TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

JONI MINKKINEN

DEVELOPING A REMOTE DIAGNOSTICS APPLICATION
FOR REMOTE HANDLING SYSTEMS OF ITER

Master of Science thesis

Examiner: Prof. Jouni Mattila
Examiner and topic approved by the
Faculty Council of the Faculty of
Engineering Sciences

on 29th March 2017

ABSTRACT

JONI MINKKINEN: Developing a Remote Diagnostics Application for Remote
Handling Systems of ITER

Tampere University of Technology

Master of Science thesis, 49 pages, 1 appendix page

September 2017

Master's Degree Programme in Automation Engineering

Major: Machine Automation

Examiner: Prof. Jouni Mattila

Keywords: ITER, condition monitoring, remote diagnostics, LabVIEW, application

ITER is an experimental thermonuclear reactor, which is supposed to solve challen-
ges with energy resources in the future. Once the reactor is finished, it will require
maintenance operations at times. Because of radiation in the reactor, maintenance
operations are remotely controlled and therefore a remote diagnostics application is

required for monitoring this remotely controlled maintenance system.

This thesis focuses on developing the Remote Diagnostics Application for remote
handling systems of ITER. The application will be developed in co-operation with
VTT Technical Research Centre of Finland LTD and Tampere University of Techno-
logy. Aim of the project is to develop application for monitoring status and condition
of the maintenance equipment and save acquired data into archives for investigation

purposes. *

One of the main requirements for the application is that the application should
be customisable and flexible. Application should be usable also with other types
of equipment, not only with maintenance equipment. The application is rule-based
and the operator should be able to create and edit these rules without aborting
or recompiling the application. This caused some architectural problems to solve.
The application is developed with graphical LabVIEW development software, which

allowed many different approaches to the architectural problem.

As a result of this thesis, a prototype of the Remote Diagnostics Application was
created. The prototype was demonstrated for the customer in May 2017. Develo-
ping the application will continue and plans for the future development process are
already done.

*The work leading to this thesis has been funded by Fusion for Energy, TEKES,
TUT and VTT under Grant F4E-GRT-0689. This thesis reflects the views only of

IT

the author, and Fusion for Energy, TEKES, TUT or VTT cannot be held responsible

for any use which may be made of the information contained therein.

I1I

TIVISTELMA

JONI MINKKINEN: Etéddiagnostiikkaohjelmiston kehittdminen ITERin etdhallin-
tajérjestelmia varten

Tampereen teknillinen yliopisto

Diplomityd, 49 sivua, 1 liitesivu

Syyskuu 2017

Automaatiotekniikan diplomi-insinédrin koulutusohjelma

Padaine: Hydrauliikka ja automatiikka, koneautomaatio

Tarkastaja: Prof. Jouni Mattila

Avainsanat: ITER, kunnonvalvonta, diagnostiikka, LabVIEW, ohjelmisto

ITER on kokeellinen fuusioreaktori, jonka on tarkoitus ratkaista energiantuotan-
toon liittyvit haasteet tulevaisuudessa. Reaktorin valmistuttua se tulee tarvitse-
maan ajoittain myos huoltoa. Reaktorissa syntyvin séteilyn vuoksi huoltotoimen-
piteet suoritetaan etdoperoidusti, ja tdméan takia tarvitaan myos etddiagnostiikkaa

etdoperoidun huoltolaitteiston tilan seurantaa varten.

Tama opinnédytetyo keskittyy etiddiagnostiikkaohjelmiston kehitykseen. Ohjelmisto
kehitettiin yhteistyossd Teknologian tutkimuskeskus VI'T Oy:n sekd Tampereen tek-
nillisen yliopiston kanssa. Projektin tavoitteena oli luoda ohjelmisto, jolla on mah-
dollista tarkkailla huoltojérjestelméan tilaa ja kuntoa, seké tallentaa jarjestelmésté

saatavaa dataa myohempéd analysointitarvetta varten. *

Yksi tarkeimmistd vaatimuksista ohjelmistolle oli sen muokattavuus ja joustavuus.
Ohjelmisto ei tule olemaan pelkistdan huoltolaitteiston, vaan myds yleisemmin mui-
den laitteistojen kiyttoon soveltuva. Ohjelmiston tuli olla tarpeiden mukaan muo-
kattava, jotta sitd voidaan kayttad erilaisten laitteiden seurantaan ja tarkkailuun.
Ohjelmisto on sdantépohjainen ja kiyttdjan tulee pystyd luomaan ja muokkaamaan
sdantoja aina tarvittaessa ilman ohjelmiston sulkemista tai uudelleenkddntamisté.
Tama aiheutti haasteita ohjelmiston arkkitehtuurin kanssa. Ohjelmiston kehittdmi-
seen kiytettavi graafinen LabVIEW-kehitysympéristé mahdollisti kuitenkin helpos-

ti erilaisten ratkaisujen toteuttamisen.

Tyon tuloksena syntyi etadiagnostiikkaohjelmiston prototyyppi, jota myés esiteltiin
asiakkaalle toukokuussa 2017. Ohjelmiston kehitystd on tarkoitus jatkaa ja suunni-

telmia sitd varten on jo tehty.

*The work leading to this thesis has been funded by Fusion for Energy, TEKES,
TUT and VTT under Grant F4E-GRT-0689. This thesis reflects the views only of

IV

the author, and Fusion for Energy, TEKES, TUT or VTT cannot be held responsible

for any use which may be made of the information contained therein.

PREFACE

The process to write this Master of Science thesis started in the beginning of the
year 2017. The process was finished during September in the same year. This thesis
was carried out in Laboratory of Automation and Hydraulics at Tampere University

of Technology.

I would like to thank Professor Jouni Mattila for the possibility to work at Labora-
tory of Automation and Hydraulics. Also thanks to Senior Scientist Hannu Saarinen
from VT'T, who helped me with the LabVIEW development platform and gave me
many good advices for the application. Also many thanks for Senior Scientist Jarmo
Alanen from VTT, who was giving instructions for developing the Remote Diagnos-

tics Application and gave me advices for writing this thesis.

Tampere, 20.9.2017

Joni Minkkinen

VI

TABLE OF CONTENTS

1.

Introduction 1
1.1 ITER and Remote Diagnostics Application 1
1.2 Objective and Structure of the Thesis 2
Condition Monitoring and Diagnostics 4
2.1 Terminology of Condition Monitoring 4
2.1.1 Condition Monitoring 4
2.1.2 Dependability)
2.1.3 Durability, and Safety and Security 5
2.1.4 Availability 6
2.1.5 Reliabilityo 6
216 Recoverability « « « « = s s s s s 0 26 s s 5 558 s as s5ss 6
210 Malntainalilifyr - « : : s s 02 scewes: sepass: camas smas 7
2.1.8 Maintenance Support Performance 7
2.2 Diagnostics and Prognostics Lo 7
2.3 Purposes of Condition Monitoring and Diagnostics. 8
2.4 Condition Monitoring and Diagnostics Methods 8
2.4.1 Artificial Intelligence Based Diagnostics Method 8
2.4.2 Model Based Diagnostics Method 9
2.5 Maintenance Strategies Lo 10
2.5.1 Breakdown Maintenance Strategy 11
2.5.2 Preventative Maintenance Strategy 12
2.5.3 Condition-Based Maintenance Strategy 13

2.6 Suitable Maintenance Strategies for Remote Diagnostics Application . 15

Development of the Remote Diagnostics Application 17
3.1 Remote Handling Systems 17
3.2 The Reason for Developing a New Remote Diagnostics Application . 18

3.3 Development Process of the Remote Diagnostics Application 19

3.3.1 Waterfall Model 20
3.3.2 Spiral Model 20

3.3.3 Models Used with Development Process of the Remote Diagnos-
tics Application

3.4 Development Platform 22
3.4.1 Development with LabVIEW 23
3.4.2 Alternative Development Platforms 25

3.5 Requirements for the Remote Diagnostics Application 25

3.6 ISO 13374 Based Guidelines for Development Process 26
3.6.1 Condition Assessment Blocks 27
3.6.2 Monitoring Features L. 28

4. Implementation of the Remote Diagnostics Application 31

4.1 Three-Layered Architecture 31
411 SubPanels 33
4.1.2 Dynamic Calls 34

4.2 Workbenches 35

4.3 Diagnostics Primitives 0oL 36

AA Stokus MOnitor : : w s s+ ¢ @ 5 5 ¢ s 9 5 9 : ¢ 8 85 685 ¢ d @ @668 8 36

4.5 FEvent MONitor . « . « » » s ¢ 2 2 8 5 s 5 v ws s 8 8 95 s 6 0 03 58 6 » 38

5. Analysis of the Remote Diagnostics Application Prototype 40

5.1 Current State (as of May 2017) 40
5.1.1 Demonstration of the Prototype 41

5.2 The Prototype Compared to the ISO 13374 Standard 41

Ded PHUTB PSS « : c o n s tm mms s mEB: co@mat 888 i 2 @8 42
5.3.1 Test campaign Lo 42

5.3.2 GUI Look-and-Feel Improvements and Web Browser Interface . . 43
5.3.3 More Automatic Application 44

6. Conclusions of the Project 46

References 48

VIII

APPENDIX 1. Remote Diagnostics Application Front End Implementation . 50

LIST OF ABBREVIATIONS

Al
CBM
DTP2
GUI
IEC
IEV
LabVIEW
RDA
VI
VR
VIT
TUT

Artificial Intelligence

Condition Based Maintenance

Divertor Test Platform 2

Graphical User Interface

International Electrotechnical Commission
International Electrotechnical Vocabulary
Laboratory Virtual Instrument Engineering Workbench
Remote Diagnostics Application

Virtual Instrument

Virtual Reality

VTT Technical Research Centre of Finland LTD
Tampere University of Technology

IX

1. INTRODUCTION

This introduction chapter will shortly introduce the topic of this Master of Science
thesis. Objective and structure of the thesis are introduced in the second section of
this chapter.

1.1 ITER and Remote Diagnostics Application

ITER is an engineering megaproject. It is aimed to demonstrate fusion as a viable
energy source in the future. The name means ‘The Way’ in Latin. Originally it
was an acronym for ‘International Thermonuclear Experimental Reactor’ which is
no longer used due to the negative connotation of the word ‘thermonuclear’ [15].
The project started nearly 30 years ago and first plasma should be achieved in 2025.
The reactor is planned to be operational in 2035. [7]

Because of the massive size of the project, it has been divided between several
countries and companies. China, the European Union, India, Japan, Korea, Russia
and the United States are taking part to this project. [7] Finland as a part of the
European Union has its own part in this project. For example, VI'T Technical
Research Centre of Finland LTD (VTT) is developing and doing research about

remote handling systems for maintenance operations [9].

Due to fusion reaction in ITER, there will be radiation in the reactor [7], which
should be avoided by operators because of its harmful effects. Maintenance oper-
ations of the reactor has to be done despite the radiation. For this requirement,
remotely controlled maintenance systems are developed. With remotely controlled

system, maintenance operations are harmless for the operators.

Components of the maintenance equipment should be possible to be monitored all
the time. For this requirement, Remote Diagnostics Application (RDA) will be
developed by VI'T and Tampere University of Technology (TUT). With the RDA,
all the components and actuators can be monitored in real time. Purpose of this
application is to detect anomalies, problems and faults in real time and beforehand.

This provides possibility to prevent unexpected failures and to schedule maintenance

1.2. Objective and Structure of the Thesis 2

operations. Unexpected shutdowns may become very expensive and take a lot of

time. Avoiding them is one of the purposes of this application.

With the RDA, it is also possible to observe history data of the components and
actuators. The RDA saves all the data coming from different devices and allows
analysing the measurement data afterwards. This makes possible to see slow changes
in conditions of the components and actuators. One example of this kind of change
is an increasing hysteresis, which may be difficult to see from a raw data coming

directly from the faulty device.

The new thing in developing this application is that it will be very dynamic appli-
cation. It should be possible to add new rules and components without the need of
recompiling or restarting the application. In other words, there will be only main
application, which will get new features over the time depending on customer re-
quirements. This may be a challenge in terms of developing this application. The
application is developed with graphical LabVIEW development environment, which

is a product of National Instruments.

There are ready products on the market for fault diagnostics purposes. The prob-
lem is that most of these products are aimed for mass produced items so they are
not compatible with ITER and does not meet the requirements of flexibility and
customisability [12]. By creating a new application for diagnostic purposes, it is

possible to create something what is really needed without compromises.

1.2 Objective and Structure of the Thesis

This thesis focuses on development process of the RDA. The application will be
very complex and will have many different components. Because of that, this thesis
is mainly focused on the RDA front end implementation, which is primary task
relating to this thesis. Some of the other parts are also discussed in this thesis but

with lower level of details.

After this introduction chapter, basic condition monitoring information and termi-
nology is included in the second chapter. Understanding condition monitoring basics

is important to fully understand the principles of the remote diagnostics.

Remote diagnostics and purpose of the diagnostic tools are introduced in the third
chapter. It is also discussed what remote diagnostics means to ITER and why the
new application is required. The development process, development platform and

requirements for the application are part of this chapter. There is also ISO 13374

1.2. Objective and Structure of the Thesis 3

standard available about condition monitoring, and the standard is also introduced
in this chapter.

The fourth chapter will concentrate on the front end implementation of the RDA. In
this chapter, the architecture of the front end implementation is reviewed. In addi-
tion, the idea of the workbenches and primitives is described and different indicators

for event monitoring are introduced.

The fifth chapter will concentrate on the results. The prototype version of the
application is reviewed. Did the prototype version of the application meet the
customer requirements and does it perform as expected? The future plans of the
application development will also be handled in this chapter. In the last sixth
chapter the conclusions of the project are provided.

All information and figures of the RDA in this thesis are based on the prototype
version. The prototype version was released in May 17th 2017. Features added to
the application after this date and before thesis’ release day are not included in this

thesis.

This thesis does not include information about ITER as a fusion reactor. All in-
formation about ITER is RDA related. ITER is represented in other theses many
times and due to this, it is not relevant to include basic information once again. In
order to learn more about ITER fusion reactor, updated information and facts can
be found from official ITER website (https://www.iter.org/ |accessed 9.9.2017]) and
Fusion for Energy website (http://fusionforenergy.europa.eu/ |accessed 9.9.2017]).

2. CONDITION MONITORING AND
DIAGNOSTICS

Most of the modern systems are equipped with condition monitoring and diagnostics
in order to make maintenance operations more effective. Condition monitoring and
diagnostics systems can provide a clear picture of the status and the health of the
monitored system for the operator. |8, p. 25-8] In this chapter, condition monitoring
and diagnostics basics, terminology and different condition monitoring strategies and

methods are introduced.

2.1 Terminology of Condition Monitoring

International Electrotechnical Commission (IEC) has defined a lot of terminol-
ogy, which can be used with condition monitoring. IEC has created Electropedia
(http://www.electropedia.org/ [accessed 13.7.2017|), which includes many different
terms and definitions. The Electropedia is also known as International Electrotech-
nical Vocabulary (IEV). Every term in the IEV has a reference number, which makes
terms easier to be found. Relevant terminology for this project is defined in Elec-
tropedia under subject area 192, which is named as ‘dependability’. Most of the
terms used in this section of thesis are found from Electropedia section ‘192-01:

basic concepts’. [5]

2.1.1 Condition Monitoring

Condition monitoring is one of the most important terms in this project. It is defined
as ‘obtaining information about physical state or operational parameters’. Condi-
tion monitoring is used to monitor a status of a system. Monitoring operations can
be performed manually or automatically with computers. When performing man-
ually, the operator acquires the data with handheld units from monitoring points
at planned intervals. When computers are used for monitoring purposes, the com-

puters acquire the data automatically and inform the operator if there are faults in

2.1. Terminology of Condition Monitoring 5

the system. [5, IEV ref. 192-06-28| [18, p. 13-14] With condition monitoring, the
current status of the system is known, but predictions or suggestions of repair for

detected faults can not be made; diagnostics is required for this.

2.1.2 Dependability

For condition monitoring, the top-level term is dependability. It is defined by IEC as
‘ability to perform as and when required’. This term includes the following three sub-
terms: durability, availability, and safety and security. Sometimes durability, and
safety and security are not included in the list. [5, IEV ref. 192-01-22| Dependencies

of these and sub-terms of availability are presented in Figure 2.1.

Dependability

Safety and security

Maintenance support
performance

Reliability Recoverability Maintainability

Figure 2.1 Terminology used in condition monitoring. The terms are defined by IEC.
Top-level term is called as dependability, which consists of durability, availability, and safety
and security. Availability consists of reliability, recoverability, maintainability and mainte-
nance support performance. Durability, and safety and security are not as commonly used
as availability. [5, IEV ref. 192-01-22]

2.1.3 Durability, and Safety and Security

Durability is defined as ‘ability to perform as required, under given conditions of
use and maintenance, until the end of useful life’. Safety and security does not have
definition made by IEC. These terms are not as commonly used as availability. [5,
IEV ref. 192-01-21, 192-01-22]

2.1. Terminology of Condition Monitoring 6

Avizienis et al. have split the term safety and security into two terms and defined se-
curity as ‘absence of catastrophic consequences on the user(s) and the environment’.
In addition, security is included in the top-level term dependability and safety is a
sub-term under dependability. [3, p. 13-14| For safety, there is a definition in IEV
under subject area ‘Control technology’, and it is defined as ‘freedom from unac-
ceptable risk to the outside from the functional and physical units considered’ |5,
IEV ref. 351-57-05].

2.1.4 Availability

Availability is the most important term after dependability, because it consists of
four important sub-terms used in condition monitoring. ‘Availability depends upon
the combined characteristics of the reliability, recoverability, and maintainability
of the item, and the maintenance support performance’. Availability is defined as
‘ability to be in a state to perform as required’. [5, IEV ref. 192-01-23|

Each sub-term has an impact to availability. As an example, in Chapter 2.5 is a
Figure 2.2, which illustrates how availability is affected by amount of maintenance
operations and total maintenance costs. In section 2.5, it is described what level of
availability is optimal to reach. Optimal availability level depends on application,
and therefore high availability is not always the best option [18, p. 4-6].

2.1.5 Reliability

Reliability is defined by IEC as ‘ability to perform as required, without failure, for
a given time interval, under given conditions’. According to IEC, the given time
interval should always be clearly stated. It can be for example calendar time or
operating cycles. [5, IEV ref. 192-01-24] A passenger car is a good example; high
reliability of the car means that it will run to destination without faults. A car with
low reliability may stop running before destination. Travel time to the destination

is given time interval in this example.

2.1.6 Recoverability

Recoverability is defined as ‘ability to recover from a failure, without corrective
maintenance’. Recovering may require external actions, for example actions from
operator. Recovering can be performed also as self-recovering, where no actions is
required from operator. [5, IEV ref. 192-01-25]

2.2. Diagnostics and Prognostics 7

A good example of this is a computer. Sometimes application may become unre-
sponsive, and the application is possible to be recovered by rebooting the system.
This requires external actions but no corrective maintenance. Some applications

have self-recovering abilities, when no actions are required.

2.1.7 Maintainability

Maintainability is defined as ‘ability to be retained in, or restored to a state to per-
form as required, under given conditions of use and maintenance’. Given conditions
can be for example location for maintenance operations and maintenance resources.
[5, IEV ref. 192-01-27] As an example, mobile devices have usually bad maintain-
ability, because it is not possible to perform any maintenance without special tools.
A car has better maintainability, because user can change tyres or running lights

easily with basic tools.

2.1.8 Maintenance Support Performance

Maintenance support performance is defined as ‘effectiveness of an organization in
respect of maintenance support’ [5, IEV ref. 192-01-29|. In other words, if the organ-
isation has resources for maintenance operations and required know-how available,
maintenance support performance is on high level. Poor maintenance support per-
formance increases time used for maintenance operations and this decreases the level

of availability.

2.2 Diagnostics and Prognostics

Diagnostics is generally used with condition monitoring. IEC has defined the term
fault diagnosis as ‘action to identify and characterize the fault’ [5, IEV ref. 192-
06-20]. This definition has some differences when it is compared to out-of-dated
versions of this term made by IEC. Alanen et al. have defined term diagnostics as
‘actions taken for fault recognition and fault localisation’ |2, p. 13|. Despite small
differences between definitions, meaning of the term is almost same; to detect and
understand the fault.

While diagnostics is for taking actions for fault recognition and fault localisation,
prognostics is for estimating remaining useful life of the faulty unit. Remaining

useful life can be calculated, and this helps scheduling maintenance operations.

2.3. Purposes of Condition Monitoring and Diagnostics 8

With prognostics, it is also possible to calculate different outcomes if some changes
are made to the unit. [8, p. 25-9| [16, p. 10, 12] For an engine, oil change could be
this kind of change; with fresh oil the damaged engine could run longer compared

to running the engine with the old oil.

2.3 Purposes of Condition Monitoring and Diagnostics

As the definition of the condition monitoring says, condition monitoring is used to
acquire information from the monitored system. Modern systems use automatic
condition monitoring, where data is sent from the system to the computers for

processing and analysing purposes [18, p. 7-8|.

The diagnostics tool uses the data that condition monitoring has acquired. It pro-
cesses and analyses the data, and based on the given rules, it indicates the status of

the system and suggests actions for the detected faults by using prognostics.

With condition monitoring and diagnostics, the status of the system is known. It
is possible to detect failures beforehand and schedule maintenance operations in
advance. This is the reason why condition monitoring and diagnostics are used
almost in every modern system; it can save money and time when used correctly. |8,
p. 25-8] [18, p. 1| For experimental facilities like ITER, these tools are important,
because otherwise acquiring data would be very difficult task, and the status of
the system would be unknown. Scheduling the maintenance operations would be

impossible without information of the system status.

2.4 Condition Monitoring and Diagnostics Methods

Condition monitoring and diagnostics can be performed with two different ways.
The first one is more traditional, artificial intelligence (AI) based method and the
second one is more modern, model based method. [11, p. 2-3] [17, p. 390, 393]
There is a significant difference between these two methods; following sections will

explain main differences more detailed.

2.4.1 Artificial Intelligence Based Diagnostics Method

Al based method, which is older one of these two methods, but still widely used
method. This method is based on input-output measurements of the observed unit.

2.4. Condition Monitoring and Diagnostics Methods 9

With these measurements, a data-based model can be created. Depending on the
input values, corresponding output values can be found from the data. These esti-
mated output values are compared to the real output values of the unit. [11, p. 2-3]
[17, p. 393-395| For example, when an engine is running, temperature of it can be
measured. Depending on the input values of the engine, there is an estimated value
in the data for the temperature. This value is compared with the real value, and

differences between these values can reveal faults.

Simplicity of the method is an advantage compared to more complex model based
method. Creating rules for limit checking is quite straightforward operation. Rules
are usually created with simple if-else logic. Disadvantage of the method is that the
input-output measurements of the unit may often include errors and noise, and the
dataset may be incomplete. [11, p. 2-3| [17, p. 393-395] These disadvantages can

decrease accuracy of the method.

2.4.2 Model Based Diagnostics Method

Model based diagnostics is more modern method compared to Al based method.
Some kind of model of the monitored system has to be created in order to use the
model based method. The model can be a logic based model or a model created
with equations. The model is used to detect differences between the real system and
the model, like in the AI based method. If the data coming from the system does

not match with the verified computer model, there is a problem in the system.

The main difference between the AI based method and the model based method
is how the output values are calculated or estimated. In the AI based method,
the data is measured in advance. Estimated output values are based on the input-
output measurements. With model based method, these values are calculated with

the created model.

The model based method has one major disadvantage. In order to create accurate
model, it may require a lot of equations and parameters. A model with high amount
of parameters is difficult to create and tune, and data for some of the parameters may
be unavailable. This disadvantage is pronounced when creating models of complex
systems. [11, p. 2-4] [17, p. 390-391] If the model is inaccurate, it may generate
false alarms. Due to this, the model may become unreliable and useless. On the
other hand, successfully created model can be very accurate and provide very useful

data for operators of the system.

2.5. Maintenance Strategies 10

2.5 Maintenance Strategies

Maintenance operations costs money. In Figure 2.2, it is possible to see how avail-
ability and total costs are affected by maintenance and downtime costs. If there
is no maintenance and therefore no maintenance costs, total costs are high due to
downtime costs. On the other hand, if there is too much maintenance, the total
costs are still very high but availability is great. For example, in aerospace applica-
tions, risks must be as low as possible [18, p. 6]. This means high availability and
high total costs. If the target is to achieve low total maintenance costs with decent
plant availability, there is a compromise where downtimes are increased a bit and

availability is decreased compared to aerospace industry levels, but total costs are

minimised.
A
N Increased costs
s :
~ : >
\]
S '
~ |
S ~ : &
~ " Total ..:
N | :
' -
' $
! J
] K
] .0
] &
Costs : $
] K
€ % K
’ LN o
Downtime N &
\: ‘0’
I\ .0”
! i
1N
R LN
% 'o‘.‘. : \
Maintenance o’ ' N
ass*® ' ~
Y L | ~
IIIIIIIlllll.ll.ll.lll.lllllll. 1
' ~
1 ~
= >
0 100

Plant Availability %

Figure 2.2 An example how downtime and maintenance costs, and plant availability
affect each other. Total costs are high if the availability is at mazimum level. On the other
hand, lack of the maintenance operations will also increase the total costs, because costs
caused by downtime are high. [18, p. 5]

With different maintenance strategies it is possible to find suitable strategy for cov-

2.5. Maintenance Strategies 11

ering various requirements. Because of different types of machines and requirements,
there exists different maintenance strategies for different purposes. There are three
commonly used maintenance strategies in everyday use. These are called as a break-
down maintenance, a preventative maintenance and a condition-based maintenance
strategy. |[18, p. 5-9] Each one of them has advantages and disadvantages com-
pared to each other. In the following subsections these maintenance strategies are

introduced more accurately and how they are suitable for use in different use cases.

2.5.1 Breakdown Maintenance Strategy

Breakdown maintenance strategy is the simplest strategy of the three alternatives.
It is also known as run-to-failure maintenance strategy. It is typical for this strategy
that nothing is done until the unit fails. Maintenance costs are low, because there
is no preventative maintenance before the breakdown. Most of the costs are caused
by the maintenance activities and downtime costs after the breakdown. [8, p. 25-4
— 25-5| [18, p. 5-6]

The principle of this maintenance strategy is presented in Figure 2.3. In the fig-
ure, when capacity of the machine is decreased to the same level as machine duty,
breakdown occurs. This is followed by maintenance activities, which takes some
time. When the maintenance operations are done, machine is available again for
operation until next breakdown. The machine duty may vary, which is presented in

the figure with differently sized machine duty bars.

A

Failures

Machine Capacity (Est.)

Estimated
Capacity
and
Load

Maintenance
Activities

Machine Duty (Load)

Time In Service

Figure 2.3 A principle of breakdown maintenance. Machine capacity is decreasing during
the time in service. When the machine capacity is equal with machine duty, failure occurs.
After the breakdown, maintenance activities are taken to restore the machine capacity back
to the original level. [8, p. 25-5]

2.5. Maintenance Strategies 12

The breakdown will be a surprise almost every time. The broken unit may be easy
to repair or replace, but down times may be unacceptable. Breakdown maintenance
is suitable for simple systems, in which down times do not cause safety risks or heavy
economical losses. [18, p. 5-6] This strategy is suitable to be used for example with
monitors of the control room at ITER. Broken monitor is easy to replace and it will
not cause safety risks or increased costs. If there is no replacement monitor available,
it may take some time to find one to replace the broken one. In the reactor building

this strategy is almost useless due to its very high availability risk.

2.5.2 Preventative Maintenance Strategy

Preventative maintenance strategy is also known as schedule-based maintenance
strategy [2, p. 44| and planned preventative maintenance strategy [18, p. 7|. Pre-
ventative maintenance strategy is an improved strategy compared to breakdown
strategy. In the preventative maintenance strategy, replacing components is sched-
uled in advantage before there is a risk of failure. [8, p. 25-5] [18, p. 6-7] This
principle is possible to see in Figure 2.4. Note the difference compared to break-
down maintenance strategy, in which there is no margin between machine capacity

and machine duty before maintenance activities.

A

Machine Capacity (Est.)

Estimated
Capacity
and Margin {

Load | | Maintenance
Machine Duty (Load) Activities \

Time In Service

Figure 2.4 Preventative maintenance strategy. Maintenance activities are scheduled so
that there will not be breakdowns. When the maintenance activities begin, there is still
machine capacity remaining. [8, p. 25-6/

Intervals between the unit replacements are based on manufacturers’ data and user
experience. This strategy is very common, for example, in aerospace industries.
There failures are not allowed, so components will be replaced before the risk of the

failure starts to increase.

2.5. Maintenance Strategies 13

The total maintenance costs will be high, because units are replaced often. This
strategy needs reliable data of lifetime of the units. If there is no data available, it
is difficult to know when each unit should be replaced. If the unit is replaced too
often, it will increase total costs, and if it is replaced too late, it may cause increased
safety risk. [8, p. 25-5] [18, p. 6-7] This is illustrated in Figure 2.5.

Number of breakdowns Average running time
4 A
Earliest recorded . Longest recorded
breakdown 5 breakdown
Premature
Replacement Breakdown

>

costs incurred costs incurred

<

Totally safe
operation

L T T P Y T T -na.o.aaao.’

Running time to breakdown

Figure 2.5 An example of unit failure distribution. Preventative maintenance strategy
requires this kind of information for scheduling of maintenance. [18, p. 7]

At first, there is totally safe operation time interval in the beginning. After this
point, breakdown may occur and the unit reaches the average running time. After
this point longest recorded breakdown time is coming close and the risk for unit
breakdown increases all the time. In aerospace applications the components are
replaced at earliest recorded breakdown point in order to minimize possible risks.

Increased maintenance costs must be accepted when using this maintenance strategy.

2.5.3 Condition-Based Maintenance Strategy

Third maintenance strategy is condition-based maintenance strategy (CBM). This

strategy is more focused on health of the system instead of predetermined schedules

2.5. Maintenance Strategies 14

like in the preventative maintenance strategy. The margin between the machine ca-
pacity and the machine duty is much smaller compared to preventative maintenance
strategy. The difference is possible to see in Figure 2.7. In order to monitor health
of the machine, condition monitoring operations are required for analysing the state
of the unit. |18, p. 8|[2, p. 40]

With CBM, the status of the machine is known all the time. Unlike in preventative
maintenance strategy, maintenance operations are performed only when required. If
there is no signs of wearing or faults, there may be no reason for replacing the unit.
When there are first signs of problems, maintenance operations can be scheduled in
advance. The main principle of this maintenance strategy is presented in Figures
2.6 and 2.7.

Leakage flow L/min
4 DANGER

]
Excessive ¥
]
]
] .
| Maximum allowable
X increase
]
]
., . b
New condition---no wear !
|
>

Time----days, months

Figure 2.6 An example of condition-based maintenance strategy. Condition of the unit
is monitored all the time. When the monitored value is out of the limits, maintenance
operations for the unit can be scheduled and the unit will be replaced at suitable moment.
The unit should be changed before reaching dangerous values. [18, p. 8]

As seen in Figure 2.6, there are maximum limits for values. If the unit exceeds one
of these limits, the operator will get a warning. The operator can now decide what
to do and schedule maintenance operations for the unit. The unit can be in use

after the warning but actions should be taken soon.

2.6. Suitable Maintenance Strategies for Remote Diagnostics Application 15

A

Machine Capacity (Est.)

Estimated
Capacity Minimum Margin
and
Load
4| |— Maintenance
Machine Duty (Load) / Activity
Ve

Time In Service

Figure 2.7 When signs of problems starts to occur, maintenance activities are sched-
uled before breakdown happens. There is no breakdown, because minimum margin is still
remaining. [8, p. 25-7]

With this maintenance strategy, it is possible to avoid unnecessary maintenance
operations. This will decrease maintenance costs. On the other hand, creating a
system for CBM strategy may become expensive. Big facilities may require a lot of
sensors, other hardware and software. It is also more complicated compared to two
previously mentioned maintenance strategies. [8, p. 25-6 — 25-7|] These facts will
increase initial maintenance costs, but once the CBM system is created, it will no

cause as much costs as in the beginning.

This strategy is suitable for facilities like ITER, in which no data is available of
lifetime for different components. This strategy will provide support for scheduling
the maintenance operations by providing information about the current state of the
system. [13]

2.6 Suitable Maintenance Strategies for Remote Diagnostics

Application

The Remote Diagnostics Application will be based on preventative maintenance
and condition-based maintenance strategies. With the application, the focus is
on preventative maintenance strategy strategy, because it provides most accurate
data and status of the system and single units. At ITER, the main strategy is
preventative maintenance strategy, and the CBM strategy will support scheduling

the maintenance operations [13].

2.6. Suitable Maintenance Strategies for Remote Diagnostics Application 16

With the application, the preventative maintenance strategy will provide support
for failure detection rules. For some components, it is known how long they can be
used before breakdown occurs. This data can be used together with CBM to make
correct decisions for failure detecting. Example of this kind of device is hydraulic
filter, which will clog during the time. With CBM, it is possible to measure the
real condition of the filter. By combining this data with preventative maintenance
strategy, accurate enough approximation of the remaining lifetime can be calculated

and maintenance operations can be scheduled.

AT based and model based diagnostics are both used with RDA. With Al based
diagnostics, thresholds and limits can be monitored easily, if measurement data
for the unit is available. Model based diagnostics can be used for more complicated
diagnostics purposes, for example detecting water leaks from the system. By creating
a model, it is possible to calculate, how much there should be water in the system,

and by comparing the calculated values to the real system, leakages can be found
[13].

17

3. DEVELOPMENT OF THE REMOTE
DIAGNOSTICS APPLICATION

Remote diagnostics is a part of the remote handling systems of ITER. The mainte-
nance equipment is fully remotely controlled and therefore also remote diagnostics
is used. In this chapter, it is described, why creating the Remote Diagnostics Appli-
cation is required and what it should be capable to do. In addition, the development
process of the RDA is described in more detailed. The focus is on the development

process of the RDA front end implementation, which was the main task of the thesis.

There is also a four part standard ISO 13374 ‘Condition monitoring and diagnostics
of machine systems. Data processing, communication and presentation.’, which
provides the basic requirements for open diagnostics software specifications. This
standard is useful to use with this project and it is introduced in this chapter. The
standard will be also referred later in this thesis in Section 5.2, where implementation

of the prototype version of the RDA is compared to this standard.

3.1 Remote Handling Systems

Because of radiation and unpleasant conditions in the ITER reactor, all maintenance
operations are performed remotely controlled. There will be a separate control
room for these operations. An example of this kind of control room is presented
in Figure 3.1. The control room of the figure is located at VIT for controlling
Divertor Test Platform 2 (DTP2), which is a real size mock-up section of a vacuum
vessel bottom of I'TER. This kind of set-up allows a safe working environment for
the operators. Technology is similar compared to space located missions, where
controllers are located on earth and the spacecraft is flying far away in the space.
Distance does not matter, only data transfer must be possible between control room

and the equipment. [9] [6]

Virtual reality (VR) platforms, powerful computers and advanced technology should
make the remote handling operations of ITER easier and more effective. With

simulations and the VR systems, the operator can virtually see the maintenance

3.2. The Reason for Developing a New Remote Diagnostics Application 18

operations and the equipment despite physical absence. [9] This kind of operation
requires very accurate and real-time simulations. In Figure 3.1, it is possible to

see how the DTP2 is controlled from a control room with the real-time simulations

without possibility for direct visual contact to the system.

Figure 3.1 DTP2 control room at VTT. The remote handling operations are possible
with the accurate simulations and virtual reality systems based on data acquired from the
real equipment. [6]

With the remote control and remote diagnostics systems, the main idea is the same:
operators are working remotely without the visual contact to the equipment they
are working with. Because the system is remotely controlled, it is important to get
a feedback from the system in order to know its status. There might be a fault in
the system, but the operator can not detect it without the condition monitoring.

Visual inspections are not possible with this kind of remotely controlled systems.

3.2 The Reason for Developing a New Remote Diagnostics
Application

The diagnostics applications are not a new thing in industry and they are used for
several purposes. Because they are not a new thing, why is it required to create
a new application instead of using complete solutions with the remote handling
systems of ITER?

3.3. Development Process of the Remote Diagnostics Application 19

There are many different diagnostics applications for different purposes available
on the market. Many of them are designed for specific purposes. As examples of
these are applications designed for monitoring statuses of bearings and motors. This
kind of diagnostic applications offer very accurate and highly automated diagnostic
services for mass-produced devices and components. [12] The bearings are very
common and simple components in different machines and one specified application

can monitor them easily.

The diagnostics application for ITER represents a very different approach. The
components and devices are individuals, and previously mentioned specific applica-
tions are not compatible with this kind of system with many different components.
The components and devices of the system may be improved and changed during
the development process of ITER, so the application should be customisable enough
to meet the variable and flexible requirements. [12] In order to meet the customer
requirements, a new remote diagnostics application is required to be developed for
the ITER remote handling systems. By creating a new application, it is possible to
create an application with features that are required without compromises. Disad-
vantage of creating a new application is a long development time and costs caused

by development process.

3.3 Development Process of the Remote Diagnostics Appli-

cation

When the writing process of this thesis started, there was already some components
of the application under development and plans were made for future development
process. The primary task of this thesis was to develop the front end implementa-
tion. This included architectural solutions for graphical user interface (GUI), GUI
itself, different monitoring components and integration of different components of
the application to the GUI.

Software development process may be very complex. This depends partly on the
used life cycle model. With the models, the project should be more easy to control
and understanding the current state of the project should be easier. For software
development processes, there is a great variety of different development models avail-
able. The best known models are waterfall and spiral models. [4] These models are

described more detailed in the next sections.

3.3. Development Process of the Remote Diagnostics Application 20

3.3.1 Waterfall Model

In the waterfall model, the development process has clear stages. Typical stages are
requirements definition, system design, implementation, integration and validation
processes, which also are used with this project [1]. When one stage is finished, the
process continues to the next stage. There might be small modifications made to the
model, depending on the type of the project. One example of the modifications is,
that there might be slight overlapping between two stages, which allows revisiting
in the previous stage. [4| The principle of the waterfall model is presented in Figure
3.2.

Figure 3.2 A principle of the waterfall model. The development process starts from top of
the waterfall with a requirements definiton. After completing a stage, the process continues
to a lower stage, until it reaches the last stage of the waterfall. [4]

The waterfall model is easy to understand and to follow. It has one major dis-
advantage, which is inflexibility. The model does not normally allow revisiting the
previous stages. If there is a problem, which is caused by poor choice in earlier stage,
it can not be fixed easily. The waterfall model is usually used with big projects. [4]
Each stage is planned beforehand and documented properly, which makes budgeting
easier [1].

3.3.2 Spiral Model

The second well-known development model is the spiral model. In the spiral model,
the development process is like in the waterfall model, but there are several iteration
rounds. Reference model for the spiral model is presented in Figure 3.3.

3.3. Development Process of the Remote Diagnostics Application 21

With the spiral model, the development process starts with determining objectives.
This is followed by evaluating alternatives, development process and finally planning
next phases. When the first round is completed, the process is started again and
again, until the task is completed. After every round the process is moving towards
the end. Because every round consumes time and resources, the costs of the project

will increase at every round. [4]

Determine Evaluate
Objectives Alternatives

Plan Next Develop,
Phases Verify

Figure 3.3 The spiral model. In the spiral model, the development process includes several
iteration rounds. After each round, the project should be more completed. [4]

The spiral model is more flexible compared to the waterfall model. Major prob-
lems can be found earlier during the development process compared to the waterfall
model. [4] With this model, the project can be completed in smaller tasks and im-
proved versions can be created after every round. This allows more flexible software
development process. The disadvantage is, that it is difficult to forecast how many

iteration rounds is required and due to this, budgeting is also difficult.

3.4. Development Platform 22

3.3.3 Models Used with Development Process of the Remote
Diagnostics Application

The project for creating the RDA is using the waterfall model [1]. Before the
writing process of this thesis started, the requirements definition and design phases
were completed. When writing of the thesis started, the project moved to the

implementation phase.

The waterfall model is used for the project, because it provides clear phases for
different tasks of the project. With this model, also the budgeting of the project is
easier, and this was one of the main reasons for choosing this model. [1| There are
documented plans for the project and it is more clear for the customer, in which

phase the project is currently running.

The implementation process is one large, single stage in the waterfall model. This
stage can be completed by combining different models. The main model for the
process is the waterfall model, but the stages of the model can include different
models for completing that one phase. For example, the implementation stage can
be considered as a single spiral model. During that phase, different implementation
options are evaluated. A piece of code is created, and after testing, it may require
changes. Making changes is easy operation with the spiral model, because it allows
several iteration rounds for the code. The requirements of the RDA were not very
strict and allowed different alternatives to be tested, and for this kind of flexibility,
the spiral model offers better iteration abilities compared to the waterfall model.

3.4 Development Platform

The application will be developed with the graphical LabVIEW development plat-
form. There were different alternatives for LabVIEW, but in a comparison made by
VTT, the LabVIEW was chosen as a best alternative. More about this comparison

and alternatives is described in Subsection 3.4.2.

LabVIEW is an abbreviation of the words Laboratory Virtual Instrument Engi-
neering Workbench. The software is developed by National Instruments, which
is relatively big company in USA. The software is marketed as systems engineer-
ing software, which simplifies hardware integration allowing easier data acquisition
operations. One of the purposes of the software is that it reduces complexity of

programming, making it easier and faster. [19] [20]

First version of the LabVIEW software was released in 1986 as a tool for scientists

3.4. Development Platform 23

and engineers for performing automatic measurements [19]. The latest version of the
software is version 16.0 (Fall 2016) and the prototype of the RDA will be developed
with this version. New versions of the software is coming out during this project
and it is possible that upcoming versions of the RDA will be developed with one of

these new versions.

3.4.1 Development with LabVIEW

LabVIEW is a graphical programming software. The main idea with the software
is to use different blocks and wire them together, which is also called as dataflow
programming or dataflow language. [19] Each one of the provided blocks has a
different function. For example, a block for multiplying operation has at least two
inputs and one output. The block performs multiplying operation for all the inputs
and the result is sent to output. The code for the application is done by combining
different blocks together with wires. The software includes many different blocks for
use and more can be downloaded as an add-ons.

Figure 3.4 illustrates an example of creating a waveform graph with attributes with
LabVIEW. At first, there is a for-loop, which generates 20 random numbers multi-
plied by 100. After this the waveform is build with created data points (Y), current
time (t0) and time difference between each sample (dt). Then two different at-
tributes are added in order to include some extra information to the waveform.
Finally there are blocks for visualising the created graph and attributes. Also one

error block is added for an error handling operations.

20HN
@ Build Waveform
Fos I> [f Waveform Graph
L I — 0 ey e 0
i 7 l" 0.2} dt | INl_ChannelName}‘J o = q.fv‘ L(\Naﬁveform

0

NI_UnitDescriptipnmmsnnmsannnen?

Figure 3.4 An example of LabVIEW code. The code generates a waveform chart with op-
tional attributes (NI_ ChannelName and NI _UnitDescripition). This example is available
in LabVIEW build-in examples (Waveform - Create.vi).

Figure 3.5 presents the front panel of the previous example. The waveform graph

includes the data points and the time when the data points are created. On the left,

3.4. Development Platform 24

the extra information is visible, including all the data points, the first time stamp,

the time difference between each sample and the attributes.

Waveform Waveform Graph { - A J
e ED 100.0
[15:4&20 [o.701721
2017-08-08 80.292177 80.0-
kit [11.481753
L [o2.608351 4 600-
) 80.479921 %_
attributes E 400-
Attribute(s): A e
‘NI_ChannelName' -> 0
‘NI_UnitDescription’ -> “deg C* 20.0-1
0.0-, | | | 1 [|
15:46:18 15:46:19 15:46:20 15:46:21 15:46:22 15:46:23 15:46:23
b 2017-08-08 2017-08-08 2017-08-08 2017-08-08 2017-08-08 2017-08-082017-08-08
< > Time

Figure 3.5 The front panel view of the example code. Generated waveform graph is visible
on the right and the attributes and values on the left.

LabVIEW uses the .vi file format, which is abbreviation for Virtual Instrument
(VI). A .vi file consists of two parts: front panel and block diagram. [19] The front
panel is the user interface for the code. The block diagram includes all blocks and
code made for the file. These two parts are always connected to each other. Every
control and indicator has its counterpart in the front panel and in block diagram.
User interfaces can be done easily to the front panel. Examples of the front panel
and the block diagram are in Figures 3.5 and 3.4 respectively.

LabVIEW is marketed as a user-friendly development software, which is achieved
in many ways. By using block diagrams, the created code is easy to understand
and follow. In addition, LabVIEW is compiling the created code in real time. This
allows finding errors easily, because the software will instantly report syntax errors
found in the code. The software indicates the block where the error occurs and what

the problem is.

Every available block has a help file, which makes it easy to understand how to use
different blocks. The software has also many different examples to demonstrate, how
to use different structures and blocks. Some structures are provided as templates,

which are helpful, if the user does not have previous experience of the structure.

3.5. Requirements for the Remote Diagnostics Application 25

3.4.2 Alternative Development Platforms

There are alternative development platforms for LabVIEW. VTT has made a com-
parison, in which different development platforms from different developers were
compared before the developing process of the RDA started. The selection cri-
teria for the development platform were known before the comparison was made.
IoT - Ticket from Wapice, Wedge from Savcor, MUST from European Space Agency
and LabVIEW from National Instruments were the participants in this comparison.
These platforms were studied as to how they are able to satisfy the selection criteria,
and based on the suitability, the platforms got a grade for every requirement. Each
criterion had a different weight factor. With grades and weight factors, the ranking
list for the platforms was created.

None of the softwares did meet all the requirements, which was expected. LabVIEW
was reviewed as the best option for the development platform. It was on top of the
ranking list and it has been in use at VI'T in previous ITER and Fusion for Energy

projects, so it was known how it can be used and what are the capabilities of it.

Developing a very new development platform was not an alternative. A new software
takes a decade to mature and the project does not have time for that. A problem
with the new software is always the amount of bugs and possibly missing features and
usability. Benefits of the new development platform would have been that it would
cover all the requirements, because it is created only for this project. Disadvantages
are still greater compared to the benefits, so no new development platform was
created. [10]

3.5 Requirements for the Remote Diagnostics Application

The requirements for the application were set by the customer. The project has a
great variety of different requirements and those are the baseline for the develop-
ment process of the application. There are requirements for every component and
feature. This thesis is more concentrated on the front end implementation, so the
requirements for that part of the application are introduced in this section. The

requirements are listed in an internal, unpublished document.

The application is rule-based, and due to this, most of the front end implementation
related requirements are based on requirements of the rule system. There are many
different requirements for the rules. For example, the user should be able to create

and edit these rules and select, which ones are active. The rules are used to determine

3.6. ISO 13374 Based Guidelines for Development Process 26

when there are prevailing or upcoming faults in the system. Based on these rules,
warnings and alarms are created to inform the user about the faults. An example
of a rule is a limit checking of the signal; if the signal reaches limits, an error or an
alarm is created. These alarms and warnings required indicators to the front panel

in order to provide this information for the user.

Due to the requirements for creating and editing the rules, one major requirement
for the application is that it should be dynamic. Because the application will be
generic and compatible with novel diagnostic cases, there can not be many fixed
features and rules for signal processing. In addition, the application should always
be running when the maintenance equipment is on line, so it is not possible to
recompile the application if new rules or primitives are added to the application.

The application should also be very reliable in order to achieve a good usability.

Because the requirements do not include strict definitions as to how the requirements
should be covered in the application, there are possibilities for different implementa-
tion options. The architectural choices for the front end implementation was one of
the most important thing in order to cover requirements of dynamic behaviour. A

more detailed description about the application architecture is presented in Chapter
4. [14]

3.6 1SO 13374 Based Guidelines for Development Process

ISO 13374 standard ‘Condition monitoring and diagnostics of machine systems.
Data processing, communication and presentation.” provides basic requirements
and guidelines for condition monitoring and diagnostics softwares. The standard
includes four parts; ‘Part 1: General Guidelines’, ‘Part 2: Data Processing’, ‘Part 3:
Communication” and ‘Part 4: Presentation’. This subsection is mainly based on the
first part, because it provides most of the useful general information for the project.
Other three parts have more specific information about their topics and they are

not discussed in this thesis.

At first, the condition assessment blocks are introduced. These blocks are for de-
scribing the functionalities of the application. Secondly, there are descriptions of
monitoring features, which are made for the operator for receiving information and

messages from the application.

3.6. ISO 13374 Based Guidelines for Development Process 27

3.6.1 Condition Assessment Blocks

The ISO 13374 part 1 provides a useful reference model for diagnostics information
progress in the reference application. This model is presented in Figure 3.6. In the

figure, the information progress starts from the top of the model.

The first block is called as data acquisition, which converts the data to a digital
parameter. This parameter represents a physical quantity and information related
to it, which can be, for example, time or data quality. The second block is for data
manipulation, which performs simple signal analysis. It also creates virtual sensor
readings based on raw measurements. State detection is the third block, and it is

responsible for detecting if the data is in warning or alarm area.

The fourth block is called as health assessment, which diagnoses the health of the
system. Prognostic assessment is the fifth block and it is responsible for trying
to forecast the remaining useful life of the units. These forecasts are based on
history and current live data. The last block is for advisory generation, which gives

additional information of faults and status of the system.

The three first blocks are technology-specific blocks. These blocks requires functions,
which are targeted to a particular technology. Examples of these technologies are
shaft displacement monitoring and bearing vibration monitoring. With the RDA,
no specific technology is used, because the architecture of the application is more
flexible compared to this reference model. The last three blocks are for monitoring
the health of the system, predicting remaining useful life and providing tips for

recommended actions. [16, p. 1-3]

The standard also includes blocks for the external systems and technical displays.
Each of the layers, except the advisory generation block, will be implemented in the
prototype version of the RDA. This project, especially the front end implementation,
focuses on state detection and health assessment stages. The rules of the application
will cover both of these blocks. The prognostic assessment is also important part
of the application, and the role of it will increase in the upcoming versions of the
application. More about implementations and features of the application, compared
to this standard, is described in Chapter 5.2.

3.6. ISO 13374 Based Guidelines for Development Process 28

Sensor / Transducer / Manual Entry

Data Acquisition {DA)

Data Manipulation (DM)

External systems, d;:ﬁ:;::caar:d
data archiving and State Detection (SD) information
block configuration presentation

Health Assessment (HA)

Prognostic Assessment (PA)

Advisory Generation (AG)

Figure 3.6 Diagnostics software architecture based on I1SO 1337} standard. Sensor data
is coming from top of the diagram and it is processed in each block and external systems.
The technical displays are for presenting the processed information. [16, p. 2]

3.6.2 Monitoring Features

Architecture of the software is important for the developers of the RDA. The op-
erator is more interested about usability of the application. In order to provide
information for the operator, indicators are required. For this purpose, the stan-

dard provides a good reference model of what kind of information and how it is

3.6. ISO 13374 Based Guidelines for Development Process 29

recommended to show for the operator. This model is presented in Figure 3.7.

Identification

Equipment ID: Engine B
Date: 2001-06-03
Time: 14:51 UTC

Area s

Area 4 Recommended Actions

1) Replace bearing
2) Change oil

Area 3 Prognosis

A) Expected life, 188 h
B) Can be improved by il change

Area 2 Health Assessment

Health index Diagnosed problems
® 2 [Best = 10] Severe bearing spalling

Area 1 State Detection
Alarm

J\/ Prop shaft thrust bearing
Alert

//:{W Front pinion bearing

Vibration amplitude, mm/s

Time, hours

Figure 3.7 An example of monitoring features based on ISO 1837/ standard. The infor-
mation is processed in each block and displayed for the operator. FEach area has different
kind of information to show for the operator. [16, p. 12]

3.6. ISO 13374 Based Guidelines for Development Process 30

As illustrated in the previous figure, the front end of the application is divided into
distinct areas. Area 1 includes signals and thresholds visualised in a graph. This
area is also called as a state detection. With this simple graph, the operator can see

the values of the signals and how close they are to the limits.

Area 2, which is also known as health assessment, includes information about the
health of the system. This area indicates for the operator the status and condition
of the system. The health assessment uses rules for monitoring the health. In this
example, the state detection indicates the prop shaft thrust bearing is closing to the

alarm level, so the health assessment indicates the health index is very bad.

Area 3 includes prognostics for the system. Based on the data of the bearing,
prognostics calculates expected life for the bearing, and also gives advice what can
be done in order to increase the expected life. With the prognostics, the maintenance
operations can be scheduled and operation of the system continued.

Area 4 includes recommended actions in order to avoid the problem or to fix it.
Area 5 includes more specific identification data of the faulty device or component
and time and date when the problem occurred. |16, p. 9-10]

Each of these areas are going to be included to the RDA. In the prototype version,
some of these areas may still be in very unfinished state, but the idea is planned to
be included. In the next chapter, these features are described better as to how they

are implemented in the application or how they should be working in the upcoming
versions of the RDA.

31

4. IMPLEMENTATION OF THE REMOTE
DIAGNOSTICS APPLICATION

The main task in the thesis was the front end implementation and to create architec-
ture for it. The front end includes the graphical user interface, which is the part the
operator will see and use. The prototype version of the front end implementation of
the RDA is presented in Appendix 1.

Front end implementation is created with three-layered architecture, which consists
of workbenches and diagnostics primitives. In addition, there are different monitors
for indicating important messages created by the application. The implementations

of these components and the front end architecture are described in the next sections.

4.1 Three-Layered Architecture

The main architectural decision with the application is the three-layered architec-
ture. The architecture was invented by VT'T and implemented in this thesis. With
this architecture, the requirements about dynamic and flexible structure of the ap-
plication can be covered. Because the maintenance equipment of ITER is evolving
all the time, and the equipment and the requirements may change, the RDA should
be able to cover these changing situations. If there is some changes in the equip-
ment, the changes should also be reflected to the application, without recompiling
or aborting the application after making changes in the code. The three-layered

architecture is visualised in Figure 4.1.

4.1. Three-Layered Architecture 32

1" layer

2" layer

Workbench 1 Workbench 3

3 layer

Diagnostics Diagnostics
Primitive 5 Primitive 6

Diagnostics Diagnostics |l Diagnostics Jl Diagnostics
Primitive 1 Primitive 2 Primitive 3 Primitive 4

Figure 4.1 The principle of the three-layered architecture. The main application is the
first layer and the workbenches are in the second layer under the first layer. In the third
layer are the diagnostics primitives. The amount of the workbenches and the primitive may
vary.

The main idea with the three-layered architecture is, that there is three layers in
the application. The top level of the application is constantly running, and there
should be no need to abort it. This top-level is fixed and does not need changes if
there is some in the monitored equipment. The top level can be considered as the

main window, which provides framework for the application.

The second layer is called as a workbench layer, which includes the workbenches. The
workbenches can be considered as sub windows in the main frame. Each workbench
collects user defined diagnostics primitives into one sub window. There can be

several of these workbenches under the top level layer, but at least one is required.

The third layer is called as diagnostics primitives layer. This layer is running under
the second layer. Every workbench should include at least one diagnostics primi-
tive. There is no maximum number for primitives but the user interface may limit
this number, depending the space required by primitives on the screen. More de-
tailed descriptions of the workbenches and the diagnostics primitives are included
in Sections 4.2 and 4.3.

This architectural solution allows creating and editing workbenches and primitives

even if the main application is still running. For editing or creating a new primitive,

4.1. Three-Layered Architecture 33

only that one workbench, which includes the primitive, needs to be aborted. When
aborting a workbench for editing operations, all the primitives under that workbench
are aborted. If the top level is aborted, the whole application stops running. For
example, if workbench number 2 of the figure is aborted, diagnostics primitives 2,3

and 4 are aborted as a result of this.

41.1 Sub Panels

In the LabVIEW development platform, the three-layered architecture is imple-
mented with sub panels. The top level layer has sub panels for each workbenches,
and every workbench has sub panels for each primitives. Simplified LabVIEW im-
plementation of the three-layered architecture is presented in Figure 4.2.

Primitive layer Primitive layer

Figure 4.2 A simplified implementation of the three-layered architecture presented in Lab-
VIEW development platform. The diagnostics primitives are included in the workbenches
and workbench is included in the top level layer. This example has only one workbench and
two primitives.

In the figure, the top level layer has one sub panel for the workbench. The workbench
is a separate file, which is running inside the top level layer in the sub panel. The
workbench has two separate primitives, and the primitives are also separate files
running in the the sub panels. In this example, there is totally four separate files
running: one top level layer file, one workbench file and two primitives. Every file

4.1. Three-Layered Architecture 34

can be run independently, which allows flexibility for testing operations during the

application development process.

In the prototype version of the application, the sub panels are not easy to detect,
because the frames of the panels can be hidden and colors of the panels can be the
same. This is intentional, because the end user of the application does not need this
kind of information about the architecture. In the example figure, the frames and
the colors are purposely noticeable in order to demonstrate the sub panel structure

in the LabVIEW development environment.

4.1.2 Dynamic Calls

In the LabVIEW, the VIs can be loaded and called statically and dynamically. When
using the static VIs, the VIs are loaded into memory at the moment when the main
VI is started. These VIs are running as long as the main VI is running and those

can not be aborted without aborting the main VI.

The second option to call and run the VIs is to call them dynamically. This feature
is very useful with the sub panels and with the three-layered architecture. This
allows running the VIs when requested from the main VI. With this feature, it is
possible to open and close the workbench and the primitive VIs only when necessary.
This allows aborting the VIs for editing purposes and run them again after editing

without aborting the main VI.

With the dynamically called VIs, the visible VI in the sub panel is possible to switch
to another one. For example, if there are diagnostics primitives 1 and 2 running in
the simplified application, which is illustrated in the Figure 4.2, it is possible to
abort primitive 2 and to open and run primitive 3 in the same window without

making changes to the code.

Closing unnecessary files also releases resources of the computer. Every running
file consumes the processor power and the available memory. Impact of a single VI
to the performance may not be noticeable, but if there are many unnecessary VIs
running on the computer, the impact may be significant. The static VIs are always
running on the computer and consuming resources, which is the biggest difference

when the static VIs are compared to the dynamically running VIs.

4.2. Workbenches 35

4.2 \Workbenches

As mentioned earlier, the workbenches are in the second layer under the top level
layer. The main idea with workbenches is to collect different kind of diagnostics
primitives into one window. Workbench itself does not have any monitoring fea-
tures, because it is used only to collect primitives. The operator can decide what
primitives are included in the workbenches. This behaviour is implemented with
a RDA configuration file, which includes the workbench and primitive hierarchy.

Example of a workbench including two primitives is presented in Figure 4.3.

CMM1 HPU Pressures and Histograms ~ Filter clogging prediction

Pressure difference

1
396 1396
Time

Estimated number of moves before filter clogging: 232

Most recent filter change £ 100156442 [
#2017-0420

Figure 4.3 A workbench including two primitives in separate tabs; CMM1 HPU Pressures
and Histograms, and Filter Clogging Prediction. Unit for the pressure difference is a bar
and for time the unit is a second.

A workbench template file will be provided for the operator or third-party program-
mers in order to create new workbenches. Creating a new workbenches is simple,
because the file can be reused without making any changes to the code. The work-
bench file uses the RDA configuration file, which includes all the information of

what primitives each workbench uses.

4.3. Diagnostics Primitives 36

4.3 Diagnostics Primitives

A primitive includes functionality to analyse and manipulate the data which the
application is using for the diagnostics. A primitive can include almost anything;
it can be used for monitoring a specific signal for filtering or any other processing
functions, doing searches from archive data or creating plots based on the acquired
data. One primitive can include many different features or many features can be

distributed between several different primitives.

An example of a simple primitive is included in Figure 4.3 in the previous section.
This primitive is monitoring a pressure difference of a hydraulic filter. It is also

calculating an estimate of remaining useful life of the filter with a prognostic rule.

The plan is to provide a primitive template file for the operator. It is not as easy
operation as providing the workbench template file, because there can be so many
different types of primitives required. In order to access to the data that is required
for the primitive, many different data interfaces needs to be provided. The data
may be processed with different ways in each primitive, so creating one template file
may be challenging.

4.4 Status Monitor

The monitoring features are one major requirement for the application. Because
the monitoring of the system should be easy, a status monitor was implemented.
Purpose of the monitor to collect the statuses of all equipment into one monitor,
which is located at top level layer and is always visible. With this monitor, it should
be fast and easy to see if there are warnings or alarms in the system. The prototype
version of the status monitor is presented in Figure 4.4. The same monitor is visible

in the picture of the prototype in the Appendix 1.

4.4. Status Monitor 37

Equipment statuses

=W CMM 1
W' Hydraulic filter clogging 1
& Radial drive motor currents 1
Bl i CMM 2
. Hydraulic filter clogging 2
Radial drive motor currents 2
Equipment 3
4 Equipment 4
Equipment 5
Equipment &
Equipment 7
Equipment &
Equipment 9
Equipment 10
Equipment 11
Equipment 12
Equipment 13
Equipment 14
$ Equipment 15

Equipment 16 J

4

L of of of of ol of of of of of o3

R R R R B R R R B R B R |

Figure 4.4 The status monitor. The monitor is implemented for collecting the equipment
statuses into one window.

The statuses are indicated with a symbol and a color. One equipment can include
several different statuses. By opening the tree, the operator can see all the statuses
of different devices and see where the problem is. In the example, CMM 1 includes
two items to be monitored. The top level status is indicating the worst case status of
all devices. In this example, the CMM 1 has red arrow down, because the ‘hydraulic
filter clogging 1’ primitive has an active alarm. The other device of the CMM 1 has
green symbol for indicating normal operation.

In the application, there are different symbols used to indicate statuses and severity
of the events. With a symbol, it is easier and faster to detect the status of the
equipment instead of text. Different symbols were created for the application and

they are presented in Figure 4.5

4.5. Event Monitor 38

Mot Available

®© ©

OK

Lower Limit Warning

Upper Limit Warning

[=

Warning

b

Lower Limit Alarm
Upper Limit Alarm

Alarm

© ©) <

Signal Failure

Figure 4.5 Severity levels for the status monitor and event list. The colors are repre-
senting severity levels and symbol types are representing the types of warnings and alarms.

The grey indicator means the equipment is not available or not in use. Green light
indicates that everything is running without faults. Yellow indicators are for warn-
ings; arrow down indicates the lower threshold warning and arrow up indicates upper
threshold warning. Circular yellow light is general warning symbol for faults, which
does not have upper or lower threshold limits. Red indicators are for alarms, and
they are used as yellow counterparts. Purple indicator is used if there is something
wrong with the signal, for example, if there is a sensor failure or the signal is totally
out of range. It is unclear if the purple symbol is needed or not, because the faulty

signal can be displayed also as an alarm.

4.5 Event Monitor

The event monitor is used like the previously mentioned status monitor, but instead
of the statuses, the event monitor collects all the events coming from the system into
one monitor. These events includes a severity level, a time stamp and a description
of the event. The event monitor of the prototype version is presented in Figure 4.6

and is also visible in the figure in the prototype version in Appendix 1.

4.5. Event Monitor 39

Event list
— 2
@ 2017-05-02 153:32:30 | CMM hydraulic power unit.
Return filter is clogged, change the filter.
£ 2017-03-02 15:31:25 | CMM hydraulic power unit.

Return filter is gradually clogging,
schedule filter change.

Filter Sort by Crder

Mone _‘ Time _‘ Descending \—' Clear event I'q

Figure 4.6 The event monitor. The events received from the equipment are displayed
here.

The events are created when the status of an equipment, device, component or a
primitive changes. The purpose of the event is to notify the operator that something
has occurred or there is something the operator should be interested in. The time
stamp is created at the same time when the event is created and the message and
severity level of the event are created by a primitive. Filtering options for the events

is available in order to make reading of the events more simplified.

For more simplified use of the event list, different options for the event list are
provided. With the filters it can be selected if all, only warnings or only alarms are
displayed. With the sorting option events can be sorted by time, severity level or
by event description. With the order option the events can be sorted to descending

or ascending order.

40

5. ANALYSIS OF THE REMOTE
DIAGNOSTICS APPLICATION PROTOTYPE

The prototype version of the RDA included about half of the features which were
in the requirements list. The prototype was meant to be the very first version of
the application. In this chapter, the current state of the RDA is reviewed. Also
the architecture of the prototype is compared to the ISO 13374 standard, which
provided guidelines for the application development process. The future plans for

the application are listed in the last section.

5.1 Current State (as of May 2017)

In May 17th 2017, the RDA met about 50% of all requirements given for developing
the prototype version. Missing features were based mainly on offline mode, which
was missing at this point. The offline mode includes history search operations. As
soon as the offline mode is fully implemented and integrated to the application, rest
of the missing features can be implemented and integrated to the application. The
lack of offline features was mostly caused by some problems with implementation

process.

Features which were already implemented and integrated to the application, were
running without problems. There was some bugs and error handling was incomplete,
but for demonstration purposes the application was running fine. There was still
some components, which were not very optimised, and those will be updated to

better implementations for the new versions of RDA.

A figure of the prototype version is in Appendix 1. In this figure, it is possible
to see all the components mentioned in Chapter 4. A signal generator is used
to get an example signal to the virtual oscilloscope monitor, which is the largest
finished component of the application. Purpose of the prototype was to prove, that
the architecture and development decisions used in the application are working as

expected and the future development is possible to continue.

5.2. The Prototype Compared to the ISO 13374 Standard 41

5.1.1 Demonstration of the Prototype

The prototype version of the RDA was scheduled to be ready in 17th of May. At
this day, the customer arrived to VI'T to see a live demonstration. It was supposed
to give them a live demonstration of the current state of the RDA, and to show
the features of the application. The prototype should have included features like
data acquisition, use of rules and primitives, and monitoring screens for equipment
statuses and event list. In addition, the templates for workbenches and primitives
were planned to be a part of the demonstration. With these templates it was demon-
strated, how the operators could edit and create new workbenches and primitives
by themselves. The previously mentioned offline features were meant to be in this

prototype version, but due to limited development resources, this part was left out.

During the demonstration, most of the data was simulated with sine wave created
by signal generator. With this simple data, it was possible to present capabilities of
the application. Every implemented component of the application were in operation
during the demonstration and introduced for the customer. The prototype satisfied

the customer expectations at this development phase.

5.2 The Prototype Compared to the ISO 13374 Standard

In section 3.6, the architecture guidelines of the standard were shortly reviewed.
Figure 3.6 included a reference model of the software architecture and Figure 3.7
included a monitoring reference model based on the provided reference architecture.
The prototype version of the RDA can be mapped with the guidelines, and the
purpose of this subsection is to compare the front end implementation with the

standard.

The front end implementation focuses on state detection and health assessment
blocks. The rules and the primitives can be considered as a combination of these two
blocks. The primitives are performing state detection operations, which determine
if the values are in the warning or in the alarm area. Primitives also are responsible
of health assessment, because they include the rules for diagnosing the health of the

system. The warnings and alarms are also indicating the diagnostics status.

The RDA has monitoring features for these two blocks, as there is also presented
in the standard. Different graphs are provided for the state detection operations.
With these, the operator can follow the values visually from the graphs, which can be

located in primitive layer. For health assessment, there are indicators for diagnostic

5.3. Future Plans 42

statuses. The statuses of state detection and health assessment are possible to see

from the status monitor, which collects all the statuses into one place.

The prototype version of the RDA includes simple prognosis example. It was made
for monitoring remaining useful life of a hydraulic filter. This example is presented
in the Figure 4.3. In the upcoming versions of the RDA, prognosis will be in more
important role. The prototype does not include advisory generation, and therefore

there is no recommended actions indicator either.

5.3 Future Plans

There is still a lot of things to do with the RDA in order to create high-quality
software. Suggestions for improvements and new features were given during the
prototype demonstration days. In the following subsections, some of the biggest
and most important features and improvements are described in more detail. These
subsections are not in the order of importance and are mostly RDA front end im-
plementation related. The future plans of other components of the RDA are not

included in this section.

5.3.1 Test campaign

The RDA should be tested in-depth in order to test the real performance of the ap-
plication. For example, there might be bottlenecks or problems with the robustness
in the application. The prototype was tested with single signal generator, which
itself was running on the same computer as the RDA. This consumes resources of

the computer and data transfer over the network is not tested.

There was only this one signal source for the RDA. In reality, the RDA will be
receiving the signals from many different sources. For this purpose, it is required to
create simulation network, in which several different computers are sending signals
to the main computer, in which the RDA is running. The application is made to
manage signals and events from 16 different equipment. One idea is to create a
test network, which consists of about twenty simulated signal sources. These signal
sources could be Raspberry Pi or Beaglebone Black computers. This would be a
good test environment and a proper stress test could be done with this kind of
equipment. Performance issues and the bottlenecks should be possible to find easily
if there are any. [13]

The second test case could include sensors, which are located in different places in

5.3. Future Plans 43

the VT'T building. These sensors could measure temperature, moisture and amount
of light. These sensors will send data to the RDA, which is tuned for these measures
to track these signals. Thresholds, primitives, status monitor and history search
could be used and tested by executing this kind of test case. This kind of test case
would test the long term stability of the application. [13]

Proper testing of the application will be time consuming. The RDA will be complex
and have a lot of separate components. Because of this, finding problems will take
a lot of time and it will be difficult to find all the problems before releasing the final
version of the RDA.

5.3.2 GUI Look-and-Feel Improvements and Web Browser In-
terface

There was no strict requirements for what the components of the application should
look like. The prototype was made with LabVIEW modern graphics palette. Despite
the name ‘modern’, the graphics of the prototype are quite simple and they will be
switched to silver theme provided by LabVIEW as soon as there is time for the
update operation. With the silver theme, the GUI would look better and more like

a real final application instead of a prototype version.

There is also a lot of different GUI packages available on the Internet. Modern flat
theme is considered to be one option for the next versions, because it would provide
more serious and modern look for the application. The default ‘modern’ graphics
are practical, but not very fancy or attractive. The silver theme is better, but some
graphical components of it are unnecessarily space consuming, and the edges of the
indicators are very rounded. It has more modern look compared to the ‘modern’

theme, but the graphics are still a bit too old looking.

The modern flat themes are provided as third-party add-ons, LabVIEW itself does
not include them. They are fancy and attractive, but before testing them, it is too
early say if they are practical enough for the RDA. The third part add-ons may have
some restrictions and all features may not be available. On the other hand, they
may provide something what LabVIEW can not provide. Differences between the
themes is illustrated in Figure 5.1. The flat theme in the figure is from DMC GUI
palette.

5.3. Future Plans 44

can cel m C ~ cel

Figure 5.1 Different cancel buttons in LabVIEW. Button on the left is the classic style
button, button on center is the silver style button and button on the right is the modern
flat style button. The prototype version is made with classic style. The flat style button is
third-party add-on provided by DMC.

One of the requirements for developing RDA was a web browser based user interface.
Current development tools does not support well creating GUI with web browsers,
but the upcoming LabVIEW 2017 version will have capabilities for that. This may
require additional work in order to create a new GUI suitable for the web browsers.
There is differences between different web browsers, which may cause some difficul-
ties. With a web browser based user interface it is easier to provide the user interface

for different computers.

5.3.3 More Automatic Application

Currently the RDA configuration file is edited manually, which should be avoided in
the future. In the final version of the RDA, almost everything should be done auto-
matically. For example, adding the workbench files should be possible with pressing
only one button on the screen. When the operator clicks ‘add new workbench’, the
application will add all required files to the configuration file automatically. Cur-
rently it is required to add all the files and information manually to the configuration
file. When editing this file manually, there might occur user errors. For example,
adding one workbench to the configuration file without a memory list of what files
should be included to the file is almost impossible, because there are many phases
in editing the configuration file. With automation, all required files are added at

once without risk of an user error.

This is just one example of many automatic operations of the application. Every-
thing which is possible to do automatically should be changed to work automatically.
This saves time and makes using the application more effective. The operators can

concentrate on using the application instead of adjusting and tuning it.

The workbench and primitive templates should be very simple. The workbench
template is already very simple and easy to use, but the primitive template requires

5.3. Future Plans 45

more attention. One primitive template is not compatible with all kind of diagnos-
tics need in the RDA. In order to provide good templates for different purposes, the
example primitives should be created. With this way it is possible to see what com-
ponents are needed with different types of primitives. When it is learned what the
different primitives require, it is possible to create good templates for different pur-
poses. It is not intended that creating new primitives should happen automatically,

but it should be as easy as possible for the operators of the application.

46

6. CONCLUSIONS OF THE PROJECT

The aim of the project was to develop a prototype version of the Remote Diagnostics
Application for the remote handling systems of ITER. The focus of this thesis was on
developing the front end implementation for the application. A new application was
developed instead of using ready solutions on the market, because those solutions
did not meet the requirements set by ITER at a satisfactory level. The application
was developed in co-operation by VI'T and TUT.

The application was developed primarily for monitoring the remotely controlled
maintenance systems of ITER. The requirements for the customisability of the ap-
plication caused architectural problems to solve. It was also required, that new rules
had to be possible to add to the application without recompiling the whole appli-
cation. These requirements were covered with the solutions provided by LabVIEW,

which was the development platform for the application.

The three-layered architecture was implemented for the application to satisfy these
requirements. The architecture was created by using sub panels and dynamic struc-
tures, which were available in LabVIEW. The implemented architecture consists of
three different layers; the top level layer, the second level ‘workbench’ layer and
the third level ‘diagnostics primitive’ layer. This architecture allowed aborting and
starting different components of the application without the need of aborting the
top level layer of the application. This kind of flexibility covered the requirements

for the architecture of the application.

The application also had many other requirements stated by ITER. Some of the
requirements were quite loose without strict definitions, how the features should
be implemented. This allowed different approaches for implementations of different

components of the application.

The prototype version of the Remote Diagnostics Application was demonstrated for
the customer in May 2017. The demonstration was successful despite the fact, that
some of the features were still under development during the demonstration day. The

customer was satisfied with the prototype version and feedback was mostly positive.

6. Conclusions of the Project 47

The architecture of the application matched well with ISO 13374 standard, and the

architecture and the front end implementation were working as expected.

There are still many requirements to cover and new features to implement. Because
of the complexity of the application and amount of features, finishing the application
will take a lot of time. There is a long list of future plans for the upcoming versions
of the application. The development process has been running all the time since
the demonstration and new features are already in implementation and integration

processes in order to create a new version of the application.

48

REFERENCES

1]
2]

3]

4]

5]

(6]

17l

18]

19]

[10]

[11]

J. Alanen, Senior Research Scientist, VTT.

J. Alanen, K. Haataja, O. Laurila, J. Peltola, I. Aho, Diagnostics of mo-
bile work machines, VTT Research Notes 2343, VTT Technical Research
Centre of Finland, Tampere, 2006, 122 p. Available (accessed 13.9.2017):
http:/ /www.vtt.fi/inf/pdf/tiedotteet /2006 /T2343.pdf.

A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxon-
omy of dependable and secure computing, IEEE Transactions on Dependable
and Secure Computing, Vol. 1, Iss. 1, 2004, pp. 11-33.

Development Life Cycle Models, National Instruments Corporation, web
page. Available (accessed 29.08.2017): http://zone.ni.com/reference/en-
XX/help/371361P-01/lvdevconcepts/lifecycle _models/.

Electropedia, IEC, web page. Available (accessed 13.7.2017):
http://www.electropedia.org/.

Inserting the ship into the bottle, ITER Organization, web page. Available
(accessed 20.06.2017): https://www.iter.org/newsline/singleprint /- /2131.

ITER, ITER Organization, web page. Available (accessed 20.06.2017):
https://www.iter.org/.

C.K. Mechefske, Machine Condition Monitoring and Fault Diagnostics, in:
C.W. de Silva (ed.), Vibration and Shock Handbook, CRC Press, Florida, USA,
2005, pp. 25-1 — 25-35.

A. Naukkarinen, VTT and TUT major players in the finalization of
ITER maintenance robots, web page. Available (accessed 20.06.2017):
http:/ /www.tut.fi/en/about-tut /news-and-events /vtt-and-tut-major-players-
in-the-finalization-of-iter-maintenance-robots-p070846¢2.

M. Niemeld, J. Nurmi, J. Alanen, R. Salokangas, O. Saarela, Selection of Data
Analysis Software, VI'T, Tampere, unpublished report, 2016, 54 p.

M. Nyberg, Model Based Fault Diagnosis Methods, Theory, and Auto-
motive Engine Applications, Linkoping Studies in Science and Technol-
ogy. Dissertations No. 591, 1999, 271 p. Available (accessed 13.9.2017):
https://www.fs.isy.liu.se/Publications/PhD /99 PhD 591 MN.pdf.

[12]
[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

49

O. Saarela, Senior Research Scientist, V'I'T.
H. Saarinen, Senior Research Scientist, VT'T.

O. Saarinen, J. Alanen, H. Saarinen, J. Nurmi, L. Aha, Requirements and

Acceptance Test specification, VI'T, Tampere, unpublished report, 2016, 42 p.

I. Sample, Iter: Flagship fusion reactor could cost twice as much as
budgeted, The Guardian, web page. Available (accessed 20.06.2017):
https://www.theguardian.com/science/2009/jan /29 /nuclear-fusion-power-

iter-funding.

SEFS-ISO 13374-1, Condition monitoring and diagnostics of machine systems.
Data processing, communication and presentation. Part 1: General guidelines,
Suomen Standardoimisliitto SF'S ry, Helsinki, 2011.

S. Vassileva, L. Doukovska, V. Sgurev, Al-based Diagnostics for Fault Detection
and Isolation in Process Equipment Service, Computing and Informatics, Vol.
33, Iss. 2, pp. 384-409.

J. Watton, Modelling, Monitoring and Diagnostic Techniques for Fluid Power,
Springer, London, 2007, 360 p.

What is LabVIEW? electronics-notes.com, web page. Available (ac-
cessed 20.08.2017): https://www.electronics-notes.com /articles/test-
methods/labview /what-is-labview.php.

What Is LabVIEW? National Instruments, web page. Available (accessed
20.08.2017): http://www.ni.com/en-gb/shop/labview.html.

20

NOILYOddY dOLs 7 _ saupuaqpiom mau poduu| _ _nﬁ__ue_sgszmasu_x

A A9YINT uonedijddy sonsoubeiq ajoway

| [apag [wwl [N
Jouz 53y 33inos 0 spo> [svaes 18p10 fqyos sed

T

re—
T ULlPUUT BN UE'S @l
£1eubis 1533 WIND £
6212uB1s 1531 WIND 62°S Bl
g21eubis 1593 WD 87°S Y
Lzeubis 3533 WD £2°S
921eubis 1523 WD 97°C
sz1eubis 1521 WIND 57's B
rzIeubls 1523 WIND #2°S
£zleubis 1533 WD £2°S
221eubis 153 WD 22°S
121euBis 3533 WD 12'S
02/eubls 1523 WIND 02°S
zIeubis 1531 WIAD 7 aBuey? 523y 3ynpayds
6L12UBIS 3533 AN 61°C ‘BuibBop> Ajjenpesd st szl wingey
gl1eubis 31523 WD 81'S “yun ramod JnepAy WD | SZHLENSL 20-50-L102
L1eUBIS 3533 WIND 1" 31y 33 3Buey> pabBo 51 Py UINPY
911eubis 1523 WD 91°C “yun samod JnespAy WIND | 0EiZESL 20-50-L102 @)
S11eubis 3533 WIND SL'S
PLIUBIS 1533 NN 1
£11eubis 3593 WIND €1 sl Juanz
2ieubis 1593 WND 21
LL1eubis 3533 WD L1 E jl, suoN
0L1RuBIS 1533 NN 0L

L1eubis 3533 WD) | dus-diy

94 peo: -3

¢L wswdinby @ [
= 1 wawdinby @ &
ainssaid pod ui sayy Addns g WIAD 1 £1 wawdinby @ &

saanssaid a3 ues pue Ajddns naH WIAD £ 21 wawdinby @ &
s21qeuep [E 11 wawdinby @) @

swappoma 0 = 0l wswdinby @

301 ppoMBNWWOY (D) s uswdinby @ [

2d10 LW D E g wawdinby @ [

ey a3 L wawdinby @ =

9juswdinby @ &
= N ¢ iuawdinby @ @
yuawdinby @ &
dins-dyy ¢ wawdinby @
2 ssund Jojow pey @
2 buibbop =3y nespiy W

fepano wioganep

Ry bunssy seRWerRd uoneinbyuos gg3

J= €) sydeig sy spuaiy (O BT d01S uomisinbay e3eq RS T
[zH] Aouanbayy bundwes uoi3pes 101 uedsauun) | 6uibBop> sy Jynesph @
LWND

sasnjeys Juawdinby

404
Noisnd

NOILVLNIWNITdINI
AN3d LNOdd NOILVII1ddV SOILSONDVIA 31 0NW3d 'T XIAN3IddV

