TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

LASSI KOJO

SITUATION AWARENESS IN COMPUTER SYSTEMS

Master of Science thesis

Examiner: Prof. Billy Bob Brumley
Examiner: MSc. Markku Vajaranta
Examiners and topic approved by the
Faculty Council of the Faculty of
Information Technology

on 27th September 2017

ABSTRACT

LASSI KOJO: Situation Awareness in Computer Systems

Tampere University of Technology

Master of Science thesis, 48 pages, 9 Appendix pages

November 2017

Master's Degree Programme in Information Technology

Major: Pervasive Systems

Examiner: Prof. Billy Bob Brumley

Examiner: MSc. Markku Vajaranta

Keywords: Information Security, SIEM, Log Management, Network Monitoring

As the complexity of networks increases, new tools need to be implemented in or-
der to maintain control over the connected devices. The thesis presents a way to
reach situation awareness in computer system in a cost-effective way without com-
promising flexibility and scalability. The definition in situation awareness in cyber
security context includes i.e. that one needs to be aware of the current situation,
how situations evolve and why and how the current situation is caused. In order
to achieve situation awareness, two tools are presented: monitoring system and log

analytics platform.

Monitoring system is a proactive system which keeps track of status about all the
devices and services configured to be monitored. The status and received events are
stored for later usage, and graphs are drawn based on values of different services
and statuses. Log analytics platform is a reactive system which provides insight into
structured and enriched log data. It can visualize the log data, analyze and alarm

based on pre-defined rules and utilize machine learning for anomaly detection.

These two systems are integrated together using alarming feature of the monitoring
system, so that logs can be linked to the exact device in monitoring system, hence
collecting the relevant data in one centralized view so that the incidents can be
investigated further on log analytics platform. Together they provide deep insight

into the computer system and enable situation awareness.

IT

THVISTELMA

LASSI KOJO: Tilannekuvan muodostaminen tietojirjestelmisté
Tampereen teknillinen yliopisto

Diplomityo, 48 sivua, 9 liitesivua

lokakuu 2017

Tietotekniikan koulutusohjelma

Paaaine: Pervasive Systems

Tarkastaja: Prof. Billy Bob Brumley

Tarkastaja: MSc. Markku Vajaranta

Avainsanat: Tietoturvallisuus, SIEM, Lokienhallinta, Verkonvalvonta

Tietoverkkojen monimutkaisuuden kasvaessa paine uusien tyokalujen kayttoonot-
toon kasvaa, jotta yllapitajat voisivat jatkossakin sailyttda verkkoon kytkettyjen
laitteiden hallinnan omissa kasissdan. Téssé diplomityossa esitelladn kustannusteho-
kas ja helposti laajennettava jarjestelmé tilannekuvan muodostamiseen tietojarjes-
telmassa. Tilannekuvan maéritelma kyberturvallisuuden kontekstissa sisaltdd mm.
vaatimukset nykyisen tilanteen ymmartamisesta, siitd miten erilaiset tilanteet ke-
hittyvat, ja miksi ja miten nykyinen tilanne on aiheutunut. Jotta voitaisiin muo-
dostaa tilannekuva tasta hetkesta, esitellaan kaksi tyokalua: valvontajarjestelmé ja

lokianalytiikka-alusta.

Valvontajarjestelmé on proaktiivinen jarjestelmé, joka pitda kirjaa kaikkiin siihen
liitettyjen laitteiden ja palveluiden tilasta. Kysytty tilatieto ja vastaanotetut vies-
tit eri jarjestelmista tallennetaan myohempad kayttoa varten, ja keratysta tiedosta
piirretaan kuvaajia. Lokianalytiikka-alusta on reaktiivinen jéarjestelma, joka tarjoaa
matalan tason nakyvyyden jasenneltyyn ja rikastettuun lokidataan. Se voi visuali-
soida lokidataa, analysoida ja halyttad ennaltaméaariteltyjen rajojen perusteella, tai

hyodyntda koneoppimista poikkeuksien havainnointiin.

Néma kaksi jarjestelméad on integroitu keskendan valvontajarjestelméan halytysomi-
naisuutta hyodyntéen, joka yhdistaa lokianalytiikka-alustasta lahetetyt halytysvies-
tit valvontajarjestelméssa olevaan laitteeseen tai palveluun. Nain ollen kaikki tar-
peellinen tieto on keskitetty yhteen ndkymaan, jonka hélyttéessa voidaan porautua
syvemmalle lokianalytiikka-alustan séilyttamiin lokeihin ongelman ratkaisemiseksi.
Yhdessd naméa kaksi jarjestelméaé tarjoavat lapivalaisevan ndkymén tietojarjestel-

méaan ja mahdollistavat tilannekuvan muodostamisen.

I1I

PREFACE

I have been working at JMJping Oy since the first year of my studies in TUT. The
time spent there has had a huge effect on my career and has guided me to study
subjects which I am really interested in, which I had really no clue before the second
year of working. This thesis concludes my work at JMJping Oy and the major part
that I have been doing for them for the past four years.

I would like to express my deep gratitude especially to my supervisor Janne Tapio
for all the opportunities and responsibilities I have received over the years in all sorts
of projects, they have made me a better engineer. I also appreciate the support from

Marko Toivola, and all the other co-workers I have had during my time there.

During my studies, I had a chance to get to know the staff of TUT Cyber Security
Lab, especially MSc. Markku Vajaranta. Markku has helped me a lot not only
supervising this thesis but also in other courses and we have had great dialogs

about the work of a system administrator.

I also had a chance to work with a great computer security team at CERN supervised
by Dr. Stefan Liiders in the summer of 2015. It was an amazing experience not only

because of the size of the environment but also because of the people working there.

This thesis is the climax of six and a half years of studying and working at the same
time and for now the last academic work I plan to do before I head to the business

world full-time.

Finally, I would like to thank Prof. Billy Bob Brumley for his blazing fast handling

of the administrative side of this thesis and his valuable feedback.

Tampere, 13.11.2017

IV

CONTENTS

1.

Introduction 3
1.1 Problem overview 3
1.2 Solution overview 4
1.3 Research scopeand goals 5
1.4 Structure of the thesis L. 5
Situation awareness 6
2.1 Overview of situation awareness 6
2.2 Log management in situation awareness 7
2.3 Information collecting methods 8
2.4 Preventing and reacting 10
2.5 Identifying critical systems and their valuable information 11

2.5.1 Accessing and shipping logs L. 12

2.5.2 Parsing different typesof logs 13
2.6 Handling the logdata 14
Monitoring systemo Lo 17
3.1 What to monitor? 17
3.2 Distributed monitoring oL 18

3.2.1 Livestatus 19

3.2.2 Benefits of distributed monitoringo 20

3.2.3 Concerns of distributed monitoring 21
3.3 Event console 22
3.4 Alarming 23
3.5 Event based actions 24
Storing and analyzing log data L L. 25
4.1 Elasticsearcho 25

4.1.1 Node 26

4.1.2 Cluster 27

4.1.3 Indexes, types and documents 28
4.1.4 Shards and replicas L 28
4.2 Logstash 29
4.2.1 Inputs, filters and outputs 30
4.2.2 Dataresiliencyo 31
4.3 Kibanao 32
4.4 Reporting 34
4.5 Alarming with Watcher o000 34
4.6 Anomaly detection 35
System architectureo 37
5.1 High level architecture 0L 37
5.2 Low level architecture 0. 38
5.3 Securing communication channels00 39
5.4 Securing stored datao Lo 40
5.5 Alternative approaches L. 41
5.6 Remote Syslog 41
5.7 DNSlogging 43
Conclusions 44
6.1 Futurework 45
References 47
APPENDIX A. Elasticsearch index template for Sonicwall 49

APPENDIX B. Logstash filter for Sonicwall 52

VI

LIST OF FIGURES

3.1

3.2

4.1

4.2

4.3

4.4

5.1

5.2

Check MK architecture. 19
Distributed Check MK architecture. 20
Elastic stack architecture. 26
Elasticsearch architecture. 29
Logstash pipeline. 30
Send alarm from Logstash to Event Console. 36
Logical system architecture. 38
Physical system architecture. 39

VII

LIST OF TABLES

2.1 Example products used in this thesis. 12

LIST OF ABBREVIATIONS AND SYMBOLS

API

CA
CEF
DHCP
DNS
EAP-TLS
GPO
HTTP
HTTPS
ICS

IDS
IPFIX
JSON
LAN
LDAP
LQL
MAC address
NAS
NAT
NPS
PLC
PSU
RADIUS
RAID
RDP
SA
SCADA
SIEM
SNMP
SQL
SSH
SSL
TCP
TLS
UDP
UPS

Application Programming Interface
Certificate Authority

Common Event Format

Dynamic Host Configuration Protocol

Domain Name System

Extensible Authentication Protocol-Transport Layer Security

Group Policy Object

Hypertext Transfer Protocol

Hypertext Transfer Protocol Secure
Industrial Control System

Intrusion Detection System

IP Flow Information Export

JavaScript Object Notation

Local Area Network

Lightweight Directory Access Protocol
Livestatus Query Language

Media Access Control address
Network-attached storage

Network Address Translation

Microsoft Network Policy Server
Programmable Logic Controller

Power Supply Unit

Remote Authentication Dial In User Service
Redundant Array of Inexpensive Disks
Remote Desktop Protocol

Situation Awareness

Supervisory Control And Data Acquisition
Security Information and Event Management
Simple Network Management Protocol
Structured Query Language

Secure Shell

Secure Sockets Layer

Transmission Control Protocol

Transport Layer Security

User Datagram Protocol

Uninterruptible Power Supply

VPN Virtual Private Network
YAML YAML Ain’t Markup Language

1. INTRODUCTION

Information security has become an extremely hot topic in recent years and it keeps
getting more and more important as the whole world and everything in it gets
connected to the Internet. For administrators, networks have become and are still
becoming more and more complex when personnel brings their own devices (BYOD)
into organizations network and virtual machines (VMs) and containers are every-
day technologies. Adding Internet of Things (IoT) and Industrial Control Systems
(ICS/SCADA) to the equation, the workload keeps getting higher and the under-
standing of the network and its state becomes blurry. In order to maintain or regain
understanding of the state of a network and everything connected to it, new tools

need to be implemented.

This thesis introduces a system, which consists of two main parts: monitoring sys-
tem and log analytics platform. Monitoring system retains the state of devices con-
nected to the network and provides alarming capabilities. Log analytics platform
combines functionalities of traditional log management system, Security Information
and Event Management (SIEM) system, machine learning and anomaly detection
capabilities. The log analytics platform is integrated to the monitoring system in

order to send alarms and link the events to the devices in the monitoring system.

While the most common use-case of the system is to detect human errors, config-
uration mistakes and malfunctioning software, it also helps to detect and analyze

information security threats and incidents.

1.1 Problem overview

A monitoring system is needed for getting the status of a device connected to the
network. Overall status is a combination of multiple things, for example: is the de-
vice up, how are the metrics of it — both hardware and software, are the necessary
services up and functioning correctly etc. In a servers case, interesting hardware met-
rics could be environmental sensors, Redundant Array of Inexpensive Disks (RAID)
status and Power Supply Unit (PSU) status. Interesting software metrics could be

file system usage, network interface traffic and status of software updates.

1.2. Solution overview 4

In network devices case (switch, router, firewall), interesting metrics are obviously
network interfaces traffic in addition to hardware status. Typical monitoring systems
uses Simple Network Management Protocol (SNMP) to query how much traffic
has been going in and out from an interface. While this information is useful for
generating nice looking graphs of the amount of traffic in both directions, it does

not provide a way for a deeper look into the traffic.

In order to find out source and destination IP addresses, port numbers, protocols and
the amount of data transmitted between them, firewall log or flow data is needed. In
servers case, same approach applies — in order to find out what has really happened,
logs needs to be interpreted. If a service goes down or crashes, monitoring system
will trigger an alarm about it. But it may not reveal the reason why it happened.

That is why logs needs to be collected, stored and analyzed.

1.2 Solution overview

The monitoring system is not only distributed but also multi-tenant by design. That
has to be taken into account when designing log analytics platform so it will function
the same way and keep the data hygiene in place. An organization may have multiple
sites all over the world, and only the administrators of a specific location has to be
able to see their own data and only their data. Global top-level administrators have
to be able to see every site’s data in order to manage the system in a centralized

way.

The location of the data is another story. Monitoring data is located only on their
respective sites and can be queried from the central site. The idea behind this
decision is to be able to keep monitoring even though the network connection would
not work outside the remote site. Also storing monitoring data in a centralized

location does not provide any benefits over a decentralized architecture.

Log analytics platform is designed exactly in the opposite way: logs are centralized
to the central site and can be queried from remote sites. The idea behind this
decision is that when logs are immediately exported to a separate location away
from the original sites, they cannot be modified afterwards (at least makes it much
harder). If the network connection between the remote site and central site breaks,
the remote site stores the logs on disk until the connection comes back up or the
buffer is filled. In addition, maintenance work and securing the data is easier when
having to deal with only one instance rather than multiple instances in all different

sites.

1.3. Research scope and goals 5t

Integration between the two systems is thought as one-way channel: log analytics
platform generates alarms based on predefined rules and anomaly detection and
relays them to the monitoring system, which links the source of the alarm to the
correlating device in the monitoring system and triggers the alarm to the specified

end-users.

1.3 Research scope and goals

This thesis provides means for any organization to build a cost-effective and feature-
rich system in order to reach an understanding of what is going on in the network
and devices connected to it. The system will cover monitoring, log management,
SIEM functionality and anomaly detection. The base functionality can be built with
freely available open-source software but to extend the functionality even further,
some commercial components are introduced. Although some examples are provided
in the appendices, configuration of the introduced systems and providing detailed

information about them is outside of the scope of this thesis.

1.4 Structure of the thesis

The rest of the thesis is structured as follows: Chapter 2 discusses the background
information about situational awareness and how to reach it, the monitoring system
is introduced in Chapter 3 followed by Chapter 4, which presents the log analytics
platform. In Chapter 5, the system architecture and chosen design is described.
Next, Chapter 6 discusses extensions and alternatives to chosen software. Finally,

Chapter 7 presents conclusions and what more could be done in the future.

2. SITUATION AWARENESS

"Situation awareness is the perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning, and the projection

of their status in the near future.” [1]

This chapter describes what does Situation Awareness (SA) mean, what does it
consist of and how to utilize the knowledge for defense. The chapter will also cover

the idea of storing and analyzing logs.

2.1 Overview of situation awareness

Generally SA in scope of cyber defense consists of seven aspects: [2]

o Be aware of the current situation.

« Be aware of the impact of the attack.

o Be aware of how situations evolve.

o Be aware of actor behavior.

o Be aware of why and how the current situation is caused.

o Be aware of the quality of the collected SA information and the knowledge-

intelligence-decisions derived from these information items.

o Assess plausible futures of the current situation.

The idea of SA in this thesis, is to give a complete overview to the whole computer
system based on the previously listed seven aspects. Different views must have a
very high abstraction level in order to see and understand instantly the state of
the system. If there is something wrong, the administrator can drill down into the
details, single lines of log (for example a TCP session) and historical monitoring

data being the lowest level of abstraction in this system. The highest level relies

2.2. Log management in situation awareness 7

heavily on visualization, in western world green means good and red means bad. If
a service is down, the administrator is shown a big red notification. Graphs, charts
and maps must be utilized in order to present the data in the most readable and

easy to understand format.

SA in cyber security context includes the ability to detect, prevent and react to
ongoing malicious activities. It can be achieved by collecting relevant data from
multiple sources, such as network devices, servers and applications. This type of
data can be parsed to standardized data structures, enriched with useful information
and grouped together with other related data in order to visualize what is going on

in the system.

SA is critical to every organization which has any type of network, servers or equip-
ment to maintain. It not only provides an insight to the system in order to detect
information security issues, but also acts as a support tool for end users. An exam-
ple could be that if an end user is trying to enter his/her credentials multiple times
without succeeding, the password is forgotten and if enough tries, the account gets
locked. IT personnel can react to this type of situation immediately rather than

letting the end user get frustrated and receive an angry email.

Two types of approaches can be used for monitoring the system and reaching situa-
tion awareness: monitoring (and archiving system state and events) and log manage-
ment. In case of monitoring, the data is collected from different sources (monitored
devices and services), evaluated if something needs to be done (alarming) and stored
for later usage. In case of log management, logs are collected from different sources
(devices and applications), parsed and enriched, stored and later on analyzed to de-
tect interesting events. It is important to understand that while interesting events
can be detected in the pipeline (while parsing the logs), an event can also be formed

from multiple occurrences of a single event.

2.2 Log management in situation awareness

The importance of log management in situation awareness becomes very clear when
thinking how can one really find out what has happened. If an application cannot
provide proper logging (useful things gets logged in well-defined format) it is quite
hard to find out what has happened (if an application misbehaved and crashed,
someone gave malicious input, simple configuration error etc.). Logs are the most
straight forward and common way to write output of what happened. For example,

in 2015 TV5Monde was attacked and critical infrastructure was compromised. !

'https://static.sstic.org/videos2017/SSTIC_2017-06-09_P09.mp4

2.3. Information collecting methods 8

By having a centralized logging server collecting network traffic and server logs, the

incident response was able to get to the bottom of things quickly. 2

Log management can be handled in multiple ways: no log management, dumping
to disk, central syslog server and proper log management system. In the first case,
when something happens, first the administrators have to find out how a system
writes logs (if it does), where are the logs (if there are any) and how to interpret

them. This is obviously the worst approach.

The second approach is to rely on default configurations in everything. Usually
applications and operating systems write logs to disk and there are some defaults
(or not) how to handle rotation. Administrators knows where the logs are, have
sometimes checked them if there has been an issue, but really don’t have an idea
about rotation and retention. The first and second approach suffers from the same
downside: logs are seen only if there has been a critical error that someone has

noticed. It takes time to find the right log and interpret it correctly, if it even exists.

The third approach is to have a centralized Syslog server where all the logs are
gathered in one place and grouped in one way or another. The logs don’t need to
be searched from every location individually as they are in one place, so finding
out what happened — even when involving multiple systems — is much faster
than without centralized storage. All three aforementioned approaches suffer from
the same downsides: Querying can be time consuming (or in some cases next to

impossible) task and there is no event intelligence or analysis.

The fourth approach is to have a proper log management system in place. In this
model, all the logs are gathered in one centralized place, parsed for easy querying
and rotation and retention is defined strictly. Analysis can be done for the logs in

order to detect anomalies and events and possibly alarm the administrators.

2.3 Information collecting methods

Logs can be typically gathered in two ways: write to a local file or send to local or
remote logging server, typically Event Log for Windows and Syslog for Linux and
Unix-based operating systems. In order to gather the logs into one centralized place,

log files needs to be read and send to remote server.

Typical mid-sized organization could have:

’https://blog.comae.io/lessons-from-tv5smonde-2015-hack-c4d62f07849d

2.3. Information collecting methods 9

o Firewalls, network switches and routers

e Server hardware

o Storage equipment

o User directory (LDAP) / Certificate authority (CA)
« DHCP and DNS server

o Email server

o Backup server

 Application / File / Database servers

The list can also be expanded with industry-specific data sources, like automation
devices such as Programmable Logic Controllers (PLC) or Internet of Things (IoT)
nodes. For these type of devices it is not necessarily useful to collect every type of log,
but to monitor them in other ways. Typically [oT devices produce massive amounts
of data, and malfunctions or breakages are not fatal, they are even expected. The

most important thing is to receive the measured data and store it.

Of course many (if not all) of these services and equipment could be bought as a ser-
vice, there are arguments for and against both approaches. While having everything
on-premise can provide better value as a long term investment, administration and
maintenance load is higher for the staff. Security-wise subscribing a service puts the
maintenance load to the provider, but there can be concerns about data location,

access and confidentiality.

Access logs have the information which user has tried to access monitored resource.
An attempt can be successful or not, both are equally important. It depends a
lot if 'who’ can be identified as a individual, because the log line could include: a
user name, an IP address (dynamic or static), a MAC address, a computer name
or none of those. If a log line has a user name, it can be a shared account. If it
has a dynamic IP address, DHCP logs have to be stored also in order to trace the
computer. A MAC address can reveal the computer, or a network device, but can

be easily spoofed.

DNS logs contains information about DNS queries and replies. They play an impor-
tant role when trying to trace what has happened. The interesting parts are: client
IP address (who made the query), request (what was asked), servers IP address (who

replied to the query) and response (what was the content of the reply). Sometimes

2.4. Preventing and reacting 10

it is also useful to know which DNS server replied to the query, for example if it is

not clear if the replying DNS server is a valid one or malicious.

It is extremely important to monitor login attempts (both remote and local) and
changes in both configuration and policies. This is the situation where something
has already gone wrong, the last call to realize that someone is in the system who
does not belong there. This type of information can be found from authentication
and audit logs. To prevent an attacker from reaching this state requires monitoring

access logs, authentication logs, audit logs and traffic logs.

Authentication logs have the information about which account was used to log in,
from where the login event came from, how (local, remote, RDP, VNC etc.) and
when. Usually organizations use centralized user directory (for example LDAP) for
storing and administering users and groups, in addition to a local administrator
account in case of a communication issue with the user directory server. This is a
good practice generally, but it is important to realize that monitoring both local and
remote authentication methods are necessary in case of system failure (for example,
communication channel between the system and LDAP server is broken). Authen-
tication logs should always include at least: which credentials were used, what was
the source IP address, if there was a process handling the authentication, which

process was it and when did the authentication happen (date and time).

Furthermore, in order to track down who made a change, what was the change and
when was it made, it is important to collect audit logs. This is extremely important
for critical systems such as a user directory server, because someone could create
another administrator account or change a policy to allow something malicious to

happen.

Finally, traffic logs provide verbose low-level information which can be used to track
which computer communicates to where, how much and when. Traffic logs can be
received from network devices in Syslog format, any vendor-specific flow-format or
IPFIX. Flow data includes at least source and destination addresses, the amount of
traffic and time period. Traffic logs are very useful for example to track malicious

usage of a resource and detect viruses and malware.

2.4 Preventing and reacting

Logging tells what has already happened by nature. For example, an anti-virus
program quarantined a file on a computer or someone tried to login 10 times with

incorrect password. Of course some events can be prevented by interpreting logs if

2.5. Identifying critical systems and their valuable information 11

there is a clear pattern or a message (disk is getting full), but monitoring system is
designed to be proactive. It keeps current status of monitored devices and provides
trends. Real life scenarios include: UPS battery is going to drain fully in 30 minutes,

DHCP scope has only 5 leases left or a certificate is expiring in a week.

Monitoring system can also be configured to predict what is going to happen in the
near future based on historical data and trends, what has happened before. For
example, if a backup job is run every midnight, it causes a CPU load to spike for
10 minutes. If it happens every night, it should be considered normal and not to

trigger an alarm.

Reacting to these types of issues varies a lot. There can be false-positive alarms
which should not be acted upon, warnings which are more like reminders meaning
that something is going to happen if not fixed (network interface has errors, UPS
switched to battery power, 90% of RAM is used), or critical alarms which means
that something is already broken (service has crashed, CPU utilization is 100%,

network link is down).

Alarming can be done in many ways. Usually it is not necessary to get the informa-
tion in real time if the alarm is not critical, so opening a helpdesk ticket or sending
an email is sufficient. If the alarm is critical and administrators should be informed

immediately, it is a good idea to send an SMS or push notification.

If the event is expected and is known to happen from time to time, scripting can be
used to automatically react to alarms. Automating maintenance work by scripting
monitoring system may not sound like a good idea (as it is not it’s job and can
become quite a complex system), but in some cases it is handy. A couple examples
could be that if a service crashes, a script could be called to login to the server via
SSH and restart the service. Or if someone tries to brute force their way in, a script
can be called to add the attackers IP address to the ban table in the firewall.

2.5 Identifying critical systems and their valuable information

A number of data sources are needed in order to form an understanding of the
situation in the computer system. It is very important to identify critical systems
and what type of information is needed in order to secure them. Logs can be gathered
from all mission critical systems, and they usually consists of authentication logs
(someone tried to authenticate, success or failure), audit logs (someone changed
configuration, what was changed, who it was and when) and traffic logs (who is

transmitting to whom, what, when and how much).

2.5. Identifying critical systems and their valuable information 12

The following table describes example products deployed in organizations and used

in this thesis.

Table 2.1 FExample products used in this thesis.

System Example product
Firewall SonicWALL
Network switches and routers HP ProCurve
LDAP, CA, DNS, DHCP Microsoft Windows Server
Application / File server Microsoft Windows Server
RADIUS server Microsoft Network Policy Server (NPS)

2.5.1 Accessing and shipping logs

Traditionally the most common way to transfer logs back-and-forth is to use Sys-
log. It is supported on all Unix-based operating systems, network devices, NAS

equipment, applications and basically anything that can export logs.

Elasticsearch BV is a company behind popular open source products, such as Elastic-
search, Logstash and Kibana. They have also developed a protocol, which provides
an alternative to Syslog, called Beats. While Syslog has seen many improvements
and new features since the RFC 3164 [3] from 2001 like reliability (TCP) [4], secu-
rity and privacy (TLS) [5] and authentication and integrity (signing) [6], Beats adds
back pressure control with efficient window-size reduction in order not to overload

the receiving Logstash instance.

At the time of writing, there are six officially supported Beats available: Packetbeat,
Filebeat, Winlogbeat, Metricbeat, Heartbeat and Auditbeat. Packetbeat captures
network traffic from the wire, Filebeat reads log files, Winlogbeat reads Windows
event logs, Metricbeat collect metrics from the operating system and services run-
ning on a server, Hearbeat periodically checks the status of services and determines
whether they are available and Auditbeat audits the activities of users and processes
on systems. Community provided — but officially unsupported — beats are also

available.

In this thesis, access logs are gathered from Linux servers with Auditbeat (which uses
Linux Audit Framework), application logs with Filebeat, Windows server logs with
Filebeat and Winlogbeat. Authentication logs are gathered from network devices,
servers and applications via Syslog. Filebeat is used for Linux servers, Filebeat and
Winlogbeat for Windows servers. DHCP logs are written to disk, so Filebeat is used
to ship those, and Packetbeat is used to ship DNS logs.

2.5. Identifying critical systems and their valuable information 13

2.5.2 Parsing different types of logs

Traffic logs are gathered from firewalls, switches and routers via Syslog. For firewall

presented in Table 2.1, its Syslog format looks like this:

<129> id=firewall sn=ABCDEF123456 time”2017—05—12 14:44:24”
fw=1.2.3.4 pri=1 ¢=32 m=809 msg="Gateway Anti—Virus
Alert: Eicar—Test—Signature (Trojan) blocked.” pktdatld
=6419212868826169360 n=13 src=213.211.198.62:80:X1 dst
=192.168.123.123:58842:X3 proto=tcp /58842 fw\ _ action="NA

W

When parsing this log line, it is straight forward to apply a key-value filter with
delimiter being "=". It is useful to rewrite cryptic field names, in this example field

"m” is for event id, so it can be rewritten as "event_id”.

Some events include more information than others. For example, message stating
that TCP connection has been closed also includes how many bytes were sent and

received:

<134>id=firewall sn=ABCDEF123456 time="2017—09—06 15:36:47"
fw=1.2.3.4 pri=6 ¢=1024 m=537 msg="Connection Closed” f
=11 n=24244948 src=192.168.123.123:54086:X0 dst
=104.244.42.66:443:X1 proto=tcp/https sent=2195 rcvd
=5287

This is useful when searching for "top talkers”, meaning which device has sent and
received the most data in a time unit. Source and destination fields (src, dst) con-
tains IP address, port number, interface name and VLAN id. But not all messages
use this format, some might include only IP address, or port, or network interface,
or any variant of these. This makes parsing the fields a bit tricky, but it makes
sense to parse those fields to new fields in order to query and visualize the data in
much greater detail. For example, src field is parsed into src_ip, src_ port, src_ if
and src_vlan. Same for destination field. Then, geoip lookup can also be applied
for TP address fields in order to find out where the sender and receiver are located

geographically.

If the IP address in LAN is in DHCP range, DHCP logs are needed in order to find
out which computer it really was. DHCP server log mentioned in Table 2.1 looks
like this:

2.6. Handling the log data 14

11,12/05/17,14:38:47 ,Renew,192.168.123.123 ,lkolaptop .intra.
company . t1d ,ABCD12345678,,2442412981,0,,,,0
x4D53465420352E30 ,MSFT 5.0, ,,,0

With this log line, it can be said that a computer named "lkolaptop.intra.company.tld”
with MAC address "ABCD12345678” renewed its DHCP lease and is using the IP

address which was the destination of aforementioned virus detection.

The device can be physically traced with RADIUS server log. The log from RADIUS

server mentioned in Table 2.1 looks like this:

"AD01” ,”TAS”,09/06/2017,08:12:29 1,7 lassi.kojo@Qcompany . t1d
7, "INTRA\\ lassi . kojo”,”78—48 —59—-CF—-92—-80","F4—0F—-24—21—
F2—C17 ,,,” CN38F2D7Z2
707192.168.223.1047,924,0,7192.168.223.117,”
MSM730LspTalo”,,,19,,,2.,5,” Secure Wireless Connections
7,0,7311 1 192.168.222.245 08/11/2017 06:51:59
8327, ,,,,,,,,791f69318e —000003¢3”,,,,,,”78—48 —=59 —-CF
—92—80—F4—0F—-24—21—F2—C1-59—AF-83—C0—00—07—A4—C2

b

2 : : 2
Sy, Secure Wireless Connections”,1,,,,

After parsing and enriching this log line, it becomes clear that the device was
using EAP-TLS as an authentication method, connected to access point named
"MSM730LspTalo” having IP address 192.168.223.11, via Wireless network. Packet-
Type is Access-Request and with session id: 9f69318e-000003c3 the Access-Accept
packet can also be found quickly.

2.6 Handling the log data

The log data needs to be handled in order to parse it, enrich it with new useful
information, standardize the structure and to analyze and visualize them. The
original log line should also be stored with the enriched and structured information,
because parsing can always fail. In case an authority asks for logs, they want raw

logs which are not handled in any way.

Enriching logs can be done in multiple different ways. The following is used in this
thesis: tagging, translating and mutating. Tagging can be used to differentiate the
original source, application and format for a log. It is very useful when querying

related data from multiple sources. A query can be made, for example:

tags: "lan”

2.6. Handling the log data 15

in order to get all the logs from LAN, or

tags: "database”

in order to get all the logs from database servers.

Translating is used to translate cryptic values (for example, numeric or hexadecimal)
to human readable strings. One example could be to translate the authentication
source from a RADIUS log record of the product mentioned in Table 2.1, did it

come from wired or wireless network:

dictionary = |
7157, "Ethernet”,
719”7, "Wireless”]

Mutating is generally used to add, edit or remove data in the log record. It can be
used to remove useless data in order to save disk space and memory as there is no
need to store and index these values. Mutating can also used to add a field to an
event in order to identify where did it come from and refine values in fields, strip
characters, split events and fields to new ones and replacing field values with new

ones.

Parsing different log formats in order to get the data in standardized format can be
quite tricky. Even though there are some standards in logging (for example Sys-
log), vendors don’t always follow the exact standard and they might add their own
vendor-specific information. Windows operating system has it’s Event log, Linux
has multiple formats and every application either uses a logging facility provided by
the operating system or defines their own format. In order to get the data into the

database, parsing is needed for each log format.

Sometimes one can get away with simply applying key-value (kv) filter, which spec-
ifies log row as a series of key-value pairs and their delimiter. But most of times this

is not the case, especially when it comes to 3rd party application logs.

A single log line is not usually an event (even though it might be), but an event can
be formed from multiple lines of the same log or multiple different log sources. Once
the monitored events are defined, it is possible to define what is normal operations
and what is an anomaly and this type of events needs to be handled accordingly (for
example, alert). It is important to remember that not all anomalies are malicious

and malicious activities can be hidden in the normal traffic too [7].

Some events are informational and should not trigger an alert at all, but only to

2.6. Handling the log data 16

be listed somewhere in sight. Some events should trigger an alarm and it should
be defined who to alert and by which means. A typical example could be: All
administrators, via email. Or if a critical service goes down, everyone could be

alerted via email and SMS.

Trying to interpret all types of different log formats, from different systems and
to combine the relevant information together is a very time consuming task. For
example, if a device is connected to a wireless access point and is doing something
suspicious, in order to find out what is going on and trace it, at least four different
logs are needed: NPS, DHCP, DNS and traffic log (either from a switch or firewall).
NPS log is used to find out which access point the device is connected to (trace),
DHCP log correlates the IP address to MAC address, DNS log tells which DNS
queries were made and traffic log tells destination IP address and port, and the
amount of data transmitted. A proper log management system is needed to achieve

this type of functionality.

17

3. MONITORING SYSTEM

This chapter describes a monitoring system. It is a proactive system which keeps
track of real time status about all the target systems and devices configured to be
monitored. The status and received events are stored for later usage, and graphs are
drawn based on values of different services. The monitoring system can receive and
parse logs, even alarm based on log lines, but it is not a place for long term storing
and definitely not for fine-grained analysis. That is what a proper log management
system / SIEM is for.

Every system administrator needs some type of monitoring system in order to have
an idea what is going on in their infrastructure. There are lots of monitoring systems
in the market targeted to every kind of need, free or commercial, open source or

propriatery.

Monitoring systems can be divided into two types: State and event based monitor-
ing. State based monitoring means that the status of the target device is decided
based on the current state of the target when it is asked or received (depends which
way the monitoring works, is it pull or push). An example of status could be:

"Interface X1 is up”

Event based monitoring means that the monitoring system monitors events, some-
thing happens uniquely at some point of time. Events can be monitored from log
files or received for example via Syslog. An example of an event could be: ”Admin-

istrator logged in at 04:00”.

3.1 What to monitor?

In order for monitoring system to be useful, it is needed to define what is important

to monitor. These could be:

« configuration mistakes

» configuration changes

3.2. Distributed monitoring 18

o license expirations

o CPU, network traffic and disk load spikes
o temperature and humidity changes

o hardware failures

e host or service downtimes

o UPS battery self-tests

o storage over-provisioning

« mail queue is increasing

In this thesis, Check MK! is used as a monitoring system.

Check MK is available as an open source product but the company behind it,
Mathias Kettner GmbH, has also developed commercial add-ons which improves
the performance and introduces new features. The architecture of Check MK is
visualized in Figure 3.1, in which boxes with blue background are included in all
versions, boxes with yellow background have improvements or are exclusively avail-
able as commercial add-ons and grey boxes indicates external systems not related

directly to the monitoring system.

3.2 Distributed monitoring

A monitoring system traditionally consists of a monitoring server and devices which
will be monitored. The server polls the status of monitored devices and stores
the results for graphing, alerting and archiving. They can be located in the same
network, or reached remotely over one or multiple hops via SSH, VPN or any other
secured communication channel, but the monitoring logic, administration interface

and data storage are always centralized on one server.

Check MK provides a flexible distributed architecture pictured in Figure 3.2. In-
stances can be spread to remote sites (also called slaves) and centrally managed from
local site (also called master). It enables the decentralization of the whole monitoring
system into separate locations but the instances functions as autonomous systems.
This is possible because Check MK uses their Livestatus interface to communicate

between instances.

'https://mathias-kettner.com/check_mk.html

3.2. Distributed monitoring 19

Check_MK
Status ‘ WATO ’ ‘ =]] Inventory [Reporting Graphing
Web-Based User Interface
. o
Livestatus Livestatus
v 4
»| Email | JIRA
Event Console Monitoring Core Notify Daemon
» SMS
) L L
; =]| Inline
) Alert Handler
Check Engine 1 Script
Trap Syslog
—> RRD Tool
TCP SNMP Active

[System] [System] [System] [System] [System]

Figure 3.1 Check MK architecture. Components in blue background are included in all
versions, components in yellow background may differ between the editions and components
in grey background are external systems. Those marked with “System” label can be any
device or software which can communicate using the protocols presented.

3.2.1 Livestatus

Livestatus is an interface for querying monitoring data and executing commands,
which is integrated into the monitoring core. Check MK’s user interface uses it
internally to communicate with local and remote instances and is able to combine
data from multiple instances into one centralized view. TCP socket can also be
opened for external applications in order to provide an integration interface to and
from external systems. 2

Livestatus provides an in-depth API to the whole monitoring core. It is very
lightweight, does not produce any 1O0-operations and generates low amount of CPU
load as it runs on RAM. It can be used over both, Unix and TCP socket and it uses
a query language called LQL (Livestatus Query Language) which syntax resembles
HTTP. The query structure is similar to SQL, for example all services with current

state being 2 (critical) with columns: host name, host description and host state,

’https://mathias-kettner.com/cms_distributed_monitoring.html

3.2. Distributed monitoring

can be queried like this: 3

GET services

Columns: host_name description state
Filter: state = 2
Local site (master)
PEE— Notify
Li Monitoring Daemon
Web-Based User | LlVestatus—i cqre _
Interface —_—)
) P Alert
Livestatus Event Handler
— ™| Console
RRD Tool
Livestatus———
Livestatus
Remote site (slave)
vV Notify

Web-Based User
Interface

N
Livestatus

—

—Livestatus—p

Monitoring
Core

Daemon

Remote site (slave)

Web-Based User
Interface

—Livestatus

-
Livestatus Event
Console

Notify

Monitoring
Core

Daemon

Alert
Handler

Alert
Event Handler
Console)
RRD Tool

RRD Tool

-~

Figure 3.2 Distributed Check MK architecture.

20

Components in blue background are

included in all editions, components in yellow background may differ between the editions

and components in grey background are external applications.

3.2.2 Benéefits of distributed monitoring

Distributing the monitoring logic and data storage to multiple sites introduces lots
of benefits in the following areas:

3https://mathias-kettner.com/checkmk_livestatus.html

3.2. Distributed monitoring 21

e Redundancy
o Performance
o Security and privacy

o Simplicity

Redundancy is improved by distributing monitoring to multiple sites, so that net-
work outages won’t break monitoring and none of the sites depend on any other site.
Local administrators won’t see any difference even though communication between

the master site and slave site wouldn’t work.

Latency is smaller when querying results, because monitoring happens on every site
locally, so the results (status data, events) are already retrieved from end devices.
The only thing the master site has to do is query the status from the slave site
and it will get a response almost as fast as the network operates. The monitoring
itself does not generate any traffic between the sites, except possibly notifications if

configured so.

Performance is increased not only because of less network traffic has to be generated,
but processing is distributed over multiple computers. All the sites must take care
of their own environment and only their own environment. While the master site
can contribute to monitoring activities, it can also function as a centralized view to
the system and would just query all the data from slave sites as shown in Figure
3.2.

Security and privacy improves as every site has only their own data. Slave sites are
not talking with each other, so there is only one channel which needs to be secured,

and that is between the master and slave sites.

Administering is simpler as every site sees only their own environment. This also
applies to rule-sets. If everyone would see all the rules in the system, it would

become quite complex and hard to manage over time.

3.2.3 Concerns of distributed monitoring

Because every site has their own data, all sites must be backed up separately. Noti-
fications can be handled in a centralized or decentralized way. Both have their pros

and cons.

3.3. Event console 22

In a centralized setup, there is no need to configure email servers or anything else to
the slave sites other than forwarding notifications to the master site. If SMS is used,
there’s a need for only one SMS modem (in this thesis, this was the main reason for
using centralized notifications). Notifications can also be relayed to other systems

such as ticketing system.

Decentralized setup is simpler to construct as nothing needs to be relayed elsewhere
and notifications work even if there is an issue with outside network connection

(master cannot be reached).

Check MK Enterprise Edition has an add-on called mknotifyd, which is a notifica-
tion spooler. It allows both synchronous and asynchronous delivery of notifications
and forwarding to another site. If forwarding is chosen, the connection can be
formed either way, from master to slave or from slave to master. It uses generic

TCP connection for reliable delivery.

3.3 Event console

Event console is a fully-integrated add-on created to complement Check MKs mon-
itoring logic to add events from external systems. It is a simple way to connect all
types of systems to it because Syslog is very widely supported all around the enter-
prise computing hardware industry: servers, switches, firewalls, network attached
storages etc. It processes Syslog messages, SNMP traps, Windows Event Logs and

any other type of log files and other events of an asynchronous nature. *

When a message arrives to event console, a pre-defined rule-set is evaluated. If any
of the rules apply to the message, an event is created based on the rule. Rules
can also be configured to send notifications, trigger actions and rewrite text and
attributes of a message. Events can be linked to a host in the monitoring system so
that the event and notifications go to the right persons. Rules can also be configured

to cancel previously created events.

Events sent to Event Console does not show up if no rules have been defined or if
none of the events hits any rules. This is useful if a device is set to send logs to
remote Syslog server, for example Event Console, and only critical events should be

shown.

The event console can also be distributed. This makes sense, as both Syslog messages

and SNMP traps are usually sent via UDP, and it is not always trivial to forward

‘https://mathias-kettner.com/cms_distributed_monitoring.html

3.4. Alarming 23

them reliably to the master site. This setup also supports the idea that every site

should handle their own data, and it could be queried when needed.

3.4 Alarming

Check MK uses rule based notifications for alarming. Using this feature, the ad-
ministrator can define rules to determine what type of events causes alarms. Possible

event types are: °

« "a change of state (OK — CRIT)”

« "a change from a steady to an unsteady (flapping) state”

o "the start or end of a planned downtime”

« "the confirmation of a problem (acknowledgement) by a user”

e ”an event arising from a manually-triggered notification command”
o "the execution of an alert handler”

« "an event passed for notification from the Event Console”

The rule based notification system in Check MK is extremely flexible. The ad-
ministrator can define a notification to be sent out for example, if the host name
contains a string, service name contains a string, person X is contact person for host
Y, output of a check contains a substring, every n'® event triggers a notification,

same event has been triggered X times in the past Y minutes, just to name a few.

When an event matches any rule, the configured action will be triggered. An action
can be basically anything as external scripts can also be called. Check MK comes
with a basic set of notification plugins: plain text and HTML email, forward to
Event Console, push notification provider and SMS. More (currently unsupported)
plugins can be found from their git repository © or one can easily write their own

plugin.

Shttp://mathias-kettner.com/cms_notifications.html
Shttps://git.mathias-kettner.de/git/?p=check_mk.git;a=tree;f=doc/treasures/
notifications;hb=HEAD

3.5. Event based actions 24

3.5 Event based actions

If an event triggers an alarm, Check MK Enterprise Edition providers Alert Handler
add-on to trigger any user defined action, which can be an inline or stored script.
7 One good use-case for this feature is to monitor a service which is known to
misbehave from time to time. If it hangs or crashes, an action can be configured to
Alarm Handler to log in to the web server via SSH and restart the malfunctioning

service.

Another example would be that a VPN tunnel has died and cannot renegotiate
itself back up, a script can be written to automate the rebuilding of a tunnel. A
third example, if someone tries to brute-force their way into a system, a script could
command the firewall to add the attacker’s IP address to the ban table.

"http://mathias-kettner.com/cms_alert_handlers.html

25

4. STORING AND ANALYZING LOG DATA

This chapter describes how to parse, store, analyze and visualize log data. This
chapter concentrates on log analytics platform, where logs are stored for long period
of time and can be easily and quickly analyzed and visualized. Further in this chap-
ter the integration between monitoring system and log analytics platform becomes
clear when alarms are sent to the monitoring system in order to have the alarming

configuration only in one place.

The log analytics platform is based on a product called Elastic stack from a company
called Elasticsearch BV. It consists of Elasticsearch, Logstash, Kibana and Beats
framework. Elasticsearch functions as a document store, Logstash collects, enriches
and normalizes data, Kibana provides analytic intelligence and visualizations into
the data and Beats provides a reliable way to ship the logs to the cluster over the

network. The architecture of the stack is visualized in Figure 4.1.

4.1 Elasticsearch

Elasticsearch is a search engine built on top of Apache Lucene library. Both the
search engine and the library are open source products. Like Lucene, Elasticsearch
is also written in Java. It uses Lucene internally for all of its indexing and searching,
but it aims to make full-text search easy by hiding the complexities of Lucene behind
a simple APIL. !

In short, Elasticsearch is a distributed real-time document store where every field is
indexed and searchable. It is capable of scaling to hundreds of servers and petabytes
of both structured and unstructured data. Architecturally it is a server and it
provides a RESTful API for clients. There are lots of existing web and command

line clients written in multiple programming languages. 2

The time between indexing a document and the time it becomes searchable is nor-

'https://www.elastic.co/guide/en/elasticsearch/reference/5.5/_basic_concepts.
html
2https://www.elastic.co/guide/en/elasticsearch/guide/2.x/intro.html

4.1. Elasticsearch 26

[System] [System] [System] [System] [System] [System]

Data
sources

Beats (SSL), Syslog, TCP, UDP, ...

Elastic stack

Logstash

HTTPS

Elasticsearch

HTTPS

Kibana

Figure 4.1 Flastic stack architecture. External systems marked with ”System” label
can be any device or software which can communicate using the protocols supported by
Logstash input plugins. X-Pack enables encrypted communication between all components
and introduces authentication, authorization, users, roles and user directories.

mally one second 3. This means that Elasticsearch is a near real time search plat-
form, which makes it a good choice for this type of system where incidents has to

be detected immediately [8].

4.1.1 Node

A node is a single server that is part of a cluster. It stores data, and participates in
the cluster’s indexing and search capabilities. Just like a cluster, a node is identified
by its name. Nodes have a capability to discover each other and look for a cluster
to join. If they find the defined cluster, they will automatically join it and start

Shttps://www.elastic.co/guide/en/elasticsearch/guide/2.x/intro.html

4.1. Elasticsearch 27

working. If no other nodes can be found or there are no clusters to join, a node will
4

start its own single-node cluster.
Nodes can have one or multiple roles in the cluster: master-eligible, data, ingest,

tribe, coordinating and machine learning (only with X-Pack).

A master-eligible node can control the cluster and a node can become a master
node if elected. A data node stores data (shards) and can perform data related
operations like searching and aggregating. An ingest node is able to transform and
enrich a document before indexing in a similar way how Logstash functions. A tribe
node can be used to connect multiple clusters to each other and perform operations
across all of them. A coordinating node routes clients requests to nodes storing the
requested data, gathers responses and returns the results to the client. A machine

learning node can perform defined machine learning jobs. °

4.1.2 Cluster

A cluster consists of a single or multiple Elasticsearch nodes, which may — but not
necessarily — have different roles. A cluster has a name and it is a unique identifier

for a particular cluster: Nodes can be configured to join a cluster by its name.

Scaling can be achieved by adding more nodes into the cluster, or by replacing the
current servers with more powerful ones. Increasing the number of servers is called
horizontal scaling and switching to more powerful servers is called vertical scaling.
Vertical scaling can provide better performance only until some point, but horizontal
scaling provides true scalability: adding more nodes to the cluster increases perfor-
mance and reliability by spreading the load (computational and storage) between

all of them. ©

Because Elasticsearch is designed to be distributed, it handles scaling and high
availability automatically and clients does not have to care about the details. When
a new node is added to the cluster, part of the stored data is automatically assigned
to it in the optimal way to distribute load between the nodes and to maintain high
availability. For example active data and its replicas should not be located in the
same node. Queries gets routed automatically to a node which has the information

in question, if the particular node which was asked the information does not have it.

‘https://www.elastic.co/guide/en/elasticsearch/guide/2.x/intro.html

Shttps://www.elastic.co/guide/en/elasticsearch/reference/5.5/modules-node.html

Shttps://www.elastic.co/guide/en/elasticsearch/guide/2.x/distributed-cluster.
html

4.1. Elasticsearch 28

A three-node cluster where all nodes are master-eligible and stores data is pictured

in Figure 4.2

4.1.3 Indexes, types and documents

An index can be thought as an equivalent to a database in the relational database
world. An index is a collection of documents that have similar characteristics. It
is identified by its name and that is used to refer to the index when performing

operations against documents in it.

Within an index, one or more types can be defined. A type is a logical category of
an index whose semantics is completely definable by the administrator. In general,

a type is defined for documents that have a set of common fields.

A document is a basic unit of information that can be indexed. Documents are
expressed in JSON (JavaScript Object Notation) which is a ubiquitous Internet
data interchange format. Although a document physically resides in an index, a

document must be indexed/assigned to a type inside an index.

4.1.4 Shards and replicas

A single index can store, for example, billions of documents which take up a lot
of disk space. This may lead to the situation where the size of an index exceeds
the hardware limits of a single node, becoming bigger than available disk space or

requesting information taking too long for a single node alone. 7

Elasticsearch solves this problem by subdividing an index into multiple pieces which
are called shards. When creating an index, the number of shards is defined. Each
shard is a fully-functional and independent Apache Lucene -instance which can be

hosted on any node in the cluster.

There are two types of shards: primary and replica shards. Primary shard is an
active shard, which will intake new data as it comes. By increasing the number of
primary shards, the maximum number of documents possible to store in an index

can be increased.

Replica shards are copies of primary shards and new data cannot be added to them

directly. In case a shard goes offline or disappears for any reason, a replica shard of

"https://www.elastic.co/guide/en/elasticsearch/reference/5.5/_basic_concepts.
html

4.2. Logstash 29

the lost primary shard is promoted to the new primary shard and it starts to intake
new data, while the other replicas will start to replicate the new primary (if more
than one replica shard is configured).

Replication is important because it provides high availability in case a shard or
node fails and it allows to scale out volume and throughput because searches can be
executed on all replicas in parallel. It should be noted that the number of replica
shards can be dynamically changed anytime but the number of primary shards
cannot be changed after the index has been created.

Elasticsearch cluster

y oy :

Node Node Node
master, data master, data master, data
(|
é [PO] R1 [RZ] RO [Pl] R2 [RO] R1 [PZ]
<
[=

[Po| [Rre] [Re] | | [ro] [P2] [re]

Index 2

S
)
o

| S—

 oam—
ps)
=

—

)
)
N

| —

Primary Replica

Figure 4.2 Elasticsearch architecture. Three master nodes is the minimum recom-
mended for a cluster (because of split-brain issue). Index is a cluster-wide concept, data
(documents) is stored in shards and shards are distributed to nodes.

4.2 Logstash

Logstash is a data collection engine and also an open source product. It has real-time

pipelining capabilities which can be utilized with plugins. ®

Logstash is used to collect, enrich, unify and normalize data from different sources

and to save it to multiple different outputs. In this thesis, Elasticsearch cluster and

8https://www.elastic.co/guide/en/logstash/5.5/introduction.html

4.2. Logstash 30

Syslog outputs are used. Even though Logstash was originally meant to process logs

(as the name indicates), it can be used to process any type of events or messages. °

Logstash uses pipeline architecture visualized in Figure 4.3, and it has three different
types of plugins: input, filter and output. They can be mixed together and used as

many times as needed.

Logstash pipeline

Data Inputs Filters Outputs
sources | Message
(] queue
System ‘
System »| Input p ;,{ Output
System » Input | Filter »| Filter »| Filter »| Filter L 5! Output O)
Elasticsearch

System

System »| Input | Output _—«’

External
system

System

Figure 4.3 Logstash pipeline. Inputs and outputs are executed in parallel, filters sequen-
tially. External systems marked with “System” label can be any device or software which
can communicate using the protocols supported by Logstash input plugins

4.2.1 Inputs, filters and outputs

At the time of this writing, there are over 200 plugins made for Logstash. In small
setups and homogenous environments, only a few of those are usually necessary, but
the possibilities are almost infinite. These plugins consist of inputs, filters, outputs

and codecs. In this thesis, the following plugins are used.

Inputs:

o beats - Receives events from the Elastic Beats framework
o dead_letter_queue - Reads events from Logstash’s dead letter queue
« http - Receives events over HTTP(S)

o tcp - Reads events from a TCP socket

Yhttps://www.elastic.co/guide/en/logstash/5.5/introduction.html

4.2. Logstash 31

« udp - Reads events over UDP

Filters:

o csv - Parses comma-separated value data into individual fields

« date - Parses dates from fields to use as the Logstash timestamp for an event
o geoip - Adds geographical information about an IP address

o grok - Parses unstructured event data into fields

o kv - Parses key-value pairs

o mutate - Performs mutations on fields

» translate - Replaces field contents based on a hash or YAML file

Outputs:

o elasticsearch - Stores logs in Elasticsearch

« syslog - Sends events to a syslog server

Codecs:

o cef - Reads the ArcSight Common Event Format (CEF)

e json - Reads JSON formatted content, creating one event per element in a

JSON array

o plain - Reads plaintext with no delimiting between events

4.2.2 Data resiliency

In case the data cannot be exported to the Elasticsearch cluster (for example, un-
parseable logline, Logstash crashing, network between Logstash and Elasticsearch
cluster is down), there needs to be a way to store the data until the malfunction
is fixed. Logstash provides two features which helps to prevent data loss in differ-
ent cases: Persistent queues protect against data loss in case of network breakage

and unexpected behavior, dead letter queues protect against unprocessable logs.

4.3. Kibana 32

Both queues are stored on disk and they need to be specifically enabled as they are
disabled by default.

Persistent queue works by storing every log line to disk as soon as it has been
received by an input. This feature also works as a buffering mechanism to handle
enormous bursts of log lines without needing separate message broker, such as Redis
or Apache Kafka. In short, persistent queues provides an at-least-once delivery
guarantee against data loss during either a normal shutdown or unexpected crash.
When Logstash is restarted, it tries to deliver on-disk queues until it succeeds. When
designing for maximum resiliency, it should be understood that not all input plugins
support persistent queues. °

Sometimes Logstash cannot process an incoming log line. This can be caused by, for
example wrong character encoding, parsing failure or mapping error. In this case,
by default, Logstash will drop the message and move on. By enabling dead letter
queues, Logstash will store all of these events on-disk for later processing. '* Events
can be read from the dead letter queue to Logstash with the "dead_letter queue”

input plugin and processed through the Logstash pipeline.

It is important to understand that neither persistent queues nor dead letter queues
protect against data loss if the amount of data exceeds configured maximum amount

of space reserved for them.

4.3 Kibana

Kibana can be used to browse logs from different indices, generate visualizations
based on the logs stored in Elasticsearch, monitor all Logstash instances and watch
and alarm on pre-defined events if they are found from the log data. It is an
analytics and visualization platform for Elasticsearch and is also open source project

maintained by Elasticsearch BV.

Discover page provides a time-based view to the logs. Events can be queried by
entering indexed field name and value, for example: "event_id: 809” or full-text
search can be used: "Virus was detected”. Queries can be grouped together with
boolean-operators so that only very specific and useful information can be found.

This query can be saved and used as a filter for visualizations.

Analyzing a large log file is hard and time consuming. Visual approach facilitates

the task significantly as the human brain is an amazing pattern-recognizing tool,

Ohttps://www.elastic.co/guide/en/logstash/5.5/persistent-queues.html
Uhttps://www.elastic.co/guide/en/logstash/5.5/dead-1letter-queues.html

4.3. Kibana 33

and it is said that "a picture is worth a thousand log records.” [9]. Visualizations
can change the patterns, sizes, colors, shapes and textures in order to group data.

Visualization has lots of benefits, such as: [9]

o "Answers a question”

e "Poses new questions”

» "Explore and discover”

» "Support decisions”

o ”"Communicate information”

o "Increase efficiency”

An image can quickly answer a question without digging through multiple lines
from different log sources. It usually poses new questions: Why is this machine
communicating to this one”. Different types of visualizations provides new views
to the same data, which triggers new thoughts. By combining data from multiple
sources and presenting it graphically, visualizations support decisions and help with
SA. [9]

Collecting logs from different types of systems, especially firewall traffic, generates
huge amounts of data. Visualization makes it easy to understand large volumes of
data, to expose critical events, anomalies and trends (periodical events). It is a high

level tool for analyzing the large mass of data.

Kibana supports different types of visualizations, for example: maps, tables, pie and
area charts, metrics and heat maps. In this type of system, example use-cases could
be that maps are used for geographical data, metrics are used for the number of
virus detections for the day and bar charts are used for logins and IDS events (time

in x-axis and number of events in y-axis).

Visualizations are meant to visualize the stored data. It is better to create multiple
visualizations for multiple different things rather than cramp a lot of different, but
related, information into one single visualization. Dashboards are for collecting
related information together. Dashboards consist of multiple visualizations and
their function is to provide a comprehensive view to similar types of information.

They are useful to keep open for example on info-display.

4.4. Reporting 34

4.4 Reporting

Reporting in monitoring system is a commercial feature available in Check MK
Enterprise Edition. Same with log management system, it is a commercial feature
available with X-Pack.

Check _MK’s reporting can produce availability reports which also include received
alarms from log management system. X-Packs reporting feature can include raw log
lines and visualizations. Both reports can be scheduled and automatically sent via

email.

4.5 Alarming with Watcher

Watcher is a feature of commercial expansion for Elastic-stack called X-Pack!'?. It
can be configured to watch both the cluster itself and the events stored in the

Elasticsearch. Configuration consists of four parts:

 Schedule, when to run a query and check condition(s).
o Query, what to search from the Elasticsearch.
« Condition, whether or not to execute the action(s).

e Action, what to do when condition is true, for example: send an email, open

a support ticket or store results in an index.

Alarming is a bit different with this type of system than proper monitoring system
by design. A traditional monitoring system generates alarms immediately when the
state changes or an event happens (and it is detected). After that, it is stored for
historical usage. With this type of log management system, the data is already stored
in Elasticsearch and it needs to be actively queried in order to detect interesting
events. Alarming could also be handled with Logstash immediately after receiving
an event or multiple events, and before storing it to Elasticsearch, but this solution
proved to be easier to configure and maintain. Also, detecting an event based on

multiple separate messages is not easily handled with Logstash alone.

A challenge with this type of alarming is how to make sure one event is alarmed
only once. If a query is run every five minutes and a query timeframe would be

more than five minutes, duplicate alarms would happen. If a query is run every five

2https://www.elastic.co/guide/en/x-pack/5.5/xpack-introduction.html

4.6. Anomaly detection 35

minutes and a query timeframe is five minutes or less, not all the alarms would ever
be triggered. One possible approach is to make sure an alarm would trigger only
once is to create an "acknowledged” field to every document which could possibly
be part of an interesting event. Watcher piggybacks necessary data to identify a
document in Elasticsearch cluster and when Event Console receives an alarm, it
acknowledges documents it has received (sets "acknowledged” field to true). This
also makes sure that an alarm is not lost between Logstash and Event Console, or

if it is, it will get sent again until it succeeds.

The acknowledgement approach was discarded later on because acknowledging mes-

sages in aggregations proved to be quite complex.

In this thesis, alarms are sent to Check MK Event Console via Syslog protocol
(Event Console is acting as a Syslog server, listening on TCP socket). Watcher
is configured to send a HTTP POST to a Logstash instance, which is listening
for incoming HT'TP messages with ”input-http” plugin. Logstash tags the incoming
POST messages with "alarm” tag, reformats and outputs them with "output-syslog”
plugin to Check MK’s Event Console. It is necessary to identify from which remote
site (or local site) the host originating the message is, because if the originating host
is on remote site and the alarm is sent to the local site, Event Console cannot
identify the host from the remote site and the alarm either goes into the void or to
preconfigured fallback address. The alarming process from log analytics platform
to monitoring system is visualized in Figure 4.4. After receiving a message, Event
Console is configured to parse the interesting parts of the message and reformat it

to human-readable format.

4.6 Anomaly detection

While writing Watcher rules and defining critical events is a straightforward ap-
proach, the configuration can become complicated after a while. A couple of tens of
rules is still fine, but hundreds or even thousands of rules is unsustainable in the long
run. On top of that, it is very hard or almost impossible to cover all the interesting

cases which should trigger an alarm.

To help with this situation, X-Pack provides a machine learning capabilities for
anomaly detection. Machine learning — in this case — means that historical data

stored in Elasticsearch cluster is analyzed and determined what is normal.

For example, in a normal situation administrators log in to a several servers every

day during office hours. And if there is a night shift, during night time too. A

4.6. Anomaly detection 36

Elastic stack Local site (master)

Output . Monitoring
Syslog Web-Based User | Livestatus
Logstash (TCP) Interface
Li 1

S Event
Console

Notify
Daemon

Alert
Handler

RRD Tool

Alarming
host on local
or remote
site

Alarm local site

Alarm remote site]
Alarm with HTTPS Remote site (slave)

. AJ Monitoring
Web-Based User | Livestatus Core
Interface
)
Livestatus
—
Elasticsearch

Notify
Daemon

Alert
Handler

RRD Tool

Event
Console

Figure 4.4 Send alarm from Logstash to Event Console. If an alarming host is located
on local site, send it to local site’s Event Console via TCP. If on remote site, send it to
remote site’s Event Console via TCP. All alarms will be delivered from remote sites to the
local site and alarms are sent from there.

person working during office hours logs in during night shift is not normal, and
should trigger an alarm. Or if a salesperson has traveled to another continent to do
business, the first couple of logins through VPN should trigger an alarm, but the
system should learn that this is the new normal (for now) and stop alerting on those
logins. With the same idea in general, everything out of the ordinary should trigger
some type of alarm and administrators should react and see if something needs to

be done or not.

Anomaly detection is a valuable tool for spotting configuration mistakes, malfunc-
tioning devices and end-user mistakes. While it also helps to identify typical attacks,
it shouldn’t be relied on too much. A sophisticated attacker who wants to penetrate
the system understands that anomalies will be detected and will try to disguise the
attack to look like normal traffic. [10]

37

5. SYSTEM ARCHITECTURE

A system like the one described in this thesis can be set up in many different ways.
This chapter describes the final system architecture and explains decisions made
behind the design.

5.1 High level architecture

High level system architecture is presented in Figure 5.1. Firewalls, switches, wire-
less access points, servers and applications store their logs into the monitoring and
logging server located in their own site. Logs are transferred via VPN tunnel to the
logging cluster located in master site (local site in Figure 5.1). Logs are analyzed
and stored in the cluster and if interesting events appear, alarm will be triggered.

After storing the logs, they can be queried from both local and remote site.

Monitoring instances poll the status and listen for incoming events via Event Console
on all sites. The monitoring data is stored on each sites” own instance, and can be

queried from master site (local site in Figure 5.1).

5.2. Low level architecture 38

Remote site

' 4. Query-
1. Store -
Wireless L —
Access Point Administrator
L
Monitoring and |_ o
Switch 2. Transfer I |
4. Query . J
RADIUS Server
ADIDC Server

Firewall

VPN

Local site

Cellula; modem
3. Alarm

Firewal

4.Query——

2. Transfer
4. Query ﬁ' =
BT
1. Store Web browser

4. Query

1 -

|= 1. Store. ! I

— J L

Email server Monitoring Logging cluster RADIUS Server
server ADIDC Server

-

— 1
L N |
3. Alarm 3. Alarm
= = |

Figure 5.1 Logical system architecture.

5.2 Low level architecture

The low level system architecture is presented in Figure 5.2. Firewalls, switches and
wireless access points are sending their logs over Syslog UDP, server and application
logs are exported over SSL secured Beats protocol. Logs are transferred over HT'TPS
into the Elasticsearch cluster, where they can be queried with Kibana instances over

HTTPS. If interesting event appears, alarming is implemented over Syslog TCP.

Monitoring instances communicate with Check MK Livestatus, mknotifyd (Notify
Daemon) and mkeventd (Event Console) and they use their own TCP sockets for

communication between different sites. Event Console can also listen on UDP socket.

5.3. Securing communication channels 39

Remote site

1 HTTPS

‘ Syslog
(

Aruba AP

Beats (SSL)

=
| E—
Check_MK

R
\\ Web browser
Syslog Logstash Syslog

EEE T R |

HP Procurve TCP | |
HTTPS |

| I—
Windows Server

Sonicwall SRAINSAITZ

IPSec tunnel

Local site
[
Soni¢wall SRAINSAITZ
HTTPS
Tcp R,
HTTPS Syslog Web browser

Cellularimodem

HTTPS HTTPS
e i | —
N .. |]
SMTP. < Syslog t Beats (HTTPS) |
| | = | =
Email server Check_MK EI:sticiea:‘ch Windows Server
ogstas
Kibana

Figure 5.2 Physical system architecture. Only monitoring system is communicating back
and forth, logging system communicates only from remote site to local site.

5.3 Securing communication channels

VPN tunnels are protecting the traffic between local and remote sites, for both mon-
itoring system and log management system. This is to prevent publishing anything
to the Internet directly, but just export a route from local monitoring instance to
remote instance, and from remote instance to local monitoring instance and Elas-
ticsearch cluster for log management. This makes the VPN tunnel dedicated to
monitoring and logging traffic, it won’t include any user generated traffic and hence

makes it more secure.

End users can use the instance in their local sites to access monitoring and logging
interface, but they won’t be able to access the tunnel. Both Check MK and Kibana
interfaces are published to their sites LAN networks with HT'TPS and the certificate

5.4. Securing stored data 40

is signed against their own CA’s certificate.

It is worth noting that there are two types of HT'TPS connections: Between Elas-
ticsearch cluster and Logstash/Kibana, and between Kibana and end users. Com-
munication between Elasticsearch cluster and Logstash/Kibana is secured with cer-
tificates signed against a dedicated CA created just for these connections. Commu-
nication between Kibana and end users is secured with certificates signed against
sites own CA’s. Usually CA certificates are pushed to the end users’ computers via
GPO (Windows Group Policy Object) so the trust chain should get formed without

any user action.

NAT is configured so that the remote sites are shown with their public IP address
to the master monitoring site and Elasticsearch cluster. Master monitoring site and
Elasticsearch cluster and shown with their own private IP addresses through the
VPN tunnel to remote site. This enables to replicate the same configuration to all

sites without having to worry about overlapping subnets and IP addresses.

5.4 Securing stored data

It would be a disaster if any of the remote sites could see someone else’s data.
To mitigate this issue, X-Pack was acquired in order to gain support for different
authentication providers, user and role management, TLS encryption throughout

the whole system and document level security.

Different sites are differentiated by a prefix, so it is straightforward to define which
indices should be accessed by which user/role. Every site has their own users, which
are tied to their own role. A role is only allowed to read and access only their own
data. No one should be able to modify or delete any data from the cluster, except
cluster administrator account, which should be kept in a safe and used only for
mandatory maintenance tasks. Every site has their dedicated Logstash user, which
is tied to their own log exporter role. That role is only allowed to create indices

with the sites’ prefix and write in them.

Finally the whole system needs to generate an audit log. It includes all the operations
in the cluster, for example which account read or wrote information, from which IP
address and when. The audit log is exported outside of the cluster in order to keep

it safe in case of a breach.

5.5. Alternative approaches 41
5.5 Alternative approaches

Securing Elastic stack is straightforward with commercial X-Pack supported by the
same company behind Elastic stack. X-Pack was chosen to be used in this thesis

mainly because it is officially supported, but there are other alternatives.

Search Guard! offers authentication, authorization, audit logging, encryption and
multi-tenancy. The project is open source but some features are not available for

free.

KEK (the High Energy Accelerator Research Organization) has developed their
own plugin on top of Search Guard, called kibana-own-home ? [11]. Elastic stack
is also used in CERN (the European Organization for Nuclear Research) [12] and
they have developed in-house plugins for securing it and enabling multi-tenancy.
KEK’s solution provides a different approach for multi-tenant Kibana than CERN’s

solution, as described in their paper [11].

ReadonlyREST? offers all the same features than previously presented alternatives,
and also like them, is open source but more functionality offered with a price. Read-
onlyREST relies on Access Control List (ACL) based approach, while X-Pack and
Search Guard relies on Role-Based Access Control (RBAC) [13]. 4

Elastalert® and Sentinl® are alternatives for Watcher. They both provide alerting
on different types of patterns of interest from data in Elasticsearch and Sentinl also

provides reporting capabilities.

5.6 Remote Syslog

Transmitting information over Syslog protocol is a bit tricky. The standard way
is to use UDP port 514, only the newer RFC 6587 [14] brought standardized TCP
implementation, even though there was already previously different types of imple-
mentations. It would be naive to think that most of the devices and applications
would support TCP transmission of Syslog, so it was decided to use centralized

Syslog server to collect all the logs from different sources into one place.

In the early stage of this project, syslog-ng was chosen as a centralized Syslog server

'https://floragunn.com
’https://github.com/wtakase/kibana-own-home
3https://readonlyrest.com
‘https://cds.cern.ch/record/2261999
Shttps://github.com/Yelp/elastalert
Shttps://github.com/sirensolutions/sentinl

5.6. Remote Syslog 42

because of its stability, extendability and popularity. It has the ability to open
listening sockets for both UDP and TCP protocols. As this type of data is crucial,
TCP should be used whenever possible in favor of UDP.

Designing the optimal implementation to maximize the reliability of gathering logs
over UPD, securing sensitive plain-text information about the organization’s com-
puter system and making sure the availability is at an adequate level proved to be
a laborious task. Monitoring data needs to be available for querying and log data

has to be exported from remote site to local one over Internet.

The first design was to establish a VPN connection between the local and remote
site, and relay the Syslog messages into the tunnel. This approach has a couple of
drawbacks: VPN tunnels can timeout or if there are overlapping subnets, NAT has

to be used.

The second design was to configure syslog-ng just to listen to incoming Syslog mes-
sages, enrich it with information about the location (origin) and monitoring host-
name. After that, the message would be relayed to the Logstash. But monitoring
audit logs from the monitoring instance is also required, and for that using Filebeat
makes sense because of its features like congestion control, transport layer security

and it is very easy to plug into Logstash as an input.

In the third design, syslog-ng listens for incoming messages, enriches them but writes
them into a log file on a disk. Then Filebeat reads those log files and sends them to
Logstash. This has a couple of advantages over the first and second designs: simpler
architecture (one program does one thing), easier configuration (Filebeat is a bit
easier to configure and manage as an input for Logstash) and reliability (if there is a
network breakdown, logs gets written on the disk, and when the network connection

recovers, the logs are transmitted to Logstash).

The final design changed things quite radically. Separate Syslog server was de-
cided to be left out and instead Logstash will be installed on the remote site. This
makes the configuration between all remote sites similar, Logstash also provides al-
most endless possibilities to handle different types of logs, the heavy lifting can be
outsourced to the remote sites and there is no need for separate Syslog server or
Filebeat when every remote site has their own Logstash instance. Logstash would
use HTTPS to transfer logs into Elasticsearch cluster and there is already a VPN
tunnel between the local and remote sites because monitoring systems uses it, so it
was decided to utilize the same tunnel and avoid opening Elasticsearch to the Inter-
net in any form as such (obviously it should only be opened against the remote sites

IP addresses). Later on it was decided to also deploy Kibana to the same machine

5.7. DNS logging 43

and have remote sites as autonomous instances totally separate from the local site
except the Elasticsearch cluster, where the data is stored. This provides maximum

resiliency against network outages and data loss.

5.7 DNS logging

First the idea was to use a firewall in order to log DNS payload, but it didn’t
have such a feature. When giving a bit more thought to DNS logging, it would
not make much sense to use anything else but the DNS server itself to log DNS
payload. Usually mid-sized organizations have their own internal DNS server to
provide intranet DNS services and to query external names. Now if there would be
a packet sniffer between LAN and intranet DNS server, the responder would always
be the intranet DNS server, and not the one actually giving the reply. If the sniffer
would be placed between intranet DNS server and Internet, it would not contain
information about the original source of the query. Because of this, logging has to
be located on the intranet DNS server. This way it is possible to get information
about the original source and also the server replying from Internet. Basically what

was asked and what was the reply, who asked and who replied.

Trying to capture DNS logs from Windows DNS server proved to be far from trivial
task. First, the whole feature is only available in Windows Server 2016, and a hotfix
is available for Windows Server 2012 R2. This means that the approach is not
generic but actually very limited. Second, it does not support logging to a file, but
only acts as a provider to Microsoft’s Event Tracing for Windows (ETW)7. This
means, that it would be necessary to use a consumer application for ETW, because
none of the beats supports it. While reading what others have done, like writing

8

their own consumer applications ® or using Tracelog?, it became obvious that it

would be an incredibly ugly hack to pursue this approach.

After giving it more thought, it was decided to install Packetbeat to the DNS server
and ship DNS traffic to Logstash. Granted, it is far from ideal to install a packet
sniffer (WinPCAP'?) in a production server, but it is the least painful and the
most generic solution, and could prove to be useful in other areas like logging and

debugging LDAP connections.

"https://technet.microsoft.com/en-us/library/dn800669 (v=ws.11) .aspx
8https://blogs.technet.microsoft.com/teamdhcp/2015/11/23/

network-forensics-with-windows-dns-analytical-logging/
“https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/tracelog
Onttps://www.winpcap.org

44

6. CONCLUSIONS

There are lots of commercial products and open source projects in this field. The

price seems to be a culprit for many organizations not to get a proper log manage-
ment / SIEM product [15].

Using open source software does not mean that it is in any way free or even cheap.
Source code itself might be, but learning to use the software can take a lot of time and
with this type of setup at least three servers are a recommended minimum. Elastic
cloud (and other services providing Elastic stack) is also available if an organization
does not want to invest in their own servers, but the data is so sensitive that it
may not be a good idea to export the logs into a public cloud. There can also be a
problem with throughput and bandwidth it the volume of log data is huge.

The goal of the thesis was to reach situation awareness in computer systems and to
reach it, it was chosen to implement monitoring system and log analytics platform.
Monitoring system provides a high-level view and log analytics platform provides a
low-level view into the system. All the basic functionality can be implemented with
the open source versions of the chosen products. Both products support standard
interfaces and protocols which make them highly extendable to support more devices
and services. In addition of being extendable, the products and the introduced

system architecture enables high scalability.

When comparing log analytics platforms cost versus commercial industry leaders
starter packages cost, the difference was about half in favor of the open source al-
ternative. That includes development costs, licensing costs and hardware resources.
Development cost is a one-time investment and the next years will be a lot less

expensive than the most popular on-premise commercial alternatives.

Research has been done in the field of secure logging to the cloud. For exam-
ple, a study called ”"Secure Logging as a Service—Delegating Log Management to
the Cloud” addresses security and integrity issues during log generation, collec-
tion, transmission, storage and retrieval processes. [16] Log data is encrypted and

anonymity of operations to and from the cloud is handled using an anonymizing

6.1. Future work 45

network such as The Onion Router (Tor).

6.1 Future work

Nmap could be used fighting against firewall misconfiguration. Logstash has a codec
for Nmap data, so it would be interesting to script Nmap to scan border firewalls
and to report about changes. This data could be exported to Logstash, which would
store the results to the Elasticsearch cluster. The history of scans could be browsed
there and alerted if changed, like a last warning to administrators if they are sure

to open a new port to the Internet.

The IDS/IPS service integrated into the firewall is used rather than separate well-
known project like Snort!, Suricata® or Bro®. Implementing support for any of those
is a priority along with changing traffic logging from vendor-specific Syslog format
to Netflow or IPFIX.

Finally, more visualizations and dashboards are needed in order to present the data
in clearer and human-friendly ways but also new types of visualizations may expose
new phenomenons. Especially interesting is graphing which is already a feature in
X-Pack. Graphing reveals relationships between different documents, for example
which machine communicates with which machines, and how much (amount of data
or frequency). It could also easily reveal all the targets of a single attacker, for
example when the attacker’s IP address is known, where else did the same IP address

appear at the time.

A survey from 2016 shows that there is a need for automation in security [17]. With
this type of monitoring and logging system, the automation can be extended to

cover more issues, which needs to be discovered and handled.

While traditional SIEM systems and anomaly detection systems have been seen as
expensive and not having such a good value, an open source system can provide
better value and flexibility. It is important to understand that no single technical
solution is enough alone and even though automation is a good thing, it is currently

not a good replacement for human understanding and insight.

The monitoring system and log analytics platform introduced in this thesis provides

administrators a clear view into their computer system. Administrative work gets

'https://www.snort.org
’https://suricata-ids.org
3https://www.bro.org

6.1. Future work 46

easier when using these tools to automate everyday tasks and they provide trig-
gering mechanisms to administrators when there is something which needs to be
investigated. With the help of predictive monitoring and machine learning, upcom-
ing outages and issues can be prevented and if something bad has already happened,

the log analytics platform helps during incident response.

Support for the following systems was implemented during this thesis: Sonicwall
firewalls and SRAs, HP Procurve switches and routers, Microsoft Windows Server
audit framework (mostly object access, file share, Active Directory changes, policy
changes), Microsoft Network Policy Server, Microsoft DHCP server, Linux audit
framework, F-Secure Messaging Security Gateway, F-Secure Policy Manager and

F-Secure Protection Service for Business.

47

REFERENCES

[1]

[11]

M. Endsley, “SAGAT: a methodology for the measurement of situation aware-
ness,” Northrop, Tech. Rep. Technical Report: NOR DOC 87-83, 1987.

S. Jajodia, P. Liu, and V. Swarup, Cyber Situational Awareness : Issues and
Research. Boston, MA: Springer, 2010;2009;, vol. 46.

C. Lonvick, “The bsd syslog protocol,” Internet Requests for Comments, RFC
Editor, RFC 3164, August 2001.

D. New and M. Rose, “Reliable delivery for syslog,” Internet Requests for Com-
ments, RFC Editor, RFC 3195, November 2001.

F. Miao, Y. Ma, and J. Salowey, “Transport layer security (tls) transport map-
ping for syslog,” Internet Requests for Comments, RFC Editor, RFC 5425,
March 2009.

J. Kelsey, J. Callas, and A. Clemm, “Signed syslog messages,” Internet Requests
for Comments, RFC Editor, RFC 5848, May 2010.

C. Gates and C. Taylor, “Challenging the anomaly detection paradigm: A
provocative discussion,” in Proceedings of the 2006 Workshop on New Security
Paradigms, ser. NSPW ’06. New York, NY, USA: ACM, 2007, pp. 21-29.
[Online]. Available: http://doi.acm.org/10.1145/1278940.1278945

A. Tall, J. Wang, and D. Han, “Survey of data intensive computing technologies
application to to security log data management,” in Proceedings of the 3rd
IEEE/ACM International Conference on Big Data Computing, Applications
and Technologies, ser. BDCAT ’16. New York, NY, USA: ACM, 2016, pp.
268-273. [Online|. Available: http://doi.acm.org/10.1145/3006299.3006336

R. Marty, Applied security visualization. Addison-Wesley Upper Saddle River,
2009.

I. Friedberg, F. Skopik, and R. Fiedler, “Cyber situational awareness through
network anomaly detection: state of the art and new approaches,” e & ¢
Elektrotechnik und Informationstechnik, vol. 132, no. 2, pp. 101-105, Mar
2015. [Online|. Available: https://doi.org/10.1007/s00502-015-0287-4

W. Takase, T. Nakamura, Y. Watase, and T. Sasaki, “A solution for
secure use of kibana and elasticsearch in multi-user environment,” CoRR, vol.
abs/1706.10040, 2017. [Online]. Available: http://arxiv.org/abs/1706.10040

References 48

[12]

[16]

[17]

S. Bagnasco, D. Berzano, A. Guarise, S. Lusso, M. Masera, and
S. Vallero, “Monitoring of iaas and scientific applications on the cloud
using the elasticsearch ecosystem,” Journal of Physics: Conference
Series, vol. 608, mno. 1, p. 012016, 2015. [Online]. Available: http:
//stacks.iop.org/1742-6596/608 /i=1/a=012016

D. Ferraiolo and R. Kuhn, “Role-based access control,” in In 15th NIST-NCSC
National Computer Security Conference, 1992, pp. 554-563.

R. Gerhards and C. Lonvick, “Transmission of syslog messages over tcp,” In-
ternet Requests for Comments, RFC Editor, RFC 6587, April 2012.

J. S. George Jones. (2014) Alternatives to signatures (alts). [Online].
Available: http://resources.sei.cmu.edu/asset_ files/WhitePaper/2014 019 __
001 296152.pdf

. Ray, K. Belyaev, M. Strizhov, D. Mulamba, and M. Rajaram, “Secure logging
as a service-delegating log management to the cloud,” IEEE Systems Journal,
vol. 7, no. 2, pp. 323-334, 2013.

AlgoSec. (2016, mar) The state of automation in security - an algosec survey.
[Online]. Available: https://www.algosec.com/wp-content/uploads/2016/03/
The-State-of- Automation-in-Security-Survey-Final.pdf

© 00 N O Ot R W N =

AR R W W W W W W W W W W NN NN NN NN NN e e e e e e e e
N = O © 00 N O Otk W NN = O © 00NN O Ut WD RO O 0N OOt W Ny = O

APPENDIX A. ELASTICSEARCH INDEX
TEMPLATE FOR SONICWALL

49

"template" : "*-sonicwall-%*",

"version" : 50013,

"settings" : {
"index.refresh_interval" : "b5s",
"number_of_shards": 1,
"number_of_replicas": 1

3,

"mappings" : {

"sonicwall" : {
"dynamic_templates" : [{
"message_field" : {
"path_match" : "message",
"match_mapping_type" : "string"
"mapping" : {
"type" : "text",

"norms" : false

X
F, q
"string_fields" : {
"match" @ "x",
"match_mapping_type" : "string",
"mapping" : {
"type" : "text", "morms" : false,
"fields" : {

"keyword" : { "type": "keyword", "ignore_above":

}

1,

"properties" : {
"Q@timestamp": { "type": "date" 1},
"@version": { "type": "keyword" I},
"avgThroughput": { "type": "long" 7,
"bytesIn": { "type": "long" },
"bytesOut": { "type": "long" I},
"bytesTotal": { "type": "long" 1},
"domain": { "type": "keyword" },
"dst": { "type": "text" I},
"dst_if": { "type": "keyword" },
"dst_ip": { "type": "ip" },

256 }

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"
78
79
80
81
82
83
84
85
86
87
88
89

APPENDIX A. Elasticsearch index template for Sonicwall

3,
}

"dst_port": { "type": "long" 1},
"dst_vlan": { "type": "long" I},
"dst_geoip" {
"dynamic": true,
"properties" {
"ip": { "type": "ip" 1},
"location" { "type" : "geo_point" I},
"latitude" { "type" : "half_float"
"longitude" { "type" : "half_float"
}
3,
"duration": { "type": "long" I},
"event": {
"type": "text",
"fields": {
"raw": {
"type": "keyword"
}
}
3,
"event_id": { "type": "long" 1},
"fw": { "type": "ip" 1},
"host": { "type": "ip" 1},
"maxThroughput": { "type": "long" 7,
"message": { "type": "text" },
"msg": { "type": "text" I},
"portal": { "type": "keyword" 1},
"pri": { "type": "long" I},
"proto": {
"type": "text",
"fields": {
"raw": {
"type": "keyword"
}
+
1,
"rcvd": { "type": "long" 1},

"rule": { "type":

"keyword" I},

"sent": { "type": "long" },
"src": { "type": "text" I},
"src_if": { "type": "keyword" 1},
"src_ip": { "type": "ip" 1},
"src_port": { "type": "long" I},
"src_vlan": { "type": "long" 1},
"src_geoip" {

"dynamic": true,

"properties" {

50

APPENDIX A. Elasticsearch index template for Sonicwall 51

90 "ip": { "type": "ip" },

91 "location" : { "type" : "geo_point" },
92 "latitude" : { "type" : "half_float" 7,
93 "longitude" : { "type" : "half_float" }
94 }

95 3,

96 "usr": { "type": "keyword" 1},

97 "vpnpolicy": { "type": "text" },

98 "application": { "type": "keyword" 1},

99 "customer": { "type": "keyword" },

100 "valvonta": { "type": "keyword" }

101 }

102 }

103 3

104

Configuration 1 FExample of Elasticsearch index template for Sonicwall firewalls and

Secure Remote Appliances.

52

APPENDIX B. LOGSTASH FILTER FOR
SONICWALL

filter {
if [type] == "sonicwall" {
Parse fields using key-value filter
kv {
include_keys => ["avgThroughput", "bytesIn", "bytesOut", "

bytesTotal", "domain", "dst", "duration", "fw", "m", "
maxThroughput", "msg", "pri", "proto", "portal", "rcvd", "
rule", "sent", "src", "time", "usr", "vpnpolicy"]

© o N O

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37

add_tag => ["sonicwall"]
add_field => { "monitoring" => "Site_Firewall" }

Replace generated timestamp with real timestamp from Sonicwall

log message
if "UTC" in [time] {
date {
match => ["time", "yyyy-MM-dd HH:mm:ss 'UTC'"
timezone => "UTC"

remove_field => ["time"]

}
}
else {
date {
match => ["time", "yyyy-MM-dd HH:mm:ss"]
timezone => "Europe/Helsinki"
remove_field => ["time"]
}
}

Rename cryptic "

m" field to event_id
mutate {

rename => { "m" => "event_id" }

Translate event_id into human-readable messages
translate {
field => "event_id"

destination => "event"

]

dictionary_path => "/etc/logstash/translate/sonicwall-ids-event.

yml n

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"
78
79
80
81
82
83
84

APPENDIX B. Logstash filter for Sonicwall

If source field exists,
if [src] {

not in [src] {

parse it.

If there is no separator in src-field, it is IP address

copy => { => "src_ip"

ll"::(‘*)"

Split source into an interface

else if [src]

split => { "src"
add_field => {
"%h{lsrcl [2]}"

ll(‘*)::$l|

Split source into IP address

else if [src]

split => { "src"
add_field => {

"src_ip" =>

"%{[srcl [OT}"

) (R

Split source into port and interface

else if [src]

split => { "src"
add_field => {
"src_port" =>

"%{lsrc] [11}"
"%{[srcl[2]}"

HGEDRENGE DR

Split source into IP address and interface

else if [src]

split => { "src"
add_field => {
"src_ip" =>

"%{[srcl [0]}"
"%{[srcl [2]}"

") (L) (LR

else if [src]

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

APPENDIX B. Logstash filter for Sonicwall

Split source into IP address, port and interface

mutate {
split => { "src" => ":" }
add_field => {
"src_ip" => "}{[src][0]}"
"src_port" => "Y{[src][1]}"
"src_if" => "Y{[src][2]}"

¥
}
}
else if [src] =~ "7:(.x)" {
Split source into port
mutate {
split => { "src" => ":" }
add_field => {
"src_port" => "Y{[src][1]}"
}
}
}
else if [src] =~ "(.*):(.*x)" {
Split source into IP address and port
mutate {
split => { "src" => ":" }
add_field => {
"src_ip" => "¥%{[srcl[0]}"
"src_port" => "Y{[src][1]}"
}
}
}
else {
mutate {
add_tag => ["src_parse_failure"]
}
}

If destination field exists, parse it.
if [dst] {
if ":" not in [dst] {
If there is no separator in src-field,
mutate {
copy => { "dst" => "dst_ip" }

}
else if [dst] =~ ""::(.x)" {
Split destination into an interface

mutate {

it is IP address

o4

APPENDIX B. Logstash filter for Sonicwall 55

132 split => { "dst" => ":" }

133 add_field => {

134 "dst_if" => "%{[dst][2]}"

135 }

136 }

137 }

138 else if [dst] =~ "(.*)::8" {

139 # Split destination into IP address
140 mutate {

141 split => { "dst" => ":" }

142 add_field => {

143 "dst_ip" => "%{[dst]l[0]2}"

144 +

145 }

146 }

147 else if [dst] =~ "~:(.x):(.*%)" {
148 # Split destination into port and interface
149 mutate {

150 split => { "dst" => ":" }

151 add_field => {

152 "dst_port" => "Y{[dst][1]1}"
153 "dst_if" => "Y{[dst][2]}"

154 }

155 }

156 }

157 else if [dst] =~ "(.*x)::(.x)" {

158 # Split destination into IP address and interface
159 mutate {

160 split => { "dst" => ":" }

161 add_field => {

162 "dst_ip" => "}%{[dst][0]}"

163 "dst_if" => "Y{[dst][2]}"

164 }

165 }

166 }

167 else if [dst] =~ "(.*):(.*%):(C.*x)" {
168 # Split destination into IP address, port and interface
169 mutate {

170 split => { "dst" => ":" }

171 add_field => {

172 "dst_ip" => "}%{[dst][0]}"

173 "dst_port" => "Y{[dst][1]1}"
174 "dst_if" => "%{[dst][2]}"

175 }

176 }

177 }

178 else if [dst] =~ "~ :(.x)" {

APPENDIX B. Logstash filter for Sonicwall

179 # Split destination port

180 mutate {

181 split => { "dst" => ":" }

182 add_field => {

183 "dst_port" => "%{[dst][1]2}"

184 }

185 }

186 }

187 else if [dst] =~ "(.*):(.*%)" {

188 # Split destination into IP address and port

189 mutate {

190 split => { "dst" => ":" }

191 add_field => {

192 "dst_ip" => "}%{[dst][0]}"

193 "dst_port" => "Y{[dst][1]1}"

194 }

195 }

196 }

197 else {

198 mutate {

199 add_tag => ["dst_parse_failure"]

200 }

201 }

202 }

203

204 # If source interface fields exists, split it into interface and
VLAN

205 if [src_if] {

206 if "-" din [src_if] {

207 mutate {

208 split => { "src_if" => "-" }

209 add_field => { "src_vlan" => "%{[src_if][1]}" }

210 }

211 }

212 }

213

214 # If destination interface field exists, split it into interface
and VLAN

215 if [dst_if] {

216 if "-" in [dst_if] {

217 mutate {

218 split => { "dst_if" => "-" }

219 add_field => { "dst_vlan" => "%{[dst_if][1]}" }

220 }

221 }

222 }

223

APPENDIX B. Logstash filter for Sonicwall 57

224 # Remove "V" from VLAN ID and replace array with interface value

225 if [src_vlan] {

226 mutate {

227 gsub => ["src_vlan", "V", ""]

228 replace => { "src_if" => "%{[src_if] [0]}" }

229 }

230 }

231

232 # Remove "V" from VLAN ID and replace array with interface value

233 if [dst_vlan] {

234 mutate {

235 gsub => ["dst_vlan", "V", ""]

236 replace => { "dst_if" => "%{[dst_if][0]}" }

237 }

238 }

239

240 # Remove src and dst arrays

241 if "dst_parse_failure" not in [tags] or "src_parse_failure" not in
[tags] {

242 mutate {

243 remove_field => ["src", "dst"]

244 }

245 }

246 }

247}

Configuration 2 Example of Logstash filter for Sonicwall firewalls and Secure Remote
Appliances.

	Introduction
	Problem overview
	Solution overview
	Research scope and goals
	Structure of the thesis

	Situation awareness
	Overview of situation awareness
	Log management in situation awareness
	Information collecting methods
	Preventing and reacting
	Identifying critical systems and their valuable information
	Accessing and shipping logs
	Parsing different types of logs

	Handling the log data

	Monitoring system
	What to monitor?
	Distributed monitoring
	Livestatus
	Benefits of distributed monitoring
	Concerns of distributed monitoring

	Event console
	Alarming
	Event based actions

	Storing and analyzing log data
	Elasticsearch
	Node
	Cluster
	Indexes, types and documents
	Shards and replicas

	Logstash
	Inputs, filters and outputs
	Data resiliency

	Kibana
	Reporting
	Alarming with Watcher
	Anomaly detection

	System architecture
	High level architecture
	Low level architecture
	Securing communication channels
	Securing stored data
	Alternative approaches
	Remote Syslog
	DNS logging

	Conclusions
	Future work

	References
	APPENDIX A. Elasticsearch index template for Sonicwall
	APPENDIX B. Logstash filter for Sonicwall

