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In this study, geometry optimization of tubular roof trusses is investigated. Appli-

cable Eurocode 3 design conditions are presented, which provide the constraints for

the problem. Optimized roof truss types are typical, statically determinate lattice

structures. Member cross-sections are selected from a discrete set of commercially

available pro�les.

Mixed integer nonlinear programming problem is obtained. Implicit programming

approach is utilized to treat the problem, which is divided into two levels. Sizing

problem represents the �rst level problem which is formulated into the mixed-integer

linear programming task. Problem is solved utilizing branch-and-cut algorithm.

Geometry optimization represents second level problem which is solved utilizing

heuristic algorithm. Output of the optimization process is nodal coordinates and

member pro�les.

Purpose of the work is to facilitate the implementation of geometry optimization in

a design tool. The aim of the optimization is to �nd a light design. Other goal is

to study various procedures to decrease calculation time. Procedures are presented

on numerical calculations. A closer look is given at a case study to highlight the

crucial factors on geometry optimization.
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Tässä työssä tarkastellaan putkipro�ilista valmistetun kattoristikon geometrian op-

timointia. Työn tarkoitus on tutkia geometrian optimoinnin soveltuvuutta kattoris-

tikoiden suunnitteluohjelmaan.

Työn ensimmäisessä osassa esitellään kattoristikon yleisiä suunnitteluperiaatteita,

jotka toimivat optimoinnin reunaehtoina. Optimoinnin kohteena käytetään yleistä

kattoristikkotyyppiä. Ristikko on symmetrinen, yksiaukkoinen ja staattisesti mää-

rätty. Optimoinnin lähtökohtana käytetään konventionaalista geometriaa, jossa ylä-

paarre on jaettu tasavälisiin osiin.

Optimoinnin tavoitteena on painon minimointi ja rajoitusehtoina käytetään eurokoo-

din teräsrakenteiden suunnittelukriteereitä, jotka tässä työssä esitellään soveltuvin

osin. Optimoinnin tuloksena saadaan solmukoordinaatit ja sauvojen poikkileikkauk-

set. Poikkileikkaukset valikoituvat diskreetistä pro�ilikirjastosta. Työn ulkopuolelle

rajataan liitosdetaljien tarkastelu.

Optimointitehtävän formuloinnissa hyödynnetään implisiittistä ohjelmointia, jossa

tehtävä jaetaan lineaariseen ja epälineaariseen sekaluku tehtävään. Ensimmäinen

tehtävä vastaa mitoitusoptimointia ja jälkimmäinen geometrian optimointia. Mi-

toitusoptimoinnissa hyödynnetään branch-and-cut-algoritmia kun taas geometrian

optimointi suoritetaan heuristisella algoritmilla.

Työn eräs tavoite etsiä menetelmiä, jotta intensiivinen laskenta saadaan suoritettua

kohtuullisessa ajassa. Kehitetyt 3 heuristista menetelmää esitellään yksityiskohtai-

sesti. Implementointia tarkastellaan numeeristen laskujen valossa. Työssä tutkitaan

kohdefunktion käyttäytymistä ja tarkastellaan laskenta-aikoja. Heuristisia menetel-

miä verrataan tulosten valossa keskenään. Lisäksi poimitaan yksi laskentatapaus

tarkempaan tarkasteluun. Painon muutokseen vaikuttavat tekijät tuodaan esille ja

vedetään johtopäätöksiä laskentatapausten minimointia ohjaavista tekijöistä.
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1. INTRODUCTION

1.1 General Problem Description

The premise for the design of typical roof truss structures is presented in the Figure

1.1. Supporting structure is needed to bear the vertical loading. Rough geometric

properties, such as span and roof slope, as well as loading conditions are provided

as a basis for the design. In this thesis, similar premise is adopted.

1:k

L

Hmin

?

Figure 1.1 Basis of the truss design.

Typically height of the truss is chosen between L/16 · · · L/9 depending on loading

conditions, span, local design conventions etc. Also, only external loads, shown in

Figure 1.1, are known a priori. Here, by external loads, snow load, self weight of

a secondary roof structure etc. are ment. In other words, truss self weight is not

known before the design process. This approach is adopted in this study. Typical

lattice structures are simply supported, symmetrical K, KT and N type trusses,

which are illustrated in Figure 1.2.

Figure 1.3 shows welded Y-, K-, KT and T-type joints which are typical joint types

in above-mentioned tubular lattice structures.

In tubular structures, cross-section pro�les are normally selected from manufacturer



1.1. General Problem Description 3

(a) K truss

(b) KT truss

(c) N truss

Figure 1.2 Truss types

θ1

(a) Y-joint

θ1 θ2

θ12

g

em

(b) K-joint

θ1 θ2

θ13 θ23
g

em

(c) KT-joint

θ2

(d) T-joint

Figure 1.3 Joint types

catalogs. It is also common, that pro�le type is square hollow section (SHS). Most

common steel grades are mild steels, such as S355 or S420. Usage of high strength

steels (HSS), such as S460, S500 S550 and S700, is also possible.

Conventional design process, generally, proceeds as follows: Initial design is �rst se-

lected based on above described design premises, designers knowledge, design guides,

prevailing conventions, demands of customer, manufacturing and erection process

etc. Then, structural strength, displacement and other applicable conditions are

checked in all loading cases. Necessary corrections are made on the structure and

conditions are checked again. Thus, the process is iterative by its nature. In this

thesis, the design process is simulated and automated.
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Figure 1.4 Cross-section pro�les.

The general goal of the truss design process is to produce necessary information for

manufacturing and erecting an economical truss. The information includes

� Truss geometry

� Bar pro�les

� Joint details

as presented in Figure 1.5. Here, truss geometry means member positions. Also

other information is needed, such as details about painting, �re protection etc.

DET 1

DET 2

DET 1 DET 2

Figure 1.5 Truss design information.
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1.2 Literature review

1.2.1 Truss optimization

One of the earliest e�orts in truss optimization in which not only sizes of the members

but also nodal coordinates were determined, while considering stress constraints, was

presented by Dorn et al. (1964). Also, Pedersen (1972) addressed truss weight op-

timization where bar areas and joint locations were allowed to change. Analytical

expressions of Pedersen (1972) included partial derivatives determined for the prob-

lem solving. Also, cross-section and nodal coordinate variables were continuous.

Multiple load cases were also included in the problem. Early problem formulations

were typically based on approach, where equations of equilibrium were brought into

the problem as equality constraints. This is called simultaneous analysis and design

(SAND) approach. Presentation can be found in text book of Hafka and Gürdal

(1992). Equations of equilibrium typically were nonlinear which led to non linear

programming (NLP) problem. Problem then were solved using deterministic algo-

rithms.

Practical design problems generally involve discrete design parameters. Problem

evolves into a mixed-integer nonlinear programming (MINLP) problem. Early con-

sideration of this problem type and suitable formulation for a truss structure includ-

ing discrete cross-section variables has been presented by Grossmann et al. (1992).

Formulation was developed further by Rasmussen and Stolpe (2008), who intro-

duced linear inequalities and disaggregated the material law from the equilibrium

equations. The problem formulation was for topology optimization. Buckling con-

straints were brought to the MILP truss topology optimization problem by Mela

(2014).

Branch-and-cut method is e�cient in solving mixed integer linear problems. Wolsey

(1998) provides a text book presentation of integer programming and cutting plane

methods for linear problems that is succesfully implemented by Rasmussen and

Stolpe (2008).

1.2.2 Implicit programming approach

The principle of implicit programming approach is simple (see e.g.(Achtziger 2007).

Consider a problem of two types of variables x and y. If for �xed x the problem has

a unique solution y, then y can be interpreted as a function of x and whole problem

can be formulated with respect to the �master variable� x. Kirsch (1981) considered
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a geometry optimization problem with continuous cross-section and node coordinate

variables. Problem is divided in two di�erent design spaces, where nodal coordinates

become independent variables, i.e. master variables, and design variables are solved

for �xed geometry. Achtziger (2007) proposes a formulation for simultaneous op-

timization of truss geometry and topology utilizing compliance minimization that

combines continuous volume constraints with continuous cross-section variables.

1.3 Scope and Aims of the Thesis

Investigation into the generation of light tubular roof truss structures is the main

focus of this thesis. Furthermore, it is imperative, that obtained designs comply

with prevailing building codes. Hence, the objective is to �nd

� minimum weight roof truss design

which ful�ls

� Eurocode 3 member strength conditions

� Eurocode 3 member stability conditions

� applicable joint design conditions

Member pro�les are selected from

� commercially available discrete selection.

High-strenth steel (HSS) pro�les are also included in the study to investigate the

HSS usage in roof trusses. Method for determining the minimum weight design is

chosen to be

� geometry optimization.

In this thesis, a mixed integer linear programming (MILP) formulation, proposed by

Mela (2013) for truss topology optimization, is utilized and modi�ed for sizing op-

timization. Implicit programming approach is employed in geometry optimization.
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Design tool
User Input

Preprocessing

Optimization

Post Processing

Output

Figure 1.6 Design procedure.

The studied implementation is designed to be a part of the design process. However,

due to chosen method, all applicable design conditions cannot be included in the

optimization problem. Therefore the design procedure is assumed to be divided in

preprocessing, optimization and postprocessing phase (see Figure 1.6). In prepro-

cessing, initial information is collected for the optimization phase. In optimization

the problem is solved and resulting design is sent to postprocessing phase, where

�nal checking and necessary corrections are made. The scope of this thesis is op-

timization phase. Output of the optimization is optimum design, which refers to

nodal coordinates and member pro�les. Thus, optimization does not provide joint

details.

Furthermore, the goal is to examine alternative optimization procedures to keep the

calculation time �acceptable�. Thus, time limit is imposed to the problem solving.



8

2. DESIGN OF TUBULAR ROOF TRUSS

STRUCTURES

2.1 Initial Geometry

Initial geometries are generated according to the following principles. Vector of

initial nodal coordinates, i.e. initial geometry, is denoted by X0. It is assumed that

upper chord half span is divided in segments of equal length. This is called division.

Also, truss is assumed to be symmetric with respect to the midspan. This is shown

in Figure 2.1.

linit linit · · ·

linit

2
linit · · · linit

2

hinit hinit · · ·

Hinit
h1,init

Figure 2.1 Truss geometry initialization.

Horizontal distance between upper chord nodes is derived

linit =
0.5 · Linit
ndiv

, (2.1)

where Linit is the span of the initial truss and ndiv refers to the upper chord division

for the half span. Truss height at the support is calculated by

h1,init = Hinit − tan θUC
Linit

2
, (2.2)

where Hinit is the height of the truss with initial geometry, and where tan θUC is the

slope of the roof as θUC refers to the upper chord inclination angle. Height increment

is calculated by

hinit = tan θUC
0.5Linit
ndiv

. (2.3)
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2.2 Structural Analysis

Eurocode provides guidance and regulations for the structural analysis of truss struc-

tures (EN 1993�1�8 2005). The distribution of axial forces in a lattice girder may

be determined on the assumption that the members are connected by pinned joints.

Secondary moment at the joint may be neglected both in the design of tension chord

members and brace members as well as in the design of the joints, provided that

conditions for joint eccentricity

−0.55h0 ≤ e ≤ 0.25h0 (2.4)

are satis�ed. Above, h0 refers to the height of the chord member. Nevertheless, the

moments resulting from the eccentricities should be taken into account in the design

of compression chord members.

The moments resulting from transverse loads (whether in-plane or out-of-plane) that

are applied between panel points, should be taken into account in the design of the

members to which they are applied. The brace members may be considered as pin-

connected to the chords, so moments resulting from transverse loads applied to chord

members need not be distributed into brace members, and vice versa. The chords

may be considered as continuous beams, with simple supports at panel points.

However, di�erent approach is assumed in this study. In static model, all the mem-

bers are modelled as pin-jointed bar elements. This is shown in Figure 2.2. Only

axial forces are obtained from this model. Therefore, to take into account the bend-

ing moments resulting from the transverse loading, approximative estimations must

be applied. These are covered later in the Section 2.7. Since the joint eccentric-

ities are not known �a priori�, moments resulting from the joint eccentricities are

neglected in the optimization implementation.

Figure 2.2 Pin-jointed analysis model.

Also following condition concerning the length of the members with respect to the

side length shall be satis�ed
Li
hi
≥ 6 (2.5)

This is stated in EN 1993�1�8 (2005) Clause 5.1.5(3).
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2.3 Cross-sections

Cross-section pro�les are selected from standard industrial catalog. Unique pro�le

selection is allocated for each member group. As joint types are determined be-

fore optimization, group pro�le selection is limited to one satisfying Eurocode joint

requirements presented in section 2.4.

Plastic cross-section resistances are utilized in this work. Therefore, compressed

parts of the cross-sections must ful�l the condition

ci
ti
≤ 38

√
235

fy
(2.6)

This is stated in EN 1993�1�1 (2005) Table 5.2

2.4 Design of Joints

Each joint type is determined according to the selected topology of the initial struc-

ture. The welds are assumed to have equal strength with the member and weld type

is assumed to be �llet weld. Thus, the strength of the welds are not considered in

this work. Joint resistances are not known a priori. Moreover, expressions for the

joint resistances are partially nonlinear with respect to problem variables presented

in Chapter 3. Therefore in this work, joint strength requirements are not fully, but

partially implemented in the optimization phase. However, general design rules of

the joints are implemented in the optimization as presented in this section.

Due to welding requirements, angles θ`,mn between adjacent members im and in

connected by the joint `, must ful�l the condition

θ`,mn ≥ 30◦ (2.7)

Moment from the joint eccentricity is not implemented in this work.

2.5 Joint Resistance

2.5.1 General

The design values of the internal axial forces and design resistances of the joints

both in the brace members and in the chords at the ultimate limit state should ful�l
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the condition

−NRd ≤ NEd ≤ NRd (2.8)

where NRd refers to the axial force resistances of the joints and NEd to the design

values the axial forces of the members. Failure modes are presented in Figure 2.3.

As stated earlier, all the joint strength conditions are not considered. Therefore in

this section, only applicable strength requirements are shown.

(a) Chord face failure (b) Chord shear failure

(c) Punching shear (d) Brace failure

Figure 2.3 Failure modes for hollow section joints (EN 1993�1�8 2005).

2.5.2 T-, and Y-joints

For T- and Y-joints no failure modes are considered.
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To simplify code checking following validity checks must be made

0.25 ≤ bi
b0

≤ 0.85 (2.9)

bi
ti
≤ 35 (2.10)

hi
ti
≤ 35 (2.11)

0.5 ≤ h0

b0

≤ 2.0 (2.12)

0.5 ≤ hi
bi
≤ 2.0 (2.13)

b0

t0
≤ 35 (2.14)

h0

t0
≤ 35 (2.15)

where b0 and bi denote chord and brace pro�le widths, respectively. Also, h0 and

hi refer to respective chord and brace pro�le heights. Furthermore, t0 and ti denote

respective chord and brace member wall thicknesses.

2.5.3 K- and N-joints

Validity conditions for all members belonging to a K- and N-joint are

max

{
0.35 , 0.1 + 0.01

b0

h0

}
≤ bi
b0

≤ 0.85 (2.16)

bi
ti
≤ 35 (2.17)

hi
ti
≤ 35 (2.18)

0.5 ≤ h0

b0

≤ 2.0 (2.19)

0.5 ≤ hi
bi
≤ 2.0 (2.20)

b0

t0
≤ 35 (2.21)

h0

t0
≤ 35 (2.22)

Since the cross-sections are belonging to the cross-section class 1 or 2, as was required

in Section 2.3, only Eqs. ( 2.9) and ( 2.16) are implemented. Other joint side length

conditions presented in Eqs. ( 2.10)�( 2.22), are automatically ful�lled when cross-
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section class requirements are met.

Chord shear

Resistance of the chords (see EN 1993�1�8 (2005)) for this failure mode is calculated

by

Nj,0,Rd =

(
(A0 − Av)fy,0 + Avfy,0

√
1− VEd

Vpl,Rd

2
)
· 1

γM5

(2.23)

According to the EN 1993�1�12 (2005), for steel grades with yield strength above

355 MPa, resistances should be reduced by a factor 0.9 and for steel grades with

yield strength above 460 MPa up to the 700 MPa, resistances should be reduced

by the a factor 0.8. Near the mid-span, brace members have very small normal

forces and consequently shear forces in joints close to mid-span are also very small.

Thus, value VEd ≈ 0 and above mentioned reduction factors are plugged into the

Eq. ( 2.23), which yields

Nj,0,Rd =


0.9

A0fy,0
γM5

, when 355MPa < fy,0 ≤ 460MPa

0.8
A0fy,0
γM5

, when 460MPa < fy,0 ≤ 700MPa

(2.24)

It can be seen, that the equations above present in fact the chord axial strength

multiplied by reduction factors and therefore must be included in the chord axial

strength conditions.

2.6 Member Resistance

The resistance of the members subjected to axial force (EN 1993�1�1 2005) is

checked as follows

NEd

NRd

≤ 1 (2.25)

where cross-section resistance can be calculated by

NRd =
Afy
γM0

(2.26)
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Furthermore, resistance for combined bending and axial force must ful�l the condi-

tion

MEdγM0

Wplfy (1− n) (1− 0.5aw)
≤ 1 (2.27)

where

aw = min{(A− 2bt)

A
, 0.5} (2.28)

and

n =
NEd

Afy
(2.29)

By plugging Eqs. ( 2.28) and ( 2.29) into the Eq. ( 2.27) and reformulating it yields

NEd ≤ χMNAfy (2.30)

where

χMN = 1− rM
1− 0.5aw

(2.31)

Utility ratio of bending moment can be expressed as

rM =
My,EdγM1

Wy,plfy
(2.32)

Here, due to the pin jointed structural model, the static analysis only yields axial

forces of the members. Therefore, estimation of the actions due to the bending

moment of the members subject to the transversal loading, is made. As a rule of

thumb, design bending moment is assumed to be

My,Ed =
1

10
qEdl

2
i . (2.33)

Also, the e�ect of the bending moment from the eccentricity at the support is taken

into account. Estimation for the action is made as it is not included in the structural

model. Estimation for the support moment is

Mp,Ed = 1.05e ·Rsup (2.34)
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where,

Rsup = qEd ·
L

2
(2.35)

and where e is approximated eccentricity of the support reaction. The bending

moment of Eq. ( 2.34) is added to the upper chord member connected with the

support.

qEd

liMy,Ed

Rsup

e

Mp,Ed

Figure 2.4 Bending moment.

2.7 Member Stability

According to EN 1993�1�1 (2005, Sec. 6.3), the �exural buckling resistance reads

as:

−NEdγM1

χAfy
≤ 1 (2.36)

χ =
1

Φ +
√

Φ2 + λ̄2

(2.37)

Φ̄ = 0.5(1 + α(λ̄− 0.2) + λ̄2) (2.38)

λ̄ =

√
Afy
Ncr

(2.39)

Ncr = π2EI

L2
n

(2.40)

where value Ln = 0.9L is used for the braces and chords.

For chord members subjected to bending and �exural buckling (compression), fol-

lowing design conditions shall be checked:
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−NEdγM1

χyAfy
+ kyy

My,EdγM1

Wy,plfy
≤ 1 (2.41)

−NEdγM1

χzAfy
+ kzy

My,EdγM1

Wy,plfy
≤ 1 (2.42)

where

kyy = min


Cmy

(
1 +

(
λ̄y − 0.2

) NEdγM1

χyNRk

)
Cmy

(
1 + 0.8

NEdγM1

χyNRk

) (2.43)

and

kzy = 0.6 kyy (2.44)

In Eq. ( 2.42), axial force was given a negative sign to assure, that axial force

and bending moment does not cancel each other out. In all calculations estimated

bending moment is set positive.

Equivalent uniform moment factor Cmy is obtained from

Cmy =

{
max (0.2 + 0.8αs, 0.4) when 0 ≤ αs ≤ 1

max (0.1− 0.8αs, 0.4) when − 1 ≤ αs ≤ 0
(2.45)

where

αs =
Ms

Mh

(2.46)

As the moment �eld of the members subject to the transversal line loading is not

known a priori, conservative assumptions are made to simplify calculations. By pre-

suming αs = 1, and substituting that into the above equation 2.45 yields maximum

value Cmy = 1. By substituting the equations 2.41, 2.42, 2.43 and 2.44, plugging
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Cmy = 1 into the equations and reformulating them yields

NEd ≤ χMbfyA (2.47)

where

χMb = min


χy

(
1− rM

1 + bMrM

)
χz

(
1− 0.6rM

1 + 0.6bMrM

) (2.48)

and where

rM =
My,EdγM1

Wy,plfy
(2.49)

bM = min

{
λ̄y − 0.2

0.8
. (2.50)
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3. PROBLEM FORMULATION

In this chapter formulation for roof truss geometry optimization problem is pre-

sented. First MINLP problem is introduced. Then treatment of the problem through

implicit programming approach is demonstrated, which includes presenting geome-

try optimization formulation and sizing optimization formulation.

Joint strength constraints are nonlinear, and they are therefore not incorporated into

the mixed-integer linear programming problem. For the same reason secondary mo-

ment from the joint eccentricity is also not considered. Furthermore, shear strength

constraints are left out of the problem. Also, chord chord bending moment is ap-

proximated.

3.1 Introduction

In direct form, geometry optimization problem reads as

minimize
x,∆X

cTx

such that A(∆X)x ≤ b

Aeq(∆X)x = beq

x ≤ x ≤ x

g(∆X) ≤ 0

∆X ≤ ∆X ≤ ∆X

, (3.1)

where ∆X = {X1, X2, . . . } represent nodal coordinate variation and is therefore

referred as geometry variation variables i.e. nodal coordinate variation variables.

These variables are continuous. Denotation x =
{
y,N1,N2, · · · ,Nk,uk

}
is repre-

senting sizing variables, where y are binary cross-section selection variables,N1,N2, · · · ,NnL

are continuous member force variables corresponding to the load cases k = 1, 2, · · · , nL
and where uk are nL vectors of continuous nodal displacement variables. Each vec-

tor is corresponding to a loading case. Cross-section selection variables can also be

referred as design variables and member force and nodal displacement variables as

state variables.
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Furthermore, A andAeq are representing inequality and equality constraints as well

as x,x lower and upper bounds for the sizing variables. Above constraints are con-

sidered as sizing constraints and de�ne a feasible set denoted by ΩSizing. Moreover,

g is presenting inequality constraints and ∆X,∆X lower and upper bounds for the

nodal coordinate variation variables. Later constraints are considered as geometry

constraints and de�ne a feasible set denoted by ΩGeom. Vector g is a function of

∆X only and can also be nonlinear.

Notice, that the majority of the constraints are a function of geometry variation

variables, as those constraints are dependent of the member lengths and angles,

which on the other hand are dependent on the nodal coordinates of the truss. Also,

most of the constraints are nonlinear with respect to the ∆X. Thus, above problem

can be classi�ed as mixed integer nonlinear problem (MINLP).

It turns out, that the direct treatment of the problem in hand is complex (Achtziger

2007). Consequently, di�erent approach is adopted. The problem is treated in two

phases. For �xed geometry ∆X = ∆X̂, problem reduces to

minimize
x

cTx

such that A(∆X̂)x ≤ b

Aeq(∆X̂)x = beq

x ≤ x ≤ x

(3.2)

which represents sizing optimization problem. Also, all remaining (sizing) con-

straints become linear. Thus, the problem reduces to mixed-integer linear pro-

gramming problem (MILP), which has, when solvable, a unique solution (Wolsey

1998). Then it can be solved to the global minimum e�ectively. Problem 3.2 for

�xed geometry is denoted by Φ(∆X0). If for the �xed geometry (X = X̂), the re-

maining sizing problem 3.2 possesses a unique solution, then x can be interpreted

as a function of ∆X and problem 3.1 can be formulated as a problem of �master

variable� ∆X only, also referred as upper level problem, and the sizing step, which

is also referred as the lower level problem (Achtziger 2007). Hence, the problem 3.1

can be reformulated as

minimize
∆X

Φ(∆X)

such that g(∆X) ≤ 0

∆X ≤ ∆X ≤ ∆X

(3.3)
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where

Φ(∆X) =



inf
x

cTx

such that A(∆X)x ≤ b

Aeq(∆X)x = beq

x ≤ x ≤ x


(3.4)

Equation 3.3 represents geometry variation and can be interpreted as upper level

problem. The latter equation 3.4 represents �xed geometry sizing optimization

problem and can be interpreted as sizing problem where operator �inf� stands for

the greatest lower bound.

By convention we set Φ(∆X) = ∞, if and only if the problem 3.2 does not have

feasible solution (see e.g. Achtziger 2007). In numerical calculations, ∞ is replaced

by �big number�. By doing this it is assured that the geometry variation prob-

lem is de�ned in all of it's domain ΩGeom and operator �inf� can be interpreted as

�minimization�.

Hence, solving of the problem reduces to the minimization of the geometry varia-

tion problem with respect to the ∆X where during the minimization the objective

function must be repeatedly evaluated, and the evaluation of the geometry variation

objective function for the iteration point ∆X = ∆Xr involves in fact the solving

of the sizing problem for the �xed geometry ∆X = ∆Xr. The procedure is also

illustrated in the Figure 3.1.
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Figure 3.1 Optimization procedure.
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3.2 Sizing optimization

General formulation for sizing problem is stated as

min
x∈ΩSizing

f(x) (3.5)

where ΩSizing is the feasible set (constraints) as represented in Section 3.2.2 and

Section 3.2.6, f(x) is objective function as presented in section 3.2.7 and x is vari-

able vector consisting of design variables and state variables as presented below in

section 3.2.1. Solution to the sizing problem yields optimum pro�les for �xed ge-

ometry. Therefore, in literature this optimization type is often referred as �sizing

optimization� (see e.g. Mela 2013).

In sizing problem, nodal equality equations (structural analysis) are included in

problem formulation. Thus, separate structural analysis before optimization is not

needed as the state variables (normal forces and nodal displacements) are included

in the problem formulation and solved as part of the problem solution. In the

literature this formulation is therefore often referred as simultaneous analysis and

design (SAND) -formulation (Ghattas and Grossmann 1991). More particularly, in

this implementation the state variables are continuous and design variables (pro-

�le selection variables) discrete. Treatment is therefore called �MILP� -formulation

(mixed integer linear programming), which is an instance of a SAND -formulation.

As a result of sizing problem formulation, i.e. mixed integer linear problem formu-

lation, the standard form is obtained. It states as

minimize
x

cTx

such that Ax ≤ b

Aeqx = beq

x ≤ x ≤ x

. (3.6)

3.2.1 Variables

Variables of a sizing optimization problem and respective numbers are presented in

Table 3.1.

Vector of design variables is of following form

x =
{
yN1

1 N
1
2 · · · N1

nM
u1 · · · NnL

1 NnL
2 · · · NnL

nM
u1 u2, · · · unL

}
(3.7)
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Table 3.1 Sizing optimization variables.

Symbol Name Type Number
yij Pro�le selection Binary

∑nM

i=1 nPi
Nk
ij Member force Continuous (

∑nM

i=1 nPi) · nL
uk` Nodal displacement Continuous nd · nL

Figure 3.2 shows how cross-section selection variable number j of member i corre-

sponds to a pro�le in pro�le selection. The vector of cross-section selection binary

variables reads as

y = {y11, y12, · · · , y1nP1
, y21, y22, · · · , y1nP2

, ynM1, ynM2, · · · , ynMnPi
} (3.8)

Also, a vector of member axial force variables is stated as

Nk
i =

{
Nk
i1, N

k
i2, · · · , Nk

inPi

}
(3.9)

and furthermore

uki =
{
uk1, u

k
1, · · · , ukndnP

}
(3.10)

represents a vector of nodal displacement variables.

3.2.2 Constraints Related to Pro�le Selection Variables

It it obvious, that only one pro�le is allowed to be selected for a member. Also

in practical applications it is common, that unique pro�les are assigned for upper

and lower chord members, respectively. In the following, these issues have been

addressed.

yi,1,yi,2, ...

...

...

...

yi,j

Figure 3.2 Member pro�le selection variables.
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Cross-section selection variable constraints

Following constraints, that are related to the cross-section selection variables, ensure

that only one pro�le is selected for member i:

ΩN =

{
x |

nPi∑
j=1

yij = 1 ∀ i ∈M

}
(3.11)

Member grouping constraints

Member grouping enables to assign a unique pro�le pi ∈ Pi for members Pi belonging
to the same group. If members belong to a group, following constraint must satis�ed

ΩG = {x | yr1j = yr2j ∀ j ∈ P, r1, r2 ∈ G} (3.12)

In Eq. ( 3.12), members belonging to a group are denoted by G ⊂M.

3.2.3 Nodal Equilibrium

Equilibrium of member forces as well as external loads must prevail in each node

of a static structure. This is shown in Figure 3.3. In SAND approach, equilib-

rium equations are brought into the problem formulation which is showcased in the

following.

gk` + qk` + pk`

Nk
im

Nk
in Nk

io

Nk
ip` θi

Figure 3.3 Nodal equilibrium.

Exact Self Weight

In this study, truss self weight is considered in the equations of equilibrium. As

Figure 3.4 shows, equivalent nodal loads are added to the nodes to model the e�ect
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of self weight.

li

θi

qki

gi

pki,1,2 pki,2,2

qki,1,2
gi,1,2

pki,1,2

qki,2,2
gi,2,2

pki,2,2

mk
i,1

mk
i,2

Figure 3.4 Equivalent nodal loads, y-direction.

and self weight matrix is formulated by

Bg =
[
g1,1 · · ·g1,nP1

· · · gnM ,1 · · ·gnM ,nPnM

]
(3.13)

Column vector gi,j ∈ Rnd takes into account self weight of pro�le j of member i.

Self weight is added to the rows d ∈ Dvert of the equilibrium equations, where Dvert
denotes vertical displacement degrees of freedom. Also, let d be associated with the

node `d and let member i belong to a group of membersM`,d connected to the node

`d. Then, element d ∈ D of vector gi,j is de�ned as

[gd]i,j =

{
−1

2
ρÂijLiag , if d ∈ Dvert ∧ i ∈M`,d

0 , otherwise
(3.14)

In above, ag = 9.81 m/s2 represents gravitational acceleration.

Line loading

Equivalent nodal loads, that take into account the e�ect of transversal line loading

acting on pro�le j of member i, can be expressed as follows

qki,` =

{
1
2
qki Li sin θi (for x-directional load)

1
2
qki Li cos θi (for y-directional load)

∀ i ∈M`, ` ∈ N , (3.15)

Bending moment resulting from transversal line loading must be taken into account.

Here, approximation for maximum bending moment is assumed

mi,` =
1

10
qki Li

2 cos2 θi ∀ i ∈Mj, ` ∈ N (3.16)

where N is structure nodes and M` ⊂ M is members connected to a node `.
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Resultant force of equivalent nodal loads associated to a degree of freedom can be

calculated by

qkd =
∑
i

qki,` ∀ i ∈M`, d ∈ D`, ` ∈ N (3.17)

where D` is degrees of freedom associated to node `.

Equations of Equilibrium

When the e�ect of the exact self weight of the truss is implemented into the problem,

the equations of equilibrium read as

ΩEQ =

{[
y,Nk,u

]T | [ Bg B
] [ y

Nk

]
= pk + qk, ∀ k ∈ L

}
(3.18)

where Bg ∈ Rnd×nY represents the sub matrix that takes into account the e�ect

of the truss self weight, B ∈ Rnd×nY represents the expanded static matrix that

consists of the cosines of the member normal forces.

Let s ∈ {1, 2} denote spatial dimension. Also, let e ∈ {1, 2} represent the member

end index. Furthermore, let di,e,s denote global displacement degree of freedom

associated to the end e of member i in the spatial direction s. Let also bij be a

column of the matrix B. Element number d ∈ D of the column bi is then formed

[bi]d =



`i if d = di,1,1,

mi if d = di,1,2,

−`i if d = di,2,1,

−mi if d = di,2,2,

0 otherwise

(3.19)

Direction cosines are then calculated by

`i =
Xi12 −Xi11

Li
, mi =

Xi22 −Xi21

Li
(3.20)

Here, Xi,d,1 and Xi,d,1 denote nodal coordinates of a member i ∈M ends k ∈ {1, 2}
in direction 1 and 2, respectively. Member length is computed by

Li =
√

(Xi12 −Xi11)2 + (Xi22 −Xi21)2 (3.21)
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Statics matrix can be written as

B =

 nP1︷ ︸︸ ︷
b1 b1 · · ·b1

nP2︷ ︸︸ ︷
b2 b2 · · ·b2 · · ·

nPnM︷ ︸︸ ︷
bnM

bnM
· · ·bnM

 (3.22)

where nPi denotes the number of available pro�les for member i.

3.2.4 Member Force constraints

Member force constraints are utilized to enforce the force-displacement relationship

as follows

ΩF =

{
x |

EiAij

Li
bTi u

k −Nij ≥ (1− yij)Nk
ij

EiAij

Li
bTi u

k −Nij ≤ (1− yij)N
k

ij

}
∀ i ∈M, j ∈ N , k ∈ L (3.23)

where

Nk
ij = min

u≤uk≤u

EiAij
Li

bTi u
k =

EiAij
Li

( ∑
r:bir>0

birur +
∑
r:bir<0

birur

)
(3.24)

Nk
ij = max

u≤uk≤u

EiAij
Li

bTi u
k =

EiAij
Li

( ∑
r:bir>0

birur +
∑
r:bir<0

birur

)
(3.25)

Note that when pro�le j for member i is selected, i.e. yij takes value 1, then

corresponding constraint becomes the constitutive law. When yij takes value 0,

then �big� values obtained from Eq. ( 3.24) ensure, that corresponding constraint

remain inactive.

3.2.5 Member Strength and Stability Constraints

Constraints associated with member strength and stability can be stated as follows

ΩS =
{
x |NRdij

≤ Nk
ij ≤ NRdij ∀ j ∈ P

}
(3.26)

where fy,iAij is substituted to Nj,0,Rd (see Eq. ( 2.24)) for lower chord members and

where

NRdij
= max

{
NRd

k
ij
,−fy,iAij,−χkMb,ijfy,iAij

}
yij (3.27)

NRdij = min
{
NRd

k

ij, fy,iAij, χ
k
MN,ijfy,iAij

}
yij (3.28)
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Term −χMb,ij (see Section 2.7) is resistance reduction factor corresponding to the

combined buckling and bending and where χMN,ij (see Section 2.6) is resistance

reduction factor corresponding to the combined axial force and bending. Eq. ( 3.26)

can be reformulated as

ΩS =

{
x |

NRd
k
ij
yi,j −Ni,j ≤ 0

−NRd

k

ijyi,j +Ni,j ≤ 0

}
, ∀ i ∈M , j ∈ P (3.29)

3.2.6 Joint Geometry Constraints

Joint geometry constraints guarantee, that width of a brace pro�le does not exceed

straight part of a chord pro�le. This is enables the welding brace member B and

chord member C. For joints to ful�l the conditions given in Section 2.5.3, following

constraints are presented:

ΩJG =

{
x |

0.35bjC yiC,jC ≤ bjB yiB,jB

bjB yiB,jB ≤ 0.85biC yiC,jC

}
(3.30)

where biC,jC and biB,jB refer to pro�le side lengths of members iC ∈ MC,` and

iB ∈ MB,`. In Eq. ( 3.30), iC ∈ MC,`, iB ∈ MB,`, where sets MC,` and MB,`

denote chord and brace members connected to node `, respectively. Also, pro�les

jC ∈ PC , jB ∈ PB.

3.2.7 Objective function

Weight

The mass of the Truss is obtained by

W (x) =

nM∑
i=1

nP∑
j=1

ρiLiAijyij (3.31)

where ρ = 7850 · 10−9 [kg/mm3] is density of the steel and Li is the length [mm] of

the member i.
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3.3 Geometry optimization problem

As stated in Section 3.1, geometry optimization problem can be written as

min
∆X∈ΩGeom

Φ(∆X) (3.32)

where Φ(∆X) represents the minimum of the lower level problem i.e. the result of

sizing optimization for given ∆X. Geometry constraints de�ne feasible set ΩGeom

for geometry optimization. ΩGeom can be written as

ΩGeom =

{
∆X ≤ ∆X ≤ ∆X

g(∆X) ≤ 0
(3.33)

where ∆X and ∆X represent linear lower- and upper bounds, later referred as �box

constraints�. Furthermore, g represents nonlinear inequality constraints.

3.3.1 Geometry variables

Geometry optimization problem contains only one type of variables, namely nodal

coordinate variation variables, i.e. truss geometry variables. Geometry variables

express the nodal variation with respect to the initial geometry. Geometry variable

vector can be written as

∆X =


[
∆X1 ∆X2 . . . ∆Xnc

]T
in �horizontal� optimization[

∆Xv

]T
in �height� optimization

(3.34)

where ∆X1, ∆X2, . . . , ∆Xnc ∈ R refer to degrees of freedom of nodal coordinate

variation corresponding to the chord (�horizontal�) direction and ∆Xv ∈ R refers to

the degree of freedom corresponding to vertical direction. Nodal coordinate variation

in �horizontal� and vertical directions are presented in Figure 3.5� 3.6 respectively. If

both �horizontal� and �vertical� directions are allowed to vary, then both �horizontal�

and �vertical� are included in the geometry variation variables.

Only structures with symmetric topology are considered in this study. Therefore

only node coordinates corresponding to the left hand side (or right hand) of the

Table 3.2 Geometry optimization variables.

Symbol Name Type Number
∆X` Nodal coordinate variation Continuous nGV
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∆X1
∆X2

∆X3 ∆X3 ∆X2 ∆X1

∆X4 ∆X5 ∆X6 ∆X6 ∆X5 ∆X4

Figure 3.5 Nodal coordinate displacement �horizontal� variables.

∆Xv

Figure 3.6 Nodal coordinate displacement �vertical� variables.

structure need to be considered as variation of the right hand side can be expressed

by the variables on the left hand side and vice versa. Also, nodes at the support

and nodes at the midspan are kept �xed. Figure 3.5 shows that the number of

�horizontal� nodal coordinate variables nc is equal to the number of nodes on left

hand side of the structure excluding the nodes at the midspan and node at the

support.

As is shown in Figure 3.6, variation of the truss height is implemented by variation

of the nodal coordinates of the lower chord nodes corresponding to the vertical

direction. Chord directions are kept �xed throughout the optimization and therefore

vertical variation of nodal coordinates is equal. This leads to the number of nodal

coordinate variables corresponding to the vertical direction being 1.

In the case of lateral variation, also referred as �horizontal variation�, truss height is

kept �xed. Consequently, lower chord nodes are only allowed to vary in horizontal

direction and vertical degree of freedom of geometry variation is dropped. Similarly,

in the case of height variation, lateral positions of the nodes are kept �xed and

consequently �horizontal� degrees of freedom of the geometry variation are dropped.

Nodal coordinates of node `, in iteration r with respect to the nodal coordinate

variations can be expressed as

(Xr
1,`, X

r
2,`)

T = (X0
1,`, X

0
2,`)

T + vd ·∆Xr
` , ∀ d ∈ DGV , ` ∈ Nd (3.35)

where (X0
1,`, X

0
2,`) are the nodal coordinates of the node ` in the initial con�guration
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and ∆Xr
` is the nodal coordinate variation of the node `, in the iteration r. In

Eq. ( 3.35), vd indicates the direction vector (Figure 3.7) and Nd the nodes related
to the nodal coordinate variation degree of freedom d. Direction vector vd remains

constant throughout the optimization process. It can be expressed as

vi = cos θ î+ sinθ ĵ (3.36)

where θ denotes angle of the geometry variation direction vector.

X1

X2

(X0
1,`, X

0
2,`) (Xr

1,`, X
r
2,`)

i θincl
∆Xr

`
vi

Figure 3.7 Nodal coordinates with respect to nodal coordinate variation.

3.3.2 Box Constraints

Box constraints are linear constraints de�ning the domain of the nodal coordinate

variations.

Ω∆X

Ω∆X

Figure 3.8 Box constraints.

As presented in Figure 3.8, coordinate variation of nodes along the chord directions

is limited between the ridge and the support. In general form, box constraints read

as

Ω∆X =
{

∆X ≤ ∆X ≤ ∆X
}

(3.37)

More precisely, box constraints can be expressed as

Ω∆X =

{
− 1

cos θincl
X0
`,1 ≤ ∆X` ≤ 1

cos θincl

(
L
2
−X0

`,1

)
in �horizontal� variation

H0 − L
6

≤ ∆Xv ≤ H0 − L
16

in �height� variation

}
(3.38)
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where X0
`,1 is the nodal coordinate variable referring to the node(s) ` of the initial

geometry (X0), and where θincl refers to the inclination angle of the chord the node

belongs to, and furthermore L refers to the truss span.

In Eq. ( 3.38), 2rd row represents constraints corresponding to the height variation

(∆Xv), which is limited according to the minimum and maximum height. H0 is the

height of the initial truss design.

Inclination angle corresponding to the geometry variation degree of freedom can be

generally derived from the initial con�guration ∆X0. where denotation v {d} (r)

stands for element r ∈ {1, 2} of the direction vector corresponding to the geometry

variation dof d ∈ DGV

Note, that the box constraints mentioned above do not limit adjacent nodes from

�travelling� across each other. This leads to the question of �melting nodes� i.e. co-

inciding nodal coordinates which result in singular equality matrix and non-solvable

problem (Achtziger 2007). Also, arises the question of coinciding members, which

leads to the question of creation of new members, joints etc. These problems are

however circumvented due to the member angle constraints, as member angle con-

straints won't allow nodes or members to coincide. This is presented below in

section 3.3.3.

3.3.3 Member Angle Constraints

Due to welding requirements angles between adjacent members connected by joint

must be equal or greater than 30◦. Member angle constraints state as

Ωθ = {∆X | 30 ≤ θmi1,mi2(∆X)∀mi1,mi2 ∈Madj} (3.39)

where θmi1,mi2 is angle between membersmi1 andmi1. Also,Madj refers to the group

of members, that are adjacent and connected by a joint. Figure 3.9 shows members

mi1 and mi1 that are adjacent and connected by common joint (node `). Figure

shows also, that symmetry is again exploited as the left hand side angle constraints

are only implemented.

Angle θimin in above equation 3.39 can be expressed by

θimin(∆X) = arccos
(
vTmi1vmi2

)
∀mi1,mi2 ∈Madj (3.40)

Note that on the member angle between 1st brace and 1st lower chord member is
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θm1,m2

mi1

mi2

`

Figure 3.9 Member angle constraint for member mi1 and mi2.

also limited to over 30◦ despite members not being adjacent. Therefore constraint

is expressed with respect to the angle between members as

Ωθ = {∆X | 150 ≥ θmBR1,mLC1
(∆X)} (3.41)

By plugging equation 3.40 into the equations 3.39 and 3.41 yields

g ≤ 0, (3.42)

where

g =

− arccos
(
vTmi1

vmi2

)
+ 30 ∀ mi1,mi2 ∈Madj

arccos
(
vTmBR,1

vmUC,1

)
− 150

.

The former row of the Eq. (3.3.3) constitutes the constraint referring to the adjacent

members. The latter row constitutes the constraint referring to the joint between

1st brace member mBR,1 and 1st lower chord member mUC,1, which doesn't form a

triangle and therefore are left out of the former constaints.

3.3.4 Objective function

In implicit programming approach, evaluation of geometry variation objective �func-

tion� states as

Φ(∆Xr) (3.43)

which is in fact evaluation of sizing problem, i.e. global minimizer of sizing opti-

mization problem for truss geometry expressed by nodal coordinate variation ∆Xr

in iteration r. If there is no solution for the sizing problem for coordinate variation

∆Xr, then objective function is set

Φ(∆Xr) = φ∞, (3.44)
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where φ∞ is a �large� number, i.e. larger in the order of magnitude than any possible

minimum for the sizing problem. By doing this, as stated previously in section 3.1,

geometry variation objective function becomes de�ned in the whole domain ΩGeom

and geometry variation problem solver does not crash when the sizing optimization

doesn't have feasible solution. In practice, this can occur when the member actions

exceed the resistance of any available pro�le which leads to sizing problem not being

solvable.
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4. OPTIMIZATION PROCEDURES

Patience of practicing engineer sets requirements for engineering software. Calcula-

tion time turns out to be a pivotal factor for the the design tools to have success

among structural engineers. In this chapter, multiple procedures are proposed to

decrease the duration of the optimization run. Also, various aspects involved in the

optimization procedure are highlighted.

4.1 Procedure overview

Optimization is performed within 5 minutes time frame. Various procedures are

needed in order to obtain acceptable results within imposed time limitation. Task

is to �nd an appropriate trade-o� between suitable results and calculation time.

General optimization procedure is illustrated in Figure 3.1. Pre and post sizing

is performed utilizing full pro�le selection for each member group. In optimization

phase di�erent optimization procedures are employed to hasten the optimization.

Table 4.1 shows the procedures utilized in optimization phase.

4.1.1 Procedure A

In procedure A, no limitations are imposed on pro�le catalog in the optimization

phase i.e. the full problem is solved. Therefore, A is a point of comparison for later

procedures.

4.1.2 Procedure B

In procedure B, large and small pro�les are removed from the pro�le selection which

will reduce the number of binary variables included in the sizing optimization. Be-

low, UC and LC refer to upper and lower chord, respectively. BR refers to braces.

Following heuristics are employed to determine which pro�les are to be reduced from

the pro�le selection. Reasoning behind heuristics is simple. Truss with maximum
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Table 4.1 tab:General description of optimization approaches.

A
Chord pro�les Complete catalogue
Brace pro�les Complete catalogue

B
Chord pro�les Large and small pro�les removed
Brace pro�les Large and small pro�les removed

C

Chord pro�les Large and small pro�les removed
Brace pro�les Largest preprocessing pro�le selected
Pro�le size constraints NOT implemented

D
Chord pro�les Large and small pro�les removed
Brace pro�les 17 pro�les selected

height has minimum axial member forces in chords whereas truss with minimum

height has maximum axial forces in chords.

First truss, denoted by Tmax, is a truss with vertical geometry variable ∆Xv equal to

the value, that produces �the tallest� truss (see Figure 3.8). Second truss, denoted

by Tmin is a truss with ∆Xv equal to the value, that produces �the lowest� truss.

Then pre sizing is performed to obtain Tmax and Tmin. Smallest chord pro�le Aj of

Tmax is extracted. Due to inaccuracy of the procedure, Aj is multiplied by factor

0.9 to obtain a lower bound for chord cross-section areas

A = 0.9Aj. (4.1)

Following similar reasoning, maximum cross-section area Aj is extracted from truss

Tmin. Now, upper bound for chord cross-section areas is obtained by setting

A = 1.3Aj. (4.2)

Note that relatively greater correction factor is used when determining the upper

bound. Then, pro�les selection for chords is selected by setting

{j ∈ PCH | A ≤ Aj ≤ A} (4.3)

Note that presented heuristics only apply to trusses with equal upper chord and

equal lower chord pro�les. Also, steel grade must be equal for all chord members.

Now, only brace pro�les j are selected, that ful�l the condition

{j ∈ PBR | 0.3bCH,min ≤ bj ≤ 0.85bCH,max}, (4.4)
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where bCH,min is the minimum and bCH,max is maximum chord side length found

among chord pro�les PCH .

4.1.3 Procedure C

In procedure C, a truss with minimum initial height Tmin is obtained as described in

Section 4.1.2 by pre sizing. Let PBR,T ⊂ PBR denote brace pro�les of Tmin. Then,

in the optimization phase, brace pro�le j with the maximum cross-section area

{j | max
j∈PBR,T

Aj} (4.5)

is assigned to all brace members i ∈ MBR. Note that pro�le size constraints are

removed from the optimization to ensure, that unnecessarily big upper or lower

chord pro�les are not enforced. Note also, that optimization problem is changed

drastically. This is highlighted later in numerical calculations.

4.1.4 Procedure D

In procedure D, subset of chord pro�les PCH,B ⊂ PCH and brace pro�les PBR,B ⊂
PBR are chosen according to procedure B. Then 17 pro�les are selected systemati-

cally from the brace pro�les PBR,B according to following procedure. Assume nPBR

denotes the number of brace pro�les. Then a set of 17 real numbers are chosen

systematically from interval between 1 and nPBR by

PBR,R = {1 + 0 · δ, 1 + 1 · δ, · · · , 1 + 16 · δ} (4.6)

where increment δ ∈ R is de�ned as

δ =
nPBR

16
(4.7)

Furthermore, each real-valued number r ∈ PBR,R rounded to nearest integer i which

is included in the set of reduced pro�les by setting

PBR,D = {i
⋃
PBR,D} (4.8)

It is important to make sure, that in same pro�le cannot be selected twice.
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5. NUMERICAL CALCULATIONS

Proposed approach for the geometry optimization and optimization procedures are

demonstrated on numerous examples. First, objective function is investigated to

gain knowledge for the geometry variation (Eq. ( 3.32)). Also, algorithms used in

geometry optimization are compared with each other. Robustness of the algorithms

is studied and time consumption of the computing. Then, optimization procedures

are compared with each other. Lastly, examples are studied thoroughly to illustrate

the changes that take place in geometry optimization.

In each example, density of the material ρ = 7850kg/m3 and elastic modulus E =

210000 MPa. Member pro�les are square hollow section (SHS) selected from the

catalog of the steel manufacturer SSAB (2017). Pro�le data is given in Appendix

A. According to buckling constraints of Eurocode 3, buckling imperfection factor

α = 0.49 for cold formed hollow sections. Also, partial safety factors γM0 = 1.0 and

γM1 = 1.0. Support moment is considered according to Eq. ( 2.34). Eccentricity

of the support reaction is assumed e = 150 mm Also, when high strength steel is

assigned to lower chord, lower chord resistance for axial tension is calculated using

Eq. ( 2.24).

5.1 Solvers

Three solvers were considered in this study. The mixed variable truss sizing problem

in each example is solved by the software Gurobi 7.0.2 (Gurobi Optimization, Inc.

2017). The relative optimality gap is set to 0.1%. This is the relative di�erence

between the best known solution and the lower bound obtained from the relaxations.

Thus, the solutions obtained are global optima within the stated numerical accuracy.

In procedural study, heuristic direct search algorithm Matlab Patternsearch (Math-

Works, Inc. 2017) is tested for the upper lever problem solving. Patternsearch

implements a minimal and maximal positive basis search pattern. It is suitable for

discontinuous, nonlinear and nonconvex problem solving (MathWorks, Inc. 2017).

Convergence tolerance for objective function absolute value of change is set to 0.1.

Convergence tolerance for norm of geometry variable vector as well as mesh tolerance
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are set to 0.0001. Here, mesh tolerance is the step size of last iteration.

Also gradient based interior point algorithm MathWorks, Inc. (2017) algorithm is

experimented on the upper level problem solving using default settings.

Examples in procedural study were computed by cluster where parallel computing

were utilized in geometry optimization. Per task, 16 cpus and 24576 megabytes of

memory per cpu were allocated.

5.2 1-D cases

In implicit programming approach, selection of geometry optimization algorithm

must be done considering carefully the nature of the problem in hand. Therefore

two example cases are studied to provide information about the behaviour of the

objective function. Cases were selected to be one dimensional for them to be il-

lustrative. Truss height is perhaps the most crucial geometric design parameter.

Therefore height variation was selected to be one case (see Figure 5.1). On the

other hand some information about the e�ect of lateral node variation was also

needed. Thus, second case was selected as shown in Figure 5.3.

Table 5.1 Design parameters for 1-D cases.

Span 20000 mm
Type/Division K/4
Loadcase(1) line loading 25.0 kN

m

Roofslope 1/ 20
grades {UC,LC,BR} {S700, S700, S420}

The study of design space was performed using design parameters described in Table

5.1. Objective function �curves� were obtained by performing sizing optimization in

uniform intervals. The density of the interval was determined considering on the one

hand �adequate� accuracy of the information, and on the other hand �reasonable�

limits of the computing time. The interval was set to be approximately 2 mm.

In the following, nature of objective function as well as applicable solvers for upper

level are investigated. Objective function landscape is discovered to be �rugged� i.e.

piecewise continuous. This is highlighted on Figure 5.2 and Figure 5.4. Disconti-

nuities are caused by discrete cross-section pro�le selection, which can be observed

by examining the resulting designs on both sides of the discontinuous points.

In continuous intervals, gradient of the objective function is determined by the

geometric variation of structure with �xed pro�les. Thus, the negative gradient
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Table 5.2 Constraints for the 1-D cases.

Member strength constaints Implemented
Member stability constraints Implemented
Compatibility constraints Implemented
Joint strength constraints NOT implemented
Member angle constraints θij ≥ 30◦

Pro�le size constraints bi
b0
∈ [0.35, 0.85]

Self weight Implemented
Box constraints Chord direction: Xhor ∈ [0, L], Vertical direction:

Xvert ∈
[
L
15
, L

5

]
Loading cases 1

direction is not necessarily equal to the direction of the global minimum. Example

cases show also, that the objective functions have single valued solution in their

geometric domain, which is a premise in implicit programming approach (Achtziger

2007).

5.2.1 Height Variation

In height variation the changes in brace member lengths dominate the changes in

objective function in continuous intervals. In discontinuous points pro�les change.

Height variation is started from 7 di�erent heights, denoted by a, b, c, d, e, f and

g, utilizing interior point algorithm (MathWorks, Inc. 2017). On the right hand

side of the global minimum negative of the gradient is pointing towards the global

minimum, whereas on the left hand side the gradient is pointing away from the

minimum. Consequently, as can be seen in Figure 5.2, only d, e and g located on

the right hand side of the minimum succeed in �nding the global minimum. None

of the points located at the left hand side of the global minimum proceed towards

the minimum. Success of gradient based algorithm is strongly depending on �good�

starting point. According to optimization theory, gradient based algorithms are not

suitable for solving of discontinuous problems. This is apparent according to the

results of height variation as well.

∆h

Figure 5.1 Variation of truss height.
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When utilizing pattern search algorithm (MathWorks, Inc. 2017) for the height

optimization problem, the global minimum is reached from all starting points. This

is a strong indication, that one may resort to heuristic algorithms.
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L = 20000 mm
Type/division = N/4
Lineload = 25 kN/m
Slope = 1/20
Grades = S700/S700/S420

↓= starting point
↑= finishing point

Figure 5.2 Objective function study, variation of height, interior point algorithm.

5.2.2 Lateral Variation

∆X

Figure 5.3 1D lateral variation.

When varying nodal point of the truss upper chord shown in Figure 5.3, the change

in brace member length is again dominating the change in the truss weight. Here,

the global optimum is located near the starting point. In this very limited case,

the shorter length of compressed member does not �automatically� lead to better

objective value.
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Figure 5.4 Objective function of lateral variation, free brace pro�le selection.

5.3 Multidimensional cases

Here calculations utilizing procedures A, B, C and D (see Section 4) are demon-

strated on a set of 108 roof truss cases for each procedure. Design parameters for

the cases include truss span, line loading qEd, truss type, upper chord division,

which refers to number of upper chord segments and steel grades. Parameters are

shown below.

� span = {16, 24, 32, 40} [m]

� qEd = {12, 22, 32} [kN/m]

� type = {K}

� division = {3, 4, 5}

� grades = {S420, S420, S420} , {S550, S550, S420} , {S700, S700, S420}

Truss span is selected to represent a wide variety of possible roof truss spans in

practical design applications. Line loadings represent �typical� values for Central

and Northern European climate conditions. Truss type is selected to be a �com-

monly used� type. Divisions are also selected to represent a wide variety of possible

divisions. In steel grades the usage of high strength steel is investigated.

In Table 5.3 implemented constraints are shown. Displacement constraints are

intentionally set very �loose� for them to remain inactive in the optimization. Typi-

cally, maximum nodal displacements are around L/160 in these cases located at the
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mid span. Note again, that joint strength constraints are not fully implemented in

the problem. Self weight is considered in exact manner. Box constraints are also

set �loose�. Possible nodal positions are restricted horizontally between support and

the ridge. Vertical constraint is not needed since nodes follow the chord directions.

Table 5.3 Constraints in multidimensional cases.

Member strength constaints Implemented
Member stability constraints Implemented
Compatibility constraints Xvert ≤ L

50

Joint strength constraints NOT implemented
Member angle constraints θij ≥ 30◦

Pro�le size constraints bi
b0
∈ [0.35, 0.85]

Self weight Implemented
Chord direction: Xhor ∈ [0, L]

Box constraints
Vertical direction: Xvert = L

10

In all cases, geometry variation type is �horizontal� variation demonstrated in Figure

3.5. In horizontal variation the height of the truss is �xed. Nodal coordinates are

allowed to move along the chord directions. Node positions of the support nodes

and the nodes at the ridge are �xed.

5.3.1 Calculation time

Some consideration must be given to the relation between problem size and calcula-

tion time. Figure 5.5 shows the correlation between calculation with respect to the

number of evaluations and number of sizing variables in procedure A and procedure

B. The results presented here are �nal results, i.e. calculation were run to the global

optimum.

It is obvious, that higher number of variables and evaluations will lead to minimal

decrease of weight in 5 min results. Number of variables cannot exceed approxi-

mately 4000, and number of evaluations must stay below 1000 for algorithm to have

a chance to obtain signi�cant decrease in objective function value in 5 minutes. It is

also obvious, that optimization will unlikely reach the stopping criteria in 5 minutes.

However, in practical engineering, instead of seeking �the best� results, the goal is

rather to obtain �a better� result. This is the goal in this thesis as well.

Dividing the total calculation time by the number of evaluations yields time per

evaluation. Figure 5.6 shows again, that given the utilized implementation and

hardware, number of variables should remain within around 4000. The correlation
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(a) Procedure A.
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(b) Procedure B.

Figure 5.5 Calculation time with respect to the number of sizing variables and number

of sizing evaluations, horizontal variation.

between number of sizing variables and calculation time is evident, although the

results are more spread with higher number of variables.

5.3.2 Quick results

In the following, best optimization result is picked from each of 9 combinations of 3

line loading and 3 truss span alternatives. Results are presented in Tables 5.4� 5.7

for procedures A, B, C and D, respectively. Considering the goal of the study, namely
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Figure 5.6 Approach A, calculation time per sizing evaluation with respect to the number

of sizing variables, horizontal variation, H = L
10 , type K.

obtain �good� solution in acceptable time, the resulting weightWPost,5 is picked from

the 5 minute point of calculations. The �nal result is naturally considered in case the

calculation ended due to ful�lled stopping criteria in less than 5 minutes. In tables,

WInit denotes the weight of the initial structure, where as ∆p denotes percentual

change of the truss weight and ∆W change in kg. Notice, that ∆p and ∆W are

calculated utilizing pre sizing and post sizing. Total calculation time and division

of the upper chord half are also presented for the best solution.

A closer look at the weight reduction is taken. Best results for procedure A are

shown in Table 5.4. Several interesting observations can be made from the results.

Procedure provides good results when the span is short. With a combination of a

span of 16 m and line loading of 12 −22 kN/m the best weight di�erence percentages

are 10.0−13.9%. With intermediate to long spans the results drop drastically. With

span longer than 24 m or loading more than 22 kN/m the results for procedure A

are poor with no weight reduction. Exception is the result with 12 kN/m with a

40 m span with the weight decrease of 11.6%. It is easy to see, that increasing the

span and the loading increases calculation time. There might be several reasons for

this. One might be that selected set of cases, for a truss with a long span and half

span divided in only 3, 4 or 5 segments, leads to unnecessary long compressed chord

member lengths. This may lead to narrower domain of the objective function and

make it therefore more di�cult for geometry optimization algorithm to �nd a better

solution.

Procedure B provides generally better results (see Table 5.5) in all span and loading

combinations than procedure A yet the results deteriorate for combinations of span
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Table 5.4 Full problem A, best weight optima.

L [m] q [kN/m] 12 22 36

16

WInit [kg] 312 449 575
WPost,5 [kg] 268 404 566

∆p[%] -13.9 -10.0 -1.7
∆W [kg] -43 -45 -10
time [min] 52 30 42
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 4

24

WInit [kg] 665 930 1286
WPost,5 [kg] 645 895 1286

∆p[%] -3.1 -3.7 -0.0
∆W [kg] -20 -35 -0
time [min] 108 118 158
grades S550/S550/S420 S700/S700/S420 S700/S700/S420
division 5 5 5

32

WInit [kg] 1241 1869 2381
WPost,5 [kg] 1199 1860 2368

∆p[%] -3.3 -0.5 -0.5
∆W [kg] -42 -10 -12
time [min] 78 127 113
grades S700/S700/S420 S550/S550/S420 S700/S700/S420
division 5 5 5

40

WInit [kg] 2116 2879 4169
WPost,5 [kg] 1870 2879 4169

∆p[%] -11.6 0.0 0.0
∆W [kg] -246 0 0
time [min] 119 158 192
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 5

over 24 m and loading over 22 kN/m when calculation is stopped after 5 minutes.

With span being 16 m or load being 12 kN/m the percentage of weight decrease is

up to 15.6 %. Then with the span over 24 m, the the percentage of weight decrease

becomes smaller. For example, with the combination of 22 kN/m loading and 32 m

span, relative weight decrease is 1.6 %.

Procedure C, shown in Table 5.6, turns out to be the weakest of all proposed

procedures with in most cases weight increasing. Reasons behind this behaviour are

discussed in greater detail later in Section 5.3.3. It can be stated, that procedure is

not applicable in any span or loading scenario utilized in these cases.

Of all the procedures, D provides most consistent relative weight reduction over all

span and loading combinations. This is shown in Table 5.7. Even for combinations
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Table 5.5 Procedure B, best weight optima.

L [m] q [kN/m] 12 22 36

16

WInit [kg] 312 449 575
WPost,5 [kg] 266 390 561

∆p[%] -14.8 -13.1 -2.4
∆W [kg] -46 -59 -14
time [min] 13 10 15
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 4

24

WInit [kg] 681 930 1286
WPost,5 [kg] 575 879 1259

∆p[%] -15.6 -5.5 -2.1
∆W [kg] -106 -51 -27
time [min] 9 24 76
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 5

32

WInit [kg] 1241 1869 2381
WPost,5 [kg] 1151 1840 2317

∆p[%] -7.2 -1.6 -2.7
∆W [kg] -90 -30 -63
time [min] 20 27 68
grades S700/S700/S420 S550/S550/S420 S700/S700/S420
division 5 5 5

40

WInit [kg] 2116 2879 4169
WPost,5 [kg] 1834 2771 4094

∆p[%] -13.3 -3.7 -1.8
∆W [kg] -282 -108 -74
time [min] 29 104 112
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 5

of span over 24 m and line loading over 22 kN/m, the weight decrease is from 4.3 %

to 6.3 %. Therefore it appears, that in procedures A and B, big number of variables

played bigger role in increasing the calculation time than chosen set of example

cases.

Results from all procedures are combined in Table 5.8. In each box the best result

from each load and span combination is presented. Approaches B and D produce

highest relative weight decrease in each of 9 loading and span combinations. Espe-

cially with the combination of intermediate to long span and loading, procedure D

appears to produce the best results. Although it should be mentioned, that with

the longest span of 40 m and heaviest line loading of 36 kN/m, the best weight

reduction percentage is only 2.4%.



5.3. Multidimensional cases 48

Table 5.6 Procedure C, best weight optima.

L [m] q [kN/m] 12 22 36

16

WInit [kg] 301 449 575
WPost,5 [kg] 314 435 622

∆p[%] 4.1 -3.2 8.2
∆W [kg] 12 -14 47
time [min] 1 2 1
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 4 5 4

24

WInit [kg] 681 930 1286
WPost,5 [kg] 723 970 1286

∆p[%] 6.1 4.4 0.0
∆W [kg] 42 40 0
time [min] 2 1 1
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 5

32

WInit [kg] 1342 1945 2381
WPost,5 [kg] 1254 1945 2381

∆p[%] -6.5 0.0 0.0
∆W [kg] -88 0 0
time [min] 3 2 1
grades S550/S550/S420 S700/S700/S420 S700/S700/S420
division 5 5 5

40

WInit [kg] 2074 2879 -
WPost,5 [kg] 1992 2879 -

∆p[%] -4.0 0.0 -
∆W [kg] -83 0 -
time [min] 3 2 -
grades S550/S550/S420 S700/S700/S420 - / - / -
division 5 5 -

It is obvious that stronger steel grades produce best results in weight optimization.

In most of the cases, combination grade S700 for the chords and grade S420 for

the braces o�er smallest weight in studied combinations. Also, dense upper chord

division provides good results in weight optimization.

In calculations, that are stopped at early stage, one might make a presumption, that

smaller problems would converge much faster and therefore bene�t in results taken

on the 5 minutes point. However, by observing the results one can see, that this is

not the case. Result seem to proof quite the contrary. In most cases the division of

5 gives the best solution.

In Table 5.9 average weight di�erences as well as medians are provided for all

procedures. Here, solutions for the procedure A are �nal results to provide �good�
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Table 5.7 Procedure D, best weight optima.

L [m] q [kN/m] 12 22 36

16

WInit [kg] 312 449 575
WPost,5 [kg] 266 390 562

∆p[%] -14.8 -13.1 -2.2
∆W [kg] -46 -59 -13
time [min] 12 10 6
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 4

24

WInit [kg] 681 930 1286
WPost,5 [kg] 575 892 1261

∆p[%] -15.6 -4.1 -1.9
∆W [kg] -106 -38 -25
time [min] 9 9 48
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 5

32

WInit [kg] 1241 1869 2381
WPost,5 [kg] 1162 1784 2278

∆p[%] -6.4 -4.6 -4.3
∆W [kg] -79 -85 -102
time [min] 12 22 10
grades S700/S700/S420 S550/S550/S420 S700/S700/S420
division 5 5 5

40

WInit [kg] 2116 2879 4169
WPost,5 [kg] 1835 2681 3905

∆p[%] -13.3 -6.9 -6.3
∆W [kg] -281 -198 -264
time [min] 22 13 23
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 5

reference values. Consequently, 5 minutes result of procedure A are dropped from

the �nal scrutiny. The results for procedures B, C and D are again combined from

the solutions taken from the 5 minutes calculations.

By observing Table 5.9 it can be stated, that the solutions for procedure D, with

the average weight reduction percentage of 7.5%, provide the best results from all

considered optimization procedures in this study. However, average weight reduc-

tion percentage for procedure B is only 0.4% lower than for D. This con�rms the

observation, that procedures D and B are clearly more e�cient than A or C.
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Table 5.8 Best results from cases A, B, C and D.

L [m] q [kN/m] 12 22 36

16

WInit [kg] 311.8 449.3 575.1
WPost,5 [kg] 265.6 390.3 561.2
Df [%] -14.9 -13.2 -2.6
Df [kg] -46.2 -59.0 -13.8
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 4
Appr. B D B

24

WInit [kg] 681.2 930.0 1286.0
WPost,5 [kg] 574.9 878.9 1259.5
Df [%] -15.7 -5.7 -3.1
Df [kg] -106.3 -51.0 -26.6
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 5
Appr. D B B

32

WInit [kg] 1241.0 1869.5 2380.7
WPost,5 [kg] 1151.4 1784.2 2278.5
Df [%] -7.3 -4.8 -3.5
Df [kg] -89.6 -85.2 -102.2
grades S700/S700/S420 S550/S550/S420 S700/S700/S420
division 5 5 5
Appr. B D D

40

WInit [kg] 2115.9 2879.2 4168.6
WPost,5 [kg] 1834.1 2680.9 3905.0
Df [%] -14.5 -7.2 -2.4
Df [kg] -281.8 -198.4 -263.6
grades S700/S700/S420 S700/S700/S420 S700/S700/S420
division 5 5 5
Appr. B D D

Table 5.9 Results averages and medians, horizontal optimization, approaches A, B, C

and D.

A B C D
average improvement [kg] -168 -127 -15 -146
median improvement [kg] -99 -66 0 -90
average improvement [%] -8.4 -7.1 -0.7 -7.5
median improvement [%] -7.1 -5.8 0.0 -6.1

5.3.3 Detailed case

A case with a loading of 22 kN/m and a span of 24 m is taken into closer examination.

Stee grade combination is S700 for chords and 420 for braces, respectively. Case is

computed utilizing procedures A, B, C and D to the geometry solver convergence

criteria. Then changes in the geometry and design are studied closely.
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Figure 5.7 Initial design, W ∗ = 930 kg.

Table 5.10 Initial design, utilization ratios.

Member Pro�le W [kg] Ut,S [%] Ut,B [%]
1, 37 120 × 5.0 42.2 18.40 56.85
2, 39 60 × 3.0 11.2 97.50 -
3, 38 80 × 4.0 20.9 53.89 93.99
4, 36 100 × 4.0 28.2 34.77 -
5, 33 120 × 5.0 42.2 29.36 55.32
6, 35 50 × 3.0 9.6 83.72 -
7, 34 80 × 3.0 16.7 49.59 89.04
8, 32 100 × 4.0 28.2 58.17 -
9, 29 120 × 5.0 42.2 40.97 77.20
10, 31 50 × 3.0 10.0 51.99 -
11, 30 70 × 3.0 15.1 35.67 79.24
12, 28 100 × 4.0 28.2 72.11 -
13, 25 120 × 5.0 42.2 47.14 88.83
14, 27 50 × 3.0 10.5 23.15 -
15, 26 50 × 3.0 10.9 23.08 93.04
16, 24 100 × 4.0 28.2 78.08 -
17, 21 120 × 5.0 42.2 48.70 91.77
18, 23 50 × 3.0 10.9 3.41 13.73
19, 22 50 × 3.0 11.4 3.15 -
20 100 × 4.0 28.2 77.27 -

Here, upper chord half of the considered truss is divided into 5 segments of equal

length shown in Figure 5.7. The structure consists of 39 members and 21 nodes.

Initial design is a result of pre sizing, whereas optimum design is a result of post

sizing. The initial and optimum designs are illustrated in Figure 5.7� 5.11. Pro�les,

member weights W , as well as utilization ratios of cross-section resistance Ut,S and

buckling resistance Ut,B are presented in Table 5.10 representing the initial design.

Designs obtained by procedures A, B, C and D are shown in Tables 5.11� 5.14.

Initial and optimum node coordinates can be observed in Appendix B.

Generally, upper chord members are subjected to bending moment and shear force

due to transversal line loading. Also, upper chord members are subject to axial com-

pression. Hence, critical design constraint for the upper chord members is combined

buckling and bending presented in Eq. ( 2.29). Lower chord members are subjected
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Figure 5.8 Approach A, W ∗ = 877 kg.

Table 5.11 Procedure A, utilization ratios.

Member Pro�le W [kg] Ut,S [%] Ut,B [%]
1, 37 120 × 5.0 43.7 29.83 96.40
2, 39 70 × 3.0 16.5 100.00 -
3, 38 70 × 4.0 15.8 53.34 94.17
4, 36 90 × 4.0 20.2 40.14 -
5, 33 120 × 5.0 38.7 30.59 51.83
6, 35 50 × 3.0 10.2 88.02 -
7, 34 70 × 3.0 13.3 52.40 99.86
8, 32 90 × 4.0 24.5 64.23 -
9, 29 120 × 5.0 41.2 41.67 76.14
10, 31 50 × 3.0 10.9 57.99 -
11, 30 60 × 3.0 11.9 40.11 99.93
12, 28 90 × 4.0 21.1 80.04 -
13, 25 120 × 5.0 43.2 47.33 92.06
14, 27 50 × 3.0 10.5 25.00 -
15, 26 50 × 3.0 10.9 24.76 99.95
16, 24 90 × 4.0 25.5 87.38 -
17, 21 120 × 5.0 44.1 49.52 99.48
18, 23 50 × 3.0 10.9 2.80 11.32
19, 22 50 × 3.0 11.6 2.60 -
20 90 × 4.0 27.2 86.60 -

to axial tension and therefore critical design constraint is cross-section resistance

shown in Eq. ( 2.25). Due to truss type, brace member are subjected to alternate

axial tension and compression so that member nearest to the support is in all cases

subjected to axial tension.

In all designs, outermost lower chord node moves towards the ridge thus shortening

the lower chord. This represent the most signi�cant change in all geometries. Also

for all designs, the lower chord pro�le changes from 100×4.0 to 90×4.0. For design

A and B, the lower chord weight reduces 44 kg where as for C and D the reduction

is 45 and 49 kg, respectively. It is worth noting that, in all designs apart from C,

upper chord pro�le and obviously length remain the same resulting in no change in

weight. Notice, that the brace member side length of 70 mm does not allow selection

of smaller lower chord side length than 90 mm due to joint geometry constraints of

Eq. ( 3.30). Therefore the highest lower chord utility ratio is approximately 87%.
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Figure 5.9 Approach B, W ∗ = 877 kg.

Table 5.12 Approach B design, utilization ratios.

Member Pro�le W [kg] Ut,S [%] Ut,B [%]
1, 37 120 × 5.0 43.7 29.83 96.40
2, 39 70 × 3.0 16.5 100.00 -
3, 38 70 × 4.0 15.8 53.34 94.17
4, 36 90 × 4.0 20.2 40.14 -
5, 33 120 × 5.0 38.7 30.59 51.83
6, 35 50 × 3.0 10.2 88.02 -
7, 34 70 × 3.0 13.3 52.40 99.86
8, 32 90 × 4.0 24.5 64.23 -
9, 29 120 × 5.0 41.2 41.67 76.14
10, 31 50 × 3.0 10.9 57.99 -
11, 30 60 × 3.0 11.9 40.11 99.93
12, 28 90 × 4.0 21.1 80.04 -
13, 25 120 × 5.0 43.2 47.33 92.06
14, 27 50 × 3.0 10.5 25.00 -
15, 26 50 × 3.0 10.9 24.76 99.95
16, 24 90 × 4.0 25.5 87.38 -
17, 21 120 × 5.0 44.1 49.52 99.48
18, 23 50 × 3.0 10.9 2.80 11.32
19, 22 50 × 3.0 11.6 2.60 -
20 90 × 4.0 27.2 86.60 -

Brace member weights are reduced 10 kg in designs A and B. This is due to contrac-

tion of compressed members. This results in increased member buckling strength,

which enables selecting smaller pro�les. In designs C and D, the weight of the brace

members increases by 10 kg and 17 kg, respectively. Generally this is partly because

of increased pro�les, but mostly because of lengthening of compressed members.

Also, in design D, sparse pro�le selection causes more sudden changes in pro�les.

Total weight of the trusses is reduced by 53 kg for designs A and B, and 31 kg

for design D. The weight of the truss C is increased by 43 kg. In procedure C,

the optimization problem is changed radically with respect to the full problem.

Optimization algorithm does not seek for smaller brace pro�les by contraction since

the brace pro�les are �xed. Thus, geometric changes are not favorable with respect

to the full problem, that is utilized in post sizing.
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Figure 5.10 Approach C, W ∗ = 973 kg.

Table 5.13 Approach C design, utilization ratios.

Member Pro�le W [kg] Ut,S [%] Ut,B [%]
1, 37 120 × 6.0 52.8 22.76 66.82
2, 39 50 × 5.0 17.8 94.12 -
3, 38 70 × 4.0 15.9 53.07 93.91
4, 36 90 × 4.0 14.3 40.79 -
5, 33 120 × 6.0 36.9 22.03 30.68
6, 35 50 × 3.0 9.0 79.79 -
7, 34 70 × 4.0 17.6 42.68 84.69
8, 32 90 × 4.0 22.4 60.75 -
9, 29 120 × 6.0 53.2 32.94 66.74
10, 31 50 × 3.0 10.0 57.45 -
11, 30 70 × 3.0 15.5 40.23 91.99
12, 28 90 × 4.0 27.2 79.14 -
13, 25 120 × 6.0 53.8 39.40 81.31
14, 27 50 × 3.0 10.5 26.06 -
15, 26 60 × 3.0 13.7 21.53 66.03
16, 24 90 × 4.0 26.6 87.19 -
17, 21 120 × 6.0 52.5 40.80 81.18
18, 23 50 × 3.0 10.9 2.70 10.86
19, 22 50 × 3.0 11.6 2.52 -
20 90 × 4.0 27.8 86.44 -

In examples A, B and D the upper chord weight remains the same. In design C it

increases 77 kg. This is again due to di�culties discussed earlier.

Designs A and B are identical. This shows that optimization process is not altered

by reduction of big and small pro�les, on this particular application. Most common

roof truss geometries are simple. Furthermore, if the design domain is very narrow,

then by engineering reasoning it is possible to determine which pro�les are not

potential alternatives and can be dropped from the optimization.

Figure 5.11 Approach D, W ∗ = 899 kg.
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Table 5.14 Approach D design, utilization ratios.

Member Pro�le W [kg] Ut,S [%] Ut,B [%]
1, 37 120 × 5.0 41.0 33.44 100.00
2, 39 50 × 5.0 18.8 99.83 -
3, 38 70 × 4.0 15.3 51.75 88.31
4, 36 90 × 4.0 21.1 38.09 -
5, 33 120 × 5.0 36.6 32.18 51.41
6, 35 70 × 3.0 16.6 70.43 -
7, 34 70 × 3.0 12.4 50.15 88.74
8, 32 90 × 4.0 16.3 61.74 -
9, 29 120 × 5.0 43.9 40.77 81.14
10, 31 50 × 3.0 10.4 58.53 -
11, 30 70 × 3.0 14.8 37.81 81.66
12, 28 90 × 4.0 24.7 79.42 -
13, 25 120 × 5.0 45.3 47.93 100.00
14, 27 50 × 3.0 10.5 25.78 -
15, 26 60 × 3.0 13.7 21.30 65.19
16, 24 90 × 4.0 26.7 87.34 -
17, 21 120 × 5.0 44.1 49.50 99.44
18, 23 50 × 3.0 10.9 2.80 11.32
19, 22 50 × 3.0 11.6 2.60 -
20 90 × 4.0 27.2 86.57 -

5.4 Discussion

The exclusion of joint strength constraints is notable �aw in the approach proposed

in this thesis. Considering joint strength constraints in the optimization might

lead up to 15 % increase in truss weight according to Roxane et al. (2015). Joint

constraints pose a problem for the sizing approach taken in this study, since all the

constraints should be linear. For the same reason, chord bending moment from joint

eccentricity is not considered in the implementation.

It should be mentioned that calculation time is strongly dependent on the imple-

mentation, available computational capacity and utilized computing environment.

However, calculation time can serve as an indicator of applicability of the optimiza-

tion procedure for modern designer.



56

6. CONCLUSIONS

The primary purpose of this thesis was to devise a new formulation for truss discrete

geometry optimization problem to facilitate the development of practical design tool.

Secondary purpose was to investigate the possibilities of geometry optimization on

typical roof trusses. Thirdly, the usage of high-strength steel was also included in the

study. Implicit programming was chosen as a basis of the approach combined with

the MILP formulation for lower level problem solving. Proposed implementation

gives a simple sizing problem that can be e�ectively solved using modern branch-

and-cut solvers. The main advantage of this formulation is that it appears to be

robust and the size of the lower level problem remains moderate as the number of

variables is divided between upper and lower level problems resulting in reduced

evaluation time.

Most of the prevailing design conditions were included in the problem solving increas-

ing the quality of the solution by providing design that comply with the prevailing

building codes. Thus, solution is applicable for practicing engineer.

Fast calculation time is an asset considering time and cost pressure in structural

design. Therefore strict time limit was set for the computing. Then various com-

putation procedures were developed to investigate the possibilities of reducing the

problem size while maintaining the quality of the results. This led to trade-o� be-

tween calculation time and weight reduction. As a result of procedure comparison

one was selected to be the most suitable for the studied application. Calculation

times were discovered to be serviceable.

Even though implementation was found to be reliable, it became evident, that with

bigger problem sizes the calculation times begun to increase. Furhermore, including

several loading conditions and vast pro�le libraries including several steel grades

might increase computation time remarkably.

6.1 Further research

There are several options for future research directions.
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Most obvious and direct development would be implementing cost function into the

optimization. In industrial activity capital is the driving force and savings from the

costs bene�ts all parties. Also note that minimum weight and cost often correlates

with the minimal environmental e�ect.

In this thesis the SAND formulation was chosen for the lower level problem formu-

lation. This led to problems nonlinear constraints discussed in Section 5.4. Other

available methods for sizing optimization should be investigated in the framework

of implicit programming approach. For instance, NAND formulation where struc-

tural analysis is solved a priori sizing optimization would tackle above-mentioned

issues in lower level problem formulation. Furhermore, replacing MILP formulation

by simple listing task combined with the NAND formulation might provide e�cient

approach.

Second research direction might be related to combined topology and sizing op-

timization in the context of implicit programming approach. MILP formulation,

which has proven to be e�ective in topology optimization, combined with geometry

optimization provides intriguing possibilities, especially when the geometry is not

strictly limited.
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APPENDIX A. PROFILE DATA

In the following, pro�le data utilized in numerical calculations is presented. Pro�les

corresponding to steel grades S420, S550 and S700 are shown in respective tables.

It is checked, that all internal parts of pro�les belong to the cross-section class 1 or

2 according to section 5.5 of EN 1993�1�1 2005.

Table 1 Pro�le data for steel grade S420.

Pro�le H [mm] T [mm] A
[
102 mm2

]
I
[
104 mm4

]
1 25 3.0 2.41 1.84

2 30 3.0 3.01 3.50

3 40 3.0 4.21 9.32

4 40 4.0 5.35 11.07

5 50 3.0 5.41 19.47

6 50 4.0 6.95 23.74

7 50 5.0 8.36 27.04

8 60 3.0 6.61 35.13

9 60 4.0 8.55 43.55

10 60 5.0 10.36 50.49

11 70 3.0 7.81 57.53

12 70 4.0 10.15 72.12

13 70 5.0 12.36 84.63

14 80 3.0 9.01 87.84

15 80 4.0 11.75 111.04

16 80 5.0 14.36 131.44

17 80 6.0 16.83 149.18

18 90 3.0 10.21 127.28

19 90 4.0 13.35 161.92

20 90 5.0 16.36 192.93

21 90 6.0 19.23 220.48

22 100 4.0 14.95 226.35

23 100 5.0 18.36 271.10

24 100 6.0 21.63 311.47

25 100 7.1 24.65 340.13

26 100 8.0 27.24 365.94

27 110 4.0 16.55 305.94

28 110 5.0 20.36 367.95

29 110 6.0 24.03 424.57

30 120 4.0 18.15 402.28
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continued from previous page

Pro�le H [mm] T [mm] A
[
102 mm2

]
I
[
104 mm4

]
31 120 5.0 22.36 485.47

32 120 6.0 26.43 562.16

33 120 7.1 30.33 623.52

34 120 8.0 33.64 676.88

35 120 10.0 40.57 776.81

36 140 5.0 26.36 790.56

37 140 6.0 31.23 920.43

38 140 7.1 36.01 1031.71

39 140 8.0 40.04 1126.77

40 140 8.8 43.52 1205.03

41 140 10.0 48.57 1311.67

42 150 5.0 28.36 982.12

43 150 6.0 33.63 1145.91

44 150 7.1 38.85 1289.70

45 150 8.0 43.24 1411.83

46 150 8.8 47.04 1513.12

47 150 10.0 52.57 1652.53

48 150 12.5 62.04 1817.44

49 160 5.0 30.36 1202.36

50 160 6.0 36.03 1405.48

51 160 7.1 41.69 1587.41

52 160 8.0 46.44 1741.23

53 160 8.8 50.56 1869.59

54 160 10.0 56.57 2047.67

55 160 12.5 67.04 2275.04

56 180 6.0 40.83 2036.52

57 180 7.1 47.37 2313.34

58 180 8.0 52.84 2545.86

59 180 8.8 57.60 2741.73

60 180 10.0 64.57 3016.80

61 180 12.5 77.04 3406.43

62 200 7.1 53.05 3232.22

63 200 8.0 59.24 3566.25

64 200 8.8 64.64 3849.59

65 200 10.0 72.57 4251.06

66 200 12.5 87.04 4859.42

67 220 7.1 58.73 4366.78

68 220 8.0 65.64 4828.01

69 220 8.8 71.68 5221.35

70 220 10.0 80.57 5782.46

71 220 12.5 97.04 6673.98

72 250 8.0 75.24 7229.20

73 250 8.8 82.24 7835.39
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Pro�le H [mm] T [mm] A
[
102 mm2

]
I
[
104 mm4

]
74 250 10.0 92.57 8706.67

75 250 12.5 112.04 10161.31

76 260 8.0 78.44 8178.02

77 260 8.8 85.76 8869.18

78 260 10.0 96.57 9864.65

79 260 12.5 117.04 11547.88

80 300 10.0 112.57 15519.37

81 300 12.5 137.04 18348.13

Table 2 Pro�le data for steel grade S550.

Pro�le H [mm] T [mm] A
[
102 mm2

]
I
[
104 mm4

]
1 30 3.0 3.01 3.50

2 40 3.0 4.21 9.32

3 40 4.0 5.35 11.07

4 50 3.0 5.41 19.47

5 50 4.0 6.95 23.74

6 60 3.0 6.61 35.13

7 60 4.0 8.55 43.55

8 60 5.0 10.36 50.49

9 70 3.0 7.81 57.53

10 70 4.0 10.15 72.12

11 70 5.0 12.36 84.63

12 80 3.0 9.01 87.84

13 80 4.0 11.75 111.04

14 80 5.0 14.36 131.44

15 80 6.0 16.83 149.18

16 90 4.0 13.35 161.92

17 90 5.0 16.36 192.93

18 90 6.0 19.23 220.48

19 100 4.0 14.95 226.35

20 100 5.0 18.36 271.10

21 100 8.0 27.24 365.94

22 110 4.0 16.55 305.94

23 120 5.0 22.36 485.47

24 120 6.0 26.43 562.16

25 120 8.0 33.64 676.88

26 140 5.0 26.36 790.56

27 140 6.0 31.23 920.43

28 140 8.0 40.04 1126.77

29 140 10.0 48.57 1311.67

30 150 6.0 33.63 1145.91
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Pro�le H [mm] T [mm] A
[
102 mm2

]
I
[
104 mm4

]
31 150 8.0 43.24 1411.83

32 150 10.0 52.57 1652.53

33 160 6.0 36.03 1405.48

34 160 8.0 46.44 1741.23

35 160 10.0 56.57 2047.67

36 160 12.5 67.04 2275.04

37 180 8.0 52.84 2545.86

38 180 10.0 64.57 3016.80

39 180 12.5 77.04 3406.43

40 200 8.0 59.24 3566.25

41 200 10.0 72.57 4251.06

42 200 12.5 87.04 4859.42

43 250 10.0 92.57 8706.67

Table 3 Pro�le data for steel grade S700.

Pro�le H [mm] T [mm] A
[
102 mm2

]
I
[
104 mm4

]
1 40 3.0 4.21 9.32

2 50 3.0 5.41 19.47

3 60 3.0 6.61 35.13

4 60 4.0 8.55 43.55

5 70 3.0 7.81 57.53

6 70 4.0 10.15 72.12

7 70 5.0 12.36 84.63

8 80 4.0 11.75 111.04

9 80 5.0 14.36 131.44

10 80 6.0 16.83 149.18

11 90 4.0 13.35 161.92

12 90 5.0 16.36 192.93

13 100 4.0 14.95 226.35

14 100 5.0 18.36 271.10

15 100 6.0 21.63 311.47

16 100 8.0 27.24 365.94

17 120 5.0 22.36 485.47

18 120 6.0 26.43 562.16

19 120 8.0 33.64 676.88

20 140 6.0 31.23 920.43

21 140 8.0 40.04 1126.77

22 140 10.0 48.57 1311.67

23 160 8.0 46.44 1741.23

24 160 10.0 56.57 2047.67

25 180 8.0 52.84 2545.86
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Pro�le H [mm] T [mm] A
[
102 mm2

]
I
[
104 mm4

]
26 180 10.0 64.57 3016.80

27 200 8.0 59.24 3566.25

28 200 10.0 72.57 4251.06

29 220 10.0 80.57 5782.46

30 250 10.0 92.57 8706.67
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APPENDIX B. NODAL COORDINATES

Horizontal and vertical nodal coordinates are presented for initial design (Init.) and for optimum

design (Opt.).
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Table 4 Nodal coordinates of truss A.

Node no. Horizontal [mm] Vertical [mm]
Init. Opt. Init. Opt.

1 0 0 0 0 �xed
2 1200 1992 -1800 -1800
3 2400 2488 120 124
4 3600 3920 -1800 -1800
5 4800 4688 240 234
6 6000 6256 -1800 -1800
7 7200 7032 360 352
8 8400 8272 -1800 -1800
9 9600 9488 480 474
10 10800 10704 -1800 -1800
11 12000 12000 600 600 �xed
12 13200 13296 -1800 -1800
13 14400 14512 480 474
14 15600 15728 -1800 -1800
15 16800 16968 360 352
16 18000 17744 -1800 -1800
17 19200 19312 240 234
18 20400 20080 -1800 -1800
19 21600 21512 120 124
20 22800 22008 -1800 -1800
21 24000 24000 0 0 �xed



APPENDIX B. Nodal coordinates 67

Table 5 Nodal coordinates of truss B.

Node no. Horizontal [mm] Vertical [mm]
Init. Opt. Init. Opt.

1 0 0 0 0 �xed
2 1200 1992 -1800 -1800
3 2400 2488 120 124
4 3600 3920 -1800 -1800
5 4800 4688 240 234
6 6000 6256 -1800 -1800
7 7200 7032 360 352
8 8400 8272 -1800 -1800
9 9600 9488 480 474
10 10800 10704 -1800 -1800
11 12000 12000 600 600 �xed
12 13200 13296 -1800 -1800
13 14400 14512 480 474
14 15600 15728 -1800 -1800
15 16800 16968 360 352
16 18000 17744 -1800 -1800
17 19200 19312 240 234
18 20400 20080 -1800 -1800
19 21600 21512 120 124
20 22800 22008 -1800 -1800
21 24000 24000 0 0 �xed
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Table 6 Coordinates of a truss C.

Node no. Horizontal [mm] Vertical [mm]
Init. Opt. Init. Opt.

1 0 0 0 0 �xed
2 1200 2040 -1800 -1800
3 2400 2544 120 127
4 3600 3408 -1800 -1800
5 4800 4321 240 216
6 6000 5544 -1800 -1800
7 7200 6880 360 344
8 8400 8136 -1800 -1800
9 9600 9472 480 474
10 10800 10672 -1800 -1800
11 12000 12000 600 600 �xed
12 13200 13328 -1800 -1800
13 14400 14528 480 474
14 15600 15864 -1800 -1800
15 16800 17120 360 344
16 18000 18456 -1800 -1800
17 19200 19679 240 216
18 20400 20592 -1800 -1800
19 21600 21456 120 127
20 22800 21960 -1800 -1800
21 24000 24000 0 0 �xed
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Table 7 Nodal coordinates of truss D.

Node no. Horizontal [mm] Vertical [mm]
Init. Opt. Init. Opt.

1 0 0 0 0 �xed
2 1200 2232 -1800 -1800
3 2400 2336 120 117
4 3600 4248 -1800 -1800
5 4800 4416 240 221
6 6000 5800 -1800 -1800
7 7200 6912 360 346
8 8400 8160 -1800 -1800
9 9600 9488 480 474
10 10800 10704 -1800 -1800
11 12000 12000 600 600 �xed
12 13200 13296 -1800 -1800
13 14400 14512 480 474
14 15600 15840 -1800 -1800
15 16800 17088 360 346
16 18000 18200 -1800 -1800
17 19200 19584 240 221
18 20400 19752 -1800 -1800
19 21600 21664 120 117
20 22800 21768 -1800 -1800
21 24000 24000 0 0 �xed
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