
JAAKKO PASANEN
NATURAL LANGUAGE SYNTACTIC PARSING WITH NEURAL
NETWORKS

Master of Science thesis

Examiner: Prof. Ari Visa
Examiner and topic approved on
1st November 2017

I

ABSTRACT

JAAKKO PASANEN: Natural Language Syntactic Parsing with Neural Networks
Tampere University of Technology
Master of Science thesis, 43 pages, 0 Appendix pages
November 2017
Master’s Degree Programme in Automation Technology
Major: Learning and Intelligent Systems
Examiner: Prof. Ari Visa
Keywords: Natural Language Processing, Syntactic Parsing, Neural Networks, Deep
Learning

Conversational user interfaces have made strong appearance during the last couple
of years. Most growth with conversational UIs can be seen with customer service
moving from phone to chat. As big as the hype surrounding the conversational user
interfaces is, they often cannot surpass traditional alternatives for the use cases they
are used without actually understanding the language user speaks. This has crated
a large demand for artiicial intelligence (AI) which can understand users in their
natural language.

Natural language used by humans is tremendously complex without people actually
realizing that. Understanding something this complex often requires system which
divides the problem into smaller sub-problems and tries to tackle those, a divide and
conquer paradigm. Natural language processing tools are often built as pipelines
where more information is mined from the text in each step. Finding syntactic
features, such as part of speech and lemma, is one such step, and is the focus of this
thesis.

Main objective for this thesis was to build a neural network architecture which can
classify lemmas and parts of speech for the input text. Research hypothesis was
then to determine if such architecture could be modiied to do the both tasks at
the same time and if such change would improve classiication performance of the
model.

Doing experiments with Finnish Universal Dependencies dataset revealed that lemma-
tization beneits from jointly learning to POS-tag, but POS-tagging performance
could not be improved. Best absolute lemmatization results were gained by using
correct POS-tags as input features, but since they are not available for live predic-
tions the result has no practical meaning.

II

TIIVISTELMÄ

JAAKKO PASANEN: Luonnollisen kielen syntaksin parsiminen neuroverkoilla
Tampereen teknillinen yliopisto
Diplomityö, 43 sivua, 0 liitesivua
Marraskuu 2017
Automaatiotekniikan koulutusohjelma
Pääaine: Oppivat ja älykkäät järjestelmät
Tarkastajat: Prof. Ari Visa
Avainsanat: Luonnollisen kielen käsittely, syntaksin parsiminen, neuroverkot, syväoppi-
minen

Keskustelevat käyttöliittymät ovat nousseet vahvasti perinteisten käyttöliittymien
rinnalle viimeisen parin vuoden aikana. Suurin kasvu tällä hetkellä on nähtävissä
asiakaspalvelun siirtymisessä puhelimesta chattiin. Vaikka hype keskustelevien käyt-
töliittymien ympärillä on valtavaa, eivät ne useinkaan pysty päihittämään perintei-
siä käyttöliittymiä ilman että käyttäjää ymmärretään tämän omalla kielellä. Tästä
on syntynyt suuri kysyntä tekoälylle joka ymmärtää käyttäjiä heidän luonnollisella
kielellään.

Ihmisten käyttämä luonnollinen kieli on valtavan monimutkaista ilman että ihmiset
useinkaan ymmärtävät sitä. Näin monimutkaisen asian ymmärtäminen usin vaatii
että ongelma jaetaan pienenpiin osaongelmiin ja pyritään ratkaisemaan ne. Työ-
kalut luonnollisen kielen käsittelyyn rakennetaan usein sarjaksi askelia joista jokai-
nen kaivaa lisää informaatiota tekstistä. Syntaktisten piirteiden, kuten sanaluokkien
ja perusmuotojen, etsiminen on yksi tällainen askel ja onkin tämän opinnäytetyön
painopiste.

Ensisijainen tavoite tälle opinnäytetyölle oli rakentaa neuroverkkoarkkitehtuuri jo-
ka pystyy luokittelemaan sanoille sanaluokat ja perusmuodot. Tutkimushypoteesi
oli selvittää voiko arkkitehtuurin muokata sellaiseksi että se suorittaa molemmat
tehtävät samanaikaisesti ja saavutetaanko muutoksella parannus verkon suoritusky-
kyyn.

Suomenkielisellä Universal Dependencies datasetillä tehdyt kokeet paljastivat että
perusmuotojen luokittelu hyötyy samanaikaisesta sanaluokkien luokittelusta, mutta
kuitenkaan suorituskykyä sanaluokkien luokitteluun ei pystytty parantamaan. Pa-
ras absoluuttinen tulos perusmuotojen luokittelulle saavutettiin käyttämällä oikeita
sanaluokkia lisäpiirteenä verkolle, mutta koska täysin oikeita sanaluokkia ei ole käy-
tettävissä todellisessa tilanteessa ei tällä tuloksella ole juuri käytännön merkitystä.

III

PREFACE

This thesis was done at ultimate.ai, a customer service software company, as part
of ongoing research into natural language understanding during 2017.

I would like to thank my examiner professor Ari Visa for his guidance and valuable
feedback in formulating the hypothesis, selecting thesis scope and writing process.

Tampere, 13th November 2017

Jaakko Pasanen

IV

CONTENTS

1. Introduction . 1

2. Natural Language Processing . 3

2.1 Feature Engingeering in NLP . 4

2.2 Word Embeddings . 5

2.2.1 Character to Word . 7

2.3 POS-tagging . 9

2.4 Lemmatisation . 10

3. Experiements on Joint Model for POS-tagging and Lemmatization 12

3.1 Neural Network Architechture . 14

3.1.1 Lemmatizations as Classiication Only Task 15

3.1.2 Word Embedding Component . 16

3.1.3 Context Encoding Component 18

3.1.4 Classiication Component . 21

3.1.5 Training and Optimization . 23

3.2 Experiments . 27

3.3 Test Methods . 29

3.4 Results . 31

4. Discussion . 34

4.1 Assumptions and Simpliications . 35

5. Conclusions and Proposals for Future Research 40

Bibliography . 44

V

LIST OF ABBREVIATIONS AND SYMBOLS

ANN Artiicial Neural Network
CPU Central Processing Unit
GPU Graphics Processing Unit
MLP Multi-layer perceptron
NLP Natural Language Processing
POS Part-of-speech; also called lexical category
RNN Recurrent neural network
UI User Interface

1

1. INTRODUCTION

Understanding human language is perhaps the most rewarding problem to solve
in artiicial intelligence and machine learning. In the era of the internet almost all
information is available anywhere, anytime. The problem with information available
in the internet is that it is in largely machine incomprehensible format, natural
human language. The prospect and implications of having such computer system
which understands human language and can thus process the enormous knowledge
quantity available from the internet are virtually world changing. In addition to huge
publicly available information encoded in natural language, the internet also holds
and delivers private information between organizations and individuals. Discovering
a system which can process and understand the public open domain information
from internet is still probably several years if not decades away. However starting
from more intimate and well scoped problem domains is providing a platform for
creating value by natural language understanding systems.

One of the better channels for tapping into that intimate knowledge exchange is the
recently popularized conversational user interfaces (UIs). Chat as a personal com-
munication channel has been around for very long time, one of the irst multi-user
chat channels working over internet was the IRC, developed in 1988 and still used
by some enthusiasts. Even in times when chat had not found a way into lives of
vast majority irst bots were written in IRC which could do certain tasks or provide
replies mostly based on simple keywords in the processed messages. Long time has
passed since the glory days IRC and chats have inally become inseparable part of
most peoples lives. The change started with the emergence of smartphones after the
introduction of irst Apple iPhone in 2007 and today most of the remote communi-
cation between, at least younger, people is handled over various chat applications.

China had been in the leading edge for consumer to corporate communications in
chat applications with the massive growth of WeChat application. Western markets
are only now starting to heat up for the conversational user interfaces which have
been a popular way for companies to communicate with their customers since the
introduction of WeChat in 2011. No WeChat like application has gained similar
foothold in wester markets, but conversational user interfaces are growing rapidly

1. Introduction 2

with customer service. Customer service is rapidly moving from calls by phone to
a chat served on the internet or mobile application. The hype for conversational
interfaces is so big that some parties are implementing them with little consider-
ation for their suitability for the use case. The conversational UI is rarely better
option compared to traditional UIs unless the user can use it with her own language.
Command-line interfaces which can be considered as sub-type of conversational UIs
have been around for a very long time but have always been an eicient tool for
experienced user, not very suitable for occasional use in user friendly manner.

Natural language understanding with computer systems has improved to the point
that it is starting to be feasible to develop an artiicial intelligence that can serve the
user without expressions of deep disdain from the user. However natural language
is still enormously complex and requires the problem to be split into smaller sub-
problems which are easier to manage, a divide and conquer paradigm. One of these
sub-problems is the obtaining of syntactic features such as part of speech (POS) and
lemma for a given word. Syntactic features convey a lot of information about the
text and can therefore beneit various other tasks when used as input features for
the methods.

The main objective of this thesis is to develop and test artiicial neural network
(ANN) model which is capable of inding parts of speech and lemmas for the input
text. Research hypothesis is that such neural network architecture can be modiied
to learn and predict both features at the same time, without the need for two models,
and that the joint model can outperform separate models in either or both of the
two tasks. Several experiments were deviced and conducted to test the hypothesis.

Chapter 2 of this thesis goes through the problems associated with using text as
input data for neural networks, and problems that arise from processing highly
morphological languages such as Finnish. Syntactic parsing tasks most relevant to
this thesis are introduced along with previous research done in attempts to solve
them. Chapter 3 goes through the neural network architecture used, outlines the
experiments to be conducted to test the hypothesis, presents the test setup for
the experiments and displays the results obtained. Chapter 4 contains discussions
about the results, their generalizibility as well as assumptions and simpliications
made about data, test setup and results. Chapter 5 wraps up the work, presents
conclusions and opportunities for future research.

3

2. NATURAL LANGUAGE PROCESSING

Natural language processing (NLP) is vastly wide problem ield where diferent tasks
difer from each other very much, really in some cases the only connecting feature is,
as name suggests, the natural human language as input data. During the last few
years the ield has seen some very impressive improvements as well as new methods
and techniques that have been able surpass previous state of the art results in very
short time. Tasks vary from machine translation, which tries to translate text from
language to another, to simpler problems such as sentiment analysis, which in turn
tries to deduce if the text has positive or negative emotional load. With such diverse
and broad ield it is not meaningful, or even possible, to it a cross section about the
entire ield in a humbly master’s thesis. Therefore it was important to select narrow
sub-ield for this thesis and simply leave other tasks for other research opportunities.

This chapter focuses on outlying core tasks and problems associated with the ob-
jective and research problem of this thesis. As was stated in the introduction, the
objective of this thesis is to develop a neural network architecture for lemmatization
and POS-tagging using Finnish language. Therefore this section focuses on syntac-
tic parsing of natural language and mainly to said POS-tagging and lemmatization
tasks. Other major theme for this chapter is to go through the general problems with
using text as input data for neural nets and more speciically problems associated
with highly morphological languages such as Finnish.

Vocabulary explosion is a term used to describe a situation with some highly mor-
phological languages where the number of possible unique written forms for the
words is extremely high. Finnish sufers from this phenomenon very badly, there
are about 2000 forms for a noun, 6000 for an adjective and a verb may have up
to 12000 diferent inlectional forms (Korenius et al. 2004). Another contributing
factor to vocabulary explosion for Finnish is the richness of compound words in the
language. Two thirds of the words in Dictionary of Modern Standard Finnish are
compound words (Korenius et al. 2004). But compound words do not end there,
Finnish allows to form new compound words with relatively few limitations as to
what words can be combined into a compound word. The lemma vocabulary formed
for word2vec binary trained with Finnish Internet Parsebank (Kanerva et al. 2014)

2.1. Feature Engingeering in NLP 4

contains some 1,7 million unique lemmas , words that are not inlected, majority
of those are compound words. And even this massive lemma vocabulary does not
provide good coverage even for Finnish Universal Dependencies which is only a bit
over 200000 tokens (Haverinen et al. 2014) as is discussed in the section 3.1.1. If
one tries to inlect all those millions of lemmas needed for proper coverage with
thousands of diferent inlections, the vocabulary size would grow to several billions.
It is obvious that vocabulary of this magnitude introduces problems which cannot
be overcome by representing words as independent unique elements.

This section also takes a look at the current and previous states of available datasets
and annotations that are and have been used for natural language processing tasks.
Most notably Universal Dependencies is discussed as the irst truly cross-lingual
project for syntactic parsing datasets. As for Finnish, before the introduction of
Turku Dependency Treebank, which was later translated to Universal Dependencies
annotation scheme, there has not been many high quality datasets for syntactic
parsing tasks. Dependency parsing especially has been unreachable for Finnish
because of total lack of available corpuses for the task.

2.1 Feature Engingeering in NLP

Machine learning methods, regardless if they are statistical models or neural net-
work based, require text to be represented in some numerical form. Deep down
all computer programs function with numbers only as processors arithmetic beings
and as such cannot process anything but numbers. For most programming tasks
the responsibility of representing text, character strings, lies with the programming
language. Such is not the case with natural language tasks because, but the de-
veloper is responsible of turning text into numerical representation which conveys
information about the text as is needed by the task at hand.

What information needs to be encoded into numerical representations is determined
by the requirements of the natural language processing task. Traditionally machine
learning methods for natural language processing includes hand engineered features.
The researcher or developer uses her domain and task speciic knowledge and ex-
perience in determining what features should be selected and how they should be
represented. Selected features can be anything from independent words as indices
to vocabulary to word counts in the sentence or the last morpheme of each word.
Feature selection and engineering requires a lot of knowledge about the task and
is usually tuned for each separate task. This makes machine learning methods de-
veloped to natural language processing very unique to each task making usage of
one general architecture, with minor modiications, for multiple tasks impossible.

2.2. Word Embeddings 5

Additionally generating such features may hog up to 95% of computation time used
for the task as was found by Chen and Manning 2014 in their work for dependency
parsing. Feature engineering is something we can never get completely rid of be-
cause something always has to be represented, but it is possible, and even desirable,
to strive for more general features.

Two simplest feature representation schemas that are usually igured out by a new
developer approaching natural language processing are indices and one hot cod-
ing. Index representation can distinguish the represented features, whether they are
characters, words or morphemes, from each other and this way provide a way for
the mathematical method to use the input features. Index representation is nice in
it’s simplicity but the drawback is that the indices them selves cannot encode any
additional information or meaning about the feature. Simplicity comes with the
beneit of being computationally cheap, enabling use of massive datasets. Usually
simple method trained with huge amounts of data outperforms more complex model
trained with less data (Mikolov, Corrado, et al. 2013). The dataset assumption is of
course only true for unsupervised learning, practically manually annotated corpuses
with several billions of tokens do not exist. Step up from the index representation
is one hot coding, also called one-of-V coding, which represents features as binary
vectors where only the current feature is one and all others are zeros. This has the
potential beneit of being better at separating the unique labels as each vector is
equal in it’s size and variation. Figures 2.1 and 2.2 illustrate the two basic feature
representation schemes index representation and one hot coding respectively used
for words.

Figure 2.1 Index representation for words

2.2 Word Embeddings

Using words as the engineered features for natural language processing tasks is at the
same time intuitive and natural choice because words are the basic units of meaning

2.2. Word Embeddings 6

Figure 2.2 One hot coding representation for words

for human languages. Therefore it’s not surprising that a lot of research has been
conducted into representing words as numerical vectors for machine learning meth-
ods. Numerical representation for words is also called word embedding (Mikolov,
Yih, et al. 2013), and comes from the idea of embedding additional information
about the word into the vector representation.

History of word embeddings goes long way back, at least 30 years. Some earlier
experiments with word embeddings were done by Hinton, McClelland, et al. 1990,
Hinton, Rumelhart, et al. 1985 and Elman 1990. Creating the word representations
has since stabilized into two model families, which are global matrix factorization
methods and local context window methods. Global matrix factorizers work on
global corpus level and are based on co-occurrence counts in the corpus and are
therefore good at representing the statistical properties of the words (Pennington et
al. 2014). Local window methods omit the corpus level statistics since they operate
only in the small window of local words and as such are good at word analogy tasks
but poor at representing statistical features (Pennington et al. 2014). Local window
methods try to create a vector space for the words such that semantically similar
words are close to each other (Mikolov, Yih, et al. 2013), the semantic representations
explain their good performance on word analogy tasks.

All word embedding methods, whether they are global matrix factorization based
or local window based, generalize poorly with morphologically rich languages such
as Finnish (Takala 2016), this is probably due to vocabulary explosion problem dis-
cussed earlier. Takala 2016 proposes a word embedding method for morphologically
rich language wich is based on breaking the word into sub-parts: the word stem and
ending. Takala 2016 discovered that sub-word level word embeddings are simple
to implement and can outperform word level embedding methods on several nat-
ural language processing tasks. How stem and ending compare to character level
recurrent neural network (RNN) based methods was not tested in his work.

2.2. Word Embeddings 7

One problem rising from using word level word embedding methods for natural lan-
guage processing tasks in highly morphological languages is that even if the word
embedding vocabulary is large there will still be out of vocabulary words. This
problem can be relaxed by lemmatizing the words before doing lookup to word em-
bedding vocabulary. Lemmatization done suiciently accurately may remove the
problem for some morphologically rich languages almost entirely, but Finnish still
sufers from the rich compound word scheme. Handling these out of vocabulary
words in a meaningful manner turns out to be challenging because the word repre-
sentation cannot be approximated from the written form. Written form of the word
contains only a small part of the semantic meaning of the word, that is the reason
why local window methods mine the semantic information purely from the context
where the word appears in.

2.2.1 Character to Word

One possible solution to problems experienced with word embeddings using mor-
pohologically rich languages is called character to word (C2W) and is proposed by
Ling et al. 2015. In the solution proposed by Ling et al. 2015 the word embeddings
are not on word level but are generated from character sequences by feeding the
words as character sequences into an RNN. Figure 2.3 illustrates the architectural
diference between word level word embedding method and C2W by Ling et al. 2015.
The upper part of the igure is word level method and lower part is the C2W.

Even character level models require a lookup table which has ixed number of vectors,
one for each character. The beneit however comes from the drastically smaller
vocabulary size that is required for characters than words. Character vocabulary
cannot contain every possible character that can be ever encountered but achieving
a good coverage is much easier. English alphabet contains 26 lowercase and 26
uppercase letters, totaling 52 letters to which punctuation and appropriate set of
other symbols has to added in order to get good coverage over English text. Other
languages may have some additional letters added to that set or even have completely
diferent character set. Regardless of which is the case for most languages the
character vocabulary size is still measured in dozens, with some exceptions with
thousands of characters such as Chinese. Chinese is a bit odd one out because that
language doesn’t have letters but everything is represented as words, each word has
it’s own writing sign, and is not therefore of great concern for this method.

Additional and very much appreciated feature of C2W is that it is capable of, un-
like word level embedding methods, producing word representations for previously
unseen, and thus out of vocabulary, words natively without any regression add-ons

2.2. Word Embeddings 8

Figure 2.3 Architectural diference between word and character level word embedding
models. Image is taken from the original C2W paper by Ling et al. 2015

2.3. POS-tagging 9

(Ling et al. 2015). How well the syntactic and semantic information is embedded
with C2W for previously unseen words is not discussed in the original paper of Ling
et al. 2015. The main drawback of C2W is the added computational cost compared
to word level methods such as word2vec by Mikolov, Corrado, et al. 2013. The
computational cost can be relaxed during the training by using larger mini-batches
since the word embeddings do not change within one mini-batch, as is the case for
all network parameters (Ling et al. 2015). After the neural network model has been
trained and is used for live predictions the computational cost for C2W can be re-
laxed even further by caching the most common words and using them in a similar
way as other word level embedding methods (Ling et al. 2015). Rare and previously
unseen words are generated during prediction phase with the RNN encoder. This
scheme has the nice properties of being at the same time fast to execute because of
the caching and having very limited memory requirements because rare words don’t
have to be cached.

Ling et al. 2015 show that their character level embedding method outperformed
state of the art methods for several diferent languages. Biggest improvements were
gained for morphologically rich languages, but C2W was shown to perform very
well even on morphologically poor languages such as english (Ling et al. 2015).
Suitability, in architectural wise as well as performance wise, make C2W a good
candidate for neural networks which are meant to be used in multi-lingual setting.

2.3 POS-tagging

POS-tagging is the procedure of detecting parts of speeches for the words in the
input text. First POS-tagging tools were rule based systems where researcher or
engineer manually created set of rules which are used to determine which of the
POS-tags is the correct one for the current word. The problem with rule based
POS-taggers, as with any natural language processing task, is the vast complexity
of human language. It is very diicult to develop and update large enough rule set
that can respond to all diferent cases that appear in natural language. This is the
reason why POS-tagging was from very early on treated as machine learning task.

One of the earliest and best known machine learning POS-taggers is a tagger intro-
duced by Brill 1992 and simply known as Brill tagger. Brill tagger can be considered
a hybrid approach between rule based tagger and machine learning tagger because
the Brill tagger uses annotated corpus in a machine learning manner to create the
rule set for the language. Since then the research has been mainly focusing on
statistical and neural network based methods for POS-tagging.

2.4. Lemmatisation 10

POS-tagging as natural language processing task is fairly simple. It is a very tra-
ditional word level classiication task where the label vocabulary size is limited.
Multiple approaches can be take into the classiication problem. Toutanova et al.
2003 tackle the POS-tagging task with cyclic dependency network. Approach taken
by the UDPipe author Straka 2016 in his work is a supervised, rich feature averaged
perceptron with Viterbi decoder. Ling et al. 2015 use recurrent neural networks for
learning word embeddings which are then used for part of speech classiication.

2.4 Lemmatisation

Lemmatization is the process of inding a base form for a word appearing in the
text in inlected form. As such lemmatization can be seen as normalization tech-
nique where multitude of inlectional words are normalized to their basic expression
(Korenius et al. 2004).

Another normalization technique often compared to lemmatization is stemming.
Where lemmatization tries to ind the base form of the word, stemming tries to
ind the stem of the word. Korenius et al. 2004 compare both methods for task
of clustering documents written in Finnish language and ind that lemmatization is
better than stemming in Finnish because of it’s highly inlectional nature. Stemming
also sufers more from ambiguity problems since multiple diferent words can have
same stem. The same problem also exists for lemmatization in form of homographic
words, words that have same written form but diferent meanings, but is relaxed
compared to stemming.

One publicly available tool for Finnish lemmatization is Omori (Pirinen 2008,
Lindén et al. 2009, Pirinen 2017). Omori is a inite state transducer for doing
morphological parsing (Pirinen 2008, Lindén et al. 2009). Because Omori does the
full morphological analysis for the input word, it can also produce the lemma for
the word by reversing the morphology from the inlected form. However caveat of
this tool is that it produces multiple possibilities for the lemma, this is a direct
consequence of relying simply for morphological parsing in lemmatization, multiple
diferent lemmas can be inlected in various ways to produce the current written
form. Haverinen et al. 2014 used Omori for building the Turku Dependency Tree-
bank, which was later translated to Universal Dependencies scheme by Pyysalo et al.
2015. Haverinen et al. 2014 used machine learning method for disambiguating the
Omori outputs with fall-back to manual annotations.

Kestemont et al. 2016 take neural network approach for lemmatization by classifying
lemmas into a predeined vocabulary. This approach of lemmatization as word level

2.4. Lemmatisation 11

classiication task only has the drawback that the system of Kestemont et al. 2016
cannot produce lemmas that were not encoutered during training. There were very
few if any neural network based methods for lemmatization up until the writing of
paper by Kestemont et al. 2016. The reason for lack of lemmatization research is
that lemmatization is considered practically a solved problem for English, and since
most of the natural language processing research is done for English there is not
much research interest seen in studying lemmatization. Lemmatization has certainly
seen interest in non-English research teams, but neural network approaches are very
few. Maybe the most notable lemmatization cabable neural network method is the
aforementioned UDPipe by Straka 2016 which can achieve reasonably good results
for various languages.

12

3. EXPERIEMENTS ON JOINT MODEL FOR
POS-TAGGING AND LEMMATIZATION

Focus of this thesis is to prove or disprove the hypothesis that joint learning of
lemmatization and POS-tagging with neural networks can obtain better performing
network for one of both tasks than learning the said tasks separately. Joint learn-
ing in the context of this thesis means learning and predicting both outputs with
single neural network architecture and single forward pass. Joint learning model is
compared to separate tasks baseline.

Lemmatization and POS-tagging were selected as tasks for this thesis because they
are well studied and results from other research projects exist making baseline vali-
dation possible. Both tasks are also popular choices as input features for downstream
processing. Although lemmatization is considered by some to be solved for morpho-
logically poor languages, it is not for morphologically rich languages such as Finnish.
Lemmatization is especially interesting for Finnish because properly done lemma-
tization would allow usage of word level features such as pre-computed word2vec
vectors as input features in downstream tasks. All experiments of this thesis are
performed with Finnish language.

Neural networks were selected as implementational approach for the problem mainly
because of their lexible and architecturally general nature. Neural networks don’t
require architectural changes, other than maybe a hyper-parameter optimization,
when adapting the network for new languages. Essentially same neural network can
handle the natural language processing task at hand for any language. Possible ex-
ceptions are languages which are written on diferent level than European languages.
Chinese has symbols only for words, has no letters at all, and as such might demand
architectural changes.

Another convenient property of neural networks is their lexibility to adapt diferent
tasks with sometimes very small architectural changes. Neural networks developed
for this thesis share vast majority of components among lemma classiier and POS
classiier, only the output layer is separate and has diferent number of nodes for said
tasks. But even then both output layers are similar fully connected linear projection

3. Experiements on Joint Model for POS-tagging and Lemmatization 13

layers.

Lastly neural networks were selected because NLP has been researched for several
decades and it appears that older, often statistical, methods have been already tuned
close to their maximum. Neural networks on the other hand have shown very promis-
ing progress during the last couple of years, mainly due to ever decreasing price of
computational resources and introduction or re-introduction of a few mathematical
advancements which have made deep neural networks easier to train.

Statistical methods such as bag-of-words might be trickier to implement as character-
level models than neural networks. Counting words in a sentence of in a context
of a word has for a years been the simplest baseline model for multitude of NLP
tasks. Bag-of-words works because words are essentially the basic semantic unit
of a language. Character on the other hand convey very little meaning when not
associated with other characters in order of appearance. Simply counting characters
is therefore not going to reveal the underlying phenomena. Same explanation applies
to some extent to other traditional models also.

Joint model approach was taken into inspection because joint learning models have
not yet been studied very widely but results from the few studies have shown that
joint models can achieve better results than separate models. Lemma and a part
of speech of a word are tightly linked to each other. Lemma is the basic (almost)
unique identiier of a word and each word has always a single ixed part-of-speech.
This tight coupling of lemmas and part of speeches serve as a good foundation for
building a joint learning model.

Unfortunately lemmas do not identify a word in a completely unique way; multiple
words may have same written base form. Nail is a written form for at least two
diferent meanings, one being a fastener for attaching pieces of wood together with
a hammer and the other being a keratin made envelope covering the tips of ingers
and toes. Fortunately words with multiple meanings are more rare than not. This
thesis simply omits the problems and implications which could and do arise from
having shared tokens for multiple words. Such decision to omit the problems may
not be as harmful as one might think; predicting correct lemma whether the nail
is meant to be hit with a hammer or not does still produce a correct lemma, this
becomes and issue only with the downstream tasks which might need the two to be
separated.

Part of speech tagging can also still be done without too much hindrance. Often the
two words have the same part of speech. In the case of fastener nail and inger nail
problem does not exists since both are nouns. Separating ǴnailsǴ as plural form of

3.1. Neural Network Architechture 14

a noun ǴnailǴ from ǴnailsǴ as colloquial form of a verb for love making can be done
with the information provided by the context of the word.

3.1 Neural Network Architechture

Architecture used for experiments in this thesis is a multi-layer deep neural network
composing an end to end pipeline handling everything needed from character repre-
sentations to output classiications. Multiple layers in the architecture are not only
layers of interconnected nodes as usually depicted by term layers in the context of
neural networks. The architecture also contains multiple architectural layers such
as character embedding layer, word embedding layer, context encoding layer and
classiication layer. To distinguish architectural layers from neural layers the former
is going to be called components for the rest of this thesis. All the components,
all layers which make the individual components and weights are learned at the
same time. Learning all network parameters in a single training run makes training
simpler and removes, or at least obfuscates, the possible compatibility issues and
non-optimalities between the components and layers. Figure 3.1 shows high level
architecture and data processing pipeline used in this work.

Figure 3.1 High level architecture for neural network used

Neural network code was implemented with Python using popular computation
libraries Tensorlow and Numpy. Tensorlow provides scripting APIs for other pro-
gramming languages too but Python was selected because of it is fast to write and
computational performance does not sufer compared to eg. C++ since all the ex-
pensive computations are made in the C++ based backend. Numpy is used in the
data pre-processing phase where data is processed to be suitable for feeding as in-
put to the actual neural network. Tensorlow was used for implementing the neural
network as a computational graph. Tensorlow makes it fairly easy to implement
complete multi-component end to end architectures while abstracting the actual
optimization work away from the developer.

3.1. Neural Network Architechture 15

Tensorlow also provides a layer of abstraction to execute the computational graph
on either central processing unit (CPU) or graphics processing unit (GPU). GPU
computations for pleasantly parallel problems such as neural network optimization
are signiicantly faster. Doing the network training and especially hyper-parameter
optimization only on CPU would have not been feasible with the hardware resources
available. If computations would have been forced to be ran on CPU, there would
have not been enough resources to run suicient number of hyper-parameter opti-
mization runs. Neural network results are often very sensitive to having suitable
hyper-parameters and therefore results obtained in the experiments in the worst
case could have been unable to provide answer for the hypothesis.

3.1.1 Lemmatizations as Classiication Only Task

Approach for lemmatization in this thesis is classiication only. POS-tags are a
limited set of 31 labels as deined in the Universal Dependencies project but such is
not the case for lemmas. When classifying lemmas with neural network one needs
an indexed vocabulary of all possible output labels. Having ixed and limited set of
lemmas proves to be a challenge for lemmatization.

As discussed earlier the Finnish language sufers from vocabulary explosion even
when considering only lemmas and omitting the inlections because Finnish language
makes it possible to form compound words very freely. The number of possible
combinations created by selecting two or more words for a compound word is way
too large to be handled with a linear vocabulary. The word2vec vocabulary which
is created from Finnish Internet Parse bank (Kanerva et al. 2014) contains over 1,7
million unique lemmas. Learning to classify this number of lemmas with a corpus
of 160 and some thousand tokens is obviously impossible task.

To circumvent the vocabulary explosion problem for output vocabulary ixed and
limited set of lemmas were selected from the training set. Selected lemma vocabulary
contains 90% of the use cases in the Finnish Universal Dependencies 1.4 training
dataset. The 90% coverage is formed by selecting the most frequent words only.
This lemma vocabulary contains less than nine thousand unique lemmas opposed
to over 1,7 million in the word2vec vocabulary. All the lemmas that were left
out of the selected vocabulary are treated as unknown tokens meaning that when
classifying out of vocabulary lemma the neural network eill output an unknown
token Ǵ<UNK>Ǵ. Since vocabulary covers 90% of the uses in training set, 10% of
uses are left out making unknown token a most frequent label.

Having unknown tokens provides it’s own set of challenges for downstream process-

3.1. Neural Network Architechture 16

ing tasks: information that is supposed to be provided by the lemma is lost with
unknown token. One approach for outputting all possible lemmas is to use a gen-
erative model such as encoder-decoder model popular in recent studies (Sutskever
et al. 2014, Cho et al. 2014, Chung et al. 2016, Bahdanau et al. 2014, Liu and Lane
2016, Chung et al. 2016) for machine translation. Generative model does not classify
indices to a ixed vocabulary but generates the lemma one character at a time.

Generative model does solve the problem with lemma vocabulary but introduces a
myriad of other problems. Some of the most prominent problems being vastly in-
creased architectural complexity and signiicantly increased computational complex-
ity and memory requirements. Introducing a encoder-decoder model also introduces
problems with observation metrics. POS-tagging and lemma classiication are word
level prediction tasks and are as such measured with word level metrics eg. accu-
racy or F1 score. However encoder-decoder model is a character level model which
is also observed on character level. Mixing word level classiications and character
level classiications fuzzies the meaning of used metrics for evaluation of network
performance.

Because of the aforementioned problems, the encoder-decoder model was not a part
of the implementation used for this thesis and lemmatization is treated as a classi-
ication only task. Also it’s worth noting that observing lemma classiication with
POS-tagging should prove to be suicient for proving or disproving the hypothesis.

3.1.2 Word Embedding Component

Representing words with multi-dimensional real number vectors is required to en-
code semantic and syntactic meaning of the words in a way a neural network can
understand them as is discussed in section 2.2. Vector representations are created
in this work at the same time as neural network is trained to classify lemmas and
part of speeches. In other words no external word embeddings are used such as
word2vec. Word embedding in this architecture is managed with character to word
encoder similar to Ling et al. 2015.

Word embedding process starts with representing characters as multi-dimensional
real number vectors, called character embedding for the rest of this work. Character
embeddings as a part of character to word encoder are also trained at the same
time with rest of the network. Character embeddings are implemented as a single
trainable Tensorlow variable, a two dimensional array where each row contains
embedding vector for a single character in the character vocabulary. Character
vocabulary is a ixed set of characters selected to represent majority of use cases in

3.1. Neural Network Architechture 17

currently processed language, Finnish in this case.

Selected character vocabulary contains ASCII characters from index 32 to index
127, ie. all but ASCII control characters, as well as lower and upper case scan-
dic letters used in Finnish and an euro sign €. This character vocabulary covers
99,933% of character usages in Finnish internet parsebank. A fairly good represen-
tation for Finnish language with very reasonable vocabulary size of 103 characters.
Characters not included in the selected character vocabulary were substituted with
ASCII control character SUB which was added to character vocabulary. Character
vocabulary also contained another ASCII control character ETX, which was used for
padding all other words to length of longest word in the current mini-batch (Tensors
are essentially arrays and as such do not tolerate variable lengths within a single
dimension).

Words as input to word vector encoder are represented as Tensors of character
embeddings, each row of a single input word contains character embedding for a
single character in the word. Input words for the word vector encoder contain
character embeddings for all characters in all words in all sentences selected for the
mini-batch. If mini-batch size is selected to be 25, then word vector encoder input
contains all characters and words for the selected 25 sentences.

Table 3.1 Example input for Word vector encoder

d0 d1 ... d299

K 0.43 0.05 0.37 t0
i 0.32 0.62 0.80 t1
r 0.45 0.69 0.62 t2
a 0.75 0.64 ... 0.01 t3
h 0.24 0.93 0.53 t4
v 0.23 0.24 0.15 t5
i 0.32 0.62 0.80 t1

Table 3.1 shows an example input to word vector encoder RNN with values rounded
to two decimals. d0 to d299 are the dimensionalities of character embedding vectors
and t0 to t6 are RNN input timesteps ie. characters of the word Kirahvi. Example
provided shows only a single word, in practice the input data contains multiple
words all stacked into a single Tensor.

Word vector encoder itself is a bi-directional recurrent neural network which takes
the words represented by character embeddings as input and produces word embed-
ding Tensor as output. Characters of the input words are the timesteps data for
the RNN. Bi-directional RNN goes through the input timesteps in both directions.
Each direction has a single RNN cell and outputs of both cells are concatenated

3.1. Neural Network Architechture 18

as one double sized Tensor. Word embedding Tensor ie. output Tensor contains a
single word embedding on each row. These word embeddings produced by the word
vector encoder contain the semantic and syntactic meanings that were obtained from
reading the words as separate units without any context.

Table 3.2 Example output of Word vector encoder

d0 d1 ... d299

0.96 0.12 ... 0.87

Table 3.2 shows an example output of word vector encoder RNN with values rounded
to 2 decimals. d0 to d299 are the dimensionalities of word embedding vector for a
word Kirahvi. Example provided shows only a single word, in practice the output
data would have several words in a single Tensor, one per row.

3.1.3 Context Encoding Component

Word embedding vectors created with the word embedding components are the foun-
dation for doing word level predictions. Using encoded information about semantic
and syntactic information of the words for which predictions are to be made is far
superior to simply using eg. one hot encoding as is discussed in section 2.2. However
word embeddings are not nearly perfect representation of all the information that is
associated with the words because words represented this way are still only separate
units without context in which they appear.

More information about words for doing predictions can be gained by encoding
the context of the word into a vector representation to be used along with word
embedding. Words are read from left to right in most languages forming a sequence,
a sentence, in similar way as character sequences form words. Since words in a
sentence are sequence, the context of a word is also a sequence. Sequence of a word
in this work means word’s preceeding succeeding words ie. words on the left and
right side of the current word. Because context is a sequence, once again recurrent
neural networks are a natural way to process the sequences.

Word’s context can be divided into two parts: left side context, the preceding words,
and right side context, succeeding words. To encode both contexts the architecture
uses bi-directional RNN. First cell is used process the left side context and second cell
is used to process right side context. One could argue that using two bi-directional
RNNs, one for each side, would yield better results. However since importance of
word in a context is higher closer the contextual word is to current word and since
RNNs ǴrememberǴ the last timesteps the best, it was hypothesized that using only a

3.1. Neural Network Architechture 19

single direction for each side would yield almost similar results. Sequence direction
of a context is always towards the current word, from left to right for left side context
and from right to left for right side context making the closest words always last in
the context sequences.

Using only a single uni-directional cell for each side also has signiicant beneits in
terms of implementational simplicity and computational complexity. If one were to
use bi-directional RNN for each side, one would be forced to run contexts for each
word in a sentence separately because in this scenario the backward passes start
from diferent location, from the current word. When using only an uni-directional
RNN for each side there are no backward passes and forward passes always start
from the same location: irst word of a sentence for left side context and last word
of a sentence for right side context. Figure 3.2 illustrates this diference between
uni-directional and bi-directional context encoders. Using uni-directional context
encoders makes it possible to do a single forward pass and a single backward pass
for entire sentence. Contexts of diferent words are simply diferent timestep outputs
of these passes.

Sharing context encoder passes among all the words in the sentence simpliies input
data format of context encoder. Instead of having separate Tensor for each word as
input data as is the case with bi-directional RNN, uni-directional can use a single
Tensor which has all the words stacked, one word embedding vector per row. Having
one simple input Tensor entails a single data pass through the RNN decreasing
computational complexity drastically. For a 13 word sentence one would have to
make 14 passes for left side (1 forward, 13 backward) and another 14 passes for
right side if one were using bi-directional RNN. With uni-directional RNN this comes
down to one pass per side, 14 fold decrease. Actual computation time decrease might
be smaller because it could be possible to parallelize this operation with GPU.
Measuring actual prediction performance beneits and added computational costs
associated with using bi-directional RNN for context encoder is out of scope for this
thesis. Table 3.3 shows an example of input data Tensor for context encoder when
using batch size of one sentence. d0 to d299 are dimensionalities of word embedding
vectors.

Context encoder RNN produces embedding vectors of a similar form as is it’s input
ie. output of word embedding component. These vectors encode semantic, and some
syntactic, meaning of the words’ contexts. When used with word embedding vectors
these two encodings express all the information that is available for the words when
looking only at the sentence. Output of the context encoding component is vector
formed by concatenating word embedding vectors and context embedding vectors

3.1. Neural Network Architechture 20

Figure 3.2 Uni-directional vs bi-directional RNNs for context encoding

Table 3.3 Example input of context encoder

d0 d1 ... d299

Kirahvi 0.96 0.12 0.87 t0
yltää 0.16 0.26 0.65 t1

syömään 0.24 0.51 0.80 t2
lehtiä 0.05 0.55 ... 0.96 t3

korkealta 0.82 0.06 0.39 t4
. 0.03 0.14 0.46 t5

3.1. Neural Network Architechture 21

for respective words. Table 3.4 shows an example output for a single word from
context encoding component. d0 to d299 are dimensionalities of word embedding
vectors and d300 to d599 are dimensionalities of context encoding RNN.

Table 3.4 Example output of context encoding component

d0 d1 ... d299 d300 d301 ... d599

Kirahvi 0.96 0.12 0.87 0.69 0.88 ... 0.74 t0

Higher level constructs for information encoding, such as looking at preceding and
succeeding sentences in the corpus, are not used in this architecture. Adding con-
textual information for sentences would add yet another layer of complexity to the
architecture increasing actual implementational diiculty signiicantly. Reshaping
Tensors in Tensorlow can be very tricky at times, especially when splicing and
stacking for batching has to be done on multiple architectural levels. Also using
sentences’ contexts could prove problematic when using the neural network for ac-
tual live production work because it is often the case that user wants lemmatization
and POS-tagging done for a single sentence without having context at hand.

3.1.4 Classiication Component

Output of context encoding component could very well be used for doing predictions
given that output is projected to a suitable size, namely the number of classes
to classify. However architecture used in this work has additional fully connected
layers between the output projection layer and context encoding component. In this
coniguration the architecture can be divided into two logical sections: encoder and
classiier. Figure 3.3 shows the two logical high level components of the architecture.

Figure 3.3 High level logical components of the architecture

Encoder composes of all the layers and components up to the classiication compo-
nent and the classiier is a simple fully connected feed-forward network, also called
multi-layer perceptron (MLP). When conceptualized in this way, the responsibility

3.1. Neural Network Architechture 22

of the encoder is to, as name suggest, encode all available input information in a
format which is easily understood by the classiier. Classiier is responsible to pro-
duce the actual predictions. Input of the classiier is the output of the encoder as
is, without any projections or scaling. When the architecture is build by separating
the encoder and the classiier, it is easier in the future works to reuse the encoder
and create a new classiier suitable for the task at hand. On the other hand the
classiication component can be thought to be just a few fully connected layers on
top of context encoding component for added expression power.

Regardless of how one wishes to approach the logical components of the architec-
ture, the fact remains that the fully connected layers were added based on early
experiments on the architecture’s learning capabilities. With few training runs on
diferent conigurations it became clear that neural net converges to a better perform-
ing model when using the fully connected layers than without them. Without the
fully connected layers the network seemed to converge faster, with less epochs, but
couldn’t obtain quite as high classiication performance. It is also worth mentioning
that adding even several fully connected layers added almost no extra computational
cost. Multiple layers of RNNs seem to be a lot more expensive than even far greater
number of fully connected layers.

The last two layers of the classiication component are output projection layer and
softmax layer. The output projection layer is fully connected layer with linear acti-
vation function and has one node for each class. The softmax layer takes the output
of projection layer and computes a softmax function for it, this is done to scale the
output values in such a way that all output values sum up to one. When outputs are
scaled to sum up to one, the output can be treated as probability distribution even
though it might not strictly be one. Scaled outputs are also easier for humans to
understand, often a nice to have feature but certainly not critical. The main reason
to add a softmax layer after the output prediction really lies with the softmaxes
innate properties which make it suitable for optimization with cross entropy loss.

The softmax cross-entropy loss for the separate lemmatization and POS-tagging
tasks is a straight forward computation from the single output projection layer values
and one-hot encoded vector for correct labels. Softmax for j:th node of output layer
is deined in equation 3.1, where z is the vector of output projection layer values
and K is the size of output projection layer.

σ(z)j =
ezj

∑K

k=1
(ezk)

(3.1)

3.1. Neural Network Architechture 23

Cross entropy between softmax vector σ and one-hot encoded vector of correct lables
Y is deined in equation 3.2, where K is the size of output layer.

H(σ, Y) = −

K∑

k=1

(σk log(Yk) (3.2)

However loss function for the joint model is a bit more complicated since there
are two optimization targets to aim for. In order to optimize both tasks at the
same time, a single joint loss function has to be deined for the optimization target.
Joint loss function for this work was selected to be a weighted sum of separate loss
functions for lemmatization Hl and POS-tagging Hp

Hjoint = αHl +Hp (3.3)

As a matter of fact the softmax layer only exists in the training pipeline. Softmax
scaling is not necessary for doing the predictions because the prediction of a classiier
is the output node with highest activation value. Softmax is a monotonic function ie.
higher input values will always give higher output values and since the classiication
is only about selecting the highest value, the softmax is not required. In addition
the softmax can be computationally relatively expensive especially when the output
size is large, as is the case with large lemma vocabulary.

To produce the actual lemmas and part of speeches, the indices of the highest values
in the output layer need to be used for indexing the label vocabularies. If the third
node on the lemma output layer has highest value, one must select third item in the
lemma vocabulary as the inal prediction. Vocabularies are not needed for testing
and validating because the ground truth lemmas and part of speeches have also been
turned into indices and comparison can be done with the indices.

3.1.5 Training and Optimization

All neural network trainings in this work were done with stochastic gradient de-
scent back-propagation algorithm. The optimizer algorithm and back-propagation
through the computation graphs are handled by Tensorlow’s built in features. First
the input data is fed to neural network and propagated in forward direction through
the whole network. When the last network layer, the softmax layer, has been com-
puted, the softmax values are used to compute cross entropy loss with one-hot coded
ground truth vector. Error gradient is then propagated through the entire network

3.1. Neural Network Architechture 24

in backward direction, calculating error gradient for each layer. Error gradient in
each layer is used to update the layer weights and biases.

Gradient descent update was done with mini-batches of 25 sentences. This means
that entire mini-batch is back-propagated through the network before adjusting
the network weights and biases. Alternative is to update the network after each
example but that has serious drawbacks for computational eiciency. Mini-batch
training can be done in a pleasantly parallel manner, meaning that the examples
of the mini-batch have no cross-dependencies and thus can be all trained at the
same time, parallel. Parallel computations are very suitable for GPU workloads
and as a matter of fact mini-batch training is critical component for enabling the
signiicant, often an order of magnitude or more, increases in computation speed
on GPU. Figure 3.4 illustrates the diference between the propagation sequences in
single example training and mini-batch training.

Also a true single example training is not even possible, at minimum a mini-batch
contains all the words of a single sentence. The reasons for this are the facts that the
single example of input-output value pair is a single word and it’s lemma or POS-
tag and a word depends on it’s context ie. other words in the sentence. Therefore
it’s mandatory to use at least a single sentence mini-batching. If architecture didn’t
contain the context encoding component, all words of the sentence could be managed
as separate units and could be trained independently.

Mini-batches of 25 sentences used for network optimization are formed by dividing
the entire training dataset randomly into the said mini-batches. Training procedure
goes through all the mini-batches in an epoch. In the end of the epoch after all of
the training data has been used, the network classiication performance is evaluated
on the validation dataset by calculating loss. Loss is the compared to the best
obtained loss value from all the previous epochs, if the validation loss has decreased
training procedure continues onto the next epoch. If validation loss doesn’t decrease
training can be stopped to avoid over-itting. However classiication performance on
validation dataset does not typically improve on every epoch, especially after the
network is starting to converge. Therefore it’s wise to allow the training to continue
for a ixed number of epochs even if there is no improvement. When the maximum
number of epochs without improvement has been reached, the training is stopped
and classiication performance is tested on the testing dataset.

The network training procedure described above is only a single training run. Single
training run allows the optimization of network parameters (weights and biases) but
not hyperparameters. Hyperparameters are all the parameters that determine the

3.1. Neural Network Architechture 25

Figure 3.4 Propagation sequences in single example and mini-batch training

3.1. Neural Network Architechture 26

network architecture, such as number of layers on each component, number of nodes
on each layer, activation functions used, dropout etc. Traditionally hyperparame-
ters have been optimized by manual process of training with certain coniguration,
inspecting the results, adjusting hyperparameters and training again. While man-
ual hyperparameter optimization can provide good enough results, it is still very
tedious work and often requires deep understanding of neural networks and of the
task at hand. Recently automatic hyperparameter optimization has gained pop-
ularity, mainly because computation resources have increased and thus it’s more
feasible to run a lot of training runs while tuning the hyperparameters. Automatic
hyperparameter tuning is particularly beneicial when the number of hyperparam-
eters to optimize gets large, humans are typically poor at processing more than 3
dimensional data.

Hyperparameter optimization in this work was done automatically using a optimiza-
tion library called Optunity (Claesen et al. 2017). Optunity provides a convenient
way to abstract the optimization work for basically any given task. There are many
diferent optimization algorithms for hyperparameter tuning and not one has gained
similar de facto status as gradient descent has for the neural net optimization. Algo-
rithm used in this work for hyperparameter tuning is particle swarm which is a meta
heuristic optimization algorithm. Particle swarm is said by the Optunity authors
to be most versatile of all the algorithms available in Optunity. Hyperparameter
optimization algorithm comparisons were not done since particle swarm provided
reasonable results with the time results of this project. Besides hyperparameter
optimization algorithm selection is not in the scope of this work and has very little
relevance with proving the hypothesis.

Hyperparameter optimization was done by running a ixed number of training runs
and tuning the hyperparameters with particle swarm between each training run.
Since automatic hyperparameter selection may ramp up all the hyperparameters to
their maximum allowed values, can training times scale up to unsustainable dura-
tions. To avoid dealing with single training runs that take tens of hours, maximum
time budget was forced for the training runs. If training run reached the maxi-
mum allowed time, best model obtained with that training run was selected for
inal comparison and hyperparameter tuning. Training runs in the hyperparameter
optimization also used early stopping based on validation loss, this helps to cut
the training with some hyperparameter conigurations to just few training epochs,
speeding up the hyperparameter optimization drastically.

After all of the training runs for hyperparameter optimization were inished, hy-
perparameter coniguration which provided the best model was saved for using in

3.2. Experiments 27

experiments.

3.2 Experiments

Experiments done for this thesis consist of minimal set of tests that can prove or
disprove the tested hypothesis. To test whether jointly learning lemmatization and
POS-tagging in a single neural network architecture the following experiments were
done. Firstly a baseline was established by training and testing the neural net
with lemmatization and POS-tagging as separate tasks. Having a well established
baseline allows the comparison of diferent style shared information tasks and their
beneits and drawbacks. Figure 3.5 shows the setup for separate tasks.

Figure 3.5 Separate lemmatization and POS-tagging as a baseline

First shared information experiment was done to determine if more traditional ap-
proach of using one as input features in classiication of other. This experiment
was done only by using parts of speech as one-hot coded input features when doing
lemma classiication. Expecting to gain beneit from using parts of speech as input
feature to lemmatization is reasonably well founded because knowing the part of
speech for a given word limits the number of possible lemmas signiicantly. The big
question in this hypothesis is whether the POS-tagging was done well enough to
reveal the possible beneits. It’s very well possible that errors done in POS-tagging
cascade to lemmatization task so badly that lemmatization performance actually
decreases from the baseline. To study the efects of POS-tagging performance to
lemmatization performance, a second experiment was deviced: to train and test the

3.2. Experiments 28

network using gold-standard parts of speech available in the dataset. Figure 3.6
shows the setup for using parts of speech as input feature for lemmatization.

Figure 3.6 Using parts of speech as input feature for lemmatization

Last experiment was the training and testing of the joint learning neural network
architecture for lemmatization and POS-tagging. Figure 3.7 illustrates the test
setup for joint model.

Figure 3.7 Joint model for lemmatization and POS-tagging

Comparing results from the baseline, POS-tags as input features for lemmatization
and joint model should be enough to test the hypothesis. Experiments don’t include
other languages than Finnish or other datasets than Finnish Universal Dependencies.
Experiments in this thesis with POS-tagging all use the universal POS-tags, efect
of using language speciic POS-tags with or without universal POS-tags was not
tested. Similarly efect of tokenization (process of separating words in a sentence)
performance was not tested but all experiments used gold standard tokenization
available in the Finnish universal dependencies dataset.

The efect of morphological information such as word inlections and forms were not

3.3. Test Methods 29

tested for this thesis even though there is a well founded arguments for improving
results by using the morphology also. Since morphological features describe how
the word was inlected they should assist the lemmatization because lemmatization
can be thought as a reverse process of inlecting the word. However scope of the
thesis was kept as narrow as possible, but wide enough for testing the hypothesis,
and therefore morphology was left out. For that same reason also use of language
speciic POS-tags available in Universal Dependencies datasets was left out of scope
of this thesis.

Attentive reader might have noticed that experiments included in this thesis have
parts of speech as input features for lemmatization but not lemmas as input features
for POS-tagging. Reason for excluding experiment of lemmas as input features for
POS-tagging is that the described task is not very interesting or even meaningful:
if a lemma of a word is known, part of speech for that word can be looked up from
a dictionary with the exceptions of words with multiple meanings.

3.3 Test Methods

The dataset use for experiments in this thesis is Finnish Universal Dependencies
1.4 as mentioned in earlier sections. The Finnish Universal Dependencies dataset
is divided into three sections: training dataset, development dataset (also called
validation dataset in this thesis) and testing dataset. Each experiment outlined
in section 3.2 was done using all three datasets. Neural network weight and bias
optimization was done using only training dataset, model performance was observed
during training by validating the network with development dataset and all inal
results are obtained by doing predictions with test dataset and comparing with
correct labels. Training and testing procedure for each experiment is illustrated in
igure 3.8.

Other corpuses exist for Finnish but format and annotation schema varies in those
corpuses and are only available for Finnish. Universal Dependencies is very suitable
this work because it has over 40 diferent languages available all with same form
and annotation scheme making possible future expansions of this study easier and
results comparable. Another reason for selecting Universal Dependencies is that
pre-existing results are avaialble for POS-tagging and lemmatization, most notably
from UDPipe (Straka and Straková 2017).

Several options exist for the metric with which experiment results can be compared
when testing the hypothesis. This work settled for simple accuracy number ie.
percentage of correct prediction over all examples in the testing dataset. F1 score

3.3. Test Methods 30

Figure 3.8 Test setup for doing the experiments

is another widely used metric which takes precision and recall into account and
therefore reveals the performance of the model better. However F1 score may not be
intuitive and easy to understand for a reader without prior experience or education
in statistical analysis. Accuracy should also provide enough information to test the
hypothesis.

Another drawback of accuracy is that it tells nothing about the conidence of the net-
work; even if model’s accuracy is high, the model might give very high probabilities
for the few incorrect predictions it produces. If output probabilities are required for
the task, for example for using a probability threshold for determining if an answer
should be given at all, this kind of model is not very suitable for the task. In this

3.4. Results 31

work however the training is done based on the softmax cross-entropy loss which
optimizes the form of prediction probability distribution. Also the early stopping
used in the model training is based on the cross-entropy loss so training is stopped
before network starts to be overconident about it’s incorrect predictions. Softmax
cross-entropy is a good metric for optimizing the network, but using cross-entropy
loss for evaluating performance of diferent results sufers from the same problem
as F1 score and provides even less insight for the reader about how well the model
performs.

Given all of these considerations for diferent beneits and drawbacks of the dis-
cussed metrics, it is still most probable that any of them would suice to reveal the
classiication performance diferences between the experiments. Some of the metrics
might emphasis the diference more than the others, but the bottom line is to test
the hypothesis and provide results for the reader that are understood by the reader.

3.4 Results

Results as accuracies for experiments described in section 3.2 are shown in table
3.5. UDPipe is used as a baseline for comparing absolute results achieved in this
work. UDPipe achieves accuracies of 94,9% for POS-tagging and 86,8% for lemma-
tization on Finnish Universal Dependencies 2.0 dataset (Straka 2017). POS-tagging
result comparison between UDPipe and this work are not perfectly fair since UD-
Pipe results reported on UDPipe User’s Manual page are obtained with Universal
Dependecies 2.0 Finnish dataset whereas this work uses 1.4. Lemmatization results
are not comparable at all because UDPipe lemmatizer is a generative model which
forms the lemma from the stem of the word (Straka and Straková 2017). As a
generative model the UDPipe lemmatizer does not sufer from vocabulary related
issues, but also can produce typographical errors and other mistakes common for
generative models.

Table 3.5 Results as accuracies for the experiments.

Experiment POS-taging Lemmatization
Separate POS-tagger 94,30% -
Separate lemmatizer - 94,25%
Lemmatization with classiied POS-tags - 94,40%
Lemmatization with gold POS-tags - 96,22%
Joint learning model 94,14% 95,24%

From the results we can see that the best POS-tagging accuracy is obtained by the
baseline, doing POS-tagging without lemmatization, with 94,30%. Baseline lem-
matizer achieves very similar results of 94,25%. Baseline POS-tagging accuracy is

3.4. Results 32

remarkably close to the UDPipe accuracy even though the learning approaches are
diferent. The small diference of only 0,6%-points between POS-tagging accuracies
in UDPipe and the baseline of this work could possibly be explained by the limi-
tations of dataset; perhaps larger (or smaller) dataset could turn the POS-tagging
accuracy into a favor of one or the other.

It’s worth noting that the similarity of results between baseline POS-tagging and
lemmatization don’t mean that both tasks are similarly diicult; lemma vocabulary
coverage has signiicant efect on lemmatization performance. Higher lemma vocab-
ulary coverage will lead to having a lot more lemmas. Doubling coverage almost
doubles the number of unique lemmas in the vocabulary. These new lemmas also
have signiicantly less examples in the dataset making them much harder to classify
correctly. Similarity of results between the baseline tasks is more of a coincidence
than feature of the tasks.

The more traditional approach to shared information learning, using parts of speech
as input features for lemmatization, yields a small improvement over the baseline
lemmatization. Diference between the results is mere 0,15%-points. There are two
possible explanations for this diference: using parts of speech for lemmatization does
not in fact improve results and the diference is within of margin of error or errors
in part of speech classiication used to produce input features for lemmatization are
so signiicant that they undermine any possible beneits.

Result accuracy for lemmatization using gold standard POS-tags, ie. POS-tags
available in the Finnish Universal Dependencies corpus, provides clear insight that
the latter of the proposed explanations is the correct one. Lemmatization using
correct parts of speech can achieve accuracy of 96,22% which is signiicantly higher
than the baseline and lemmatization using classiied parts of speech. Improvement
gained using gold standard parts of speech is 1,97%-points, which is 34,26% decrease
in accuracy error. This clearly shows that there is beneit from using parts of speech
as input features for lemmatization and that the shared information between the
two features is useful for the tasks at hand.

Joint learning model, which is the main focus of this work, can achieve 94,14%
for POS-tagging and 95,25% for lemmatization. Lemmatization performance gain
from the joint model is 0,99%-points (17,22% decrease in accuracy error), which
is high enough that results cannot be explained with numerical instability. Joint
model lemmatization result is also the best practical result among the experiments.
Lemmatization with gold standard parts of speech did obtain better accuracy than
lemmatization of joint model, but in real life predictions cannot be done with gold

3.4. Results 33

standard parts of speech since they are created by a team of linguists and as such
are not available at that time.

Maybe the more interesting result of the joint model accuracies is the POS-tagging
accuracy. POS-tagging accuracy in the joint model went down 0,16%-points when
compared to the baseline separate POS-tagger. What could explain this accuracy
decrease is not clear at this time. Perhaps lemmatization as more information rich
task dominates the POS-tagging in the joint model not allowing the gradient descent
to have enough power to adjust network weights and biases favorably for the POS-
tagging task. On the other hand the diference is small enough to be at least
partly explained by the numerical instability. It is also possible that doing several
additional experiments with diferent weights for the joint loss function would have
resulted into better accuracy for the POS-tagging task without much deterioration
of lemmatization accuracy.

34

4. DISCUSSION

Results obtained in this work show that shared information in POS-tagging and
lemmatization can be used to improve model performance when jointly learned.
Strictly speaking the results are valid only for the speciic conigurations and test
setup used in the experiments. Whether these results generalize for other languages,
and what languages is still up for debate. Finnish is very diferent from most other
languages spoken in Europe and therefore it could be that POS-tagging doesn’t
beneit lemmatization in joint model when testing on for example Swedish, Ger-
man, English, French or Spanish. However part of speech and lemma are very
similar concepts in basically all languages of the world with strong shared informa-
tion between the features, therefore it is not far fetched to hypothesise that one can
obtain similar results with other languages too.

Speculating how the results generalize to other tasks in natural language processing
is another question entirely. If results obtained in this work are indeed mainly due to
the strong shared information between the part of speech and the lemma of the word,
then other similar task pairs that share mutual information are good candidates for
joint learning models. Liu and Lane 2016 showed in their study ǴAttention-Based
Recurrent Neural Network Models for Joint Intent Detection and Slot FillingǴ that
there exists at least one other task pair which beneits from joint learning with
neural networks. With the results of Liu and Lane 2016 and of this work it is safe
to say that neural networks are indeed suitable for jointly learning natural language
processing tasks with shared information.

Even further speculation about how well these results generalize can be done for
tasks in other machine learning domains than natural language processing and to
task pairs that don’t share any direct mutual information but are still strongly
correlated. It is possible that the two tasks don’t actually need to share mutual
information for gaining beneit from joint learning as long as correlation in the data
between the two tasks exists. If this is the case then probably even the results ob-
tained in this thesis could be explained by that correlation. Finding such a discovery
of very general nature of joint task beneits would be extremely helpful in design-
ing future machine learning systems and could be applied across several problem

4.1. Assumptions and Simpliications 35

domains. For example a neural network could be developed for predicting diicult
to measure phenomena in industrial setting (eg. a factory or bioreactor) which
uses multitude of correlated measurements as input, lowering the cost structure for
measurements.

All in all there seems to be enough evidence to justify further research into joint
learning models with neural networks. Especially interesting evidence are the results
of Liu and Lane 2016 because the two jointly learned tasks are classiied at diferent
hierarchical levels. Slots can be considered keywords of the sentence relative to
spoken language understanding and intent is a single label of semantic meaning for
the sentence. This means that there exists now evidence for beneits from two word
level tasks as well as word level and sentence level tasks. It should be fairly safe to
assume that the task pairs can be selected from other hierarchical levels also, for
example two document level tasks or document level task and a sentence level task
or a word level task such as POS-tagging and a character level task such as lemma
generation. The new problem which must be addressed when using two tasks of
diferent hierarchical level is the choice of validation metrics: should for example the
generative lemmatization be evaluated at word level or at character level.

4.1 Assumptions and Simpliications

Assumptions made in this thesis are mainly related to the dataset used, test setup
and neural network tools used. The Finnish Universal Dependencies dataset is
a machine annotated corpus with manual corrections Haverinen et al. 2014. As
such the dataset was assumed to be suiciently correctly annotated. Errors in the
input dataset are fatal for machine learning methods since these methods don’t have
understanding about the real world, they just approximate the hidden functions of
the input data. Even though the machine annotations have been manually corrected
by linguists, there still exists a possibility for human errors. In fact it’s not possible to
be entirely sure about having 100% absolute true annotations in any corpus because
the ground truth is ultimately determined by the humans who create, correct or
check the corpus. Errors can only be reduced by having multiple annotators to do
the same annotations and doing a cross reference, but since none of the annotators
can be 100% sure, the probability for inal annotations’ correctness cannot be 100%.

Next assumption about the dataset used is that dataset represents Finnish language
well. This assumption may not hold true as well because of the way texts in the
Finnish Universal Dependencies were selected. Finnish UD dataset consists mainly
of news articles, Wikipedia articles, blog posts, iction and some other formal sources
such as Europarl speeches Haverinen et al. 2014. None of these sources include texts

4.1. Assumptions and Simpliications 36

from conversations such as online discussion forums or even personal communication
chat where form of the language may difer signiicantly from the more curated and
formal texts. Also diferent dialects of Finnish language is not well represented in
the corpus. All these limitations of the dataset distribution limit the model’s ability
to generalize to said situations and writing styles. It is also not known how big of
an impact for example colloquial speech would have to beneits of POS-tagging and
lemmatization joint task. At least the increased typographical variation introduced
with colloquial speech is sure to raise problems related with data sparsity unless
massive dataset is used. How big these issues will be is left to be tested.

When training, validating and testing the neural net model an assumption has to
be made that data distribution in each of these sets are similar. By looking at
the datasets one can easily deduce that at least the sentences divided into training,
development and test datasets were not randomized before doing the division; there
are several subsequent sentences that are obviously from the same text source in an
order which looks like it could be the original one. If, and when, the sentences are
not shuffled before diving into datasets, there is no guarantee that datasets share
the same distribution. It could be even that for example all of the blog entries
have ended up into development and training datasets, leaving no training examples
about blogs to training dataset. This would surely bias the model’s capability to
POS-tag and lemmatizer these texts which are most likely written in more informal
language that eg. news articles.

In addition to assumptions about dataset, assumptions were made about the test
setup. Perhaps the most notable assumption about test setup is that limiting the
lemma vocabulary and using unknown tokens for out of vocabulary lemmas would
represent more realistic situation where lemma vocabulary is not artiicially limited.
Lemma vocabulary was limited by selecting certain coverage of uses in the training
set, this entails an assumption that same coverage would be found in the develop-
ment and testing datasets, or at least neural net model could generalize to learn to
classify unseen lemmas as unknown tokens.

A quick lemma vocabulary coverage about the Finnish UD datasets reveals that a
lemma vocabulary which covers 100% of uses in the training set only covers about
75% of uses in validation and testing datasets. This is also an indication about difer-
ent data distributions in the three datasets. Lemma coverage and data distribution
issues seemed not to be a big problem since the lemmatization accuracy for the test
set was over 95%. Whether the accuracy would have been even higher if the distri-
butions had matched better was not tested in this thesis. It’s also worth noting that
neural network model learned remarkably well to classify unseen words as unknown

4.1. Assumptions and Simpliications 37

tokens, if it hadn’t the lemmatization accuracy for testing dataset would have been
signiicantly lower. The inal selected lemma vocabulary coverage was 90% meaning
that unknown tokens cover 10% of the lemma usages in training dataset. The second
most frequent term was less than 5%, so there was signiicant priori bias to select
unknown token. It was not tested among the experiments how the lemmatization
accuracy of unknown tokens would change if the unknown tokens didn’t have such
a big priori bias.

Another big assumption about the test setup is the complete omission of all possible
problems associated with treating all words with same written forms as a single word.
In reality these words have very diferent semantic meanings and will disturb learning
of word embedding vectors by word embedding component. As was discussed in
previous sections, this might not have a big impact on the performance of the model
for these tasks. However problem might be really bad in downstream processing
tasks which use lemmas as input features; if multiple words with diferent meanings
but same written form need to be distinguished from each other, lemmatization done
with this model is of no help.

Last signiicant assumption about the test setup was that running all experiments
with same hyperparameters would not prevent from producing signiicant diference
in each experiment. In optimal case each experiment would have had it’s own hy-
perparameters optimized for the said task. Unfortunately multiple hyperparameter
searches was not possible with the resources available. It is not known at this time
if diferences would have been greater or smaller if hyperparameters had been op-
timized for each taks. Hyperparameters were optimized for the joint task which
showed a notable improvement for lemmatization over the baseline model, perhaps
optimizing separate set of hyperparameters for the baseline model would have lead
to smaller diference. However it is unlikely that the whole performance gain is
explained by the better hyperparameters.

More minor simpliication of the test setup is the fact that experiments were done
with gold standard tokenization. Incorrect tokenization can completely ruin word
level classiication tasks for the incorrectly tokenized words. However tokenization
is a lot simpler task which can be inferred from the UDPipe tokenization results
(Straka and Straková 2017). UDPipe tokenizer achieves F1 score of 99,69 for Finnish
Universal Dependencies 2.0. This means that there is approximately one incorrect
tokenization in 77 sentences, when average sentence length is 13. If worst case sce-
nario is assumed ie. one incorrect tokenization ruins lemmatization and POS-tagging
for the entire sentence, causes tokenization errors 1/77 = 1, 3% error for both tasks.
However it’s not very reasonable to assume such an efect for all the words in the

4.1. Assumptions and Simpliications 38

sentence. Tokenization error can certainly afect the POS-tagging and lemmatiza-
tion results, but the efect should be relatively small. This same simpliication also
applies to sentence segmentation. Whether the sentence segmentation is necessary
step of the pipeline depends on the task. If the purpose is just to provide a tool
for linguists to help with lemmatization and POS-tagging of separate sentences, the
sentence segmentation is not required.

Hyperparameter optimization was also exposed to some simpliications in addition
to not doing it for all of the experiments separately. Firstly the hyperparameter
optimization had ixed maximum time budgets for the model trainings in order to
counter the possibly very long training times with certain hyperparameter conig-
urations. Limiting the maximum time budget also puts severe constraints on the
models which are afected by the time limit, these models are not allowed to fully
converge but are stopped prematurely. This means that the hyperparameters are
not globally optimal, but only optimal within the given constraints. Hyperparam-
eter optimization was also constrained by the maximum number of training runs
used for the search, this entails a situation where the hyperparameters are not fully
converged to their optimal values but rather are the best ones that were obtained
with the limited number of runs. Hyperparameter search ranges were also limited
for each hyperparameter so the hyperparameters found with the search can only be
optimal within those ranges. If all simpliications of hyperparameter search were
to be removed, countless number of runs would have been needed and a single run
could have taken time that approaches ininite as the layer sizes and counts rise,
certainly infeasible situation.

Diferent kind of limitation to hyperparameter search was the exclusion of weight α
in joint model loss function deined in equation 3.3. α cannot be optimized along
with other hyperparameters because adjusting the α will cause the optimization
target to change. Changing optimization target between optimization runs renders
the entire optimization process meaningless. Determining the value for α is really a
decision about what is appreciated, if POS-tagging accuracy is valued higher than
lemmatization accuracy then more weight has to be given to POS-tagging loss in
the joint loss. One is not worse than the other, it’s simply a question of preference.

Minor assumptions were made for neural network methods and tools used for im-
plementing the model. The neural network weights and biases were initialized with
small random values before starting the training. Using random values will produce
diferent initializations for each training run which in turn will eventually lead to
diferent results obtained from the two models. How big this diference depends
largely on the size of the dataset, the larger the dataset the smaller is the impact

4.1. Assumptions and Simpliications 39

of initialization. Finnish Universal Dependencies dataset contains 204399 tokens of
which about 10% is reserved for development set and about 10% for test set, leaving
over 160000 tokens for the training dataset. 160000 tokens is suicient to rule out
signiicant impact of the random initializations. However smaller diferences such as
the 0,15%-point increase on lemmatization accuracy when using classiied POS-tags
as input features and 0,16%-point decrease in POS-tagging accuracy for the joint
model could be partly explained by the random initializations.

It was also assumed that typical numerical instability always present at limited pre-
cision computer systems would have near to zero impact on the results and variance
between the results. Other sources of numerical errors are for system memory and
GPU memory; the neural network was trained on regular consumer hardware which
doesn’t error correction for the memories used. It was also assumed that these errors
would not play notable part in the results because neural network training can be
considered as nothing more than an error correction process.

40

5. CONCLUSIONS AND PROPOSALS FOR
FUTURE RESEARCH

Objective of this thesis was to build a neural network architecture for syntactic
parsing, namely lemmatization and POS-tagging. Research hypothesis was if the
architecture built for separate tasks could be modiied in such a way that both tasks,
lemmatization and POS-tagging, could be learned and predicted at the same time
and if the joint learning model would be better at classifying lemmas and POS-
tags. Objective was reached and research hypothesis was proved partly correct.
Required architectural modiications were minor to produce the joint model, and
it was observed that joint model is better at classifying lemmas but not parts of
speech.

Chapter 2 of this thesis was the theory section in which current academic status,
and a bit of history, was presented on natural language processing with and without
neural networks. Theory section discussed the most important problems in repre-
senting natural language with computer systems, what implications text as input
data introduces to machine learning methods and what kind of approaches pre-
vious research has taken into solving them. Also problem associated with highly
morphological languages such as Finnish were addressed in the theory section with
diferent methods of input representations and their pros and cons in this context.
Conclusion was that highly morphological languages are not suitable for word level
representations because of vocabulary explosion problem. Character level models
were introduced as a solution to inlections and morphology. Theory section also
included syntactic parsing tasks most relevant for this thesis. Lemmatization and
POS-taggin were the main focus of syntactic parsing tasks in theory section, as the
were main focus of the research problem in experiments chapter.

Chapter 3 is the practical and research part of this thesis. First the hypothesis and
research problem were introduced in experiments chapter. Introduction of experi-
ments chapter also includes reasoning for selecting lemmatization and POS-tagging
as the observed tasks and, selecting neural networks as implementational approach
to forming the solution and selecting the joint model for the basis of the hypothe-

5. Conclusions and Proposals for Future Research 41

sis. Lemmatization and POS-tagging were selected as the tasks because they share
strong mutual information and are strongly correlated which make suitable for joint
learning model tasks. Neural networks were selected as implementational approach
because they have shown tremendous progress on several diferent problem domains
and also in natural language processing. Other reason for selecting neural networks
was that they are generally fairly simple to modify for joint learning tasks and
since they are trained by optimizing the loss function multiple tasks can be learned
simultaneously by selecting appropriate loss function.

First part after the introduction (3.1) of the chapter 3 describes the neural net-
work architecture used for the experiments with it’s various components developed
for diferent sub-tasks. Architecture is composed of four components each on their
own hierarchical level: irst is the character level representation, second word level
representation, and then the word representations are joined for contextual repre-
sentation which is used as an input for the classiication component which outputs
the predictions. Neural network architecture section also presents the reasoning for
the architectural decision for doing lemmatization as word level classiication task
only, this was mainly to keep the architecture simpler and keep all predictions on
the same hierarchical level, word level, to avoid problems associated with selecting a
metric that can handle multiple hierarchical levels. The last part of the 3rd architec-
ture section explained the neural network training and hyperparameter optimization
procedures.

Experiments used to test the research hypothesis were presented in the experiments
section 3.2 of the chapter 3. Experiment section also has reasoning for selection of
diferent experiments. Baseline was established by having the two selected tasks,
POS-tagging and lemmatization, as separate models. Then an experiment with joint
learning model was introduced which can be compared to the separate models to
gain insights about how much improvement the joint model can provide over the
baseline, if at all. Additional experiments were added to determine if more tradi-
tional approach of using POS-tags as input features for lemmatization would provide
similar beneits: one with classiied parts of speech and one with gold standard ones.

Section 3.3 outlined the test setup used to do the experiments. Firstly the section
states that Finnish Universal Dependencies were used as a dataset for training,
developing and testing the neural network models. Then several possible metrics for
evaluating the results was discussed with the conclusion of using a simple accuracy
because it should be enough to test the hypothesis and is easier to understand for a
reader without education in statistical analysis.

5. Conclusions and Proposals for Future Research 42

Last section of the chapter 3 presents results obtained by doing the experiments
with the described test setup. Main discovery was that joint model does indeed
improve lemmatization performance over the baseline with 0,99%-point increase
and 17,22% decrease in accuracy error. Interestingly POS-tagging performance was
not improved and as a matter of fact was very slightly decreased from the baseline.
Experiments done with using POS-tags as additional input features reveled that
no signiicant improvement can be gained by using classiied POS-tags unless the
POS-tagging accuracy is very high. This perfect POS-tags the lemmatization saw
very signiicant improvement of 1,97%-points in classiication accuracy, which is also
a 34,26% decrease in accuracy error.

Chapter 4 has discussion for the generalizability of the results. It was stated in
chapter 4 that results obtained in the experiments should be generalizable to other
other languages since almost all languages have same concepts for lemma and part
of speech. Additional note was made that results should generalize to other shared
information task pairs within natural language understanding, this was further re-
inforced by the results of Liu and Lane 2016. It was mentioned that assuming that
the results would generalize to other problem domains or even to general correlating
tasks is not safe to do based on these results alone.

The latter part of discussions chapter covered assumptions made about data, test
setup and results. Dataset was assumed to be annotated correctly enough, even
though there still is the possibility of human error. Another important assumption
made about the dataset that it would represent Finnish language well, which might
not be the case entirely as was noted. Major assumptions and simpliications about
the test setup were mentioned to be the treatment of lemmatization as word level
classiication task with the unknown tokens and running all experiments with same
hyperparameters.

Assumptions, limitations and simpliications discussed in the chapter 4 open up sev-
eral interesting research opportunities for the future. Firstly and most obviously it
must be tested what kind of performances the model can achieve for other languages,
and especially the other Finnish UD dataset Finnish FTB. The beauty of Universal
Dependencies lies with the fact that all languages have uniform annotations and
therefore plugging in another language from Universal Dependencies should be as
easy as feeding in another data iles. Taking language capabilities even further a
research about multi-lingual models should be conducted. A neural network model
which takes multiple datasets as input, all of which are in diferent language would
prove very useful and at least ease the multi-lingual processing by limiting number
of models to one. Whether multi-lingual model can provide as good results or even

5. Conclusions and Proposals for Future Research 43

better as separate models for each language remains to be seen. A good founda-
tion for multi-lingual models is provided by pairs or sets of languages which are
linguistically close to each other, one such pair could be Swedish and Norwegian.

Another interesting prospect for a future research is the usage of additional infor-
mation available in the Universal Dependencies corpuses such as morphology and
language speciic POS-tags. There is a solid reasoning for using morphology for
lemmatization or even adding morphological parsing to the joint learning model
as third task. Morphology describes the form and inlection of a word and since
lemmatization can be seen as reverse process of inlecting the word, should morpho-
logical information be of great beneit for lemmatization. Modifying the architecture
to include third task is not a large work, but bigger question is whether the three
tasks can be learned successfully together without one task starting to dominate the
others.

Architecture developed for this thesis also has room for improvement by tuning the
α weight of joint loss function 3.3. If POS-tagging is the only task to be per-
formed, then adding a joint model which learn lemmatization also is probably not
worth the added computational cost. If both tasks need to be done, but priority is
for the POS-tagging, then a joint model could prove suitable if joint loss weight is
tuned to favor POS-tagging. POS-tagging is recommended to be done always even
if only lemmatization is required since it improves the lemmatization accuracy with-
out adding too much computational cost. Best possible results could be obtained
by training two diferent joint learning models, one with loss weight and other hy-
perparameters tuned for POS-tagging performance and one with with loss weight
and hyperparameters tuned for lemmatization performance. Drawback of this ap-
proach is the doubling of memory usage, which can be a scarce resource with GPUs,
and doubling of computational cost. All these speculations need to be conirmed or
belied with further research.

44

BIBLIOGRAPHY

Bahdanau, D., K. Cho, and Y. Bengio (2014). ǳNeural Machine Translation By
Jointly Learning To Align and TranslateǴ. In: Iclr 2015, pp. 1–15. issn: 0147-
006X. doi: 10.1146/annurev.neuro.26.041002.131047. arXiv: 1409.0473.
url: http://arxiv.org/abs/1409.0473v3.

Brill, E. (1992). ǳA Simple Rule-Based Part of Speech TaggerǴ. In: Applied natural
language, p. 3. issn: 00992399. doi: 10.3115/1075527.1075553. arXiv: 9406010
[cmp-lg].

Chen, D. and C. D. Manning (2014). ǳA Fast and Accurate Dependency Parser using
Neural NetworksǴ. In: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP) i, pp. 740–750. issn: 9781937284961.
url: https://cs.stanford.edu/%7B~%7Ddanqi/papers/emnlp2014.pdf.

Cho, K. et al. (2014). ǳLearning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine TranslationǴ. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734.
issn: 09205691. doi: 10.3115/v1/D14- 1179. arXiv: 1406.1078. url: http:
//arxiv.org/abs/1406.1078.

Chung, J., K. Cho, and Y. Bengio (2016). ǳA Character-level Decoder without Ex-
plicit Segmentation for Neural Machine TranslationǴ. In: Acl-2016, pp. 1693–1703.
arXiv: 1603.06147.

Claesen, M., J. Simm, and V. Jumutc (2017). Optunity. url: http://optunity.
readthedocs.io/en/latest/ (visited on 10/07/2017).

Elman, J. L. (1990). ǳFinding structure in time* 1Ǵ. In: Cognitive science 14.2,
pp. 179–211. issn: 03640213. doi: 10.1207/s15516709cog1402_1. url: http:
//doi.wiley.com/10.1207/s15516709cog1402%7B%5C_%7D1.

Haverinen, K. et al. (2014). ǳBuilding the essential resources for Finnish: the Turku
Dependency TreebankǴ. In: Language Resources and Evaluation 48.3, pp. 493–531.
issn: 15728412. doi: 10.1007/s10579-013-9244-1.

Hinton, G. E., D. E. Rumelhart, and R. J. Williams (1985). ǳLearning internal
representations by back-propagating errorsǴ. In: Parallel Distributed Processing:
Explorations in the Microstructure of Cognition 1.

Hinton, G. E., J. L. McClelland, and D. E. Rumelhart (1990). ǳDistributed represen-
tationsǴ. In: The philosophy of artiicial intelligence, pp. 248–280. issn: 1534-7362.
doi: 10.1146/annurev-psych-120710-100344. arXiv: 15334406.

Kanerva, J. et al. (2014). ǳSyntactic N-gram Collection from a Large-Scale Corpus
of Internet FinnishǴ. In: Frontiers in Artiicial Intelligence and Applications 268,
pp. 184–191. issn: 09226389. doi: 10.3233/978-1-61499-442-8-184.

BIBLIOGRAPHY 45

Kestemont, M. et al. (2016). ǳLemmatization for variation-rich languages using deep
learningǴ. In: Digital Scholarship in the Humanities, fqw034. issn: 2055-7671. doi:
10.1093/llc/fqw034. url: http://dsh.oxfordjournals.org/lookup/doi/
10.1093/llc/fqw034.

Korenius, T. et al. (2004). ǳStemming and lemmatization in the clustering of innish
text documentsǴ. In: Proceedings of the thirteenth ACM conference on information
and knowledge management, pp. 625–633. doi: 10.1145/1031171.1031285. url:
http : / / portal . acm . org / citation . cfm ? id = 1031171 . 1031285 % 7B % 5C &
%7Dcoll = Portal % 7B % 5C & %7Ddl = ACM % 7B % 5C & %7DCFID = 88534260 % 7B % 5C &
%7DCFTOKEN=49348956.

Lindén, K., M. Silfverberg, and T. Pirinen (2009). ǳHFST tools for morphology -
An eicient open-source package for construction of morphological analyzersǴ. In:
Communications in Computer and Information Science 41 CCIS, pp. 28–47. issn:
18650929. doi: 10.1007/978-3-642-04131-0_3.

Ling, W. et al. (2015). ǳFinding Function in Form: Compositional Character Models
for Open Vocabulary Word RepresentationǴ. In: Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing September, pp. 1520–
1530. doi: 10.18653/v1/D15-1176. arXiv: 1508.02096. url: http://dx.doi.
org/10.18653/v1/d15-1176%7B%5C$%7D%7B%5C%%7D5C%7B%5C$%7Dnfile:
///Files/68/6810072d-e133-426e-807f-445df2840420.pdf%7B%5C$%7D%7B%
5C%%7D5C%7B%5C$%7Dnpapers3://publication/doi/10.18653/v1/d15-1176%
7B%5C$%7D%7B%5C%%7D5C%7B%5C$%7Dnhttp://arxiv.org/abs/1508.02096.

Liu, B. and I. Lane (2016). ǳAttention-Based Recurrent Neural Network Models
for Joint Intent Detection and Slot FillingǴ. In: 1, pp. 2–6. doi: 10 . 21437 /
Interspeech.2016-1352. arXiv: 1609.01454. url: http://arxiv.org/abs/
1609.01454.

Mikolov, T., G. Corrado, et al. (2013). ǳEicient Estimation of Word Representa-
tions in Vector SpaceǴ. In: Proceedings of the International Conference on Learn-
ing Representations (ICLR 2013), pp. 1–12. issn: 15324435. doi: 10 . 1162 /
153244303322533223. arXiv: arXiv:1301.3781v3. url: http://arxiv.org/
pdf/1301.3781v3.pdf.

Mikolov, T., W.-t. Yih, and G. Zweig (2013). ǳLinguistic regularities in continuous
space word representationsǴ. In: Proceedings of NAACL-HLT June, pp. 746–751.
url: http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%
7B%5C&%7Dq=intitle:Linguistic+Regularities+in+Continuous+Space+
Word+Representations%7B%5C#%7D0%7B%5C%%7D5Cnhttps://www.aclweb.org/
anthology/N/N13/N13-1090.pdf.

Pennington, J., R. Socher, and C. D. Manning (2014). ǳGloVe: Global Vectors
for Word RepresentationǴ. In: Proceedings of the 2014 Conference on Empiri-

BIBLIOGRAPHY 46

cal Methods in Natural Language Processing, pp. 1532–1543. issn: 10495258. doi:
10.3115/v1/D14-1162. arXiv: 1504.06654.

Pirinen, T. (2017). Omori GitHub. url: https://github.com/flammie/omorfi
(visited on 10/08/2017).

– (2008). ǳSuomen kielen {ä}{ä}rellistilainen automaattinen morfologinen analyysi
avoimen l{ä}hdekoodin menetelminǴ. PhD thesis. Master’s thesis, Helsingin yliopisto.

Pyysalo, S. et al. (2015). ǳUniversal Dependencies for FinnishǴ. In: Nordic Confer-
ence of Computational Linguistics NODALIDA 2015 Nodalida, p. 163.

Straka, M. (2016). ǳUDPipe: Trainable Pipeline for Processing CoNLL-U Files Per-
forming Tokenization, Morphological Analysis, POS Tagging and ParsingǴ. In:
Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC’16), pp. 4290–4297.

– (2017). UDPipe User’s Manual. url: http://ufal.mff.cuni.cz/udpipe/
users-manual (visited on 10/01/2017).

Straka, M. and J. Straková (2017). ǳTokenizing, POS Tagging, Lemmatizing and
Parsing UD 2.0 with UDPipeǴ. In: Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies 2, pp. 88–99. url:
http://www.aclweb.org/anthology/K17-3009.

Sutskever, I., O. Vinyals, and Q. V. Le (2014). ǳSequence to sequence learning with
neural networksǴ. In: Nips, pp. 1–9. issn: 09205691. doi: 10.1007/s10107-014-
0839 - 0. arXiv: 1409 . 3215. url: http : / / papers . nips . cc / paper / 5346 -
sequence-to-sequence-learning-with-neural.

Takala, P. (2016). ǳWord Embeddings for Morphologically Rich LanguagesǴ. In:
April, pp. 27–29.

Toutanova, K. et al. (2003). ǳFeature-rich part-of-speech tagging with a cyclic depen-
dency networkǴ. In: Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language
Technology - NAACL ’03 1, pp. 173–180. doi: 10.3115/1073445.1073478. url:
http://portal.acm.org/citation.cfm?doid=1073445.1073478.

	Introduction
	Natural Language Processing
	Feature Engingeering in NLP
	Word Embeddings
	Character to Word

	POS-tagging
	Lemmatisation

	Experiements on Joint Model for POS-tagging and Lemmatization
	Neural Network Architechture
	Lemmatizations as Classification Only Task
	Word Embedding Component
	Context Encoding Component
	Classification Component
	Training and Optimization

	Experiments
	Test Methods
	Results

	Discussion
	Assumptions and Simplifications

	Conclusions and Proposals for Future Research
	Bibliography

