
PINJA KUOSMANEN
DATA MINING ON DEFLECTOMETRIC DATA OF SURFACE
DEFECTS
Master of Science Thesis

Examiners: Tapio Elomaa,
Simo Ali-Löytty
Examiners and topic approved
9.8.2017



II

TIIVISTELMÄ
TAMPEREEN TEKNILLINEN YLIOPISTO
Teknis-luonnontieteellinen
Pinja Kuosmanen: Tiedonlouhintaa pintavauriodatalla
Diplomityö, 70 sivua, 5 liitesivua
Elokuu 2017
Pääaine: Matematiikka
Tarkastajat: Tapio Elomaa, Simo Ali-Löytty
Avainsanat: pintavaurioiden havainnointi, maalipinnan automaattinen laaduntarkkailu,
koneoppiminen, tiedonlouhinta

Auton maalipinnoilta löytyy usein pieniä virheitä, jotka vaativat korjaustoimen-
piteitä. Tässä työssä sovelletaan tiedonlouhinnan ja koneoppimisen menetelmiä, eri-
tyisesti luokittelua ja klusterointia, auton maalipintoihin liittyvään aineistoon, joka
kerätään robotti-avusteisen reflectCONTROL-mittausjärjestelmän avulla. Järjestel-
män valmistaja on saksalainen Micro-Epsilon GmbH & Co. KG. Työssä tutkitaan
automaattisen virheenluokittelun mahdollisuutta koneoppimista hyödyntäen sekä
pyritään keräämään uutta tietoa datasta klusteroinnin avulla.

Työ on jaettu teoreettiseen ja empiiriseen osaan. Teoreettisessa osassa esitellään
koneoppimiseen liittyvät peruskäsitteet ja menetelmät, joita hyödynnetään empiiri-
sessä tutkimuksessa. Luokitteluun käytetään kahta eri algoritmia; satunnainen met-
sä -luokittelijaa ja tukivektorikonetta. Klusterointiin käytetään kolmea eri algorit-
mia, joita ovat k-means, Affinity Propagation ja HDBSCAN. Lisäksi työssä hyödyn-
netään kahta eri dimension vähentämismenetelmää, joita ovat pääkomponenttiana-
lyysi ja t-SNE. Myös pistepilvi histogrammi -menetelmää sovelletaan 3D-dataan ja
tutkitaan mahdollisuutta hyödyntää sen perusteella laskettuja attribuutteja luokit-
telussa ja klusteroinnissa. Suurimman haasteen tutkimukselle aiheuttaa käytössä
olevan aineiston vinouma eri virheluokkien koon suhteen.

Empiirisen tutkimuksen perusteella satunnainen metsä -luokittelija ja tukivekto-
rikone tuottavat hyvin samankaltaisia luokittelutuloksia sekä binäärisessä että usean
luokan tapauksessa. Usean luokan tapauksessa tulokset osoittavat, että käyttämäl-
lä tasapainotettua dataa, on mahdollista erottaa eri virheluokat toisistaan. Voidaan
myös todeta, että datalla on sisäinen rakenne, joka kuitenkaan ei vastaa ulkoisesti
määriteltyä virheluokitusta. Tulokset viittaavat siihen, että pistepilvi histogrammi
-menetelmän avulla lasketut attribuutit eivät paranna luokittelutuloksia merkittä-
västi, mutta klusteroinnissa parantavat sisäisen rakenteen vastaavuutta ulkoisen vir-
heluokituksen suhteen. Nämä tulokset ovat lupaavia jatkon kannalta, sillä niiden pe-
rusteella voidaan olettaa, että klusterointia voidaan käyttää ennalta luokittelemat-
tomaan aineistoon. Lisäksi voidaan olettaa, että erityyppisten virheiden erottaminen
toisistaan on mahdollista, kunhan aineiston vinouma otetaan huomioon.



III

ABSTRACT
TAMPERE UNIVERSITY OF TECHNOLOGY
Science and Engineering
Pinja Kuosmanen: Data Mining on Deflectometric Data of Surface Defects
Master of Science Thesis, 70 pages, 5 appendix pages
August 2017
Major: Mathematics
Supervisors: Tapio Elomaa, Simo Ali-Löytty
Keywords: surface defect recognition, automated surface inspection, machine learning,
data mining

The objective of this thesis is to apply machine learning and data mining methods,
especially classification and clustering, onto deflectometric data of surface defects
found on car bodies. The data is acquired via robot-assisted automated surface
inspection system, manufactured by Micro-Epsilon GmbH & Co. KG, called re-
flectCONTROL. The measurement method of reflectCONTROL is based on Phase
Measuring Deflectometry. The aim is to explore the possibility of automated defect
classification via learning algorithms, and to gain new insight about the deflecto-
metric data obtained from surface inspection process via clustering.

This thesis is divided into theoretical part and empirical part. Basic concepts
of machine learning and methods used in empirical evaluation are introduced in
the theoretical part. The methods include two classification algorithms; Random
Forest Classifier and Support Vector Machines. The three clustering algorithms used
are k-means, Affinity Propagation and HDBSCAN. Furthermore, dimensionality
reduction methods, such as Principal Component Analysis and t-SNE are included.
In addition, the possibility of using Point Feature Histograms in the context of
deflectometric data and feature generation is explored. The biggest challenge related
to this research is that the data set used is highly unbalanced, the biggest class
dominating over others in the learning tasks.

The empirical study indicates that Random Forest Classifier and Support Vector
Machines perform very similarly in classification tasks. Furthermore, it is possible to
distinguish between different classes using multiclass classification on balanced data.
It was also found via silhouette analysis and dimensionality reduction, that internal
structure exists in the data, but it does not correspond to the human-assigned class
labels of the defects. Finally, the study indicates that Point Feature Histogram-based
features do not improve the classification performance significantly, but are helpful
in clustering tasks by improving the correspondence between internal structure and
human-assigned labels. The results of this study are promising for further research,
suggesting that it is possible to conduct research on unlabeled data via clustering,
and distinguish between different defect classes using appropriately selected data.



IV

FOREWORD
This thesis is a continuation to previous work done by field experts at Micro-Epsilon
GmbH, and it is written as completion to my Master’s degree in Science and Engi-
neering at Tampere University of Technology. I have been very fortunate to be able
to work with this interesting project, and gain experience and skills that I had never
imagined. This thesis has also been very important for me, as it has confirmed that
the field of data science is something I would like to build my future career on. Most
importantly, I have enjoyed every minute of this journey. This is due to having the
best possible support during the entire project, thanks to awesome people at Micro-
Epsilon, especially Mr. Reiner Kickingereder, who has made it possible for me to
grow as a professional. I would like to sincerely thank Mr. Thomas Wisspeintner
and Micro-Epsilon for giving me this opportunity and for all the hospitality during
my visits in Ortenburg, Germany.

This project would not have been the same without my supervisors at TUT. I
would like to thank Professor Tapio Elomaa and University Lecturer Simo Ali-Löytty
for finding the time to supervise this thesis and for arranging peaceful surroundings
for me to work in. It has been invaluable to have multiple advisers and versatile
views of the topic. I would also like to thank Mrs. Liisa Kuulasmaa, my mathematics
teacher at junior high school, who was the first person to teach me the fascination
of mathematics as well as the importance of hard work. At that time, making me
do something that felt like endless number of assignments, later proved to be the
vital and necessary foundation to succeed in my studies.

Last, I would like to tank my family, father Jouko, mother Minna-Kaisa and
brother Patrik, for endless love, support, and encouragement. I have always been
able to make my own decisions and choose my own paths, but sometimes a tiny push
to the right direction at the right moment has been just what I needed to reach this
point. Thanks to my family, the attitude towards the importance of education, and
the urge of being the best version of myself have always been something to consider
self-evident. I would also like to thank my friends, who have been there for me
during my studies in Helsinki and Tampere, you have made these years worthwhile.

Tampere, 22nd of August 2017

Pinja Kuosmanen



V

CONTENTS
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Theoretical Background and Premise . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Phase Measuring Deflectormetry . . . . . . . . . . . . . . . . . . . . . 3
2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Supervised learning and classification . . . . . . . . . . . . . . . . 7
2.3.2 Classification performance evaluation . . . . . . . . . . . . . . . . 10
2.3.3 Unsupervised learning and clustering . . . . . . . . . . . . . . . . 12
2.3.4 Clustering evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Classification algorithms . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Clustering algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Creating and combining features . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 24
3.2.2 t-SNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Point Feature Histograms . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Description of the Data . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Classification methods . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Clustering methods . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.5 PFH methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Random Forest Classifier results . . . . . . . . . . . . . . . . . . . 38
4.1.2 Support Vector Classifier results . . . . . . . . . . . . . . . . . . . 39
4.1.3 Multiclass classification results on balanced data set . . . . . . . . 42

4.2 Clustering results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 Determining clustering tendency . . . . . . . . . . . . . . . . . . . 44
4.2.2 Internal evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 External evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Classification results with PFH-features . . . . . . . . . . . . . . . . . 49
4.3.1 Selecting the best features . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Random Forest Classifier . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Support Vector Classification . . . . . . . . . . . . . . . . . . . . . 53
4.3.4 Multiclass classification on balanced data set with new features . . 55



VI

4.4 Clustering with PFH-features . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1 Clustering tendency . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2 Internal evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.3 External evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.Surface plots of multiclass classification results . . . . . . . . . . . . . . . .
B.Fitting the gaussian function . . . . . . . . . . . . . . . . . . . . . . . . . .



VII

LIST OF ANNOTATIONS AND ABBREVIATIONS

AI Artificial Intelligence
AP Affinity Propagation
PCA Principal Component Analysis
PFH Point Feature Histogram
PMD Phase Measuring Deflectormetry
SVC Support Vector Classification
SVM Support Vector Machine
t-SNE t-Distributed Stochastic Neighbor Embed-

ding

a(i) Intra-cluster mean distance for instance xi

acc(y, ŷ) Fraction of correct predictions in classifica-
tion

ava(i, j) Availability in Affinity Propagation
AMI Adjusted Mutual Information
ARI Adjusted Rand Index
b(i) nearest inter-cluster mean distance for in-

stance xi

C Confusion matrix
C Ground truth class labeling
Costt−SNE Cost function of t-SNE algorithm
d Dimension on an instance
δ Any distance metric between two points
δE Euclidean distance between two points
EmpLoss0/1,E Empirical loss of the set E of examples
E Set of all possible input-output pairs (ex-

amples)
E Expected value
e Vector of all ones
Fog Original features
Fgauss Gaussian features
FPFH PFH features
F1 Original and gaussian features
F2 Combination of best features
G Cluster labeling
GenLoss0/1 Generalization loss of a hypothesis
h : X → Y Hypothesis



VIII

h⋆ Best hypothesis
ĥ⋆ Estimated best hypothesis
H(C) Entropy of the classes in C

H(C | G) Conditional entropy of the classes given the
cluster assignments

H Hypothesis class
K Kernel function
k Number of clusters (or number of folds in

cross-validation)
KL Kullback-Leibler divergence
S Covariance matrix
L0/1 Zero-one loss of a hypothesis
l Number of pairs of instances that are in

same cluster and same class
m Number of pairs of instances that are in dif-

ferent cluster and same class
MI Mutual Information
n Number of examples
pi Point of a three dimensional surface
P (X, Y ) Prior probability distribution over the set

of examples
R Regularization parameter
RI Rand Index
res(i, k) Responsibility in Affinity Propagation
⟨x, y⟩ Training example
x Instance
x1, · · · , xd Features / attributes
Xi Range of an attribute
X Instance space
y Output variable
y Vector of all output variables
Y Set of output variables
c Completeness
s Silhouette score of a clustering
s(i) Silhouette Coefficient of an instance xi

sim(i, j) Similarity between points in Affinity Prop-
agation

h Homogeneity



IX

max_depth Maximum depth of the tree for Random
Forest

max_features Size of random subsets of features in Ran-
dom Forest

min_samples_split Minimum number of samples required to
split an internal node in Random Forest

n_estimators The number of trees in Random Forest



1

1. INTRODUCTION

Automatic surface inspection is an important part of quality control in several man-
ufacturing fields, including automotive industry. Painted car bodies usually have
small defects in the paint coat, which require detection and possibly reworking. The
paint is meant to protect the surface, but perfectly painted surface is also an emo-
tional measure of quality for the customer. The detection of these defects performed
by human experts is time-consuming, costly, and subjective. Hence, automated sur-
face inspection is desirable for manufacturing companies. There are several different
defect types, that can occur on the painted surface, e.g. inclusions, craters, dents,
condensates, and paint runs. These defects can occur in the top coat layer, but also
below the top coat, in the lower paint layers.

One possible method to measure reflective surfaces, such as painted car bodies, is
Phase Measuring Deflectormetry. This method is used in the surface inspection by
Micro-Epsilon GmbH & Co. KG. The robot-assisted system based on Phase Mea-
suring Deflectormetry is called reflectCONTROL, and it already offers detection of
all relevant defect types based on defect size. However, defects of the same size can
actually belong to separate categories, which poses a challenge to the automation
of defect recognition. So far the recognition of different kinds of defects is only per-
formed by human experts. In this thesis, machine learning algorithms are applied to
the deflectometric data acquired from the surface inspection process of reflectCON-
TROL. The objective is to explore the possibility of automated defect classification
via supervised and unsupervised learning. Different algorithms for clustering and
classification tasks are applied on the data, and the performance of these algorithms
are compared in order to see if distinct algorithms perform similarly on these tasks.

The two methods chosen for classification task are Random Forest Classifier and
Support Vector Classifier. Random Forests are decision tree based ensemble learning
method. Support Vector Classifier is a learning method based on finding the best
separating decision boundaries between distinct classes, which involves optimization
of a loss function. For clustering, the methods chosen are k-means, Affinity Prop-
agation, and HDBSCAN, which all are very different from each other. k-means is
a very traditional clustering algorithm, which uses inertia as minimization criteria.
Inertia can be seen as the measure of internal coherence. Affinity Propagation is a
clustering method based on passing messages between data points by viewing each



1. Introduction 2

data point as a node in a network. The messages are then recursively transmit-
ted along the edges of the network until a good set of cluster centers or exemplars
is obtained. HDBSCAN, in turn, is a density-based and hierarchical method ex-
tending DBSCAN. Both Affinity Propagation and HDBSCAN do not require the
number of clusters to be determined before running the algorithm whereas k-means
does. Clustering results are evaluated for different numbers of clusters with each
algorithm.

One part of the research done for this thesis is exploring the possibility of us-
ing Point Feature Histograms to create more features for classification and cluster-
ing tasks, as well as exploring whether these features are useful in the context of
deflectometric data. Point Feature Histograms are a statistical representation of
three-dimensional shapes, and they are commonly applied in 3D object recognition.
Classification and clustering are first performed on the deflectometric data with-
out these features, and then repeated using the features obtained based on PFH
descriptors in order to compare the results with the original ones. Based on the
findings of this thesis, the performance of Point Feature Histogram descriptors on
deflectometric data is evaluated.

In Chapter 2, theoretical background related to Phase Measuring Deflectormetry
and reflectCONTROL is introduced. Furthermore, related work in the field of auto-
matic surface inspection and defect recognition is briefly overviewed in order to give
the reader an impression about the previous work done in the field. In addition,
the basic concepts of machine learning, classification, and clustering are defined to-
gether with the notations used in this thesis. A small example is given to clarify
these notations. Finally, the metrics used in empirical evaluation are explained in
more detail.

In Chapter 3, the learning algorithms used in empirical evaluation are first in-
troduced. Two dimensionality reduction techniques, Principal Component Analysis
and t-SNE, are also explained together with Point Feature Histograms and related
descriptors. The data set and its features are as well as preprocessing steps also
explained. Finally, three research questions are determined and before going into
results, the steps taken in empirical evaluation in order to answer to the research
questions are described.

In Chapter 4, results of empirical evaluation are presented. The results are divided
into classification and clustering tasks, and in more detail, into results obtained with
different algorithms. Finally, some discussion about the different results as well as
answers to some of the research questions are given. In Chapter 5, the research
questions are then answered in detail. After answering to the research questions,
some suggestions for future work are discussed.



3

2. THEORETICAL BACKGROUND AND
PREMISE

In this chapter, the theoretical background related to Phase Measuring Deflectorme-
try together with its implementation by Micro-Epsilon GmbH & Co. KG are intro-
duced. In addition, related work in the field of automatic surface inspection and
defect recognition is briefly overviewed. In the last section, the basic concepts and
notations related to machine learning, classification, and clustering are defined and
illustrated via small example data set. For both classification and clustering tasks,
the metrics used in empirical evaluation are explained in more detail.

2.1 Phase Measuring Deflectormetry

Phase Measuring Deflectormetry (PMD) was introduced by Knauer et al. as a
method to measure the shape of specular free-form surfaces [15]. The basic princi-
ple is to reflect and phase shift sinusoidal patterns on the inspected surface, and to
observe the patterns reflected via the surface with a camera setting [15]. The chal-
lenge in measuring reflective free-form surfaces is that the surfaces and structures
on the surfaces are not really visible, but only their effect can be detected through
the reflection of incoming light. This is because any structures on the surface lead
to distortions of the reflected patterns. These disortions can then be detected and
evaluated by a software, and image processing algorithms can be used to reconstruct
the surface. The basic setup used in Phase Measuring Deflectometry is described in
Figure 2.1.

reflectCONTROL

reflectCONTROL from Micro-Epsilon GmbH & Co. KG is a robot-based surface
inspection system for automotive and other industries based on phase measuring
deflectometry. The objective is to allow fast, fully automated in-line inspection with
high detection rate for all defect types. Currently, the surface inspection system
already offers detection of all relevant defect types as well as optional automated
marking of found defects based on defect size. Using image processing algorithms,
measurement data can be converted into three channels: local curvature, reflectivity,
and base intensity. These channels are then evaluated in order to detect anomalies



2. Theoretical Background and Premise 4

Figure 2.1: Measurement principle of Phase Measuring Deflectometry (courtesy of Micro-
Espilon).

(defects) and to allow 3D-reconstruction of the recognized defects. However, the au-
tomated classification is limited to categorization based on defect size, while defects
of the same size can actually belong to separate categories, e.g. inclusions, craters,
dents, and paint runs. So far the recognition and separation of different kind of
defects from another can only be performed by human inspectors. The robot set-
ting of reflectCONTROL can be seen in Figure 2.2. The objective of this thesis is
to implement machine learning methods, especially classification and clustering, to
gain new information about the structure of the data obtained from described sur-
face inspection process (reflection data), and to explore the possibility of automated
defect classification via supervised learning.

2.2 Related work

Automatic surface inspection is an important part of quality control in several man-
ufacturing fields. Manual surface inspection is subjective, repetitive process, and
prone to errors as it is performed by human experts. Automation is often desirable
in order to replace exessive manual work and improve accuracy of defect detection.
Hence, there has been many efforts in the past decades to improve the surface in-
spection process and automation. According to Karbacher et al., the small defect
detection problem on shiny surfaces was first solved by detecting curvature changes
from reflected light [14]. These kind of approaches are usually known as deflecto-
metric approaches. The challenge with 2D methods is that the reflection depends



2. Theoretical Background and Premise 5

Figure 2.2: The robot setting of reflectCONTROL. Photo provided by Micro-Epsilon.

on the local orientation of the surface [14].
In 1999, Karbacher et al. demonstrated a method to visualize small defects

on car bodies using 3D sensors and signal processing [14]. They also developed a
case-based reasoning algorithm for a German car company for defect analysis and
classification. The algorithm decides whether the candidate really is a defect and
furthermore, whether it is relevant. The motivation was to simplify the repairing
process by detecting the defects before applying varnish on top.

In 2000, Lilienblum et al. described a method for an automatic detection of
small dents in car bodies [17] combining 3D optical measurement system with neural
networks. The 3D system used in [17] is a photogrammetrical method with improved
spatial resolution. For automatic defect recognition, Lilienbaum et al. use neural
networks by calculating the difference between master and measured workpiece.
The limitations of their method follow from high requirements for the adjustment
of master and measured workpiece [17]. According to the empirical measurements,
an automatic detection of dents with a height of 20µm is possible with the method.

In 2004, Jia et al. described a real-time visual inspection (machine vision) system
for steel manufacturing quality control, using SVMs to automatically learn defect
patterns [11]. Based on experimental results on image data from hot rolling manu-
facturing, they found the proposed system to be effective in detecting steel surface
defects; the speed of the system being less than 6 ms per one megabyte image. They



2. Theoretical Background and Premise 6

furthermore conclude that experimental results demonstrate the potential of SVMs
as promising classifiers for defect detection in real-time manufacturing environment.

In 2006, Döring et al. continued their previous work in the field of automatic
quality assessment of car body parts in order to achieve a higher reliability of the
defect detection [4]. They show that more accurate classification models can be built
on the basis of a preprocessed, more consistent training set. They use partially su-
pervised learning strategy to improve previous classification accuracy on unbalanced
data set, and demonstrate improvement on average test accuracy between 2.93% and
5.88%, depending on the used method. In the experiments with unmodified data,
they achieved the average classification accuracy of 74.97% on the training data,
and 76,56% on the test data. For classification they implement decision trees, fuzzy
decision trees, NEFCLASS, and mixed fuzzy rules, from which the decision trees per-
formed with best average accuracy. They also combine unsupervised classification
(clustering) with supervised methods.

In 2009, Jones and Aoun extended the work done by Gary Bradski at Willow
Garage on point cloud based object recognition by applying a machine learning ap-
proach [12]. They demonstrated how histograms calculated from 3D point clouds
can be used in a machine learning algorithm in object recognition and classification.
In their experiments, they used histograms based on normal vectors, similar to ones
proposed by Rusu et al. in [31] (discussed later), together with SVM classification.
Their experiment data consists of 3D point clouds of IKEA models with 40 examples
of each model. They concluded that combining point cloud histograms with ma-
chine learning algorithms is a good approach for solving the multi-class classification
problem on a point cloud data.

In 2011, Kamani et al. proposed a new computer vision system for automatic
painted car body inspection in the context of quality control [13]. They combined
computer vision with Bayesian classifier in order to detect predict the type of the
detected defect. They used both synthetic and real defects on their experiments,
showing that the proposed system achieved a high defect detection and classification
rate, average accuracy reaching 96,2% for six different defect types.

2.3 Machine Learning

Machine learning has evolved out of artificial intelligence (AI) and since then has
formed a dominant subfield concerned with creating algorithms and computer sys-
tems so that a machine can learn by accumulating experience through data, systems,
and programs [10]. Thus, the goal of machine learning is to improve machine’s per-
formance over time on specific tasks by accumulating experience. The general idea
behind machine learning is such, that the computer learns to perform task by study-
ing a training set of examples [18].



2. Theoretical Background and Premise 7

The most well-known types of machine learning problems are problems involving
classification and clustering. Today machine learning is applied to a range of do-
mains including security heuristics, image analysis, deep learning, object recognition,
and pattern recognition [18]. It is also common in the machine learning community
to divide learning problems into various categories, two of which are supervised
learning and unsupervised learning. Supervised learning is a machine learning term
for predictive data mining, whereas unsupervised learning is also known as descrip-
tive data mining [10]. In fact, most methods used in data mining are related to
methods developed in machine learning [10]. In this thesis, both descriptive and
predictive data mining methods are applied, since it is of interest to find inherent
structures and trends as well as build models for classification task.

2.3.1 Supervised learning and classification

In the supervised machine learning setting, an example is a tuple ⟨x, y⟩, where the
d-dimensional instance x = ⟨x1, . . . , xd⟩ records the values of features (attributes)
xi ∈ Xi, i = 1, . . . , d and y is the corresponding output variable [22]. Let n denote
the number of examples. The range of an attribute as well as the output can
be either categorical or continuous: E.g., X1 = {red, green, blue} and X2 = R.
Categorical output variable yields a classification problem whereas continuous one
yields a regression problem [10]. Classification problems are also divided into binary
classification and multiclass classification based on the number of possible output
categories [22]. In binary case, there are only two possible output values, e.g. Y =
{1,−1}, whereas in multiclass case, there are more than two possible output values,
one of which each instance is then being assigned: e.g: Y = {red, green, blue, green}.

Let X = X1 × . . . × Xd be the instance space. The examples are then sampled
from the application domain based on a prior probability distribution P (X, Y ) [27].
In classification one aims at learning a hypothesis h : X → Y . The hypothesis can
be used to predict the class of a previously unseen instance x. The goodness of
a hypothesis is measured by its accuracy. Let us formulate accuracy through the
zero-one loss L0/1 of a hypothesis. The following formulation is adapted from [22]
and [27].

L0/1(y, ŷ) =

⎧⎪⎨⎪⎩0, if y = ŷ

1, otherwise.
(2.1)

Zero-one loss counts all the erroneous predictions with the same weight, but in
some situations it is more convenient to formulate such loss function, that takes the
gravity of an error into account. Let E denote all possible input-output examples.



2. Theoretical Background and Premise 8

The expected generalization loss for a hypothesis h is

GenLoss0/1(h) =
∑

⟨x,y⟩∈E

L(y, h(x))P (x, y). (2.2)

The best hypothesis h⋆ is the one with the minimum expected generalization loss
from a fixed hypothesis class H.

h⋆ = arg min
h∈H

GenLoss0/1(h). (2.3)

However, P (x, y) is usually unknown and, hence, the learner can only estimate
generalization loss with empirical loss on the set of examples E:

EmpLoss0/1,E(h) = 1
n

∑
⟨x,y⟩∈E

L0/1(y, h(x)). (2.4)

The estimated best hypothesis ĥ⋆ is then

ĥ⋆ = arg min
h∈H

EmpLoss0/1,E(h). (2.5)

Finally, the accuracy of a hypothesis can be formulated using empirical loss:

acc(y, ŷ) = 1− EmpLoss0/1. (2.6)

To clarify these notations, a brief example is given using Teaching Assistant
Evaluation Data (TAE data) (Figure 2.3) from UCI Machine Learning Repository
[16]. Figure 2.3 contains only a small subset of the entire TAE data set.

Example 2.3.1. TAE data set of n = 20 examples consists of five categorical
attributes and one numerical attribute together with categorical output variable
"Class", which refers to evaluation of teaching performance. The possible scores are
1 = Low, 2 = Medium, 3 = High. Hence, Y = {1, 2, 3}, and each row of this data set
corresponds to one example ⟨xi, yi⟩, where i = 0, . . . ,19. Each xi records the values
of six attributes: "Native English Speaker", "Course Instructor", "Course", "Summer
or Regular semester", and "Class size". Thus, each xi is a 6-dimensional instance.
Note that, for example, "Class size" is a numerical attribute, whereas "Summer or
Regular semester" is a binary categorical attribute and hence, XClassSize = N whereas
XSummerOrRegular = {1, 2}. Using the notations introduced above, it is now possible
to write the example located on the first row of the data set in Figure 2.3 as ⟨x0, y0⟩,
where the instance is x0 = ⟨1, 23, 3, 1, 19⟩ and the corresponding output is y0 = 3.

♢



2. Theoretical Background and Premise 9

Figure 2.3: Toy example from UCI Machine Learning Repository [16] called Teaching Assistant
Evaluation Data Set (TAE data).

Classification

The general idea of classification is to find a way to assign a future example to one
of predefined categories based on previous experience. Hence, classification is based
upon measurements on that future example together with the experience obtained
from learning instances of similar example. The different approaches of classifica-
tion can be divided into statistical and machine learning approaches: Statistical
approaches are characterised by an assumption of an underlying probability model
out of which the probability of an example being in each class is deriven. Machine
learning approaches, on the other hand, are generally concerned as procedures where
the classification results from a sequence of logical steps [20]. These steps are usually
performed via different classification algorithms, such as logical regression, classi-
fication trees, support vector machines (SVM), random forests, or artificial neural
networks (ANNs) [18]. The algorithm aims to find the model that best fits the
relationship between the attribute set and class label of the input data [32].

The challenge in the classification task is to generate such model, that both fits



2. Theoretical Background and Premise 10

the input data well but also correctly predicts the class labels of completely new,
independent instances. In other words, a good model is such that it has low training
error as well as low generalization error [32]. Intuitively it makes sense to try to find
the model that fits the training data as accurately as possible. However, if the model
fits the training data too well, it usually makes the generated model too complicated
and results in very small learning error but very large generalization error [10]. This
situation is called overfitting. In contrast, underfitting can occur if the model is too
simple and has not learned the actual structure of the data. Underfitting results in
poor performance for both training and generalization errors.

Sometimes finding new independent data for testing the generated model may be
hard or even impossible. It is a common practice to divide the data readily available
into a training set and a test set, assumed that the two sets are generated by the
same underlying distribution [10]. The test set is held back from the whole process
of model generation and introduced only afterwards for assessment. Using only a
part of the entire data for model generation may seem like suboptimal solution as
some relevant information might be lost. Alternative and popular data-splitting
method, k-fold cross-validation (discussed later) is often used to address this chal-
lenge of having enough information for both training and testing. Although this
is a computationally intensive technique, it uses the entire data in a more efficient
manner than the plain division into a learning set and an independent test set [10].

2.3.2 Classification performance evaluation

In order to assess the goodness and fit of an obtained classification model, some
performance evaluation metrics are needed. The commonly used evaluation metrics
include accuracy, cross-validation score, and confusion matrix.

Accuracy Score

Accuracy is one of the most intuitive and easily interpreted metrics for classification
models. The typical measure of prediction accuracy is based on empirical loss which,
for classfication task, is the propability of missclassifying an instance [10]. In this
thesis, the implementation of accuracy score from Scikit-learn library is applied. The
implementation of accuracy score in Scikit-learn computes by default the fraction
of correct predictions [24]. In multilabel classification, the function gives the subset
accuracy. If the entire set of predicted labels ŷ match with the set of true labels y,
then the subset accuracy is 1.0 and otherwise 0.0 [24].

Definition 2.3.1 (Accuracy). Let ⟨xi, yi⟩ be the ith example and h(xi) = ŷi the
predicted value, and S the sample with n examples. Then the fraction of the correct
predictions over n is defined as:



2. Theoretical Background and Premise 11

acc(y, ŷ) = 1
n

n−1∑
i=0

1− L0/1(ŷi, yi). (2.7)

△

Cross-Validation Score

Accuracy score is a simple and straightforward way to measure goodness and fit
of the generated model. It is not, however, sufficient on its own. As stated in
[24], learning the prediction function and testing it only on the same data is a
methodological mistake, since this would result in overfitting the model and failing
to predict anything on fresh data. To avoid overfitting, it is a common practice to
evaluate generalization via cross-validation score. The procedure adapted from [24]
is the following:

• The entire data is randomly divided into k non-overlapping groups of roughly
equal size

• A model is trained using k − 1 of the folds as training data;

• the resulting model is validated on the remaining part of the data, i.e., the
omitted group is used as a test set to compute a performance measure such as
accuracy.

The performance measure reported by k-fold cross-validation is then the average of
the values computed in the loop k times, each time removing a different group. The
basic partitioning principle is illustrated in Figure 2.4. Note that later on in this
thesis, k always denotes the number of clusters in a clustering assignment. Here,
however, k denotes the number of folds in cross-validation as it is the established
notation.

Confusion Matrix

Confusion matrix is a common technique to evaluate and summarize the perormance
of classification algorithm, and to form even better understanding of the results
obtained. Instead of displaying a single value of accuracy, confusion matrix shows the
number of incorrect predictions; the way in which the model is confused. Accuracy
alone can be misleading in the situation where the classes are of different sizes.
Hence, confusion matrix can be very useful in the context of reflection data. The
definition provided in [24] is the following:



2. Theoretical Background and Premise 12

Figure 2.4: Illustration of basic cross-validation principle with 5 folds. Figure from [22].

Definition 2.3.2 (Confusion matrix). A confusion matrix C is such that Ci,j is
equal to the number of observations known to be in group i, but predicted to be in
group j. In a 2× 2 confusion matrix, the outcomes can be formulated as follows:

C =
⎡⎣TruePositives FalseNegatives
FalsePositives TrueNegatives

⎤⎦
△

2.3.3 Unsupervised learning and clustering

In contrast to the supervised learning, unsupervised learning problems are defined
to be those with no information available of the correct output variable y. Thus, the
goal of unsupervised learning differs from that of supervised learning: In supervised
learning the perspective is to study the relationships of input and output variables
whereas in unsupervised learning it is to explore the characteristics of the input
variables only. The input variables can be described as a set of patterns and the
output as the underlying motifs that generated the patterns [18]. Tasks related
to unsupervised learning commonly involve joint probability estimation, clustering,
locating outliers or imputing missing data.



2. Theoretical Background and Premise 13

Clustering

Clustering or cluster analysis can be defined as a statistical tool for arranging data
into natural groups [10]. Clustering resembles classification but the fundamental
difference between those two is that in clustering the number of groups (clusters),
denoted by k, is unknown. The discovered grouping of n instances, denoted by
G = {G1, . . . , Gk}, where each Gi, i = 1, . . . , k corresponds to a single cluster, is
only based on the information found in the data without any externally obtained
labeling. In fact, clustering is sometimes referred to as unsupervised classification,
since it can be seen as a form of classification that derives the labeling only from
the data [32].

Cluster analysis tasks can be divided into clustering for understanding data and
clustering for utility [32]. In the context of understanding data, cluster analysis is
the study for automatically finding classes, whereas in the context of utility, cluster
analysis can be seen as the study of finding the most representative cluster proto-
types [32]. The principle behind clustering algorithms is such that the algorithms
take as input a dataset of various dimensions and partition it into clusters satisfying
certain criteria [18]. There is no single formal definition for a cluster that would
be sufficient for every situation. The notion of a cluster is usually not well defined
and depends vastly on nature of data, desired results, and the clustering method
or algorithm chosen for the task [32]. In fact, it is argued that the definitions of a
cluster in the literature reflect the different philosophical points on the topic [5].

While clustering tasks can be divided according to the purpose of the task, clus-
tering methods can also be divided into various groups. Tan et al. divide clustering
methods into hierarchical, partitional, exclusive, overlapping, and fuzzy methods:
Partitional clustering methods group data into non-overlapping clusters such that
each data object is in exactly one cluster, and if clusters can have subclusters, then
a hierarchical clustering is obtained. Exclusive clustering assigns every object of
the data to exactly one cluster, while non-exclusive or overlapping clustering allows
an object to simultaneously belong to more than just one cluster. In a fuzzy (or
soft) clustering, on the other hand, every object is assigned to every cluster with
membership weight between 0 and 1, and hence, the clusters are treated as fuzzy
sets. A complete clustering assign every object to at least one cluster, while a partial
clustering does not. In partial clustering, the objects that are not assigned to any
cluster can be seen as outliers or noise [32]. Popular algorithms include methods
such as k-means, Affinity propagation, Mean Shift, Spectral Clustering, DBScan
together with it’s more recent version, HDBScan.



2. Theoretical Background and Premise 14

2.3.4 Clustering evaluation

The most challenging part of cluster analysis is the evaluation of obtained cluster-
ing and interpreting the results, since it is not as straightforward as classification
evaluation. As stated in [32], cluster evaluation is not well-developed or commonly
used part of cluster analysis. Even the concept of a good clustering depends on the
application. There are, however, some well established methods for cluster evalua-
tion, which include internal as well as external metrics. Internal metrics are used to
evaluate only the goodness of the model itself, and do not require any information
about the groud truth labeling C (the knowledge of externally defined true labels),
whereas external metrics are used to evaluate the goodness of the model with re-
spect to the ground truth labeling. The clustering evaluation metrics used in this
thesis are silhouette coefficient, homogeneity score, completeness score, Adjusted
Rand Index (ARI), and finally, Adjusted Mutual Information (AMI).

Silhouette Coefficient

The silhouette coefficient is a metric for internal evaluation and hence, using only the
model itself for evaluation process. The score is calculated using mean intra-cluster
distance and the mean nearest-cluster distance for each instance [24]. Higher scores
(near 1.0) for silhouette coefficient are related to better defined clusters whereas
negative values correspond to a case where the average distance of points within
the cluster is greater than the minimum distance to points in another cluster, which
generally indicates that an instance has been assigned to a wrong cluster [32], [26].
Scores near zero generally indicate overlapping clusters [24]. The formulation based
on [26] is the following:

Definition 2.3.3 (Silhouette Coefficient). Assume any partition (clustering) G and
any distance metric δ. (The default being euclidean distance in Scikit-learn library’s
implementation). Take any instance xi from the data set and denote by G1 the
cluster to which it is assigned. Let a(i), δ(i, Gi) and b(i) be the following scores:

• a(i) is the mean distance between an instance xi and all other instances in the
same cluster G1.

• δ(i, Gj) is the mean distance between xi and all instances of any other cluster
Gj, j ̸= 1.

• b(i) = minj ̸=1 δ(i, Gj) is the mean distance between instance xi and all other
instances in the next nearest cluster.



2. Theoretical Background and Premise 15

The silhouette coefficient s(i) for a single instance xi is then given by:

s(i) = b(i)− a(i)
max(a(i), b(i)) . (2.8)

△

In Figure 2.5, a(i) is represented by the mean length of all lines inside cluster G1

and b(i) is represented by the mean length of all lines going from xi to G2, which is
the next nearest cluster.

Figure 2.5: An illustration of the elements related to silhouette coefficient. Adapted from [26].

The silhouette score for the entire clustering (set of instances), denoted by s, is
then given as a mean of the silhouette coefficients for each instance. Silhouette score
is a useful metric for evaluating the internal goodness of the clustering obtained, but
does not give any information about the cluster labeling compared to the ground
truth labeling.

Homogeneity and Completeness

In addition to internal evaluation, it is also possible to compare the obtained cluster
labeling to the ground truth labeling, assuming such knowledge exists. For that
purpose, external evaluation metrics are applied. Given the ground truth labeling
C, two relatively intuitive metrics for external evaluation of clustering goodness are
homogeneity and completeness. These both are objectives, that are desirable for
any cluster assignment, defined originally in [25], and summarized in [24].

Let us first define the entropy H(C) of the classes in C. Recall that n is the total
number of examples and let nCi

be the number of examples belonging to class Ci.



2. Theoretical Background and Premise 16

Entropy is now given by:

H(C) = −
|C|∑
i=1

nCi

n
· log2

(
nCi

n

)
. (2.9)

Let nGi
be the number of examples belonging to cluster Gi and nCi,Gj

the number
of examples from class Ci assigned to cluster Gj. The conditional entropy H(C | G)
of the classes given the cluster assignments is given by:

H(C | G) = −
|C|∑
i=1

|G|∑
j=1

nCi,Gj

n
· log2

(
nCi,Gj

nGi

)
. (2.10)

Using equations 2.9 and 2.10, homogeneity and completeness are now defined as
follows:

Definition 2.3.4 (Homogeneity). A clustering G satisfies homogeneity if all of its
clusters Gi, i = 1, . . . , k contain only data points which are members of a single class
of the ground truth labeling C. Formally:

h = 1− H(C | G)
H(C) . (2.11)

△

Definition 2.3.5 (Completeness). A clustering satisfies completeness if all the ex-
amples that are members of a given class are elements of the same cluster. Formally:

c = 1− H(G | C)
H(G) . (2.12)

△

Both of these metrics are independent of the absolute values of the labels and
hence, a permutation of the class labeling will not change the score. Neither of these
metrics are symmetric in the sense that switching true labels with predicted values
will, in general, return different scores [24].

Adjusted Rand Index

Adjusted Rand Index (ARI) is a commonly used, symmetric measure for consensus
between two labelings. It was first suggested by Hubert and Arabie in [9]. Given



2. Theoretical Background and Premise 17

the knowledge of ground truth labels and the cluster labels of the same examples
assigned by the clustering algorithm, the Adjusted Rand Index is a function that
measures similarity of two assignments, ignoring permutations and with chance nor-
malization [24]. The following mathematical formulation is adapted from [24].

Definition 2.3.6 (Rand Index). Let C be the ground truth labeling and G a clus-
tering, l and m are defined as:

• l is the number of pairs of elements that are in the same class in C and in the
same cluster in G,

• m is the number of pairs of elements that are in different classes in C and in
different clusters in G.

The raw (unadjusted) Rand Index is then given by:

RI = l + m(
n
2

) , (2.13)

where
(

n
2

)
is the total number of possible pairs in the data set. △

The drawback of RI score is that it does not take the chance into account, i.e.,
it does not guarantee that random label assignments will get values close to zero.
To address this, it is beneficial to discount the expected RI of random labelings by
defining the Adjusted Rand Index with chance normalization. The formulation of
expected RI, E(RI), is described in more detail by Hubert and Arabie in [9].

Definition 2.3.7 (Adjusted Rand Index).

ARI = RI− E(RI)
max(RI)− E(RI) . (2.14)

△

Adjusted Mutual Information

Given the ground truth labels and assignments based on clustering, the Mutual
Information (MI) is a function that measures the agreement of the two assignments
ignoring permutations [24]. Two different normalized versions of this metric are
available in the Scikit-learn library [24]. In this thesis, Adjusted Mutual Information



2. Theoretical Background and Premise 18

(AMI) is chosen for a measure of agreement from these options, since it is normalized
against chance. The following formulation is adapted from [35] and [24].
Mutual Information between G and C can be defined by using again equations 2.9
and 2.10:

MI(G, C) = H(G)−H(G | C). (2.15)

The expected value for the Mutual Information, E(MI), can be calculated using the
equation described in more detail by Vinh et al. in [35]. Using the expected value
of MI, the Adjusted Mutual Information is defined as follows:

Definition 2.3.8 (Adjusted Mutual Information).

AMI = MI− E(MI)
max(H(G), H(C))− E(MI) . (2.16)

△



19

3. RESEARCH METHODOLOGY

3.1 Learning algorithms

In this chapter, the algorithms used in empirical evaluation are first introduced.
The algorithms used in classification include Support Vector Machines (SVM) and
Random Forest Classifier. The clustering methods include three very different al-
gorithms; k-means, Affinity Propagation, and HDBSCAN. Two dimensionality re-
duction techniques, Principal Component Analysis and t-SNE, are also briefly ex-
plained. One part of the research done for this thesis is exploring the possibility of
using Point Feature Histograms to create more features for classification and clus-
tering tasks and whether these features are useful in the context of deflectometric
data of surface defects. Hence, Point Feature Histograms and related descriptors
are also explained in this chapter. Finally, three research questions are determined
and the data sets used in this thesis are described together with the steps taken in
empirical evaluation in order to answer the research questions.

3.1.1 Classification algorithms

Support Vector Machines

Support Vector Machines (SVM) is a popular method developed for binary and
multiclass supervised learning problems. The objective of SVM is to find the best
separating decision boundaries between points that belong to separate classes. SVMs
have been successfully applied to classification problems such as handwritten digit
recognition and text categorization, and the method is available in both linear and
nonlinear versions [10]. SVM involves optimization of a convex loss function under
given constraints and hence, is unaffected by problems of local minima [10]. Unlike
traditional classifiers, which minimize the empirical loss function, SMVs aim to
minimize the upper bound of the generalization loss [11]. In order to deal with
nonlinear situations, SVMs utilize kernel methods, which enable the construction of
linear classifiers in high-dimensional feature spaces that are nonlinearly related to
input space [10].



3. Research Methodology 20

Support Vector Classification

Chih-Chung and Chih-Jen give the following formalization of the Support Vector
Classification (SVC) in [3]. Given training instances xi ∈ Rd, i = 1, . . . , n in two
classes, and a vector y ∈ Rn of all outputs, such that yi ∈ {1,−1}, SVC solves the
following primal optimization problem:

min
ω,b,ζ

1
2ω

Tω + R
n∑

i=1
ζi (3.1)

subject to ⎧⎪⎨⎪⎩yi(ωT ϕ(xi) + b) ≥ 1− ζi

ζi ≥ 0, i = 1, . . . , n,
(3.2)

where ϕ(xi) maps xi into a higher-dimensional space and R > 0 is the regularization
parameter. Due to the possible high dimensionality of the vector variable ω, usually
the following dual problem is solved [3]. Let e be the vector of all ones and R > 0
the upper bound. The dual problem is then given by:

min
α

1
2α

T Qα− eTα (3.3)

subject to ⎧⎪⎨⎪⎩yTα = 0
0 ≤ αi ≤ R, i = 1, . . . ,n,

(3.4)

where Q is an n × n positive semidefinite matrix, Qij = yiyjK(xi, xj), where
K(xi, xj) = ϕ(xi)T ϕ(xj) is the kernel. The training vectors are implicitly mapped
into a higher (maybe infinite) dimensional space by the function ϕ.

After the dual problem is solved, using the primal-dual relationship, the optimal
ω satisfies

ω =
n∑

i=1
yiαiϕi(xi). (3.5)

The decision function is then:

sgn
(
ωT ϕ(x) + b

)
= sgn

(
n∑

i=1
yiαiK(xi, x) + b

)
. (3.6)

The kernel function can be one of the following [24].

• linear: K(xi, xj) = ⟨xi, xj⟩,

• polynomial: K(xi, xj) = (γ⟨xi, xj⟩+ r)d · d, for degree d,

• RBF: K(xi, xj) = exp(−γ ∥xi − xj∥2),

• sigmoid: K(xi, xj) = tanh(γ⟨xi, xj⟩+ r),



3. Research Methodology 21

• chi-squared: K(xi, xj) = exp
(
−γ

∑
k

(xi,k − xj,k)2

xi,k + xj,k

)
,

• manually defined custom kernel.

Note, that here the notation ⟨xi, xj⟩ is an inner product and not a tuple, different
from Section 2.3.1.

Random Forest Classifier

Random forests use multiple learning algorithms and hence, are an ensemble learning
method well suited for classification. Random Forests are actually a modification
of bagging, in which the essential idea is to average many noisy but approximately
unbiased models, and hence reduce variance [7]. Random forests are a combination of
tree predictors such that each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the forest [1]. Using a
random selection of features to split each node yields error rates relatively small, but
are more robust with respect to noise [1]. This makes random forest classifiers well
suited for this particular classification problem, as the classification performance is
relatively fast together with tendency to relief the overfitting of traditional decision
trees. The following definition for random forest is adapted from [1].

Definition 3.1.1. A Random forest is a classifier consisting of a collection of tree-
structured classifiers {h(x,Θi), i = 1, . . . , m} where the {Θi} are independent identi-
cally distributed random vectors and each tree casts a unit vote for the most popular
class at input x. △

In this thesis, Scikit-learn library’s implementation of Random Forest Classifier
is applied. The main difference to the original definition in [1] is that the Scikit-
learn implementation combines classifiers by averaging their probabilistic predic-
tion, instead of letting each classifier vote for a single class [24]. The main pa-
rameters of Random Forest Classifier in Scikit-learn library’s implementation are
n_estimators, max_features, min_samples_split, and max_depth. The param-
eter n_estimators denotes the number of trees in the forest and max_features

denotes size of the random subsets of features to consider when splitting a node
[24]. The parameter min_samples_split denotes the minimum number of samples
required to split an internal node, and max_depth is the maximum depth of the
tree [24].



3. Research Methodology 22

3.1.2 Clustering algorithms

k-means

k-means is a traditional clustering algorithm, often referred to as Lloyd’s algo-
rithm [24]. The algorithm divides a set of n instances into disjoint clusters G =
{G1, . . . , Gk}, each described by the mean µi of the instances in the cluster Gi.
These means are often called the cluster centroids, even though they might not be
actual instances of X. The algorithm aims to separate the instances in k groups of
equal variance, and uses inertia as the minimization criteria. Inertia can be seen as
the measure of how internally coherent clusters are:

arg min
G

k∑
i=1

∑
x∈Gi

∥x− µi∥2 . (3.7)

k-means scales well to large number of instances and is computationally fast. This
makes it a good candidate in the context of reflection data. The drawbacks of the
k-means algorithm are that it requires the number of clusters to be specified before
the computation and hence, is sensitive to the initial choice of the number of clusters
and the cluster centroids. This issue is addressed in Scikit-learn’s algorithm by im-
plementing k-means++ initialization scheme, which initializes the cluster centroids
to be distant from each other [24]. k-means always converges, but may be to the
local minimum. It makes the assumption of convex clusters, which is not necessarily
the case with reflection data. It can also perform poorly with clusters of irregular
shapes. In this thesis, k-means is used as a comparison algorithm, since several
evaluation scores can be computed and compared against the number of clusters,
and against results provided by other algorithms.

Affinity Propagation

Affinity Propagation (AP) is a clustering method based on passing messages between
data points, introduced by Frey and Dueck in 2007 [6]. Unlike many traditional clus-
tering algorithms, AP does not require determining the number of clusters before
running the algorithm, but rather simultaneously considers all data points as po-
tential exemplars [6]. While the traditional algorithms like k-means work well if the
initial choice of the exemplars is close to a good solution [6], they do not apply so
well if the number of clusters is unkown or a subject of examination, as the solutions
are sensitive to the initial choice of exemplars.

Frey and Dueck explain in [6], that by viewing each data point as a node in a
network, AP recursively transmits messages along edges of the network until a good
set of exemplars and corresponding clusters is obtained. The algorithm is described
in [6] as follows. AP takes as input a collection of real-valued similarities sim(i, j)



3. Research Methodology 23

between data points, as well as the preferences sim(i, i) for each data point i. The
similarity sim(i, j) indicates how well the data point with index j is suited to be
the exemplar for data point i. The similarity is set by default to be the negative
squared error (euclidean distance), but the method can be applied with different
optimization criteria set by hand as well. Data points with larger preferences are
more likely to be chosen as exemplars. This value can be varied to produce different
number of clusters, but it should be set to a common value in case all the data
points are equally suitable as exemplars. There are two kinds of messages exchanged
between data points: responsibility res(i,j) and availability ava(i,j). Responsibility
represents the accumulated evidence for how well-suited the point j is to serve as the
exemplar for point i. Availability, on the other hand, represents the accumulated
evidence for how appropriate it would be for a point i to choose point j as its
exemplar. Responsibility and availability can be viewed as log-probability ratios.

At the beginning, the availabilities are initialized to zero and the responsibilities
are calculated in the following manner:

res(i,j)←− sim(i,j)− max
j′,j′ ̸=j

{ava(i,j′) + sim(i,j′)}. (3.8)

The availability update is calculated as follows:

ava(i,j)←− min{0, res(j,j) +
∑

i′,i/∈{i,j}
max{0, res(i′,j)}}. (3.9)

The "self-availability", ava(j, j), is updated differently:

ava(j, j)←−
∑

i′,i′ ̸=j

max{0, res(i′,j)}. (3.10)

At any point during the run, availabilities and responsibilities can be combined to
identify exemplars: For point i, the value j that maximizes ava(i,j)+res(i,j) either
identifies point i as an exemplar if j = i, or identifies the data point that is exemplar
for point i. The message-passing procedure may, hence, be terminated after fixed
number of iterations, or after the local decisions stay constant for some number
of iterations. In this thesis, Affinity Propagation is implemented with Scikit-learn
library [24].

HDBSCAN

Density-based clustering methods like DBSCAN are popular, but have number of
limitations: Some methods provide only non-hierarchical labeling using a global
density threshold. This is often a problem in situations with clusters of different
densities and nested clusters [2]. On the other hand, among those methods that sup-



3. Research Methodology 24

port clustering hierarchy, common limitation is the representation of the hierarchy,
or that the method only supports specific kinds of problems [2].

HDBSCAN is a clustering method extending previously developed DBSCAN al-
gorithm. According to the authors Campello et al., HDBSCAN is both theoretically
and practically improved, density based, hierarchical method outperforming the
other current density-based methods on a wide variety of real world data [2]. The
significant feature of HBDSCAN is that, according to the authors, it is not suffering
from any of the limitations mentioned above [2]. Similar to Affinity Propagation,
HDBSCAN does not require the number of clusters to be estimated beforehand.
These qualities make HDBSCAN another appealing candidate for clustering tasks
on the reflection data.

Campello et al. give the following optimization algorithm for HDBSCAN in [2].
Let {G2, . . . ,Gk} be the collection of all clusters in the simplified cluster hierarchy
generated by HDBSCAN, except the root G1, and let S(Gi) denote the stability
value of each cluster. Then, the task of maximizing the sum of stabilities of the
extracted clusters is the optimization problem:

max
ξ2,...,ξk

k∑
i=2

ξiS(Gi) (3.11)

subject to ⎧⎪⎨⎪⎩ξi ∈ {0,1}, i = 2, . . . ,k∑
j∈Ih

ξj = 1,∀h ∈ L,
(3.12)

where ξi, (i = 2, . . . ,k), indicates whether cluster Gi is included in the flat solution
or not. L = {h | Gh is a leaf cluster} is the set of indices of leaf clusters, and
Ih = {j | j ̸= 1 and Gj is ascendant of Gh} is the set of indices of all clusters on the
path form Gh to the root. In this thesis, the codebase provided by McInnes et al.
in [19] is used for applying HDBSCAN.

3.2 Creating and combining features

3.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a linear method for dimensionality reduc-
tion for multivariate data, developed by Pearson [23] and Hotelling [8]. PCA trans-
forms the data to a new coordinate system, such that the new variables, the principal
components, are uncorrelated, linear combinations of the original variables. The ob-
jective is thus, to reduce the number of components while preserving the maximal
amount of relevant information. In addition to dimensionality reduction, PCA can
be used to discover important features of the data, such as outliers and distributional



3. Research Methodology 25

characteristics, based on the principal component scores [10]. The most common
uses of the method are, however, data preprocessing, visualization, image analysis,
and pattern recognition.

In the context of reflection data, PCA provides means for projecting the data
into a lower dimensional space. This, in turn, provides the means for visualization,
suitable for human observation. The drawback in using PCA is that being a linear
algorithm, complex relationships between high-dimensional features may not be in-
terpreted correctly and some information might be lost in the process. To address
this issue, a more sophisticated method, t-SNE, is introduced in the next section.

The visualizations obtained with PCA are used in classification and clustering
tasks to gain more information about the process and results. Probabilistic PCA
model as implemented in this work was published by Tipping and Bishop in [33].
They formulate PCA within maximum likelihood framework and summarize the
original definition by Hotelling [8] as follows:

Definition 3.2.1. For a set of observed d-dimensional data vectors {xi}, i =
1, . . . , n, the q principal axes, wj, j = 1, . . . , q are those orthonormal axes onto
which the retained variance under projection is maximal. △

Here the vectors wj are given by q dominant eigenvectors of the sample covariance
matrix S = 1

n

∑n
i=1(xi − x̄)(xi − x̄)T such that Swj = λjwj, and x̄ is the sample

mean. The vector ti = WT (xi − x̄), where W = (w1, . . . ,wq) is a q-dimensional
reduced representation of the observed vector xi.

3.2.2 t-SNE

For nonlinear dimensionality reduction, a more recent and advanced algorithm called
t-Distributed Stochastic Neighbor Embedding (t-SNE) was developed in 2008 by van
der Maaten [34]. It is an improved version of Stochastic Neighbor Embedding (SNE)
algorithm. Like PCA, t-SNE can also be used to explore high-dimensional data in
two or more dimensions. It is based on probability distributions focused on retaining
both local and global structure of the data.

The main difference between SNE and the improved version, t-SNE, is the cost
function [34]. The original cost function, which aims to minimize the sum on
Kullback-Leibler divergences over all data points using gradient descent method,
is replaced by a symmetric version with simpler gradients. t-SNE also uses Student-
t distribution to compute similarities between points in the low-dimensional space,
which makes it easier to optimize the cost function [34]. The symmetric SNE aims
to minimize a single Kullback-Leibler divergence between a joint probability distri-
bution, P , in the higher dimensional space and a joint probability distribution, Q,



3. Research Methodology 26

in the lower-dimensional space.

Costt−SNE : KL (P | Q) =
∑

i

∑
j

pij log2
pij

qij

. (3.13)

Symmetry comes from the property that pij = pji and qij = qji, ∀i,j. Here, the
pairwise similarities in the low-dimensional space are given by:

qij =
exp

(
−∥x̃i − x̃j∥2

)
∑

k ̸=l exp
(
−∥x̃k − x̃l∥2

) , (3.14)

and the pairwise similarities in the high-dimensional space are given by:

pij =
exp

(
−∥xi − xj∥2 /2σ2

)
∑

k ̸=l exp
(
−∥xk − xl∥2 /2σ2

) , (3.15)

where x̃i are low-dimensional data points mapped from high-dimensional data points
xi and σ is the variance.

3.2.3 Point Feature Histograms

Point Feature Histogram (PFH) is a statistical representation of three-dimensional
shapes, presented by Wahl et al. in [36] and later extended by Rusu et al. in [30].
The PHFs presented in [36] are based on a four-dimensional feature, which aims to
parameterize the geometrical relation of an oriented surface-point pair. In [36], the
set of such features represents both local and global characteristics of the surface,
represented by a single histogram, which is then applied to 3D object recognition.
In [30] this idea is extended by computing local point feature histograms for each
point in the cloud to characterize the surface on which the points lie. In this thesis,
the Point Cloud Library’s [29] implementation of PFHs based on [28], is applied to
the reflection point cloud data in order to create new features for classification.

Normal estimation

In order to compute the PFH descriptors for the point cloud data, surface normals
need to be estimated for each point in the point cloud. In the Point Cloud Library’s
implementation of normal estimation, the problem of determining the normal to a
point on the surface is approximated by the normal estimation of a plane tangent,
which then becomes a least-square plane fitting estimation problem [28]. Therefore
the problem is reduced to an analysis of the eigenvectors and eigenvalues of a co-
variance matrix created from the nearest neighbors of the query point. Formally,
for each point pi, the covariance matrix S is defined as follows [28]:



3. Research Methodology 27

S = 1
k

k∑
i=1

(pi − p̄) · (pi − p̄)T , S · vj = λj · vj, j ∈ {0,1,2}, (3.16)

where k is the number of neighbors considered in the neighborhood of pi, p̄ is the
centroid of the nearest neighbors, λj is the j-th eigenvalue of the covariance matrix,
and vj the corresponding eigenvector. Note that in the context of PFHs, k is again
different from the usual (number of clusters) because of the established notation
k-neighborhood.

Since the sign of the normal can not be formally solved, the viewpoint is by default
set to origin, and can be re-orinented manually. As surface normals need to be esti-
mated based on the support of surrounding point neighborhood (k-neighborhood),
the threshold used in nearest-neighbor estimation is an important factor of normal
estimation [28]. More specifically, In Point Cloud Library’s implementation, the
choice of treshold (either radius r of neighboring point search or the number k of
closest neighbors in neighboring point search) becomes an important issue. If the
treshold chosen is too large, the set of neighbors may cover points from adjacent
surfaces, which is not desired situation, since the resulting PFH descriptors may get
distorted. On the other hand, if the treshold chosen is too small, there might not
be enought neighboring points to support the normal estimation, therefore resulting
in infinite normals. Thus, the right scale needs to be chosen based on the level of
detail of the application in question [28]. In the context of reflection data, the Point
Cloud Library’s implementation of normal estimation is not used, but the normals
are computed manually for each point, using the information of structured point
clouds and neighboring points. This approach is chosen because of the sparseness
of the point clouds in reflection data. In order to find enough neighboring points
for normal estimation, the radius of neighbor-search becomes inevitably too large
containing almost the entire defect, and hence, the normals become distorted.

PFH descriptors

The general idea of PFH descriptors is to represent a point’s k-neighborhood geo-
metrical properties with histogram of four-dimensional features, based on the rela-
tionships of the points in the k-neighborhood and their surface normals [28]. More
specifically, the resulting PFH descriptor is a histogram of relationships between all
pairs of points in the neighborhood. Hence, the PFHs are highly dependent on the
quality of surface normal estimation [28]. The mathematical formulation, adapted
from [28] the following:
A fixed coordinate frame is defined to compute the relative difference between points
pi and pj:



3. Research Methodology 28

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u = ns

v = u× (pt − ps)
∥pt − ps∥2

w = u× v

(3.17)

Then, using the above uvw frame, the difference between normals ns and nt can be
expressed as a set of angular features:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α = v · nt

ϕ = u · (pt − ps)
δE

θ = atan2(w · nt, u · nt)

(3.18)

where δE is the euclidean distance between the two points ps and pt, and atan2 is
the two argument variant of arctangent:

atan2(w · nt, u · nt) = arctan
(w · nt

u · nt

)
.

The quadruplet ⟨α, ϕ, θ, δE⟩ is computed for each pair of two points in k-neighborhood.
The set of all quadruplets is then binned into a histogram, which constructs the final
PFH representation for the query point. However, in some cases the feature δE has
proven to be insignificant [28]. By default, the Point Cloud Library implementation
uses 5 binning subdivisions and does not include the feature δE.

3.3 Empirical Evaluation

3.3.1 Research Questions

The key questions to which this thesis aims to answer based on empirical evaluation
are the following:

1. Whether internal structure exists in the data set, and if so, whether it has
something in common with the known class labeling.

2. Whether distinct learning algorithms perform similarly on the classification
task.

3. Whether Point Feature Histograms are useful in creating new features and
whether these features can improve the classification and clustering results.

In order to answer these questions, empirical evaluation is divided into classification
and clustering tasks. The results are then evaluated for several different algorithms
introduced in Section 3.1. Finally, new features are added into the original data set
and clustering and classification results are then evaluated again.



3. Research Methodology 29

3.3.2 Description of the Data

The data set used in this thesis is referred to as reflection data. It is obtained by using
Phase Measuring Deflectormetry, thus reflecting and phase shifting sine patterns on
the inspected surface in two different directions. The reflection is then observed by
four cameras. Any defects on the surface will cause deviations in the pattern, which
are then evaluated and detected by a software. Reflectivity, brightness and local
curvature of the detected object are then calculated out of these raw phase images.
An example of the same defect showing on the inspected surface on amplitude
(reflectivity) and curvature channels can be seen in Figure 3.1.

Figure 3.1: The same defect showing on amplitude (reflectivity) channel on the left and curvature
channel on the right.

The reflection data consists of two separate parts. First part is an excel-table of
n = 4627 examples with 10 distinct categorical defect classes, classified by human
inspectors. Eight of the classes are real defect categories whereas class 9 is a pseudo-
class. Class 10 is a class of instances that could not be assigned to any other category,
essentially consisting of unlabeled instances. Therefore, the set of possible output
values is

Y = {class1, class2, class3, class4, class5, class6, class7, class8, class9, class10}.

The data can be characterized as unbalanced, since class 1 examples cover approxi-
mately 81.5% of the entire set of examples, whereas only one example of both class
8 and class 3 exist in the data. This unbalance poses the biggest challenge related
to the learning tasks in this thesis.



3. Research Methodology 30

The features are generated from Binary Large Object (BLOB) analysis, and 3D
reconstruction of the defect. BLOB refers to a group of connected pixels in a binary
image, and the features computed based on BLOB-analysis aim to characterize
the defect shape and size [21]. One important feature of a BLOB is a bounding
box, which is the minimum rectangle containing the BLOB [21]. In the context of
reflection data, features such as radius of the BLOB, rectangularity of the BLOB,
perimeter of the BLOB, and pixel-size of the BLOB are included. More detailed
descriptions about the common BLOB features and the extraction process can be
found in [21]. The rest of the features are extracted from the 3D data of the defect.
For example, the height or depth of the defect, or a ratio of two features like lw-ratio
(length/width) and hd-ratio (height/diameter) are included.

The second part of reflection data consists of point clouds in csv-format. The
point cloud is a representation of the shape of the defect. Surface plots of point
clouds related to a single instance of each class can be seen in the Figure 3.2. Each
point cloud corresponds to a single example in the first part of the data. More
comprehensive description of reflection data is property of Micro-Epsilon and hence,
it is not given here. However, all the feature names are given in the next section.

Feature Selection

There are 38 features originally. However, some of the features are strictly related
to the detection and reconstruction process of surface defects, and are considered to
be insignificant in the context of learning tasks. Therefore, before applying learning
algorithms, only the important ones are selected from these features. The resulting
set of 20 features, referred to as the original features, are listed in Table 3.1. The
first feature listed in the Table 3.1, called "kernel-channel" is a categorical feature
referring to the channel in which the defect was detected. This might be useful
information for learning tasks and therefore, kernel-channel was included in the set.
All other features are numerical.

In addition to the original 20 features, a gaussian function was previously fitted
to the point cloud data, resulting in 13 features. These features are listed in Table
3.2 and more detailed description about the generation process and formulation
can be found in Appendix B. Finally, additional PFH descriptors were computed,
resulting in 125 new features. The generation process is explained in Section 3.3.5.
All of these features are not used in classification and clustering tasks, but feature
importance is used to determine the most important features regarding the learning
tasks in Section 4.3.1.

Adding all together, there are three distinct sets of features used in this thesis:
Theoriginal features, the gaussian features, and the PFH-features, recording values
of different attributes of the same 4627 examples. To clarify which data set is in



3. Research Methodology 31

Figure 3.2: 3D-surface plots of point cloud examples of each class, except class 10, which is the
class of unlabeled examples.

question when presenting the results, let us call these sets in the following way.

• Fog = original features

• Fgauss = gaussian features

• FPFH = PFH-features

Classification is first applied to the data set containing the original and gaussian
features. Let us call this set of features

F1 = Fog ∪ Fgauss.

Clustering is then applied to the data set containing only the original features,
Fog. Classification and clustering is also applied to the data set containing the best



3. Research Methodology 32

combination of all of these features, including features based on PFH descriptors,
in order to compare the results. This set of features is called F2 and explained in
more detail in Section 4.3.1.

Table 3.1: The original features, called Fog

1. kernel-channel
2. blob-area
3. blob-perimeter
4. blob-formfactor
5. blob-rectangularity
6. blob-avgradius
7. blob-minradius
8. blob-maxradius
9. principal axis-distance variance major axis
10. principal axis-distance variance minor axis
11. principal axis-major axis u
12. principal axis-major axis v
13. reconstruction-zmin
14. reconstruction-zmax
15. reconstruction-rms
16. lw-ratio
17. defect-z
18. hd-ratio
19. z_min / z_rms
20. z_max / z_rms

Table 3.2: Features computed based on fitting gaussian functions on point cloud data. Fgauss

1. gauss-amplitude z
2. gauss-offset z
3. gauss-center x
4. gauss-center y
5. gauss-sigma major axis
6. gauss-sigma minor axis
7. gauss-orientation angle
8. gauss-fitting error
9. gauss-fitting rms
10. gauss-volume
11. volume positive
12. volume negative
13. volume total



3. Research Methodology 33

Min-max Scaling

Several machine learning methods, including SVM, assume that the features in the
data set are centered around zero and have variance of same magnitude [24]. This
is because features with larger magnitudes of variance might dominate the objective
function and hence, affect the learning results. It is a common practice to scale the
data either to zero mean and unit variance (standardization), or scale all variables
in the range [0,1] (normalization). In the context of reflection data, the features
are normalized together in the preprocessing stage, before applying the learning
algorithms.

3.3.3 Classification methods

Classification is applied to the data set using machine learning library from Python,
called Scikit-learn. Most classification algorithms are designed for binary classi-
fication, and in the context of reflection data, it is beneficial to perform binary
classification, since the data set is heavily unbalanced. This also solves the issue of
some of the classes containing only one or two examples. It is a matter of interest
to be able to separate the biggest and most common category, class 1, from other
classes. Hence, the original categorical labeling is first converted to binary numerical
labeling by replacing all the class 1 labels with value 1, and any other class labels
with value 0 ("others"). Thus, Ybinary = {0, 1}.

In addition to binary classification, multiclass classification is performed in order
to distinguish the four biggest classes; 1, 2, 4, and 6 from the others. This is done
by changing the labeling such that classes 1, 2, 4, and 6 are left with their original
numerical labels but all other classes are labeled as 0 ("others"). This approach yields
to total of 5 separate classes, hence Ymulti = {0, 1, 2, 4, 6}. Multiclass classification
is also further experimented on balanced data set because of the heavy unbalance of
the different classes. This means, that an equal number of samples of each class is
included in the training set in order to generate such set that none of the classes is
dominating over others. This approach is taken in order to see whether it is actually
possible to distinguish between all the classes containing at least 22 samples. Such
classes are class 1, class 2, class 4, class 6, class 7, and class 9. Class 10 is again
dropped out from the classification as well as classes 3, 5, and 8 that only contain
one or two examples each. Thus, Ybalanced = {1, 2, 4, 6, 7, 9}.

Next, models are generated using two different algorithms, Random Forest Clas-
sifier and SVC (introduced in Section 3.1). The performance of these models are
evaluated using accuracy, cross-validation score, and confusion matrix. Models are
also created from such data set, that all the class 10 samples are left out. In mul-
ticlass cases, class 10 was always dropped out. Class 10 samples are essentially



3. Research Methodology 34

unlabeled, so it is not clear whether it is beneficial to use them in training and
testing of models. Finally, different models are compared in order to answer the
research question regarding the performance of different algorithms.

3.3.4 Clustering methods

Before applying clustering algorithms to the data, it is important to evaluate,
whether the data actually has some internal structure and clustering tendency or
not. In the context of reflection data, direct visual assessment of clustering ten-
dency is not possible, since the data set is multidimensional. However, it is possible
to transform the data with PCA or with t-SNE into a lower dimensional projection.
This makes it possible to assess the internal structure in a visual manner. Even
though some information might be lost in the dimensionality reduction process, the
overall structure and the most significant components still remain, and more insight
about the structure of data can be obtained.

Clustering is applied to the data set using three different algorithms: k-means,
Affinity Propagation, and HDBSCAN. In both internal and external evaluation,
distinct sets of clusters obtained with different algorithms are compared. First, sil-
houette analysis is used to determine such number of clusters that the resulting
clustering will fit the data without any external information about the correct class
labels. Higher silhouette scores imply that the clustering fits the internal structure of
the data, the distances between instances belonging to same cluster being relatively
small compared to the distances between instances of separate clusters, whereas
lower silhouette scores imply that the clustering does not fit the data. Higher sil-
houette scores indicate well separated clusters and hence, internal structure being
present, whereas lower silhouette scores indicate overlapping or random clusters.
This information is also used in order to determine whether internal structure exists
in the data.

Next, the obtained cluster labels are compared with correct class labels in order
to explore whether there is something in common with the internal structure of the
data and human-assigned class labels (ground truth labeling). External evaluation
metrics, such as homogeneity, completeness, ARI, and AMI, are applied. The simi-
larity between cluster labeling and ground truth labeling is also evaluated using PCA
and t-SNE transformations, by visualizing the different clusterings and comparing
the cluster labels to the ground truth labeling.

3.3.5 PFH methods

Computing PFH:s for a point cloud is a relatively straightforward process, since there
are readily available packages in the Point Cloud Library [29], as well as examples of



3. Research Methodology 35

correct usage. More challenging is to choose the correct radius for computations, so
that very little information is lost, simultaneously keeping the radius large enough
that there are enough neighboring points available to perform the computations. In
this case, radius was not used for normal evaluation, but the point normals were
computed manually, using the structure-information of point clouds. Usually some
down-sampling is done before the computations, but in this particular situation it
was not necessary, since the point clouds are already relatively sparse. Only the
points inside the bounding box, in other words, points near to the actual defect
were used for PFH-computations. This also makes it unnecessary to perform down-
sampling. A visualization of a point cloud together with the related point normals
can be seen from Figure 3.3.

Each resulting histogram consists of 125 bins (125 values) and there are as many
histograms generated as there are points in the point cloud. An example of the
resulting histograms of a single sample, plotted in a single figure, can be seen from
Figure 3.4. In most implementations, histograms are compared and matched using
some kind measure of similarity. In this thesis, however, the focus is on creating
new features for classification and clustering tasks. Hence, the histograms need to be
somehow combined to get a reasonable number of new features for a single sample.
Next, cumulative sums are computed for each bin using all the histograms, in order
to achieve a single histogram for every example in the original data. This process
produces 125 new features per example. Cumulative sum histograms of examples
belonging to classes 1, 2, and 5 together with related point clouds can be seen from
Figures 3.5, 3.6, and 3.7. The Figures indicate, that even the cumulative histograms
manage to capture some characteristics of the surface shape. For example, the size
of the defect between Figures 3.5 and 3.6 is visible in the cumulative histogram.
However, the histograms cannot distinguish between the directions (above or below
the surface) of the defect shape.

Using feature importance on the cumulative histograms and other features for
further dimensionality reduction, a combination data set from all the features is
generated. Finally, this new data set, consisting of 20 features together with the
output variable, is used in the classification and clustering tasks. More detailed
description of this combination set of features follows in Section 4.3.1. The objective
is to compare the new results with the ones obtained with original data set and to
evaluate whether the PFH:s are useful in the context of reflection data and the
learning tasks.



3. Research Methodology 36

Figure 3.3: Point cloud and estimated point normals visualized using Point Cloud Libarary’s
visualizer. The points in the picture are only the points inside the bounding box. In other words,
no surrounding points are visualized but only the points near the defect. The estimated normals
are used in computing the PFH descriptors for each point.

Figure 3.4: An Example of all the PFH descriptors related to a single point cloud of a single
instance, plotted in the same figure.



3. Research Methodology 37

Figure 3.5: Cumulative sum histogram of class 1 example and related 3D point cloud plot.

Figure 3.6: Cumulative sum histogram of class 2 example and related 3D point cloud plot.

Figure 3.7: Cumulative sum histogram of class 5 example and related 3D point cloud plot.



38

4. RESULTS AND DISCUSSION

In this chapter, results of empirical evaluation are presented. The results are divided
into classification and clustering tasks, and in more detail, into results obtained with
different algorithms. First, classification results on the data set F1 obtained with
the two different algorithms are presented. Next, clustering results on the data set
Fog using three different algorithms are presented. Furthermore, classification and
clustering results using features obtained by computing Point Feature Histograms
(data set F2) are presented and compared with the previous results. Finally, some
discussion about the different results as well as answers to some of the research
questions are given.

4.1 Classification results

4.1.1 Random Forest Classifier results

For Random Forest Classifier, introduced in Chapter 3.1, the parameters chosen
determine four limitations for the hypotheses considered by the algorithm. These
limitations were chosen, since the algorithm is required to stay limited sized and
relatively fast for large data sets. Thus, the hypothesis class becomes

HRF = {h | nestimators = 30, min_samples_spilt = 10, max_depth = 10,

max_features = 1}.
(4.1)

Random Forest Classifier provides binary classification results within HRF on the
data set F1 with accuracy of 92.695% and cross-validation score of 86.882%, using
5 folds for the entire data set. From the Confusion Matrix (4.2), it can be seen
that the model confuses as many as 276 examples to be class 1, which actually are
class 0. On the other hand, the model confuses only 62 examples to be class 0,
actually being class 1. This seems reasonable, since the data set is not balanced;
approximately 81.5% of the examples belong to class 1 after replacing the original
class labels with binary labels.

CRF1 =

⎡⎢⎢⎣
class0 class1

class0 570 276
class1 62 3719

⎤⎥⎥⎦ (4.2)



4. Results and Discussion 39

When dropping all class 10 (unlabeled) examples from the data set and repeating
the process on data set F1, Random Forest Classifier provides binary classification
results with accuracy of 96.780% and cross-validation score of 91.770%. The results
improve significantly when class 10 is left out from the data. The confusion matrix
without class 10 is the following:

CRF2 =

⎡⎢⎢⎣
class0 class1

class0 284 128
class1 7 3774

⎤⎥⎥⎦ (4.3)

Finally, when applying Random Forest Classifier to the multiclass situation on
the set F1, and trying to distinguish classes 1, 2, 4, and 6 from others, the following
results are obtained: Accuracy of 95.969% and cross-validation score of 94.086%.
From the Confusion Matrix (4.4), it can be seen that while accuracy is relatively
high, the model classifies correctly only class 0, 1, and 2 examples, but confuses class
4 and 6 examples as class 1 examples. As many as 59 examples belonging to class
0 are also classified as class 1. High accuracy in multiclass classification therefore
follows from the large proportion of class 1 examples, which are correctly classified.

CRF3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

class0 class1 class2 class4 class6
class0 146 59 0 0 0
class1 5 3773 2 0 0
class2 1 16 102 0 0
class4 0 53 0 3 0
class6 2 30 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.4)

The results obtained with Random Forest Classifier on the set F1 are summarized
in Table 4.1.

Table 4.1: Results obtained with Random Forest Classifier and features F1

All classes included Without class 10 Multiclass case
Accuracy 92.695 % 96.780 % 95.969 %
Cross-Val Score 86.882 % 91.770 % 94.086 %

4.1.2 Support Vector Classifier results

Support Vector Classifier makes it possible to specify the kernel type used in the
algorithm, default being RBF in Scikit-learn library’s implementation. The results
obtained with different kernels and using data set F1 can be seen from Figure 4.1.
The best choice for kernel in the context of reflection data seems to be chi-squared
kernel.



4. Results and Discussion 40

Figure 4.1: Accuracy and cross-validation scores with different SVC kernel functions. Chi-squared
kernel seems to be the best choise in the context of this data.

Support Vector Classifier also requires the regularization parameter R to be spec-
ified, the default being 1.0. The accuracy scores and cross-validation scores with
different parameter values obtained with chi-squared kernel can be seen from the
Figure 4.2. In general, larger values of R provide better accuracy scores, but cross-
validation scores remain relatively stable for values larger than 5.0. Therefore, it
seems that SVC is not very sensitive to the choice of regularization parameter, as
long as it is larger than 5.0. For the following results, the value of 13.0 is used for
regularization parameter. Thus, the hypothesis class becomes:

HSVC = {h | K(xi, xj) = exp
(
−γ

∑
k

(xi,k − xj,k)2

xi,k + xj,k

)
, R = 13.0}. (4.5)

Binary classification results for the set F1, obtained with SVC, using chi-squared
kernel and regularization parameter value of 13.0, are relatively similar with the
ones obtained with Random Forest Classifier with the same set of features. The
accuracy score of 92.738% and cross-validation score of 87.443% (with 5 folds) are
slightly higher compared to the results obtained with Random Forest Classifier. It
can be seen from the Confusion Matrix (4.6), that the model confuses 289 examples
to be class 1, which actually belong to class 0, whereas the amount of false class 0
examples is now 47.

CSVC1 =

⎡⎢⎢⎣
class0 class1

class0 557 289
class1 47 3734

⎤⎥⎥⎦ (4.6)

When leaving out all examples from class 10 and repeating binary classification



4. Results and Discussion 41

Figure 4.2: Accuracy scores and cross-validation scores with different values of regularization
parameter obtained with SVC on data set F1. The algorithm is not very sensitive to the choice of
regularization parameter on this data set if value larger that 5.0 is chosen.

using SVC with the parameters explained above on the set F1, again the results im-
prove significantly, compared to the situation where class 10 examples are included.
The accuracy score of 97.377% and cross-validation score of 92.128% are obtained.

CSVC2 =

⎡⎢⎢⎣
class0 class1

class0 315 97
class1 13 3768

⎤⎥⎥⎦ (4.7)

For the multiclass case, Support Vector Classification provided accuracy of 95.421%
and cross-validation score of 91.899% on the set F1. It can be seen from the Con-
fusion Matrix (4.8), that SVC performs similarly to Random Forest Classifier in
multiclass classification. Almost all class 1 and class 2 examples are again correctly
classified, but the model confuses all other classes to be class 1. The biggest differ-
ence between Random Forest Classifier and SVC is the prediction accuracy of other
classes besides 1, 2, 4 or 6, here labeled as 0. Random Forest is able to correctly
classify 146 examples whereas SVC is only able to correctly classify 12 of class 0.
SVC is not able to correctly classify any of the class 4 or 6 examples.



4. Results and Discussion 42

CSVC3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

class0 class1 class2 class4 class6
class0 12 192 1 0 0
class1 4 3759 17 0 0
class2 0 19 100 0 0
class4 0 56 0 0 0
class6 0 32 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.8)

The results obtained with SVC and chi-squared kernel on the set F1 are summa-
rized in Table 4.2.

Table 4.2: Results obtained with SVC (chi-squared kernel) and features F1

All classes included Without class 10 Multiclass case
Accuracy 92.738 % 97.377 % 95.421 %
Cross-Val Score 87.443 % 92.128 % 91.899 %

4.1.3 Multiclass classification results on balanced data set

Since it is obvious from the previous classification results, that the large number
of class 1 examples dominates over other classes in the classification task, it is of
interest to see whether it is possible to distinguish between all the different classes
using a balanced data set and the features F1. In other words, whether the data
includes enough information and the correct features to actually distinguish between
the classes. The challenge in this approach is that the small number of examples of
some classes limits the size of the data set used for training the model. Since there
are only one sample of classes 3, 5, and 8, those classes are not included. Class
10 is also not included. Hence, Ymulti = {1, 2, 4, 6, 7, 9} . There are 22 examples
of class 7, which is the smallest limiting number when building the balanced data
set and hence, 22 examples of each class are included in the training set. Thus,
nmulti = 22 · 6 = 132. Different from previous multiclass classification task, here all
the examples are left with their original class label, and hence, there is no class for
"other" examples (previously class 0). In particular, it is of interest to see whether
classes 2, 4, and 6 can be distinguished from class 1. The algorithm chosen for this
is Random Forest Classifier, since it seems to provide better results in the multiclass
task than SVC.



4. Results and Discussion 43

CRF_balanced =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

class1 class2 class4 class6 class7 class9
class1 20 0 0 1 1 0
class2 0 20 2 0 0 0
class4 1 0 20 1 0 0
class6 3 0 2 16 0 1
class7 1 0 1 0 20 0
class9 0 1 0 0 0 21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9)

From the Confusion Matrix (4.9) it can be seen, that indeed, it is possible to
separate the different classes from another quite accurately using balanced data set.
Only two examples from class 1 are confused as class 6 or 7, and only 2 examples
from class 2 are confused as class 4. Total of 16 examples of class 4 are correctly
classified, while 6 examples are misclassified as class 1, class 4 or class 9. Total of
20 examples of class 7 and 21 examples of class 9 are correctly classified. However,
there were only 22 examples used for each class, and hence, the generalization of
this model is likely to be very bad for the whole data set. This can be seen from
Table 4.3, where accuracy is relatively high, but the cross-validation score is only
51.091%. Now that only a small part of the entire data set is used to train the
model, it is possible to test with entire data set to get better impression about the
generalization. Indeed, testing on the entire data results in 61.408% of accuracy,
which confirms the indication of cross-validation score about poor generalization.
The reason for such a low percentage can be seen from Confusion Matrix (4.10).
The model can actually classify all the smaller classes quite accurately, but class 1
is now confused with other classes which then results in low overall accuracy.

CRF_balanced_Test =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

class1 class2 class4 class6 class7 class9
class1 2248 54 451 282 644 101
class2 0 109 6 0 3 1
class4 4 2 45 2 3 0
class6 4 1 3 20 3 2
class7 1 0 1 0 20 0
class9 2 11 14 8 14 131

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.10)



4. Results and Discussion 44

Table 4.3: Results of multiclass classification on balanced data set and features F1, using Random
Forest Classifier.

Balanced set Test on entire data set
Accuracy 88.636 % 61.408 %
Cross-Val Score 51.091 %

4.2 Clustering results

4.2.1 Determining clustering tendency

Two dimensionality reduction techniques, PCA and t-SNE, are used to evaluate
clustering tendency on the set Fog. Transforming the data into three dimensions
with PCA and into two dimensions with t-SNE makes it possible to assess the
clustering tendency and internal structure in a visual manner. The visualization of
the data after PCA-transformation can be seen in Figure 4.3, and the visualization
after t-SNE transformation can be seen in Figure 4.4.

At least two bigger groups can be immediately detected from the Figure 4.3. In
addition, there are at least two smaller but dense groups visible. Some possible
outliers can be seen near to the bigger groups. In Figure 4.4, it is more difficult
to see clearly separated groups of points. However, there is some internal structure
visible. Based on this information, it seems that there is internal structure present
in the data, and at least two but possibly more distinct groups can be detected via
visual assessment.

Figure 4.3: Data set Fog after PCA-transformation, three principal components remaining. Two
bigger groups and at least two smaller groups are clearly visible.



4. Results and Discussion 45

Figure 4.4: Data set Fog after t-SNE transformation into two dimensions. Here, it is more
difficult to see clearly separated groups of points.

4.2.2 Internal evaluation

Silhouette scores are computed using three different algorithms, changing parameters
of the algorithm such that the obtained number of clusters changes as well. For k-
means, the number of clusters must be defined as a parameter of the algorithm,
which makes it convenient for computing the silhouette scores with many different
numbers of clusters. The results can be seen from Figure 4.7. With k-means, the
best silhouette score is obtained when k = 3. Another peak in the score can be seen
at k = 6. After k-values larger than 7, silhouette scores remain relatively stable.

The process is then repeated with Affinity Propagation and HDBSCAN. For
Affinity Propagation, the number of clusters can not be specified, but the parameter
preference can be varied in order to achieve different groupings for comparison.
The results can be seen from Figure 4.7. Not a lot of variation can be seen in
the silhouette scores obtained with Affinity Propagation, and the highest score is
obtained at k = 6. However, since the number of clusters can not be specified
directly, no clustering with less than 6 clusters was achieved. This makes it difficult
to compare the results with the other two algorithms.

For HDBSCAN, the algorithm determines the number of clusters automatically
similar to Affinity Propagation. However, the parameter min_cluster_size can be
varied in order to obtain different groupings with different k-values. The results can
be seen form Figure 4.7. In contrast to the clustering obtained with k-means, with



4. Results and Discussion 46

HDBSCAN the best silhouette score is reached when k = 2, which is the minimum
valid value. Note that the silhouette score is lowest with k = 6, whereas using
k-means, k = 6 provides higher silhouette score than k = 5 or k = 7. For all of
these three algorithms, silhouette scores remain relatively stable for cluster numbers
larger than 7.

Observations about how well the clustering results fit the data can be made
based on visual comparison of distinct clustering results on PCA-transformed data.
In Figure 4.5 two distinct clustering results obtained with k-means and HDBSCAN
are compared. It can be seen, that HDBSCAN provides a clustering that captures
the internal structure better than the one obtained with k-means when k = 3.
As mentioned above, no clustering with less than 6 clusters was achieved using
Affinity Propagation. Hence, it is not possible have a comparison result using AP
where k = 3. In Figure 4.6, distinct clustering results for k = 6 using all the
three algorithms are compared. It can be seen that the results of k-means and
Affinity Propagation are relatively similar. HDBSCAN provides again such result
that manages to capture the internal structure well compared to the other two
algorithms.

Figure 4.5: Comparison between two clustering results where number of clusters is 3. Distinct
clusters are marked with different colors. First labeling is obtained with k-means and second with
HDBSCAN on Fog.

4.2.3 External evaluation

Next it is of interest to compare the obtained cluster labels with correct class labels
in order to explore whether there is something in common with the internal structure
of the data and human-assigned class labels. The data set used here is Fog. External
evaluation metrics, such as homogeneity, completeness, ARI, and AMI, are applied.



4. Results and Discussion 47

Figure 4.6: Comparison between ground truth labels and clustering results where k = 6 and data
set Fog. Distinct clusters are marked with different colors.



4. Results and Discussion 48

Figure 4.7: Silhouette analysis using k-means, Affinity Propagation, and HDBSCAN clustering
on Fog. Best silhouette scores are obtained with k < 7 with k-means and Affinity Propagation,
and k < 4 with HDBSCAN. After k > 7, silhouette score remain relatively stable for all three
algorithms.

In addition, visual assessment is used to evaluate goodness and fit of the obtained
clustering. The results obtained with these metrics can be seen in Figure 4.9, Figure
4.10, and Figure 4.11, using different clustering algorithms.

For k-means, homogeneity is the only score reaching larger values than 0.1 with
any number of clusters. The overall trend is that homogeneity is increasing as the
number of clusters increases, which is reasonable, since a cluster satisfies homogene-
ity if all of its points are members of a single class. All other external metrics remain
close to zero, which indicates almost random clusters with reference to the real la-
bels. For Affinity Propagation, situation is very similar, homogeneity being the only
metric reaching larger values than 0.1. Based on this information, it is clear that
neither k-means nor Affinity Propagation are able to produce such clustering that
has something in common with the human-assigned class labels.

From Figures 4.9, 4.10, and 4.11 it can be seen, that HDBSCAN seems to provide
such clustering that best fits the correct class labels. The best external evaluation
results are obtained with k = 6, in contrast to the results obtained with silhouette
analysis, where 6 seemed to be the worst choice when determining the fitting number
of clusters. At 6 clusters, ARI is approximately 0.33 and AMI 0.15. These are
still relatively low scores, taking into account that the maximum score that implies
similar labelings is 1.0.

In Figure 4.8, different cluster labelings are compared with the ground truth
labeling via t-SNE visualization. Similar comparison can also be seen in Figure
4.6 using PCA-visualization. Since the internal structure is not corresponding with
the ground truth labels, it is reasonable, that the different clustering algorithms



4. Results and Discussion 49

provide such results that are not able to separate the different classes into distinct
clusters. This difference between internal structure and external labels, which was
indicated by the external metrics, can easily be detected from Figures 4.8 and 4.6.
One interesting detail in the Figure 4.8 is that class 2 examples correspond to the
red points in the left upper corner plot, which are clearly separated as their own
group. It is notable, that none of these algorithms are able to separate this clearly
separated group of points from other groups.

Figure 4.8: Visualizations of different cluster labelings on Fog. Left upper corner; ground truth
labeling, right upper corner; k-means with 3 clusters, left lower corner; Affinity Propagation with
8 clusters, right lower corner; HDBSCAN with 5 clusters.

4.3 Classification results with PFH-features

Using data set combined from all the features including PFH-features and choosing
the best features with feature importance, classification task is repeated in order



4. Results and Discussion 50

Figure 4.9: External evaluation metrics using k-means on Fog. Left upper corner; completeness
score, right upper corner; homogeneity score, left lower corner; Adjusted Rand Index, right lower
corner; Adjusted Mutual Information.

Figure 4.10: External evaluation metrics of Affinity Propagation on Fog. Left upper corner;
completeness score, right upper corner; homogeneity score, left lower corner; Adjusted Rand Index,
right lower corner; Adjusted Mutual Information.



4. Results and Discussion 51

Figure 4.11: External evaluation metrics of HDBSCAN on Fog. Left upper corner; completeness
score, right upper corner; homogeneity score, left lower corner; Adjusted Rand Index, right lower
corner; Adjusted Mutual Information.

to be able to compare the results with original ones. The results are summarized
in the following sections, divided again into results obtained with Random Forest
Classifier and SVC. The last section is again concerning the multiclass classification
on balanced data set with new features in order to compare these results as well.

4.3.1 Selecting the best features

After computing the PFH-describtors and combining the 125 features with the orig-
inal and gaussian features (F1), resulting number of features is d = 159. It is not
necessary nor beneficial to use all these features since high dimensionality slows down
the algorithms but does not usually improve the results significantly. For example,
t-SNE slows down very quickly when the dimensionality is increasing. Hence, to get
better performance and reasonable running times, only the best and most important
features in the context of classification task are chosen using Feature Importance of
Random Forest Classifier. In Scikit-learn library’s feature selection, there is a class
called SelectFromModel, which is a meta-transformer for selecting features based on
importance weights [24]. The technique of ranking the variables by their importance
in a natural way was originally described in [1]. It takes as parameters the chosen
estimator (here, Random Forest Classifier) and the threshold, which refers to the
threshold value of feature importance. Those features whose importance is greater
or equal to the threshold are kept while the others are dropped [24]. More detailed
description of Feature Importance and SelectFromModel can be found in [24]. The
threshold chosen is 0.009, and the resulting set of features can be seen in Table 4.4.
This set of features, referred to as F2, is used to obtain the following results. Note



4. Results and Discussion 52

that for 6 examples in the data set, it was not possible to compute point normals
because there were too few points in the point cloud data. Hence, it was also impos-
sible to compute the PFH descriptors for these examples. Therefore, these examples
were dropped from the combination data set F2 and the total number of examples
for F2 is nF2 = 4621.

Table 4.4: Best features based on Feature Importance of Random Forest, using threshold of 0.009,
later referred to as F2.

1. PFH: ’5’
2. PFH: ’8’
3. PFH: ’9’
4. PFH: ’15’
5. PFH: ’19’
6. PFH: ’27’
7. PFH: ’28’
8. PFH: ’45’
9. PFH: ’48’
10. PFH: ’52’
11. PFH: ’121’
12. kernel-channel
13. blob-perimeter
14. blob-rectangularity
15. reconstruction-zmin
16. reconstruction-zmax
17. lw-ratio
18. hd-ratio
19. z_min / z_rms
20. z_max / z_rms

4.3.2 Random Forest Classifier

Applying Random Forest Classifier to the set F2 and including the examples from all
classes, the accuracy of 92.599% and cross-validation score of 87.232% are obtained
for binary classification, within HRF.

CRF_New1 =

⎡⎢⎢⎣
class0 class1

class0 577 263
class1 79 3702

⎤⎥⎥⎦ (4.11)

When dropping all class 10 examples and repeating classification on the set F2,
accuracy of 96.991% and cross-validation score of 92.117% are obtained for binary
classification.



4. Results and Discussion 53

CRF_New2 =

⎡⎢⎢⎣
class0 class1

class0 291 118
class1 8 3770

⎤⎥⎥⎦ (4.12)

When changing the labeling again into multiclass labeling as explained above, the
accuracy obtained wit Random Forest Classifier is 96.011% and cross-validation
score is 93.958%. However, from the Confusion Matrix (4.13) it can be seen that,
similar to the original results, classes 0, 1 and 2 are mostly correctly classified,
whereas classes 4 and 6 are again confused as class 1 examples. There are, however,
3 more examples correctly classified as class 4 examples compared to the original
situation.

CRF_New3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

class0 class1 class2 class4 class6
class0 138 64 0 0 0
class1 3 3772 3 0 0
class2 1 14 104 0 0
class4 0 49 0 6 0
class6 1 32 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.13)

The results using Random Forest Classifier on the set F2 are summarized in the
Table 4.5.

Table 4.5: Results obtained with Random Forest Classifier and the data set F2.

All classes included Without class 10 Multiclass case
Accuracy 92.599 % 96.991 % 96.011 %
Cross-Val Score 87.232 % 92.117 % 93.958 %

4.3.3 Support Vector Classification

The accuracy scores and cross-validation scores with different regularization param-
eter values obtained with chi-squared kernel are again evaluated in order to see how
the results are changing. The results can be seen from Figure 4.12. Accuracy scores
are again increasing with larger R-values, but the cross-validation scores remain rel-
atively stable for R-values larger than 4.0 and smaller than 16.0. The value chosen
for comparison is again R = 13.

The accuracy obtained while including all the classes and applying SVC on the
set F2 is 90.348% and the cross-validation score is 87.687%.



4. Results and Discussion 54

Figure 4.12: Accuracy and cross-validation scores with different values of regularization pa-
rameter obtained with SVC on F2. Accuracy scores are increasing when R is increasing, but
cross-validation scores remain relatively stable when 4 < R < 16.

CSVC_New1 =

⎡⎢⎢⎣
class0 class1

class0 596 244
class1 202 3579

⎤⎥⎥⎦ (4.14)

When dropping all class 10 examples, the accuracy obtained with SVC is 95.988%
and cross-validation score is 91.735% on the set F2.

CSVC_New2 =

⎡⎢⎢⎣
class0 class1

class0 261 148
class1 20 3758

⎤⎥⎥⎦ (4.15)

Finally, for the multiclass case, the accuracy obtained with SVC and the set F2
is 94.793% and the cross-validation score 91.902%. However, from the Confusion
Matrix (4.16) it is again clear, that the high accuracy is due to high number of
correctly predicted class 1 examples, whereas examples from classes 4 and 6 are
incorrectly classified as class 1.



4. Results and Discussion 55

CSVC_New3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

class0 class1 class2 class4 class6
class0 107 95 0 0 0
class1 9 3762 7 0 0
class2 1 18 100 0 0
class4 0 55 0 0 0
class6 1 31 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.16)

Table 4.6: Results obtained with SVC and the feature set F2.

All classes included Without class 10 Multiclass case
Accuracy 90.348 % 95.988 % 94.793 %
Cross-Val Score 87.687 % 91.735 % 91.902 %

Table 4.7: Summary of all classification results with both data sets F1 and F2.

All classes Without class 10 Multiclass
Data set F1
Random Forest Classifier
Accuracy 92.695 % 96.780 % 95.969 %
Cross-Val Score 86.882 % 91.770 % 94.086 %
SVC
Accuracy 92.738 % 97.377 % 95.421 %
Cross-Val Score 87.443 % 92.128 % 91.899 %
Data set F2
Random Forest Classifier
Accuracy 92.599 % 96.991 % 96.011 %
Cross-Val Score 87.232 % 92.117 % 93.958 %
SVC
Accuracy 90.348 % 95.988 % 94.793 %
Cross-Val Score 87.687 % 91.735 % 91.902 %

4.3.4 Multiclass classification on balanced data set with new
features

The generation of balanced data set is repeated with the data set F2 in order to
compare the results. It is of interest to see whether the combination data set helps to
separate between the classes more accurately than the original one. The algorithm
used is again Random Forest Classifier and the number of examples from each class
remains the same. From the Confusion Matrix (4.17) it can be seen, that the
results are very similar to the original situation. The algorithm is able to distinguish



4. Results and Discussion 56

between all the classes quite accurately. Only minor variations in the confused
examples can be seen in the confusion matrix. From Table 4.8 it can be seen, that
the accuracy is slightly higher than with the original data set. However, cross-
validation score is even lower than before, and testing with the entire data set
confirms this observation of poor generalization.

CRF_balanced_New =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

class1 class2 class4 class6 class7 class9
class1 20 0 1 1 0 0
class2 0 20 2 0 0 0
class4 0 0 21 1 0 0
class6 2 0 1 19 0 0
class7 1 0 3 0 18 0
class9 1 0 0 0 0 21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.17)

Table 4.8: Results of multiclass classification on balanced data set using Random Forest Classifier
and feature set F2.

Balanced set Test on entire data set
Accuracy 90.152 % 57.839 %
Cross-Val Score 44.147 %

4.4 Clustering with PFH-features

4.4.1 Clustering tendency

After including new features and choosing the best ones using feature importance,
PCA-transformation into three dimensions and t-SNE transformation into two di-
mensions are repeated in order to evaluate clustering tendency of the data set F2.
From Figure 4.13, it can be seen that the plot is now different compared to the
original one. The points are located into more dense groups, and only two distinct
groups can clearly be seen in the visualization. From Figure 4.14, it is again more
difficult to see clear separation of points into distinct groups. However, at least one
bigger group of points is visible. In addition, some smaller and less dense groups
can be seen in the plot. Based on these visualizations, it seems that there is less
internal structure present in the new data set compared to the original one, without
any reference to the ground truth labeling.



4. Results and Discussion 57

Figure 4.13: Visualization of PCA-transformed data with new features. Only two dense groups
of points are visible.

Figure 4.14: Visualization of t-SNE transformed data with new features. Compared to original
t-SNE transformation, less internal structure is visible.



4. Results and Discussion 58

4.4.2 Internal evaluation

Since PCA-visualization (Figure 4.13) on the set F2 is very dense, it is difficult to see
the differences between cluster labelings. Therefore, PCA is not used in this section,
but only silhouette analysis and t-SNE plots are used for internal evaluation of new
data set.

In Figure 4.15, silhouette scores obtained with k-means, Affinity Propagation,
and HDBSCAN are presented. HDBSCAN provided only two clusters with every
run, and hence, there is only one silhouette score to compare with the other two
algorithms. This result agrees with the indications of PCA-transform providing only
two dense groups. For k-means and Affinity Propagation, lower number of clusters
provide better silhouette scores, which seems reasonable for the same reason. For
more than 2 clusters, highest silhouette scores for k-means are obtained with 3, 7,
and 9 clusters, whereas for AP, with 6 and 11 clusters.

Figure 4.15: Silhouette analysis on k-means, Affinity Propagation, and HDBSCAN on the data
set F2.

4.4.3 External evaluation

When applying external evaluation metrics on the new data set with k-means and
Affinity Propagation, the external evaluation metrics provide very similar scores
for both algorithms. HDBSCAN provided only one result with two clusters, and
hence, it is not comparable with the two other algorithms. Homogeneity scores are
again increasing when the number of clusters is increasing with both two algorithms.
Interesting is, that for new data set F2, completeness, AMI, and ARI produce slightly
better scores with both k-means and AP. However, all these three scores are still
relatively low, indicating that there is not much similarity between cluster labels



4. Results and Discussion 59

and the ground truth labels.
In Figure 4.18, different cluster labelings are compared to the ground truth la-

beling. Interesting is, that even though there seems to be less internal structure
and less clear groups visible in t-SNE visualization, now the different classes are
more concentrated on distinct areas. In particular, there is a large area of class
1 examples (green) and the areas where most of other classes are located can be
separated from this bigger area. Therefore it is possible to divide the data set into
clusters that better correspond to the ground truth labels. Note, that both AP and
k-means provide very similar cluster labelings on the new data set. Both are able
to distinguish between most examples belonging to class 2 (red) and other classes,
and both are able to distinguish between areas that are mostly class 1 (green) and
areas where most of other classes are located. Note also, that the larger area of class
1 examples is divided into 3 bigger areas in both labelings obtained with AP and
k-means.

Figure 4.16: External evaluation on k-means clustering and new data set.

4.5 Discussion

Clustering

With the data set F1, there seems to be internal structure present, and separate
groups of points are clearly visible. It is possible to distinguish well separated clusters
without reference to ground truth labels. However, with reference to the ground
truth labeling, it becomes obvious that the internal structure does not correspond
to the externally known classes. Clustering algorithms usually generate clusters of
approximately equal size, which makes the correspondence between real class labels
and resulting cluster labeling poor in the context of highly unbalanced data.



4. Results and Discussion 60

Figure 4.17: External evaluation on Affinity Propagation clustering and new data set.

After generating the new data set F2 based on feature importance, there seems
to be less internal structure present compared to the original situation, since not so
many distinct sets of points are visible. However, with reference to the ground truth
labeling, the clustering results seem to be slightly better, because most of the class
1 samples are located in the same area, and most of class 2 samples are also located
in a separate area. It is also possible to distinct the area, where most of the other
classes besides 1 and 2 are located. External evaluation metrics also confirm this
finding, because the scores of all 4 evaluation metrics are just slightly higher than
for the original data set. With reference to the ground truth labeling, it is actually
reasonable to have only one bigger group of points and a couple of smaller ones,
since class 1 covers over 81 % of the data set.

It is obvious that high external evaluation scores are hard to reach with this
particular data, as there are total of 10 classes, and some of these classes only contain
one or two examples. Such clustering is not likely or even possible to achieve with
any kind of algorithm. In addition, there seems to be more than just one subgroup
in class 1 based on clustering results, which is an interesting finding, that needs
further research in order to be confirmed. Furthermore, with this data, it is only
possible to characterize the shape of the surface of the defect. Hence, it is not always
clear, which characteristics define which classes. This is better explained through
visualization in Appedix A: Figure A.3. Each of these defects are partly going below
the surface and partly above the surface, but not all of them belong to the same
class. This can happen due to an error of the human inspector, but also due to
some characteristics not visible in the surface plot. This is a big challenge for both
clustering and classification algorithms, since very similar instances based on surface
shape can actually belong to separate classes.



4. Results and Discussion 61

Figure 4.18: Visualizations of different cluster labelings on the new data set F2 using t-SNE.
Left upper corner; ground truth labeling, right upper corner; k-means with 6 clusters, left lower
corner; Affinity Propagation with 6 clusters, right lower corner; HDBSCAN with 2 clusters.



4. Results and Discussion 62

Classification

Classification results are relatively accurate with both algorithms, since the data
set is unbalanced and class 1 dominates the classification task. Class 10 plays a
significant role in classification accuracy, since without class 10 samples the results
are remarkably better. This seems reasonable, since class 10 consists of unlabeled
examples and there is no actual information available about the class, which then
confuses the model. For multiclass case, accuracy remains relatively high but this is
also due to the large amount of class 1 examples being correctly classified. Classes
4 and 6 are totally confused as class 1 examples, but they are so few that it does
not affect the accuracy significantly. In real-life applications, however, it would be
important to be able to distinguish between the smaller and more rare cases as well.
Random Forest Classifier seems to perform better than SVC in multiclass case, but
otherwise the two algorithms perform very similarly.

The classification results obtained with new data set F2 remain very similar to the
original situation. Even though the PFH-features seem to be useful in the clustering
task, the classification results do not improve when the new features are included.
When taking a closer look to the results provided by Random Forest Classifier in the
multiclass situation and comparing class 2 examples which are incorrectly classified
as class 1 or class 0 to the examples that are correctly classified, the results are
interesting. It seems that those defects, which are not only going below the surface
but have also one or more "bumps" above the surface, are likely to be classified
as class 1 or class 0 rather than class 2. The examples can be seen in Appendix
A: Figure A.1 and Figure A.2. This again demonstrates the challenge related to
reflection data, but also builds trust on the model, since the misclassifications are
reasonable in some sense.

The biggest issue in the multiclass situation for both data sets is that classes 4
and 6 are totally confused as class 1 samples. This also seems quite reasonable after
browsing through samples of these classes. In most cases, there is something above
the surface similar to class 1, but the number and shape of "bumps" is varying inside
the classes as well as between the classes. The algorithm is then classifying all the
examples of class 4 and 6 as class 1, since there are so many class 1 examples, that
it is dominating over other classes, even though there actually are some differences
in the surface shapes. In order to be able to correctly classify classes 4 and 6 (and
possibly 3, 7, and 8), more examples from these classes are needed for training and
testing.

It is also possible to generate balanced data sets (equal number of samples of
each class) in order to avoid one class dominating over others. However, in this
particular case it turned out to be not very beneficial to use this classifier to perform
classification on the entire data for two reasons. First, as discussed already, there



4. Results and Discussion 63

are still only 22 examples from class 7, 33 examples of class 6 and 56 of class 4.
This limits the number of samples for training quite dramatically, which yields poor
generalization. Second, the data set is unbalanced for a reason: In real life, class
1 is also the most common defect class. If the model is trained on balanced data
set, the results for a real situation are not very good, since class 1 samples are then
confused often as some other class. This can be seen in Confusion Matrix (4.10).
Hence, in this case, it is actually beneficial to prefer class 1 over others, in order to
reach higher accuracy in real life situations.

Now that it is confirmed, that the model trained on the balanced set can actually
differentiate between all the classes quite well, one possible approach to achieve bet-
ter accuracy in the real situation would be to use two different models sequentially:
First use binary classification to train a model which can differentiate between class
1 and others, similar to the classifiers introduced first in this thesis. This step would
help getting more balanced set for further multiclass classification. Next, take only
those samples, which were not classified as class 1 in the previous step and use the
classifier trained on balanced data set to distinguish between the remaining classes.
This would solve the problem of class 1 dominating over other classes in the multi-
class case and enable accurate classification for both class 1 and the smaller classes.
This approach still needs some further research in order to have more information
about the performance.



64

5. CONCLUSIONS

In this chapter, the conclusions based on findings and results explained in previous
chapter are presented in order to answer the research questions in Chapter 3. In
addition, some extensions for future work are suggested.

Research question 1: Does internal structure exist in the data, and if so, does
it have something in common with known class labeling?

Based on silhouette analysis, it can be determined that internal structure does
exist in the data set. For the original features Fog, silhouette scores slightly higher
than 0.6 are obtained with k-means and HDBSCAN, and with Affinity Propagation,
silhouette scores of 0.45 at highest. It seems, that with the original features, 2-4
clusters provide the highest silhouette scores with k-means and HDBSCAN. With
Affinity Propagation, the lowest possible number of clusters obtained by changing
the preference was 6, which also provides the highest silhouette score for Affinity
Propagation. To conclude, the original data set has 2-4 relatively well separated
clusters. When the number of clusters is increased, the resulting clusters are not as
well separated, but not completely overlapping either.

Using the combination data set F2 with the new features, silhouette scores higher
that 0.8 are obtained for two clusters. Furthermore, HDBSCAN only provided re-
sults having two clusters. It is a density-based clustering method and hence, this
result implies that there are only two dense groups of points, which are then sur-
rounded by a region of low density. With this data set, silhouette scores are decreas-
ing faster as the number of clusters increases for AP and k-means. To conclude, the
new data set has 2 relatively well separated clusters, but if the number of clusters
is increased, the resulting clusters are not well separated at all. However, silhou-
ette score only evaluates the distances within clusters versus the distances between
separate clusters. For this reason, visual assessment was also used to confirm these
findings.

Based on visual assessment via PCA and t-SNE dimensionality reduction on
Fog, it can be confirmed, that some internal structure does indeed exist. PCA-
visualization shows 2-4 dense groups of points. With t-SNE it is more difficult
to define the number of groups present in the data, but some structure is clearly
visible. Using the combination data set F2 with new features, PCA-visualization
becomes more concentrated, showing only two separate, very dense groups of points.



5. Conclusions 65

Furthermore, t-SNE plot shows only one larger group and possibly one or more
smaller ones. These results agree with the observations based on silhouette analysis:
There are less internal structure present when using the combination data set, but
with the minimum valid number of 2 clusters, these two groups are better separated
than with the original data set.

When taking into account the ground truth labeling, in other words, real class
labels, it is obvious that the cluster labels obtained with original data set have
almost nothing in common with the real class labels. External evaluation metrics
obtained with the three algorithms indicate, that the labelings with reference to
the real class labels are close to random. When using the combination data set
with new features included, external evaluation metrics indicate slightly better fit
between ground truth labels and the cluster labelings. The scores remain relatively
low, since there are 10 different classes, one of which is a class of unlabeled examples
and one of which covers more than 81 % of the examples, in contrast to three classes
only containing one or two examples. Clustering algorithms do not usually perform
well with such unbalanced data sets and thus, these results are not very surprising.
However, using the combination data set, it is possible to separate almost all class 2
examples from other classes, and the area of mostly class 1 samples from others. It
is also possible to separate the area which contains most of class 9 and 10 samples
from the other classes, which are promising results for further research.

Research question 2: Do distinct learning algorithms perform similarly on the
classification task?

In binary classification, all classes included, the two algorithms used for classifi-
cation perform remarkably similarly. Random Forest Classifier provides at highest
2.3 % better accuracy scores than SVC on the data set F2, but otherwise the ac-
curacy scores are almost equal for both algorithms. Furthermore, cross-validation
scores are almost equal with both algorithms and comparing on both data sets, the
biggest difference being 0.5 % on the data set F1. When class 10 is not included
in binary classification, Random Forest Classifier provides at highest 1.0 % better
accuracy scores comparing on the new data set F2, whereas on data set F1, SVC
provides at highest 0.6 % better accuracy scores. Again the cross-validation scores
remain almost equal for both algorithms, the biggest difference being approximately
0.4 % on both data sets.

For multiclass case, Random Forest Classifier seems to perform slightly better,
providing approximately 1.2 % better accuracy scores, comparing on the new data
set F2. The cross-validation scores compared on both data sets are also slightly
better (2.2 % at highest) with Random Forest. Random Forests are invariant under
scaling and claimed to be robust to irrelevant features. Random Forests also work
well with large, even slightly unbalanced data sets. Hence, it is not surprising that



5. Conclusions 66

accuracy scores are slightly higher in most cases using Random Forest. More inter-
esting is that the cross-validation scores are relatively similar in all the binary cases
for both algorithms, but higher in the multiclass case using Random Forest. This
might be due to the fact, that Random Forests are claimed to ease the overfitting
tendency of traditional decision trees. Another interesting finding, and one possible
explanation, is that Random Forests seem to perform slightly better in differentiat-
ing between the smaller classes. This makes a huge difference in the context of this
particular data set, even though there are not such a big differences in the accuracy
scores.

Research question 3: Are PFH:s useful in creating new features for classi-
fication and clustering tasks, and do these features improve the classification and
clustering results?

The new features obtained by computing PFH:s do not improve classification
performance significantly. When all classes are included in the binary classification,
accuracy scores are actually lower than on the data set F1, the difference being 2.4 %
at highest. However, the cross-validation scores are slightly improving on data set
F2, the difference being 0.5 % at highest. When class 10 is not included in the binary
classification, 0.2 % better accuracies and 0.4 % better cross-validation scores are
obtained with Random Forest. With SVC, accuracy score is approximately 1.4 %
lower and the cross-validation score 0.4 % lower on the data set F2. In the multiclass
case, Random Forest performs almost equally on both data sets, the differences in
accuracy and cross-validation scores being less than 0.1 %. With SVC, the accuracy
on new data set is approximately 0.6 % lower than on the original data set. However,
the cross-validation scores are again almost equal with both data sets. To conclude,
the overall performance of the two algorithms in all approaches is very similar on
both data sets. Hence, including PFH-based features does not seem to affect the
classification performance significantly.

Evaluating the differences in clustering results is not as straight forward as in
classification. The concept of good clustering is not well defined, and it mostly
depends on the application. In the context of this data, it seems that the PFH:s
are improving the clustering results in the sense of fitting better to the real class
labels. In the sense of finding well separated groups in the data, the original data
set is providing more distinct sets of points. However, with the reference to the real
labels, the structure found in the original data set is almost random. The examples
belonging to different classes are not located in the same clusters, but spread across
them. This makes the clustering results on the new data set more desirable in
the context of this thesis, because the internal structure corresponds better to the
ground truth labeling. On the new data set, clustering algorithms are able create
such clusters that have something in common with the real labels. In particular, the



5. Conclusions 67

algorithms are able to distinguish between examples belonging to class 2 and other
classes. It is also possible to create three to four such clusters that include most
of class 1 examples. Furthermore, the algorithms are able to create such cluster
that includes most of the examples belonging to class 9 and 10. To conclude, in the
context of this particular data set, PFH-based features are improving the clustering
results in the sense of fitting better to the real class labels, but not necessarily in
the sense of internal structure.

These results are promising for further research. Getting labeled data is hard and
time-consuming, and requires co-operation between the manufacturing organization
and the customer organizations. Hence, if it is possible to create such a clustering
that has something in common with the real class labels and can divide the instances
in meaningful groups, it is also possible to conduct research on unlabeled data, which
is significantly easier to gather. The results in this thesis state that creating such
clusters is indeed possible.

In order to get better classification results, it would be beneficial to gather more
examples from the smaller classes. One possible extension is to conduct binary
classification between two classes, for example 2 vs 4, 2 vs 6, and 4 vs 6, in order
to get more insight about the differences and separating conditions between these
classes, as well as feature importance for these classifiers. This, in turn, might be
helpful in creating and choosing such features that would result in better classifi-
cation performance in the multiclass case. The results in this thesis show, that it
is possible already to separate between all the different classes, but the rareness of
defects belonging to the smaller classes limits the possibility to build such model
that would accurately separate them in real-life situation. As suggested before, one
possible extension would be also the two-step approach, where two classifiers are
used sequentially: First binary classification in order to distinguish between class 1
and others, second multiclass classification to distinguish between all the remaining
classes. The results of this thesis already confirm that for both binary and multiclass
case, quite accurate results can be obtained. It would be interesting to see how well
these two classifiers can perform when combined.

Even though the results indicate, that PFH descriptors are not very useful in the
classification task, this does not necessarily mean that the PFH:s can not capture
the properties of defect shapes. It only indicates, that using PFHs via cumulative
sums and as features might not be the best approach. One interesting possibility
for further research would be to use PFH descriptors in a more traditional manner,
by trying to learn a model for each class via regression, and then use these models
in shape recognition.



68

REFERENCES
[1] Breiman, L. Random Forests, Machine Learning, 45(1), 2001, pp. 5-32

[2] Campello, R. J. G. B., Moulavi, D., Sander, J. Density-Based Clustering Based
on Hierarchical Density Estimates, Lecture Notes in Computer Science, Vol.
7819. Springer, 2013

[3] Chih-Chung C., Chih-Jen L., LIBSVM: a library for support vector machines,
ACM Transactions on Intelligent Systems and Technology, 2011

[4] Döring, C., Eichhorn, A., Wang, X., Kruse, R. Improved Classification of Sur-
face Defects for Quality Control of Car Body Panels, 2006 IEEE International
Conference on Fuzzy Systems, 2006, pp. 1476-1481

[5] Estivill-Castro, V. Why So Many Clustering Algorithms: A Position Paper,
ACM SIGKDD Explorations Newsletter, Vol. 4, 2002

[6] Frey, B. J., Dueck, D. Clustering by Passing Messages Between Data Points,
Science, Vol. 315, 2007

[7] Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Second Edition, Springer, 2008

[8] Hotelling, H. Analysis of a Complex of Statistical Variables into Principal Com-
ponents, Journal of Educational Psychology, 24(6 and 7), 1993

[9] Hubert, L., Arabie, P. Comparing partitions, Journal of Classification, Vol. 2,
no. 1, 1985, pp. 193-218

[10] Izenman, A. J. Modern Multivariate Statistical Techniques, Regression, Classi-
fication, and Manifold Learning, Springer, 2013

[11] Jia, H., Murphey, Y. L., Shi, J., Chang, T-S. An intelligent real-time vision
system for surface defect detection, Proceedings of the 17th International Con-
ference on Pattern Recognition, ICPR 2004, Vol. 3, 2004, pp. 239-242

[12] Jones, B., Aoun, M. Learning 3D Point Coud Histograms, CS229 Machine
Learning Project, 2009

[13] Kamani, P., Noursadeghi, E., Afshar, A., Towhidkhah, F. Automatic Paint
Defect Detection and Classification of Car Body, 7th Iranian Conference on
Machine Vision and Image Processing, 2011, pp. 1-6



REFERENCES 69

[14] Karbacher, S., Babst, J., Häusler, G., Laboureux, X. Visualization and Detec-
tion of Small Defects on Car-Bodies, 1999

[15] Knauer, M. C., Kaminski, J., Häusler, G. Phase Measuring Deflectometry: a
new approach to measure specular free-form surfaces, Institute of Optics, Infor-
mation and Photonics, University of Erlangen-Nuremberg, 2004

[16] Lichman, M. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Sci-
ence, 2013

[17] Lilienblum, T., Albrecht, P., Calow R., Michaelis, B. Dent detection in car bod-
ies, Proceedings 15th International Conference on Pattern Recognition. ICPR
2000, Vol. 4, 2000, pp. 775-778

[18] Louridas, P., Ebert, C. Machine Learning, IEEE Software, Vol. 33, 2016

[19] McInnes, L., Healy, J., Astels, S. hdbscan: Hierarchical density based clustering
In: Journal of Open Source Software, The Open Journal, Vol. 2, no. 11, 2017

[20] Michie, D., Spiegelhalter, D. J., Taylor, C. C. Machine Learning, Neural and
Statistical Classification, Overseas Press, 1994

[21] Moeslund, T. Introduction to Video and Image Processing: Building Real Sys-
tems and Applications, Springer London, 2012, pp. 103-113

[22] Mohri, M., Rostamizadeh, A., Talwakar, A. Foundations of Machine Learning,
The MIT Press, 2012

[23] Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space,
Philosophical Magazine, Series 6, 2(11), 1901, pp. 559-572

[24] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. Scikit-
learn: Machine Learning in Python, Journal of Machine Learning Research 12,
2011, pp. 2825-2830

[25] Rosenberg, A., Hirschberg, J. V-Measure: A conditional entropy-based external
cluster evaluation measure, Columbia University, 2007

[26] Rousseeuw, P. J. Silhouettes: a Graphical Aid to the Interpretation and Vali-
dation of Cluster Analysis, Computational and Applied Mathematics 20, 1987,
pp. 53-65



REFERENCES 70

[27] Russell, S., Norvig, P. Artificial Intelligence, A Modern Approach, Third edi-
tion, Pearson, 2010

[28] Rusu, R. B Semantic 3D Object Maps for Everyday Manipulation in Human
Living Environments, Künstliche Intelligenz (KI), Vol. 24, no. 4, 2010, pp. 345-
348

[29] Rusu, R. B., Cousins, S. 3D is here: Point Cloud Library (PCL), IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2011

[30] Rusu, R. B., Marton, Z. C., Blodow, N., Beetz, M. Learning Informative Point
Classes for the Acquisition of Object Model Maps, Proceedings of the 10th Inter-
national Conference on Control, Au- tomation, Robotics and Vision (ICARCV),
2008

[31] Rusu, R. B., Marton, Z. C., Blodow, N., Beetz, M. Persistent Point Feature
Histograms for 3D Point Clouds In Proceedings of the 10th International Con-
ference on Intelligent Autonomous Systems (IAS-10), 2008

[32] Tan, P.-N., Steinbach M., Kumar, V. Introduction to Data Mining, Pearson,
2006

[33] Tipping, M. E., Bishop, C. M. Mixtures of Probabilistic Principal Component
Analysers, Neural Computation 11(2), MIT Press, 1999, pp 443-482

[34] van der Maaten, L. Visualizing Data using t-SNE, Journal of Machine Learning
Research 9, 2008, pp. 2579-2605

[35] Vinh, N. X., Epps, J., Bailey, J. Information Theoretic Measures for Clusterings
Comparison: Is a Correction for Chance Necessary?, Proceedings of the 26th
Annual International Conference on Machine Learning, ACM, 2009

[36] Wahl, E., Hillenbrand, U., Hirzinger, G. Surflet-Pair-Relation Histograms: A
Statistical 3D-Shape Representation for Rapid Classification, IEEE Computer
Society Press, 2003, pp 474-481



A. SURFACE PLOTS OF MULTICLASS
CLASSIFICATION RESULTS

Figure A.1: Class 2 examples which were incorrectly classified as class 1 or class 0 by Random
Forest Classifier in the multiclass task. All of these incorrectly classified examples have some
"bumps" above the surface and not just crater going below the surface.



A. Surface plots of multiclass classification results

Figure A.2: Class 2 examples which were correctly classified by Random Forest classifier in the
multiclass task. Most of correctly classified examples are clearly craters going below the surface,
with only little texture above the surface.



A. Surface plots of multiclass classification results

Figure A.3: Examples belonging to different classes. Each of these defects are partly going
below the surface and partly above the surface. This demonstrates the challenge in distinguishing
between the different classes.



B. FITTING THE GAUSSIAN FUNCTION

Figure B.1: 3D point cloud and corresponding 2D plot (z-axis) of class 1 example.

Figure B.2: 3D point cloud and corresponding 2D plot (z-axis) of class 2 example.

From Figure B.1 and Figure B.2, it can be seen that considering only z-axis of 3D
point clouds, there is some resemblance with gaussian curves. Hence, new features
were obtained by fitting gaussian function:



B. Fitting the gaussian function

f(x, y) = A·exp
(
− 1

2(1− ρ2) ·
(

(x− µx)2

σ2
x

− 2ρ(x− µx) · (y − µy)
σxσy

+ (y − µy)2

σ2
y

))
+B,

from where it is possible to compute the following features:

Feature Formula Explanation
amplitude_z_um A Amplitude of Gaus-

sian function (µm)
offset_z_um B Vertical offset of

the Gaussian func-
tion (µm)

center_x_mm µx x-coordinate of the
mean value (mm)

center_y_mm µy y-coordinate of the
mean value (mm)

sigma_major_axis_mm σ
′
x Variance along the

main axis (mm)
sigma_minor_axis_mm σ

′
y Variance along the

smaller axis (mm)
orientation_angle_rad ϑ Angle of rotation in

radians (computed
from ρ, σx, and σy)

fitting_error_um2 ∑
i dist(Pi − f(x,y))2 Fitting error (µm2)

fitting_rms_um
√

fitting_error_um2
number_points Mean square error

(µm)
volume_gauss_mm3 V = 2πAσ

′
xσ

′
y Volume under the

fitted Gaussian
function (mm3)

volume_positive_mm3 ∑
i zi for zi > 0 Volume over XY-

plane (mm3)
volume_negative_mm3 ∑

i zi for zi < 0 Volume under XY-
plane (mm3)

volume_total_mm3 volume_positive_mm3
+ vol-
ume_negative_mm3

Total volume
(mm3)


	Introduction
	Theoretical Background and Premise
	Phase Measuring Deflectormetry
	Related work
	Machine Learning
	Supervised learning and classification
	Classification performance evaluation
	Unsupervised learning and clustering
	Clustering evaluation


	Research Methodology
	Learning algorithms
	Classification algorithms
	Clustering algorithms

	Creating and combining features
	Principal Component Analysis
	t-SNE
	Point Feature Histograms

	Empirical Evaluation
	Research Questions
	Description of the Data
	Classification methods
	Clustering methods
	PFH methods


	Results and Discussion
	Classification results
	Random Forest Classifier results
	Support Vector Classifier results
	Multiclass classification results on balanced data set

	Clustering results
	Determining clustering tendency
	Internal evaluation
	External evaluation

	Classification results with PFH-features
	Selecting the best features
	Random Forest Classifier
	Support Vector Classification
	Multiclass classification on balanced data set with new features

	Clustering with PFH-features
	Clustering tendency
	Internal evaluation
	External evaluation

	Discussion

	Conclusions
	References
	Surface plots of multiclass classification results
	Fitting the gaussian function

