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The main goal of this work was to develop an algorithm for multi-constellation

GNSS receivers that would select satellites out of the tracked ones to be used in

the location solution. As the receiver has very limited computational resources, the

complexity of the algorithm needed to be kept low.

The work began by exploratory analysis of GNSS data. This analysis gave insight

into the differences of the various satellite navigation systems as well as into the

nature of the pseudorange residuals. These observations helped in shaping the algo-

rithm that we proposed for the problem of satellite selection. The algorithm itself

was developed using data science techniques to filter out bad pseudorange mea-

surements and borrowed some earlier ideas to optimize the geometric dilution of

precision of the solution set as well.

The approach we chose was shown to work very well when applied to real data mea-

sured from road tests in varying surroundings. Even with practically non-existent

parameter tuning the algorithm was able to spot almost 90% of the bad pseudo-

range measurements, keeping the specificity, i.e., ability to hold on to the good

measurements at over 90% level.

The ability to filter out bad pseudorange measurements translated to improved loca-

tion accuracy as well. All in all, the results achieved in this work proved encouraging

enough to begin implementing the algorithm in actual receiver software to study the

performance of the data-driven approach in action.
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Työn päällimmäisenä tavoitteena oli kehittää algoritmi paikanlaskennassa käytet-

tävien satelliittien valintaan GNSS -vastaanottimissa, jotka kykenevät useamman

järjestelmän seurantaan. Koska vastaanottimien laskentateho on varsin rajallinen

täytyi algoritmin vaatima laskenta-aika pitää alhaisena.

Työ alkoi GNSS -datan tutkimuksella. Tämän myötä saatiin yleiskatsaus suoritysky-

kyeroihin eri GNSS -järjestelmien välillä ja tyypillisiin pseudoetäisyyden virheisiin.

Näiden näkemysten avulla luotiin algoritmi, joka hyödyntää data-analyysin teknii-

koita suurten mittavirheiden poistamiseksi käytettävissä olevien mittausten joukos-

ta.

Kehitetyn algoritmin osoitettiin toimivan hyvin normaaleissa GNSS -vastaanottimen

käyttöympäristöissä ja olevan vaaditulta laskenta-ajaltaan erittäin kilpailukykyinen.

Kokonaisuudessaan työn tulokset osoittautuivat niin rohkaiseviksi, että algoritmi

tullaan toteuttamaan GNSS -vastaanottimen ohjelmistoon, jotta pääsemme varmis-

tumaan sen tarkoituksenmukaisesta toiminnasta.
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1. INTRODUCTION

Satellite systems are an integral part of positioning and navigation today. They

have been in use since the 1960s when the United States military deployed the

Transit system. Nowadays there are multiple Global Navigation Satellite Systems

(GNSS), as well as a few regional ones. Most of the systems are made available

also to civilian users. The global systems are designed so that when used alone

they provide enough visible satellites for a positioning solution. Thus when using

receivers that are able to track satellites from multiple systems there are often more

visible satellites available than it is feasible to use. This leads to the question of

selecting the optimal subset of visible satellites for the navigation solution.

The topic has properly risen only in the recent years as the BeiDou-2 and Galileo

systems have not been operational for too long, and are still not in full operational

capability. Most of the former work concerning the satellite selection has mainly

focused on minimizing the Geometric Dilution of Precision (GDOP). GDOP depicts

the multiplicative effect of the satellite geometry on the position error, i.e.,

GDOP =
location error

measurement error
. (1.1)

Roughly speaking, if the satellites used are in the same direction then the GDOP is

usually large and inflates the position error more. Whereas if the satellites are well

spaced then the GDOP, and the positional error are both smaller.

However satellite geometry works only to inflate the initial measurement errors. The

actual sources of this error include signal transmission delays caused by troposphere

and ionosphere, satellite location inaccuracies and multipath caused by signal re-

flections on its way from the satellite to the receiver. As there are more things to

consider than just the geometry when selecting the satellites a more holistic approach

is wanted.

So the main goal of this work is an algorithm to minimize the location error with-

out a considerable computational complexity. To start building towards this more

comprehensive approach, we need to consider certain questions first:
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• How big of a role does GDOP have in the location error? How about the

measurement errors?

• What are the most important factors contributing to the measurement errors

and how to use them in the satellite selection?

• How does the number of satellites affect the solution accuracy?

• Are there differences in the accuracy of the GNSS constellations?

In the following chapters we are looking to answer these questions, as well as build-

ing a background for the algorithm. The work is structured so that Chapter 2 gives

a brief background into the topics deemed necessary for understanding the work.

Chapter 3 explores the previous studies done concerning satellite selection and pro-

poses a new, data driven approach for this problem. In Chapter 4 the results ac-

quired in this work are presented. And finally, Chapter 5 discusses these results and

concludes this thesis with projection into the future work on the subject.
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2. BACKGROUND

This chapter, starting with Section 2.1, gives a general overview of modern Global

Navigation Satellite Systems. Keeping the scope of this thesis and the present state

of multiple working constellations in mind the description does not delve into too fine

a detail. A more thorough explanation can be found in [20] for example. Section 2.2

formulates the problem confronted in this work and Section 2.3 briefly describes the

methods selected to tackle this.

2.1 Global navigation satellite systems

The satellite navigation systems can be divided into three segments: the space

segment, ground (control) segment and user segment. The space segment consists

of the satellites in orbit, the numbers of which are given in Table 2.1 for the

different global systems at the time of writing [2, 1]. The ground segment refers

to the control and monitor stations, tracking and maintaining the satellites. User

segment denotes the user receivers that process received satellite signals and perform

needed operations, e.g., navigation and timing. [20]

BDS GAL GLO GPS Σ
Number of operational satellites 15 15 23 31 84
Nominal number of satellites 35 30 24 24 113

Table 2.1 The number of currently operational satellites (as of October 3rd 2017) and
the planned nominal number of satellites for the global navigation satellite systems [2, 1].

Modern global satellite navigation systems, GPS [26], GLONASS [29], Galileo [13]

and BeiDou-2 [7], are based on time of flight measurements from multiple satellite

vehicles. The navigation message broadcast by the satellites contain orbit param-

eters and time information that allow the user to compute the satellite location at

the instant of the transmission. Now, knowing that the carrier signal travels at the

speed of light the receiver can calculate the distance to the satellite by comparing

the broadcast transmission and arrival times. Obtaining the distances to multiple

satellites allows the receiver to trilaterate ones position.
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As the receiver time and the position coordinates are unknown there are four vari-

ables that need to be solved. This means that measurements to at least four satellites

are required. The satellites on the other hand carry highly accurate atomic clocks on

board and the navigation message contains satellite clock bias and drift parameters

that are used to correct the satellite time information. The ground based control

stations also monitor the satellite positions and update them so that the ephemeris

information stays accurate.

GNSS position calculation

As stated earlier, positioning in GNSS is achieved using signal time of flight mea-

surements. These measurements give an approximation of the distances to the satel-

lites. However, as always, there is error involved. The satellite ephemerises, satellite

clocks, receiver noise, ionosphere, troposphere and multipath all induce errors in

these measurements. The measured distances are referred to as pseudoranges, p̂,

rather than ranges as they contain the receiver clock bias term in addition to the

distance.

Now, given some location u ∈ R
3 and a location si ∈ R

3 for a satellite vehicle i in

earth-centered, earth-fixed (ECEF) coordinates, the distance between these points

is the Euclidean norm

pi(u) = ‖si − u‖2. (2.1)

So the pseudorange to satellite i can also be given in form:

p̂i = pi(u) + ctu + ep̂i , (2.2)

where c is the speed of light, tu the receiver clock offset and ep̂i denotes the error,

or residual, caused by the aforementioned sources. The receiver clock offset is con-

sidered a variable that is solved jointly with the receiver location and thus does not

induce error. For future reference let us now augment u with the receiver clock bias

term, i.e.,

u =











xu

yu

zu

ctu











. (2.3)
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The problem of locating a GNSS receiver boils down to minimizing the difference of

the measured pseudoranges and the distances calculated from the receiver position

and clock offset in the least squares sense

‖p̂− p(u)‖2. (2.4)

As we have four unknowns we need a system of at least four equations in order to

solve them, i.e., measurements to four or more satellites.

There are different techniques for solving this system of nonlinear equations, for ex-

ample, closed form solutions [22, 15] or iterative techniques like Gauss-Newton [10].

In this work we go through the linearization based iterative technique which yields

the least squares solution for the location. For a more thorough explanation see [20].

Now assume there is a location and time offset û which minimizes (2.4) in the least

squares sense. This location can be given as

û = u+∆u (2.5)

so the pseudoranges can be calculated as

p̂ = p(û) = p(u+∆u). (2.6)

Linearizing this using a first order Taylor series yields

p̂ ≈ p(u) + Jp(u)∆u, (2.7)

where Jp(u) is the Jacobian for p(u), i.e.,

Jp(u) =
[

∂p(u)
∂xu

∂p(u)
∂yu

∂p(u)
∂zu

∂p(u)
∂ctu

,
]

=







−x1−xu

p1(u)
−y1−yu

p1(u)
− z1−zu

p1(u)
1

· · ·
−xn−xu

pn(u)
−yn−yu

pn(u)
− zn−zu

pn(u)
1






. (2.8)

Reorganizing (2.7) one obtains

p̂− p(u) ≈ Jp(u)∆u (2.9)
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for which the least squares minimal solution is given by

∆u = (JT
p(u)Jp(u))

−1JT
p(u)(p̂− p(u)). (2.10)

This leads to an iterative solution, where an initial try is updated according to (2.5)

and (2.10), eventually resulting in the location and clock offset which minimizes the

difference of the measured pseudoranges and the calculated ones in the least squares

sense.

2.2 Position accuracy and problem formulation

Since the position solution is calculated from the pseudorange measurements, the

errors in the measurements propagate to the solution as well. Now, say we have

some other source for the true location of the receiver, u. Then we can obviously

calculate the pseudorange residuals after solving for the time offset

ep̂ = p̂− p(u), (2.11)

but we can also calculate how much error the residuals would cause in the location

solution. One way would be to go through the whole iteration process described

above, however that can be rather tedious. Another would be to begin with the

known location and create the Jacobian for that. Then the error in the solution, eû,

can be acquired by multiplying the pseudorange residuals with the solution matrix

eû = (JT
p(u)Jp(u))

−1JT
p(u)ep̂. (2.12)

Now for the sake of simplicity let us consider the pseudorange errors to be iid random

variables from a Gaussion distribution with zero mean. Then following (2.12) the

location errors are also Gaussion with zero mean, since the Jacobian, and hence the

whole (JT
p(u)Jp(u))

−1JT
p(u) is considered fixed. So calculating the covariance of eû gives

Σ(eû) = E(eûe
T
û ) = E((JT

p(u)Jp(u))
−1JT

p(u)ep̂e
T
p̂ Jp(u)(J

T
p(u)Jp(u))

−1)

= (JT
p(u)Jp(u))

−1JT
p(u) Σ(eû) Jp(u)(J

T
p(u)Jp(u))

−1. (2.13)

Note in the previous that (JT
p(u)Jp(u))

−1 is symmetric. Now due to the iid assumption
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Σ(ep̂) = Iσ2
p̂, where σ2

p̂ is the variance of the residuals. Thus

Σ(eû) = (JT
p(u)Jp(u))

−1σ2
p̂. (2.14)

In the covariance matrix the diagonal holds the variance values for the location

errors

diag(Σ(eû)) =
[

σ2
xu

σ2
yu

σ2
zu

σ2
ctu

]

. (2.15)

Now remembering back for the definition of GDOP (1.1) we get

GDOP =

√

σ2
xu

+ σ2
yu

+ σ2
zu

+ σ2
ctu

σp̂

(2.16)

and since tr(Σ(eû)) = tr((JT
p(u)Jp(u))

−1σ2
p̂ it follows that

GDOP =
√

tr((JT
p(u)Jp(u))

−1). (2.17)

The bold assumption of the pseudorange residuals being iid from a zero mean Gaus-

sian distribution was made to simplify the derivation of the GDOP. This assumption

does not hold in reality, which can be seen in the results of this work as well. However

the GDOP proves to be of value nonetheless.

Problem formulation

Hence there are two factors playing into the location accuracy: the satellite loca-

tion dependent geometric dilution of precision and the pseudorange measurement

inaccuracies. The latter includes such as ionosphere, troposphere and multipath

induced errors. Some of these can be diminished by applying relevant corrections

in the receiver, but some are harder to mitigate. For example there are models

like Klobuchar and NeQuick for taking into account the ionosphere induced er-

rors [21, 11, 17]. And for the troposphere errors Hopfield and Saastamoinen models

have been developed [18, 30]. In addition there are services like the satellite based

augmentation systems (SBAS), which provide correction data for these kind of er-

rors. The multipath delays however are often more problematic and can have greater
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effects on the calculated location. These can be affected by the selection of the satel-

lite measurements used in the solution.

The main problem of this work is thus an optimal subset selection one. We are

looking for a subset of satellites from the set of all visible satellites that minimizes

the error in the receiver location, eû, with possibly an added limit to the cardinality

of this subset.

Let S now define the set of all visible satellites. Similarly let Si ⊆ S denote the

subset selected for the location solution. Now we can formulate the problem as

minimize
Si⊆S

‖eû(Si)‖2

subject to |Si| ≤ k
(2.18)

where k is the maximum number of satellites allowed in the solution.

There are certain requirements for the selection algorithm. First, and foremost

of these requirements is that the selection needs to be executable in the receiver

hardware in real time. This rules out too complex solutions as well as brute force

methods. Second, the selection criteria should preferably be a white box model, i.e.,

the selection criteria can be understood when inspecting the model.

As the interest now is in minimizing the location error, both the GDOP and pseu-

dorange errors need to be considered. For the latter a data driven approach was

selected in the form of logistic regression. How this was applied in the selection is

described in Section 3.2, but a general overview of logistic regression is presented

next.

2.3 Logistic regression

Logistic regression is a linear method for classification. Here we consider a binary

output case, but logistic regression in general is by no means limited to just two

outcome categories. The extension to multiclass cases can be achieved for example

by a set of independent binary regressions. As the multinomial logistic regression is

not in the scope of this work an interested reader can for example refer to [16] for a

more thorough explanation.

Logistic regression works by creating probabilities for the dependent variable classes

from the linear combinations of the prediction, or independent, variables. So given
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random variables Y ∈ {0, 1} and X ∈ R
n, we are interested in modeling the posterior

probability of

Pr(Y = 1|X = x). (2.19)

Here Y is called the dependent variable and X the prediction variable, for which

x is some realization. In logistic regression the modeling is done by applying the

logistic function,

µ(t) =
et

et + 1
=

1

1 + e−t
, (2.20)

which has the useful property of µ(R) = (0, 1), allowing the output to be interpreted

as a probability. Using the logistic function the probability can be expressed by

inserting t = w0 + wTx, where w0 ∈ R and w ∈ R
n, so

Pr(Y = 1|X = x) = µ(w0 + wTx) =
ew0+wT x

ew0+wT x + 1
. (2.21)

And similarly

Pr(Y = 0|X = x) = 1− Pr(Y = 1|X = x) =
1

ew0+wT x + 1
. (2.22)

If we now look at the log-odds of the probability of “success”

log
Pr(Y = 1|X = x)

1− Pr(Y = 1|X = x)
= log

Pr(Y = 1|X = x)

Pr(Y = 0|X = x)

= w0 + wTx,

(2.23)

we see that the decision boundary is a linear hyperplane defined by the affine function

w0 + wTx.

Figure 2.1 shows an example of a logistic regression decision boundary in a two-

dimensional case. The data for this figure is simulated and happens to be completely

linearly separable. Often in real scenarios there is some overlap between the classes

and a complete separation is not possible, at least with a linear boundary. A non-

linear decision boundary is also possible with logistic regression by applying a so
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ℓ(w) = logPr(Y |X;w)

=
∑

i

yi(w
Txi)− log(ew

T xi + 1).
(2.25)

When the partial derivatives of this are set to zero the set of equations is non-linear

and thus the solution is not entirely straightforward. There are multiple iterative

algorithms for the solution, e.g. gradient descent and Newton-Raphson methods.

More about the solutions can be found in [16, 19].

In the next chapter we take a look at the previous work done in the satellite selection

domain and also introduce the new approach that exploits logistic regression in the

selection process.
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3. SATELLITE SELECTION

The issue of selecting satellites for positioning has emerged in the recent years. Be-

fore GPS had competing satellite navigation systems one could simply use all of

the satellite vehicles in view for the solution. Nowadays with multi-constellation

receivers the number of satellites visible is already so high that the position calcu-

lations may prove rather ponderous. Also, as shown in [35] using all of the visible

satellites can yield poorer results than using a well chosen subset of those satellites.

The previous points provoke the question of which satellite vehicles to use for the

solution.

3.1 Previous work

Previous work concerning satellite selection in GNSS has been mainly about mini-

mizing the effect of the satellite geometry. This has been approached in numerous

ways. One can naturally go through all the possible subsets and select the opti-

mal one but this produces huge computational load. Greedy algorithms performing

backward elimination [24] or forward selection based on DOP [28] are obvious re-

liefs, but they still require multiple matrix inversions. To mitigate this alternative

metrics have been proposed as well.

In [27] a quasi-optimal algorithm for the selection problem is proposed. The paper

introduces a cost function for the satellites

Jj =
N
∑

i=1

cos(2θi,j), (3.1)

where θi,j is the angle between the line of sight vectors to satellites i and j. This

stems from the idea that satellites with collinear line of sight vectors are redun-

dant.Using this cost function the satellites are selected in a backward elimination

manner, always removing the vehicle with the highest cost. The aforementioned

algorithm does not often provide optimal satellite geometries but the computational

load required makes it suitable for real time applications. Indeed, since the cosine

term can be expressed as
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cos(2θi,j) = 2 cos2(θi,j)− 1 = 2(vi · vj)2 − 1, (3.2)

where vi ∈ R
3 and vj ∈ R

3 are the line of sight unit vectors to satellites i and j,

the computation requires very low resources. The aforementioned paper has also

inspired multiple other metrics using cosine for the ranking of the satellites [33, 31].

They incorporate additional ideas like requiring the highest elevation satellites to

be included in the selection.

The idea of requiring the highest elevation satellites was first introduced in [23]

as their investigations concluded that the optimal GDOP in four satellite case is

obtained by having a satellite at zenith and the rest equally spaced at horizon. This

was later expanded to n satellite cases in [34], where they select p satellites at the

zenith and the rest n− p satellites in the horizon. With p depending on the number

of satellites to be selected.

Other strategies have also been developed in search for the best geometries. In [4]

an algorithm is proposed in which those satellites are selected that span a convex

hull around the visible satellite vehicles. Such algorithms have also been proposed

that pick those subsets which most resemble some predefined geometries [6, 34, 14].

However the recent paper [35] exposed the shortcomings of algorithms that rely on

minimizing DOP alone. Even though the GDOP would be optimal for a given size

of satellite subsets, if there are satellites with very poor pseudorange measurements

included, the location error can be quite significant. This is also depicted in the

results of this work.

Indeed, when minimizing the location error, both the GDOP and measurement

errors need to be considered. Thus we propose a more holistic approach for the

satellite selection issue. This approach is presented in the next section.

3.2 Data-driven approach

The approach that was constructed for this work scores the satellites in two parts,

the other tries to optimize the GDOP and the other aims at eliminating too large

measurement errors. As calculating the GDOP can only happen after a subset of

the visible satellites has been selected it is not practical to be computing it in the

selection process. That is why we model the effect the satellites have on GDOP

by something we call the redundancy score from now on. The redundancy scores

depend on which satellites have already been picked in to the selection subset and
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are only calculated to those satellites that have not been picked yet. The other part,

the large measurement errors, we try to predict with the logistic regression model.

Since the measurement errors are not in anyway dependent on the satellites already

picked for selection, we initialize the algorithm by calculating the probabilities that

a pseudorange measurement is over a certain threshold. The logistic regression

method for this was described in Section 2.3 on a general level. In this case, the

probability, p, a satellite j ∈ S has a bad pseudorange measurement is

pj =
1

ew
T xj + 1

, (3.3)

where xj is information about the satellite and its signal. In this case xj includes

carrier-to-noise-density ratio, elevation and satellite system information.

Next the three best scoring satellites are added in to the selection subset Si. So the

first three satellites are selected purely based on their probability to have a good

measurement. In the following selections also the redundancy score is taken into

account. In the redundancy score part we borrow the idea of using line of sight

vector cosines from the quasi-optimal algorithm [27].

The quasi-optimal algorithm has the nice idea of modeling the effect the satellite

has on the GDOP by the cosines of the line of sight vectors. As the cosine can

be easily computed via the dot product it is suitable for the requirement of low

computational complexity present in this work as well. A major drawback, also in

the GDOP sense, in the algorithm is that it leaves the highest elevation satellites out

too often. Quick simulations showed that the GDOP-wise optimal subsets included

the highest elevation satellite more than 90% of the time, when selecting more than 5

satellites. This investigation was inspired by the Zhang paper [34] about fast satellite

selection, in which they describe GDOP-wise optimal satellite subsets and conclude

that it is beneficial to always include high elevation satellites in the selection.

This problem is eliminated in our approach by the initial selection of the three

satellites that have the least probability for large measurement errors, since those

satellites often also sit at high elevations. Unlike cos(2θi,j) in the quasi-optimal

algorithm a simple cos(θi,j) is used here. Figure 3.1 visualizes the differences of

these redundancy cost functions. As can be seen in the aforementioned figure, the

cos(2θ) cost function penalizes satellites if the angle between them gets over 90◦.

This is not desirable in our scenarios and so the plain dot product is good enough

in this case.
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size. A simplified summarization of the selection algorithm could be given as

1. Calculate pj, Eq. (3.3)

2. Add those three satellites with the lowest pj to Si

3. Calculate rj, Eq. (3.4), and then sj, Eq. (3.5), for the remaining satellites

4. Add the satellite with the lowest sj to Si

5. Repeat steps 3. and 4. until min(sj) > sth or |Si| = k

where sth is a score threshold after which it is considered that adding a satellite

into the selection yields no profit and k is a predetermined maximum size for the

selection set.
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4. RESULTS

The work for this thesis began by analysing data gathered from fixed antennas. This

was done to gain a reference point of the GNSS signals in near optimal situations.

Reflecting the more realistic scenarios to these near optimal situations helps in

achieving an insight into the factors contributing to the location error. After the

fixed position analyses our attention was directed to more realistic scenarios. These

consisted of three road test recordings. In the road test recordings the location truth

was acquired with an Applanix POS LV product and post-processed with POSPac

software to reach decimeter level accuracies [3]. The further analyses for the rooftop

and road test data are done in python, for which a small framework was developed

to streamline things. This framework was also used to benchmark the data-driven

algorithm (DDA) that we presented earlier.

Now the rest of this chapter is constructed so that the results from the rooftop

analyses are displayed in Section 4.1 and the road test results in Section 4.2. Also a

quick look in to the computational requirements of the satellite selection algorithms

compared in this work is given in Section 4.3.

4.1 Rooftop data analysis

For the rooftop data analysis work we acquired data from two distinct locations, 24

hours from each. Another location was in Reston, US and the other in Singapore.

The locations of the antennas used in the measurements are known down to a

level of few centimeters. This allows accurate distance calculations to the visible

satellites and thus an accurate determination of the measured pseudorange residuals.

The receivers tracked satellites from five most common satellite navigation systems:

BeiDou-2, Galileo, GLONASS, GPS and QZSS as well as a few SBAS satellites,

although they are not used in the navigation solution.

Table 4.1 shows the numbers of measurements from the different satellite constel-

lations in the two locations. Measurements with elevation below five degrees were

eliminated. Singapore has a higher total number mainly due to more BeiDou-2

satellites visible there. Systemwise, GPS is encountered most often in this setup.
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Another perspective is given in Figure 4.2 where the pseudorange residuals are

plotted as histograms with normal distributions fitted, divided according to the

Satellite Navigation Systems. The binwidth used here is 0.1m to correspond with

the resolution of the residual data. Now we see that the shape of the GLONASS

histogram differs from the others quite significantly, being clearly asymmetric. Also

an interesting artifact is present as the bin centered at zero clearly stands out from

the adjacent ones. The SBAS residuals are rather peculiarly distributed as well but

that is not a concern in this work since they are not used in the positioning solution.

A slight irregularity is visible in the BDS histogram too but as a whole it stays quite

compact.

Going down to the satellite level in Figure 4.3 to have a look at the pseudorange

residuals sheds some light to the irregularity observed in the GLONASS histogram.

The measurement errors from satellites belonging to the GLONASS system are far

from being zero biased. Some satellites seem to invariably err to the positive side

and some to the negative side. This kind of behavior is not apparent in satellites

from the other systems. Rather the other satellites, especially from Galileo and GPS

systems, stay reasonably uniform with very close to zero means. There are a couple

irregularities apparent in the BDS satellites however.

What is also clearly visible is that the whiskers representing the 5th and 95th per-

centiles are noticeably larger for the GLONASS satellites. This actually applies to

the boxes as well, which present the lower and upper quartiles. All in all, besides not

having a zero mean the pseudorange measurements from the GLONASS satellites

seem to also suffer from more deviation resulting in higher residuals.

Figure 4.4 presents satellites only from the GLONASS system to highlight the

aforementioned problems. The biases seen in this system may be due to the different

channel access method employed in the GLONASS transmissions. A more thorough

reflection of this is given in Chapter 5.

Worth mentioning here is that the pseudorange residuals from the other systems are

not normally distributed either. The normality hypotheses were rejected on basis of

the D’Agostino and Pearson’s test combining skew and curtosis [9], with the p-values

being in the 10−5 range at best.

Next, in Figure 4.5 are lag plots for the pseudorange residuals, divided again by

the different satellite navigation systems. The strong clustering of the points along

the diagonal points to a rather strong autocorrelation. Figure 4.6 endorses this

observation, showing the autocorrelations for a single GLONASS satellite at varying

lags. Achieving strong autocorrelations suggests that an autoregressive model, i.e.,
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over 20 satellites in the solution had very negligible improvements for the accuracy.

In the next section the environments the data was recorded in switch to a more

realistic level, as we look at data that was gathered driving in and around Zürich.

4.2 Road test results

The road test data used for the results in this section comes from three recordings

done in and around Zürich. They contain changing environment from urban settings

to open skies on country roads. These recordings give a very realistic picture about

the situations the GNSS receiver faces when used for navigation in a moving vehicle.

The data is now completely acquired from the receiver, the satellite locations and

signal informations are sampled at 1Hz intervals. The location truth is from an

Applanix POS LV product, post-processed with POSPac software and is accurate

down to a decimeter level [3]. This truth recording is used to form the pseudorange

residuals for the satellites at each epoch.

First we looked at the pseudorange residuals in these more realistic scenarios, re-

peating the analyses of the previous section for the road test data as well. The

three recordings were treated separately in the actual algorithm benchmarks but

combined for the initial pseudorange residual analysis.

Figure 4.9 shows the pseudorange residuals as a box plot grouped according to the

systems. As expected, all of the systems generate higher residuals than were seen

in the open sky environments. Also, the GLONASS system involves significantly

higher residuals compared to the three other global navigation satellite systems,

which also is in line with the results of the previous section.

In Figure 4.10 are the histograms of the pseudorange residuals in these road test

datasets. Here again the three systems; GPS, Galileo and BeiDou seem comparable,

whereas the GLONASS has a clear disadvantage. However the normal distribution

fitted to Galileo measurements embodies a substantial standard deviation. This

would suggest that there are relatively many observations in the tails of the Galileo

histogram.

This suggestion is confirmed in Figure 4.11, where the pseudorange residuals are

given as a box plot grouped by the individual satellites. The satellite E12 exhibits

highly deviant results here, as the 95th percentile of its residuals extends all the way

up to 60m. Not even the satellites from the GLONASS system reach this level of

inaccuracy, although in general being much more imprecise.
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Replicating the residual analyses for the data from the road tests illustrated how

the environmental factors affect the accuracy of the pseudorange measurements.

The residuals measured when driving around Zürich were considerably poorer when

compared to those from the rooftop measurements.

We then moved on to test the applicability of logistic regression for the prediction

of those poorer pseudoranges. As logistic regression is a classification model, the

pseudorange residuals needed to be categorized. For a bad pseudorange we now

chose a residual threshold of 10m. That is, if the receiver registered a pseudorange

that deviated more than 10m from the distance calculated between the location

truth and the satellite ephemeris then the pseudorange was considered bad. The

threshold of 10m was chosen as a trade-off between having a reasonable number of

measurements considered bad and having a sufficient difference to the accuracy of

the truth data.

The prediction was done in a threefold cross-validation manner as there are three

recordings. One of the recordings at a time was used as the test set whereas the two

others were used for training the model. Figure 4.12 shows the coefficients the model

gave for the different features, i.e., the vector w from Section 2.3. The bars represent

the means from the three folds and the whiskers are one-sigma errors. Notable here

is that the system identifiers are now binary variables telling if a satellite belongs to

a given satellite navigation system and the carrier-to-noise-density ratio (cno) and

elevation (elev) features are continuous. The coefficients are to be interpreted so

that in the case of cno and elev a greater variable value increases the probability of

a good pseudorange and in the system identifier case a greater negative coefficient

is worse.

As the runs were done in Europe there were not that many BDS satellites available

and the conclusions done from the coefficients for that system would require some

caution. The others seem to be in line with the observations done in the previous

section, although more data would be needed to narrow down the deviation in the

estimates.

The results of the predictions are given in Table 4.2 for each of the cross-validation

folds accompanied by the means and standard deviations. The means in each col-

umn exceed 90%, which is beyond our initial expectations. The training and test

accuracies are very close to each other suggesting that the model does not overfit.

The recall and specificity numbers further support the applicability of the model. In

the recall number we see that on average the model can spot around 90% of the bad

pseudoranges and specificity tells us that only about 10% of the good pseudoranges
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cases can be considered very good and the median shows that 50% of the fixes are

even more accurate than that. The 30 satellite quasi-optimal case has identical

numbers compared to the all in view up to the precision reported here.

The row with the maximum errors shows perhaps the clearest differences between

the methods, with the data driven approach achieving numbers that are under one

third of the all in view and QO maximum errors. An interesting aspect here is

that when given the chance to use up to 30 satellites for the data-driven method it

produces slightly bigger maximum errors than in the 10 and 20 satellite cases. All in

all, raising the maximum number of satellites from 20 to 30 in the data-driven case

produces rather minimal improvements in the location accuracy, the only notable

differences seen in the minimum and the first quartiles.

Error [m] AIV DDA 10 DDA 20 DDA 30 QO 10 QO 20 QO 30
mean 3.38 2.01 1.37 1.37 8.51 3.72 3.38
std 3.37 0.90 0.87 0.87 7.83 3.55 3.37
min 0.08 0.11 0.07 0.05 0.10 0.14 0.08
25% 1.29 1.40 0.83 0.82 3.58 1.48 1.29
50% 2.18 1.86 1.18 1.18 5.99 2.53 2.18
75% 4.36 2.44 1.66 1.67 11.21 4.78 4.36
max 28.52 7.40 7.69 7.78 90.18 30.26 28.52

Table 4.3 A summary of the location errors obtained from the test data using different
methods for the satellite selection. The errors are measured as distance from the truth and
given in meters. AIV refers to the All In View case, DDA to Data-Driven Approach and
QO to the Quasi-Optimal method. The numbers behind the latter two refer to the number
of satellites selected.

Figure 4.14 shows the location errors as a function of time with different satellite

selections from the quasi-optimal algorithm compared to our data driven approach

selections. In addition the all in view case is given, where all of the visible satellites

would be used for the location solution. Here we see that the test scenario has some

epochs where the location errors grow notably in the all in view and quasi-optimal

cases. The data driven approach however handles these very well.

Figures 4.15 and 4.16 provide vision into the reasons behind the poor location

accuracies observed in the previous figure. In Figure 4.15 are the geometric dilution

of precision numbers plotted for the different selections as a function of time. The

quasi-optimal algorithm performs slightly worse than the data driven approach in

the 10 and 20 satellite cases, which can be considered surprising as the QO method

is designed purely for GDOP optimization. However it achieves identical numbers

with the all in view selection in the 30 satellite case (the lines overlap completely),

beating the data-driven method here.
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O
((|S|

2

))

= O
( |S|(|S| − 1)

2!

)

= O
(

|S|2
)

. (4.1)

Considering the computational complexity of the data-driven method is not quite

as straightforward. In the initial stage, we need to compute the signal scores for all

of the satellites, hence that part is O(|S|). As was stated in Section 3.2 the first

three satellites are added to the selection according to these signal scores. Then, for

more satellites to be added we start calculating the redundancy scores. So for the

fourth satellite the number of angles we need to consider is 3(|S| − 3). In general,

for |Si| satellites to be selected out of |S| we need to consider

|Si|−1
∑

i=3

i(|S| − i) (4.2)

angles. For this the complexity can be given as O(|Si||S|), and since |Si| is a constant

it can be simplified to O(|S|). Thus the complexity for the data-driven method is

O(|S|+ |S|) = O(|S|). (4.3)

Worth remembering is that the signal scores need to be calculated only once in an

epoch.

To verify, we calculated the numbers of floating point multiplications needed when

selecting 20 satellites out of a varying number of visible satellites. Figure 4.19

illustrates these numbers which support the complexities attained above. When

there is only one satellite to dismiss the backward elimination of the quasi-optimal

algorithm does this with far fewer calculations than the data-driven approach, which

works in a forward selection manner. However, the number of multiplications needed

in the quasi-optimal algorithm grows rapidly as the number of visible satellites

increases, whereas in the data-driven approach the growth is rather linear. If we

were to select only 10 satellites the difference would grow even more substantial in

favor of the data-driven approach.

The numbers of visible satellite in this figure are completely realistic for multi-

constellation receivers as could be seen in Figure 4.8. Thus we can conclude that

the data-driven approach requires far less computational time than the quasi-optimal

method in most common scenarios.
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5. DISCUSSION AND CONCLUSIONS

The roof top scenarios, from which the data for Section 4.1 was collected, presents

a very close to optimal situation for the receiver. The high vantage point provides a

situation where there are no obstructions on the signal path nor foliage of any kind.

This scenario was analysed as we wanted to have a reference point where especially

the multipath errors would be minimized.

The first thing these results confirmed was the poorer quality of measurements from

the satellites belonging to the GLONASS system, even in the clear sky conditions.

As could be seen in Figures 4.1 and 4.2 the pseudorange residuals for GLONASS

were of inferior quality compared to the other global navigation satellite systems.

An idea about one of the reasons behind this can be drawn from the box plots for

individual satellites seen in Figures 4.3 and 4.4. Here the pseudorange residual

distributions for the GLONASS satellites are further away from being zero mean

than in the case of other systems.

This is most likely due to the fact that GLONASS uses frequency divided multiple

access (FDMA) modulation for the signals [29] whereas the other systems rely on

code division multiple access (CDMA) [26, 7, 13]. The utilization of FDMA means

that the signals from different satellites are transmitted on different frequencies.

This has been reported to cause inter-frequency or inter-channel biases [32], which

also cause bias in the pseudorange measurements [8].

Often, at least in theoretical settings, the pseudorange residuals are considered i.i.d.

with a zero mean Gaussian distribution. This was also checked with a D’Agostino

and Pearson’s test that combines skew and curtosis [9]. The tests rejected the

hypotheses that even for a single satellite the residuals would be Gaussian. This

provoked a further investigation in to the nature of the errors. Figures 4.5 and 4.6

illustrate a strong autocorrelation in the residuals. This suggests a strong inclination

towards an autoregressive model. Such a model would possibly yield even better

prediction results for the pseudorange errors, and thus better results for our satellite

selection approach. However that would bring about certain awkward questions for

the implementation, e.g., how reliable are the pseudorange residuals measured at
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the previous epoch.

In a theoretical setting, with i.i.d. pseudorange residuals, it is obvious that adding

more satellites to the solution increases the accuracy. As the i.i.d. assumption is

rather arguable in a more realistic setting we had a look at the location accuracy

as a function of the number of satellites in the solution in Figure 4.7. The plots

here show that after roughly 20 satellites adding more measurements to the solution

induces a very marginal improvement in the location accuracy. And when the added

computational complexity is considered, limiting the number of satellites in the

solution is well-advised already from the computational point of view.

Figure 4.8 showed that the number of visible satellites in multi-constellation re-

ceivers can already be as high as 40 so limiting the number in the solution is indeed

called for. This number will only keep growing in future as there are more satel-

lites launched in especially Galileo and BeiDou systems to reach their full designed

extent. Hence the importance of the satellite selection question will become even

more prominent as the number of satellites keeps on growing.

Previous work concerning the selection has been predominantly about optimizing

the geometrical dilution of precision in the solution set. However that is only a

scaling factor in the ensuing location accuracy, the errors stem from the pseudorange

inaccuracies. Nonetheless there are very few papers published where the satellite

selection has happened from the measurement error minimization point of view.

This directed most of our efforts in to the direction of the pseudorange residuals.

The initial analyses from the rooftop data that were presented in Section 4.1 pro-

vided valuable insight into the selection issue. It affirmed our hypotheses that the

pseudorange residuals, i.e., the measurement errors are somewhat correlated to fac-

tors like the constellation the satellite belongs to, carrier-to-noise-density ratio and

elevation. This information gave rise to the idea of trying to predict the pseudorange

errors using data that is available already before the location solution. The first ap-

proach was naturally to apply linear regression to the data. This however produced

rather poor results in the initial tests. Discretizing the dependent variable proved

a simple solution and logistic regression gave surprisingly good results already from

the first tests onwards.

The regression runs were done on a more realistic data sets collected driving in

various environments in and around Zürich. This road test data presented larger

errors than the measurements from the rooftops but was otherwise in line with the

observations done in Section 4.1. After describing the residuals in these realistic use

cases we moved on to the prediction part.
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Table 4.2 presented the results from the logistic regression model when predicting

over 10m pseudorange residuals. It can be seen that the model works well in the

road test scenarios and that the results from the three cross-validation folds are

in unison. The recall of nearly 90% is especially pleasing as it means that the

model was able to spot 9 out of 10 bad pseudorange measurements. However when

looking at the coefficients in Figure 4.12 we see that there is considerable variation

in them, especially for the BeiDou system. To get more rigid estimates for the

coefficients more data would be needed for training. Also if more data of sufficient

quality would be available there would be a possibility to even calculate weights for

each individual satellite instead of using the systems as we do here. All in all, the

efficiency of applying logistic regression for the problem at hand proved sufficient to

say the least.

The location accuracies, given in Table 4.3, obtained with the data-driven approach

were in a completely different class when compared to the satellite selections of the

quasi-optimal algorithm. This was mainly due to the ability of the DDA to eliminate

the measurements with significant error in them. However it needs to be noted that

when using 10 or 20 satellites the data-driven approach achieved lower DOP as well.

Worth remembering is that all the results are without the receiver autonomous

integrity monitoring (RAIM) applied. The fault detection and exclusion part of

RAIM performs certain basic checks to the satellite signals and can weed out some

of the bad pseudorange measurements [5]. The addition of RAIM would most likely

improve the acquired results to some extent.

Another interesting aspect in the location accuracy results was that there was vir-

tually no difference in using 20 or 30 satellites in the data-driven approach. This

goes well hand in hand with the observation done in Figure 4.7. Even in few epochs

the accuracy was slightly poorer when allowing the DDA to use 30 satellites in the

solution. This would indicate to having a slightly too high overall score(Eq. 3.5)

threshold after which no more satellites are to be added to the solution.

As one of the main reasons for wanting to limit the amount of measurements in

the solution was to cut down on the cost of the computations the satellite selection

algorithm needs to be computationally light as well. This was studied in Section 4.3,

where it was shown that the complexity of the data-driven approach grows linearly

with the number of visible satellites. For the quasi-optimal method the growth is

quadratic, causing it to take up more computation time with the numbers of visible

satellites there are available nowadays for multi-constellation receivers.
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Conclusions and future work

The main goal of this work was to develop an algorithm for multi-constellation GNSS

receivers that would select satellites out of the tracked ones to be used in the location

solution. As the receiver has very limited computational resources, the complexity of

the algorithm needed to be kept low. The work showed that optimizing the GDOP

only lacks the important aspect of considering the pseudorange measurement errors.

These have been shown to have an even greater influence on the accuracy of the

position solution than optimizing the GDOP does [35].

The work began by exploratory analysis of GNSS data from near optimal situations.

This analysis gave already some insight into the differences of the various satellite

navigation systems as well as into the nature of the pseudorange residuals. These

observations helped in shaping the algorithm that we proposed for the problem of

satellite selection. The algorithm itself was developed using data science techniques

to filter out bad pseudorange measurements and borrowed some earlier ideas to

optimize the geometric dilution of precision of the solution set as well.

The approach we chose was shown to work very well when applied to real data mea-

sured from road tests in varying surroundings. Even with practically non-existent

parameter tuning the algorithm was able to spot almost 90% of the bad pseudo-

range measurements, keeping the specificity, i.e., ability to hold on to the good

measurements at over 90% level. As there was practically no parameter tuning done

here, optimizing the weights and thresholds of the selection model would most likely

improve the results even further. Another development aspect would be to have

weights for each of the individual satellites instead of the global navigation satellite

systems. This would however require far more data of sufficient quality.

The ability to filter out bad pseudorange measurements translated to improved lo-

cation accuracy as well. The data-driven approach outdid the quasi-optimal method

clearly and in addition was shown to have lower computational complexity with the

present number of navigation satellites already.

All in all, the results achieved in this work proved encouraging enough to begin

implementing the algorithm in actual receiver software to study the performance of

the data-driven approach in action.
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