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Keywords: Low-Resolution, Knowledge Transfer, Deep Learning, Convolutional Neural
Network, Single Image Super-Resolution, Fine-Grained Classification

Successful fine-grained image classification methods learn subtle details between

visually similar (sub-)categories, but the problem becomes significantly more chal-

lenging if the details are missing due to low resolution. Alternatively, encouraged

by the recent success of Fully Convolutional Neural Network (FCNN) architectures

in single image super-resolution, we propose a novel Resolution-Aware Classifica-

tion Neural Network (RACNN). More precisely, we combine convolutional image

super-resolution and convolutional fine-grained classification together in an end-to-

end cascade manner, which first improves the resolution of low-resolution images

and then recognises objects in the images. Extensive experiments on the Stanford

Cars, Caltech-UCSD Birds 200-2011 and Oxford 102 Category Flowers benchmarks

demonstrate that the proposed model consistently performs better than conventional

convolutional models on categorising fine-grained object classes in low-resolution im-

ages.
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1. INTRODUCTION

1.1 Overview

Figure 1.1 Example images of different categories in ImageNet dataset.

Image classification is one of the core studies of digital image analysis. The task

of image classification is to assign one label to an image according to its semantic

content, as shown in Figure 1.1, which has been attracting wide attention in com-

puter vision community. A large number of methods have emerged to cope with the

classification task and these methods can be broadly categorised into three groups

according to the usage of labelled samples, namely supervised classification, unsuper-

vised classification and semi-supervised classification. The supervised classification
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Figure 1.2 Different breeds of dogs [48] from the same parent category: Dog.

techniques are the most commonly used nowadays and they require a number of pre-

labelled samples as the training data to train the classifiers, Popular classifiers are

Support Vector Machines [10, 14], Artificial Neural Networks [17, 29, 57], Decision

Tree [36], Rondom Forest [7], K-Nearest Neighbours [34, 18, 37], etc. Unsupervised

techniques do not require labelled data but are able to classify images by exploring

the structure and relationship between the images. In other words, unsupervised

classification conceptually is kind of clustering analysis where observations are cat-

egorised into the same class if they share some similar contents. Popular techniques

for unsupervised ckassification are K-Means Clustering [64], Self-Organised Map [52]

and ISODATA Clustering [3]. Semi-supervised classification techniques utilise both

labelled data and unlabelled data to build classifiers and take advantages of both su-

pervised and unsupervised techniques especially when there are no sufficient labelled

samples avaliable to train the classifiers [11, 33].

Generally speaking, the typical image classification can be defined as cassification

at a basic level (e.g . dog, automobile, bag, bird, human), as shown in Figure 1.1,

furthermore, an increasing number of studies focus on fine-grained visual object

classification. Fine-grained object classification [8, 9, 25, 48, 56, 66, 93] classifies

objects at a subordinate level under the same parent category, such as the species
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of animals [48, 93] or plants [69], the models of man-made objects [56, 66]. Fine-

grained classification is more difficult than the ordinary classification task due to the

visual and semantic similarity among the subcategories. Subcategories are basically

different, but partially share common local structures (e.g . nose, fur) as can be

observed in Figure 1.2. In this case, the problem of fine-grained classification lies on

the subtle differences between similar classes whose fine details play a crucial role in

distinguishing their catogories. As a consequence, many methods [2, 9, 25, 40, 65,

69, 104, 109] have been proposed to address this problem and achieved state-of-the-

art performance by exploiting on global image statistics [69] or strong local features

[104]. Since emergence of Convolutional Neural Network (CNN) architecture [57]

and massive public datasets [56, 93], the CNN-based fine-grained image classification

methods [1, 8, 15, 54, 61, 107] have dramatically improved the accuracy by a large

margin thanks to the capacity of millions learning parameters and today CNN-based

methods are the dominant approach in fine-grained image classification.

1.2 Motivation

On the one hand, the high performance achieved by aforementioned CNN-based

approaches is mainly based on good quality and relatively high-resolution (HR) im-

ages (e.g . AlexNet[57] requires 227 × 227). On the other hand, the performance

can collapse when it comes to low-resolution (LR) fine-grained images classification

[16, 62], since there are more fine details provided in HR images as compared to LR

images, which means that subtle discriminative features for classification are easier

to extract from HR images than their LR counterparts. Therefore, the problem

becomes more challenging when there are no HR images available or fine-grained

examples are small in the images. In this case, the accuracy of fine-grained classifi-

cation is affected due to lack of fine details. In this setting, the challenge intuitively

raises from the problem of how to recover discriminative texture details from LR

images. In this work, we attempt to adopt single image super-resolution (SISR)

techniques [13, 23, 30, 102, 106] to recover fine details. Inspired by recent state-of-

the-art performance achieved by novel CNN-based image super-resolution methods

[23, 49], we apply image super-resolution convolutional neural network (SRCNN)

to refine the texture details of fine-grained objects in LR images. In particular, we

propose a unique end-to-end deep learning framework that combines CNN-based im-

age super-resolution and fine-grained classification – a resolution-aware classification

neural network (RACNN) for fine-grained object classification in LR images. To our

best knowledge, our work is the first end-to-end learning model for low-resolution

fine-grained object classification.



1.3. Summary 4

1.3 Summary

Contributions – Our contributions are three-fold:

• Our work is the first attempt to utilise super-resolution specific convolutional

layers to improve convolutional fine-grained image classification in an end-to-

end manner.

• The high-level concept of our method is generic and super-resolution layers or

classification layers can be replaced by any other CNN-based super-resolution

networks or classification frameworks, respectively.

• We experimentally verify that the proposed RACNN achieves superior per-

formance on low-resolution fine-grained images which make ordinary CNN

collapse.

Our main principle is simple: the higher image resolution, the easier for classifica-

tion. Our research questions are: Can computational super-resolution recover details

required for fine-grained image classification and can such SR layers be added to an

end-to-end deep classification architecture? To this end, our RACNN integrates deep

residual learning for image super-resolution [49] into typical convolutional classifi-

cation networks (e.g AlexNet [57], VGGNet [81] or GoogLeNet [85]). On one hand,

the proposed RACNN has deeper network architecture (i.e more network parame-

ters) than the straightforward solution of conventional CNN on upsampled images.

Our RACNN learns to refine and provide more texture details for low-resolution

images to boost fine-grained classification performance. We conduct experiments on

three fine-grained benchmarks, the Stanford Cars Dataset [56], the Caltech-UCSD

Birds-200-2011 [93] and the Oxford 102 Flower Dataset[69]. Our results answer the

aforementioned questions: super-resolution improves fine-grained classification and

SR-based fine-grained classification can be designed into a supervised end-to-end

learning framework, as depicted in Figure 1.3 illustrating the difference between

RACNN and conventional CNN.
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Figure 1.3 The comparison of conventional AlexNet (the gray box) and our proposed
RACNNAlexNet(the dashed box) on Standford Cars Dataset and Caltch-UCSD Birds 200-
2011 Dataset. Owing to the introduction of the convolutional super-resolution (SR) layers,
the proposed deep convolutional model (the dashed box) achieves superior performance for
low resolution images.
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2. LITERATURE REVIEW

We first present the problem of general fine-grained object classification and then

further step into the literature focusing on low-resolution image classification. Next,

single image super-resolution techniques, especially the CNN-based, are investigated.

In the end, deep convolutional neural networks and transfer learning techniques

are discussed. Note that this part mainly focus on image super-resulution and

convolutional neural network since we concentrate on building a deep end-to-end

CNN-based framework for low-resolution image classification by integrating image

super-resolution techniques.

2.1 Fine-Grained Image Classification

Fine-grained classification is a sub-field of image classification, which refers to classi-

fying objects into sub-categories within the same parent category, such as the breeds

of birds [8, 93], the species of flowers [69] and the models of cars [56, 76]. A variety

of approaches have been proposed for discriminating the fine-grained classes in re-

cent years [28, 48, 58, 74]. The prior research on fine-grained classification roughly

involves two procedures: discriminative parts localisation and fine-grained feature

extraction. The first step is to identify discriminative regions in images by using

geometric constraints, which can be achieved by either using part-based bounding

boxes to explicitly train a strongly supervised region detector [12, 53, 107, 109] or

implicitly detecting the discriminative parts in unsupervised or weakly supervised

fashion [32, 45, 55, 54, 61]. The motivation to localise the discriminative regions in

the image is based on the assumption that some fine-grained classes share similar

structures or appearance, like noses, heads and legs for dog breeds. To this end,

these localised regions are beneficial for discovering discriminative localised features

which are crucial to discriminate fine-grained classes. The second step is to extract

discriminative and robust features for fine-grained object classification. Some pre-

vious approaches [4, 5, 6, 25, 44, 103, 108] employ traditional hand-crafted feature

descriptors, such as Histogram of Oriented Gradients (HOG) [20], Local Binary Pat-

tern (LBP) [70], Color Histogram [92] and Scale Invariant Feature Transform (SIFT)

[63] to make best utilisation of edge, texture and colour information presented in
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images to discriminate fine-grained objects. The Part-based One-vs-One Features

(POOF) based on HOG have been successfully employed for fine-grained classifica-

tion [4, 5, 6], for instance. More recently, owing to the success of deep convolutional

neural network (DCNN) architectures [57] on large-scale image classification, deep

CNN-based features have shown superiority over hand-crafted features on general

image classification as well as fine-grained classification [8, 28, 53, 55, 98, 107]. While

the typical pipeline for conventional fine-grained classification roughly comprises of

three separate procedures, parts localisation, feature extraction and classification,

the emerged DCNNs have turned out to be capable of jointly optimising the whole

pipeline which results in significant improvement on object classification tasks. For

example, [2, 54, 61] have driven the fine-grained image classification to its state-of-

the-art performance in various fields, such as plants [2], birds [93] and cars [56].

2.2 Low-Resolution Image Classification

Research on general image classification has achieved substantial achievements which

are often based on the assumption that objects in images are of relatively high res-

olution [28, 53]. However, this assumption does not always hold in practice. For

instance, images are taken from distance or surveillance videos where objects in the

images are usually very small [91]. However, only a few works have paid attention

to low-resolution image classification [75, 79, 95, 110]. Wang et al . [95] study very

low-resolution (e.g . 8× 8) recognition (VLRR) problem starting from the simplest

CNN baseline to evolve their network and a final partially coupled super-resolution

network (PCSRN) was proposed. The proposed PCSRN jointly learns a VLRR

model from both LR and HR training images and then applies the learned model

to directly classify LR images. In [110], a novel relationship-based super-resolution

(RLSR) method is proposed to reconstruct the HR face image by learning the rela-

tionship from the very LR space to the HR space under visual quality and discrim-

inative constraints, then several classic facial classification algorithms (e.g . PCA

+ SVM and PAC + 1NN) are employed to classify the super-resolved face images.

Shekhar et al . [79] propose a generative approach called kernel synthesis-based LR

face recognition (kerSLRFR) which is robust to LR face images classification under

different illumination conditions. The proposed kerSLRFR first utilises HR train-

ing images to generate multiple LR facial images of the same person with various

illumination and then applies synthesised LR images to learn the kernel dictionary

algorithm for recognising LR face images.

However, all the aforementioned approaches have a strong assumption that HR im-

ages of each class are available during the training phase. In addition, the same
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assumption also occurs in Peng’s work [75] that studies LR fine-grained classifica-

tion using deep convolutional neural network which is closely relevant to ours. In

[75], they propose a novel fine-to-coarse staged training procedure (Staged-Training)

using popular pre-trained AlexNet [57], which effectively transfers fine-to-coarse

knowledge from HR training images to the LR testing domain. In the first stage,

the Staged-Training AlexNet [75] uses HR fine-grained images to train the network

which can learn fine discriminative features in the HR domain (i.e. 227× 227). In

the second stage, these HR images are downscaled to LR domain (i.e. 50 × 50)

using bicubic interpolation [47] and the pre-trained network is fine-tuned on the

downscaled LR images to learn the discriminative features from fine to coarse. On

the contrary, Chevalier et al . [16] design a CNN-based fine-grained LR image classi-

fier (LR-CNN) with respect to varying image resolutions, which is both trained and

tested exclusively on LR images.

2.3 Single Image Super-Resolution

To address the problem of LR image classification, one of the most commonly used

techniques is single image super-resolution (SISR) which refers to reconstructing the

HR image from a given LR counterpart. A large number of SISR techniques recently

have been proposed with various assumptions and can be rougthly categorised into

two groups based on their tasks. Generic SISR algorithms [19, 24, 30, 41, 49, 50,

43, 78, 87, 89, 90, 94, 101, 102] are developed for all sorts of images which are not

limited to specific domains, while domain-specific SISR algorithms mainly focus on

specific categories of images like faces [88, 99], scenes [84], etc.

Yang et al . [100] grouped existing SR algorithms into four types according to image

priors: namely interpolation-based methods, statistic-based methods, edge-based

methods and example-based methods. Interpolation-based methods [43, 47] utilise

predefined mathematical formulas to generate HR image from LR image without any

training data. Bicubic and biliner intepolations weightedly average neighbouring

pixel values of LR image to produce HR pixel intensities, which can effectively

reconstruct the low-frequency (smooth) regions but fail in high-frequency (edge)

regions. Image statistic-based methods [42, 51] utilise inherent properties of natural

images as priors to produce HR images from LR images, like sparsity property and

total variation. Edge-based methods [26, 83] attempt to reconstruct HR image

using image priors (e.g . the depth and width) learnt from edge features and usually

yield high-quality edges in reconstructed HR images with reasonable sharpness and

artifacts. Patch-based or example-based methods are the predominant techniques

for SISR and numerous example-based approaches [19, 23, 27, 30, 41, 78, 101, 106]
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Figure 2.1 Super-resolution convolutional neural network (SRCNN) proposed by Dong
[23]. In SRCNN, the first convolutional layer extracts a set of features of LR image x,
the second convolutional layer nonlinearly maps these features from LR space to HR space
and the last convolutional layer reconstructs these features within HR space to produce the
final HR image y.

have emerged in the last decade. Training patches are cropped from the training

pairs of LR and HR images so that the mapping functions from LR space to HR

space can be learnt using these cropped training patches. According to the source of

training patches, the mainstream example-based methods can be classified into two

main categories: external database driven SR methods and internal database driven

SR methods. The internal example-based approaches [27, 30, 41] super-resolve the

LR images by exploiting the self-similarity property and generating exemplar patches

from the input image itself, while the external example-based approaches [19, 89,

90, 101, 106] use a variety of learning algorithms to learn the mapping between

LR and HR patch pairs from external database, such as sparse coding based SR

[102], random forest SR [78] and CNN-based SR [23]. In the following, as the key

component of this work, CNN-based SISR is investigated in details.

Recently, Convolutional Neural Network has been adopted for single image super-

resolution and has achieved state-of-the-art performance. The first attempt using

CNN for image SR is Super-Resolution Convolutional Neural Network (SRCNN)

proposed in [23] and it contains three fully convolutional layers to learn a nonlinear

mapping between LR and HR patches, as illustrated in Figure 2.1. SRCNN requires

interpolated LR (ILR) image as the input and implicitly performs three operations in

an end-to-end fashion. The first convolutional layer operates n1 filters with receptive

size f1 × f1 pixels on the input image to extract the underlying representations in
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the ILR space. The second layer operates as a non-linear feature mapping from

ILR space to HR space, which is achieved by applying n2 filters with receptive

size f2 × f2 on the extracted ILR representations. The last layer reconstructs the

feature representations in HR space to generate the HR image using n3 filter(s) with

receptive size f3 × f3 to aggregate the representations. SRCNN achieved state-of-

the-art performance by jointly optimising all the layers in an end-to-end learning.

Inspired by SRCNN, numerous CNN-based SR approaches have emerged [49, 50, 59,

86, 96] and these follow-ups build deeper and more complex structures by stacking

more convolutional layers to yield more accurate inference. Kim et al . [49] propose

a very deep SR network (VDSR) which is similar to SRCNN, except that VDSR

attempts to learn the mapping between ILR image and its residual image (i.e. the

difference between ILR and HR image) rather than directly from ILR to HR to speed

up CNN training for very deep network structure via utilising residual learning and

adjustable gradient clipping. The VDSR stacks 20 weight layers with the same

receptive size of 3 × 3 and number of filters 64 for each layer. Unlike SRCNN that

only has three fully convolutional layers, the VDSR is capable of performing global

residual learning. Meanwhile, in order to control the network parameters, Kim et

al . [50] propose another deeply recursive convolutional network (DRCN) which

adopts a deep recursive layer to avoid adding new weighting layers. Motivated

by the observation that introducing more parameters through adding more weight

layers leads model to be overfitted [82], the DRCN is capable of addressing this

problem via adding the same layers recursively by sharing the same weights without

introducing new parameters. To this end, the DRCN consists of 20 layers in total,

which can be viewed as three parts, as shown in Figure 2.2(a). The first part is the

embedding layer which extracts the feature maps from a input given image. Next,

the feature maps are fed into the recursive part which stacks recursive layers with

shared weights among these layers for inference. Finally, the reconstructing layer

assembles the input image ILR and all the intermediate outputs of recursive layers

to produce the final HR image.

Furthermore, a much deeper network is proposed recently in [86] which takes ad-

vantage of DRCN [50] and VDSR [49] to build a deep recursive residual network

(DRRN) with depth even up to 52 layers, which is capable of capturing global and lo-

cal details as well as decreasing network parameters by introducing recursive residual

blocks. Instead of stacking a single layer, DRRN recursively stacks a residual block

comprising of several layers, as illustrated in Figure 2.2(b). Nevertheless, DRRN

has two important parameters: the number of layers U in each residual block and

the number of residual block B. Interestingly, when U = 0 and B = 18 DRRN be-

comes VDSR, which means DRRN is a more generic framework of VDSR or VDSR
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Figure 2.2 Simplified structures of (a) DRCN [50] and (b) DRRN [86]. In DRCN, the
red dashed box refers to recursive module, among which each convolutional layer shares
the same weights, and the blue line refers to global identity mapping. In DRRN, the blue
dashed box refers to residual block , among which there are two convolutional layers without
sharing weights, but the red dashed box is the recursive module, among which each residual
block shares the same weights with respect to corresponding convolutional layers. The same
as in DRCN, the blue line refers to the global identity mapping.

is a special case of DRRN [86]. To this end, DRRN robustly boosts the performance

of SR further by making utilisation of the global residual learning of VDSR and the

reduction of parameters of DRCN, as well as the local residual learning of residual

blocks.

On the contrary, instead of using the interpolated LR image as input which requires

expensive computation, the works of [24, 80] directly super-resolve LR image without

any interpolation. Subsequently, they turn out that enabling the networks to directly

learn the feature maps in LR space and then upscale the LR image can further

boost the performance of accuracy and speed. in [24], they propose a fast super-

resolution convolutional neural network (FSRCNN) which adopts a deconvolution

operation in the last layer to replace bicubic interpolation [47], as shown in Figure
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Figure 2.3 The network structures of FSRCNN [24] and ESPCN [80]. (a) FSRCNN
directly learns a deconvolutional layer in the last of network to produce HR image rather
than bicubic interpolation. (b) As same as FSRCNN, ESPCN also learns the feature maps
in LR space except that ESPCN performs pixel shuffle to reconstruct the HR image instead
of deconvolution.

2.3 (a). Alternatively, an effective sub-pixel convolutional neural network (ESPCN)

is presented in [80], whose goal is to learn r2 (where r denotes the upscaling factor)

variants of the input LR image only in LR space and then shuffle the pixels to

reconstruct the HR counterpart, as depicted in Figure 2.3 (b). Literally, the r2

variants of the LR image learned by the network can be deemed as r2 pixel-wise

downsampled LR images of the HR image, which can be viewed as the inverse

process of pixel-shuffling.

2.4 Deep Convolutional Neural Network

With respect to the remarkable success achieved by deep convolutional neural net-

works (DCNN) in computer vision community in the past few years, in this section,

we investigate the relevant powerful DCNN-based techniques used in our work.
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Figure 2.4 A simple MLP structure with an input layer, four fully-connected layers and
an output layer, where x denotes the input data, Li denotes the ith hidden layer, Wi and
Ai denotes the weights and output of the ith layer, respectively, and y denotes the final
output of the network.

Convolutional Neural Networks (CNN) belong to the family of Artificial Neural

Networks (ANN) which we introduce first. ANN originated from the middle of the

20th century and was firstly created as a computional model based on mathematics

for emulating biological neural networks of brain by McCulloch et al . [67]. ANN

is made of interconnected nodes which analogously perform the activities of brain

neurons. A simple multiple-layer perception (MLP) ANN comprising of one input

layer L1, two hidden layers L2 and L3 and one output layer L4 is depicted in Figure

2.4, which can perform a series of non-linear mapping functions from input to the

final output. The equation is formulated as below:

Al = φ(WT
l A

l−1), where A0 = x, l = 1, ..., L− 1

y = WT
LA

L−1,
(2.1)

where Al and WT
l denote the outputs and the transpose of the weights Wl of the

lth layer, respectively, φ denotes the non-linear activation functions, L denotes the

number of layers of the network, x and y denote the input and output of the network.

Each layer contains multiple artificial neurons and each neuron non-linearly maps

all the input values to a single output value, as shown in Figure 2.5, which can be
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Figure 2.5 The mathematical model for a single artificial neuron.

formulated in mathematical equations 2.2:

alj = φ(
N∑
i=1

wl
ija

l−1
i + blj), where l = 1, ..., L− 1, j = 1, ..., K,

= φ(
N∑
i=0

wl
ija

l−1
i ), where w0j = 1, x0 = blj, l = 1, ..., L− 1, j = 1, ..., K,

= φ(wT
j a

l−1), where a0 = x, l = 1, ..., L− 1, j = 1, ..., K,

(2.2)

where φ denotes the non-linear activation function (e.g . sigmoid function), wj the

weights of the jth neuron of the lth layer, al−1 and alj the inputs and output of the

neuron, K and L denote the number of outputs and the amount of layers and x the

input of the network. Thereby, the output for a single fully-connected layer can be

presented as below:

Al = {al1, al2, al3, ..., alK} where l = 1, ..., L− 1, (2.3)

where Al is the output the lth layer.

One class of the artificial neural networks is Convolutional Neural Network (CNN)

which has been successfully applied to visual imagery processing. CNN was initially

proposed in [60] to perform handwritten digit recognition and it attempts to spatially
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Figure 2.6 An example of visualisation for AlexNet [57]. (a) The input image. (b)
The convolutional filters of the first layer conv1. (c) and (d) are the activation features
extracted from the first convolotional layer conv1 and the fourth convolotional layer conv4,
respectively. As shown in (c) and (b), most of activation values are close to zeros (black
parts) but the silhouette of the dog is visually recognisable in some boxes.

model high-level abstractions by stacking multiple non-linear convolutional layers in

the network. More recently, a big breakthrough for image classification was made by

Krizhevsky et al . [57] using deep CNN which achieved record-breaking performance

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [77] 2012.

CNN-based features performed much better and improved performance by a large

margin (i.e. error rate of 16.4% vs 26.1%) compared to conventional hand-crafted

features. Traditional hand-crafted methods are limited by their ability to capture
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Figure 2.7 An example of convolutional layer. An input volume ( e.g. a RGB image
with size of w1 × h1 × 3) is convolved by a convolutional layer with 10 filters with size of
kw × kn × 3 to produce an output volume with size of w2 × h2 × 10. Each of convolutional
filter is connected to a local spatial region with full depth ( i.e. all channels) in the input
volume and all the filters (with different weights) look at the same region.

multiple levels of features. However, by visualising the activation features extracted

from intermediate layers of CNN network, it shows that CNN is able to capture

salient features of images in different levels [105], as illustrated in Figure 2.6. A

typical CNN architecture usually consists of stacked modules, in what follows, we

describe several important functional layers commonly used for image classification

tasks, namely, convolutional layer, activation layer, pooling layer, fully-connected

layer and loss layer.

Convolutional Layer: The convolutional layer is the core component of a CNN

and is capable of extracting the salient features by recognising the local correlations

in the images. A ConvLayer often comprises of a certain number of filters and

each filter contains a set of weights which can be learnt by training the network.

An illustrative example of convolutional layer is shown in Figure 2.7. The filters

in the convolutional layer are densely connected to the local spatial regions in the

input volume and carry out most of the computational tasks. Specifically, each

filter in a convolutional layer acts as an artificial neuron which locally performs

convolutional operations to obtain the feature map, which is achieved by sliding the

weights matrix on the input volume region-by-region vertically and horizontally to

carry out mathematical element-wise multiplication. Therefore, each convolutional
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filter is applied on the whole input volume and all the subregions share the same

weights of the filter, which results in controlling the amount of parameters in the

network. The simple example is shown in Figure 2.8 and the equation can be formed

as below:

y =

Kh,Kw∑
i=1,j=1

wi,jxi,j + b, where wi,j ∈ w, xi,j ∈ x

= w ∗ x + b, where y ∈ Y, x ⊂ X

(2.4)

Y = w ∗X + b (2.5)

where Kh and Kw denote the size of the filter, X and Y are the input volume and the

output volume, w and x the filter and local patch in X, ∗ denotes the convolutional

operation and b the bias.

Figure 2.8 An example of matrix multiplication. Note that the input is a 3 × 3 matrix
with zero-paddings which is to obtain an output with the same spatial size.

Activation Layer: In deep neural network, the non-linearity is basically imple-

mented by activation layer which applies non-linear function on the feature maps.

Here, we describe several activation functions commonly used in neural network.

Sigmoid function constrains real-valued numbers to range between [0, 1] so that

large negative numbers become 0 and large positive number become 1, which means
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Figure 2.9 Commonly used activation functions in neural network.

the activation value is always non-negative. While the hyperbolic tangent function

Tanh produces real-valued numbers to range of [-1, 1] and is simply a scaled Sigmoid

function, as shown in Equation 2.6 and 2.7. More recently, the Rectified Linear

Unit (ReLU) [68] has become the most popular activation function used in neural

network. ReLU simply constrains the negative numbers to zeros and keeps positive

numbers unchanged and its equation is shown in Equation 2.8. In addition, the

Parametric Rectified Linear Unit (PReLU) is introduced in [38] to generalise the

ordinary ReLU activation function, which allows a parameter α to be learnt along

with other network parameters for negative numbers, as formulated in Equation 2.9.

In addition, these activation functions are illustrated in Figure 2.9.

sigmoid : σs(x) =
1

1 + e−x
(2.6)

tanh : σt(x) =
1− e−2x

1 + e−2x

=
2

1 + e−2x
− 1

= 2σs(2x)− 1

(2.7)

relu : σr(x) = max(0, x) (2.8)
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prelu : σp(x) = max(0, x)− α max(0,−x) (2.9)

Pooling Layer: Pooling operation aims to aggregate spatial features and reduce

the size of representation so as to reduce the number of parameters and the cost of

computation in the network. Max-pooling and average-pooling are the most widely-

used pooling functions which explore the representation over small local regions to

generate statistical features. In other words, the same representational features are

likely to be applicable in different subregions of the image.

Fully-connected Layer: In a fully-connected layer, neurons have full connections

to the outputs of previous layer, that is, each single neuron of a fully-connected

layer is connected to all the activations from the previous layer. A typical fully-

connected layer was demonstrated by the MLP neural network in Figure 2.4. Unlike

the weight-sharing scheme in convolutional layer, fully-connected layer requires full

connections to the input volume so that fully-connected layer usually has much more

parameters compared to convolutional layer.

Loss Layer: One of the essential components in neural network is the loss layer

which drives the neural network to learn the objectives from massive training data.

The loss (error) between the output of network and the true label is calculated by

loss function and then utilised to supervise the training process of the network via

back-propagation [60]. There are various loss functions used in neural network such

as contrastive loss [35], cross-entropy loss and euclidean distance loss (also known as

mean squared error), more specifically, contrastive loss enables the network to learn

the parameters which are capable of gathering the neighbour data but separating

non-neighbour data, and cross-entropy loss is adopted to measure the performance

of a classification network which produces a probability distribution of predicted

class over all classes, while euclidean distance loss simply measures the difference

between the predicted output and ground truth.

2.5 Transfer Learning

Deep neural networks often contain millions of parameters due to various deep struc-

tures, which usually requires a huge amount of training data to train the network.

However, for some domain-specific tasks (e.g . fine-grained classification), some-

times, there are no enough training data available to enable loss function converge

at a good minimum but to overfit the network. To mitigate this difficulty, the tech-

nique of transfer learning [31] is employed to make the best utilisation of existing

datasets like ImageNet (containing millions of images with 1000 categories) to assist
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the training of domain-specific tasks. In simple terms, transfer learning (also known

as domain adaptation) aims to adapt the knowledge from source domain with a large

dataset to target domain with a small dataset. [72] shows that transfer learning can

boost the performance of the target task, even though the feature spaces or topics

are different between source domain and target domain. Donahue et al . [22] present

that deep convolutional activation features (DeCAF) pre-trained on ImageNet can

be adapted to generic object classification tasks and achieved fairly good results

on different domains, such as fine-grained classification on Caltech-UCSD-Birds 200

[93] and scene recognition on SUN-397 [97]. Furthermore, in [71], Oquab et al .

successfully demonstrate that transfer learning can be applied on object detection

and localisation by fine-tuning the convolutional layers pre-trained on ImageNet for

classification.
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3. METHODOLOGY

Figure 3.1 The pipeline for fine-grained low-resolution image classification.

To tackle the problem fine-grained classification in low-resolution (LR) images, an

intuitive and simple idea is to increase the resolution of LR images first and then

recognise the objects in the images, as shown in Figure 3.1. It literally comprises

two procedures, namely, image super-resolution and classification. To this end, we

propose a novel resolution-aware classification neural network which involves image

super-resolution convolutional neural network and image classification convolutional

neural network.

3.1 Fully Convolutional Super-Resolution Network

In this section, we present a fully convolutional super-resolution network. The goal

of the super-resolution network is to recover texture details of low-resolution images

to feed them into the following image classification network.
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Figure 3.2 The structure of residual super-resolution convolutional neural network.

GivenK training pairs of low-resolution and high-resolution images {XLR,XHR}i, i =

1, 2, · · · , K, a direct CNN-based mapping function g(XLR) from XLR (input obser-

vation) to XHR (output target) [23, 24] is learned by minimising the mean square

loss

Lms(X
LR,XHR) =

1

2

K∑
i=1

‖XHR − g(XLR)‖2. (3.1)

Inspired by Super-Resolution Convolutional Neural Network (SRCNN) [23] and the

more recent state-of-the-art residual super-resolution convolutional network VDSR

[49], we design our convolutional super-resolution layers as shown in Figure 3.2.

Similar to [49], instead of directly minimising the loss function in Equation 3.1, our

convolutional super-resolution network learns a mapping function from the inter-

polated LR images XLR to residual images XRes = XHR −XLR. Thus, the loss

function of the proposed convolutional super-resolution network is as the following:

min
1

2

K∑
i=1

‖XRes − g(XLR)‖2, where XRes = XHR −XLR. (3.2)

The better performance of residual learning yields from the fact that, since the

input (XLR) and output images (XHR) are largely similar, it is more meaningful to

learn their residue (or difference) where similarities are removed. It is obvious that

detailed imagery information in the form of residual images is easier for CNNs to

learn than direct LR-HR CNN models [23, 24].

We utilise three typical stacked convolutional-ReLU layers with zero-padding filters

in the super-resolution network. Following [23], the empirical basic setting of the
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layers is f1 = 9, n1 = 64, f2 = 5, n2 = 32, f3 = 5 and n3 = 3, which are also

illustrated in the Fig. 3.2, where fm and nm denote the size and number of the

filters of the mth layer, respectively.

This model conceptually can be considered to implement four functional procedures.

For simplcity, each operation is viewed as a convolotional layer followed by a Rec-

tified Linear Unit (ReLU, max(0, x)) [68] layer which is a non-linear activation

response function.

1. LR Feature Extraction: the first nonlinearly convolutonal layer srconv1

applies 64 filters with size of 9×9×3 on the input interpolated LR image XLR,

which aims at extracting patches from the input image XLR and representing

the patches in the form of 64 feature maps. These feature maps can be viewed

as the representations of the residual image in the LR space. This operation

can be expressed as two steps:

F1(X
LR) = W1 ∗XLR +B1, (3.3)

where ∗ denotes the convolution operation, W1 (with dimension of 9×9×3×64)

and B1 (with dimension of 1 × 64) denote the weights and the biases of the

filters of the first convolutional layer.

F1(X
LR) = max(0, F1(X

LR), (3.4)

Equation 3.4 refers to applying the non-linear ReLU operation on the filter

responses of the first layer.

2. LR-HR Feature Mapping: the second layer srconv2 nonlinearly maps the

residual representations from LR space to HR space by using 32 convolutional

filters with dimension of 5×5×64 . This layer can possibly be implemented by

using more convolutional non-linear layers for obtaining a better performance.

As the same as the above,

F2(X
LR) = W2 ∗ F1(X

LR) + B2, (3.5)

where W2 (with dimension of 5×5×64×32) and B2 (with dimension of 1×32)

denote the weights and the biases of the filters of the second convolutional

layer.

F2(X
LR) = max(0, F2(X

LR), (3.6)

applies the non-linear ReLU operation on the filter response of the second

layer.
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3. Residual Reconstruction: The third layer srconv3 operates as a recon-

structing process, which utilises 3 filters with size of 5 × 5 × 32 to linearly

construct the corresponding residual image in the HR space based on the rep-

resentations obtained from the second layer. The corresponding function is:

XRes = W3 ∗ F2(X
LR) + B3, (3.7)

where W3 (with dimension of 5× 5× 32× 3) and B3 (with dimension of 1× 3)

denote the weights and the biases of the filters of the last convolutional layer.

The reconstructed residual image XRes visually shows that the missing parts

mainly focuses on the high-frequent details, like edges shown in Fig. 3.2.

4. Skip-Connection: This step can also be viewed as a special convolutional

layer with 3 filters whose values are all ones with size of 1 × 1 × 3. Thus, it

works just as a conveyor to transmit the shared data (i.e. XLR) in both LR

and HR image to mitigate the effect of heavy computation. The whole SR

network finally sums the residual image XRes (learned from the input image

XLR) with the input image XLR to obtain the corresponding super-resolved

image XSR:

XSR = XRes +XLR (3.8)

These operations are to be implemented by a fully convolutional neural network in

an end-to-end manner. All the weights (i.e. W1, W2 and W3) and biases (i.e. B1,

B2 and B3) of the convolutional filters are initialised using Guassian function and

are to be optimised by training the network on massive image data. Note that for

the fully convolutional SR network, it does not require any specific dimensions for

the input image, thus this SR network can be flexibly applied on images with any

resolutions.

3.2 Image Classification Network

In this part, we describe the image classification CNN which is to classify the object

presented in the image and assign one label to it. A number of CNN frameworks

[57, 81, 39, 85] have been proposed for image classification, and in this work we

consider three popular convolutional neural networks AlexNet [57], VGG-Net [81]

and GoogLeNet [85]. All of them typically consist of a number of Convolutional-

ReLU-Pool stacks followed by several fully-connected layers.

We first discuss the typical image classification with deep convolutional neural net-

work. Given a set of N training images and corresponding class labels {Xi, yi}, i =
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1, 2, · · · , N , the goal of a conventional CNN model is to learn a mapping function

y = f(X). The typical cross-entropy loss Lce(·) on softmax classifer is adopted to

measure the performance between class estimates ŷ = f(X) and ground truth class

labels y :

Lce(ŷ, y) = −
K∑
j=1

yj log(ŷj), (3.9)

where j refers to the index of element in vectors, and K denotes the output dimension

of softmax layer ( the number of classes). The softmax layer applies softmax function

( 3.10) on final outputs of the network to calculate the categorical distribution:

ŷj =
ezj∑K
k=1 e

zk
, for j = 1, ..., K (3.10)

where z = z1, z2, ..., zK denote the outputs of the last fully-connected layer of

the network and ŷj denotes the probability distribution of the jth output over all

K outcomes. In this sense, classification CNN solves the following minimisation

problem with gradient descent back propagation:

min
N∑
i=1

Lce(f(Xi), yi). (3.11)

where yi is the ground truth of input Xi. When the network is well-trained after

training phrase, the estimated class label for a given image is determined to be the

most possible label over K class labels based on the probability distribution:

ŷ = arg max(ŷj), for j = 1, ..., K (3.12)

3.2.1 AlexNet

AlexNet was proposed in [57] and is the baseline deep convolutional neural net-

work for large-scale image classification with ImageNet dataset [21]. It consists of 5

convolutional-ReLU layers ( conv1-relu1, conv2-relu2, conv3-relu3, conv4-relu4 and

conv5-relu5 ), 3 max-pooling layers (pool1, pool2, and pool3 ), 2 normalisation layers

(norm1 and norm2 ), 2 dropout layers (drop6 and drop7 ), 3 fully-connected-ReLU

layers ( fc6-relu6, fc7-relu7 and fc8 ) and a softmax layer (prob). For simplicity, we

just visualise eight learnable layers (i.e. convolutional layers and fully-connected

layers), as shown in Figure 3.3.
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Figure 3.3 The visual structure of AlexNet classification convolutional neural network.
Note that we only visualise the convolutional layers and fully-connection layers.

The first convolutional layer contains 96 filters ( with dimension 11 × 11 × 3) with

a stride of 4 pixels (note that stride is the distance of every movement of the filter),

which is followed by a local response normalisation (LRN) layer and a max-pooling

layer. The outputs of pooling layer are to be filtered by the second convolutional

layer with 256 filters with the size 5×5×96. Next, the third and fourth layers both

have 384 filters (with size 3× 3× 256 and 3× 3× 192, respectively), and 256 filters

with size 3× 3× 192 for the last convolutional layer, after which another LRN layer

and max-pooling layer are applied again before the fully-connected layers. The first

two fully-connected layers have 4096 neurons each, but for the last fully-connected

layer, the amount of neurons is to be the total number of labels of datasets(e.g . 196

for Stanford Cars dataset [56] and 200 for Caltech-UCSD Birds-200-2011 dataset

[93] ). Finally, the output of last fully-connected layer is to be fed into a softmax

layer which generates a normalised probability distribution for each label over all

class labels.

3.2.2 VGGNet

VGGNet [81] is made deeper ( from 8 layers of AlexNet [57] to 16-19 layers) and more

advanced over AlexNet by using very small ( 3× 3) convolution filters to investigate

the effect of convolutional network depth. In our work, we choose the VGGNet-16

with 16 layers for our experiments (denoted as VGGNet in the rest of the thesis). It

comprises 13 convolutional-ReLU layers with the same receptive filtering size 3 × 3

and 3 fully-connected-ReLU layers, which simply can be grouped into 6 small blocks

(i.e. 5 convolutional blocks and 1 fully-connected block). See Figure 3.4 for better
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Figure 3.4 The structure of VGGNet-16 classification convolutional neural network.
For the sake of simplicity, only the convolutional layers and fully-connection layers are
illustrated in the figure.

understanding.

The layers in each convolutional block have the same number of filters which produce

the same size of feature maps and each convolutional block is followed by a max-

pooling layer to reduce the dimension of feature maps. The first block contains two

convolutional layers with 64 filter each and the second one also have two layers but

with 128 filters for each. There are 256 convolutional filters for each layer in the

third block while the layers in the fourth block have 512 filter similar to the fifth

block. The last block contains three fully-connected layers followed by a softmax

layer, the same as in AlexNet [57], 4096 neurons for the first two layers and 196 or

200 neurons for the last fully-connected layer in our experiments.

3.2.3 GoogLeNet

GoogLeNet [85] was proposed for ImageNet Large-Scale Visual Recognition Com-

petition 2014 (ILSVRC14) and it secured the first place in both classification and

detection tasks. GoogLeNet comprises 22 parametrical layers but has much less

number of parameters than AlexNet [57] and VGGNet [81] owing to the smaller

amount of weights of the fully-connected layer. GoogLeNet generally generates three

outputs at various depths for each input, but for simplicity, only the last output (i.e.

the deepest output) is considered in our experiments. These parametrical layers can

be grouped into three parts, as depicted in Figure 3.5, namely, convolutional layers,

inception modules and fully-connected layer, among which the inception module
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Figure 3.5 The structure of GoogLeNet convolutional neural network. Note that the
orange blocks represent the distinct inception modules which are assembled from six con-
volutional layers and one max-pooling layer, and only the convolutional layers and fully-
connection layer are illustrated.

is the main hallmark of GoogLeNet as well as responsible for the state-of-the-art

performance.

To be specific, the first convolutional layer extracts 64 feature maps with size 114×
114 from the input image (227×227×3) by operating 64 filters with a large receptive

field (i.e. 7×7) like in AlexNet [57]. The following two convolutional layers operate

more filters (receptive field 3×3) thus more feature maps (192) are obtained with size

57 × 57 and are fed into the following inception modules. Nine inception modules

are stacked on top of each other and all of them share the similar architecture

which consists of four convolutional layers with convolution size 1× 1 for dimension

reduction, two convolutional layers (with convolution sizes 3×3 and 5×5) for feature

extraction and one max-pooling layer with size 3 × 3. These inception modules

can be divided into three groups and each group shares the same height and width

dimensions regarding the feature maps. Concretely, the first group has two inception

modules which generate n3a = 256 and n3b = 480 feature maps with size 28 × 28,

next, there are five inception modules in the second group and the number of feature

maps (with size 14 × 14) increases from 512 (n4a – n4c) to 528 (n4d) and then to

832 (n4e) in order. Two more inception modules are to produce more feature maps

(1024) with even smaller size 7 × 7. Different from AlexNet [57] and VGGNet [81],

GoogLeNet employs only one fully-connected layer at the end, which dramatically
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mitigates the suffering of training tens of millions of parameters.

3.3 Resolution-Aware Classification Neural Network

Figure 3.6 Pipeline of the proposed Resolution-Aware Classification Neural Network
(RACNN) for fine-grained classification with low-resolution images. Convolutional clas-
sification layers from AlexNet are adopted for illustrative purpose, which can be readily
replaced by those from other CNNs such as VGGnet or GoogLeNet.

The proposed architecture literally consists of two sub-nets: super-resolution CNN

and classification CNN. We combine the super-resolution CNN with the classifi-

cation CNN together to form conceptually the super-resolution and classification

layers in our network which is called Resolution-Aware Classification Neural Net-

work (RACNN). The key difference between the proposed RACNN and conventional

classification CNN lies in the introduction of the fully convolutional super-resolution

layers, as depicted in Figure 3.6.

Intuitively, RACNN takes an interpolated low-resolution image as input and super-

resolves the image via the convolutional super-resolution layers and then feeds it into

the convolutional classification layers and fully-connected layers and finally outputs

one estimated label for it. Literally, the super-resolution layers are responsible for

extracting discriminative fine details which are helpful for accurately recognising the

object in the LR image.
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Table 3.1 The configuration of RACNNAlexNet architecture. Note that each convolutional
layer is followed by a non-linear ReLU layer which is omitted in the table and the output
size of fc8 layer depends on the the amount of classes of dataset ( e.g. 196 for Stanford
Cars).

name of layer type of layer size of output
filter size/ stride/ number of

number padding parameters

srconv1 convolution 227× 227× 64 9× 9 / 64 1 / 4 15,616

srconv2 convolution 227× 227× 32 5× 5 / 32 1 / 2 51,232

srconv3 convolution 227× 227× 3 5× 5 /3 1 / 2 2,403

conv1 convolution 55× 55× 96 11× 11 / 96 4 / 0 34,944

norm1 LRN 55× 55× 96 - - -

pool1 max-pooling 27× 27× 96 3× 3 / - 3 / 0 -

conv2 convolution 27× 27× 256 5× 5 / 256 1 / 2 614,656

norm2 LRN 27× 27× 256 - - -

pool2 max-pooling 13× 13× 256 3× 3 / - 3 / 0 -

conv3 convolution 13× 13× 384 3× 3 / 384 1 / 1 885,120

conv4 convolution 13× 13× 384 3× 3 / 384 1 / 1 1327,488

conv5 convolution 13× 13× 256 3× 3 / 256 1 / 1 884,992

pool3 max-pooling 6× 6× 256 3× 3 / - 3 / 0 -

fc6 linear 4096 - / 4096 - 37,748,737

drop6 dropout(0.5) 4096 - - -

fc7 linear 4096 - / 4096 - 16,777,217

drop7 dropout(0.5) 4096 - - -

fc8 linear 196 - / 196 - 802,817

output softmax 196 - - -

In our experiments, we adopt AlexNet [57], VGGNet [81] and GoogLeNet [85] as the

classification layers of RACNN which are named as RACNNAlexNet, RACNNVGGNet

and RACNNGoogLeNet, respectively. Compared with RACNNAlexNet, RACNNVGGNet

has more than double amount of parameters (i.e. 135 million vs. 59 million) due

to the deeper depth, on the contrary, RACNNGoogLeNet has deeper structure than

both of them but with much less parameters (i.e. 6 million) thanks to the dis-

trict architecture of inception module. The configuration details of RACNNAlexNet,

RACNNVGGNet and RACNNGoogLeNet can be found in Table 3.1, Table 3.2 and Table

3.3. Note that, the classification layers can be replaced with any other classification

networks.
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Table 3.2 The configuration of RACNNVGGNet architecture.

name of layer type of layer size of output
filter size/ stride/ number of

number padding parameters

srconv1 convolution 224× 224× 64 9× 9 / 64 1 / 4 15,616

srconv2 convolution 224× 224× 32 5× 5 / 32 1 / 2 51,232

srconv3 convolution 224× 224× 3 5× 5 /3 1 / 2 2,403

conv1 1 convolution 224× 224× 64 3× 3 / 64 1 / 1 1,792

conv1 2 convolution 224× 224× 64 3× 3 / 64 1 / 1 36,928

pool1 max-pooling 112× 112× 64 2× 2 / - 2 / 0 -

conv2 1 convolution 112× 112× 128 3× 3 / 128 1 / 1 73,856

conv2 2 convolution 112× 112× 128 3× 3 / 128 1 / 1 147,584

pool2 max-pooling 56× 56× 128 2× 2 / - 2 / 0 -

conv3 1 convolution 56× 56× 256 3× 3 / 256 1 / 1 295,168

conv3 2 convolution 56× 56× 256 3× 3 / 256 1 / 1 590,080

conv3 3 convolution 56× 56× 256 3× 3 / 256 1 / 1 590,080

pool3 max-pooling 28× 28× 256 2× 2 / - 2 / 0 -

conv4 1 convolution 28× 28× 512 3× 3 / 512 1 / 1 1,180,160

conv4 2 convolution 28× 28× 512 3× 3 / 512 1 / 1 2,359,808

conv4 3 convolution 28× 28× 512 3× 3 / 512 1 / 1 2,359,808

pool4 max-pooling 14× 14× 512 2× 2 / - 2 / 0 -

conv5 1 convolution 14× 14× 512 3× 3 / 512 1 / 1 2,359,808

conv5 2 convolution 14× 14× 512 3× 3 / 512 1 / 1 2,359,808

conv5 3 convolution 14× 14× 512 3× 3 / 512 1 / 1 2,359,808

pool5 max-pooling 7× 7× 512 2× 2 / - 2 / 0 -

fc6 linear 4096 - / 4096 - 102,760,449

drop6 dropout(0.5) 4096 - - -

fc7 linear 4096 - / 4096 - 16,777,217

drop7 dropout(0.5) 4096 - - -

fc8 linear 196 - / 196 - 802,817

output softmax 196 - - -

3.4 Network Setting and Training

In this section, we present the training strategies adopted in the experiments. As

mentioned, the crucial difference between RACNN and conventional CNN is the

super-resolution part, thus the training procedure mainly comprises two stages, i.e.



3.4. Network Setting and Training 32

Table 3.3 The configuration of RACNNGoogLeNet architecture.

name of layer type of layer size of output
filter size/ stride/ number of

number padding parameters

srconv1 convolution 227× 227× 64 9× 9 / 64 1 / 4 15,616

srconv2 convolution 227× 227× 32 5× 5 / 32 1 / 2 51,232

srconv3 convolution 227× 227× 3 5× 5 /3 1 / 2 2,403

conv1/7×7 s2 convolution 114× 114× 64 7× 7 / 64 2 / 3 9,472

pool1/3×3 s2 max-pooling 57× 57× 64 3× 3 / - 2 / 0 -

pool1/norm1 LRN 57× 57× 64 - / - - -

conv2/3×3 reduce convolution 57× 57× 64 1× 1 / 64 1 / 0 4,160

conv2/3×3 convolution 57× 57× 192 3× 3 / 192 1 / 1 110,784

conv1/norm2 LRN 57× 57× 192 - / - - -

pool2/3×3 s2 max-pooling 28× 28× 192 3× 3 / - 2 / 0 -

inception 3a inception 28× 28× 256 - / 256 - 163,696

inception 3b inception 28× 28× 480 - / 480 - 388,736

pool3/3×3 s2 max-pooling 14× 14× 480 3× 3 / - 2 / 0 -

inception 4a inception 14× 14× 512 - / 512 - 376,176

inception 4b inception 14× 14× 512 - / 512 - 449,160

inception 4c inception 14× 14× 512 - / 512 - 510,104

inception 4d inception 14× 14× 528 - / 528 - 605,376

inception 4e inception 14× 14× 832 - / 832 - 868,352

pool4/3×3 s2 max-pooling 7× 7× 832 3× 3 / - 2 / 0 -

inception 5a inception 7× 7× 832 - / 832 - 1,043,456

inception 5b inception 7× 7× 1024 - / 1024 - 1,444,080

pool5/7×7 s1 ave-pooling 1× 1× 1024 7× 7 / - 1 / 0 -

pool5/drop7×7 s1 dropout(0.4) 1024 - - -

fc6 linear 196 - / 196 - 200,705

output softmax 196 - - -

training for super-resolution and training for classification.

3.4.1 Training for Image Super-Resolution

The introduced part of RACNN is to super-resolve the input LR images for the sake

of better classification. We first train the three convolutional SR layers by enforcing

the minimal of the mean square loss in Equation 3.2 on ILSVRC 2015 ImageNet
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object detection dataset [77] which consists of 11,142 high-resolution images. For

the goal of direct utilisation of output of convolutional SR layers (i.e. SR Image in

Figure 3.6), we train SR layers in RGB color space with all the channels, instead

of only on luminance channel Y in YCbCr color space [49, 50]. Specifically, we

generate LR images from HR images (e.g . 227×227 pixels) via firstly down-sampling

HR images to LR 50×50 pixels and then up-scaling to the original image size by

bicubic interpolation [47]. We then sample image patches using sliding window and

thus obtain sufficient pairs of LR and HR image patches. Following [23], the super-

resolution layers are firstly initialised with Guassian function and then trained with

image patches by setting learning rates being 1 and weight decays being 0.1 for the

first two SR layers (srconv1 and srconv2 ) and both learning rate and weight decay

being 0.1 for the third SR layer (srconv3 ).

3.4.2 Training for Fine-Grained Classification

In this stage, the RACNN is trained in an end-to-end learning manner. Evidently,

the proposed RACNN is deeper than its corresponding classification CNN (e.g .

RACNNAlexNet vs. AlexNet) in light of the convolutional SR layers, which can

store more knowledge due to more network parameters. For fair comparison, the

same SR layers are prefixed to the classification CNN and initialised with Gaussian

function without pre-training. We employ the corresponding conventional classifi-

cation network (e.g . AlexNet) as the baseline with respect to the proposed fine-

grained image classification network (e.g . RACNNAlexNet). Note that p-RACNN

and g-RACNN separately denote the networks whose SR layers are initialised with

pre-trained weights (see Section 3.4.1) and Guassian weights in the experiments.

Similar to [75], we utilise the weights pre-trained on ImageNet [77] to initialise the

classification layers of network, which transfers all classification layers except the last

fully-connected layer. The dimension of the final fully-connected layer is replaced

with the size of object classes in the dataset (i.e. 196 for Stanford Cars Dataset, 200

for Caltech-UCSD Birds-200-2011 Dataset and 102 for Oxford 102 Category Flowers

Dataset) and the weights are initialised with a Gaussian distribution. The whole

network is fine-tuned with a small learning rate. Concretely, given the pre-trained

weights of convolutional SR layers, p-RACNN is end-to-end trained by minimising

the cross entropy loss function (see Equation 3.11) for classification with learning

rates 0.1 and weight decays 0 for all layers except the last fully-connected layer with

both learning rate and weight decay 1. Likewise, the baseline network and the com-

parative counterpart g-RACNN are also trained in the same manner as p-RACNN,

except that the learning rates and weight decays of SR layers in g-RACNN are set
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to 1 and 0.1 for the first two layers (srconv1 and srconv2) and both learning rate and

weight decay are 0.1 for the third layer (srconv3) just as in the training for image

super-resolution.
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4. EXPERIMENT AND EVALUATION

4.1 Datasets and Settings

Figure 4.1 Samples from Stanford Cars (the top row), Caltech-UCSD Birds 200-2011
(the middle row) and Oxford 102 Category Flowers (the bottom row).

There are many datasets released for this fine-grained visual classification task, such

as Stanford Dogs [48], Oxford-IIIT Pet [73], FGVC-Aircraft [66], etc. In this work,

we evaluate our RACNN on three commonly used fine-grained classification datasets:

the Stanford Cars dataset [56], the Caltech-UCSD Birds-200-2011 dataset [93] and

the Oxford 102 Category Flowers dataset [69]. Selected samples from these datasets

are shown in Figure 4.1.

Stanford Cars Dataset [56] was released by Krause et al . for fine-grained classifi-

cation and contains 16,185 images from 196 classes of cars and each class is typically

at the level of Brand, Model, Year. By following the standard evaluation protocol

[56], we split the data into 8,144 images for training and 8,041 for testing.
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Figure 4.2 Samples of interpolated low-resolution (50× 50) images after removing back-
ground from the Stanford Cars.

Figure 4.3 Samples of interpolated low-resolution (50×50) images after removing back-
ground from the Caltech-UCSD Birds 200-2011.
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Caltech-UCSD Birds-200-2011 Dataset [93] is another challenging fine-grained

image dataset aimed at subordinate category classification by providing a compre-

hensive set of benchmarks and annotation types for the domain of birds. The dataset

contains 11,788 images of 200 bird species, among which there are 5,994 images for

training and 5,794 for testing [93].

Oxford 102 Category Flowers Dataset [69] totally consists of 8,189 images of

flowers which commonly appear in the United Kingdom. These images belong to

102 subcategories and each subcategory contains between 40 and 258 images. In

the standard evaluation protocol [69], the whole dataset is divided into 1,020 images

for training, 1,020 for validation and 6,149 for testing, note that the training and

validation data are merged together to train the networks in this project.

Most of images from these datasets are object-centered and require to be first

cropped with provided bounding boxes (if available) to remove the background.

Furthermore, we artficially generate the LR images for low-resolution fine-grained

classification in the scope of this work. Specifically, the cropped images are down-

sampled to small LR images (e.g . with the size of 50×50 pixels) and then up-scaled

to a large unified size (i.e. 227 × 227 pixels) by bicubic interpolation [47] in or-

der to fit the conventional classification CNNs (e.g . AlexNet and GoogLeNet),

which follows the similiar settings in [75]. The generated LR images samples from

the benchmarks are illustrated in Figure 4.2 and Figure 4.3, which precisely ver-

ify our motivation to mitigate the suffering from low visual discrimination due to

low-resolution. The proposed RACNN is implemented on Caffe [46]. We adopt the

average per-class accuracy [62, 75] for these three datasets (the higher value denotes

the better performance).

4.2 Comparative Evaluation

In Figure 4.4, we first compare our results with AlexNet [57] and Staged-Training

AlexNet [75] for fine-grained classification in low-resolution (50 × 50) images. It is

evident that our RACNNAlexNet consistently achieves the best performance on both

benchmarks. Precisely, AlexNet achieves 50.4% and 51.3% accuracy (collected from

[75]) for the Stanford Cars and Caltech-UCSD Birds datasets, respectively. Knowl-

edge transfer between varying resolution images (i.e. Staged-Training AlexNet [75])

can improve classification accuracy, that is 59.5% for the Stanford Cars and 55.3%

for the Caltech-UCSD Birds. However, the staged-training AlexNet [75] relies on

the strong assumption, i.e. high-resolution images available for training, which

limits to its usage to other tasks when only low-resolution images are available.

Note that our method is more genetic and transforms knowledge of super-resolution
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Figure 4.4 Comparative evaluation on the state-of-the-art methods [[57, 75]] and our
RACNN on Cars and Birds Datasets (average per-class accuracies).

across datasets, which indicates that our method can be readily applied to other

low-resolution image classification tasks. The proposed RACNNAlexNet significantly

beats its direct competitor AlexNet, i.e. 63.8% vs. 50.4% on the Stanford Cars

dataset and 58.1% vs. 51.3% on the Caltech-UCSD Birds dataset. With the same

settings and training samples, the performance gap can only be explained by the

novel network structure of RACNN.

4.3 Evaluation of Super-Resolution Layers

In this experiment, we employ all layers in the AlexNet, VGGNet and GoogLeNet

[85] as classification layers in RACNN. Note that, different from the previous ex-

periments, we freeze all classification layers by setting learning rates and weights

decays to 0 besides the last fully-connected layers of both baseline CNNs, and our

RACNN is then fine-tuned with low-resolution data, Such a setting treats classifi-

cation layers in RACNN as an identical classifier for evaluating the effect of adding

convolutional SR layers. RACNN with initial Gaussian and pre-trained weights are

called as g-RACNN and p-RACNN respectively. Comparative results are shown in

Table 4.1 and Figure 4.5. Both g-RACNN and p-RACNN consistently outperform

the baseline CNNs in all experiments, and we observe similar situation in Section4.2.

With the same experimental setting except different initial weights for convolutional
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Table 4.1 Evaluation on effect of convolutional SR layers. We fix all convolutional
classification layers and fully-connected layers except the last fully-connected layer. g-
RACNN and p-RACNN denote the proposed RACNN from with standard Gaussian and
pre-trained weights of convolutional SR layers. Note that best results are shown in bold.

Methods Stanford Cars [56] Caltch-UCSD Birds [93] Oxford Flowers [69]

AlexNet [57] 43.75% 44.99% 70.03%

g-RACNNAlexNet 45.77% 47.17% 71.91%

p-RACNNAlexNet 47.90% 51.23% 74.24%

VGGNet [81] 41.49% 43.46% 67.82%

g-RACNNVGGNet 42.86% 44.72% 68.03%

p-RACNNVGGNet 44.65% 49.33% 69.17%

GoogLeNet [85] 46.85% 48.52% 69.28%

g-RACNNGoogLeNet 50.37% 55.16% 69.77%

p-RACNNGoogLeNet 50.76% 57.30% 73.51%

super-resolution layers, the results of g-RACNN and p-RACNN are reported. Test

set accuracies in Table 4.1 and Figure 4.5 show that p-RACNN is superior to g-

RACNN.

Specifically, p-RACNNAlexNet achieves 2.1%, 4.1% and 2.3% improvements com-

pared to g-RACNNAlexNet on Stanford Cars, Caltech-UCSD Birds and Oxford Flow-

ers datasets respectively. Meanwhile, p-RACNNVGGNet boosts the accuracies from

42.86% to 44.65% on Stanford Cars, from 44.72% to 49.33% on Caltech-UCSD Birds

and from 68.03% to 69.17% on Oxford Flowers. Moreover, p-RACNNGoogLeNet shares

the same tendencies as p-RACNNAlexNet and p-RACNNVGGNet, which separately im-

proves the results to 50.76%, 57.30% and 73.51% from 50.37%, 55.16% and 69.77%

on three datasets.

On the one hand, all the RACNN-based approaches achieve better results than their

ordinary counterparts (without SR layers), which is caused by the deeper structures

owned by RACNN-based methods. On the other hand, p-RACNN and g-RACNN

share the same network structure but differ only in network weights initialisation of

convolutional SR layers. In this sense, better performance of p-RACNN is credited to

the knowledge about refining low-resolution images (i.e. pre-trained weights), which

verifies our motivation to boost low-resolution image classification via image super-

resolution. It is noteworthy that since the feature extraction layers are frozen, the

networks are not fine-tuned to low-resolution specific features, but all performance



4.3. Evaluation of Super-Resolution Layers 40

Table 4.2 Training time for the proposed RACNN and its competing CNNs (seconds /
epoch)

Methods Stanford Cars [56] Caltch-UCSD Birds [93] Oxford Flowers [69]

AlexNet 11 8 3

RACNNAlexNet 111 80 25

VGGNet 133 82 34

RACNNVGGNet 356 215 90

GoogLeNet 20 25 8

RACNNGoogLeNet 136 120 59

boosts are owing to recovered high-resolution details by the super-resolution layers.

(a) AlexNet (b) VGGNet

(c) GoogLeNet

Figure 4.5 The accuracy on testing dataset during training process of AlexNet, VGGNet
and GoogLeNet on the Caltech-UCSD Birds Dataset.

In addition, with respect to the details of computation, we use one Lenovo Y900

Desktop running Linux Ubuntu 14.04 operating system with one Intel i7-6700K
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CPU and one Nvidia GTX-980 GPU with 4 GB memory in our experiments. The

proposed RACNN can consistently achieve superior performance with the price of

deeper network structure, which thus causes higher computational complexity than

its competitors (i.e. AlexNet, VGGNet, GoogLeNet) as shown in Table 4.2.

4.4 Evaluation on Varying Resolution

Table 4.3 Comparison with varying resolution level (Res. Level) on the Caltech-UCSD
Birds 200-2011 Dataset. Note that best results are shown in bold.

Resolution Level AlexNet [57] g-RACNNAlexNet p-RACNNAlexNet

25×25 31.58% 43.68% 45.06%

50×50 44.99% 47.17% 51.23%

100×100 51.01% 51.24% 52.88%

We further evaluate our proposed RACNN method with respect to varying resolu-

tions on the Caltech-UCSD Birds 200-2011 Dataset [93]. All low-resolution images

are first up-scaled to the same image size, i.e. 227×227, before training models.

The better performance of RACNNAlexNet over conventional AlexNet is achieved for

cross-resolution fine-grained image classification, which is shown in Table 4.3.

We observe that our method’s margin is better for lower resolution images (e.g .

25×25) than high resolution images (e.g . 100×100). In details, p-RACNNAlexNet

increases the accuracy by above 13% for 25×25 pixel images but less than 2%

improvement on 100×100 resolution images. The reason is that the SR layers of

RACNN play a significant role in introducing texture details especially when miss-

ing more visual cues of object classification in lower quality images, which further

demonstrates our observation and motivation.
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5. CONCLUSION

In this work, we proposed and verified a simple yet effective resolution-aware clas-

sification neural network for fine-grained object classification with low-resolution

images. Our proposed framework integrates residual image super-resolution with

general classification networks for solving low-resolution fine-grained object classi-

fication problem in an end-to-end fashion. This framework has been verified on

three popular benchmark datasets and the results of extensive experiments indi-

cate that the introduction of convolutional super-resolution layers to conventional

CNNs can indeed recover fine details for low-resolution images to boost the per-

formance of low-resolution fine-grained classification. Moreover, we also conduct

experiment on cross-resolution image classification problem and the result supports

that our approach still works on varying resolution classification tasks. The concept

of this thesis is general and the existing convolutional super-resolution and classi-

fication networks can be readily combined to cope with low-resolution as well as

cross-resolution image classification. In future work, this concept can be applied

on other computer vision tasks, such as human action recognition in low-resolution

videos and human face recognition in surveillance records.
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