During the approach movement, position overshoots of up to 10 centimeters occured
on the Z-axis. This means the boom can safely be commanded position references up
to this distance above the highest point of the grid, provided with some additional
margin of safety. This suggests the boom can be driven back to standby position
in the proximity of the grizzly, which could allow to shorten the TOF of the return

movement and bring down total execution time of the sequence.
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Figure 4.8 Tracking error for target point 11 after adding velocity feedforward.
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5. SUMMARY AND CONCLUSIONS

In this thesis, an impedance controller for a hydraulic manipulator was developed
and tested in simulation, and an automatic motion sequence for a rock breaker boom
was developed. The theoretical part of this thesis covered kinematics and dynamics
of the breaker boom and provided an overview of position-based impedance control
and its limitations. The experimental part of the thesis consisted of tuning a joint
position controller to examine the dynamic and static accuracy of the position-

controlled boom.

The carried experiments suggest that the boom can only operate at relatively low ve-
locities in closed-loop control, and therefore active compliance on the tool tip might
not provide significant added value, although the contact force estimation scheme
could be useful for detecting contact even without regulation of impedance. However,
in comparison to the studied large-scale stationary boom, it would be interesting
to see whether the feasibility of impedance-like contact control would be different
for smaller-scale breaker booms in mobile crushing plants. Small breaker booms
in mobile crushers might have relatively faster movements and their workspace is
likely more limited due to obstacles, which makes the risk of collision with expensive

hardware more imminent.

Achieving good position tracking performance was found to be a challenging task.
The low closed-loop control performance of the rotation motor, which was at least
partially due to an unperfect model of valve deadzone, seemed to limit the tracking
capability in Cartesian space. The resulting accuracy after controller tuning was
a maximum Cartesian error of about 17 centimeters during movement, while the
maximum Cartesian steady-state error was about 3 centimeters. By addressing the
low performance of the rotation motor with an improved deadzone inverse model
of the rotation valve, dynamic accuracy could likely be improved inside the range
of 10 centimeters without introducing additional controller parameters. While the
filtered P-controller has the advantage of having a small number of parameters,
tuning the plant manually during commissioning is time-consuming, which could be

an argument for a more sophisticated controller with adaptive capabilities.
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Besides fixing the performance issues related to the rotation motor, suggestions for
future improvements for the rock breaking sequence include an impaction detection
scheme based on inertial measurement units. Since the boom is equipped with
inertial measurements units for joint angle estimation, exploiting linear acceleration
data or angular velocity data to detect disturbances during the approach movement

could be a preferable alternative to pressure-based contact force estimation.
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APPENDIX A: MATLAB-CODE FOR INVERSE
ARM DYNAMICS

o1

function tau = invdyn(theta,thetadot,thetadotdot)

/» define the following parameters
5 r2 r3 r4 L2 L3 m2 m3 m4 I2 I3 I4

theta2dotdot=thetadotdot (2) ;
theta3dotdot=thetadotdot (3) ;
thetaddotdot=thetadotdot (4) ;

theta2dot=thetadot (2) ;
theta3dot=thetadot (3) ;
thetad4dot=thetadot (4) ;

theta2=theta(2); theta3=theta(3); thetad=theta(4);

%% INERTIAL TERMS

taudi = (I4+md*r4~2)+*theta2dotdot + (I4+md*rd~2)*
theta3dotdot + (I4+médx*xr4~2)*thetaddotdot + méd*xrd*xL2x
theta2dotdot*cos(theta3 + theta4) + méd*r4*L3x%
theta2dotdot*cos(thetad) + mdxrd4*xL3*xtheta3dotdot*cos(
thetad)

tau3i = taud4i + (I3+m3*r3~2)x*theta2dotdot + (I3+m3*r3~2)*
theta3dotdot + m4*r4*xL3*xtheta2dotdot*cos(thetad) + médx*

r4*xL3*xtheta3dotdot*cos (thetad4d) + L3~ 2*xmi4xtheta2dotdot
+ L3~2*md4*theta3dotdot + L2*L3*md4*xtheta2dotdot*cos/(

theta3d) + L2*m3*r3xtheta2dotdot*cos(theta3d) + médx*xr4dx*L3

xthetaddotdot*cos (theta4)

tau2i = tau3i + (I2+m2x*r2°2)*theta2dotdot + L2"2*m3x%
theta2dotdot + L27°2xm4*xtheta2dotdot + L2*L3*méx*
theta2dotdot*cos(thetald) + L2*m3*r3*xtheta2dotdot*cos(

theta3) + 2*xL2*xmd*xrdxtheta2dotdot*cos(theta3d3 + thetad)
+ méxrd4xL2*xthetaddotdot*cos(thetad + theta4) + L2*xL3x*

m4*xtheta3dotdot*cos (theta3d) + L2*m3*r3*theta3dotdotx*
cos (theta3)
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%% CENTRIGUGAL AND CORIQLIS TERMS

taudc = - mé*r4*L2*xtheta2dot*sin(theta3+thetad) *(
theta3dot+thetaddot) - médxrd4x*xL3*xtheta2dot*thetaddotx*
sin(thetad4) - médxrd4xL3xtheta3dot*thetaddotx*sin(thetad)

tau3dc = - L3*md*rd*xthetaddot ~"2*xsin(thetad) - L2*midx*rdx*
theta2dot*sin(theta3+thetad4)*(theta3dot + thetaddot) -
L2xL3*md*xtheta2dot*theta3dot*sin(theta3) - L2*m3*r3x*
theta2dot*theta3dot*sin(theta3d) - 2*L3*md4*rd*theta2dot
xthetaddot*sin(thetad) - 2*xL3*md*rd*thetal3dotx*
thetad4dot*sin(thetad)

tau2c = - L2*L3*m4*theta3dot "2*sin(thetal3) - L2*m3*r3x
theta3dot "2*sin(theta3) - L3*md*rd*xthetaddot ~2*xsin(
thetad) - 2*L2*md*rd*xtheta2dot*sin(theta3+thetad) *(
theta3dot+thetaddot) - L2*mdx*rdx*xtheta3dot*sin(theta3+
thetad4)*(theta3dot+thetaddot) - L2*mé*rd*xthetaddot*sin
(theta3+thetad4)*(theta3dot+thetaddot) - 2*L2*L3*mdx*
theta2dot*theta3dot*sin(theta3d) - 2*L2*m3*r3*theta2dot
x*theta3dot*sin(theta3d) - 2*xL3*md*rd*theta2dotx*
thetaddot*sin(thetad) - 2*xL3*md*rd*xtheta3dot*thetaddot
xsin(theta4)

%% GRAVITATIONAL TERMS

g = -9.81; /» gravitational acceleration

taudg mdxgxrd*xcos (theta2+theta3+thetad) ;

taudg + (m4)*g*xL3*xcos(theta2+theta3d) + m3xg*r3*
cos(theta2+theta3);

tau2g = tau3g + (m3+m4)*g*xL2*cos(theta2) + m2*g*xr2*cos(

theta?2) ;

tauldg

tau = [ tau2i+tau2c+taulg
tau3di+tau3c+tau3dg
taudi+taudc+taudg; 1;

end
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APPENDIX B: TRACKING PERFORMANCE FOR
TARGET POINTS

In the following pages, tracking performance with filtered P-control is presented for
the target points 31 (Fig. B.1 and B.2), 15 (Fig. B.3 and B.4) and 23 (Fig. B.5 and
B.6).
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Figure B.1 Tracking error for target point 15 with filtered P-control.
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Figure B.2 Cartesian error for target point 31 with filtered P-control.



APPENDIX B 56

10 -
@ — — — Reference
=, 0 Measurement
< Max. error: 2.04 deg p Y
g /,
S /
- /
%3 10 //
Q’j‘ 7777777777777777 A -
20 I I I I I I I I |
0 10 20 30 40 50 60 70 80 90
100 =
— — — Reference
&0 Measurement
i 90 - Max. error: 1.27 deg
S
E 80
—
70 I I I I I I I I |
0 10 20 30 40 50 60 70 80 90
-70 -

o
o
T

— — — Reference

Tilt 65 [deg]
©
o
T

Measurement

Max. error: 1.51 deg
I | | I I I |

-110 : :

0 10 20 30 40 50 60 70 80 90
-80 -
o0 — — — Reference
i Measurement
- -85 Max. error: 1.05 deg
S
g
% -9
o)
—
m
95 I I I I I I I I ]
0 10 20 30 40 50 60 70 80 90
1r
— 0 5 —
- TN TN
— 0 Rotation
? Lift
0.5 Tilt
Breaker
-1 I I I I I I ]
0 10 20 30 40 50 60 70 80 90
t [s]

Figure B.3 Tracking error for target point 31 with filtered P-control.
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Figure B.J Cartesian error for target point 31 with filtered P-control.
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Figure B.5 Cartesian error for target point 23 with filtered P-control.
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Figure B.6 Cartesian error for target point 28 with filtered P-control.



	INTRODUCTION
	Problem statement and use case description
	Objective and structure of thesis

	BOOM KINEMATICS AND DYNAMICS
	Kinematic modeling of the manipulator
	Inverse kinematics of X88-540R
	Differential kinematics of X88-540R

	Dynamic equation of the boom

	IMPEDANCE SHAPING CONTROL
	Cascaded compliance control
	Position-based impedance control
	Performance/robustness -tradeoff
	Stability region of impedance parameters
	Effect of control gains on stability
	Effect of environment on stability


	Controller implementation
	Pressure-based contact force estimation
	Selection of impedance parameters


	EXPERIMENTS AND RESULTS
	Generation of the motion sequence
	Tuning of the position controller

	SUMMARY AND CONCLUSIONS
	REFERENCES
	APPENDIX A: Matlab-code for inverse arm dynamics
	APPENDIX B: Tracking performance for target points

