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ABSTRACT 

VIDISHA NAIK: Selecting an Appropriate Curvature Sensor for Fluidic Soft Robot 
and Modeling Sensor Reading vs Pressure vs Position 
Tampere University of technology 
Master of Science Thesis, 54 pages 
October 2017 
Master’s Degree Programme in Automation Engineering 
Major: Factory Automation and Industrial Informatics 
Examiner: Professor Reza Ghabcheloo 
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This research focuses on the study of a curvature sensor for a fluidic soft robot. Soft robot 
is a complete new dimension to traditional rigid robot. A soft robot is made up of materials 
like Silicon, PDMS and elastomeric polymers. The actuation method can be hydraulic, 
pneumatic or electric. Depending on its construction, it undergoes elongation, bending, 
twisting, or all of the three on actuation.  It brings with it some important features like 
compliance with the object of interaction and robustness, which is an inspiration acquired 
from animals and plants. This results into useful applications in fields of rehabilitation, 
gripping delicate objects in food industries and allowing safe interaction for humans.  

The soft robot has large DOF, which allows it to maneuver in a way, which is difficult 
for the traditional robot. However, this large DOF makes the modeling of the soft robot 
for determining the robot state difficult and challenging. Another approach towards 
determining the robot state is using sensors. In this thesis, a thorough study is done to find 
out an appropriate curvature sensor to be embedded into the soft robot. The data from 
curvature sensor, pressure sensor and the vision system are collected in experiments 
undertaken with obstacles in the soft robot path. The collected data is used via machine 
learning technique to obtain trained model that determines the robot state and obstacle 
location. 
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1 INTRODUCTION 

One of the key ingredients of any automation process is the sensing element. The more 
information provided by the sensors regarding the process variables, the easier it becomes 
to take into account parameters like disturbances, environmental interactions, which 
otherwise tend to make the control of a system difficult. Another benefit by sensors is 
safety. Sensors are deployed in almost every field like medical, industrial, space, 
agriculture, IOT, robotics, smart transportation etc. This research aims the study of sensor 
in the field of soft robotics. 

Soft robotics brings a shift to our imagination of robots being just the rigid body links. 
Soft robotics is a field of study of using soft materials, soft sensors to build up flexible 
manipulators[1]. The principle is inspired from the animals, plants and humans in terms 
of their compliance and ease of interaction with the environment[2]. “It provides a means 
of safer interaction with humans and unstructured environments”[3]  The below Figure 
shows the visible difference between rigid robot and soft robot. 

 

 

Figure 1: Traditional robot Vs. Soft robot [4][5] 
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The selection of materials for soft robot is such that it does not harm or impair the objects 
it handles. This makes rubber, silicone and polymeric materials as valid choices  [6]. The 
materials have the ability to resemble features of biological organisms having Young’s 
moduli as 104-109 Pa[8].This gives the advantage over traditional robot, of being able to 
deform and adapt easily to the object with which it interacts. Raphael et al. describes the 
benefit of grasping wide variety of objects due to the compliance property that is inherent 
in the material [9].  

The soft robots tend to bend, elongate, contract, stretch based on its physical structure. 
There are different types of actuators to enable the above states like PneuNets actuator 
comprising of elastomer with various lengths chambers [10], Fiber-reinforced actuator 
having inextensible winding of fiber around it [11], McKibben muscles made up of tube 
with braids around it [12], Dielectric Elastomers actuate as a response to the electric field 
[13]. 

The wide scope of soft robotic applications include developing octopus shaped robot [14], 
soft hands for hand rehabilitation [15], artificial eyelid closing using soft exopatch [16] . 
An interesting example for hand rehab using VR is presented by youGrabber[17]. A 
similar kind of approach is been used in soft robot hand rehab applications. The soft robot 
provides more advantageous in a case where a pressure can be applied on the patients 
hand using soft robot, which is not possible with the youGrabber.  One of the most recent 
ongoing studies by Harvard is the pumping of heart for heart failure patients using the 
soft robot sleeve around heart [18].  

There is also commercial manufacturing company for soft robots named Soft robotics 
Inc. introducing soft robotic grippers for applications in the food and beverage industries 
in order to handle delicate food items [19] . 

The soft robot studied in this research is a fluidic soft robot as shown below in Figure 2. 
The soft robot is wound with fibers around it and thus its type is fiber reinforced soft 
robot. The material of the robot is PDMS which was selected out of many other materials 
as it provides higher bending angle.The actuator consists of one side as extensible and the 
other side inextensible. Based on its anisotropic structure a stress is developed in the soft 
robot when it is pressurized or depressurized with fluid which results into the bending. 
An assumption is made for the soft robot to be of constant curvature type for modeling 
and sensing. 
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Figure 2: Fluidic soft robot used in the research 

 

The important three areas of research related to soft robotics are material of the actuator, 
actuation methods and sensing [1]. One of the targets of this thesis is to select an 
appropriate curvature sensor for the soft robot. 

1.1 Need of Sensor & Challenges in Sensing 

In the traditional robots, there are fixed number of joints and DOF’s ranging between 2 
to 6 based on the robot type. The kinematics is defined by assigning links and frames on 
every joint and using certain mathematical methods to find the robots position and 
orientation or the joint angles. One of the most common approaches is using the Denavitz 
Hatenburg convention. Unlike this, the soft robots have large number of DOF. 
Additionally, the material used to manufacture the soft robot has a non-linear property. 
These reasons make it challenging to create an accurate model which can be used to 
determine robot state. However, there are other approaches to modeling which exploit the 
concept of Piecewise constant curvature used for continuum type of manipulators. 

According to the literature, the continuum robot is made up of many sections which are 
linked serially and have many DOF’s [20]. A specific case of this can be seen in Hannan 
and Walker describing the kinematic modeling for elephant trunk manipulator and which 
can also be used for other continuum manipulators [21]. The same theory can be applied 
to the soft robots. It is assumed that for a robot to be following the constant curvature 
concept it should have certain number of fixed curved links. The below Figure 3 shows 
the overview of transformations in a piecewise constant curvature case. 
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Figure 3: Kinematics in a constant curvature robot[20] 

 

The actual length of the soft robot is used to determine the configuration parameters 
which are curvature k, bending angle Ɵ, length of the section l. ‘r’ is the radius of 
curvature. Then the configuration parameters are used to find the tip position as shown in 
below diagram. 

 

                             

Figure 4: Finding tip position from arc parameters with PCC 
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Thus in the above case , the whole soft robot can be considered as 1 section and the sensor 
reading can be used to calculate curvature  and the bending angle, which can be used to 
calculate the tip position[20]. There are some assumptions of this PCC concept, which 
are needed to be considered. In case the soft robot is of larger size, then the soft robot is 
should be discretized into many fixed curvature sections consisting of sensor on every 
section. This would give the overall bend of the soft robot more accurate. 

There is an enormous research ongoing to develop appropriate soft sensor’s that provide 
the necessary position, force and other information depending on the type of sensor. A 
challenging part of this is that the sensor should benefit the compliance feature of the soft 
robot and not add as an additional weight and stiffness. This requires study of sensors that 
are thin, flexible, soft and can be easily integrated to the soft robot, providing tip and 
force information. There has been development of sensors of above-mentioned 
characteristics with almost all of them assuming a constant curvature bending.   

 

 

Figure 5: Summary of the soft robotics in general[21] 
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1.2  Research Objective 

The huge number of degrees of freedom  along with the material of the soft robot being 
non-linear , makes the modeling of the soft robot very challenging[1]. The modeling 
method inspired from continuum manipulators involves using the PCC concepts. The 
other approach is to use large number of curvature sensors on every small sections of the 
soft robot. Instead of adding large number of sensors and adding more complexity and 
weight, this thesis will address the problem of finding the state of soft robot by: 

1. Literature review and finding a suitable curvature sensor for the studied fluidic 
soft robot  

2. Perform experiments by introducing obstacles in the robot path and  collect the 
pressure sensor, curvature sensor and vision system data  to: 

a. Use the collected sensor data, to train a model that determines the 
soft robot state, with and without obstacle presence. 

1.3  Methodology 

 

• Study on commercial and developed curvature 
sensors

• Selection of a curvature sensor
Literature review

• Curvature sensor Calibration independent of soft 
robot

• Attaching sensor to the soft robot 
Sensor Analysis

• Placing obstacles at known locations along the 
sensor length and performing experiments

• Collecting curvature sensor, pressure sensor data, 
and soft robot tip position y data from vision

Obstacle based 
experiments

• Learning the data obtained from the experiments to  
find the tip position 'y' of the soft robot

• Using a model to identify when the obstacle is hit 
using the sensor data

Relationship between data
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2 THEORETICAL BACKGROUND 

Sensing choice demands a critical set of requirement solving phase especially in case of 
soft robotics. To find a promising solution the following literature review is done. 

Optical sensing using FBG (Fiber Bragg Grating) [22] is a very accurate and repeatable 
method of providing bidirectional sensing as per [23] . The principle here is based on the 
reflected wavelength and relies on the assumption of pure bending model. Thus, a map 
of curvature vs reflected wavelength is obtained by this method [23]. Although the 
manufacturing is not complex it doesn’t provide the sense of compactness due to the 
measurement setup hardware[24].  A disadvantage of FBG is a high temperature 
dependency as shown in [25]. Another optical method used consists of the sensor made 
up of a waveguide of stretchable polymer material and internally coated by a non-
stretchable reflective material with led and photodiode as source of light and receptor 
respectively. Deformation including stretch, bend or pressure results into the formation 
of micro-cracks in the reflective material causing loss of light. This provides the map of 
curvature/strain/pressure vs light intensity(converted to voltage) [26] 

Vision system can be used to obtain the tip coordinates of the soft robot as it offers a good 
accuracy in stationary applications. However, in mobile applications it is required to have 
an embedded sensor, which limits the use of vision system. The vision system still can be 
used as a ground truth (reference) for calibrating some other selected curvature sensor. 

Conductive ink sensor  is a type of sensor which is commercially available as well as can 
be manufactured. In this a conductive ink is printed on a polymer substrate for e.g. 
polyimide [27] . The principle is that the resistance increases as the sensor is either 
stretched or bent depending upon the ink and substrate. Suikkola et al. has discussed a 
single section stretchable sensor made up of silver ink printed on polyurethane substrate 
which was used as a strain measuring sensor and tested for a stretchable RFID tag [28] 
This sensor is fabricated using screen printing technique and will be tested in this thesis. 

The commercial option for this are Flex sensor from SpectraSymbol[29] and Bend 
sensor from Flexpoint [30]. Both the Flex and Bend sensor work on the same principle 
of increase in resistance as the sensor is bent, but are produced by different 
manufacturers. Bend sensor has more features in a sense that it can measure bidirectional 
bending, and has variety of laminate and substrate options. Flex sensor is robust, cheap 
and has a linear measurement output. But, it suffers from large hysteresis [31]. A 
comparison study in [32]proves bend sensor to be a repeatable and low hysteresis 
providing sensor. Moreover, it shows how only a bare sensor gives repeatable readings 
whereas the laminations provided for protection add to large decays in the measurement 
values. Another study with the bend sensor is where the bend sensor is embedded inside 



9 
 

 

a pneumatically actuated 3D printed soft gripper to identify the grasped objects [7] . Due 
to commercial availability and ease of attachment, it is considered to test both these 
sensors. 

 Jamie Paik et al. compares Conductive ink sensors discussed above and Conductive 
polymer composite sensors (CSC). Conductive Polymer sensor’s work on the same 
principle but they are manufactured by depositing conductive ink on rubber [33][34]. The 
results deduced through recoverable drift, transient response, and quasi-static response 
suggested Conductive ink polymers to be better than CSC sensors [35]. Additionally, the 
results observed that the harder polymer or base substrate for conductive ink polymers 
enables the conductive ink to regain its original position due to their higher elastic forces 
providing low hysteresis. 

Electro conductive yarn is one of the sensor where the steel fibre is used with certain 
material property, which causes the resistance to change as the fibre bends or elongates. 
Three electro conductive yarns are used here to calculate the tip pose of a pneumatically 
actuated soft robot[36] . This is a good candidate but challenging to embed in the studied 
fluidic soft robot. One possibility can be to attach the yarn around the fluidic robot and 
see the results. 

Two IMU sensor’s (reference at the base and other at tip ) are used by Mahdi et al for 
hand rehabilitation in a soft and rigid actuator which measures the angular velocity of 
fingertips which is then used after processing to determine the trajectory of finger tips  
[37]. This is a good sensor for hybrid applications but for soft robot, the signal 
conditioning circuitry and the IMU sensor itself can prove bulky.  

Further, Amir et al. proposed stretchable sensor made with meshed pattern of metal on 
constantan polyimide laminate, providing strain results as resistance changes [38]. A 
maximum stretch of 20% is observed for this sensor. This also requires a careful 
manufacturing process with care to be taken to avoid problems of over-etching and 
unreliable sensor readings which can be a result of not removing metal parts in bare 
areas.[38]  

The most interesting sensors discussed are the liquid metal-based strain sensors [39][40]. 
Among choices of different liquid metals, EGain prove to provide better results [40]. 
They have good accuracy, repeatable and linear characteristics. However, a very 
complicated manufacturing process due to the injection of liquid conductor into the 
channels[41][8]. The problems related to fabrication can be overcome by the methods 
described by [42] involving Mask deposition of the liquid metal. Additionally [43] 
describes a fabrication method wherein a 3D printer is specially built to directly  print the 
resistive carbon ink in the reservoir. 

There are other similar sensors like hydrogel and liquid carbon black sensors but the 
former suffers drift issues due to drying and in the later also the liquid carbon dries and 
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has to be replaced [44] [45] .  

Magnetic hall sensors for measuring curvature were also studied[46][47]. This proved to 
have good accuracy and linearity, with filtering required to eliminate noise. They are 
made up of a circuit of hall element and permanent magnet on flexible sheet, which 
produces a change in voltage with the change in distance between hall element and 
magnet. In order to use this sensor for measuring the curvature of the whole actuator a 
sensor of arrays is required. 

The below Table gives overview of the sensors discussed. 

 

Sensor 
name 

Type Repeatabil
ity 

Hysteresis Manufacturing 
method 

EGain Stretch Good High Complex 3D 
printing 

Hydrogel Stretch - - - 
IMU - Good - - 
Electrocon
ductive 
yarn 

Bend/Elon
gation 

83% 47% Complex to 
embed 

Optical 
sensor 

    

a)Led 
photodiode 

Bend reasonable Hysteresis 
present at 4 
mm/s 

Easy  

b) 
Bidirection
al FBG 

Bend High _ Standard FBG 
embedded in 
silicone rubber-
3D printing 

Magnetic 
sensor 

Stretch - Less Flexible 
electronics 

Bend 
sensor 

Bend High Low Commercially 
available 

Flex 
sensor 

Bend Low High Commercially 
available 

 

Table 1: Comparison based on important sensor characteristics 

 

 

From the literature it is observed that the type of sensor being bend or stretch is also 
important to know. The bending sensors can be attached only to the inextensible side and 
the stretch sensors to extensible side of the soft robot. As the grasping occurs on the 
inextensible side where the bend sensors are attached, it is important to attach them such 
that it doesn’t interfere with the task.  
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A study on the Glove Projects with specifically Flex sensors is done to understand the 
possibility of its applications. 

 

Project 
reference 

Application Brief explanation 

[48] Glove 
producing 
music 

Data from flex sensor, tilt sensor and distance 
sensor to produce sound 

[49] Mimicking 
human hand 

Using input from flex sensors on glove to 
control the robotic hand 

[50] Convert 
gestures by 
hand to speech 
for deaf people 

Data from flex sensors, accelerometer, 
gyroscope and compass is processed by arduino 
and sent via Bluetooth to mobile which 
translates text into speech 

[51] Used for VR The data from flex sensor is captured with 
National Instruments device to collect the 
values of flex sensor 

[52] Control a 
Remote Control 
car using glove 

The data from flex sensor, force sensor, 
vibration sensor and gyroscope is used to 
control the RC car 

 

Table 2: Glove projects with flex sensor 
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The literature review covers wide variety of sensors. The most important 
criteria/challenges observed from the review for the selection of the sensor include  

• application of the soft robot 
• type of actuator used 
• fabrication method of the sensor 
• availability of the equipment to manufacture the sensor 
• complexity added due to signal conditioning  
• measurement hardware required to get the final output 
• embedding the sensor 

Taking into account all the  above factors, the flex sensor from Spectra Symbol; bend 
sensor from Flexpoint; and silver ink stretchable sensor are selected as suitable candidates 
for the fluidic soft robot. 

The reason for selecting Flex and Bend sensor: 

• Commercially available 
• Simple voltage divider circuit for signal conditioning and getting final output 

The reason for selecting silver ink sensor: 

• Availability of manufacturing equipment 
• Simple voltage divider circuit for signal conditioning and getting final output 
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3 CURVATURE SENSOR ANALYSIS 

In this chapter, tests are performed with bend sensor from Flexpoint and silver ink 
stretchable sensor before finally confirming the choice of Flex sensor. 

Further, the calibration is done for the selected curvature sensor, independently as well as 
after embedding it to the soft robot. The curvature sensor reading is mapped to pressure, 
position and bending angle of the soft robot. 

3.1 Experimental Setup 

Actuation Mechanism and Controller 

The soft robot is actuated using a digital hydraulic drive system. The system comprises 
of a high pressure valve, a low pressure valve, reservoir system and storage tank. The 
medium of fluid used is water. The maximum pressure that can be provided by the system 
is 600kPa.  

The hardware used for the soft robot’s control is dSPACE MicroAutoBox. The working 
environment to perform operations on the hardware is provided by the ControlDesk 
software. The code for manipulating the soft robot is written in Matlab, which is linked 
to the HMI in ControlDesk. The output and ground wires from the curvature sensor and 
pressure sensor are connected to the input ports of the controller hardware. The 
communication is enabled via CAN. Hence, both the sensor readings can be measured 
and are visible on the ControlDesk HMI. The soft robot can be actuated manually by 
clicking the PA option to increase pressure by opening the high pressure valve, and AT 
to decrease the pressure by opening the low pressure valve. The robot can be actuated 
automatically by clicking the PWM option. Below Figure 6 shows the ControlDesk 
interface. 



14 
 

 

 

Figure 6: ControlDesk interface for controller 

Vision system 

 The ground truth calibration for the curvature sensor is done using a vision system. The 
vision systems helps for calibration of a large range of angles. A Go-pro camera is used 
for this purpose. The camera is placed on a tripod and the area where the tripod is placed 
on the ground is marked, so that next time the tripod can be placed at the same spot 
ensuring repeatability of experiments. The camera is turned ON and OFF using the Go 
Pro app on mobile phone. The camera is connected to the app through Wi Fi. This is done 
to ensure no hindrance to the camera location. A blue and green marker is placed at the 
base and tip of the robot respectively, and red markers cover the entire length of the 
actuator. The GoPro camera records the motion of the robot when it is actuated. The 
recorded video is then post-processed using a Simulink model. This model fits a circle to 
the points identified by the red markers, to calculate the chord length and radius, and thus 
finds the bending angle of the actuator. The model also provides the tip position(x and y 
co-ordinates in the 2D plane) of the soft robot. The Figure 7 below shows the robot with 
markers.  
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Figure 7: Calibration using the GoPro camera 

 

3.2 Testing Flexpoint and Silver Ink curvature sensors 

 

Two 3inches bidirectional un-laminated Flex point bend sensors were selected. The 
choice of bend sensor was due to its characteristics of  having low hysteresis and 
repeatability as observed in [32] One of the sensors was attached near base and the other 
at the tip. The readings obtained from the sensor were not reliable. Sometimes both the 
sensors would give similar voltage readings but in other set of experiments completely 
different. The reason was due to the wires coming out from end of the tip sensor and 
continuing on top of the other as below Figure 8. Further, the base of this sensor was 
wide causing difficulty to stick to the soft robot surface. Thus, this sensor was 
discontinued. 

 

Ɵ 
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Figure 8:Flexpoint bend sensor attached to soft robot 

The next sensor that was selected was the Silver ink stretchable sensor[28]. The principle 
of the silver ink stretchable sensor is that the resistance increases as the sensor is stretched. 
Hence, this sensor had to be attached to the extensible part. Attaching this sensor to the 
soft robot seemed very challenging. This was due to the polyurethane substrate of the 
sensor, which was very delicate. In order to provide useful readings the sensor should be 
wrinkle free. The windings of fibre on the soft robot and markers for camera calibration 
made it difficult to attach it appropriately. Moreover, the base of the sensor with the 
interface of the sensor to the wires was very fragile. The stretching of sensor created a 
tension at the interface. The sensor did not seem to show any appropriate results while 
testing. Thus, the use of the sensor was discarded. 

One way to overcome this problem could have been attaching some substrate to the base 
to give it more strength. Further, this sensor can be easier to attach in the soft actuators 
like the PneuNets where the surface is plain and free of windings.  

 

Wires causing hurdle 

 

Wide base 
area 
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Figure 9:Silver ink stretchable sensor 

The literature provided many sensor options. However, based on the studied fluidic fibre 
reinforced soft robot, the flex sensor proved to be a good choice because of following 
reasons: 

1. Commercially available at a cheap price  
2. The sensor doesn’t have temperature dependency like FBG optical sensor 
3. Thin and robust 
4. Easy to embed compared to other sensors 
5. Easy signal conditioning 
6. Provides linear result 

Throughout the thesis, the flex sensor will be termed as curvature sensor.  

 

3.3 Construction and working of flex curvature sensor 

The selected curvature sensor named as flex sensor is based on conductive ink coated on 
a plastic substrate from Spectra Symbol[29]. As the sensor is bent, the conductive 
particles inside shift further apart from each other, which causes the resistance to increase. 
The sensor length subtends a central angle, which is the bending angle.  The formula used 
is, 𝑠 = 𝑟 ∗ 𝑡ℎ𝑒𝑡𝑎, where ‘s’ is the length of the sensor which is constant(9.525cm),  ‘theta’ 
the bending angle(central angle), and  the radius of curvature is ‘r’.  

The sensor’s flat resistance and fully bent resistance are observed using multimeter as 
8.7kohms and 15 kohms respectively. The resistance is then converted to voltage using a 
simple voltage divider circuit. In order to obtain a good range of values, multiple values 
of static resistance like 12K, 15K, 18K, 22K, 47K are tried. The value of 10K proves to 
give appreciable range of readings. 

 

 

Fragile connection 
to base 
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3.4 Independent sensor calibration with 3D setup  

The curvature sensor is calibrated using a 3D printed curvature setup as shown in Figure 
10  providing curvatures for angles corresponding to 30◦ - 90◦ as 0.05cm-1 to 0.165cm-1 

respectively.  The calibration setup was 3D printed using a MakerBot printer. Arduino 
microcontroller Atmega 2560 is used to perform initial tests on sensor. A simple Arduino 
code gives the resistance and voltage values when the sensor is being placed on different 
curvatures of the setup. The aim of using 3D printed setup is to test the sensor solely. 
Later on the sensor is attached to the robot and again the 3D printed setup is used to repeat 
calibration on soft robot. The motive of using the 3D set up is to obtain a second 
verification to the vision system and consider the manufacturing effect of sensor.  

 

Figure 10: 3D printed setup for calibration 

The curvature sensor reading vs Bending angle map is plotted in Matlab as shown in 
Figure 11. A linear function is obtained which is, 𝑉 = 0.007 ∗ Ɵ + 2.3. Further sensor 
vs curvature is plotted which is, = 3.8 ∗ 𝑘 + 2.3 . 

Where, k is the curvature. 
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Figure 11: Bending angle Vs Sensor voltage map 

 

3.5 Attaching sensor to soft robot 

 

The next step is to attach the sensor to the soft robot. Attaching the sensor to the soft robot 
is challenging as the adhesive or the tape used to attach causes deviation in the true 
reading. For instance, the sensor was embedded fully inside the soft robot and a layer of 
rubber was coated around it. Although the sensor was providing some reading, the overall 
stiffness of the actuator increased and it did not provide the required bending. The below 
figures show the maximum bending which is very less. 

 

Figure 12: Describing the low bending due to embedding sensor completely inside the robot and coating it with rubber 
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Figure 13: Failed method to attach sensor as wounding the tape caused difficulty in appropriate sensor bending 

 

Figure 14: Correct attachment method for sensor 

After certain trials with different tapes, the sensor is attached using a  silicon double-sided 
tape to the inextensible side of the soft robot. Care is taken, such that the base of the 
sensor is appropriately attached, so that it should not break after multiple runs. 
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The soft robot is now actuated to 400kPa. The dspace controller records the curvature 
sensor reading and the internal pressure of the soft robot. 

The 3D setup is used again to verify if the sensor gives the same reading as earlier. The 
soft robot is actuated using the PA (increasing pressure) option until it bends according 
to the shape of the curvature on the 3D setup. This is done for all the curvatures of the 
setup. The results obtained were similar as compared to independent sensor readings 
confirming the attachment of sensor as appropriate.  

One of the challenges here was to synchronize the tip coordinate data obtained from the 
Go Pro camera. The reason is because; the Pressure and curvature sensor readings are 
collected from dspace, which is independent from the Simulink model, which processes 
GoPro video. Following steps were carried out to ensure proper collection of data: 

1. Connect the GoPro camera to the mobile app  
2. Press the recording option on ControlDesk HMI (recording measurement data i.e. 

curvature sensor and pressure sensor) and camera via mobile phone at the same 
time. 

3. Then enter the S.P. for pressure at 400kPa 

The below table summarizes this experiment: 

Sensor used Measured parameter Units 
Curvature sensor Raw sensor data Volt 
Vision system Soft robot tip y, Bending 

Angle 
mm, degree 

Table 3: Summary of sensor and measured parameters 

 

Figure 15: Map of Bending angle from vision (deg) vs curvature sensor reading (V) 
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Figure 16: Map of soft robot tip position y(mm) vs curvature sensor reading (V) 

The Bending angle vs curvature sensor reading and tip coordinate y of soft robot vs 
curvature sensor reading is been mapped completing the calibration of the soft robot. In 
this way, it is seen that the curvature sensor can be used giving information about how 
much the robot is bent via the bending angles and the tip of the position of the soft robot. 
This information can be used for appropriate control of the soft robot.  

However, the above information is valid only when the soft robot moves freely in 
environment without the presence of any obstructions. Chapter 4 and 5 will describe how 
the pressure and curvature sensor can detect the obstruction occurrence. 
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4 EXPERIMENTING EFFECT OF OBSTACLE ON 
PRESSURE VS CURVATURE SENSOR READING 

In this chapter, a number of experiments are performed by introducing obstacles in the 
path of the soft robot movement. The aim of this is to see how the curvature sensors’ 
readings and internal pressure of the soft robot is affected when an obstacle appears along 
its path. The idea is to determine if the pressure sensor and the curvature sensor is able to 
detect the obstacle hit. Due to the obstacles coming in the way, the soft robot will not 
follow the ideal constant curvature path and will instead exhibit variable curvature. This 
chapter will highlight on what is the trend of the change in sensor readings depending on 
obstacle location. This would build the idea for the next chapter to model the trend of 
change in the different sensors behavior to obstacle location. 

4.1 Experimental setup 

The setup comprises of the soft robot attached with the curvature sensor on its 
inextensible part as in the previous sensor study. The obstacle is selected as a screw. Holes 
are drilled at different locations on a white board, which is hung behind the soft robot. 
The hole/obstacle locations are named as base, mid, tip with base location being the 
closest to the base of the soft robot and tip towards the tip of the robot and the end of the 
curvature sensor. A screw is fitted every time inside the hole locations, base to tip and 
its effect on the different sensors used in this experiment are noted. The obstacles are 
placed along the length of the curvature sensor and not after the sensor ends. The Figure 
17 below shows the experimental setup. 
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Figure 17: Soft robot with the obstacle locations 

 

Obstacle name Obstacle y coordinate(mm) 

Base -75 

Mid -88 

Tip -110 
 

Table 4: Obstacle location y coordinate 

4.2 Preliminary tests 

Initially some short preliminary tests are performed without the obstacle. The aim is to 
control the curvature sensor reading. Hence, the curvature sensor reading is the controlled 
variable and the fluidic pressure which bends the soft robot is the manipulated variable. 
The Set point for curvature sensor is set at 2.596V for the first experiment and 2.730V 
for the second. After the first Set point is entered through the ControlDesk interface, the 
fluidic pressure keeps on increasing until the desired S.P. of the curvature sensor voltage 
is reached.  The value of the pressure at which the desired S.P. is achieved is noted down. 
The soft robot is then de actuated and the same experiment is repeated for the second S.P. 
reading of the curvature sensor.  

After this, a screw is fit into one of the obstacle locations. The same previous experiments 
controlling the curvature sensor voltage with the two S.P. values are repeated and the 
values of fluidic pressure to reach this S.P.’s now in the presence of obstacle are recorded. 

base 

mid 

tip 

 



25 
 

 

Table 5 shows the pressure required to reach both these desired values of the curvature 
sensor for ‘Free’ and ‘Obstacle’ cases. 

 

The comparison of both the cases show that the internal pressure of the soft robot is 
increased due to the introduction of the obstacle. Thus, explaining that a higher pressure 
is required to reach the same curvature sensor reading when there is an obstacle along 
the path of soft robot. This gives an idea that the pressure and curvature sensor would 
produce a visible change on encountering obstacle.  

In all of the experiments performed below, the soft robot is made to reach a desired S.P. 
pressure of 400kPa. This is enabled using a pressure feedback. The reason to keep the 
same pressure is to obtain a benchmark to compare the soft robot bending in free case and 
bending in obstacle scenarios. Another reason is to see what happens to the pressure at 
the instant the obstacle is hit.  

4.3 Sensor Mappings for Obstacle free case 

 Initially, the soft robot is actuated freely without the presence of an obstacle, and the 
internal pressure and the curvature sensor reading is recorded. 

The below graph shows the curvature sensor vs pressure relation when actuated freely. 

 

Figure 18:  Pressure(kPa) vs Curvature sensor reading(V) 

Curvature sensor 
reading(V)  

Pressure(kPa) 
FREE CASE 

Pressure(kPa) 
OBSTACLE CASE 

2.596 350 400 

2.730 450 568 

Table 5: Preliminary test for voltage and pressure in free and obstacle case 
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Figure 19: Curvature sensor reading vs time in free case 

 

Figure 20: Pressure vs time 

 

The readings are very noisy. Both the individual graphs of pressure vs time and curvature 
sensor time show the presence of noise in both sensors. Further, the noise is also due to 
the vibrations in the soft robot while it tries to reach the Set Point pressure of 400kPa. 
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4.4 Sensor Mappings in presence of Obstacles 

In this step, the obstacles are introduced one by one starting from base location on the 
white board until the tip. The soft robot is then actuated and maintained at the desired 
pressure of 400kPa similar to the free case experiment. At the beginning of every 
experiment, the soft robot is fully de-actuated. The below Figures 21, 22, 23 describe the 
bending of the soft robot with all the obstacle cases. 

 

 

 

 

Figure 21: Soft robot in presence of base obstacle 

Constant Data Recorded Data Experiments 
Pressure_- 400kPa Curvature sensor, pressure 

sensor, soft robot tip ‘y’ 
from vision system 

Free case 
Base, Mid, Tip obstacle 
cases 

Table 6: Summary of experiment 

Low curvature section 

High curvature section 

base 
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Figure 22: Soft robot in presence of mid obstacle 

mid 
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Figure 23: Soft robot in the presence of tip obstacle 

 

When the obstacle is hit, the soft robot no longer bends uniformly or in a constant 
curvature shape. The curvature is higher at the point of contact of the obstacle, whereas 
the other part of soft robot has less curvature. In this scenario the soft robot no longer 
complies with the piecewise constant curvature theory. Thus, the comparison with free 
case as shown in Figure 24, 25, 26, 27 shows the instance at which the obstacle is hit.  

 

 

tip 



30 
 

 

 

Figure 24:  Pressure (kPa) inside soft robot vs Curvature sensor reading (V) 

 

 

 

Figure 25: Deviation of base obstacle sensor values w.r.t free case 
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Figure 26:Deviation of mid obstacle sensor values w.r.t free case 

 

Figure 27:Deviation of tip obstacle sensor values w.r.t free case 

 

The graph for base and mid deviates from the free case at 208kPa, and for tip at 88kPa. 
The base and mid follow almost similar trend as the obstacle locations are closer to each 
other. Moreover, the curvature sensor is unable to reach to the voltage as in free case. 
There is a decrease in curvature sensor reading as the obstacle location moves towards 
the tip of the curvature sensor.  Again, this is because the section of the soft robot below 
which the obstacle is hit, has more curvature and the section above has low curvature. 
Hence, the overall curvature is reduced compared to free case.  
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 Pressure 
KPa 

Curvature 
sensor 
reading(V) at 
400kPa 

Pressure at 
deviation 
(kPa) 

Curvature 
sensor 
reading at 
deviation(V) 

FREE 400 2.762 - - 
BASE 400 2.661 208 2.457 
MID 400 2.606 208 2.455 
TIP 400 2.478 88 2.326  

 

Table 7: Important observations from experiments 

 

If the obstacle hits the soft robot at location y=-75mm (base); it will follow the trend 
shown in graph in Figure 25, for location y=-88mm (mid) it follows the trend in Figure 
26; for location y=-110mm (tip) it follows the trend in Figure 27 

It is clear from the experiments that it is possible to detect the obstacle hitting in a soft 
robot with the help of pressure sensor and curvature sensor. To benefit from this, the next 
chapter describes a model to learn these trends and predict the obstacle.  

 

 

 

 

 

 

 

 

 

Constant Data Recorded Data Experiments 
Pressure_- 400kPa Curvature sensor, pressure 

sensor 
Free case 
Base, Mid, Tip obstacle 
cases 
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5  MAPPING AND CLASSIFYING SENSOR DATA   
BASED ON OBSTACLES WITH MACHINE 
LEARNING 

The experiments performed in the previous chapter showed that the pressure and 
curvature sensor values change in a certain way after the soft robot encounters the 
obstacle.  

In this chapter, the sensor values collected previously are learnt using existing Machine 
learning algorithms to determine the obstacle detection through two ways. 

1. To predict the soft robot tip position y, given the curvature and pressure sensor 
values for all obstacle cases 

2. To predict which obstacle location is hit given the curvature and pressure sensor 
values for all obstacle cases 

 The limitations and possibilities utilizing these algorithms in order to reliably predict 
obstacle detection is discussed.  

5.1 Mapping curvature and pressure sensor to robot tip y 

It is expected to use an algorithm, that is able to learn the trend that is followed by the 
soft robot tip y, whenever any obstacle is encountered in its path. For this, a Neural 
Network tool (nntool) in Matlab is used. The input data, target data and test input data are 
imported into the Neural network data manager. The curvature and pressure sensor 
readings are treated as input data comprising of 15076 observations, including the three 
obstacle locations cases and free case (tip, mid, base, free). The y coordinate of the soft 
robot tip position obtained from the vision system is treated as the target data. The 
below Figure 28 describes the dataset. 
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The above Table 8 describes the necessary Network properties which are chosen. This 
results into a creation of network model as below which is trained with the dataset. 

 

Figure 29:  View of the created network model 

Next, all of the 4 test cases consisting of curvature sensor and pressure sensor reading for 
base, mid , tip , free are given one after another to the trained model. Below graphs are 
the results obtained. 

 

Neural network type Feed-forward 
backpropagation 

Training function Levenberg-Marquadt 
backpropagation 

Number of neurons 12 
Table 8: Neural network properties selected 

Curvature 
sensor 

Pressure sensor 

INPUT 

Neural 
Network 
Model 

TARGET 

Soft robot tip 
Position Y 

Figure 28: Description of data given to neural network 
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Figure 30: Target data for base obstacle vs Predicted data  obtained 

 

Figure 31: Target data for mid obstacle vs Predicted data  obtained 

 

Figure 32: Target data for tip obstacle vs Predicted data  obtained 
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Figure 33: Target data for free case vs Predicted data  obtained 

It is seen that the network is able to predict the soft robot tip position for all of the obstacle 
cases. However, there is noise in the prediction which is due to noise present already in 
the sensor inputs. The reduction in the noise and giving the training data part by part can 
improve the prediction. 

The trained model can be implemented in the controller. By giving real time inputs of 
curvature sensor and pressure sensor to the trained model, it will be able to predict the 
soft robot tip position y, which can also be verified from the ground truth vision system. 

5.2 Finding Instance of Obstacle Touch 

In order to choose an appropriate machine algorithm tool it is necessary to define the type 
of problem. In this case, the algorithm should be able to learn the trend . Thus, a pattern 
is to be identified for the different sensor readings corresponding to a particular type of 
obstacle location making this a pattern recognition problem. The Classifier app in Matlab 
rightly serves the purpose. This app comprises of various classifier models, which can be 
trained to classify the data as required. 

5.2.1 Training the sensor data 

The curvature and pressure sensor readings recorded earlier are used as training data. 
These readings are stored in a workspace variable ‘inputData’. After this, another 
variable is created named ‘targetData’ where the associated classifying label is put. The 
obstacle location ‘coordinate y’ is used as the classifying label. After this, the values in 
inputData and targetData are converted into table and stored in a variable ‘detectHit’. The 
dataset comprises 179442 observations each of free, base, mid, tip making a total of 
717768 observations.  
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Workspace variable name Data stored 

inputData Curvature sensor reading, pressure sensor 
reading 

targetData Obstacle location coordinate y in mm 

Base Mid Tip 

-75mm -88mm -110mm 

detectHit Table that stores the whole dataset 

  
 

Table 9: Data given to  Classifier model for learning 

 

Column 
Number 

Curvature sensor 
reading 

Pressure sensor 
reading 

Class label 

1 Vfree Pfree -19 
2 Vfree Pfree -19 
3 Vfree Pfree -19 
. . . . 
. . . . 
. . . . 
 Vbase Pbase -75 
 Vbase Pbase -75 

179442 Vbase Pbase -75 
179443 Vfree Pfree -19 

 Vfree Pfree -19 
 Vfree Pfree -19 
. . . . 
. . . . 
. . . . 
 Vmid Pmid -88 
 Vmid Pmid -88 

358884 Vmid Pmid -88 
358885 Vfree Pfree -19 

 Vfree Pfree -19 
 Vfree Pfree -19 
. . . . 
. . . . 
. . . . 
 Vtip Ptip -110 
 Vtip Ptip -110 

538326 Vtip Ptip -110 
538326 Vfree Pfree -19 

 Vfree Pfree -19 
717768 Vfree Pfree -19 

 

Table 10: Division of the dataset given to the Classifier model 

 



38 
 

 

The table is loaded into the classifier app, which selects the predictors and responses. In 
this case, the curvature sensor and pressure sensor readings are used as predictors and the 
obstacle y coordinates as response. 

 

Figure 34: Selection of predictor and response 

 The scatter plot appears once the session is started. Figure 36 shows the plot of Pressure 
(inputData1) vs Curvature sensor reading (inputData2).  

 

 

 

Figure 35: Scatter plot for pressure vs curvature sensor voltage 
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Now, there are different classifying model options, which can be chosen. To find the best 
option All Quick train is selected which applies all the models and the best one is selected 
depending on the accuracy. In this, the classifying model giving the best accuracy is 
Coarse KNN model as shown below.  

 

Figure 36: Selected classifier model  

The efficiency of this classifier can be understood through the confusion matrix and 
ROC curve. The confusion matrix shows how much percent of readings are misclassified 
and classified for a particular class. The green boxes show correctly classified readings 
and pink show incorrect ones. From the Figure it is observed that the mid and base are 
classified with almost similar %, whereas the tip dataset is classified 98% correctly. The 
interpretation of ROC is that, the more the curve is towards the left corner and in 90 deg 
the more correctly is the data classified. The ROC  Figures show that the model gives the 
best classsification for tip dataset.  

 

Figure 37: Confusion Matrix 
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          Figure 38: ROC for free obstacle 

 

 

Figure 39: ROC for base obstacle 
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Figure 40: ROC for mid obstacle 

 

 

Figure 41: ROC for tip case 
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5.2.2   Testing data on trained model 

The below function obtained is used to check the test data.  

 yfit = trainedModel_obstacleDetection.predictFcn(detectHit) 

where, 
trainedModel_obstacleDetection = the trained classifier model which is used to train 
new data 

On running the trained model the answer is stored in the variable yfit.For testing purpose 
the same data for three obstacle cases(base, mid, tip) is considered. Initially the curvature 
and pressure reading for base case is given as test data input to observe the resulting 
predicted data of obstacle location. The same test is repeated next time for mid and then 
for tip case. The obtained results of the trained model for all the cases are explained 
through graphs below. 

The below Figure 42 shows the output plot obtained from trained model on giving the 
curvature and pressure data as input for base case. The target data for base case comprises 
of 19.9 % free data and 80.7% data after the obstacle is hit. The numbers in circle are 
markers used to explain the reasons for the  different sections of obstacle locations 
observed. 
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Figure 42: Target data vs predicted data for base obstacle location y (-75 mm) 

 

 

 

Figure 43: Reference to identify the overlap areas 
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By analyzing the above two Graphs the below Table is deduced. 

 

Markers Target 
location 

Predicted 
locations 

Reasons for deviation 

1 to 2 -19mm -19mm, 
-110mm 

The region 1 to 2 is free but tip values appear 
because it overlaps tip obstacle target values 

2 to 3 -19mm -19mm This shows that the tip obstacle no more 
overlaps, and now the graph continues to follow 
the free case 

4 -75mm -19mm, 
-75mm 

The instance where the obstacle is hit 

4 to 5 -75mm -19mm, 
-75mm, 
-88mm 

Even after obstacle is hit it takes some time for 
the sensor readings to change 
During this period, the graph follows the free 
case and overlaps with the mid obstacle target 
values 
 

5 to end -75mm -75mm After this point the base obstacle can be reliably 
detected 

 

Table 11: Analysis for predicted base  obstacle data 

It is observed from the above Table and Figure, that the base obstacle detection is 
predicted after 57% of the obstacle detected data is crossed. 

The below Figure 44 shows the output plot obtained from trained model on giving the 
curvature and pressure data as input for mid case. The target data for mid case comprises 
of 17.2 % free data and 82.7% data after the obstacle is hit.  
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Figure 44: Target data vs predicted data for mid obstacle location y (-88 mm) 

 

 

 

 

 

 

Figure 45: Reference to identify the overlap areas 
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By analyzing the above two Graphs the below Table is deduced. 

Markers Target 
location 

Predicted 
locations 

Reasons for deviation 

1 to 2 -19mm -19mm, 
-110mm 

The region 1 to 2 is free but tip values appear 
because it overlaps tip obstacle target values 

2 to 3 -19mm -19mm This shows that the tip obstacle no more overlap, 
and now the graph continues to follow the free 
case 

4 -88mm -19mm, 
-88mm 

The instance where the obstacle is hit 

4 to 5 -88mm -19mm, 
-75mm, 
-88mm 

Even after obstacle is hit it takes some time for 
the sensor readings to change 
During this period, the graph follows the free 
case and overlaps with the base obstacle target 
values 
 

5 to 6 -88mm -88mm, 
-75mm 

Now, there is no more free case overlapping 

6 to end -88mm -88mm After this point the mid obstacle can be reliably 
detected 

Table 12:  Analysis for predicted mid obstacle data 

It is calculated from the above Graph, that the mid obstacle detection is predicted after 
51% of the obstacle detected data is crossed.   

The below Figure 46 shows the output plot obtained from trained model on giving the 
curvature and pressure data as input for tip case. The target data for tip case comprises of 
2.2 % free data and 97.7% data after the obstacle is hit.  
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Figure 46: Target data vs Predicted data for tip obstacle y (-110mm) 

                    

 
 

 

 

Figure 47: References to identify overlap areas 
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By analyzing the above two Graphs the below Table is deduced. 

Markers Target 
location 

Predicted 
locations 

Reasons for deviation 

1 to 2 -19mm -19mm The region 1 to 2 is free 
3 -110 -19mm, 

-110 
The instance where the obstacle is hit 

3 to 4 -110mm -19mm, 
-110mm 

The graph follows the free case for some time 

4 -110mm -110mm After this point the tip obstacle can be reliably 
detected 

Table 13:  Analysis for predicted tip obstacle data 

 

It is calculated from the above Graph, that the tip obstacle detection is predicted after 
16% of the obstacle detected data is crossed.   

Obstacle name Percent of target obstacle 
values after which 
predicted data can be 
reliably detected  

Base 57% 
Mid 51% 
Tip 16% 

 

Table 14: Probability of getting reliable data for each obstacle case 

The analysis done for the predicted data obtained for the different test cases gives 
following inferences: 

1. The more the obstacle towards the tip, more are the chances of obtaining reliable 
information about hitting. 

2. Because the base and the mid obstacle locations were just 13 mm apart, the 
readings were almost similar causing the overlap of data  

3. The other reason for the overlap of data is the noisy readings from the sensor 
4. In case of reduction of noise in the curvature sensor data and the pressure sensor 

the overlap can be reduced and it is possible to detect the smaller gaps in the 
obstacle locations as 13mm for mid and base in this case 

5. The changes in the sensor values after the obstacle hit are not abrupt. The values 
follow the free case for certain time as shown by the percentages above before 
actually showing a visible change. 
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6 CONCLUSION 

The aim of this research was the study of sensor to determine the state of the fibre 
reinforced fluidic soft robot. The large DOF and non-linear material property makes it 
difficult to model the soft robot, unlike the traditional robot counterpart. It was understood 
from the literature studies that the soft robots position is determined using the PCC 
concept. However, if the robot is desired to be having non-constant behavior then it would 
be required to attach sensor at every section of the robot. This can lead to embedding 
challenges and add more weight to the robot.  Instead, this research tried to solve the 
problem by learning the sensor data through machine learning algorithms. For this, 
initially an extensive literature study was done for the curvature sensors. There were many 
good sensors but they were either difficult to manufacture or difficult to attach to the soft 
robot. The factors important for soft robot sensing were identified as application of use, 
material and fabrication method of the soft robot, actuator type, embedding,  and signal 
conditioning effect. Considering these factors flex sensor(SpectraSymbol) , bend 
sensor(Flexpoint) and silver ink stretchable sensor were tested.  The bend sensor and 
stretch sensor added difficulties in attachment due to the signal conditioning (wires 
&wide base) and sensor construction (fragile base). Hence, it was decided to use the 
commercially available flex sensor as a curvature sensor for the studied robot because of 
its lightweight, robustness, cheap and possibility of appropriate attachment.  

After this, the curvature sensor is calibrated for bending angle & soft robot tip y (both 
from vision system)vs curvature voltage. Later, experiments are performed for the soft 
robot using a screw drilled into a board as obstacle. There are four cases with one being 
free soft robot movement and the other with different obstacle locations named as base, 
mid, tip along the curvature sensor length.  The readings of pressure from the pressure 
sensor inside the soft robot, curvature sensor reading and the soft robot tip coordinate y 
from the vision system are collected. The plots of pressure vs curvature sensor reading 
for all these four cases shows that there is possibility to identify the presence of obstacle 
in the path of soft robot. The change in the sensor readings is not abrupt and every case 
continues to follow the free case before showing visible changes. Machine learning 
models are used to learn this data. 

In order to do this two ways are discussed. In one method, Neural network is used to 
predict the soft robot tip position ‘y’, given the curvature and pressure sensor reading as 
input. The network model is able to determine the tip positions for all the four cases, but 
with presence of some noise.  In second method, Classifier app from Matlab is used to 
identify at what instance the obstacle is hit and which is that obstacle location. It is 
observed that the tip data is classified 98% correctly. This also reflects when the three test 
cases of base, mid, tip are tried. The base data is recognized after 57% of sensor data is 
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already crossed. Mid data can be recognized after 51%. However, the tip shows best 
efficiency of being recognized with 16% data crossing after obstacle is actually hit.  

The clear reasons are that because mid and base are placed very closely they follow almost 
the same trend. This suggests that if any application requires the presence of some 
obstacle at closer location the flex sensor would be not an appropriate option as a 
curvature sensor. Although if the obstacles are located at appreciable distance apart for 
e.g. the base and the tip case only, then flex sensor can work as a good sensor. 

The vibrations in the soft robot during actuation if minimized can result into finer values 
from pressure sensor data. Further, noise reductions in the curvature sensor can result into 
finer curves enabling less overlap of data after the obstacle is hit. By considering more 
number of obstacles along the length, the analysis can be done more better. The 
alternative Mask deposition technique [42] in EGaIn fabrication can be a good candidate 
for curvature sensor.  

Application wise, same experiments can be applied to a soft robot for hand. Soft robot 
hand with sensors embedded can be tested on a 3D printed hand resembling the patient 
hand. The screw used in the experiments done in this thesis can be considered as the 
knuckles of the hand. Similar experiments as performed here can be carried out to find 
the sensor values for each digit of the hand by opening and closing it. Each digit would 
give sensor value based on the knuckle position.  A vision system can be used for the 
position calibration. 

The research carried out gives a way to analyze the soft robot, where there are known 
obstacle scenarios for which experiments can be carried out to learn a model and the robot 
state can be determined. 
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