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Vaikka viimevuosien tutkimukset ovat syventäneet tietämystä hajuntunnistuksesta ja sen 

mekanismeista, hajuaisti on edelleen ihmisen aisteista huonoiten ymmärretty. Ihmisne-

nässä on kymmeniä tai jopa satoja miljoonia yksittäisiä hajumolekyylejä sitovia aistimia, 

hajureseptoriproteiineja, joten samaan haistamistarkkuuteen pystyvän keinotekoisen ne-

nän rakentaminen on erittäin haastavaa. Koska ihmisnenä ei ole objektiivinen sensori, 

hajujen tunnistamiseen ja luokitteluun laajalla skaalalla kykenevän “elektronisen nenän” 

kehittäminen on keinotekoisessa haistamisessa tärkeimpiä tutkimuskysymyksiä. Haju-

molekyylien havaitsemisen lisäksi elektroninen nenä tarvitsee jonkin analogialtaan ih-

misaivoja vastaavan osan, joka kykenee tulkitsemaan ja luokittelemaan antureilla havai-

tut signaalit. 

Ihmisen hajuaistia tai hajujen tuottamaa psykologista reaktiota tutkittaessa tarvitaan hel-

posti ja luotettavasti tuotettava hajustimulaatio. Hallittuja hajuntuottojärjestelmiä kutsu-

taan olfaktometreiksi. Tässä diplomityössä esitellään kompakti olfaktometri, joka kyke-

nee hallitusti tuottamaan kaasumuotoisia hajukomponentteja tasaisella konsentraatiolla. 

Työn päätavoite oli tutkia ja todentaa, pystyykö esitelty järjestelmä suoriutumaan sille 

asetetuista vaatimuksista. Tuotettua kaasuvirtaa monitoroitiin kemiallisella ilmaisimella, 

ChemPro 100i:llä, jonka toiminta perustuu aspiraatio-ionimobilisaatiospektrometria -tek-

nologiaan. 

Esiteltyä olfaktometriä käytettiin tuottamaan synteettistä jasmiinin tuoksua käyttämällä 

kolmea jasmiiniöljystä löytyvää pääkomponenttia, joilla suoritettiin kokeita järjestelmän 

toiminnan todentamiseen. Ensimmäisessä kokeessa analysoitiin kykyä erotella ChemPro 

100i -datasta eri hajukomponenteilla ja komponenttien eri konsentraatioilla toteutettuja 

mittauksia. Lisäksi ihmisosallistujilla toteutettiin lyhyt pilottikoe, jossa osallistujat ver-

tailivat oikean jasmiiniöljyn ja synteettisten jasmiiniseoksien tuoksua. Tuloksista nähtiin, 

että esitellyllä olfaktometrilla eri konsentraatioilla tuotetut mittaukset pystyy erottamaan 

toisistaan. Ihmispilottikokeesta nähtiin, että ihmisnenä sekoitti oikean jasmiinin ja kol-



mea pääkomponenttia sisältäneen synteettisen jasmiinin keskenään mutta pystyi erotta-

maan oikean jasmiinin ja kahta pääkomponenttia sisältäneen synteettisen jasmiinin toi-

sistaan. 
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Even though recent studies have led to a more refined understanding of the mechanisms 

related to odorant detection, the vertebrate olfactory system remains the least understood 

sense of the human senses. The total amount of sensing elements, olfactory receptor pro-

teins, in the human nose is counted in tens or hundreds of millions, thus recreating this 

kind of complex system artificially is challenging. Human nose cannot be seen as an ob-

jective sensor, so creating an artificial olfactory system, often called electronic nose or 

“e-nose”, which is capable to objectively and reliably classify odors in a wide range is a 

key research question in the field of artificial olfaction. In addition to the detection system 

in e-nose instruments, something analogical to human brain is needed to interpret the 

signals in the detecting sensors.  

Production of easily controllable and measurable odor stimulus is needed when studying 

human olfaction, olfaction-related physiology and psychological reactions to odors. Con-

trolled odor producing instruments are called olfactometers. In this Master Thesis, a com-

pact olfactometer able to produce controlled continuous odor stimuli from three individ-

ual gaseous components is presented. The main objective was to study and verify if the 

presented system can produce gas streams with the stable concentrations of different odor 

components. For measuring the output air stream, the device used is a chemical detector 

ChemPro 100i, that is based on aspiration ion mobility spectrometry (aIMS) technology. 

The presented olfactometer was used to produce synthetic jasmine scent using three main 

odor components from jasmine oil. Experiments were conducted to verify the functional-

ity of our olfactometer and to analyze the capability to distinguish different odor compo-

nent concentrations using the ChemPro 100i data. Further to test the functionality of our 

olfactometer, we run a short pilot test in which human participants compared a syntheti-

cally created scent of jasmine and the scent of real jasmine oil. Results showed that from 

the measurement data, different concentration sets of three components were able to be 

distinguished. Human pilot results showed that human nose was confused when compar-

ing three component synthetic jasmine with real jasmine scent but could distinguish be-

tween two component synthetic jasmine and real jasmine scent. 
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1. INTRODUCTION 

During the latest decades, research and development around odor sensing, synthetizing 

and creating artificial olfactory systems has become a notable field in technology. Even 

though recent studies have led to a more refined understanding about the mechanisms 

related to odorant detection, the vertebrate olfactory system remains as the least under-

stood sense of the human senses. In vertebrate olfactory systems, the olfactory sensory 

neurons (OSNs) are the primary sensing cells. Human nose contains 6-10 million OSNs 

and each of them projects up to 50 cilia, that contain the olfactory receptor (OR) proteins, 

to the surface of the olfactory epithelium to sense the odor molecules.[1] This means that 

the total amount of sensing elements in the human nose is counted in tens or hundreds of 

millions, thus recreating this kind of complex system artificially is challenging. 

The functioning of the human olfactory system and the resulting smell that a person iden-

tifies is dependent also on other factors than just the odor molecules entering the olfactory 

system. The human sensory evaluation is affected e.g. by the physiological and psycho-

logical status of the person. There is also a strong dependence between sensing taste and 

smell. Activating the taste buds also affect the olfactory system and vice versa, which 

might lead to “taste-smell confusions”. A common everyday example of this is that people 

regularly report losing their sense of taste when their nose is blocked.[2], [3] Alterations 

in olfactory functions is also shown to be a marker for depression.[4]  

Because the human nose cannot be seen as an objective sensor at all times, creating an 

artificial olfactory system, often called electronic nose or “e-nose”, which is capable to 

objectively and reliably classify odors in a wide range is a key research question in the 

field of artificial olfaction. Different kinds of artificial olfactory systems have been de-

veloped for various applications. So far, the presented systems are in most cases opti-

mized to only sense specific odors that are relevant to their specific applications and they 

do not provide nearly the same complexity as the natural olfactory systems. Most com-

mon current e-nose applications include explosive and drug detection  [5], controlling 

industrial processes [6], [7] and determining food quality [8]–[10]. An important feature 

with e-noses is also the capability to detect odors that seem odorless for a human nose, 

e.g. carbon monoxide. However, this can also be seen as a non-wanted feature, depending 

on application. [1], [11] The whole term e-nose is also somewhat controversial as classi-

cal analytical instruments and detectors that do not provide a collective data output and 

are designed to detect individual components from a gas mixture are not considered e-

noses in the strictest sense.[12] 
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For researching, testing or calibrating new e-nose -systems or sensor arrays, a reliable 

input signal has to be first produced to reliably verify the functioning of the system or 

sensor array under test. For e-noses, common input signal is volatile organic compounds 

(VOCs) in gaseous form. For this purpose, various methods have been proposed and pro-

duced. These kind of instruments, that can produce odor components in a precise and 

controlled manner, are called olfactometers. For example, Schmidt et al. have studied 

olfactometry and threshold levels of different scents people can identify. They presented 

vapor delivery device 8 (VDD8).[13] VDD8 is an olfactometer that includes syringe 

pump injection vapor stabilizing chamber, called vapor capacitor, optional two stage pre-

dilution with nitrogen and odor stream, and eight constant flow rate dilutors. Sommer et 

al. presented a mobile olfactometer that was used with fMRI-studies studying the depend-

ence of identifying smells and activation of different regions of the brain. [14] 

Molecular detection has been a large interest for a long time. Common technique for an-

alyzing chemical compounds is gas chromatography (GC) and it is typically used in test-

ing purity of substances or separating and detecting relative proportions of components 

from a mixture. GC is often also coupled with mass spectrometer (MS), instrument that 

measures the masses of individual molecules that are converted in to charged ions. These 

devices are called gas chromatography mass spectrometry (GC-MS) instruments. Ion mo-

bility spectrometry (IMS) is a robust and sensitive method for measuring VOCs and is 

used especially in detecting toxic industrial chemicals (TICs), chemical warfare agents 

(CWAs) and explosives, but the technology is also suitable for other olfactory-related 

applications. IMS techniques in short work by ionizing the sample being analyzed and 

then observing the differences of ion mobilities between different ionic species. 

In this Master’s Thesis, an olfactometer able to produce odor components with controlled 

concentrations in gas phase was constructed. The system consists of syringe pumps, elec-

tronics and pneumatic components with three channels for three different odor compo-

nents. One of the goals was to research the ability to recreate jasmine scent by only mixing 

two or three of its main components and to study how well both human nose and artificial 

olfactory system can distinguish between the created synthetic jasmine odor and real jas-

mine oil.  

First in this thesis we get to know the basic structure, functioning and signaling of verte-

brate olfactory system and how that can be related to and how it differs from artificial 

olfactory systems. Then we discuss the available technologies used in the current e-nose 

–devices and introduce some of the next generation solutions. In chapter three, the con-

structed compact olfactometer is introduced in detail as well as the chosen odors for the 

conducted measurements, some of which are displayed and discussed in chapter four. In 

chapter five the drawbacks and potential improvements for the olfactometer are discussed 

and chapter six concludes how well the objectives were achieved. 
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2. BACKGROUND 

The roles of natural and artificial olfaction systems are unique and different. The natural 

olfaction system has been developed through evolution to give living creatures infor-

mation about their environment (food safety, mating, detecting threats etc.) whereas arti-

ficial olfaction systems were first developed to provide information on flavor and 

aroma.[15] The applications for e-noses have been vastly broadened since the first devel-

oped systems to include e.g. detection of pollutants, hazardous chemicals and ill-

nesses.[1], [12] Even as the natural and artificial olfaction systems comprise of different 

components, they still are analogous to each other in certain ways and have modules that 

are responsible for the same tasks. They both can be divided in sample delivery system, 

odor detection system and signal processing system leading to odor perception.[15]  

In vertebrate olfaction system, the nasal cavity is responsible for the sample delivery, 

whereas with e-noses this can be implemented with vapor inlet tubing, pumps and related 

units. The working conditions between these two are vastly different as nasal cavity works 

under high humidity and near body temperature whereas the sensitivity of the artificial 

sensors to humidity and the usual requirement of high operating temperature are some of 

the major challenges. The detection systems in both natural and artificial olfaction sys-

tems comprise of sensing elements. In vertebrate nose, the sensing elements are tiny cilia 

containing OR proteins able to bind to odor molecules. In artificial systems, a broad col-

lection of different sensors and sensor arrays with different working principles sense the 

odor molecules. Research with new generation biomimetic noses has started to close the 

gap between natural and artificial olfaction. Biomimetic noses aim to mimic the natural 

olfaction by using the same exact components that can be found in a natural olfactory 

system; ORs, odorant binding proteins (OBP) and OSNs. These components can be har-

vested from living creatures, such as insects. Another way to develop olfactory receptors 

–based sensors is to synthesize artificial peptide sequences to mimic the binding site of 

OR or OBP. Despite the progress, the research on the sensor development is still relatively 

far from achieving the sensitivity and selectivity of biological olfactory receptors.[1] That 

is why it is also important to continue to get a better understanding of the functioning of 

natural olfactory systems. 

The information provided by the sensing elements is transferred to signal processing. In 

vertebrates, this is done by the nervous system where the brain analyzes the signals and 

produces a sense of smell according to the inputs. In artificial systems, the signal pro-

cessing can be more or less complex, from simple signal reading and electronic finger-

print interpretation to complex machine learning solutions. 

The modern GC was invented in 1952 and it has become one of the most used analytical 

techniques in modern chemistry. Separations of different compounds is achieved in GC 
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by a series of partitions between a mobile phase and a stationary liquid or solid phase. 

The mobile phase is a carrier gas, often an inert gas such as helium or an unreactive gas 

such as nitrogen. The stationary phase is a microscopic layer of the analyte, i.e. the chem-

ical substance under analysis, inside a column (a small diameter tube, often made from 

glass). The rate of partitioning depends on the chemical affinity of the analyte for the 

stationary phase and the analyte vapor pressure, which leads to separation of compounds 

with different affinities.[16], [17] 

IMS separates different ionic species in an electric field based on their mobilities. Ion 

mobility is a measure of the size-to-charge ratio of an ion. The first measurements regard-

ing ion mobility were done already in 1897 when Ernest Rutherford measured the mobil-

ity of ions formed by x-ray ionization. During the first decades of the 20th century there 

was a strong interest in mobility studies and a basis in the ion kinetics theory was formed. 

Due to the introduction of mass spectrometry (MS), the interest in in IMS declined in 30’s 

and 40’s. The use of IMS as an analytical tool was introduced by Cohen & Karasek in 

1970. Big advantage of IMS compared with most other separation methods is the opera-

tion in atmospheric pressure, which makes the instrumentation more simple and inexpen-

sive as there is no need for vacuum pumps.[18] 

IMS can be used in different ways depending on the applications; for selective detection 

of ions after a GC separation, for the preseparation of ions before MS or as a standalone 

measurement instrument. Analysis with IMS can be done in the matter of seconds which 

is why it is often the chosen technique in detecting compounds of interest at customs, 

airports and also widely in military applications.[18] 

2.1 Natural olfactory system 

The general structure of an olfactory system is remarkably similar across a wide range of 

organisms, ranging from insects to mammals. This lack of variety suggests that it repre-

sents an extremely good solution for a difficult problem. Due to the similarity, here we 

mainly consider the structure and mechanisms of a human olfactory system. 

2.1.1 Structure of human olfactory system 

The human olfactory system consists of external nose and an inner nasal cavity. The nasal 

cavity comprises two chambers and the cavity is covered by a mucous membrane. This 

membrane can be divided in two distinguishable parts, an olfactory region and a respira-

tory region. The mucous membrane lining the olfactory region is called olfactory epithe-

lium, which is specialized tissue that has a crucial role in olfaction.[1] The fundamental 

organization of the human olfactory system is presented in Figure 1. 
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The olfactory epithelium consists of three major cell types; basal cells, supporting cells 

and the OSNs, also called olfactory receptor cells. The basal cells are a stem-cell popula-

tion that produce new receptor cells throughout the vertebrate lifetime. Supporting cells 

“have numerous microvilli and secretory granules, which provide the epithelium with 

mucous”[1]. The main purpose of the olfactory mucosa is to provide support and protec-

tion on the surface of the epithelium for the sensory cells. The OSNs are bipolar neurons 

that project the very fine cilia on the surface of the epithelium. Mammalian genome con-

tains more than 1000 different receptor types of which humans functionally express only 

~400. Typically, each OSN expresses only a single receptor type and each receptor typi-

cally responds to a small subset of odorants although variance in this behavior also exists 

Figure 1. Structure of human olfactory system. The system activates when VOCs get in 

contact with odorant receptors on the surface of the nasal epithelium. Depending on what 

kind of VOCs are present, the associated OSNs relay a signal through glomeruli and mi-

tral cells to higher regions of the brain. (© The Nobel Committee for Physiology or Med-

icine. Illustrator: Annika Röhl)  
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as some receptors are responsive to a very wide range of odorants and some to only a few 

odorants.[19] 

On the other end of each OSN is a single, unbranched axon that projects to the olfactory 

bulb, which is a “phylogenetically conserved brain structure”[20]. In the olfactory bulb, 

each axon from all the OSNs expressing the same receptor types are brought together and 

synapse on to one of two common points in the olfactory bulb called glomeruli. As each 

receptor type has two glomeruli, the number of glomeruli is double the number of differ-

ent receptor types. This has been learned from rodents but the human olfactory system 

seems to be organized at least slightly differently as rather than the expected ~800 glo-

meruli, research in postmortem studies have revealed thousands of glomeruli in human 

olfactory bulb.[1], [19] Partly justified with this, in a recent study, McGann suggests that 

poor human olfaction compared to other mammals is merely a myth.[20] A key realiza-

tion in comparing the olfactory performance between humans and other species has been 

that the selection of tested odors strongly influence the results, “presumably because dif-

ferent odor receptors are expressed in each species”[20]. 

  

2.1.2 Mechanisms of olfaction 

The process of activating olfactory system begins when VOCs get in contact with the 

olfactory epithelium via the respiratory air-stream.[21] The odorants sensed in normal 

room conditions are low molecular weight VOCs with relatively high vapor pressure and 

also low water solubility and polarity.  

Despite the complexity of the olfactory system, the main features of monomolecular odor 

processing, chemical mechanisms and signal initiation of olfactory transduction are well 

characterized (Fig. 2).[1], [11], [22] The OR proteins are linked to G-proteins and when 

the odor molecule binds to the OR protein, the protein activates and changes its shape. 

The activation also binds the OR proteins and G-proteins together. G-proteins consist of 

three subunits; alpha (α), beta (β) and gamma (γ). From these, the α-subunit is the one 

activated. When there is no signal (no odorants binding to the OR) the α subunit is bound 

to guanine diphosphate (GDP). When activation happens, GDP is replaced by guanine 

triphosphate (GTP). After GTP is bound to the OR, the α subunit disassociates from the 

other subunits and activates adenylyl cyclase (AC). In AC, the abundant intracellular mol-

ecule adenosine triphosphate (ATP) is converted to cyclic adenosine monophosphate 

(cAMP), which is a molecule with numerous signaling roles in cells. In OSNs the main 

function for cAMP is to bind to and control the ion channels. When the negative mem-

brane potential of about -65mV is neutralized with enough positive ions flowing in the 

cell, the cell potential reaches threshold and generates an action potential. These action 
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potentials are then propagated along the axons to glomeruli, from where the signals are 

transmitted to higher regions of brain. [1], [11], [21] 

2.1.3 Olfactory coding and perception 

Each OSN is typically sensitive to a small set of odorants, although there is variance in 

this as some receptors are responsive to only a few odorants and some to a very wide 

range of odorants. This receptor odorant specificity is considered the foundation of olfac-

tory coding.[19] The brain processes signals emanating from the millions of OSNs and 

allows instantaneous recognition and categorization of different smells.[22] 

In normal daily life, smelling single, monomolecular odors very rarely occurs. The sense 

of smell normally consists of the complex mixtures of volatiles that are present in the 

environment. In the presence of multiple odors, the interactions between the odors have 

a big impact on the perceived scent. In the simple case where only two odors are present 

in a mixture, multiple outcomes are possible (Fig. 3); a homogeneous mixture where one 

odor completely overshadows the other, a homogenous mixture where two odors are com-

pletely blended and the perceived odor is different to both of the source odors or a heter-

ogeneous mixture where the odors are partially blended and/or overshadowed. It is also 

important to note that mixtures from the same odors can be perceived completely differ-

ently if the concentrations are tweaked. Natural odors can contain up to dozens of odor 

Figure 2. Chemical mechanisms in olfactory transduction. The cascading mechanism 

starts, when odorant is bound to OR. This activates the α-subunit of G-protein, which 

activates AC. In AC, ATP is converted to cAMP, that controls the ion channels and with 

high enough activation neutralizes the cell membrane potential and initiates an action 

potential.[1]  
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components and the interactions are even more complex to understand or predict.[22], 

[23] 

One way to consider complex mixtures of odors is the concept of odor objects, which in 

other words can be seen as the ability of an olfactory system to capture complex chemical 

information as a whole. An aspect supporting the theory of odor objects is the number of 

different odorants that can be distinguished from complex odor mixtures. Studies have 

shown that humans are hardly able to identify three or more odor components in a mixture 

that contains up to eight odorants.[24] This perspective can be seen as analogous to phys-

ical objects recognized with visual perception. When you see e.g. a cup of coffee, you 

recognize it as such without individually inspecting every little detail of the object. Sim-

ilarly, when you smell the coffee in that cup, you don’t individually analyze every odor 

component found in the complex mixture but identify the odor object as coffee.[22], [25] 

2.2 Artificial olfactory system 

Detecting and classifying odors has been implemented in many applications. Using hu-

man nose as the detector is an obvious choice but it also has drawbacks like subjectivity, 

infections, exposure to hazardous materials and often it is not economically reasonable to 

invest in training for tasks taking only a short time.[2], [22] Still, even the best artificial 

odor detectors are not at the level of vertebrate nose although big advances in the field of 

sensors and instrumental odor detection systems have been made in recent times, e.g. 

Tang et al. presented an electronic nose system capable of classifying three different 

fruits[26] and Omatu et al. presented the odor classification of different species of coffee 

and tea.[27]  The current superiority of vertebrate nose is the reason why dogs and other 

Figure 3. The possible perceived outcomes when mixing two odor components. [22] 
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animals are still widely used as olfactory detectors with notably better detection sensitiv-

ity and specificity when compared to human nose.[28] This difference in operation is due 

to a few key factors. Dogs have larger area of the epithelium and surface area of the cilia 

compared to humans.[1] Another key factor is the functioning and structure of the canine 

nose, which has muscles actively sniffing with a frequency of approximately 5 Hz.[29] 

These coupled with the unique nasal airflow patterns of canine nose is the reason why the 

olfaction of dogs is so sensitive and effective.[30], [31] 

Olfactometers and other instruments for artificial olfaction can be divided into three main 

parts: a sample handling system, a detection system and a data processing system. This 

makes considering such a complex system more approachable.[15] 

2.2.1 Sample handling system 

When considering an artificial olfactory system, being able to provide a reliable and con-

sistent odor sample is a crucial part in any e-nose instrumentation. Although a lot of at-

tention is usually given to the selection of the sample analyzer, same amount of attention 

is not often given when considering the sample handling system.[15]  Errors and incon-

sistencies in sample delivery will induce more errors in detection and odor classification. 

This is especially important when using sample delivery system to test, calibrate and val-

idate new sensors or systems.[13] 

First thing to consider in designing a sample handling system is the phase of the desired 

sample that is being provided for the detection system, liquid or gas. The source for the 

odor is the next thing to be considered, it can be in liquid or gas but also solids are used. 

If the sample is delivered to the detection system in liquid and if the odor component 

being provided is already in a solution with known concentration, the system can be con-

structed relatively easily using pumps and tubing. However, as providing the sample in 

liquid is not analogous to the natural olfactory system, often using gas phase samples is 

desired. When the sample is provided in gas phase the system also grows in complexity 

as there must be some form of evaporation unit if the odor component is not naturally in 

gas phase, which often is the case. 

Using permeation tubes is a popular technique to emit certain compounds at a constant 

rate when they are under constant temperature. Permeation tube is a small permeable tube 

filled with a pure chemical compound with the objective to achieve an equilibrium state 

between gas and liquid (or solid) phase. The typical permeation rate is in the magnitude 

of milligrams per day. [32], [33] 

Various methods have been developed and presented in the field of evaporation that are 

used in e-nose instrumentation. In evaporation, a molecule is transported across liquid-

gas –interface. Evaporation occurs at the surface of a liquid when molecules with the 

highest kinetic energies escape into the gas phase. Even though its great importance in 
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many fields of technology and science, the fundamental understanding of the phenome-

non is still lacking.[34] However, four key parameters for evaporation have been identi-

fied; the surface area of the liquid free to evaporate, the temperatures of the carrier gas 

and liquid, the relative humidity of the gas and the movement of the gas. Evaporation can 

be increased with these parameters by increasing the surface area, increasing temperatures 

and using as dry as possible carrier gas that is moving across or through the liquid in a 

fast velocity.[35] 

Static headspace (SHS) is a relatively simple technique, where the sample is placed in 

closed container and is let to evaporate. When equilibrium is reached in the container, the 

gas phase sample is extracted. Extraction is done either manually with gas-tight syringes, 

or by balanced-pressure or pressure-loop –systems. After extraction, sample is injected in 

the analyzing system (Fig. 4). [15], [16]  

Purge and trap (P&T) and dynamic headspace (DHS) techniques are used in wide range 

of environmental and industrial applications, often to extract samples to be analyzed fur-

ther e.g. with GC-MS. [36]–[38]  

The drawback using sampling methods introduced above, is that it is not possible to pro-

duce continuous, long lasting gas flow with a stable concentration. One of the more novel 

approaches was presented by Hashimoto et. al[39]. They presented a tiny olfactory dis-

play using surface acoustic wave device and micropumps to produce odors to be poten-

tially used in wearable devices. In this work, another novel approach to sample handling, 

addressed in more detail in chapter three, is presented using programmable syringe pumps 

and ceramic heating elements in order to produce continuous odor gas flows with stable 

concentrations. 

Figure 4. The protocol of static headspace sampling. After sample reaches equilibrium in 

the container, it is extracted and injected in the analyzing system. [16] 
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2.2.2 Detection system 

The principle of the sensor array in artificial olfaction is very similar to olfactory receptor 

cells and nerves in the human olfactory system. The array is the heart of e-nose –systems 

and is responsible for feeding the measured data from sensors to data processing unit. The 

range of different sensor technologies is vast and growing, but some common principles 

can be applied when considering their performance. A good sensor for e-nose should ful-

fill a number of criteria. Most importantly, the sensor should have high sensitivity to the 

intended group of chemical compounds it is designed to detect with a threshold of detec-

tion similar or lower to that of a human nose.[12] The desired selectivity depends on the 

implementation; for a sensor array with high number of sensors high selectivity can be 

beneficial if each sensor is able to detect different VOCs. As e-noses are often used in 

uncontrolled environments, the stability of the sensor against changing temperature and 

humidity is also important, but often hard to achieve. 

The effect of gas atmosphere composition on the conductivity of semiconducting metal 

oxides has been known and studied for more than half a century. First experiments were 

made observing the interactions of conductivity of ZnO and the gas atmosphere. Based 

on the results, further metal oxides were considered and examined in regards to their con-

ductivity to varying gas atmosphere. Metal oxides such as TiO2 and SnO2 were proven to 

have a good property in varying their conductance over different gas compositions. Gas 

sensors based on semiconducting metal oxides have stayed relevant all these decades and 

they are the most widely used group of gas sensors. The interest in metal-oxide sensors 

has remained due to their many useful properties; the possibility to detect large number 

of different gases, relatively simple working principle, low cost and flexible manufactur-

ing.[40]–[42] 

At first, the development of gas sensors using metal-oxides aimed primarily in developing 

sensors able to warn of explosive gases. The primary market for these was in Japan due 

to legislation requiring the use of such detectors in households. The legislation was put 

in place as detecting combustible and dangerous gases is of particular interest in the 

densely built Japanese cities where gas furnaces and wooden houses were common as 

well as the rapidly developed industry where the usage of various gases increased. The 

worldwide market for gas sensors in 2012 was estimated to be 2.5 billion euro, of which 

the Japanese market alone still covers 20%.[43] 

The first-generation metal-oxide gas sensors, where the initial essential properties (af-

fordable price for a regular household, sufficient sensitivity to relevant gases and an ade-

quately long life span) were implemented also exhibited many unpleasant features limit-

ing their use. These off-putting characteristics included high cross-sensitivity to gases not 

to be measured, high sensitivity to changing humidity and temperature, long-term drifting 

of signals and long, up to 50 hours, break-in time.[42] 
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Metal-oxide sensors have come a long way since the first-generation applications and 

many off-putting characteristics can be minimized as the research and development in the 

field of material technology has been rapid in the 21st century. One of the latest products 

relying on metal-oxide sensors is a Multi-Pixel Gas Sensor SGP30 (Sensirion, Switzer-

land). SGP30 is a MEMS metal-oxide gas sensor for measuring VOCs and although not 

yet released for the market, available preliminary data sheet[44] claims it to have out-

standing long-term stability, a very small package, low power consumption and claims to 

be “the first metal-oxide gas sensor featuring multiple sensing elements on one chip”.[44] 

The advancements in material technology have also enabled the development of other 

types of sensors with various different operating principles. Conducting polymer (CP) 

sensors have high application potential for chemical and biological sensors. The conduc-

tivity of CP in an uncharged state is almost nonexistent. Intrinsic conductivity for these 

materials is achieved by doping them either by oxidizing (p-doping) or reducing (n-dop-

ing), which forms charge carriers that are responsible for the conductivity. [45] Single CP 

sensors typically have poor selectivity, which often leads to using different chemical CP 

sensors in an array, which are used for both for gaseous and liquid analytes. CP sensor 

arrays have been used in various fields, e.g. defining aromas or taste of food products, 

detecting pollutants in water, monitoring emissions from sewage plants and monitoring 

possible infections in wounds[46]. 

Although generally more complicated than other sensors, optical sensors have also been 

widely used as chemical sensors. Big advantage with optical sensors is that their response 

can be well defined and precisely measured. They also provide various measuring possi-

bilities; when light source of the sensor excites volatile molecules, the signal can be meas-

ured as an absorbance, reflectance, fluorescence, refractive index, colorimetric or chemi 

-luminescence.[15] Advances in producing nanoscale structures have also opened new 

possibilities regarding to sensor manufacturing. Structures such as nanowires, nanotubes 

and nanofibers have attracted a lot of attention in physical, chemical and biological sens-

ing. [47] These nanostructures have unique geometry with low dimensions and large sur-

face-to-volume ratio, properties which are valuable in sensing elements. An artificially 

intelligent nanoarray consisting of a random network of single-walled carbon nanotubes 

and molecularly modified gold nanoparticles was presented by Nakhleh et. al.[48] The 

nanoarray was used to study human breath samples from 1404 subjects having one of 17 

different disease conditions. Each disease was shown to have its own unique “breathprint” 

and the nanoarray was able to achieve an accuracy of 86% to detect and discriminate 

between different disease conditions.[48] 

Progress in material engineering and the better understanding of real olfactory systems in 

living creatures has also enabled the production of biomimetic sensors. These sensors aim 

to mimic the natural olfaction by using the same exact components that can be found in a 

natural olfactory system; ORs, odorant binding proteins (OBPs) and OSNs. These com-

ponents can be harvested from living creatures, such as insects. Whole insects have been 
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demonstrated to work as sensors themselves[49]. Another way to develop olfactory re-

ceptor –based sensors is to synthesize artificial peptide sequences to mimic the binding 

site of OR or OBP.[41], [50] 

In this work, instead of the usual solutions, the detection system in the constructed olfac-

tometer is an aspiration ion mobility spectrometer (aIMS) device. The use of aIMS is a 

quite novel approach in the field of olfactometry. Theory of IMS is considered in detail 

in section 2.3. 

2.2.3 Data processing system 

The information gathered by the detection system can be sent to a display for human 

analysis. The information from the sensor array can also be sent to computer emulating a 

human nose to perform automated analyses that rely on methods like statistical pattern 

recognition, neural networks and chemometrics. All these pattern recognition methods 

consist of several stages of data processing. First the multivariate sensor data is pre-pro-

cessed, where the data curves are often smoothed, drift compensated and outliers elimi-

nated. Secondly, the extraction of the features from the pre-processed data for the pattern 

recognition method used is carried out. Feature extraction from the sensor array inputs is 

a crucial step to ensure that the extracted features contain useful and relevant information 

from the sensors. Thirdly, a classifier is used to determine to which predetermined class 

the given detection system outputs correspond. Finally, the accuracy of the model can be 

estimated with additional data. [15] The analysis and interpretation of the data can be 

carried out using a variety of different approaches. Commercially available analysis tech-

niques used in electronic noses consist of three broad categories: multivariate data anal-

yses (MDA), network analyses and graphical analyses.[12] 

MDA consists of a wide set of different algorithms, many of which have also been utilized 

in artificial olfaction systems as MDA is very useful with sensors having partial-coverage 

sensitivities to individual compounds in a complex mixture.[12] Principal component 

analysis (PCA) was presented in 1901 by Karl Pearson and it is a common statistical 

method for finding patterns from high-dimensional data. In general, PCA can be used to 

simplify almost any data matrix. It is often used in applications such as face recognition 

and image compression. PCA uses orthogonal transformation to convert a set of data con-

taining possibly correlated variables into a set of linearly uncorrelated variables, called 

principal components.[51] 

Artificial neural networks (ANNs) try to mimic the cognitive processes of a human brain, 

being in other words mathematical representations of the human neural architecture.[52] 

The computations in a human brain are done by interconnected neurons interacting with 

each other. Similarly, ANN has interconnected data processing algorithms working in 

parallel. To make ANN-module able to classify unknown datasets, it must first be taught 

using some form of training database. Various methods for instrument-training have been 
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employed and the training process requires certain amount of reference data samples with 

known classifications. ANN is the most evolved analysis technique used in commercial 

e-noses.[52], [53] 

In 1969, John W. Sammon introduced a new nonlinear mapping algorithm for multidi-

mensional scaling[54], which means that it represents high-dimensional information in a 

space of lower dimensionality. This mapping method was named after the inventor and 

the main property of Sammon mapping is that it retains the geometrical distances between 

signals when scaling down from multidimensional space to two or three-dimensional 

space. Using Sammon mapping is a useful method for determining the shape and density 

of data clusters and visualizing the relative differences between clusters. [55], [56] Some 

of the data produced with the presented olfactometer is presented and analyzed using 

Sammon mapping in chapter four. 

2.3 Ion mobility spectrometry 

IMS refers to “principles, methods, and instrumentation for characterizing substances 

from the speed of swarms (defined as the ensembles of gaseous ions) derived from a 

substance, in an electric field and through a supporting gas atmosphere” [57]. This broad 

definition includes the different developed variations of IMS with different geometry, 

working conditions (pressure, flow, composition of gases) and the strength and control of 

electric fields. These include the most traditional drift tube ion mobility spectrometry 

(DTIMS), aIMS and field asymmetric ion mobility spectrometry (FAIMS) together with 

differential mobility spectrometry (DMS), both of the last two also referred collectively 

as differential ion mobility spectrometry (DIMS).[57] 

DTIMS consists of the ionization chamber, also called reaction region, containing the ion 

source and ion shutter, the drift region and the Faraday-plate detector (Fig. 5). An electric 

field (E in V/cm) is applied along the device to enable the drifting of ions. A continuous 

stream of carrier gas containing the analyte is ingested in the reaction region and passes 

the ionization source. The source most used and understood for IMS is radioactive 63Ni 

source [57]. In general, radioactive sources provide many advantages such as no need for 

external power supply and no moving parts. Still, the use of radioactive sources is dis-

couraged mainly because of regulatory reasons as radioactive sources require special per-

mits and licensing procedures. There are also various other ionization techniques used in 

IMS, e.g. corona discharges, photoionization and electrospray.[57] Currently the 

development of pulsed corona discharges seems to be the most promising alternative for 

radioactive sources as it consumes little power, lasts long time and operates in both 

positive and negative mode.[58] 
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The ion shutter, also called a shutter grid or ion gate, is a metal wire grid that spans over 

the whole cross section of the drift tube. The ion gate is “closed” when large voltage 

differences between adjacent wires are applied. In this situation, the drifting ions near the 

gate are drawn to wire surfaces, neutralized and the neutral products are ejected from the 

system with gas flow. In predetermined cycle, the electric field in the shutter grid is elim-

inated or made weak enough to open the gate and let the ions flow past the gate to the 

drift region. The major disadvantage of the traditional DTIMS devices is the lack of real 

time signal gathering due to the shutter grid releasing the ions in pulses, the interval be-

tween pulses being normally 10-30 milliseconds.[57] 

In the drift region, the swarm of ions travels along an electric field gradient which sepa-

rates the swarm in groups based on the mobility of the ions. Faraday plate as the detector 

neutralizes the ions that drift to its surface. As the charge of the ions neutralize, the de-

tector produces an electric signal and the intensity of this signal is related to the charge 

of a single ion and the size of the group. The time point when the signal is detected is 

related to the mobility of the group. This means that the drift time, 𝑡𝑑, of ions is directly 

related to the mobility of the ions and that is why the technique is also called time-of-

flight (TOF). The drift velocity of an ion, 𝑣𝑑, can be represented by 

𝒗𝒅 =  
𝒅

𝒕𝒅
 ( 1 ) 

where d is the distance travelled, typically from 4 to 20 cm in modern IMS analyzers. 

Normalizing the drift velocity to the electric field E produces the mobility coefficient K: 

Figure 5. The structure of conventional DTIMS instrument. The sample being examined 

is directed to ionisation region, from where the formed ions are released in pulses by the 

ion gate to the drift region. There, according to the mobility of different ionic species, 

ions drift to the detector plate due to the electric drift field.[71]  
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𝑲 =
𝒗𝒅

𝑬
 ( 2 ) 

The temperature (T) and pressure (P) inside the drift tube affect the drift velocity and the 

value for K is commonly normalized to 273 K and 760 torr. The changing conditions can 

be taken into account by calculating the reduced mobile coefficient 𝐾0: 

𝑲𝟎 = 𝑲
𝟐𝟕𝟑

𝑻


𝑷

𝟕𝟔𝟎
 ( 3 ) 

𝐾0 is commonly used to describe ion mobility but using it is also problematic as the mo-

bility formulas are derived from studies conducted in nonclustering atmospheres, in pres-

sures often as low as 1 to 10 torr. Calculated values for 𝐾0 correspond well to reality in 

such low pressures and with nonclustering gases such as He. However, problems arise 

particularly in ambient pressure and with polarizable gases, where the pressure and tem-

perature alone cannot accurately describe the changes in ion mobility. When operating in 

these kind of conditions, also gas temperature, pressure and gas composition should be 

taken in to account for getting a more accurate value for ion mobility.[57] 

Another factor affecting the reduced mobility 𝐾0 is the ratio between electric field and 

the number density of the carrier gas. This ratio is presented as 

𝑻𝒅 =  
𝑬

𝑵
𝟏𝟎𝟏𝟕𝑽 𝒄𝒎𝟐 ( 4 ) 

where when E is given in volts and N in particles per cubic centimeter, the ratio is given 

in the units of towsends (Td) as one townsend equals to 110−17𝑉 𝑐𝑚2. The relationship 

between Td and 𝐾0 is similar for all ions and buffer gases, and three distinct regions can 

be found. In a low-field region the reduced mobility is constant as a function of Td, in an 

intermediate-field region the reduced mobility increases when increasing Td and in high-

field region the reduced mobility decreases when increasing Td.[57] Different regions are 

used with different IMS technologies and devices; the region where the mobility is con-

stant is the region where DTIMS, aIMS and differential mobility analysis (DMA) are 

normally operated and the regions where the mobility changes as a function of Td are the 

regions where DMS and FAIMS normally operate.[57], [59] 

2.3.1 Ionization physics 

Ions are formed in ion mobility spectrometers when neutral molecules in the analyte un-

dergo a series of ion-molecule reactions with reactant ions. The process from neutral an-

alyte to product ion is different for positive and negative ions as the reactant ions are also 

respectively positive or negative. When air is used as the carrier gas, the dominant reac-

tant ions are hydronium ions 𝐻+(𝐻2𝑂)𝑛 to produce positive ions and hydrated oxygen 

𝑂2
−(𝐻2𝑂)𝑛 for negative product ions, where n is dependent of the moisture content of the 

gas and its pressure and temperature.[57]  
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In formation of positive ions, the analyte molecules M form cluster ions when colliding 

with hydrated protons: 

𝑴 + 𝑯+(𝑯𝟐𝑶)𝒏 ↔  𝑴𝑯+(𝑯𝟐𝑶)𝒏
∗  ↔  𝑴𝑯+(𝑯𝟐𝑶)𝒏−𝒙 + 𝒙𝑯𝟐𝑶 ( 5 ) 

This reaction determines the transformation efficiency of molecules into ionic products. 

This compound-dependent parameter proton affinity (PA) defines the probability of the 

reaction. PA is related to the energetic effect of proton transfer reaction and it is defined 

as the relationship of enthalpies in formation of 𝑀𝐻+ and its neutral counter M. 

Experiments studying chemical ionization under atmospheric pressure have indicated that 

compounds can be divided in two distinct groups based on their behavior in Equation 5, 

substances with high and low PA. For substances with high PA the reaction (5) moves 

almost solely forward. Typical members in this group are ammonia, amines and organo-

phosphorous compounds. With these compounds, the quantity of the reaction product is 

depending on the kinetics of the system. This means that every analyte molecule, that has 

possibility for effective interaction with reactant ions, will be transferred into ionic form. 

The group with compounds having high PA is also called “kinetic group” as the quantity 

of product ions are kinetically controlled. [60] 

The second group, compounds with low PA, consists of ketones, alcohols and many other 

organic compounds. For these, the reversal of the reaction of proton attachment in reac-

tion (5) is significant. Therefore, here the quantity of reaction products is defined by the 

reaction equilibrium. Because chemical equilibrium is dependent on the systems thermo-

dynamics, this group is also called “thermodynamic group”.[57], [60] 

If the vapor concentration of M is high enough, a second product ion can form as another 

neutral analyte molecule attaches to the previously produced protonated monomer to form 

a proton bound dimer: 

𝑴𝑯+(𝑯𝟐𝑶)𝒏 + 𝑴 ↔ 𝑴𝟐𝑯+(𝑯𝟐𝑶)𝒏−𝒙 + 𝒙𝑯𝟐𝑶 ( 6 ) 

The attachment of additional analyte molecules is also possible, but the lifetimes of such 

trimers and tetramers in the purified atmosphere of the drift region is so short that they 

rarely affect the observed mobility spectra.[57], [60] 

For negative ions, on top of the dominant reactant ions also various other ions are formed. 

For air as the carrier gas, the formation of very diverse set of reactant ions such as 𝐶𝑙−, 

(𝐻2𝑂)𝑂𝐻− or 𝑁𝑂2
− is possible, but the concentration and the influence on ionization of 

these is usually negligible. Association of a molecule and an oxygen anion forms the 

product ions in negative polarity: 

𝑴 + 𝑶𝟐
−(𝑯𝟐𝑶)𝒏  ↔ 𝑴𝑶𝟐

−(𝑯𝟐𝑶)𝒏  ↔  𝑴𝑶𝟐
−(𝑯𝟐𝑶)𝒏−𝒙 + 𝒙𝑯𝟐𝑶  ( 7 ) 
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Electron affinity (EA) is the compound-dependent parameter to be considered in for-

mation of negative ions. Simply put, EA is the likelihood of neutral atom gaining an elec-

tron. It is defined as the change in energy (kJ/mole) of a neutral atom in gas phase when 

an electron is added to the atom. Electron capture is possible for any analyte with positive 

EA.[61] 

When using a radioactive source for ionization, it is noted that ionization of substances 

with low PA is reduced when compounds of with high PA are present. Same applies in 

the formation of negative ions; ionization of substances with lover EA is hindered if sub-

stances with high EA are present.[62] 

2.3.2 Aspiration ion mobility spectrometry 

The structure of aIMS instrument is different in comparison with DTIMS and the most 

notable differences are that the electric field gradient and the carrier gas flow in aIMS are 

perpendicular to each other and that there are multiple detector plates placed on the sides 

of the drift region. The structure of aIMS instrument is seen in Figure 6. 

Ions entering the drift region in aIMS start to deflect to the sides of the region due to the 

direction of the electric field. The ions with high mobility deflect faster than the low mo-

bility ions and are observed on plates closer to the ionization chamber. Ions with lower 

mobility drift longer before they are deflected to the chamber walls and are detected on 

the further electrodes. No need for the shutter grid makes the structure of the device sim-

pler and enables signal recording with 100 % efficiency as gas flows continuously to the 

drift region.[57], [63] 

When compared with DTIMS and DMS, aIMS has less to offer in terms of resolution and 

selectivity. Nonetheless, aIMS provides many advantages being very robust and easy to 

use. The aIMS instruments are handheld devices with fast response times and low energy 

consumption. The relatively low cost (< 10 000$) is also an advantage compared with 

commercial DTIMS and DMS devices, which usually have a price tag between 10 000 – 

100 000 $.[64] 

Figure 6. Structure of aIMS. The carrier gas containing the molecules of interest is di-

rected to the ionization chamber, from where the formed ions flow in the drift region and 

start to deflect to the sides due to the perpendicular electric field according to the mobil-

ities of different ionic species.[63] 
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Applications with aIMS are in large part limited to detecting CWAs and TICs and are not 

that widely involved in scientific research. Still, especially due to the mobility of the de-

vices, applications like detecting human metabolites from entrapped volunteers have been 

studied.[64], [65] As mentioned, and explained in more detail later, in this work an aIMS 

device is used to monitor the output gas flow of the introduced olfactometer instrument. 

2.3.3 Differential ion mobility spectrometry 

Differential ion mobility spectrometry adds an additional layer of complexity in compar-

ison with aIMS but that layer also provides better separation. The basic structure between 

DMS and aIMS is similar, but the key differences are that in DMS the applied electric 

field strength is higher and the field is not constant, but is oscillated between a high pos-

itive and a low negative voltage. This enables the better separation as the ion mobility has 

a specific dependence on the field strength that is not apparent in low fields. At higher 

fields, the ion mobility for different ionic species can change in either direction or can 

change in different directions in different field strengths.[66], [67] 

The alternating voltage is applied and designed so that the product of voltage and the 

pulse duration is identical for the positive and negative voltage (Fig. 7). If the mobility of 

an ion is the same under high and low fields, the ion moves upwards during the high 

voltage cycle the same amount as it moves downwards during the low voltage cycle pro-

ducing a net movement of zero. The peak voltage of the waveform is called dispersion 

Figure 7. The alternating square wave applied in DMS separation. The product of the 

voltage and the pulse duration are identical for the positive and negative segment of the 

waveform.[67] 
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voltage (DV). As the mobility of different ionic species differs in the high field, the net 

movement of an ion can also be either positive or negative (Fig. 8). 

The drift of an ion towards one of the detector plates can be stopped by applying an ad-

ditional voltage, compensation voltage (CV). If CV is applied with appropriate polarity 

and magnitude, the drift of the ion towards the plate is stopped, or “balanced”, and the 

ion will flow through the drift region of DMS without touching the plates. Correct settings 

for CV are compound-dependent, e.g. for chloride with high ion mobility in high fields 

the necessary voltage to stop the ion is also high. Each type of ion has a characteristic 

value of CV and by applying CV with different parameters, the ions with balanced drift 

is changed. So the DMS can be seen as ion filter capable of selective transmission of only 

wanted ionic species.[59], [68]  

2.3.4 Ion mobility spectrum 

Three different approaches for the separation of ions by gas phase mobility have been 

presented: temporal, spatial and focusing. Temporal separation works by recording the 

arrival times for the pulses of ions traveling axially through the drift region and it is 

achieved using DTIMSs and traveling wave ion mobility spectrometers (TW-IMSs). 

When a swarm of ions arrives at the detector electrode, the peak in current produced by 

the ions represents the arrival time of the swarm. Ion mobility K in the case of temporal 

separation is determined from equation (3).[57] An example readout from DTIMS is pre-

sented in Figure 9. 

Figure 8. The movement of different ion species under the alternating voltage. Ion 1 ex-

periences a net movement of zero, while ions 2 and 3 experience positive and negative 

movements.[67] 
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Mobility spectrum produced with spatial separation, associated with aIMS, can be repre-

sented as a histogram of response, one from each electrode. This kind of readout can be 

interpreted as a fingerprint for the odor or mixture of odor components being detected 

(Fig. 10). The readings from the aIMS electrodes can also be read over longer period of 

time, plotting a figure with channel responses as function of time (Fig. 11).  

Figure 10. An example readout for aIMS-device. Each bar corresponds to a signal from 

a single electrode at a single point in time. 

 

Figure 9. A basic form of DTIMS response. Each peak corresponds to a group of ions 

with the same mobility arriving to the detector plate. The intensity of the peak is deter-

mined by the total charge of each group of ions. 
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In focusing separation, achieved with the oscillating electric field in DMS, the ion current 

detected on the detector is plotted as a function of the compensation voltage for different 

values of DV (Fig. 12).  

Figure 12. An example spectrum of DMS device. The spectrum is essentially an intensity 

map showing the amount of ions passing to the detector for different values for DV (VRF) 

and CV (Vc).  

Figure 11. A plot for channel responses for the negative channels of aIMS instrument 

ChemPro 100i. 
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3. MATERIALS AND METHODS 

A novel approach for a compact olfactometer containing a developed sample handling 

system coupled with ChemPro 100i (Environics, Mikkeli, Finland) aIMS-device is pre-

sented. The system is able to produce three different gaseous odor components and vary 

their produced gas concentrations. 

3.1 The chosen odor components 

Measurements were conducted using the three main components identified in jasmine oil: 

benzyl acetate (BEA), cis-jasmone (CIS) and indole (IND). As IND is in powder form in 

standard room conditions, these components were diluted using propylene glycol (PG) as 

our sample handling system can only handle samples in liquid form. Even though propyl-

ene glycol is a viscous, colorless and odorless liquid, using a diluent is not an ideal solu-

tion as it also most likely produces signal in the detection unit and the data processing 

and analysis becomes more complex. Using diluted solutions was beneficial in terms of 

making the different components similar in properties, mainly the vapor pressure, which 

can be calculated from Raoult’s law. The law states that “the partial vapor pressure of 

each component of an ideal mixture of liquids is equal to the vapor pressure of the pure 

component multiplied by its mole fraction in the mixture”.[69] Similar properties when 

using solutions with the low concentration of the odor component (< 20 % w/w) made it 

possible to use the same power control settings, described in more detail in 3.3, for each 

of the three components.[70] 

3.2 Environics ChemPro 100i 

ChemPro 100i (Figure 13) is a handheld chemical detector initially designed for field 

detection and classification of CWAs and TICs. ChemPro 100i is based on aIMS tech-

nology and it contains 14 ion-detecting sensor plates, seven for positive and seven for 

negative channels. The device has 63Ni as the ionization source. On top of these sensors, 

ChemPro 100i also contains additional metal-oxide sensors, which were not included in 
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the older model. These sensors were added to circumvent problem of identifying exhaust 

fumes from vehicles as CWAs as the device is intended for mobile use in the field.  

The ChemPro 100i was used in this work in measuring the output airflow of the intro-

duced olfactometer. The device had a crucial part when first designing the system in ver-

ifying the stable production of the odorants in gas phase. Even though the ChemPro 100i 

is developed for mobile use, it can also be used connected to a computer and signals can 

be inspected in real time with software provided by Environics. The log-file that the 

ChemPro-software produces is a matrix with 59 colums. Values for each column are rec-

orded in one second intervals. On top of the readings from 14 channels, the log-file also 

contains a lot of other information and metadata, such as the date and time, external and 

cell temperature as well as relative and absolute humidity. 

3.3 The implemented sample handling system 

The introduced compact olfactometer and sample handling system (Fig. 14) was initially 

designed for the three odor components mentioned in 3.1. The main objective of the sam-

ple handling system, and thus the whole olfactometer, was to provide different odor com-

ponents in different concentrations in gas phase with relatively low-cost components. The 

mixture of the different components was also wanted to be varied. This lead to a design 

where each of the components were evaporated in individual evaporation units (Fig. 15). 

The frame structure for the evaporation units is a 3D-printed object designed using 

Figure 13. ChemPro 100i 
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SOLIDWORKS® 3D computer-aided design software (SolidWorks Corporation, USA). 

Air was used as the carrier gas and it was dried and purified with 5Å molecular sieves  

Figure 14. The constructed compact olfactometer in our laboratory setup with sample 

handling system and the main components of the system identified. 

Figure 15. Block diagram of the introduced compact olfactometer. Dry and filtered air is di-

rected evenly to three channels, each having their own evaporation unit. Output gas flow of 

the system is connected to ChemPro 100i. The remaining gas flow of 4.1 l/min can be directed 

to waste filter or in human perception testing to participants nose. 
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(Alfa Aesar, Germany) and activated carbon. The total carrier gas flow of the system is 

controlled by Q-flow rotameter (Vögtlin Instruments, Switzerland) and each channel has 

a flow of 1.8 l/min. Due to the geometry of the systems pneumatic tubing, initially the 

flows of channels one and three were identical but different to channel two. A flow limiter 

was installed in the channel two and with right settings identical flow was achieved in all 

the three channels. The flows were verified using Gilibrator-2 calibrator (Sensidyne, 

USA). Junk odor flows were pushed through activated carbon cylinder.[70] 

Each evaporation unit consists of basic pneumatic components, a ceramic heating element 

and polyether ether ketone (PEEK) tube that connects the syringe tubing on the surface 

of the heating element (Fig. 16). PEEK is a material with good heat resistance having a 

high glass transition temperature of 143 °C, which makes the placement of the tube on 

the heater surface possible but is then also the maximum possible temperature that the 

heating elements are allowed to have. For the heating elements used, surface temperature 

of 140 °C corresponds approximately to 1.5 W of power.[70]  

The diluted odor component is pumped through the tube using a syringe pump, one for 

each odor component. We used Newera NE-500 (New Era Pump Systems Inc., USA) 

programmable syringe pumps and they were controlled with Matlab (The MathWorks, 

USA) taking advantage of the existing function library written for the pumps. The pumps 

are controlled by programming different phases to the pumps. Each phase is responsible 

for certain task, e.g. pumping with set speed and time, stopping or waiting certain time 

before moving to next phase. For our system, the most important function of the pumps 

is the ability to produce stable, constant pumping with a known flow rate.[70] 

Figure 16. Structure of the evaporation unit. The diluted odor component is directed to 

the surface of ceramic heating element through heat resistant PEEK-tube.[70] 
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The electric powers of the ceramic heating elements are controlled with metal–oxide–

semiconductor field-effect transistor (MOSFET) power circuit built on Arduino Proto 

Shield Rev3 (Arduino) (Fig. 17). According to the gate voltage of each MOSFET, the 

voltage and current over and through the heating element changes.  The heating powers 

are calculated from the tabulated values of the current and voltage for different gate volt-

age values using equation 

𝑷 = 𝑼𝑰  ( 8 )

  

 

Figure 17. Schematic of the Arduino Proto Shield -circuit used to control powers of the 

heating elements. The gate voltage, and thus the power directed to the heaters, is con-

trolled with three digital pins in Arduino Uno.[70] 
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Different powers were used with different pumping speeds to keep the evaporation capa-

bility of the heater equal with the volume being pumped. After initial experiments, a linear 

relationship between heater power, calculated from equation (8) with known voltage and 

current, and the pumping speed to achieve stable evaporation was found (Fig. 18). The 

produced gas concentration and evaporation were considered stable when after ten 

minutes from starting the pumps the signals of ChemPro-channels had stabilized from 

clean air baseline readings to certain levels and after the pumps were stopped, the chan-

nels returned to baseline values within 10 minutes. Using too high powers lead to an 

unwanted functioning and the produced signals tend to produce error peaks, as the excess 

power seems to evaporate the solution in an unstable manner inside the PEEK-tube before 

it reaches the heating element. With too low powers, the solution builds up on the element 

and the evaporation is not fast enough, thus the provided gas concentration is less than 

desired.[70] 

In order to stabilize the temperature conditions, an HTWAT Series silicone rubber heating 

tape (Omega, USA) was installed to cover the part of the system after the evaporation 

blocks. Applying external heating achieved a few beneficial things; the time it takes for 

the system to be clean, meaning that all the residues from the pneumatic tubing and con-

nectors are evaporated, is shorter. Secondly, as vapor pressure is affected by the temper-

ature, keeping the part of the system dealing with the odor flows in as constant tempera-

ture as possible ensures that the evaporation capability also stays constant.[70] 

Lastly, the varying ceramic heater powers and external temperature changes (which were 

present in our laboratory environment) do not affect the temperature of the system any-

more as much as before applying external heating, which makes the cell temperature more 

Figure 18. The linear relationship between heater power and pumping speed. 
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stable. ChemPro 100i has a built-in heater, which eventually stabilizes the cell tempera-

ture somewhere between 30 and 35 °C in our laboratory conditions, depending on the 

external temperature. With the external rubber heater tape, the cell temperature stabilizes 

to 35.5-36.5 °C faster and with less variation (Fig. 19). Stable temperature is important to 

get reliable reading from the IMS-device as changes in temperature affect the signals 

particularly when detecting molecules that belong to the thermodynamic group and have 

low PA. If the temperature inside the ionization chamber is not stable, the changing con-

ditions affect the response of detector plates detecting these ions. 

The temperature of the whole system was also observed using a FLIR One (FLIR Systems 

Inc., USA) heat camera. Figure 20 shows that the temperature is stable for the whole part 

of the olfactometer tubing covered with the heater tape. Only “hot spot” is the adapter 

connecting the three channels together, but this should not propose a big problem as all 

the channels go through there so the situation for all the channels is the same. Further-

more, it is advantageous that the adapter, being also a possible source of residues with 

metallic parts, is heated slightly more for faster cleansing.[70] 

  

Figure 19. A typical ChemPro 100i ionization cell temperature signal before applying the 

Omega rope heater (left) and after applying it (right) over a few hours of running the 

system. 
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Figure 20. Thermal image of the part of the sample handling system dealing with gas 

phase odorants. [70] 

The measurement data from ChemPro 100i is recorded using software provided by the 

same manufacturer, Environics. The rest of the system is controlled with Matlab using 

scripts and functions. The heating elements initially controlled with Arduino terminal can 

also be controlled in Matlab together with the pumps after installing Arduino hardware -

add-on for Matlab.  

After the linear relation between heater power and the pumping speed was found, exper-

imental power control was designed. A Matlab function was written to read correspond-

ing pumping speed and gate voltage -pairs and set the voltages on corresponding Arduino 

pins. 

Each concentration corresponds to a pumping speed. The resulting gas mass concentra-

tion for each pumping speed is calculated first by calculating the volume of odor compo-

nent in the solution 

𝑽𝒐 =
𝒎𝒑𝝆𝒑𝒈𝑽𝒕𝒐𝒕

(𝟏−𝒎𝒑)𝝆𝒐+𝒎𝒑𝝆𝒑𝒈
, ( 9 ) 

where 𝑚𝑝 is the mass percentage of the odorant in the solution, 𝜌𝑝𝑔 and 𝜌𝑜 are the den-

sities of the dilutant and odorant, respectively. 𝑉𝑡𝑜𝑡 is the total volume of the solution. As 

45 °C
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45 °C
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27 °C
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the values to control the syringe pumps are in the order of µ𝑙/ℎ𝑟, all the volumes used in 

calculations are given for one hour of operation.[70] 

The volume of the dilutant is calculated from  

𝑽𝒑𝒈 = 𝑽𝒕𝒐𝒕 − 𝑽𝒐 ( 10 ) 

With known properties for the carrier gas, the resulting gas mass concentration of the 

odorant in the output gas flow is calculated from   

𝒑𝒑𝒎𝒐 = (
𝝆𝒐𝑽𝒐

𝝆𝒂𝑽𝒂+ 𝝆𝒐𝑽𝒐+𝝆𝒑𝒈𝑽𝒑𝒈
)𝟏𝟎−𝟔 ( 11 ) 

where ρa and Va are the density and volume of the carrier gas. As air is used in the pre-

sented system as the carrier gas, the numerical values are1.293kgm-3 and 0.324m3h-1 (= 

5.4lmin-1).[70] 

There are various limiting factors determining the concentration range able to be pro-

duced with our olfactometer. The used syringe pumps have 400-step stepper motors and 

the flow of the odor solution with the lowest possible pumping speeds produced uneven 

signals. Our tests revealed pumping speeds of 20 µ𝑙/ℎ𝑟 and lower to be problematic. With 

low pumping speeds the time constants, namely the stabilization phase, became longer as 

the system first had to fill up the PEEK tube volume of approximately 6 µ𝑙 before the 

odor solution reached the heating element. Long waiting times are especially problematic 

when considering odor perception testing with human participants. This problem can 

likely be diminished by implementing an initial pumping phase to the syringe pump. [70] 

The upper limit of the concentration range is largely determined by the carrying capacity 

of the carrier gas. If the gas is saturated, increases in pumping speeds does not produce 

higher concentrations but the odor components start to condense in the tubing walls. This 

became a problem when using speeds higher than 220 µ𝑙/ℎ𝑟. When considering the con-

centration range in logarithmic scale, the range able to be achieved by varying the pump-

ing speeds is approximately one decade. Figure 21 demonstrates the estimated concentra-

tions produced with the olfactometer. As each of the components is diluted with propyl-

ene glycol, the “location” of the decade on the ppm scale is determined by mass percent-
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age of the odorant in the solution. The selected pump rate determines the mass concen-

tration of the odor component produced in the gas output according to (11). An additional 

dilution stage can be applied by using an ejector in the output of the system. Dilution with 

an ejector affects all the components when applied in the output where all the odor com-

ponents are present. This means that with ejector dilution the interrelation of the concen-

trations between different components remains the same and the whole mixture of com-

ponents is diluted in same proportion.[70] 

Figure 21. Visualization of determining the theoretical produced gas mass concentra-

tions. In the first stage, the location of the range of gas concentration of the odor compo-

nent in ppm-scale is determined by the concentration of the selected dilution. In the sec-

ond stage, the gas mass concentration in the output is determined by the selected pump 

rate. Thirdly, the set of odorants in the output can be further diluted with additional ejector 

dilution stage. 
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4. MEASUREMENTS & RESULTS 

Measurements conducted were firstly done with the motivation to study and verify how 

well the compact olfactometer works and how well the different odor components with 

different concentrations can be distinguished from the ChemPro 100i –data. For this pur-

pose, measurements with one, two and all three odor components were carried out. Figure 

22 shows signals from the negative ChemPro 100i -channels for two two odor component 

measurements with BEA and IND with two different concentration pairs.  

Reading only the signals from different channels does not provide us comprehensive in-

formation about the odor components so some other form to represent the data is useful. 

Sammon mapping is an algorithm for multidimensional scaling, which means that it rep-

resents high-dimensional information (14 ChemPro 100i -channels in this case), in a 

space of lower dimensionality. The mapping, executed in this work using a Matlab script 

written for this purpose, works by taking 60 data points from each channel over five 

minutes of measurement data during the stable phase of odor component production and 

Figure 22. The negative ChemPro 100i-channels for two two odor component measure-

ments 
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representing it in lower dimensionality. The number of different measurements can be 

selected and has no set limit. Even though Sammon mapping is considered a non-linear 

approach, which means that it is difficult to use for actual classification for odors, it still 

provides useful information in the interrelation of different datasets and at the very least 

tells if ChemPro 100i considers given input datasets as identical or if it can distinguish 

them.  For data analysis purposes, a set of 36 two component measurements were con-

ducted with BEA and IND, each having six different concentrations. Based on these 

measurements, measurements with the three-component synthetic jasmine oil were also 

conducted. The aim was to produce data with identical concentrations for BEA and IND 

but now with the addition of CIS as well. Figure 23 shows the signal from a single 

ChemPro 100i-channel for one measurement cycle. The syringe pumps were programmed 

to produce continuous, stable pumping from the channels with BEA and IND with a sin-

gle concentration for the whole duration of cycle. On top of these, the concentration of 

CIS was increased gradually in 12 minute intervals.[70] 

Figure 23. The response of ChemPro 100i channel 6 over a three component measurement 

cycle with stable concentrations marked with a dashed line.[70] 



35 

Using Sammon mapping is especially useful when comparing a larger set of inputs. Fig-

ure 24 presents a Sammon map for seven different three component measurement data. 

From there it can be seen that the data sets are distinguished from each other with only 

little overlapping. When considering the plotted datasets in pairs where two components 

(BEA and IND, or BEA and CIS) have the same concentration, increasing the third com-

ponent moves the dataset consistently in the sammon map in different direction. This 

gives us more confidence in that the perceived differences in the signals are in fact due to 

the odor components and not the diluent PG.[70] 

For human perception testing, the introduced olfactometer was also used in prototype 

setup to conduct measurements with more complex solutions in the syringes; diluted jas-

mine oil and synthetic jasmine oil with two components (BEA and CIS, i.e. binary scent) 

and three (i.e.tertiary scent) components (BEA,CIS and IND). Each of these solutions 

was presented using only one channel, so in this case the relative proportions between the 

components was not possible to be varied. The relative proportions of odor components 

Figure 24. Sammon map for seven three odor component measurements with different 

concentrations[70] 
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in synthetic jasmine oils were calculated to be in theory the same as detected in the real 

jasmine oil in MS measurements.[70]  

To study whether participants of the human perception testing were able to distinguish 

synthetic jasmines from real jasmine oil, a same – different task as used. Odors were 

presented sequentially to the participant. The task was to indicate whether they were the 

same or different. All the possible combinations of odors were used so that the total of 

odor pairs presented was nine. The collected data was coded by 1 (same) and 0 (different). 

A chi-squared test showed a statistical difference from expected frequency when compar-

ing real jasmine oil and binary synthetic jasmine (x2=6.4, p < 0.05 both when real jasmine 

was presented first and when binary synthetic jasmine was presented first). These mean 

differences showed that the two odors were correctly identified as different. Other tests 

were not statistically significant.[70] The measurement data from this experiment was 

also collected with ChemPro 100i and the sammon map for the three stimuli used is shown 

in Figure 25, which shows similar identification as with human perception. 

Figure 25. Sammon map for ChemPro 100i data produced using jasmine oil and two ver-

sions of synthetic jasmine scent[70] 
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In collaboration with Tampere University of Applied Sciences (TAMK), samples from 

the olfactometer was also collected and analyzed with GC-MS device (Agilent Technol-

ogies 6890N&5973). Figure 26 shows the setup for collecting the samples using AirChek 

3000-device (SKC Ltd, UK). The device sucks the air with a set flow rate and for a set 

time from the output airflow of the olfactometer through an adsorption tube. Two samples 

were analyzed with GC-MS, one when producing only one component, BEA, at a con-

stant concentration and one when producing BEA and CIS. The GC-MS spectrum for the 

sample collected over 100 minutes of system producing ideally only BEA (and PG) is 

seen on Figure 27 showing the identified peaks. The compounds for different peaks were 

identified from existing library and identified as BEA, CIS and PG. The existence of CIS-

peak when the syringe pumps were only pumping BEA tells us that the evaporation units 

do not cleanse as well as intended but some amount of residues are present. These residues 

still seem to be below the human detection threshold as they were not sensed in the output 

of the system while collecting the samples.[70] 

Figure 26. The setup for collecting adsorption tube samples for GC-MS analysis using 

Aircheck 3000. 
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Figure 27. GC-MS spectrum for a sample produced with the presented olfactometer 

showing and identifying the most visible peaks. 
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5. DISCUSSION 

The achieved concentration range with the introduced olfactometer is limited by many 

factors. In the lower limit of the range, the 400-step stepper motors proved to be the main 

limiting factor as when using pumping speeds of 20 µ𝑙/ℎ𝑟 and lower, flow of the odor 

solution is not constant enough to provide stable signal and gas concentrations. This prob-

lem can likely be diminished by using syringes with smaller diameters and by implement-

ing an initial pumping phase to the syringe pump in order to fill the 6µl volume of the 

PEEK tube before the actual measurement starts.  

In the upper limit of the concentration range, the main limiting factor is the carrying ca-

pacity of the carrier gas. If the gas is saturated, increases in pumping speeds do not pro-

duce higher concentrations but the gaseous components start to condense in the tubing 

walls. This was reduced with the external rubber tape heater by heating the tubings that 

are in contact with the evaporated odor components. Heating the system in higher tem-

perature could further improve the range, but would also introduce new problems with 

low heat resistance of the pneumatic adapters containing nitrile rubber O-rings. Also, 

considering human perception testing, the temperature of the gas can affect the perception 

of the odor and using heavily heated gases in temperature higher than body temperature 

is not ideal. 

The GC-MS -results revealed that the cleansing of the evaporation units is not as good as 

thought. Even though the concentrations of the odor components in the gas flow seem to 

drop below the human detection threshold, the sensitive GC-MS was able to distinguish 

peaks in the collected sample for the unused odor component when only one should be 

present. Further analysis with additional GC-MS samples is needed to get information on 

the actual produced concentrations to verify how well the calculated theoretical values 

represent actual concentrations in the olfactometer output. 

Additional improvements for the evaporation units are needed in order to get rid of resi-

dues from unused channels. One solution could be installing additional programmable 

valves to each of the channels to control the airflow in a way that only the channels pro-

ducing odor components would have airflow through the evaporation units in the output 

of the system and the rest of the channels would be either closed or the airflow directed 

directly to the activated carbon filter. Also, possible wear down regarding most im-

portantly the ceramic heating elements must be considered when assessing the function-

ing of the system in long term. 

A duplicate of the olfactometer was also built for the use of research group for Emotions, 

Sociality and Computing in University of Tampere (UTA). One of their goals is to use 

the olfactometer in human perception tests by combining virtual reality and odor stimulus. 
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The ideas for future use of the olfactometer deal with introducing new odor components 

to produce other synthetic odors in addition to synthetic jasmine scent. Preliminary tests 

with components such as limonene and vanillin to produce synthetic scents of lemon and 

vanilla have successfully been performed. Other possible synthesizable odors include var-

ious fruits, mushrooms, foodstuff, and more abstract smells like forest. 
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6. CONCLUSIONS 

The presented olfactometer is able to produce gas flow with constant, stable gas concen-

trations of the selected odor components. When producing single odor components, the 

achieved concentration range was approximately one decade. With more components 

produced at the same time, the carrier gas started to saturate at high concentrations and 

the achieved range for each component was approximately half a decade when producing 

three odor components at the same time. ChemPro 100i proved to be a valuable reference 

tool to analyze how stable the concentrations of the produced odor components are. Anal-

ysis with the data from the conducted measurements suggests that it is possible to distin-

guish measurements with different concentration sets. Although more work to verify the 

genuine gas concentrations of the produced odor components in the olfactometer output 

is needed, the data has proven so far to be reproducible and it is useful for further data 

analysis. 

Human perception testing with the olfactometer also proved to be feasible, although rel-

atively long time constants to reach the stable gas concentration in the output of the ol-

factometer and between changing concentrations make it somewhat problematic and care-

ful planning regarding each experiment setup is needed. The olfactometer still provides a 

functional platform for various olfactory-related human perception tests. 
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