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ABSTRACT 
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Tissue engineering (TE) uses biomaterials, cells, and bioactive molecules to create 3D 

structures called scaffolds. Scaffolds are temporary structures that provide a template and 

support for cells, and tissue regeneration. It should mimic, as closely as possible, the one 

of the tissues to be replaced. Hence, mechanical tests are of paramount importance. 

However, there are various biomaterials, with distinct mechanical properties for different 

applications. Consequently, performing a conventional compression test is complicated. 

The accuracy and reproducibility of the testing machine as well as the impact of sample’s 

geometry, microstructure and machinability should be evaluated for safe TE applications. 

The objective of this thesis was to study the reliability and limitations of static 

conventional compression test and compression testing device (Instron Electropuls E 

1000). Two reference materials and various biomaterials, with various properties, were 

compression tested to attain a better understanding of the performance and limitations of 

the testing device. Also, reproducibility between devices was evaluated. The stress-strain 

behavior was determined for the materials and evaluated by comparing the results with 

other similar studies in the literature. Accuracy and reproducibility of the compression 

tests were considered. 

The results showed that the compressive properties are dependent on many factors such 

as compressive rate, sample size, cell structure and material density. The viscoelasticity 

of a hydrogel, the non-homogeneous structure of a joint scaffold and the brittleness of a 

bioactive glass scaffold complicated and hampered the reliability of the compression test. 

Fixed uniaxial compressive platen led to uneven load distribution on hard biomaterial’s 

cross-section area. Careful sample preparation, surface finish or self-aligning platen could 

improve the reliability. The testing device showed good reproducibility, and accuracy for 

compressive strength. However, compressive modulus underestimated the results by > 34 

%. The strain was measured from the platen displacement and the quality and integrity of 

the sample surface may have caused error in strain measurements. With an optical 

extensometer, strain could be measured precisely from the center part without touching 

the sample. This method could exclude the surface artifacts and improve accuracy. In 

conclusion, the accuracy and reproducibility of conventional compression test are 

questionable. The compression test should be performed with caution. However, the 

limitations and reliability of the compression test can be enhanced with additional 

equipment, careful preparation and report of the used methods. 
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Kudosteknologia hyödyntää biomateriaaleja, soluja ja bioaktiivisia molekyylejä 

kehittääkseen kolmiulotteisia kudossiirteitä. Näitä kudosteknologisia kudossiirteitä 

voidaan käyttää väliaikaisena alustana ja tukirakenteena soluille sekä kudosten 

rekonstruktioon. Olennaista on, että kudossiirre käyttäytyisi mahdollisimman samalla 

lailla kuin kohdekudos. Tämän vuoksi mekaanisten ominaisuuksien karakterisointi on 

tärkeää. Uusien biomateriaalien ja niiden erityislaatuisten mekaanisten ominaisuuksien 

lisääntyessä perinteisten mekaanisten testien suorittamisesta on tullut hankalampaa. 

Testilaitteen tarkkuus ja toistettavuus sekä näytteiden muodon, mikrorakenteen ja 

eheyden vaikutus mekaanisten testien tuloksiin on tärkeää arvioida kudosteknologisten 

sovellusten turvallisuuden vuoksi. 

Työn tavoite oli selvittää tavanomaisen puristuskokeen ja -laitteen (Instron Electropuls E 

1000) luotettavuus sekä haasteet. Työssä testattiin kahta vertailumateriaalia sekä useaa 

eritavoin käyttäytyvää biomateriaalia. Usean materiaalien testaaminen antoi paremman 

käsityksen laitteen suorituskyvystä ja rajoitteista. Testien toistettavuutta tutkittiin eri 

laitteiden tuloksia vertailemalla. Lisäksi testien tarkkuutta ja toistettavuutta arvioitiin 

vertaamalla biomateriaalien jännitys-myötymä -käyttäytymistä samankaltaisten testien 

tuloksiin. 

Työssä havaittiin, että materiaalien kompressio-ominaisuudet ovat riippuvaisia useasta 

tekijästä, kuten puristusnopeudesta, näytekappaleen koosta, materiaalin tiheydestä ja 

huokosten rakenteesta. Bioaktiivisen lasin hauraus, hydrogeelin viskoelastisuus ja 

nivelimplantin epähomogeeninen rakenne vaikeuttivat testiä ja heikensivät tulosten 

luotettavuutta. Yksiakselinen puristuslevy ja näytteiden vino pinta aiheuttivat 

puristusvoimien jakautumisen epätasaisesti näytteen pintaan testin aikana. Näytteiden 

huolellinen valmistus ja pinnan viimeistely tai itseasettuvan puristuslevyn käyttö voisivat 

parantaa testin luotettavuutta. Materiaalien puristuslujuuden tarkkuus ja testien 

toistettavuus olivat hyviä. Laite kuitenkin aliarvioi testinäytteiden jäykkyyden > 34 %. 

Myötymä mitattiin kompressiolevyn siirtymänä näytteen pinnalta. Tällöin näytteiden 

laatu ja pinnan eheys voivat aiheuttaa epätarkkuutta myötymään. Optinen 

myötymämittari mittaa myötymän näytteen keskeltä, jolloin pinnan artefaktit voitaisiin 

jättää huomioimatta. Tämä keino voisi parantaa tuloksien tarkkuutta. Yhteenvetona, 

biomateriaalien kompressio tulokset ovat harvoin tarkkoja ja toistettavia. Perinteinen 

puristuskoe tulisi suorittaa huolellisesti sekä harkitsevaisesti. Puristuskokeen 

luotettavuutta voidaan parantaa lisälaitteilla, huolellisella näytteiden valmistelulla ja 

tutkimuksen raportoinnilla. 
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1. INTRODUCTION 

Tissue engineering (TE) is a field that aims to heal, repair or replace damaged structure 

that needs medical treatment. The function of tissue may suffer due to trauma, injury, 

disease or ageing. TE creates three-dimensional (3D) structures called scaffolds that 

activate tissue regeneration and healing of the tissue. A functional scaffold can be built 

by combining biomaterials, cells and signaling molecules. Inside the human body 

scaffolds should mimic the original tissue. Thus, an important property of the biomaterial 

is to provide sufficient mechanical support during the healing process. The mechanical 

properties of the biomaterial can be tested by a compression test, which provides 

fundamental behavior and properties of biomaterials. [1, 2] In the case of unsuccessful 

testing or interpretation, the engineered outcome of the biomaterial might have unwanted 

side effect, such as inflammation or early failure. The crucial factors in the mechanical 

testing of biomaterials are reproducibility and reliability. [3] 

Biomaterials range from strong to soft depending on the targeted application. Bone tissue 

are stronger and stiffer than for example nerve tissue or elastic cartilage. [2, 4] Here the 

challenge lies in assessing the mechanical properties of such a wide range of biomaterials. 

There are no clear guidelines for testing new biomaterials used as scaffolds. 

Viscoelasticity, porosity, brittleness are a few properties among others that make the 

conventional compression test complicated to perform and analyze. The variation in the 

compressive results of biomaterial batches or between different sized specimens have 

raised questions about the reliability. The equipment, sample design, testing methods, 

equipment etc. have shown to have influence on the results. [5-7] Thus, there are many 

limitations and challenges in compression testing, but to achieve reliable results the 

limitations and challenges need to be first detected. 

The aim of this thesis was to study the reliability and limitations of conventional com-

pression tests and our mechanical testing device (Instron Electropuls E 1000). Two 

porous reference materials, viscoelastic hydrogel scaffolds, a solid polymer rod, knitted 

polymer scaffolds, brittle bioactive glass scaffolds, and a strong cancellous bone were 

compression tested to get better understanding of the compression test and performance 

of the mechanical testing device. Aside from the understanding of the mechanical 

properties of the various types of biomaterials, in this study 3D prototyping of bioactive 

glass scaffold as well as Gellan Gum (GG) hydrogel processing were emphasized. 
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2. THERORETICAL BACKGROUND 

2.1 Axial and Static Compression Test 

Conventionally a mechanical test aims to determine the mechanical properties of a 

material by loading a specimen uniaxially. During the test, the given load and 

corresponding deformation of the specimen are measured. The most common axial 

loading modes are tensile and compression. During the tensile test, the specimen is 

stretched. On the contrary, during the compression test, the specimen is compressed. 

Additionally, there are other mechanical test modes. For example, the torsion and shear 

tests are perpendicular to the tensile and compression test. The loading condition can be 

static or dynamic, which means that the specimen is loaded once or cyclically. [3, 8] This 

thesis focuses only on static compression test. 

2.1.1 Stress-Strain 

During a mechanical test, an external force is applied on the surface of the tested 

specimen. This force is measured and called load. The external force causes material 

deformation. This deformation, in the case of a compression test, is seen as contraction 

of the tested specimen and is measured as displacement. The relationship between load 

and displacement can be used to characterize the mechanical properties of the specimen. 

However, load and displacement are sample size dependent. Therefore, to minimize the 

effect of the sample size, load and displacement are normalized to the materials surface 

and length to give stress and strain. They usually give broader understanding of the 

material’s properties and the results are more comparable between studies. The 

normalized parameters are also called engineering stress and engineering strain. [3, 8] 

Engineering stress can be expressed as: 

𝜎 =
𝐹

𝐴0
      (1) 

in which F is the applied force normal to the specimen surface and A0 is the cross-section 

area of the specimen. According to the international system of units (SI) engineering 

stress is expressed in megapascals (MPa) which equals 106 newtons per square meter. 

Engineering strain, referred as strain, is calculated using the following equation 

𝜀 =
𝑙𝑖−𝑙0

𝑙0
=  

𝛥𝑙

𝑙0
     (2) 

in which l0 is the initial length and li is the instantaneous length of the specimen after load 

is applied. The change in length can be expressed as Δl and due to the same unit in the 

denominator and numerator, engineering strain is unitless. However, the unit of the strain 
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can be expressed as millimeter per millimeter or as a percentage after multiplying it by 

100. Compression test leads to a decrease in the initial length, which turns Δl negative. 

For the tensile test, Δl is positive. [8] This is a way to describe the direction of the load 

and separate compression and tensile test. However, generally the strain is changed to 

positive if there is no need to describe the direction of the test. 

The relationship between engineering stress and engineering strain is used to characterize 

the stiffness and strength of the material. The representative stress-strain curve can be 

seen in Figure 1 (a). In the linear part of the curve, stress and strain are proportional to 

each other. Hooke’s law can be used, 

𝜎 = 𝐸𝜖      (3) 

where the constant E is the Young’s modulus or in case of the compressive test, 

compressive modulus. Young’s modulus describes the ability of the material to resist 

elastic deformation, hence the stiffness. The highest point of the stress-strain curve before 

the decrease in stress, can be called failure point, fracture strength or ultimate strength 

(σmax). The decrease in stress is a sign of a fracture. As there might be a case when no 

fracture appears, the strength of the material is determined at a specific strain point. The 

point where the linear part of the curve starts to bow is called yield point (σy). Before the 

yield point the deformation is elastic, hence material deformation is reversible. On the 

contrary, after the yield point, material deformation is plastic making deformation 

permanent. The plastic deformation is different for crystalline and amorphous materials, 

but the deformation results in a breakage of old atomic bonds and reformation of new 

bonds. The resilience of the material is the energy absorbed at the point of yield. The 

absorbed energy until yield can be determined by the following equation 

𝑈𝑦 = ∫ 𝜎𝑑𝜀
𝜖𝑦

0
      (4) 

in which 𝑈𝑦 is the absorbed energy until yield and 𝜀𝑦 is the yield strain. The coloured part 

of the stress-strain curve in Figure 1 (a) illustrates where absorbed energy is taken. It 

characterizes the capacity of the material to absorb energy under deformation and then 

recover the energy upon unloading. [3, 8, 9] 
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Figure 1. Schematic stress-strain curve (a) and gradient of the curve (b) used to 

determine the Young’s modulus, yield point and the absorbed energy [10]. 

As there are different kind of stress-strain curves depending on material behavior, 

sometimes other methods can be used to facilitate the evaluation process. In this thesis, 

one method is represented. The gradient of the stress-train curve (Figure 1(b)) can be 

obtained by fitting the fifth degree polynomial to the stress-strain curve and then taking 

the first derivate. The equation of the fifth degree polynomial is 

𝜎(𝑥) = 𝐶5𝑥5 ± 𝐶4𝑥4 ± 𝐶3𝑥3±𝐶2𝑥2 ± 𝐶1x ± 𝐶0   (5) 

in which 𝜎(𝑥) is the displacement of the compressive platen (in mm) and 𝐶𝑖 is coefficient 

for every degree term. The fifth degree polynomial appears similar to the original curve 

but may have local maximum and minimum. Taking the derivate of the fifth polynomial 

fit, from zero to the highest stress point, gives the gradient of the curve. The derivate of 

the curve can be used to obtain Young’s modulus, detect the yield point and ultimately 
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the material’s strength (Figure 1 (b)). The Young’s modulus is the maximum point of the 

derivative curve. The yield point can be found on the right side of the Young’s modulus 

from the derivative curve at point where the maximum is decreased by 3 %. The ultimate 

strength is the point where the derivative curve crosses the x-axis. [10, 11] 

2.1.2 Deformation 

The two basic behaviors observed under compression are the elastic solid and the viscous 

fluid [8]. However, the behavior of a biological tissue is more complicated. Almost all 

tissues have both, elastic and viscous behavior [4, 12]. As biomaterials aim to mimic 

human tissues, it is expected that various biomaterials can exhibit similar behavior. This 

behavior is called viscoelasticity [2, 4, 7]. 

Hysteresis, stress relaxation and creep are viscoelastic responses to stress. A sign of 

hysteresis is the change in the stress-strain curve when the material is loaded cyclically. 

Stress relaxation and creep may appear during the compression test and will be discussed 

in this study. [7, 8] 

The viscoelastic behavior of the material depends on the stress, time and temperature. 

Figure 2 illustrates the response of various materials in relation to time and stress. The 

applied load causes elastic material to deform immediately. When the load is released, 

the elastic material recovers from the deformation instantaneously like a string. On the 

contrary, the viscous material has time dependent deformation and cannot completely 

return to the initial formation. The viscoelastic material has both properties. It may first 

have instantaneous deformation like an elastic material, but then the deformation becomes 

time-dependent similarly as in viscous material. The viscoelastic deformation can also be 

explained via mechanical energy that is stored or dissipated. Viscoelastic materials have 

the ability of store mechanical energy during deformation but then dissipating at a varying 

rate upon unloading of the material. [4, 8, 13] Thus, viscoelastic materials are good impact 

absorbers. This property is very important for supportive tissues like cartilage [14]. 

 

Figure 2. Elastic, viscoelastic and viscous behavior under load (a) and their time-

deformation relationship (b) [8]. 



6 

The viscoelastic behavior and time-dependency can be tested by loading the material. The 

temperature should be kept constant during the test. If the material is rapidly deformed to 

a particular strain that then remains constant for a specific time and thereafter a change in 

stress can be seen, it is called stress relaxation (Figure 3 (a)) [7]. Usually during the stress 

relaxation, the stress first decreases fast but then slowly stabilizes in time. If the material 

is loaded with a constant stress for a specific time and a change in strain can be seen, it is 

called creep (Figure 3 (b)). [8] Hence, the tests are complementary, the stress relaxation 

test uses constant strain and the creep test uses constant stress. [15] 

The time- dependency of viscoelastic behavior may be represented with mathematical 

models. Hooke’s law models the elastic deformation as a spring and Newton’s law the 

viscous deformation as a dashpot. These two laws are used to model linear viscoelasticity 

at a small level of deformation. When the material’s viscoelastic property is characterized 

via electric analog, capacitors and resistors are used. [13, 15] A schematic illustration of 

time-dependency, spring and dashpot models and equations for stress relaxation and creep 

can be seen in Figure 3. 

 

Figure 3. Stress relaxation (a) and creep (b) as a function of time along with their, 

spring and dash point models and equations. In the equation σ0 and ε0 are constant 

applied stress and strain, t is time and τ is relaxation time that can be modeled with 

spring (k) and dashpot (η) [15]. 

Due to the complexity of viscoelastic behavior, many models combine dashpots and 

springs to understand material responses. Maxwell model combines dashpot and spring 

elements in series and is applicable for basic stress relaxation phenomena. However, it is 

not taking into account that the deformation in creep may not be reversible. Kelvin or 

Voigt model uses elements in parallel and is more realistic for modeling creep than 

Maxwell model. Nevertheless, it cannot model instantaneous deformation. A good 

approximation for viscoelastic behavior for polymeric materials provides a linear solid 

model, which combines the two, Maxwell model and Kelvin-Voigt model. The linear 
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solid model may be used for both creep and stress relaxation. [3] However, some tissues 

and biomaterials may exhibit non-linear viscoelastic behavior, which cannot be modeled 

with linear solid models [2, 16, 17]. 

2.1.3 Failure 

The stress-strain curve can be divided into regions depending on the type of deformation 

the material exhibits. Figure 4 illustrates an example of a stress-strain curve of a 

compressed cancellous bone. The stress-strain curve is divided into a toe region, elastic 

region and plastic region. The toe region is the non-linear region where the deformation 

of the specimen is high in comparison with the applied load. During that period, alignment 

or settling of the specimen happens. For some materials, such as elastic metal alloys, there 

is no toe region. The elastic region is a linear part of the curve where the Young’s modulus 

can be determined. The plastic region starts when the specimen yields and deformation 

becomes irreversible. In the stress-strain curve, it can be seen as the linear region 

changing to non-linear. The highest point of the curve represents the highest stress the 

material can withstand. After that point, the material deformation may propagate 

differently. A final fracture might be sudden or imminent, depending on the material and 

structure. [3, 4] 

 

Figure 4. Stress-strain curve and representative regions [3]. 

The process and possibility of the material failure can be evaluated from the stress-strain 

curve. Hence, it is used to ensure safety or to understand the material’s behavior. 

Biomaterials may have more complicated failure modes, but the two basic failure modes 

for solid materials are a ductile fracture and a brittle fracture. [4, 18] The fracture typically 

has two steps, which are crack formation and propagation. During ductile fracture, the 

material experiences plastic deformation. The fracture process is slow as the size of the 

crack becomes wider while the material is resisting the deformation by buckling or 

bending. The crack is described as stable. The brittle fracture on the contrary is hard to 
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predict and propagates rapidly. Hence, the brittle fracture is mostly an undesired fracture 

mode. Depending on the microstructure of the brittle material, the fracture can be 

transgranular or intergranular. The transgranular fracture occurs by crack propagation 

along crystal structure breaking atomic bonds. The fracture is called cleavage and may 

look grainy or smooth as the fracture ignores the grain structure. The crack propagation 

of intergranular fracture follows the path that the grain boundaries form, hence the cross-

section of the fracture shows 3D structure of the grains. [8, 19] 

The fracture strength or compressive strength describes the ability of the material to 

withstand stresses before a critical crack that causes the total structure failure. As 

discussed before, for brittle materials the fracture strength is complicated due to its 

unexpected mode. The fracture depends highly on the structure, hence resulting in scatter 

of fracture strengths. In 1951, Weibull proposed a function that describes the probability 

of the failure. This approach is a statistical method that describes the variability of 

material strength. The idea of the Weibull modulus is based on the “weakest link” 

approach. The approach uses the strength of the weakest structural unit to describe 

material properties. A high value for Weibull modulus indicates consistent material 

strength and good reliability. In contrast, a low value describes the scattered material 

strength and the uncertainty of material strength. Failure probability, P can be defined 

with three-parameter distribution 

𝑃 = 1 − 𝑒𝑥𝑝 [∫ (
𝜎−𝜎𝑚𝑖𝑛

𝜎0
)

𝑚

𝑑𝑉
𝑉

𝑉0
],    (6) 

in which σ0 is characteristic strength, σmin minimum strength and m is Weibull modulus. 

The characteristic strength, σ0, can be used to present the uniaxial strength of body with 

P=0.632. This equation can be simplified by using two-parameter distribution that 

assumes σmin is zero by following equation: 

ln (𝑙𝑛 (
1

1−𝑃
)) = 𝑚𝑙𝑛(𝜎𝑚𝑎𝑥) − 𝑚𝑙𝑛(𝜎0

∗),  (7) 

and 

𝜎0
∗ = 𝜎0(𝐿𝐹𝑉)1/𝑚     (8) 

where σmax is the maximum stress, LF loading factor and 𝜎0
∗ is the characteristic strength 

of a body at the same failure probability (0.632) as with three-parameter distribution. By 

using regression analysis for the equation of two-parameter distribution, the Weibull 

modulus can be detected as a slope of ln(ln(1/(1-P))) against ln(σmax). The approach needs 

a high number of tested specimens to ensure reliability. [20, 21] 

In case the stress-strain curve is analyzed from the region of large plastic deformation, 

engineering stress and engineering strain cannot be used to obtain reliable values. During 

large plastic deformation, the original cross-section area starts changing as the material 
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tries to resist the load. Thus, the true stress and strain curve needs to be used. The true 

stress and strain scheme uses actual load, cross-section area, and gauge length. In case of 

compression, true stress gives lower value and the true strain gives higher value when 

compared with engineering stress and engineering strain. [8, 22, 23] 

2.2 Considerations of Compression Test 

Many factors influence the quality of a compression test results. This chapter provides an 

overview on how equipment, methods and procedures may be tailored for reliable 

compression testing. 

2.2.1 Equipment 

Universal testing systems have typically specialized fixtures in the static compression and 

tensile test. Systems that are more sophisticated may have other additional loading modes, 

such as dynamic testing modes. The actuator is a part of the testing system that sends 

feedback regarding the loads to control the platen displacement. Two basic types of 

actuation of universal testing machines are electromechanical screw driven electric motor 

and servohydraulic load frame. The screw driven machines are more economic and 

generally suited for small biomaterial specimens due to the high precision. The high cost 

servohydraulic machines are more suitable for cyclic loading or high load magnitudes. 

[3, 24] 

The displacement of the test specimen under compression is measured by a transducer. 

The most common transducers are strain gauge, extensometer and linear variable 

differential transformer (LVDT). The accuracy of the extensometer and strain gauge is 

the same for both, as the basic technology of measuring the displacement is the same. In 

case there is possibility of damaged specimen surface, optical methods, such as optical 

extensometer, are recommended. Optical methods can exclude damaged area and 

measure the displacement of the specimen from the center of the specimen. [3, 24] 

The basic testing machines are able to give uniaxial compressive load but there are other 

properties that may vary. The size, load capacity, software, cross-head adjusting system 

as well as other accessories for the device may change the ease of use and the reliability 

of the results. For example, it is preferable to use a small load cell for delicate viscoelastic 

hydrogels and bigger one for strong and stiff metals. On another hand, the load cell 

capacity may also limit the force the machine can distribute. [6, 24, 25] 

Generally, device instructions (e.g. Bose) give guidelines for optimizing the device 

performance. Before testing it is important to calibrate the load cells and to adjust channel 

filters to minimize the inaccuracies and noises. The malfunction of compression testing 

instruments may be due to different electrical noises (e.g. area close to power line) or 

temperature fluctuations. Additionally, the place of the load frame may cause unwanted 
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resonance, such as base vibration or excessive load vibration. Other considerations like 

humidity, temperature, ventilation and dust should be considered. [6, 25] 

2.2.2 Environment and Methods 

The specimen storage is important for biomaterials as the material may be sensitive for 

example to heat and humidity. The standard ambient laboratory environment is 23 ˚C and 

50 % relative humidity [24, p. 80]. Especially viscoelastic materials are sensitive to the 

temperature and compressive rate changes. Generally, decreasing temperature or 

increasing the compressive rate results in higher stiffness [3]. During very low strain rates 

there is a possibility of creep behavior. Sterilization and biocompatibility tests in vitro 

and in vivo are needed for safety of biomaterial applications [4, 26]. Sterilization can be 

also performed using high or low temperatures, pressure or irradiation. Sterilization may 

change the material structure significantly by inducing for example chain scission in 

polymeric materials during irradiation [27]. The compression test can be performed in 

wet conditions to simulate physiological conditions in vitro. For example, saline 

solutions, such as phosphate-buffered saline (PBS), could be used for immersing test 

specimen. All these factors require special considerations prior compressive 

characterization. [3, 4, 15, 27] 

There are also other compressive experimental methods. The indentation test is 

specifically used with brittle ceramic materials to measure the hardness of the material. 

The indentation test needs two parallel and uniform surfaces but is not as dependent on 

the other specimen features as the compression test. Indentation techniques have been 

developed for measurement at the micro- and nanoscale. Additionally, there are different 

shapes of indenters used such as a spherical and a square based diamond pyramid. [20, 

28] If the specimen is rod or beam, or has a non-homogenous design, the appropriate 

compressive method is three point loading or four point loading. The three point loading 

is the most used, but in the four point loading the stress is distributed more evenly. [29] 

Both methods remove the problem of cutting shorter specimens. The used compressive 

methods should be optimized to characterize the mechanical properties of the test 

material. International Organization for Standardization (ISO) provides methodologies 

for mechanical testing and result interpretation for various biomaterials that are published 

and accessible to everyone [3]. The importance of standards ISO lies in that it provides 

the possibility of repeatable and reliable testing methods. 

2.2.3 Specimen 

A uniform stress distribution throughout the specimen is difficult to obtain, but it is crucial 

for reliable test results. The most common problems are buckling and barreling (see 

Figure 5). [23, 30] Buckling is the deflection of the specimen which occurs when the 
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relationship between specimen length and diameter is too high. A ratio of 2:1 between 

length and diameter is used as a standard to prevent buckling [9, p. 151]. 

 

Figure 5. Buckling (a) and bulging (b) of test specimen. F is compressive force 

applied on the specimen, A0 is the initial cross-section area of the specimen and A is 

the cross-section area of the specimen in the middle part [23]. 

Barreling or bulging happens when the specimen’s length decreases under compression 

and, therefore, the friction between the surface of the compressed specimen and the platen 

increases. The specimen tries to maintain its volume constant. As the middle part of the 

specimen becomes less restrained, the structure becomes a barrel like shape. The barreling 

can be minimized by decreasing friction with lubricants and using machined concentric 

rings to keep lubricant from squeezing out during the compression test. [3, 23, 30] 

Compressive platen is a solid flat compressive surface. Hence, the specimen’s cross-

sectional surface should be flat and parallel to ensure uniform axial loading. A slight 

misalignment may cause initial non-uniform stress distribution, which causes error in the 

specimen strain. Figure 6 (a) illustrates the problem during a compression test if the 

specimen has non-paralleled surfaces. The compressive platen is unaligned and the load 

is directed first to the highest part of the specimen causing uneven load distribution on 

the specimen. A self-aligning platen, or in other words, spherical seating is an additional 

accessory for compressive devices that is designed to center the loading axis 

perpendicular to the specimen surface (Figure 6 (b)). [10, 31] It facilitates the compressive 

test and allows some tilt in specimens still achieving uniform axial loading. The surface 

parallelism is especially a problem for stiff materials. Ductile materials are able to adapt 

to the surface unevenness. [30, 32] Additionally, the unevenness of the specimen can be 

minimized by polishing or grinding stiff specimen surfaces [9, 33]. 
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Figure 6. Uniaxial compression test conducted on tilted specimen causes unaligned 

stress distribution along the specimen (a). Self-aligning compression platen adjust the 

compressive platen position (b) [31]. 

Another important consideration to keep in mind, from the specimen’s perspective, is its 

microstructure. The way a material acts under forces depends on many aspects, however 

structural integrity prior testing is important. Specimen surface can be damaged for 

example due to scratching, cutting and punching [24]. Fractured surfaces are weaker 

compared to the intact middle part (Figure 7). This causes inaccuracies, if compressive 

strain is measured from the interface of compressive platen and specimen surface. [5] 

This problem can be avoided by using an optical extensometer as discussed earlier. 

Additionally, other methods, such as glued surfaces, alumina platens and piled specimens 

have been used for conventional compression test. However, these methods are not 

always suitable for biomaterials. For example, glues would run through a porous 

biomaterial structure and the test would not represent the material’s inherent properties. 

As the accuracy is necessary for the biomaterial applications, extensometers are 

recommended [7]. 

 

Figure 7. Damaged surface influences on strain during compression test [5]. 

To highlight some considerations, well controlled processing, sample size, geometry, 

structure and surface finish are crucial specimen aspects [3]. Table 1 gathers the general 



13 

limiting factors, problems and solutions. The biomaterial’s properties and compression 

tests on such particular materials are discussed in detail in the following section. 

Table 1. Summarized limitations of compression testing specimens and solutions to 

enhance the reliability of compressive test results [3, 9, 24]. 

Specimen 

property 

Problem Ways to minimize error 

Barreling 

effect 

Friction between the surface of 

a compressed specimen and 

compressive platen, which 

causes the middle part of the 

specimen to barrel. 

• Use a lubricant or/and 

• Use a concentric ring 

• Polish loading platens 

Buckling 

effect 

The relationship between the 

specimen length and diameter 

is too high and the specimen 

deflects. 

• Use 2:1 ratio between specimen 

length and diameter  

Damaged 

surface 

Inaccuracy on the compressive 

strain. 

• Use equipment that measures the 

strain from the midpoint of the 

test specimen without touching 

(e.g. optical extensometer) 

Slipping 

of the 

specimen 

Contact between grip and 

specimen does not hold still the 

specimen and the specimen 

moves during testing. 

• Use an additional layer between 

the platen and specimen to 

enhance the contact [34, 35] 

Surface 

adhesion 

Strain gauge reading may be 

effected. 

• Use a protective coating material 

for the strain gauge [36] 

Tilted or 

uneven 

surface 

Slight misalignment causes 

initial non-uniform stress 

distribution and inaccuracy in 

strain. 

• Prepare specimen carefully 

• Use appropriate tools to prepare 

specimens 

• Surface finish (e.g. polish or 

grind) to adjust unevenness 

• Use a self-aligning platen for 

tilted surface [10, 31] 

Preparing of the specimens is sometimes complicated depending on the material. It 

demands caution as the cutting material or other preparation tool may damage the 

specimen and reduce the material’s mechanical properties. The cutting rate or type of the 

cutting tool can be adjusted to minimize the damage. Finished specimens should be 

carefully examined, before compression test, to evaluate the surface damage and its effect 
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on mechanical properties. Evaluation can be done visually but more precise knowledge 

of the structure can be achieved by other techniques such as optical microscope or X-ray. 

[9, 19, 24] 

2.3 Biomaterials under Compression 

Various biomaterials are used in TE to mimic tissue-like structures. During the years, the 

amount, function and properties of biomaterials have increased. The first generation 

biomaterials were easily available. They were not interacting with the host tissue, hence 

termed as inert. The next generation biomaterials were designed to interact with the host 

tissue and active biological responses. Synthetic biomaterials, which could degrade inside 

the body, came in the 1960’s [37]. It was a big step for biomaterials and led to new 

discoveries. However, the rate of degradation introduced a new challenge as too fast or 

low degradation rate could impair safety and limit functionality [38]. Bioactive glasses, 

that have the ability to form interfacial bonding with the living tissue, were discovered by 

Larry Hench in 1972 and later reached clinical use [39-41]. The third generation 

biomaterials combine both properties, resorbability and bioactivity, in one and focuses on 

activating the tissue regeneration at molecular level [42]. Nowadays the desired properties 

of biomaterials are biocompatibility, sufficient mechanical properties, resorbability and 

bioactivity. [1, 43] However, the main requirement is biocompatibility, which means that 

the biomaterial is safe and does not cause any toxic or harmful effect inside the body [44]. 

Biomaterials can be classified in many ways that describe their properties. Different kind 

of classifications can be seen in Figure 8. Typically, chemical structure and bonding are 

used to classify three major groups: ceramics, polymers, and metal. The fourth important 

group is composites, which are made by combining two or more of these three materials. 

[1, 4] 
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Figure 8. Various classifications of biomaterials that describe biomaterial’s 

properties [1]. 

The difference in mechanical properties can be explained through atomic or molecular 

bonding and their packing. Figure 9 illustrates different bonding mechanisms. Pure metals 

have seas of electrons that can move freely, which make pure metal more ductile. Metal 

alloys are mixed of metallic elements or metallic and non-metallic elements. Metal alloys 

are stronger than pure metals as they have other elements blocking the atomic movement. 

[3, 8] Ceramic materials create strong bonds, such as ionic or covalent, between atoms 

that have difference in electronegativity [20]. This makes ceramics strong, but there is no 

space for plastic deformation. Polymers have strong covalent and weak Van der Waals 

bonds that make polymers weaker than metals [45]. By cross-linking the weak bonds, the 

amount of weak bonds can be decreased making structure stronger but irreversible, 

termed thermoset polymer. Thermoplastic polymers on the contrary have a structure that 

can be reversible changed by introducing energy. Composite materials are combinations 

of different materials and hence the properties can be widely modified. [3, 8] 

 

Figure 9. Bonding mechanism drives the physical properties of various material types 

[4, p. 16]. 
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Biomaterials can be synthetic or natural. Natural materials have generally advantage of 

the bioactivity, but the limitations are that there are variations from batch to batch, cost 

and the availability might be limited. Synthetic biomaterials are a potential alternative to 

natural sources, as synthetic biomaterials are artificially produced and can be designed to 

meet the desired properties and function. [1, 46, 47] 

The atomic order of biomaterial can be used to characterize the structural properties. If 

the atoms in the structure are arranged in periodic order, the material is crystalline. 

Contrary if there is no long range order material is amorphous. Material can also be 

semicrystalline, which means that it has both, arranged and random units. If the crystalline 

material has several different crystals, it is called polycrystalline. The structural order and 

property of the material may be different depending on the direction. For example, wood 

consists of fibers that grow vertically and make wood strong along the fibers, but 

perpendicularly to its fibers wood is not as strong. This is termed anisotropy. [8, 20, 27] 

Biomaterials are used in medical applications. Thus, there is always some amount of 

interaction with the human body. Even inert alumina hip prosthesis activates response in 

the body that leads to the encapsulation of nearly inert material. Nowadays biomaterials 

in TE application should interact with the human body, hence degradation and bioactivity 

are important properties of the biomaterials. However, the degradation process is 

complicated from its mechanical aspects. [3, 38, 48, 49] The interaction of the biomaterial 

with tissue should be optimized so that degradation and tissue healing process would 

occur at the same rate. Additionally, the damaged side should have enough support 

throughout the healing process. Bioactivity can be used to active specific biological 

responses and enhance the material’s biocompatibility inside the human body by means 

of adhesive factors, growth factors or other cell signaling molecules [50]. 

The macrostructure of the biomaterial can be divided into porous or dense. High porosity 

is generally a desired property in TE as it enhances the biocompatibility of the material 

by ensuring the penetration of essentials, such as cells and nutrients. Important 

considerations are the size, shape, interconnectivity and location of pores. However, high 

porosity typically leads to weak mechanical properties [8, 51]. The stress concentration 

on the porous materials might be more complex than is thought [19, 51]. The selection of 

biomaterial is challenging when at the same time sufficient mechanical properties, 

suitable degradation rate and high porosity are desired [52]. 
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2.3.1 Considerations in Compression Testing Biomaterials 

This chapter provides basic overview of important considerations when the compression 

test is used for the mechanical characterization of biomaterials. As previously discussed 

the biomaterials can be classified into metals, ceramics, polymers, and composites. [3, 7] 

Some general differences in compressive properties and challenges in compression 

testing are discussed on different biomaterials. 

Under compression metal and metal alloys exhibit a wide range of elastic modulus and 

compressive strength. Typically, metal alloys exhibit higher compressive modulus and 

compressive strength than pure metals and pure metals are more ductile compared with 

metal alloys. [3] Neither metal nor metal alloys exhibit a toe region. The stress-strain 

curve has a linear elastic region that ends to brittle or ductile fracture. Hence, the length 

of plastic region varies depending on the metal ductility. [8] Usually the compressive 

results are reported in GPa or MPa. The high strength of metals or metal may cause 

practical difficulties for mechanical tests. As the change in displacement becomes short, 

the displacement of a gauge becomes harder to measure. According to ISO 4506 [53] the 

clamp on extensometer should be avoided and recommends the use of a resistive strain 

gauge. Thus, with strong materials the quality of test machine and deformation meas-

urement device becomes more critical. Metals have been used in medical implants for 

long time in different kind of load bearing applications. For example, Young’s modulus 

for titanium alloy dental implant has been reported at 110-116 GPa [4, p. 61]. 

Ceramics are typically stiff and strong, but brittle. Brittleness can be seen in the stress-

strain curve as an almost unexisting plastic region during the compression test. The elastic 

region may be complex, but typically for solid ceramics it is described as a linear slope 

ending unexpectedly [8]. Highly porous ceramics may act differently having after the 

elastic region a plateau in which pores collapse progressively and lead to the failure of 

the structure [19]. Ceramics are sensitive to small imperfections. The flaws may be 

cracks, pores or other impurities in structure. Processing methods, such as cutting, thermal 

processing or mechanical stresses may cause defects that make a potential reason for an 

unexpected fracture. The compressive properties of brittle ceramic materials typically 

range from MPa to GPa. For example, ultimate strength and Young’s Modulus for solid 

hydroxyapatite have been reported 120-900 MPa and 35-120 GPa, respectively [54, p. 

23]. For safe and reliable compressive results, several samples need to be tested to track 

the boundary conditions. The statistical method, Weibull Modulus, can be used to 

characterize reliability of the tested fracture strength. The ceramics, especially bioactive 

glasses [41, 55], have shown to be potential in orthopedics and dental scaffolds [20, 54]. 

Polymers are used in many different TE applications as their properties can be tailored 

widely. The atomic composition of the repeating structure can be modified. The stiffness 

can be customized by tailoring the amount of branching side chains, changing side chain 

lengths and polarities. The crystallinity of polymers can be modified by controlling the 
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polymer chain orientation, by copolymerizing or blending with other polymers. Polymer 

behavior can be classified in brittle, plastic and highly elastic [8]. Polymers are not as 

strong as metals, but can be designed to be suitable for bone tissue applications [56]. 

Desired function of the polymers is the biodegradability, which should be tuned to match 

to the target tissue. The degradation mechanism can be enzymatic or hydrolytic [56]. 

Thermoset and thermoplastic polymers have different structures and properties. 

Thermosets have a cross-linked structure that makes the structure more rigid, but also 

irreversible [27]. Thermoplastics are sensitive to change in temperature, hence the 

temperature and compressive rate during the mechanical test are important. Compressive 

properties and failure modes of polymers depend on many factors. The failure may be 

sudden in elastic range if the material is brittle. Then again, more ductile polymer starts 

yielding before fracture occurs. [15] 

 Hydrogels are a type of polymeric material. The hydrogels have a polymeric network 

that contains of large amount of water. Inside the structure, polymers are connected 

covalently, trapping inside the water molecules. The structure is gel-like and has 

similarities with the extracellular matrix (ECM). The stress-strain curves may vary as the 

response to compression may vary from elastic to viscoelastic. [57] The compressive 

results of hydrogels are generally reported in kPa. For example, strength for collagen 

hydrogel with aldehyde modified dextran was reported at 32.5±1.6 kPa [58]. Hydrogel 

scaffolds are considered as a promising biomaterial due to their good biocompatibility. 

Synthetic and natural hydrogel scaffolds have been studied for nervous tissue [59], tendon 

[60], ligament, cartilage [61], skin [62], blood vessels and heart valves. [57, 63] Table 2 

summarizes some of the biomaterials’ properties and problems that need to be considered 

during the compression test. It also gives methods to improve accuracy or precision. 
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Table 2. Problems and ways to minimize the measurement error for various material 

properties [3, 6, 7]. 

Material 

property 

Problem Ways to minimize error 

Anisotropic The properties of the spec-

imen vary depending on the 

compressive direction. 

• Test two groups of test 

specimen with axes parallel 

and perpendicular 

• Coordinate axes should be 

considered depending on the 

specimen structure 

Brittle Deformation is unstable. • The equipment quality is 

important 

• Use high number of samples 

and evaluate the strength 

reliability using the Weibull 

modulus 

Strong Change in displacement is 

small. Displacement of the 

gauge becomes hard to 

measure (high noise to signal 

ratio). 

• The equipment quality is 

important 

Viscoelastic Stress relaxation and creep of 

the specimen may occur. 

• The compressive rate and 

testing environment need to 

be considered 

 

2.4 Structure of Biological Tissue 

Tissue physiology and biomechanics are important for TE. There are many kinds of 

tissues and functions in the human body. The function and location determine the 

structure of the tissue. For example, the bones in the spine are strong providing the main 

support for standing. On another hand, bones inside the ear are sensitive and transmit 

sound waves to the inner ear, enabling us to hear. [2, 64] This chapter focuses on the 

biomechanics of bone and cartilage. Both of them are connective tissue but have different 

properties and functions. 

2.4.1 Bone 

The most important roles of the bone are to form the skeleton that gives form to the body, 

enable body movement, store minerals, and create the armor around the internal organs. 

Bone has also a part in homeostatic regulation of blood calcium levels. The function of 
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the skeleton may be compromised due to any disease, trauma, or biological process like 

ageing. Important research has been made on bone structure, growth, regeneration, 

adaptation and aging to develop mechanical testing of bone and bone-implant systems. 

[2, 65-67] 

Bone tissue is a specialized form of connective tissue with hard and mineralized ECM. 

The composition of ECM varies depending on the tissue type as it consists of 

macromolecules secreted by resident cells. ECM is a very important structure for tissue 

reconstruction, as it gives tissue specific support, conducts cell signals, and dynamically 

reacts on environmental changes [68]. A closer look at nanostructure shows that bone’s 

ECM consists of organic and inorganic components. The organic matrix mainly consists 

of type I collagen fibrils (>90 %) and the rest of the organic materials are non-collagenous 

proteins, proteoglycans and phospholipids. The organic part of the bone creates some 

fracture resistance, as it is capable to absorb shock. The inorganic part provides the 

rigidity of the bone tissue. The mineralized component is calcium phosphate as crystalline 

hydroxyapatite. The mineral content of the bone can vary a lot between species, age, the 

location of the bone etc. About one percent of the bone are cells. [69, 70] 

Bone does not only consist of bone tissue, but has hematopoietic cells, adipose cells, 

blood vessels and nerves. In the microstructure (see Figure 10 (b)) there are Harvesian 

canal, Volkmann’s canal, canaliculi, and lamellae. Haversian canal is surrounded with 

nested lamellae that creates circle-shaped osteon. Osteocytes are situated in lacuna. 

Haversian and Volkmann’s canals contain the vascular and nerve supply of the bone. 

Bone is typically covered with a fibrous tissue capsule called periosteum, apart from the 

area where a bone is connected to another bone. In the bone connecting area the surface 

is covered with articular cartilage. [65, 71] Figure 10 shows the cross-section of a typical 

long bone divided in macro-, micro-, and nanostructure [71]. 
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Figure 10. Hierarchical structure of the bone divided into macrostructural, micro-

structural and nanostructural parts (a), adapted from [71]. Haversian canal and 

Volkmann’s canal travelling inside the bone (b), modified from [4, p. 142]. 

The bone tissue can be classified according to its macroscopic structure to cortical bone 

or cancellous bone. The cortical bone or compact bone is dense and strong bone tissue 

that is located in the outer layer of the bone. The trabecular bone or spongy bone, 

resembles a spongy like structure that has strut like trabeculae oriented depending on the 

stresses on bone. These structural differences are related to their main function. The 

cortical bone gives support and structure when again cancellous bone has metabolic 

functions. Significant difference can be seen in porosity and in mechanical properties. 

[70, 71] 

The structural part is not the only important aspect to understand, but the bone growth 

and regeneration processes are of particular interest when studying bone treatment 

options. The bone is a living tissue with several types of cells. Osteoprogenitor cells are 

derived from mesenchymal stem cells and are located in the outer layer of bone. 

Osteoprogenitor cells are actively involved in bone regeneration, which is called 

osteogenesis. Osteoprogenitor cells differentiate to osteoblasts that secrete the ECM of 
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the bone. Eventually, osteoblasts get entrapped in the mineralized matrix and are called 

osteocytes. Some of the osteoblast may remain inactive and are called bone-lining cells. 

Those cells create the non-remodeling surface of the bone. Osteoclasts are multinucleated 

and phagocytic cells, that rise from hematopoietic lineage. The role of osteoclasts is to 

resorb bone, especially damaged bone. The bone structure is dynamic and a new bone is 

created as the old bone is degraded. [65, 72] 

The maturation state of bone has influence on the bone structure. The bone has high 

regeneration potential and is able to remodel itself. Various signals and chemical enzymes 

controls the resorption and formation cycles. Immature bone or woven bone has 

randomized and non-lamellar structure. It can be found in a newborn, fracture calluses or 

in the metaphyseal region of a growing bone. Lamellar bone is mature. Lamellar has less 

cells than the woven but it has an organized structure leading to stronger bone. [66, 67] 

The mechanical properties of bone may differ depending on many factors such as bone 

tissue type, location, porosity, apparent density and mineral content [73-76]. Thus, a 

significant difference in mechanical properties can be seen between different species [70]. 

Even the same species have individual bone structure that depends on age, gender, 

diseases etc. In general, the mineral content of the bone increases until maturity [9]. Table 

3 gathers some results of bone mechanical properties for varying species, location and 

bone tissue type. 
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Table 3. Ultimate strength and Young’s modulus for cancellous bone and cortical 

bone from different locations and species. 

Reference  σmax E 

 Cancellous Bone   

 Human   

Martens et al. [75] Femoral head 9.3±4.5 MPa 900±710 MPa 

Martens et al. [75] Proximal femur 6.6±6.3 MPa 616±707 MPa 

Ciarelli et al. [76] see Kuhn 

et al. [77] 

Distal femur 5.6±3.8 MPa 298±224 MPa 

 Canine   

Kuhn et al. [77] Distal femur 7.12±4.6 MPa 209±140 MPa 

 Cortical bone   

 Human   

Reilly et al. [78] see An et 

al. [9] 

Femur ~167-215 MPa ~14.7-19.7 

GPa 

 Cattle   

Pal [6, p. 30] Femur 147±1.1 MPa 8.7 GPa 

 Bovine   

Li et al. [79] Femur, longitudinal 214±28 MPa 19.1±2.8 GPa 

 Femur, transverse 131±22 MPa 11.6±2.4 GPa 

 

Figure 11. Anisotropy of proximal femur, adapted from [80]. 

There is variation in the mechanical properties of cancellous or cortical bone when 

samples of different species, anatomical location, bone tissue type or orientation are 

compared (Table 3). The cortical part has less heterogeneity than cancellous bone, which 

is related to its primary functions. The cancellous bone is highly anisotropic (Figure 11), 

non-homogeneous, porous and viscoelastic, which makes mechanical testing more 

challenging [80]. Sample preparation, test method and equipment need to be well 
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planned. As the bone is living tissue, it needs to be handled with care. The bone can be 

kept moist by leaving some soft tissue around the bone during harvesting and then storing 

the bone in a freezer. Freezing is used to preserve cells and maintain the ECM of the bone. 

However, it does not completely stop bone deformation. [9] Hence, the freezing period 

and thawing-freezing times should be considered [9, 81]. Due to viscoelastic behavior, 

the temperature and compressive rate have effect on mechanical properties [82]. 

Additionally, whether one performs mechanical tests on wet or dry bone specimens is 

notable [9]. For example, saline can be used if the bone should be maintained moist during 

preparation and testing [83]. 

2.4.2 Cartilage 

Cartilage gives elasticity and support for the body. Three different types of cartilage can 

be found in the body. Hyaline cartilage can be found for example in joints, trachea and 

nose. Elastic cartilage is highly elastic and can be found in the outer ear, larynx and 

epiglottis. The third cartilage is fibrous cartilage, that gives strength and resiliency in 

intervertebral discs. [66, 84, 85] The amount of movement cartilage permits varies 

depending on location and function. For example, cranial bones are connected tightly to 

each other without movement, cartilage in intervertebral disc moves slightly and joints 

that connect bones together allow a wide range of movement [65]. 

The hyaline cartilage is also called articular cartilage. The articular cartilage consists of a 

low amount of cartilage cells (~2-10 %) called chondrocytes. Chondrocytes mature from 

mesenchymal stem cells. After skeletal growth, chondrocytes are adult and have limited 

ability to divide. Chondrocytes depends on the diffusion of nutrients as there are no 

nerves, blood vessels or lymphatic tissue in the cartilage. Chondrocytes take care of 

cartilage by producing ECM. [6, 85] 

The main component is water (65-80 %). Most of the solid part is collagen that gives 

structure and tensile strength. Collagen type II is dominant in the cartilage but there are 

also other collagen types as V, VI, IX, X and XI. Proteoglycans, such as 

glycosaminoglycans and hyaluronic acid, are shock absorbers in the articular cartilage. 

Minor solid components are for example fibronectin, lipids and decorin. The cartilage 

composition varies depending on location, age, injury or disease. For example, the 

number of cells decreases after fetal phase. [67, 85, 86] Table 4 summarizes different 

properties of bovine cartilage. 
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Table 4. Bovine cartilage properties and age differences, adapted from [86, p. 494]. 

Property Fetal Adolescent Adult 

Chondrocyte density (cells/ml, middle zone) 240 000 170 000 80 000 

Collagen content (%) 4-5 6-8 10-14 

Glycosaminoglycan content (%) 2.1-2.2 2.1-2.2 1.8-2.2 

Water content (%) 88 82 80 

Bulk E (MPa) 0.15 0.28 0.30 

Middle/deep zone E (MPa) 0.13 0.65 - 

Superficial E (MPa) 0.03 0.15 - 

The structure of the articular cartilage depends on the location in the body. As the 

structure is heterogenous it is generally divided into four zones: superficial, middle, deep 

and calcified zone (Figure 12). These zones have characteristic properties and hence the 

compressive properties depend on the zone. Figure 12 illustrates structural differences 

between the zones. [84, 86] 

 

Figure 12. Articular cartilage divided in functional zones depending on structural 

components [84, p. 28]. 
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Due to these structural factors, the cartilage is anisotropic. It has also pores for fluids to 

move and proteoglycans to absorb shock. The amount of water inside the cartilage effects 

the viscoelastic response, which is notable when characterizing the mechanical properties 

from a stress-strain curves. The compressive stiffness is related to the amount of 

proteoglycans, but mechanical tests are challenging to perform. For example, in addition 

to the heterogenous and viscoelastic properties, synovial cartilage is thin. Thus, there are 

many difficulties in order to explore the mechanical properties of cartilages. [84, 87, 88] 

2.5 Scaffolds for Tissue Engineering 

Scaffolds have an important role in TE. Scaffolds are biomaterial based 3D structures and 

are used as a temporary platform for cells to adhere, migrate, grow, and differentiate. The 

desired properties of scaffolds are biocompatibility, suitable mechanical properties, high 

porosity, biodegradability and bioactivity. Scaffolds are placed on damaged or 

dysfunctional tissue to promote repair or/and tissue regeneration. [2, 52, 64] Mechanical 

properties are one of the many important properties of scaffolds, but it has great influence 

on the function. Scaffolds should be designed to transmit the forces that the native tissue 

exhibits but also to degrade at a specific rate. The scaffold should support the tissue but 

also promote cell adhesion, growth and blood vessel formation. Due to the variety of 

tissues and their mechanical properties, there are various needs of scaffolds. For example, 

dentine needs to bear great forces during eating. Joints on another hand need to absorb 

different loads and bear stretch. Thus, mechanical tests are critical to characterize scaffold 

properties. [3, 4, 43] A wide range or biomaterials and properties have been produced for 

different tissue types. This chapter provides an overview for bone scaffolds and soft tissue 

scaffolds. 

2.5.1 Bone Scaffolds 

Ideal bone scaffolds give temporary support for bone regeneration by resorbing and 

eventually leaving behind new healed tissue [89]. The choice of material has great 

influence on the properties. There are a variety of biomaterials used in bone grafts. Metals, 

such as titanium and iron alloys, are strong enough but do not interact with bone and some 

of them have corrosive properties. Wide variety of degradable polymers have been used 

in TE. For example, polyglycolic acid (PGA) and polylactide (PLA) have been used 

commercially in bone scaffolds. [90] The degradation process is important for polymers. 

PGA degrades faster than PLA as it is more hydrophilic, but PGA has disadvantages. 

Degradation of PGA may cause a decrease in pH and result in necrosis [47]. Lately, 

attention has been brought to ceramic biomaterials, due to their similarity to bone 

composition. However, also ceramics have disadvantages in degradation, as it is difficult 

to control. Additionally, ceramics have a brittle property, that is challenging as any 

impurities or defects may cause unexpected failure and lower material’s strength [47, 91, 

92]. 
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The bone regeneration and materials resorption should be balanced. Too fast material 

degradation would leave the bone without support. On the other hand, a too slow 

degradation process could impede the bone regeneration. [44, 89] Additionally, the 

healing rates need to be considered as it varies depending on age. Younger individuals 

have faster healing rate than elderly people. [47] Bone regeneration can be induced by 

using growth factors or cells. More recently, specially designed bioceramics have been 

developed to induce bone regeneration. Those materials are called bioactive. [39, 54, 91]. 

Bioactive materials can be divided into class A and B. Osteoconductive biomaterials, such 

as calcium phosphates, some titania-based and glass ceramics, are in class B. These 

materials activate an extracellular response at the bone-implant interface, which supports 

the migration of capillaries, fibrovascular tissues and osteoprogenitor cells into the 

scaffold. This mechanism later triggers the new bone formation along the surface. Class 

A biomaterials, such as bioactive glasses and some glass ceramics, have intra- and 

extracellular response with surrounding osseous tissue. Osteoinductive materials activate 

surrounding mesenchymal stem cells to differentiate into osteoblasts. Generally, bone-

bonding biomaterials form an interface with the bone through an apatite or calcium 

phosphate layer. [20, 93] 

The architecture of the scaffold is important for osteogenesis, but it also influences to 

mechanical properties. The high porosity (>60 %) and interconnected pores with a 

diameter of at least 100 μm provides cell migration, vascularization, diffusion of 

essentials nutrients and bioresorbability. Vascularization is crucial for the survival of the 

cells in the inner parts of the scaffolds, thus the pore sizes 300-500 μm are usually 

preferred. [94, 95] The increase in pore size enhances the bone regeneration, but makes 

the scaffold structure weaker [19, 96]. 

A variety of preparation methods have been used for porous ceramics. Macroporous 

ceramic scaffolds can be prepared by partial sintering and direct foaming, or by using 

sacrificial fugitive or replica templates [97]. The challenges for porous scaffolds are the 

combination of mechanical properties and interconnected pores [97-100]. The 3D-

printing techniques are used to enhance the control of the scaffold’s architecture. 

Stereolithography is based on ultraviolet (UV) laser that moves over a bath of 

photopolymerizable liquid which begins to polymerize when exposed to the laser. This 

results in a solid layer after which the second layer is started and then the following one 

until desired scaffold structure is created. Selective laser sintering uses a laser to bind 

powders locally. Robocasting or direct ink writing is an extrusion based method, that plots 

struts through a nozzle and creates layers into 3D structures. [52] 3D-printing is generally 

considered as a potential method to customize the architecture of scaffolds and hence 

maximize mechanical properties [19, 52, 101]. Table 5 gathers some 3D-printed 

scaffolds’ compositions and their respective mechanical properties. 
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Table 5. Compressive properties summarized for 3D-printed bone scaffolds. 

Reference Material σmax m E 

Miranda et al. [102] 
Hydroxyapatite 

β-tricalcium phosphate 

~50±10 MPa 

~15±5 MPa 

3.2±0.2 

- 

7±2 GPa 

2±1 GPa 

Roohani-Esfahani et 

al. [33] 

Strontium- hardystonite 

-gahnite 

122±12 MPa 12-17 ~2.4 GPa 

Serra et al. [103] PLA/PEG(a) - - 92±2 MPa 

PLA/PEG/G5(b) 100±4 MPa 

Zhang et al. [104] 20Sr-MBG(c) 8.5±2.0 MPa - - 

Zocca et al. [105] Lithium alumino-

silicate glass 

3-15 - - 

(a) Poly(95L/5DL) lactic and polyethylene glycol 
(b) Poly(95L/5DL) lactic, polyethylene glycol and bioactive calcium phosphate glass 
(c) 20 % Strontium and bioactive glass scaffold 

Generally, bone scaffolds that contain ceramic have limited mechanical properties due to 

variation in the compressive values. [52, 95] However, the compressive properties are 

similar to bone tissue [9]. 

2.5.2 Soft Tissue Scaffolds 

Tissues can be divided into hard and soft tissue depending on their mechanical properties. 

Soft tissue is not as stiff as hard tissue. The structure and function of these tissues vary; 

hence the desired properties and structural needs of the scaffolds depend greatly on soft 

tissue type. [4, 6, 64] Some compressive strengths of different soft tissue scaffolds are 

gathered in Table 6. 
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Table 6. Compressive properties of soft tissue scaffolds. 

Reference Tissue Material Compressive strength 

Bhardwaj et al. 

[106] 

Skin (dermis) Fibroin-keratin ~43 kPa (dry)  

~21 kPa (hydrated) 

Ellä et al. [107] Joint Knitted poly(L/D) 

lactide 96/4 

~160-250 MPa 

Zhu et al. [108] Articular 

cartilage 

Collagen/CH–PCL/CS 

composite(a) 

~0.15 MPa (dry) 

~39 kPa (hydrated) 

(a) Collagen, chitosan–polycaprolactone and chondroitin sulfate composite 

General challenges in soft tissue scaffolds such as blood vessels, skeletal muscle, and 

myocardium, are that they are mechanically active and have high volume and cell density 

[109]. Various materials, synthetic and natural have been used for soft tissue scaffolds. 

Both have disadvantages and advantages. However, the composition of synthetic 

materials can be controlled more easily to match mechanical properties and degradation 

rate of the substitute tissue. Also the surface properties can be tuned to be favorable to 

cells, but the degradation may cause unwanted reaction such as inflammation. [109] 

Synthetic biodegradable polymers, such as PLA, PGA and their copolymers have been 

studied widely. These materials have potential as porous scaffolds. For example, knitted 

poly(L/D)lactide 96/4 scaffolds have shown to be suitable for joint reconstruction [107]. 

Skin tissue, nervous tissue and cartilage tissue scaffolds are discussed more closely. 

Skin burns or wounds can be healed or treated with skin implants. Especially important 

for skin scaffolds is that the scaffold attaches to the damaged skin and supports growth of 

blood vessels. Currently, vascularization can be introduced to about 0.4 mm thick 

material, which limits skin scaffold usage. Skin has various cells but the most common 

are keratinocytes, melanocytes and fibroblasts. Fibroblasts produce ECM giving the 

strength and resilience for the skin. [4, 68, 110] There are two important skin layers, thin 

barrier layer called epidermis and well vascularized layer called dermis. The skin 

engineered products can heal epidermis or dermis, but only few of them can heal both 

layers. There are many commercial products. Dermagraft® and Trancyte® use donor cells 

combined in synthetic scaffold to replace and heal dermis. Trancyte® also uses silicone 

membrane that temporarily mimics epidermal barrier. [110] 

The nervous system is a network that controls and regulates movement, perception, 

behavior, memory, language and learning through neural circuits. It can be divided in 

central nervous system (CNS) and peripheral nervous system (PNS). The brain and the 

spinal cord belongs to CNS. PNS consist of nerves and ganglia that connects to all over 
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the body outside of CNS. Neurons transmit signals through electrical and chemical 

signals. Neurons consist of axons that send signals and dendrites that receive signals. [66, 

111] CNS have limited regeneration ability but PNS is more capable to regenerate. Neural 

scaffolds are used as a substrate to support and guide axonal regeneration. Generally, 

scaffolds have an oriented structure with fibers or channels that have properties to guide 

axons. For example, NeuragenTM is a commercial nerve guide scaffold made of collagen-

glycosaminoglycan. Also a polylactide-based mesh has shown its potentiality [112]. The 

elasticity of the scaffold has been found to be important for glial cells that are crucial for 

neural homeostasis [113]. The reported compressive modulus of polyethylene glycol 

(PEG) hydrogel for neural regeneration was about 260-280 kPa [114]. However, the 

effect of scaffolds on neural implantation is not yet well understood. [115, 116] 

The aim of cartilage scaffolds is to give immediate support to cells and promote 

chondrocyte attachment, proliferation and maintenance. Interaction between cells and 

ECM is important, as cartilage has no blood vessels or nerves. Chondrocytes receive 

nutrition by diffusion, which makes cartilage a unique tissue. The regeneration process 

of cartilage is very limited. Due to limited regenerative properties, cartilage scaffolds can 

be pre-seeded by cultured cells, but the relationship between biosynthetic activity and 

seeding density is under exploration [85]. Cell types used in scaffolds are chondrocytes 

and mesenchymal stem cells harvested from various tissues. Also, signaling molecules, 

such as growth factors, can be used to control cell signaling. The three different cartilages, 

hyaline, fibrous and elastic cartilage, have different mechanical properties such as 

previously discussed. The engineered cartilage scaffolds should be optimized for age 

differences and tissue types. [14, 84, 85] Various scaffold materials, such as collage, 

fibrin gel, hyaluronic acid, polyglycolic acids and ceramics have been used for cartilage 

repair [85, p. 548]. 
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3. MATERIAL AND METHODS 

3.1 Materials and Sample Preparation 

Materials with various properties, i.e. porous, solid, viscoelastic, hard, soft, brittle and 

anisotropic, were used in this study. Samples were prepared with a cylindrical form. Prior 

to mechanical tests, the length and diameter (ɸ) of the samples were measured using a 

Vernier caliper. All the measured values are reported using mean and standard deviation. 

3.1.1 PET Foam 

Three different densities (100 kg/m3, 135 kg/m3 and 210 kg/m3) of thermoplastic and 

closed cell polyethylene terephthalate (PET) foams were prepared for compression tests. 

PET foams were provided by AIREX®, Switzerland. The mechanical properties are 

available from the website [117] and can be seen in Appendix 1. The distributor of the 

AIREX® T92 PET foam sheets (1220x610x5 mm) was Velox Oy, Finland. 

Cylindrical PET foam samples were prepared in various ways. The sheets of PET foam 

included a welding line, which was included or excluded in the center of the samples 

(Figure 13). The samples were prepared in different sizes using a hollow punch tool. 

Additionally, five samples were hand prepared using a scalpel. The gathered information 

of the sample design can be seen in Table 7. 

 

Figure 13. PET foam sample with welding line (a). PET foam without welding line 

having different densities (210 kg/m3, 135 kg/m3 and 100 kg/m3) (b). 
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Table 7. Gathered information of prepared PET foam samples. PET foams are 

divided according to the density manufacturer reported.  

Density 

(kg/m3) 

Surface 

preparation 

Welding line 

(Yes/No/Both) 

Diameter 

(mm) 

Preparation 

method 

210±10 - Both 10, 14 Punched 

210±10 - Yes 6 Punched 

210±10 - Yes 10.2±0.2 Handmade 

210±10 Epoxy Yes 10 Punched 

210±10 Silicon No 10 Punched 

135±8 - Both 10 Punched 

100±10 - Both 10 Punched 

The core structure of the foams was closed cells, hence a thin layer of epoxy based glue 

or silicone glue were added to fill the cut open cells at the surface. The sheet of PET foam 

was 5 mm thick, which gave the thickness of the samples. The only exception was epoxy 

glued samples that had some unevenness on the surface. The length of two batches of 

epoxy glued samples was measured from three different points and the average was 

calculated. The length of the samples with the epoxy glued layer was 5.2±0.1 mm (tested 

with Instron E 1000) and 5.5±0.2 mm (tested with Instron 4411). Three diameters of the 

punched samples were 6 mm, 10 mm, and 14 mm. The diameter of hand-carved samples 

was 10.2±0.2 mm, which was the average of three measured points. The apparent density 

was measured for the densest PET foam with and without welding line using the 

following equation: 

𝜌 =
𝑚

𝑉
      (9) 

where ρ is the density, m the mass and V the volume of the sample. Measured mass for 

densest PET foam with welding line was 94.0±26.1 mg (n=5) and without welding line 

was 75.7±1.0 mg (n=5). The volume of both samples was 392.7 mm3. Calculated apparent 

densities with and without a welding line were 239.5±66.5 kg/m3 and 192.8±2.5 kg/m3 

respectively. The porosities of PET foams were estimated using equation 

ϕ = 
𝜌𝑣

𝜌𝑠
∗ 100 % = (

𝜌𝑠−𝜌

𝜌𝑠
) ∗ 100 %   (10) 

where ϕ is the porosity, ρv is the void density, ρs is the density of the solid material and ρ 

is the density of the material. The used density was the value received from the 

manufacturer. The density of the solid material was calculated by following equation 

𝑆𝐺 =  
𝜌𝑠

𝜌𝐻2𝑂
     (11) 

where SG is the specific gravity and ρH2O is the density of water. The used specific gravity 

for the PET foam was 1.37 [118] and the water density at 23 ˚C was 997.539 kg/m3 [119]. 
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Estimated porosities were about 93±5 %, 90±5 % and 85±5 % from the lowest to the 

highest density. 

3.1.2 PU Foam 

PU foam is used as an alternative material for the different properties of the cancellous 

bone to test orthopaedical devices [120]. In this study, three densities (80 kg/m3, 160 

kg/m3, 320 kg/m3) of polyurethane (PU) foam samples were prepared (Figure 14) and 

used as a second reference material. The PU foams were received in 13x18x4 cm sheets 

from Sawbones® Europe AB, Malmö, Sweden. The mechanical properties are available 

from the website [120] and can be seen in Appendix 1. The samples were drilled and cut 

into smaller size. The core structure of the PU foams was closed cells. The measured 

parameters of apparent density, diameter, length, mass, and porosity can be seen in Table 

8. 

 

Figure 14. PU foam samples of densities 320 kg/m3, 160 kg/m3 and 80 kg/m3. 

Table 8. Measured parameters of PU foam samples. 

Apparent density 

(kg/m3) 

Diameter (mm) Length 

(mm) 

Mass (mg) Porosity (%) n 

82.2±1.5 9.77±0.02 5.0±0.1 30.5±0.5 93±5 20 

160.5±2.3 9.77±0.02 5.2±0.1 62.0±0.9 86±5 20 

319.4±3.2 9.77±0.02 5.1±0.2 121.4±2.3 71±5 20 

The diameter was measured three times on five samples. The average of fifteen measured 

diameters was used for all of the samples. The length and mass were measured for every 

one of the samples. The length was measured first by taking three different points of the 

length and then using the average. The apparent density and porosities were measured 

using the same method than for PET foam samples. The apparent density was calculated 

by using the equation (9). Porosities were calculated by using equations (10) and (11) The 

used densities were the values received from the manufacturer. The used specific gravity 

for PU foam was 1.11 [118] and water density at 23 ˚C was 997.539 kg/m3 [119]. 
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3.1.3 Hydrogel Scaffold 

Hydrogel samples were made of GG, spermine tetrahydrochloride (SPM) and sucrose by 

the method described by Koivisto et al. and Salonen [34, 35]. A sucrose solvent was 

prepared dissolving 10.0 g of sucrose (Sucrose, BioXtra ≥ 99.5 % (GC), S7903, Sigma 

Aldrich, Finland) in 100 ml distilled water (10 % sucrose). The GG (GelzanTM CM, 

Gelrite ®, G1910, Sigma Aldrich, Finland) solution was prepared by dissolving 250 mg 

of GG powder in 50 ml of 10 % sucrose solvent. Received concentration of GG solution 

was 5 mg/ml. SPM (Spermine trihydrochloride, BioXtra, ≥ 99.5 % (AT), 85578, Sigma 

Aldrich, Finland) was used as a cross-linker for the GG hydrogels. 14.0 mg of SPM 

powder was dissolved in 10 ml of 10 % sucrose solvent. The received concentration of 

SPM was 1.4 mg/ml. The SPM and sucrose solutions were stored in a refrigerator and the 

the GG solution was placed on a magnetic stirrer to dissolve overnight. 

The GG solution is viscous at room temperature and heating the solution reduces its 

viscosity. This property was used during sterile filtration. The GG solution was heated 

(IKA®, RCT basic, safety control) in a water bath to 60 ˚C. Then the GG, SPM and 

sucrose solutions were filtered by Acrodisc® PF syringe filter with a 0.8/0.2 μm Supor® 

membrane (Cornwall, UK). After sterile filtering 1.4 mg/ml SPM was diluted with 10 % 

sucrose solution to 0.35 mg/ml concentration. 

Hydrogel samples were produced into 5 ml cut syringes. The solutions were first heated 

in water at 37 ˚C before pipetting 750 μl of GG and 120 μl of SPM into the syringes 

(Figure 15). The solutions were prepared two at a time and mixed by pipetting. Heating 

facilitated the pipetting and mixing the solutions. Pipetting was done carefully to ensure 

homogenous samples and minimize air bubble formation. 

 

Figure 15. Hydrogel samples gelling in molds. 

Hydrogel samples were casted into cylindrical mold and kept on even base. The molds 

were self-made by cutting off the tip of the syringes. Before mechanical testing, hydrogels 

were kept at room temperature overnight to ensure complete gelling. The open surface of 

the mold was covered with a parafilm. 
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3.1.4 PLA Rod 

PLA (70L/30D,L) rod was manufactured at Tampere University of Technology. The long 

PLA rod was cut into smaller samples (Figure 16). The length and diameter were 

measured by taking three different points and then using the average of the measured 

parameters. The measured diameter of the rod was 8.79±0.03 mm (n=25). The length of 

the PLA rod samples was 5.2±0.1 mm (for test with Instron E 1000 (n=20) and Instron 

4411 (n=5)). 

 

Figure 16. PLA rod and cut PLA rod sample. 

The received samples had non-parallel surfaces after cutting. The percentage difference 

in measured lengths or surface tilt was calculated for every sample by using equation 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑖𝑙𝑡 % = (
ℎ𝑚𝑎𝑥−ℎ𝑚𝑖𝑛

ℎ𝑚𝑖𝑛
) ∗ 100    (12) 

where ℎ𝑚𝑎𝑥 is the highest and ℎ𝑚𝑖𝑛 is the lowest measured length. The samples that were 

tested with Instron E 1000 had 1.1±0.6 % surface tilt and the samples tested with Instron 

4411 had 3.9±1.3 % surface tilt. 

3.1.5 Joint Scaffold 

Ten batches of knitted scaffold structures, termed joint scaffolds, were received from 

Tampere University of Technology. Figure 17 illustrates the scaffolds of different sizes. 

One batch of the tested joint scaffolds were made of PLA (96L/4D) blended with 5 wt-% 

(mass percentage) PEG. PLA 96/4 + PEG 5 % scaffolds were not sterilized or heat treated. 

The rest of the joint scaffolds were made of PLA (96L/4D). PLA 96/4 joint scaffolds were 

heat treated in molds and sterilized by gamma irradiation. Table 9 gathers the batch 

numbers, sizes received from the manufacturer, measured diameter and length, materials, 

the date of manufacture and the number of samples. 
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Figure 17. Six different sizes of joint scaffolds. 

Table 9. Gathered information of ten different joint scaffolds.  

 
Size (mm)  Apparent 

diameter 

(mm) 

Apparent 

length 

(mm) 

Material Date of 

manufacture 

(mm/year) 

n 

Bionx         
 

  

S34 Ф8x3.6 8.2±0.3 3.6±0.1 PLA 96/4 03/2003 5 

S37 Ф8x3.6 8.7±0.5 3.8±0.2 PLA 96/4 04/2003 4 

S40 Ф8x3.6 8.6±0.4 3.8±0.2 PLA 96/4 04/2003 3 

F22 Ф14x4.5 14.3±0.4 4.3±0.1 PLA 96/4 08/2002 8 

Linvatec         
 

  

S54 Ф12x4 12.0±0.2 4.2± 0.1 PLA 96/4 06/2004 8 

S54 Ф14x4.5 13.9±0.2 4.6±0.2 PLA 96/4 06/2004 8 

S49/E68  Ф14x4.5 13.9±0.2 4.4±0.1 PLA 96/4 10/2003 7 

S38 Ф16x4.5 16.0±0.3 4.4±0.1 PLA 96/4 04/2003 12 

S38 Ф18x4.5 18.0±0.2 4.7±0.1 PLA 96/4 04/2003 9 

Tampere University of Technology   
 

  

- Ф14x10 14.0±0.3 10.0±0.2 PLA 96/4 + 

PEG 5 % 

- 10 

All the scaffolds were made by hand except for PLA of 96/4 joint scaffolds with batch 

number S54. The length and diameter were measured from three different points and the 

average was calculated. PLA 96/4 joint scaffolds were sterilized for two years after the 

manufacturing date. 

3.1.6 Bioactive Glass Scaffold 

Bioactive glass scaffolds were prepared in four steps: powder preparation, ink 

preparation, 3D-printing and sintering. The aim was to produce twenty uniform porous 

scaffolds. The glass had the following composition: 26.93 SiO2, 26.92 B2O3, 21.77 CaO, 
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22.66 Na2O and 1.72 P2O5 in mol %. The bioactive glass was labelled as B50 and was 

chosen for its favorable thermal properties [121]. 

The raw material for the glass was SiO2, Na2CO3, (CaHPO4)(2(H2O)), CaCO3 and H3BO3, 

received from Sigma-Aldrich®. The glass was prepared in a platinum crucible and melted 

in air. Electric furnace (Carbolite BLF 17/3, Carbolite® Ltd., UK) was heated up in steps 

to 1250 ˚C. The temperature was kept steady for 30 min when it reached 600 ˚C, 850 ˚C 

and 1250 ˚C. Figure 18 (a) illustrates the heating steps. Multiple isotherms allowed the 

release of H2O, CO2 and H2 while preventing excessive foaming. After 30 min at 1250 

˚C, the melt was poured into a graphite mold and annealed in an electric oven 

(Nabertherm P330, Nabertherm GmbH, Lilienthal/Bremen, Germany) at 400 ˚C for 4 

hours. The glass was cooled down to room temperature overnight. The solid glass was 

ground into fine powder. The particle size was controlled by sieving ground glass through 

a 38 μm mesh using a vibratory sieve shaker AS control 200 (Germany). Small particle 

size was used to enhance the flow consistency of the ink [122]. 

 

Figure 18. Heating steps for melting glass (a). Robocasting of bioactive glass 

scaffolds using layer by layer method (b). 

Pluronic F127 is a thermoreversible synthetic copolymer that becomes fluid at low 

temperatures, but at room temperature it creates micelles and gels. Pluronic F127 (Sigma-

Aldrich®) was used to bind the B50 glass powder together. 30 wt % Pluronic was prepared 

by dissolving 15 g of Pluronic F127 into 35 g of distilled water. Solution was left stirring 

for 24 hours in an ice bath. Then 2.349 g of B50 and 2.2407 g of 30 wt % Pluronic F127 

were weighted and kept in the ice bath to keep Pluronic F127 fluid. Then solution was 

mixed by turn vortexing (Vibrofix VF1 Electronic, Janke & Kunkel IKA-WERK, 

Staufen, Germany) 30 s and cooling solutions 30 s in the ice bath. This was repeated until 

the powders were dispersed. Vortexing caused air bubbles, which were reduced by 

sonicating solution 40 s in an ultrasonic cleaning machine (FinnSonic M12, FinnSonic 

Oy, Lahti, Finland). After sonication tubes were placed in the ice bath and the ink was 

loaded into a 10 ml syringe. 
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The scaffolds were made using robocasting or in other words, direct ink writing method. 

The layer-by-layer method was used to build a 3D bioactive glass scaffold (Figure 18 

(b)). The ink was robocasted by a computer controlled dispensing system (nScrypt 

Tabletop 3Dn, nScrypt Inc., Orlando, Florida). The diameter of the tapered dispense tip 

(Optimum® SmoothFlowTM, Nordson EFD) was 0.41 mm. A colour laser printer and 

copier overhead transparency film (Folex®) was used as a substrate for the printed 

structure. The substrate provided sufficient adhesion for the first printed layer, which 

resulted in a stable ground layer. The scaffold was also easy to remove from transparency 

after drying. The 3D-printed scaffolds were left to dry for 48 hours at room temperature. 

Unnecessary edges were removed using a scalpel. Parameters of the 3D-printed scaffolds 

were measured to evaluate shrinkage after sintering. 

 

Figure 19. Sintered B50 scaffolds. 

During sintering B50 powder particles coalescence into a denser structure as organics 

evaporate. In this study printed B50 scaffolds were placed into an electric oven 

(Nabertherm P330, Nabertherm GmbH, Lilienthal/Bremen, Germany) at room 

temperature and the oven was heated at rate 1 C˚/min. When 515 C˚ temperature was 

reached, heating was stopped and the temperature was kept at steady state for 1 hour. 

Then oven was heated up to 585 C˚ at 1 C˚/min heating rate and kept constant for 1 hour. 

The inaccuracy of the oven temperature was taken into account. Correct temperatures 

were about 15 C˚ less. Samples were cooled to room temperature. Figure 19 illustrates 

sintered B50 scaffolds. The length and diameter were measured from three different 

points of the samples and the average was calculated. The average of the measured 

diameters and lengths were 7.4±0.1 mm and 3.8±0.1 mm respectively. The scaffold 

shrinkage was measured from twenty-four samples using the same method. The received 

value was 21.2±3.6 %. Bioactive glass scaffolds were stored in a desiccator until the 

compression tests. 

3.1.7 Cancellous Bone 

Fourteen samples of cancellous bone were obtained from distal femur of a pig. Samples 

were taken from both lateral and medial femur (Figure 20 (a)). Pig’s leg was left to thaw 

overnight. In order to keep pig’s leg moist, it was placed in a plastic bag and kept in an 

air tight container. Tibia and femur were separated and femur was cleaned using a scalpel. 

Femur was stored into a freezer and taken out before sample preparation. Fresh frozen 
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samples were machined using a band saw and a drill (Figure 20 (b)). The obtained 

cylindrical samples (Figure 20 (c)) were kept in a freezer until mechanical tests to keep 

them hydrated. 

Buffer solution was prepared before mechanical test. Buffer was used during the 

mechanical test to keep samples moist enough. Sörensen buffer solution was made 

according to ISO 15814 [123]. Buffer contained 7.74 g of Na2HPO4 and 1.65 g of 

KH2PO4. The measured pH was 7.46 (Mettler-Toledo International Inc., Greifensee, 

Switzerland). 

 

Figure 20 Cancellous bone samples were taken from pig’s lateral and medial distal 

femur and prepared into ɸ10x5 samples (a). Samples were drilled (b) into cylindrical 

samples (c). 

Samples diameter and length were measured before mechanical tests. Average of three 

measured points was used. Received diameter and length were 9.9±0.2 mm and 5.0±0.6 

mm (n=14) respectively. 

3.2 Compression test 

Conventional quasi-static uniaxial compression tests were conducted using Instron 

Electropuls E 1000 (Instron®, High Wycombe, UK) (Figure 21 (a)) for all the materials. 

Additionally, Instron 4411 (Instron®, High Wycombe, UK) (Figure 21 (b)) was used for 

PET foam and PLA rod samples. The upper platen of Instron E 1000 was custom made 

at Tampere University of Technology. The diameter of the upper platen was 18 mm. In 
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addition, the compressive parts of Instron 4411 were made at Tampere University of 

Technology. Other parts for the devices were provided by Instron®. 

 

Figure 21. Testing machines Instron E 1000 (a) and Instron 4411 (b). 

All the tests were performed at room temperature and in dry condition. The displacement 

of the test specimen was measured from the specimen platen interface. The gauge length 

for the tests were set as the length of the sample. The compressive strength and 

compressive modulus were analyzed from the stress-strain curves using an OriginLab 

software. In addition, the absorbed energy until yield was measured for PET foam, PU 

foam and cancellous bone samples. More detailed information of the compression test 

methods can be seen under tested material. 

3.2.1 PET Foam 

The compression tests for PET foams were performed using two different devices, Instron 

E 1000 and Instron 4411 (Figure 22). A 2 kN load cell was used for Electropuls E 1000 

and a 5 kN load cell for Instron 4411. The tests were performed according to standard 

ISO 844 [127]. The cross-head speed was 10 % of the measured length, hence cross-head 

speed was about 0.5 mm/min. Additionally the rates of 0.1 mm/min and 1 mm/min were 

tested. Table 10 gathers testing device, cross-head speed, sample design (diameter, 

presence or not of the welding line and preparation method) and number of tested 

samples. 
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Figure 22. Compression tests of PET foam samples and mechanical testing devices 

Instron E 1000 and Instron 4411. 

Table 10. Compression testing device, cross-head speed and number of tested PET 

samples with three densities, three diameters, welding line included or excluded and 

two preparation methods. 

Compressive 

device 

Cross-head 

speed (mm/min) 

Diameter 

(mm) 

Welding 

line 

Preparation n 

PET foam 210 kg/m3     

Instron E 1000 0.5 10 Yes+No Punched 5+5 

Instron E 1000 0.5 10 No Punched & Silicone  5 

Instron E 1000 0.5 14 Yes+No Punched 5+5 

Instron E 1000 0.5 6 Yes Punched 5 

Instron E 1000 0.52±0.01 10 Yes Punched & Epoxy  5 

Instron E 1000 1 10 Yes+No Punched 5+5 

Instron E 1000 0.1 10 Yes+No Punched 5+5 

Instron E 1000 0.5 10 Yes Hand-carved 5 

 PET foam 135 kg/m3 

Instron E 1000 0.5 10 Yes+No Punched 5+5 

 PET foam 100 kg/m3  

Instron E 1000 0.5 10 Yes+No Punched 5+5 

 PET foam 210 kg/m3 

Instron 4411 0.5 10 Yes Punched 6 

Instron 4411 0.55±0.02 10 Yes Punched & Epoxy  6 

The samples were compressed until 65-80 % strain depending on the sample density and 

compressive rate. The compressive strength was determined at 10 % relative deformation. 

The zero-deformation corresponded to the point where the stress reached 250 Pa. 
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Compressive modulus and absorbed energy until yield were determined using the method 

explained in theoretical background -section “2.1.1 Stress-Strain”. The fifth degree 

polynomial and its derivative was obtained using equation (5) and differentiating. The 

maximum of the derivative corresponds to the compressive modulus (see Figure 1 (b)). 

The yield point was found as described in Figure 1 (b). The absorbed energy until yield 

could be calculated by integrating the stress-strain curve up to the yield point. 

3.2.2 PU Foam 

The compression test for PU foam samples was performed using Instron E 1000. A 2 kN 

load cell was used for samples with densities of 160 kg/m3and 320 kg/m3. A 250 N load 

cell was used for samples with density of 80 kg/m3. The tests were executed according to 

standard ISO 844 [124] similarly to the test performed for PET foam samples. The cross-

head speed was 10 % of the measured length. Table 11 summarizes the test methods used 

for PU foams and the number of tested samples. 

Table 11. Cross-head speed, compressive strain, capacity of the load cell and number 

of tested PU foam samples with three densities. 

Density (kg/m3) Cross-head speed 

(mm/min) 

Compression 

until strain (%) 

Load cell 

(N) 

n 

80 0.50±0.01 75 250 20 

160 0.52±0.01 75 1000 20 

320 0.51±0.02 50 1000 20 

.  

Figure 23. PU foam sample and starting position of a compression test. 

The samples were compressed until 50-75 % strain depending on the sample density. The 

compressive strength was defined at 10 % relative deformation. Zero-deformation 
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corresponded the point where the stress reached 250 Pa. Figure 23 illustrates the starting 

position of the compression test. The compressive modulus and absorbed energy until 

yield point was determined using the same method than for PET foams. 

3.2.3 Hydrogel Scaffold 

Thirty-two GG hydrogel scaffolds were compression tested using Instron E 1000 with the 

250 N load cell. The upper and lower platen were covered with a thin piece of wet 

cellulose paper to increase friction between hydrogel and metal plates (Figure 24). The 

compression test was performed with a constant cross-head speed of 10 mm/min until 65 

% strain. The method was obtained from literature [34, 35]. 

 

Figure 24. Setting of the compression test for hydrogel samples. 

Samples were kept in molds until starting the compression tests. Before the test, sample 

was extruded out of the syringe on a plate. Extruded hydrogel sample can be seen in 

Figure 25. Three different zero-deformation points were used and referred as “A”, “B” or 

“C” position (see Figure 38 section “4.3.1 Considerations”). The gauge length of the A -

position was the highest and C -position the lowest. The position “A” was achieved by 

carefully lowering the compressive platen until the hydrogel sample swell and adhere to 

the top platen. Seven samples were tested using the position “A”. The position “B” was 

achieved by lowering the compressive platen until platen touched the hydrogel and five 

hydrogel samples were tested. The position “C” was achieved by lowering the 

compressive platen until the gauge length was approximately the same as the sample 

length on the table before adhesion. Twenty samples were tested using the position “C”. 

Each length and diameter of the samples were measured three times prior the mechanical 

test and the average was calculated. The measured diameters for the positions “A”, “B” 
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and “C” were approximately 12.3±0.1, 12.4±0.1 and 12.2±0.1 respectively. Measured 

lengths for positions “A”, “B” and “C” approximately 7.2±0.4 mm, 7.8±0.2 mm and 

7.5±0.3 mm. Stress at zero-deformation point was slightly negative for all the three 

positions. 

 

Figure 25. Hydrogel sample before the compression test. 

The compressive strength was taken from the highest point of the stress-strain curve 

before a sudden drop. The compressive modulus was determined from the linear part of 

the stress-strain curve after a toe region approximately from 0.15-0.30 mm/mm strain. 

  

3.2.4 PLA Rod 

Instron E 1000 with a 2 kN load cell was used to test twenty PLA rod samples (Figure 

26). Additionally, five PLA rod samples were tested with Instron 4411 with a load cell 5 

kN. The compression test was performed using standard EN ISO 604 [125]. The 

compressive rate was 1 mm/min. Instron E 1000 was set to compress the samples up to 

900 N and Instron 4411 up to 4 kN. 

 

Figure 26. PLA rod sample in compression test. 

The samples had slightly tilted surface. The gauge length corresponded approximately to 

the length of the sample. Zero-deformation corresponded to the point where the upper 

plate touched the sample (<0.0075 MPa). Compressive modulus was taken from the linear 

slope of the stress-strain curve (see Figure 43 section “4.4.1 Considerations and 
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Reliability”). PLA rod did not yield, hence the compressive strain at 900 N was taken for 

both devices. 

3.2.5 Joint Scaffold 

The joint scaffolds were compressed with Instron E 1000 using a 2 kN load cell. The 

compression test was performed by repeating previous study [126]. Joint scaffolds were 

compressed until 500 N at rate 2 mm/min. Zero-deformation corresponded to the point 

where the upper platen touched the sample while giving as little stress as possible 

(<0.0025 MPa) (Figure 27). 

 

Figure 27. Smallest and highest joint scaffold set to compression test. 

Th compressive modulus was determined approximately form 0-0.02 mm/mm strain. The 

compressive strain was determined from the points where the samples were loaded 80 N, 

220 N and 440 N. 

3.2.6 Bioactive Glass Scaffold 

Twenty bioactive glass scaffolds were uniaxially compressed with Instron E 1000 (Figure 

28). The used load cell was 2 kN and the compressive cross-head speed 0.5 mm/min. 

Instron E 1000 demands tuning of the specimen stiffness before compression test to 

optimize its performance for the test. Usually stiffness is tuned automatically, but for 

bioactive glass scaffolds the stiffness was manually set to 50 N/mm. The value was 

received from Instron® technician. 
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Figure 28. B50 scaffolds set to compression test. 

The zero-deformation corresponded to the point where the upper platen touched the 

sample giving as little load as possible (<0.015 MPa). Scaffolds were compressed until 

breakage of the total structure. The compressive modulus was determined from the first 

linear slope of the stress-strain curve that reached higher than 0.5 MPa. The compressive 

strength was determined from the highest point of the stress-strain curve before a sudden 

drop. 

3.2.7 Cancellous Bone 

Fourteen cancellous bone samples taken from pig’s femur were tested by Instron E 1000 

with a load cell 2 kN (Figure 29). The samples were immersed in Sörensen buffer solution 

during the mechanical test to keep them moist. The buffer solution was warmed up to 

room temperature (22.5 ˚C) in a warm water bath (TW8, Julabo, Germany). 

 

Figure 29. Cancellous bone sample at zero-deformation point during compression 

test. 

The compressive test was performed as reported elsewhere [126]. The samples were 

compressed at a rate of 1 mm/min until 20 % compressive strain. The zero-deformation 

corresponded to the point where the upper platen touched the sample giving as little load 

as possible (<0.008 MPa). The compressive strength was the highest point of the curve. 

The compressive modulus was taken from the linear elastic part of the curve after a toe 

region from about 0.05-0.10 mm/mm strain. The absorbed energy was determined using 

the same method than for PET and PU foam. 
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3.3 Additional tests 

Thermogravimetric analysis (TGA) and imaging were performed to understand better the 

structure-property relationship of the PET foams, PU foams, B50 scaffolds and the 

cancellous bone. Statistical tests were performed to support the evaluation of the data. 

3.3.1 TGA 

The inorganic content of the cancellous bone samples was analyzed using thermogravi-

metric analysis (TGA, Q500 TA Instruments, Delaware, USA). Five cancellous bone 

samples were as described elsewhere [126]. Tested pieces of the cancellous bone were 

15-20 mg. The samples were heated up to 800 ˚C and kept 1 min at this temperature. The 

heating rate was 20 ̊ C/min. The results were analyzed using Universal Analysis Software. 

3.3.2 Imaging 

The PET and PU foams with three densities were imaged with an optical microscope 

(Zeiss, West Germany). Additionally, micro computed tomography (μCT) was used to 

characterize the 3D microstructure and evaluate the porosity of the cancellous bone 

samples and B50 scaffolds. The analysis was made by the computational biophysics and 

imaging group at Tampere University of Technology. One sample was scanned for the 

materials. 

3.3.3 Statistical Analysis 

A statistical comparison was performed between compressive values by IBM SPSS 

statistics 23. The normality of the data was evaluated statistically (the Kolmogorov-

Smirnov Test and the Shapiro-Wilk Test) and visually (Normal Q-Q plot). Table 12 

summarizes the statistical methods used in the study depending on the data distribution 

and the number of groups. The null hypothesis was that no difference exists between the 

groups (p>0.05). 

Table 12. Statistical methods used to evaluate the differences between data groups 

depending the data normality and the number of compared groups. 

 Two groups More than two group 

Parametric Independent t-test One-way independent ANOVA 

Non-parametric Mann-Whitney test Kruskal-Wallis test 

The compressive strength of B50 scaffolds was characterized using Weibull statistics. 

Weibull modulus was calculated according to standard EN 843-5 [127]. Statistical 

analysis was performed using OriginLab software. First the compressive strength values 
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were ranked in ascending order. Then the probability of each ranked strength value was 

determined using following equation: 

𝑃𝑓𝑖 =  (
𝑖−0.5

𝑁
)      (13) 

where Pfi is the ith probability of each ranked strength value, i is the rank of the strength 

value in the strength value population and N is the total number of the strength values. 

The x-axis and y-axis was determined using equations 

𝑦𝑖 = 𝑙𝑛 [ln (
1

1−𝑃𝑓𝑖
)]      (14) 

𝑥𝑖 = ln (𝜎𝑓𝑖)      (15) 

where σfi is the ith strength of the ranked test sample, yi is the ith ranked data point for y-

axis and xi is the ith ranked data point for x-axis. Data points were plotted and a linear 

fitting was performed for the plotted points. The Weibull modulus was the slope of the 

fitted line. 
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4. RESULTS AND DISCUSSION 

In this section, the results are reported and the reliability and limitations of the 

compression test are discussed. The results are represented using mean and standard 

deviation. 

4.1 PET Foam 

The performance of the mechanical testing device Instron E 1000 was evaluated by 

comparing the measured compressive values of PET-foam samples with the compressive 

values provided by the manufacturer (AIREX®). The compressive values are termed as 

reference values and can be seen from Appendix 1. Additionally, the performance and 

limitations of the Instron E 1000 was evaluated by testing the same materials with another 

testing device. At least five samples were tested per variation in method, device, sample 

size or sample structure. The results are gathered in Appendix 2. 

4.1.1 Specimen Design and Device Performance 

PET foam with three different densities (100 kg/m3, 135 kg/m3 and 210 kg/m3) were 

compression tested. Porosities were estimated using equations (10) and (11) (see section 

“3.1.1 PET Foam”). The porosities from the lowest foam density to the highest were 

approximately 93 %, 90 % and 85 %. Figure 30 shows the microscopic images of the cut 

open cell structures (a-c) and stress-strain curves of PET foams (d). The increase of 

density resulted in steeper and higher slope and indicated an increase in stiffness and 

strength. In the stress-strain curves, we can see a plateau region for all the foams after an 

elastic phase. During this phase, the pore walls bend and collapse gradually. For the 

densest material, the plateau region is the shortest as there are probably less cells being 

crushed. Eventually, the cell walls touch each other and a densification phase begins. 

[128] The densification phase can be seen as a steep increase in the slope. 

The manufacturer tested 100x100x50 mm sized cubic PET samples that had a welding 

line in the center of the sample and a thin glued epoxy layer on the top and bottom 

surfaces. The compressive method was obtained from standard ISO 844 [124] and the 

same method was attempted to use in this study. However, this was not possible with our 

instrument. The diameter of the compressive platen was 18 mm. Therefore, the PET 

samples in this study were ten times smaller than reference samples. Additionally, the 

design was cylindrical not cubic. The same standard was applied in this study and the 

suggested compressive rate was 10 % of the sample length [124]. Therefore, some 

differences in compressive properties were expected due to the differences in size, design 

and cross-head speed. 
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Figure 30. Optical microscope images illustrating the structure of PET foam speci-

mens (a-c). Stress-strain curves of the investigated PET foams. (d). 

As explained previously, the manufacturer had included the welding line in the center of 

the samples. In this study, we tested samples with and without the welding line. Figure 

31 illustrates the compressive strength (a) and compressive modulus (b) for the tested 

samples along with the reference values. The difference between the reference value and 

the measured one are expressed in %. An increase in density results in a higher 

compressive strength and compressive modulus. Slightly more variation in the standard 

deviation can be seen for the densest foam, which could be due to an increase of non-

homogeneity in the pore structure of the densest foam. Indeed, the cell shape, cell size, 

cell distribution and cell wall thickness in the foams were random. Nevertheless, an 

increase in density and the following decrease in porosity is expected to lead to increased 

mechanical properties [51, 129-132]. 
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Figure 31. Compressive strength and compressive modulus of PET foam with three 

different densities, with and without welding line. Blue columns indicate samples 

without the welding line, the light blue are columns with the welding line and the 

green columns are the reference values. The % above the columns are differences 

between measured values and reference values. The number of samples are in the 

columns. 

The compressive strengths for the samples without the welding line were 31 to 36 % 

lower than the reference value. This was expected as the manufacturer had included the 

welding line in the center of the samples. However, the presence of the welding line in 

the center of the samples had significant influence on the mechanical properties. The 

measured compressive strength was 21 % to 39 % higher than the reference value when 

the samples were tested with the welding line. In this study, the size of the samples is not 

comparable to the samples tested by the constructor. The reference values were obtained 

by testing ten times bigger samples. The over-estimated compressive strength can be to 

the welding line having more impact on small samples compare to larger samples. The 

effect of the sample size and the design on the structure of the samples was evaluated. 

The apparent densities for the samples used in this study were calculated using equation 

(9) (see section “3.1.1 PET Foam”). The apparent density of the samples without welding 

line was 193±2 kg/m3 and with the welding line 240±67 kg/m3. The reference material 

had the density ranging from 200 to 220 kg/m3 [117]. The samples without the welding 

line had logically lower density that resulted in lower compressive strength. The higher 

density for our samples with welding line compare to the one reported by the 

manufacturer confirm that the welding line will have more impact on small samples than 

on larger ones. Figure 32 illustrates the differences in the design and density of the tested 

and reference samples. 
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Figure 32. The part of the foam in a bigger and cubic sample is higher than in a 

smaller and cylindrical sample, which leads to a lower density. The width of the 

welding line stays the same. 

The measured compressive modulus for the samples with different densities showed great 

difference (>50 %) when compared with the reference material. Again, less difference 

was in the compressive modulus of the samples with the welding line compared with the 

samples without a welding line, which was expected as the reference values were received 

with the welding line. However, the huge difference in the compressive modulus raised 

questions on the methodology used for testing our samples. 

The samples with 6, 10 and 14 mm diameters were tested to study the impact of the sample 

size in the compressive results. All the tested samples included a welding line. The 

compressive results of three different specimen sizes are shown in Figure 33. A 

significant difference between different sizes can be seen for compressive strength 

(p=0.022) and compressive modulus (p=0.005). According to these results, the smallest 

specimens had the highest compressive strength and compressive modulus. Then again, 

the specimens with the highest diameter had the lowest compressive modulus and 

compressive strength. Generally, it is known that the specimen size has effect on 

compressive properties [3, 9]. For example, specimens may exhibit buckling when the 

relationship of the specimen length and diameter is less than 2:1. Chen and Fleck reported 

smaller metallic foam samples having higher mechanical properties [133]. Their results 

did support the results received in this study. However, Andrews et al. reported that the 

compressive stiffness and strength of aluminum foams reduce with decreased sample size 

[134]. Thus, the size effect needs to be taken into consideration. 
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Figure 33. Compressive strength and compressive modulus of three different 

diameters of 210 kg/m3 PET foam. Dotted lines represent the reference values. The 

number of samples are above the columns. 

Again, greater difference can be seen in the compressive modulus than in the compressive 

strength when the reference values and measured values are compared in Figure 33. 

According to the results, the decrease in the sample size caused bigger standard deviation 

in the compressive modulus. This could be due to the punching preparation method, that 

may have caused some inconsistency and damage in pores and could in smaller samples 

have higher impact on the total structure and on mechanical properties. 

Experimental errors were studied in two ways. Due to the uncertainty of the structure 

consistency of the punched samples, we prepared samples using a scalpel in order to 

minimize the risk of the damage. Additionally, during the compression test, the device 

assumes that the compressive platen gives load on a sample with a solid surface. This 

causes inaccuracies with porous materials as the platen loads the cell walls, not the total 

surface area of the foam sample. Hence, the surface pores on both sides of the foam 

samples were closed by a thin layer of silicon or epoxy glue. The cross-head speed was 

set to 0.5 mm/min (for 5 mm high samples) as suggested in the standard ISO 844 [124]. 

The impact of the cross-head speed was also investigated by testing the PET foam 

samples (punched, open cell surface, ϕ=85 %) at 0.1 and 1 mm/min. 

The results of the compressive strength and compressive modulus of PET foam with 

density 210 kg/m3 are gathered in Figure 34. The samples with the welding and without 

the welding line are separated by large squares. The result of the faster compressive rate 

(1 mm/min) is coloured light blue and the slower compressive rate (0.1 mm/min) is 

coloured green. The dotted line presents the reference value obtained from the 

manufacturer. 

The samples with the welding line exhibited slightly higher compressive strength than the 

reference value. On the contrary samples without the welding line had slightly lower 

values. Two values of the compressive strengths were overlapping the reference value in 
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Figure 34. One of these values was received with the compressive rate of 0.1 mm/min 

and another was with a bigger (14 mm) diameter. A reversed effect on results can be seen 

by increasing the compressive rate or decreasing the diameter. Generally, sensitivity to 

the strain rate is a sign of viscoelastic behavior, but also the closed cell structure might 

have some effect if gases are trapped inside the cells [135]. 
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Figure 34. Compressive strength and compressive modulus of 210 kg/m3 PET foam. 

The results with and without the welding line are separated. The blue colour 

represents the compressive speed of 0.5 mm/min, light blue 1 mm/min and green 0.1 

mm/min. The dotted line indicates the reference value. *The number of specimens 

was five for each variation. 

The difference between the measured and reference values of the compressive modulus 

was remarkable (Figure 34). The epoxy glued samples showed slightly more accurate 

results for the compressive modulus, but flexible silicone samples did not show an 

increase in the modulus (Figure 34). Silicone glue might not be as stabilizing glue as 

epoxy. However, even the use of epoxy did not improve the measured compressive 

modulus enough. Similar inaccuracies have been reported in the literature [5]. According 

to Keaveny et al., the error in the compressive modulus could be explained by the 

specimen surface artifacts in case the change in length is measured from specimen-platen 

interface [5]. 

Generally, the term surface artifact is used when there is a discussion about the 

experimental errors of the conventional compression test. Surface artifacts may refer to 

three different experimental artifacts: friction artifact, damage artifact and compliance 

artifact [5]. The term friction artifact is used when there is friction between the sample 

surfaces and compressive platens. The friction results in non-uniform stress distribution 

during the compression test. For example, bulging of a specimen is a cause of friction 

artifact. The damage artifact refers to the phenomena on the end surfaces of the sample. 

[5] The damage can result from cutting the sample surfaces, such as discussed with the 
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PET foam samples. Compliance artifact is occurring due to the high stiffness of the load 

frame and compliance of the load cell [5, 136]. Table 1 in section 2.2.3 “Specimen” 

gathers general problems and some methods to minimize the artifacts. 

According to the manufacturer, the compressive values of PET foams in their Technical 

data sheet [117] were conservative. Hence, the accuracy of the compressive strength was 

good. However, the use of glue did not sufficiently improve the accuracy of the 

compressive modulus. The cut sample surfaces affected the measurement, as the samples 

were most likely too thin. For biomaterials, there are other suggested methods to exclude 

the surface artifacts. Extensometer can be used to measure the strain precisely from the 

intact center part of the specimen [3, 24]. There are contact and non-contact 

extensometers. The contact-extensometers have two challenges. The tested specimens 

should be larger than the ones we can use with our instrument. The second problem is 

that mostly the biomaterials breaks under compression and the breakage may cause 

inaccuracies in the measurements when the extensometer is in contact with the specimen. 

The solution could be an optical extensometer that can measure the strain by a laser or 

with video images without touching the sample. Additionally, a self-aligning platen could 

be used to minimize non-uniform stress distributions if the sample surfaces are non-

parallel. 

4.1.2 Comparison of Devices 

Two compressive testing devices (Instron E 1000 and Instron 4411) were compared. The 

testing method and samples were the same. Five samples of 210 kg/m3 PET foam with 

and without epoxy glued surfaces were tested with both devices. Figure 35 shows the 

compressive results. The dotted line illustrates the reference value. The results of the 

compressive properties were controversial. Instron 4411 showed more accurate results on 

compressive strength but Instron E 1000 showed more accurate results on compressive 

modulus. Instron E 1000 has a patented algorithm for stiffness tuning, which 

automatically optimizes the system before the test by measuring the stiffness of the 

specimen. This facilitates the testing and could be a factor that enhances the precision of 

the compressive modulus. A high standard deviation can be seen for the epoxy glued 

samples tested with Instron 4411 (Figure 35). This could be due to the difficulties in 

determining the zero-deformation point as the surface of the glued samples was slightly 

uneven and the gauge length needed to be measured by hand using a Vernier caliper. 

Similar problems were not experienced with Instron E 1000, as Instron E 1000 had a fine 

cross-head adjusting system simplifying the determination of the zero-deformation point. 
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Figure 35. Comparison of two mechanical testing devices, Instron E 1000 and 

Instron 4411. The blue columns are the compressive strength and compressive 

modulus of samples with a welding line. The light blue columns are the compressive 

strength and compressive modulus of the same samples with epoxy glued surfaces. 

The dotted lines represent the reference values. The number of samples are in the 

columns. 

No significant difference was seen between the compressive strength of non-glued and 

glued samples either for Instron E 1000 (p=0.374) or Instron 4411 (p=0.578). When the 

devices are compared, a significant difference between the compressive strength of non-

glued samples (p=0.023) can be seen, but not between glued samples (p=0.112). 

A significant difference was seen in the compressive modulus of the non-glued and glued 

samples for Instron E 1000 and Instron 4411, and between the devices (p<0.002). 

Altogether, Instron E 1000 shows more accurate results compared with Instron 4411 

when both compressive strength and compressive modulus are considered. The use of 

glue decreased changes in the compressive strength, but did not give satisfactory 

improvements in the compressive modulus as both devices underestimated the 

compressive modulus by at least 34 %. 

4.2 PU Foam 

PU foam was the second reference material that was used to evaluate the performance of 

compression testing device Instron E 1000. The compressive results were compared with 

the reference values provided by Sawbones® (see Appendix 1). The structural properties 

to the mechanical test were discussed. At the end of this section, the limitations and 

reliability of the test results of both reference foams were evaluated. 

4.2.1 Reliability and Limitations 

Twenty samples of three different foam densities (80 kg/m3, 160 kg/m3, 320 kg/m3) were 

tested. Foam porosities were estimated using equations (10) and (11) (see section “3.1.1) 

PET Foam”). The approximate porosities for PU foams were 93 %, 86 % and 71 % from 
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the lowest density to the highest. An optical microscope was used to image the 

microstructures of the foams. The structural differences between the PU foams and the 

effect on the stress-strain curves are shown in Figure 36. According to the optical 

microscope images, the pore size decreased when the density increased, which logically 

caused strengthening of the material [3]. The pore structure was different between PET 

and PU foams. However, the compressive behavior was similar. Again, the denser foam 

presented a steeper slope and a shorter plateau region on the stress-strain curve. The 

smaller cells in the densest PU foam were most likely to deform and close at faster rate 

[137]. Therefore, densification initiated at earlier strain for denser PU foam. Additionally, 

compressive results in Figure 37 showed that the densest foam had higher standard 

deviation as was the case with the densest PET foam. Thus, the variation in compressive 

properties could be dependent on porosity parameters. Meille et al. reported similar 

results [19]. However, the fraction mechanism of non-homogeneous and porous materials 

is complicated and needs more research. 

 

Figure 36. Optical microscope images of the cut open pore structure of PU foam 

specimens with three different densities (a-c), and the stress-strain curves of the 

investigated samples (d). 

The manufacturer tested cubic 2x2x1 inch (~50x50x25 mm) sized PU samples according 

to ASTM F1839-08. Similar method was attempted to use in this study, but as earlier 
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discussed the diameter of the compression platen limited the sample size. The samples in 

this study were cylindrical and about five times smaller than the reference samples. The 

suggested compressive speed was 10 % of the sample length [124]. Therefore, some 

differences in compressive properties were expected due to the differences in size, design 

and cross-head speed. 

Figure 37 summarizes the compressive strength and the compressive modulus of the 

measured and reference values. The % value above the columns represents the difference 

between the measured and reference values. Similarly to the first reference material, the 

compressive modulus measured using Instron E 1000 underestimated the compressive 

modulus, but the compressive strengths were more accurate (Figure 37). Depending on 

the density, the error in the compressive modulus were about 40 %. Additionally, some 

differences in the compressive strength could be seen, which could be due to many rea-

sons such as the small sample size, difference in design or surface artifacts on the 

specimen-platen interface like earlier discussed. 
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Figure 37. Compressive strength (a) and compressive modulus (b) of the tested 

samples along with the reference value. Twenty samples of each densities (80 kg/m3, 

160 kg/m3 and 320 kg/m3) were tested. *A data obtained from manufacturer for the 

densest foam had three samples. 

Table 13 summarizes the errors in the measured compressive modulus for the PET and 

PU foams. Additionally, the absorbed energy until yield is represented. The values can 

be compared with other quasi-static compression test results of PVC and PU [10, 11]. The 

compressive modulus and the absorbed energy were measured for all studies using the 

gradient of the stress-strain curve (see section “2.1.1 Stress-Strain”). 

Oroszlány et al. compressed closed cell PVC foam samples at rate 0.15 m/s [10]. They 

used cube-shaped 10x10x10 mm samples and a self-aligning compression platen to 

minimize non-uniform stress distributions. Patel et al. used a compressive strain rate of 

0.0033 s-1 and had two different lengths of cylindrical samples with a diameter of nine 

mm [11]. 90 kg/m3 PU foam samples had an open cell structure, but the other foams in 
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Table 13 had closed cell structure. The colours in Table 13 simplify the comparison of 

the results. 

Table 13. Compressive modulus and absorbed energy until yield for different polymer 

foams. Additionally, the error in the compressive modulus is summarized. The 

colours highlight the foam similarities. 

 Size (mm) Material E (MPa) Error in E  Uy (kJ/m3) 

Present study ɸ10x5 80 kg/m3 PU  9.8±0.5 39 % 8.3±1.2 

  160 kg/m3 PU 34.5±1.5 41 % 19.4±3.9 

  320 kg/m3 PU 119.9±16.3 43 % 71.7±19.5 

Present study ɸ10x5 

 

100 kg/m3 PET 31.3±1.7 65 % 24.7±3.3 

 135 kg/m3 PET 46.0±3.3 67 % 39.9±7.1 

  210 kg/m3 PET 82.9±10.6 54 % 39.1±8.8 

Patel et al. [11] ɸ9x3.9 

ɸ9x7.7 

90 kg/m3 PU (open cell)  

 

95 % 

89 % 

 

 

0.8±0.6 

1.5±1.4 

3.9 mm length 

7.7 mm length 

0.3±0.2 

0.7±0.2 

  160 kg/m3 PU 

3.9 mm length 

7.7 mm length 

 

19±3 

41±3 

 

67 % 

29 % 

 

27.3±10.0 

10.6±2.7 

  320 kg/m3 PU 

3.9 mm length 

7.7 mm length 

 

66±13 

145±6 

 

69 % 

31 % 

 

96.6±47.9 

26.5±14.4 

Oroszlány et 

al. [10] 

ɸ10x10x10 100 kg/m3 PVC 53.7±5.0 57 % 17.8±1.5 

 130 kg/m3 PVC 66.4±5.1 61 % 42.4±6.0 

 200 kg/m3 PVC 123.2±14.9 56 % 41.2±11.4 

As previously discussed, both values of the measured compressive modulus of PU and 

PET foam have a significant error when compared with the reference values. Similarly, a 

large error can be seen in Table 13 in the values of the compressive modulus reported by 

Oroszlány et al. and Patel et al. [10, 11]. The displacement was measured in these studies 

without optical extensometer from the interface between platen and the sample surface, 

such as in the present study. Hence, the compressive results should be more comparable. 

The measured values of the PU foams of 160 kg/m3 and 320 kg/m3and the values reported 

by Patel et al. of the same foams showed fairly similar results. The measured results go 

in the middle of the values Patel et al. reported. 90 kg/m3 PU foam had an open cell 

structure and showed lower compressive modulus and absorbed energy compared with 

the measured values of 80 kg/m3 PU foam. This was expected, as the cell walls in an open 

cell structure are generally weaker than in a closed cell structure [138, 139]. 
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PET and PVC foams are used as a protective sandwich structures and the PET foam is 

considered as a competitive material for PVC foams [140]. Oroszlány et al. studied PVC 

foams that had similar densities than the PET foams in the present study (see Table 13). 

The values of the absorbed energy until yield are similar for the PET and PVC foams. 

The absorbed energy until yield tells about the ability of the material to bear loads 

elastically. The results suggested that the foam cells can absorb similar amounts of energy 

before plastic deformation and hence are equally good materials for load protecting 

applications. 

The comparison of the errors in the measured compressive properties of PU and PET 

foams showed that the results of the PU foam were more accurate compared with the 

measured values of the PET foam. The microstructural architecture controls the 

mechanical response of the foams [19, 51, 139], thus the higher inaccuracy measured 

from the PET foam could be due to greater non-homogeneities in the structure. 

Altogether, the reference materials indicated that the density, pore geometry, sample size, 

strain rate and other structural design properties caused variation in mechanical properties 

and cannot be neglected. 

4.3 Hydrogel Scaffold 

The hydrogel scaffold preparation and the compression test were conducted according to 

Koivisto et al. and Salonen [34, 35]. Thus, the measured and reported compressive values 

for GG bioamine hydrogel scaffolds were compared. The reliability and limitations of the 

compression test was discussed and the mechanical testing devices were compared. 

4.3.1 Considerations 

The hydrogen ions in water exhibit adhesive property to reach towards opposite charged 

molecules. As the GG bioamine hydrogel scaffolds had high water content, scaffolds were 

adhesive toward upper platen causing some tension in the structure. This phenomenon 

caused difficulties on determining the zero-deformation point. As no clear guideline was 

found, three different zero-deformation points and their effect on the compressive values 

were evaluated as shown in Figure 38. The position “A” had the highest gauge length and 

the position “C” the lowest. The position “C” was achieved by lowering the compressive 

platen until the gauge length was approximately the same as the sample length on the 

table before adhesion. The difference between the positions “A” and “B“ was that at 

position “A” the hydrogel sample itself reached toward the platen. On the contrary the 

position “B” was achieved by lowering the compressive platen until platen touched the 

hydrogel. The compressive strength and compressive modulus of similar GG hydrogel 

scaffolds depending on the starting positions (A, B and C) can be seen in Figure 39. 
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Figure 38 Different zero-deformation points that were used in this study are 

illustrated. The initial length of the sample on the table is h. The gauge length of 

position “A” is h3. The gauge length of positions “B” and “C” is h2 and h1 

respectively. 
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Figure 39. Compressive strength and compressive modulus of GG bioamine hydrogel 

samples tested with different gauge lengths (A, B, and C). The number of samples are 

above the columns. 

The lowest gauge length “C” showed higher compressive strength and compressive 

modulus, which could be due to some preload on the scaffold at the “C” zero-deformation 

point. The higher standard deviation was found for compressive strength in position “A” 

and for compressive modulus in the position “C”. The high standard deviation for the 

position “C” was attributed to the difficulty in assessing the starting point accurately. 

However, despite this challenge the position “B” showed less variation in both 

compressive strength and compressive modulus than the position “A” even though the 

position “A” was easier to repeat. Statistical differences between the compressive results 

of the positions are gathered in Table 14. 
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Table 14. Results of statistical difference between A, B and C zero-deformation 

positions for compressive strength and compressive modulus. 

Comparison of 

positions 

Compressive property P-value 

A, B, C σmax <0.001 

E 0.001 

A, B σmax 0.586 

E 0.215 

B, C σmax 0.006 

E 0.018 

A, C σmax 0.006 

E 0.001 

One way ANOVA test showed significant difference between all the three positions for 

the compressive strength and compressive modulus. The independent t-test was per-

formed to evaluate the differences more closely. Only the results of the positions “A” and 

“B” showed no statistical difference. Thus, the effect of the zero-deformation point on 

the compressive results is considerable. 

4.3.2 Comparison of Devices 

The hydrogel scaffolds were prepared and tested using exactly the same method as 

Koivisto et al. and Salonen [34, 35]. The only difference was that in the present study the 

used compression testing device was Instron E 1000 and in the other studies the device 

was Bose Electroforce Biodynamic 5100. The term Bose 5100 is used to refer to this 

device. Bose 5100 is intended for characterizing biomaterials, cellular scaffolds, acellular 

scaffolds, tissue samples or tissue mimicking constructs. Thus, the device should be 

suitable for mechanically testing the GG bioamine hydrogel scaffolds engineered for 

neural tissue. 

The compressive strength and compressive modulus for all hydrogel samples can be seen 

in Figure 40. Instron A, Instron B and Instron C represent the present results of different 

compressive starting positions (A, B, and C). Bose 1 represents the results reported by 

Koivisto et al. [34] and Bose 2 the results reported by Salonen [35]. 
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Figure 40. Compressive strength and compressive modulus of hydrogel scaffolds 

tested in the present study (Instron A, Instron B, Instron C) and in the previous 

studies (Bose 1, Bose 2). The colours represent the compressive testing devices. The 

number of test samples can be seen above the columns. 

As previously demonstrated, the effect of a zero-deformation position cannot be 

neglected. According to Koivisto et al. and Salonen, the used zero-deformation point was 

the position where platen touched the sample surface [34, 35]. Thus, the reported 

compressive results should be comparable to the present results of Instron A or Instron 

B. Table 15 gathers P-values of statistical differences between the compressive results. 

Visually Figure 40 shows that the compressive strengths of Bose 1 and Bose 2 are closer 

to the value received using the position “C”. Statistically there is still a significant 

difference (Table 15). However, when the comparability with the present study and Bose 

2 alone is evaluated there is no significant difference between the compressive strengths. 

 

Table 15. Results of statistical differences between compressive values of the present 

study (Instron A, Instron B, Instron C) and previous studies (Bose 1, Bose 2). 

Test Compressive property P-value 

Instron C, Bose 1, Bose 2 σmax 0.019 

C, Bose 1 σmax 0.008 

C, Bose 2 σmax 0.619 

A, Bose 2 σmax 0.110 

E 0.009 

A, Bose 1, Bose 2 E 0.020 

A, Bose 1 E 0.042 

B, Bose 1 E 0.009 

B, Bose 2 E 0.004 

As all studies were conducted at Tampere University of Technology, within the 

Biomaterials and Tissue Engineering Laboratory, the raw data were available also for the 

previous studies. The stress-strain curves in Figure 41 illustrate the stress-strain curves 

received from different compressive testing devices. Bose 5100 showed more noise and 
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sensitivity in the stress-strain curves than Instron E 1000. However, Bose 2 showed less 

noise than Bose 1 even if no difference in the equipment’s parameter or sample 

morphology could be identified. The only difference was the increased number of data 

points in the case of Bose 1. According to the instruction manual of Bose 5100 [25], the 

system is sensitive to noises and for example might get resonance from the device 

position. The amount of data points recorded with Instron E 1000 was higher than Bose 

1 and maintained lower noise to signal ratio. Additionally, Instron E 1000 was adjusted 

to retain all peaks or trend changes resulting in extra data points. The high peaks in the 

stress-strain curves of Bose 1 may have caused some inaccuracy in the analysis of the 

compressive strength values, but no great difference could be seen when averaging the 

highest peaks. 

The compressive modulus showed a significant difference between the measured results 

and the results reported by Koivisto et al. and Salonen (Figure 40). The differences 

between the results of the compressive modulus were partly due to different methodology 

to analyze the compressive modulus as the combination of viscoelasticity of the hydrogel 

scaffolds and noise in the stress-strain curves (see Figure 41) caused some problems on 

determining the elastic region (as shown in Figure 42). Figure 41 illustrates the measured 

stress-strain curve when starting our test in position “A” and the received stress-strain 

curves of the previous studies Bose 1 and Bose 2. The stress-strain curve in Figure 42 

illustrates the difference in methodologies that were used to analyze the compressive 

modulus in the present and previous studies. The compressive modulus was taken in the 

previous studies from the entire part of the ascending trend (Figure 42 (a)). However, no 

clear beginning and end of the elastic region could be determined. In this study, the 

analysis was planned to be done according to the previous studies (Koivisto et al. and 

Salonen). However, the stress-strain curves of the present study showed repeatedly 

distinct linear part, which was assumed to correspond to the elastic deformation and the 

compressive modulus was taken from that region (Figure 42 (b)). Figure 42 (b) illustrates 

the stress-strain curves of the positions “A” and “C”. The position “B” had similar curves 

as the position “A”. 
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Figure 41. Stress-strain curves for similar hydrogel scaffolds. Two different 

compression testing devices (Instron E 1000 and Bose 5100) was used. 
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Figure 42. Analysis of compressive modulus. (a) Stress-strain curves from the 

previous studies (Bose 1 and Bose 2) and (b) from positions “A” and “C” obtained 

using Instron E 1000. 

The viscoelastic and self-adhesive properties of the hydrogel scaffolds complicated the 

repeatability of the compression test and reliability of the results. A significant difference 

in the compression strengths of the present study and two other studies could be seen even 

if the study was repeated using the exact same methods. No reliable comparison between 

the results of the compression modulus could be performed due to differences in the 

stress-strain curves and analyzed methods. In general, the compressive testing device 

Instron E 1000 presented lower noise to signal ratio and more reproducible dataset. 

4.3.3 Comparison with Other Studies 

The mechanical properties of hydrogels can be modified by changing the degree of a 

cross-linker polymer [35, 57]. An increased amount of cross-linking chains leads to stiffer 

structure. In the literature, the mechanical properties of GG hydrogels have been tuned 

for different tissues, such as cartilage tissue [61] and softer neural tissue [34]. The 
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network formation of GG has shown to be dependent on the quantity of the cations [141, 

142]. The binding network of GG hydrogels can also be modified by using additives 

[142]. Sowrn and Kasapis compression tested a wide range of 0.5 wt-% GG hydrogels 

and studied the effect of sugars and/or calcium on the mechanical properties. Depending 

on the amount of sugars and/or calcium, the compressive modulus varied from 0.35-2 

kPa. Sowrn and Kasapis suggested that an increase of sugar-solution could have influence 

on the polymer aggregation and give flexibility to the chains [142]. Coutinho et al. used 

physical and chemical mechanisms to cross-link GG hydrogels in order to improve the 

mechanical properties [143]. The compressive modulus of GG varied from 0.15 to 148 

kPa depending on the used ion concentration, cross-linking mechanism and polymer 

concentration. In this study, the measured compressive modulus ranged from 30-80 kPa 

depending on the zero-deformation position of the compressive platen. The measured 

compressive modulus had similarities with the results reported by Coutinho et al. 

However, hydrogels are viscoelastic and hence the mechanical properties are dependent 

on the compressive rate and temperature [8, 13, 15]. Coutinho et al. tested three samples 

per variation and the compressive rate was 0.2 mm/min. The compressive rate in the 

present study was 10 mm/min. As previously discussed, also the performance of the 

testing device might have influence on the results (see Figure 41 and 42). Additionally, 

there was no mention of slipping of the hydrogel scaffolds, that may happen due to 

slippery surfaces of the hydrogel samples on the compressive platen. In the present study, 

the slipping of the hydrogel samples was prevented using cellulose paper between the 

specimen and compressive platen. As there are many factors effecting on the compressive 

results of GG hydrogels, the compressive tests are suggestive and the comparison 

between studies need to be done with caution. 

4.4 PLA Rod 

PLA rod samples were compression tested using Instron E 1000. Instron E 1000 could 

deliver load up to 1000 N. Due to the limitation in the maximum load Instron E 1000 can 

deliver and the accuracy of the measurements at higher load, PLA rod samples were tested 

also with Instron 4411, for which the 5 kN load cell could be used. The reliability and 

limitations of sample geometry and devices were discussed. 

4.4.1 Considerations and Reliability 

Twenty PLA rod samples were compression tested with Instron E 1000 and five with 

Instron 4411. Figure 43 illustrates the stress-strain curves obtained using Instron E 1000 

and Instron 4411. Red lines present the regions of the compression modulus. No failure 

could be detected from the stress-strain curves. The stress-strain curve received using 

Instron E 1000 showed steeper slope. However, due to the limitation of the load cell 

capacity, the curve ends earlier than the curve of Instron 4411. Instron 4411 had a toe 

region and a long elastic slope until the compression test ended. A significant difference 
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could be seen between the compressive results of the devices. The results of the 

compressive strain at 900 N (ε900N) and compressive modulus are gathered in Table 16. 
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Figure 43. Stress-strain curves of PLA rod samples recorded with two different 

compressive testing devices (Instron E 1000 and Instron 4411). Red line represents 

the region of the compressive modulus. 

Table 16. Surface tilt, strain at 900 N, compressive modulus and P-values for PLA 

rod samples tested with two compressive testing devices. 

Device Surface tilted (%) 𝜺900N (%) P-value E (MPa) P-value 

Instron 1000 1.1±0.6 3.1±0.3  

0.03 

554.5±56.5  

0.002 Instron 4411 3.9±1.3 4.6±1.1 357.7±52.0 

Figure 44 illustrates the problems in sample design. The prepared PLA rod samples had 

tilted surfaces and the compressive platen could not deliver parallel load at the surface of 

full samples cross-section. The % surface tilt was calculated using equation (12) (see 

section “3.1.4 PLA Rod”). The results are gathered in Table 16. Samples tested with 

Instron E 1000 had 1.1±0.6 % difference in the minimum and maximum length and 

samples tested with Instron 4411 had 3.9±1.3 % difference in the minimum and maximum 

length. Larger surface unevenness in PLA rod samples tested with Instron 4411 resulted 

in higher strain at 900 N. There were also difficulties on determining the zero-deformation 

point when using Instron 4411 that caused variation on the starting positions of the 

compression tests. The linear elastic region of stress-strain curve was used to determine 

the zero-strain point and the curved region was removed from the analysis of stress-strain 

curve as standard EN ISO 604 suggested [125]. 
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Figure 44. Tilted surface of a PLA rod sample that results in an uneven stress 

distribution during the compression test. 

In the literature Felfel et al. [144] compressed a pure PLA rod with a diameter of 4mm, 

but reported only the stiffness value (~5kN/mm). Stiffness value is not sensible to 

compare with the compressive modulus as stiffness is dependent on geometrical 

parameters when the compressive modulus describes better the material properties. 

Generally, a three-point bending test is used for mechanically testing beams such as 

polymer rods [29]. Preparing uniform and parallel samples of a strong and stiff PLA rod 

for a compression tests is problematic. Hence, the three-point loading test could be 

considered as a good alternative method. 

The tilted sample surface and the fixed uniaxial compressive platen caused uneven 

distribution of load on the specimen during the compression test. Thus, inaccuracies in 

compression test results may exist. The cross-head adjusting system of Instron 4411 was 

not as easy to use compared with the one in Instron E 1000. A significant difference in 

the received results between two different testing devices was found. The PLA rod 

samples tested with Instron E 1000 had a less tilted surface and the ease of use Instron E 

1000 improved the repeatability of the tests. Thus, the compressive results of Instron E 

1000 are considered more accurate than the results of Instron 4411. However, with 

stronger samples the displacement becomes harder to measure. Some inaccuracy in 

compressive modulus could exist as no optical extensometer was used. The reliability of 

the test results could have been improved by grinding or polishing the sample surface [33, 

145-147]. 

4.5 Joint Scaffolds 

Various sizes of joint scaffolds and two different joint scaffold materials (PLA 96/4 and 

PLA 96/4 + PEG 5 %) were compression tested. Exactly the same compression method 

and testing device was used as Karjalainen [126]. The reliability and limitations of 

compression testing on knitted joint scaffolds were discussed. Also, the results received 

in the present and previous study are compared. All the results can be seen in Appendix 

3. 
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4.5.1 Structural Limitations 

Three batches of ɸ14x4.5 mm sized joint scaffolds were compression tested. The results 

of the compressive strain at 80 N, 220 N, and 440 N and the compressive modulus are 

shown in Figure 45. A significant difference was observed between different batches and 

compressive strain at 80 N, 220 N, and 440 N (P<0.002), but not between the results of 

compressive modulus (P=0.185). 
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Figure 45. Compressive strain at 80 N, 220 N and 440 N (a) and compressive 

modulus (b) for three batches (S54, F22, S49/E68) of ɸ14x4.5 mm sized joint 

scaffolds. The number of samples tested are presented above the columns. 

Linvatec S54 was manufactured in 2004, Bionx F22 in 2002 and Linvatec S49/E68 in 

2003. All the scaffolds were more than ten years old (see Table 9 section “3.1.5 Joint 

Scaffold”). No consistency on the manufacturing year and mechanical properties was 

detected. However, some differences in the compressive results were found. It is known 

that the manufacturing process may cause variation in the joint scaffold structure. The 

detailed manufacturing process can be found in the literature [148, 149]. For example, the 

level of gamma irradiation during sterilization [149] and differences in thermal treatments 

[148] have shown to effect on the mechanical properties of joint scaffolds. Linvatec 

S49/E68 and Bionx F22 were reeled by hand, but Linvatec S54 was mounted in a reeling 

instrument. The knitted jersey in the scaffold is flexible. Thus, there could have been more 

variation in the tension of jerseys that were hand reeled. Additionally, if the scaffold’s 

fibers were from different manufacturing lots, there might have been some variation in 

the thickness of the fibers. However, different joint scaffold batches and their mechanical 

properties had similar standard deviation (Figure 45), which suggest that experimental 

artifacts in the batches are similar. 

The structural differences in the old knitted scaffolds have been studied. Karjalainen 

demonstrated that in 8 to 15 years the crystallinity of the joint scaffolds might change 

resulting in a stiffer structure [126]. In this study, some differences were detected visually 

in the joint scaffold structure such as differences in the tightness of the loops in the joint 

scaffold jersey and as an uneven cross-sectional surface. Differences in jersey tension 
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could cause differences in density and effect on the mechanical properties. The zero-

deformation point was the position where the cross-head touched the specimen surface, 

hence the unevenness of the samples might have caused inaccuracies during the 

compression test. Indeed, some unevenness was detected as a hollow middle part. 

However, as the joint scaffolds were soft, the surface unevenness did not have as big of 

an effect on mechanical properties as strong samples would have had [24]. 

The compressive strain at 80 N, 220 N, and 440 N and the compressive modulus for 

different sizes of tested joint scaffolds can be seen in Figure 46. The same colour is used 

for the columns of the same sized joint scaffolds. 
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Figure 46. Compressive strain at 80 N, 220 N, and 440 N and compressive modulus 

for all tested joint scaffolds are gathered. The same sizes of joint scaffolds are 

represented with the same colour. The number of the samples are presented above the 

columns in (b). 

The size of the scaffold was modified during manufacturing by altering the number of 

jersey loops. According to the results, an increase in size resulted in a higher compressive 

modulus and logically lower compressive strain. The exception to this was the ɸ18x4.5 
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sized joint scaffolds that had lower compressive modulus than ɸ16x4.5 sized joint 

scaffolds. However, the structure of ɸ18x4.5 sized joint scaffolds had more loops of 

jersey than smaller joints, which complicates the manufacturing. Variation in the structure 

and in the tension of the jersey of ɸ18x4.5 sized joint scaffold was detected (Figure 47 

(a)). Additionally, the diameter of the compressive platen was the same as the diameter 

of the biggest joint scaffold. Hence, the compressive platen could not deliver the load at 

the sample of the full sample cross-section as the joint scaffold started bulging during the 

test (Figure 47 (b)). This increased the inaccuracies of the compressive results of the 

ɸ18x4.5 joint scaffold. 

 

Figure 47. Non-homogeneous structure of the knitted Ф18x4.5 mm sized joint 

scaffold (a). Small diameter of the compressive platen had limitations on delivering 

load throughout the Ф18x4.5 mm sized sample (b). 

The addition of PEG in PLA 96/4 joint scaffolds increased the hydrophilicity [47] and 

resulted in a softer structure, which can be seen in the results (Figure 46). The 

compression tests showed lower stiffness and higher strain compared with the other joint 

scaffolds. The compressive results were related to the structural differences as the length 

of the PLA + PEG 5 % joint scaffolds were more than double (10.0±0.2 mm) than the 

length of other joint scaffolds (<5 mm, see Table 9 in section”3.1.5 Joint Scaffold”). 
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4.5.2 Comparison with Other Studies 

As previously shown three batches of the PLA 96/4 joint scaffolds in size of Ф8x3.6 were 

compression tested. The initial idea was to combine the results in one, as the number of 

the samples were small. However, the received mechanical properties had great 

difference and the results could not be merged. Additional information and compressive 

results of Ф8x3.6 sized joint scaffolds are gathered in Table 17. ε80N is the strain at 80 N, 

ε220N the strain at the 220 N and ε440N is the strain at 440 N.  

Table 17. Measured parameters of Ф8x3.6 sized joint scaffolds and compressive 

strain at 80 N, 220 N, and 440 N and compressive modulus from this study and a 

previous one. 

 
Ф (mm) l0 (mm)  ε80N (%) ε220N (%) ε440N (%) E (MPa) 

Present study 

Bionx S34 8.2±0.3 3.6±0.1 25.1±11.1 38.5±10.0 48.4±8.0 10.9±7.7 

Bionx S37 8.7±0.5 3.8±0.2 30.5±8.6 47.2±6.6 56.0±5.0 6.3±3.4 

Bionx S40 8.6±0.4 3.8±0.2 49.7±3.0 60.6±2.0 67.4±2.0 3.4±1.3 

Karjalainen [126] 

Bionx S21 7.7±0.05 4.0±0.3 44.1±2.4 56.9±2.6 66.1±2.4 0.52±0.07 

Linvatec S64 7.7±0.1 3.5±0.1 25.9±4.7 40.4±5.3 48.7±1.9 10.7±3.4 

Kulmala [149] 13 3-3.5 35±5 43±5 49±10 - 

Kulmala [149] 12 3-3.5 50±5 62±5 69±5 - 

Kulmala [149] 11 3-3.5 42±10 50±10 56±7 - 

Mutanen [148] 8 3.6 39±7 53±7 63±7 - 

The received compressive results could be compared with compressive results reported 

by Karjalainen [126], Kulmala [149] and Mutanen [148]. Kulmala tested joint scaffolds 

with bigger diameter (11-13 mm). Otherwise all the scaffolds were similar in size. 

Variation in the compressive strain at 80 N, 220 N, and 440 N can be seen between all 

the studies. Differences are examined more closely between the present study and the 

previous study reported by Karjalainen, as the same compressive device was used for 

both. Figure 48 illustrates the compressive strain at 80 N, 220 N and 440 N and 

compressive modulus for the present and study reported by Karjalainen. A great variation 
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can be noted between batches for compressive strain at 80 N, 220 N and 440 N and for 

the compressive modulus. The increase in joint scaffolds’ stiffness seems to result in an 

increase in the standard deviation. All but one of the batches had less than five samples 

tested. Hence, the small number of tested samples hampers the reliability of the results. 
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Figure 48. Compressive strain at 80 N, 220 N and 440 N and compressive modulus of 

Ф8x3.6 sized joint scaffolds. The blue colour represents the present study and the 

light blue the previous study. The number of samples are above the columns. 

The variation in the compressive strains and the compressive modulus could be due to 

differences in the physical or chemical structure of the joint scaffolds. Karjalainen [126] 

reported that the DSC tests showed differences in the crystallinity of the tested joint 

scaffolds. Crystallinity of Linvatec S64 was 38.4±0.5 J/g and the crystallinity of Bionx 

S21 was 36.6±1.6 J/g. Generally, higher crystallinity increases the stiffness of the 

material, as Karjalainen demonstrated [126]. As the tested joint scaffolds were 

manufactured more than ten years ago, some changes might have happened in the 

crystallinity during the time. However, due to many steps in manufacturing, there could 

have been some chemical or physical differences already before packaging. All the joint 

scaffolds were reeled by hand, heat treated in molds and sterilized by gamma irradiation. 

As before discussed, these factors could have had effect on the structure and hence on the 
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mechanical properties. The measured parameters proved that there were some differences 

in the physical structure, but other additional studies were not conducted. 

Karjalainen tested PLA 96/4 scaffolds blended with PEG, but the amount of used PEG 

was 15 % when in this study it was 5 % [126]. Additionally, the present study had about 

1 mm bigger joint scaffolds in length and diameter. The comparison of the compressive 

strain at 80 N, 220 N, and 440 N, and the compressive modulus can be seen in Figure 49. 
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Figure 49. Compressive strain at 80 N, 220 N, and 40 N and compressive modulus of 

PLA 96/4 joint scaffolds blended with PEG 5 % and 15 %. The blue colour represents 

the present study and the light blue the previous study. The number of samples are 

above the columns. 

As already discussed the addition of PEG seemed to make the joint scaffold softer. 

Consistently PLA + PEG 15 % had lower modulus compared with PLA + PEG 5 % and 

a slightly higher mean strain at 80 N, 220 N, and 440 N even if the PLA + PEG 5 % 

samples were slightly taller. No big difference in the standard deviation could be detected. 

Some chemical changes were expected in the joint scaffold structures as the 

manufacturing date was more than ten years ago and the manufacturing process is 

challenging. Variation in the mechanical properties of the same sized joint scaffolds could 

be seen, but due to the low number of tested specimens and the lack of supportive 

experiments, the results were unreliable. The size effect on mechanical properties could 

be assessed when comparing different sized PLA 96/4 joint scaffolds. The smaller sized 

samples had a higher modulus and led to a lower strain under a specific load. The 

exception was the ɸ18x4.5 joint scaffold that had structural variation and compressive 

test limitations due to small size of the compressive platen. For reliability, the sample size 

should not be bigger or equal to the diameter of the compressive platen. 

4.6 Bioactive Glass Scaffold 

Twenty 3D-printed B50 scaffolds were compression tested until breakage using Instron 

E 1000. The production of the B50 scaffolds and the structure-property limitations were 
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discussed, as the study was about the reliability and mechanically testing bioactive glass 

scaffolds. All the B50 scaffolds were produced with similar mass. Additionally, the 

received mechanical properties were compared with previous studies and the limitations 

and reliability were discussed. 

4.6.1 Structure-Property Limitations 

Even if the robocasting method is generally considered as a good method to control 

scaffold architecture and attain mechanically strong and homogenous ceramic scaffolds 

[102, 150], there are many considerations to keep in mind. The production of bioactive 

glass scaffolds has many steps and factors that may cause changes in the scaffold’s 

mechanical properties. Just to mention a few, binder [104], glass composition and particle 

size [122], strut size [151], pore size [152], scaffold size, scaffold design [152] and 

sintering temperatures [153] have effect on the mechanical properties. In this study, the 

size of the scaffolds was smaller (ɸ7.4x 3.8 mm) than planned due to the increasing 

difficulties of printing and sintering larger scaffolds (ɸ10x5 mm). However, two main 

problems that were experienced in this study were ink preparation and sintering. These 

two challenges are discussed more closely. 

According to Rice, defects have dominant effect on the mechanical properties of porous 

materials, not the pores [51]. Hence, achieving homogenous and consistent ink was 

important to prevent defect formation in the scaffold. Air bubble formation could not be 

avoided during mixing the ink. Hence, the ink was sonicated in order to mechanically 

collapse the air bubbles [154]. However, this method could not eliminate all the bubbles. 

According to Franco et al. the mechanical strength of the 3D-printed scaffolds is 

influenced on the density of the printed lines [150]. In the present study, we experienced 

problems during 3D-printing due to the air bubbles. The air bubbles caused drops in the 

pressure and reduced the consistency of the printed struts. 

The B50 scaffolds were sintered. The sintering is a thermal processing method that is 

used to bond glass particles. Differential thermal analysis (DTA) is generally used to 

characterize the crystallization process and determine sintering temperatures. DTA 

records differences in temperatures between a sample and a reference material during an 

increase of temperature (see Figure 50) [20]. The sintering of the glass particles happens 

above the glass transition temperature (Tg) at which the particles undergo viscous flow. 

However, if the temperature rises above a certain limit the bioactive glass starts to 

crystallize and the bioactivity declines. The temperature after which crystallization occurs 

is called onset of crystallization (Tx). The range between Tg and Tx is called hot working 

domain (see Figure 50) and is determined to sinter glasses while preventing crystallization 

[155, 156]. The highest exothermic peak in the DTA curve in Figure 50 is called 

crystallization peak (Tp). At temperature higher than the crystallization melting of the 

glass occurs. The microstructure of the bioceramic is an important feature for the 
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mechanical properties, hence sintering is used to fuse glass particles into a denser and 

stronger structure [20]. 

 

Figure 50. DTA thermogram showing the glass transition temperature (Tg), onset of 

crystallization (Tx) and crystallization peak (Tp) in DTA curve [121]. 

The scaffolds were heat treated to first burn the organic material and then sinter the B50 

particles. During the sintering process, the powders were compacted. However, big gaps 

in the printed lines left defects in the structure. Additionally, the hot forming domain 

between Tg and Tx of B50 caused difficulties. The temperature was raised to 500 ˚C to 

burn organic material. Then the temperature was further increased to reach viscous flow 

and sinter the glass particles. However, after sintering the scaffolds turned out to be grey. 

The grey colour is most likely due to silicon carbide (SiC) and boron carbide (B4C) 

formation upon organic dissociation. Lower temperatures did not show improvements 

and the increase of the burning time or temperature could have activated an unwanted 

crystallization process. Thus, as the burning temperature of the organics and the sintering 

temperature of B50 were close to each other, the greyness of scaffolds could not be 

avoided. Additionally, the rate of organics burning was linked to the uneven temperature 

distribution inside the oven, which led to visual variation of the sintered scaffolds. 

Different shades of scaffolds’ greyness are shown in Figure 51. 
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Figure 51. Photograph of the top surface of the B50 scaffolds (a) and bottom surface 

(b) and (c). The arrows point out collapsed middle part (a) and cracked struts (b). 

Figure 51 (b) shows the bottom of the scaffold, that undergo significant changes during 

sintering. The problem was the evaporation of the organics that caused pressure in the 

middle of the scaffold and then distorted the struts. The pressure during the sintering 

widened the pores in the center part causing the struts to crack (Figure 51 (b), (c)). The 

uneven evaporation also resulted in a collapsed middle part of the scaffolds (Figure 51 

(a)). μCT images show structural defects (see Figure 52). At some parts of the scaffold, 

the struts are not aligned on top of each other. The structural difference at the bottom and 

top of the scaffold is shown clearly in μCT images. The pore sizes are greater at the center 

of the bottom surface than at the center of the top surface. 

The compression device Instron E 1000 had difficulties in performing compression tests. 

Instron E 1000 has a patented automatic tuning system that is capable of controlling the 

machine and providing more accurate results. Normally, the specimen’s stiffness is 

determined before testing and does not cause any damage to the specimen. However, B50 

scaffolds were strong and brittle and the tuning of the device could not be conducted due 

to sudden changes in stiffness that caused instability of the device and breakage of the 

specimen. The stiffness of the specimen was manually set to 50 N/mm to enable the 

compression tests. The value was received from Instron® technician. The device used this 

value to optimize its performance. As this was not probably the real stiffness for B50 

scaffolds, it might have had some effect on accuracy of the results. However, the tuning 

would have been more critical in fatigue tests where the device needs to be able to respond 

to quick changes in the load and strain. [157] 
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Figure 52. μCT images of B50 scaffold; 3D structure (a), the sectional view (d), 3D 

top (e) and the bottom (f), 2D structure top (b) and the cross-sections (c, d). 
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Additionally, the nonuniform scaffold surface caused difficulties during the compression 

test. As already discussed, the middle part of the scaffold was stacked, leaving the edges 

to carry the load during the compression test. Some scaffolds had a small node at the 

edges where printing ended. Any defect in the corner structures would have had harmful 

effect on compression tests [20]. The platen could not distribute the load evenly 

throughout the scaffold, which may have caused unequal stresses into the unevenly 

unaligned columns and led to the fracture of the unsupported centrum part. 

Figure 53 illustrates two stress-strain curves received from the compression tests and the 

red line represents the region of the compressive modulus. The analysis of the 

compressive modulus was challenging due to great variation and sudden drops in the 

stress-strain curves. The sudden drops in the stress-strain curves were fractures of non-

critical struts or fractures of critical struts as shown in Figure 53. When the stress-strain 

curve went to zero stress, the compressive platen did not receive any stress. This means 

that there was some kind of failure of the structure and the structure had given away under 

the platen. 

The stress-strain curve in Figure 53 (a) shows in the beginning a small increase in the 

compressive stress before a sudden drop. As the stresses are quite small, this could be a 

fracture of a small node at the edge of the scaffold. Thus, the compressive modulus was 

analyzed from the next steep increase in the curve. Additionally, the stress-strain curve 

on the left has many sudden drops that goes to zero stress. As the pillars were unaligned, 

the failing could be due to the fracture of the bottom struts. Some stress-strain curves 

showed a plateau phase that could characterize a small crack propagation. The crack 

propagation was fast and the fractures sudden. If accurate conclusions of the behavior of 

the B50 scaffold under a compression test are desired, the compressive process could be 

imaged for example with non-contact video extensometers. Even an x-ray tomography 

has been used during a compression test to confirm the mechanical behavior of porous 

ceramics [19]. 
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Figure 53. Stress-strain curves of B50 scaffold. The red line illustrates the analyzed 

region of the compressive modulus. 

According to the stress-strain curves, the propagation of the cracks and the failure of the 

scaffold seems to depend on the structure and defects. The weakest strut that has the 

largest defect is the first to fracture. According to Genet et al., the failure of a quasi-brittle 

material depends on the critical struts, hence having the fractures of the non-critical struts 

before the failure of the total structure [151]. Then again, the failure of the brittle material 

is a sudden drop in the stress-strain curve after a steep slope. Thus, the term quasi-brittle 

characterizes better the behavior of the B50 scaffolds tested in this study. However, the 

criteria of the brittle or quasi-brittle fracture of materials is still widely researched as the 

fracture process is complicated [158]. 

The compressive strengths of B50 scaffolds were scattered. Weibull modulus was 

calculated according to standard EN 843-5 [127] using equations (13-15) (see section 

“3.3.3 Statistical Analysis”) The plotted graph can be seen in Figure 54 (a). The received 

Weibull modulus was 3.8. Similar results have been reported in the literature for other 

3D-printed ceramic scaffolds [159, 160]. Low value is typical for brittle materials and it 

indicates that there is statistically high probability to find flaws in the structure. In 

contrast, Liu et al. and Roohani-Esfahani et al. reported higher values for the Weibull 

modulus (12-17) [33, 147]. The Weibull modulus for solid bioactive glasses and ceramics 

has been varying in range 5-20 [161, p. 303]. 
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Figure 54. Distribution of the compressive strengths (a) and relationship between 

mass and compressive strength (b). 

Genet et al. proposed that the mechanism of a final failure could depend on the strut 

diameter [151]. Additionally, a greater amount of bubbles or less B50 particles could have 

lowered the mass of the scaffolds and caused structural variation in the printed struts 

resulting in lowered compressive strength. Hence, even if the fracture strength is greatly 

dependent on structure and defects, the variation in mass was examined. The relationship 

between the compressive strength and mass is illustrated in Figure 54 (b). The low 

correlation coefficient (R2) indicates that there would not be correlation between the mass 

and compressive strength. 
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4.6.2 Comparison with Other Studies 

The received results could be compared with literature. Table 18 summarizes the studies. 

All the compression tests were conducted dry using the static compressive rate ranging 

from 0.5 to 0.6 mm/min. The compressive directions were perpendicular to the printed 

struts. Glass compositions are explained in Table 19. 

Table 18. Compressive properties of robocasted bioactive glass scaffolds compared. 

The glass composition, binder, porosity, compressive strength, compressive modulus, 

Weibull modulus and the number of the samples are summarized. 

 
Composition Binder ~ϕ 

(%) 

Size (mm) σm 

(MPa) 

E m n 

Present B50 F-127 52 7.4x3.8 4±1 178±82 MPa 3.8 20 

Liu et al. 

[147] 

13-93 F-127 47 6x6x6 86±9 13±2 GPa 12 30 

Fu et al. 

[152] 

6P53B F-127 60 3x3x3 136±22 - - 8 

Eqtesadi et 

al. [146] 

45S5 CMC(a) 60 3x3x6 11-13 - - 9 

Deliormanli 

& Rahaman 

[145] 

13-93 EC(b) 50 7.5x7.5x7.5 142±20 - - 5 

13-93B3 EC(b) 50 7.5x7.5x7.5 65±11 - - 5 

Wu et al. 

[101] 

HgSi/Ca/P PVA(c) 60 10x10x10 16±2 155±15 MPa - 4 

(a)Carboxymethyl cellulose 
(b)Ethyl cellulose 
(c)Poly(vinyl alcohol) 

Table 19. Bioactive glass compositions in mol % [101, 145-147, 152]. 

Composition SiO2 Na2O K2O MgO CaO P2O5 B2O3 

B50 26.93 22.66 - - 21.77 1.72 26.92 

13-93 53 6 12 5 20 4 - 

6P53B 52.7 10.3 2.8 10.2 18.0 6 - 

45S5 45 24.5 - - 24.5 6 - 

13-93B3 - 5.5 11.1 4.6 18.5 3.7 56.6 

Si/Ca/P 80 - - - 15 5 - 
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Significant variation in the values of the compressive strength, compressive modulus and 

Weibull modulus can be seen. The bioactive glass composition, chemistry of the binder, 

porosity, design and the size of the scaffolds are gathered in Table 18. All these factors 

effect on the mechanical properties and need to be taken into consideration. Additionally, 

some structural factors or steps in the production may influence on the results, such as 

surface morphology and sintering temperatures, as already discussed. The brittle structure 

of the scaffolds that is sensitive to defects, causes great variation in the compressive 

results. The Weibull modulus, that statistically characterizes the reliability of the strength, 

was calculated only for two studies. The rest of the studies had a small number of samples 

as for the Weibull modulus a minimum of 20 samples are required (30 samples are usually 

preferred) [127]. Additionally, the compressive modulus was not analyzed for most of the 

studies. This could be due to the great variation in the stress-strain curves, or possibly 

there was uncertainty of the correct elastic region. An indentation test could be a good 

alternative to measure stiffness, as it does not depend on the structural design and shape 

as much as the compression test [20, 28]. 

Bioactive glass is strong, thus the change in length is small during the compression test 

and the quality of the device is important. The use of a non-touching optical extensometer 

could have a great effect on the values of the compressive modulus, but rarely the use of 

the extensometer is reported. However, Liu et al. reported a compressive modulus as high 

as 13 GPa, but also measured the change in length from the surface-platen interface [147]. 

Some difference in the results could have been due to the smaller porosity of the scaffolds 

and the use of surface grinder that Liu et al. reported. Grinding ensured an even surface 

of the scaffold and stress distribution during the compression test. This could have 

enhanced the reliability of the results in the present study but due to the sintering defects, 

it would not have corrected all the structural challenges. In the literature, the uneven 

surfaces of ceramic scaffolds have been minimized by grinding or polishing the surface 

[33, 145, 146]. 

The dependence of the compressive strength on different structural variations have been 

studied and porosity seems to have effect to some extend [150-152, 163]. Meille et al. 

suggested that the pore size effect depends on the degree of the material porosity [19]. 

Genet et al. studied the relationship between architecture and compressive strength on 

scaffolds with different strut diameters [151]. The data proposes that the compressive 

strength depends on the rods’ diameter and spacing even if the tested scaffolds had the 

same porosity. All in all, the studies indicate that the failure mechanism is complicated 

and needs research. Computational models could enhance the understanding of the failure 

mechanism. For example, the Finite Element method is one of the potential methods that 

have been developed, but there are still limitations due to complex structural variations 

and fracture processes [9, 164]. In the present study, the structure and porosity of the 

scaffolds were evaluated by μCT. However, this method could not illustrate all the defects 

in the struts. 
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In conclusion, great structural defects, such as the unaligned columns and stacked middle 

part, could be detected. These defects lowered the compressive properties and the 

reliability of the results. The compressive device had limitations with a strong and brittle 

material, and with the surface design of the scaffold. The μCT was found not to be precise 

enough to evidence the small defects that can cause struts failure. However, similar 

problems with the accuracy of the compressive results have been reported in the literature 

of 3D-printed ceramic scaffolds. 

4.7 Cancellous Bone 

The mechanical properties of fourteen cancellous bone samples from pig’s femur were 

compared with literature. The reproducibility was evaluated as the test was conducted 

exactly according to Karjalainen [126]. Additionally, the inorganic content was analyzed 

by TGA and structure imaged with μCT. Thus, the structure-property relationships were 

discussed. 

4.7.1 Reproducibility 

The exact same compressive device, parameters and methods were used. Figure 55 shows 

the compressive strength and compressive modulus of the present and previous study and 

the number of cancellous bone samples can be seen above the columns. More variation 

between the previous and present study could be seen in the compressive strength 

compared with the compressive modulus. However, statistically no significant difference 

in the compressive strength (0.057) or compressive modulus (0.371) was seen. 
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Figure 55. Compressive strength and compressive modulus compared with previous 

study. The number of tested samples are presented above the columns. 

There was some variation between the results even if the sample size, preparation method, 

testing method and equipment were all almost the same. This was expected due to the 

challenges of compression testing the cancellous bone. μCT images (Figure 56) illustrates 

the structure of one bone sample. The structure is anisotropic and non-homogeneous, 

which is typical of the cancellous bone. The estimated porosity was 73 %. According to 
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An and Draughn, the porosity of the cancellous bone can vary as much as 30-90 % [9, p. 

9]. 

 

Figure 56. μCT images of a cancellous bone sample. The 3D structure of the scaffold 

(a), cut surface (b) and the cross-sectional images (c, d) are illustrated. 

The microstructural and macrostructural bone properties and their correlation to 

mechanical properties have been widely studied [165-167]. The cancellous bone has clear 

variation in architecture that causes variation in mechanical properties. Thus, the 

comparison of mechanical properties between other studies is complicated if there is no 

knowledge of the porosity. In addition, the mineral content of the cancellous bone can be 

used to characterize the mechanical properties [6, 69]. The mean and standard deviation 

for the inorganic content were 32.1±5.7 % (n=5). Figure 57 represents TGA curve of a 

cancellous bone sample.  
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Figure 57. TGA curve of cancellous bone. 

Similar results of ceramic content were received from the previous study [126]. 

Karjalainen reported that the inorganic content of the cancellous bone samples was 

33.2±2.6 % (n=8). Both, TGA and the compression test, showed slight variation between 

the present and the previous study. The increase of the number of test samples or 

additional tests could have improved the reliability of the exploration. Despite the 

challenges of compression testing the cancellous bone, the compressive device showed 

good reproducibility. 

4.7.2 Reliability and Limitations 

Pig’s bone is generally used as an animal model for orthopaedical implants due to its 

similar biology to human bone [70]. Literature showed some similarities in the 

compressive properties of human bone compared with the present results of pig’s distal 

femur. Kuhn et al. reported the values of the compressive strength and the compressive 

modulus of the human distal femur 5.6±3.8 MPa and 298±224 MPa [77]. The large 

standard deviation in the modulus is typical of cancellous bone as the properties are 

dependent on the morphological location and direction [168], age [169] and the 

physiological condition of an individual [9]. No optical extensometer was used in the 

study and samples were wet at room temperature. Drying was found to increase the bone 

stiffness [83] and according to Brear et al., mechanical properties were lower at 37˚C 

compared with room temperature [82]. Both factors were the same in the present study 

and in the study Kuhn et al. reported making the results more comparable. However, there 

were many limitations when the results were compared together. There was a lack of 

knowledge on structural factors, such as the bone porosity, the angle of trabecular 
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structure and inorganic content. Before making valid conclusions, the structural 

differences between the human and the pig should be subtracted from the results. Notable 

was the differences in the strain rate as bone is viscoelastic and behaves differently 

depending on the compressive rate [74, 168, 170]. The equipment, compressive direction, 

sample design and the size were different and the list could go on. Thus, the reliable 

comparison of studies is questionable and the results are suggestive. 

The received results can be compared with other compression test results of pig’s femur, 

which removes the problems with structural differences between species. Lee & Jasiuk 

reported the conventional compression test results of pig’s cancellous bone received from 

the apical femur [73]. Lee & Jasiuk had three groups of samples; “A”, “B”, and “C”. The 

group “A” samples were received from fresh bone, group ”B” represented bone that was 

stored in the freezer for one year and group “C” represented bone that was stored for five 

years in the freezer. They showed that long term freezing affects the bone’s structure and 

mechanical properties. The case of Group “C” was closest to cancellous bone samples 

tested in this study as the bone had been frozen for several years. The compressive 

strength and compressive modulus of group “C” compared with the present results 

showed more similarity than group “A” and “B” (Table 20). Actually, the compressive 

strength of group “C” showed comparable results to the present study, but the results of 

the compressive modulus had some difference between the studies.  

Table 20. Compressive properties of pig’s distal and apical femur. The sample size, 

mineral content, porosity, compressive strength, compressive modulus and the 

number of the samples are summarized. 

 Size 

(mm) 

Mineral 

content (~%) 

ϕ (%) σm (Mpa) E (Mpa) n 

Present ɸ10x5 32 ~73 7.2±2.2 141.1±49.6 14 

Lee & Jasiuk 2014 [73]     

Group A ɸ4x8 50 68.6±3.9 ~14-16 ~500-600 24 

Group B ɸ4x8 48 65.9±4.9 ~12-14 ~300-400 23 

Group C ɸ4x8 52 70.6±5.1 ~10-12 ~300-400 20 

The sample size, mineral content and porosity of the tested samples are also gathered in 

Table 20. Lee & Jasiuk had samples with greater mineral content and slightly denser 

structure [73]. These properties have found to increase compressive modulus and strength 

[74]. The size of the samples was different which also effects on the compressive 

properties. Due to the viscoelasticity of the cancellous bone, the compressive rate should 

be considered [12, 169]. Lee & Jasiuk used strain at the rate of 0.005 mm/s. In the present 

study, the samples were compressed at a 1 mm/min rate. An increase in the compressive 
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rate has shown to increase the compressive modulus [12]. For the bone used in the present 

study, the duration of the freezing period was unknown, which could be one factor 

effecting the results. However, significant influence on the reliability of comparing the 

results causes the next two facts. The samples were received from the opposite side of the 

femur and the compressive angle was about 90˚ different between the studies. The second 

factor is that the stiffness could be greatly underestimated without the optical 

extensometer as the samples were cut, but Lee & Jasiuk did not report whether they used 

the extensometer or not. The optical extensometer has proved to affect about 45 % to the 

compressive modulus of the cancellous bone [5]. 

PU foam has been used as a standard material for testing orthopaedical devices. It is said 

to be a good alternative as it offers consistent material and mimics the mechanical 

properties of the cancellous bone. In the present study PU foam was compression tested 

and analyzed using the same method. The compressive modulus and absorbed energy for 

the cancellous bone were 141.1±49.6 MPa and 134.0±68.9 kJ/m3, respectively. The 

densest (320 kg/m3) PU foam was the closest to these mechanical properties with the 

compressive modulus 119.9±16.3 MPa and the absorbed energy 71.7±19.5 kJ/m3. The 

porosity of the cancellous bone samples was estimated to be similar to PU foam samples. 

Under compression, both materials behaved in a similar way. The stress-strain curves are 

illustrated in Figure 58. Curves show a short toe region, a linear region and a yield region. 

The two stress-strain curves of the cancellous bone samples in Figure 58 show great 

variation in behavior, as there probably is variation between the samples. The consistent 

structure of PU foam showed reproducibility in the stress-strain curves. Hence, PU foam 

is considered ad a good analog for bone. 
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Figure 58. The stress-strain curve of two cancellous bone samples and PU foam with 

density of 320 kg/m3. 

Overall, there are many considerations when compression testing the cancellous bone in 

compression. A good planning of the sample size, environment, compressive direction 

and sample location before preparation is important. If comparison of different studies is 
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desired to conduct, good background of the study is needed. Some variation in the results 

is always expected. For reliability and comparable analysis, it is important to report the 

used equipment and methods, such as the use of the optical extensometer. PU foam 

showed to be a good alternative if consistent compressive properties close to the 

cancellous bone are desired. 
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5. CONCLUSION 

The objective was to study the limitation and reliability of static uniaxial compression 

test and the mechanical testing device (Instron Electropuls E 1000). Two reference 

materials (PET and PU foam), various types of biomaterials (hydrogel scaffolds, a solid 

polymer rod, knitted polymer scaffolds, bioactive glass scaffolds) and biological tissue 

(cancellous bone) were compression tested to get better understanding of the performance 

and limitations of the testing device. In addition, the performance of the compression 

testing device was compared with other compression testing devices. 

The compressive modulus and compressive strength of the reference materials (PET and 

PU foam) showed that the compression speed, sample size and cell structure have 

influence on the compression test. The compression test results were compared with the 

values obtained from the manufacturer. The small diameter of the compressive platen (18 

mm) limited the sample size. Hence, we could not use exactly the same compression 

method as the manufacturer and some differences in the results were expected. The 

accuracy of the compressive strength was good, but the compressive testing device 

underestimated the compressive modulus > 34 %. Similar results have been reported in 

the literature. Inaccuracy was most likely due to surface damage and friction artifacts 

when measuring the strain from the compressive platen and sample interface. Accuracy 

could be improved using an optical extensometer, that excludes the surface artifacts by 

measuring the strain from the center of the specimen without a need of attachment to the 

specimen. 

The adhesive property and viscoelasticity of the hydrogel scaffolds caused limitations in 

the compression test. The hydrogel scaffold was adhesive toward the compressive platen. 

Hence, the zero-deformation point was complicated to determine. The effect on the zero-

deformation point to the compressive values was evaluated. A significant difference could 

be seen in the compressive results of three different zero-deformation points (p<0.05). 

The hydrogel scaffolds were produced and compression tested exactly the same way as 

two previous studies. Only difference was the compressive device. Hence, the 

performance of these devices could be compared. The stress-strain curves showed less 

noise to signal ratio and more reproducible dataset for Instron E 1000 compared with the 

other compression testing device. The reliable comparison of the compressive results 

between the present and previous studies could not be performed due to noisy stress-strain 

curves and differences in analysis methodology. Additionally, the hydrogel scaffolds 

were sensitive to the compressive rate due to viscoelasticity. Hence, comparison between 

studies was suggestive. 

The maximum load Instron E 1000 could deliver is 1 kN. The strong PLA rod samples 

needed to be compression tested with another compression testing device, for which a 5 
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kN load cell could be used, to be certain of the measurements at a higher load. Another 

problem was the non-parallel surfaces of the PLA samples. Uniaxially fixed compressive 

platen could not align on the tilted sample surface. Hence, the stresses were not distributed 

evenly on the sample and the results were not reliable. The surface parallelism could be 

enhanced with polishing or grinding the surfaces, or using a self-aligning platen. 

Ten batches of knitted scaffold joint scaffolds were compression tested. Compressive 

results showed variation between the same sized scaffolds. The variation could be 

explained with non-homogeneity in the scaffold structure. Various sizes were tested, 

which showed that a decrease in size increased the compressive modulus and logically 

lower the compressive strain. Bulging of the joint scaffolds was a problem especially 

when the diameter of the compressive platen was the same as the diameter of the biggest 

joint scaffold. Compressive platen could not load the full sample cross-section. Hence, 

the sample size should not be bigger or equal to the compressive platen. 

Bioactive glass (B50) scaffolds with estimated porosity of 52 % was compression tested. 

Sudden changes in stiffness during the test caused instability of the instrument. Hence, 

the performance of the device was manually tuned to enable the compression test. The 

sintering process caused significant changes in the scaffold structure. The structure of the 

scaffold collapsed from the middle part and the struts packed at the edges which led to 

distorted columns. The fracture process of B50 glass scaffolds was hard to evaluate and 

would need special equipment, such as a video extensometer. The structural changes and 

the brittle property of the scaffold led to the low and scattered compressive results. Low 

value for Weibull modulus (3.8) showed a high probability of an early failure. Similar 

values of low Weibull modulus have been reported in the literature and are typical for 

brittle materials. 

The compressive test of the cancellous bone from distal femur of a pig was conducted 

exactly the same way as in the previous study. Hence, the reproducibility could be 

evaluated. No significant difference in the results could be seen (p>0.05). For the accurate 

evaluation of the structure-property relationships of the cancellous bone, additional tests 

are needed. TGA confirmed the similarity of the samples: the inorganic content of the 

cancellous bone samples used in the present study was 32.1±5.7 % and in the previous 

study 33.2±2.6 %. Hence, when considering the properties of the cancellous bone, such 

as anisotropy, viscoelasticity and non-homogenity, Instron E 1000 showed good 

reproducibility. Additionally, μCT analysis was used to evaluate the porosity of tested 

cancellous bone (~73 %). Despite the additional tests, the comparison of the compressive 

results with the literature was complicated. The compressive results may vary due to 

changes in bone structure (age, gender, diseases, location, freezing, thawing) or changes 

in compressive methods (compressive direction, compressive rate, equipment, sample 

size and design, degree of moisture). Seldom all the needed information for reliable 

comparison is reported. 
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In conclusion, the testing device showed good reproducibility, and accuracy for the 

compressive strength. The accuracy of the compressive modulus could be improved with 

an optical extensometer, self-aligning platen and careful sample preparation. A 

compression test conducted on a biomaterial is seldom accurate. Different scaffold 

structures and materials needs special consideration. 
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APPENDIX 1: DATA RECEIVED FROM AIREX® AND SAWBONES® 

Table 21. The compressive values of PET and PU foams received from their Technical 

data sheet provided by Airex® and Sawbones®. 

Airex® Density (kg/m3) Compressive 

Strength (MPa) 

Compressive 

Modulus (MPa) 

T92.100 100 (range 95-110) 1.75 (min1.4) 90 (min 65) 

T92.130 135 (range 127-143) 2.4 (min 2.1) 140 (min 110) 

T92.200 210 (range 200-220) 3.8 (min 3.2) 180 (min 150) 

Sawbones® Density (g/cc) Compressive 

Strength (MPa) 

Compressive 

Modulus (MPa) 

#1522-23 0.08 0.60 16 

#1522-01 0.16 2.2 58 

#1522-03 0.32 8.4 210 
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APPENDIX 2: RESULTS OF PET FOAM SAMPLES 

Table 22.Gathered information of density, used glue, compressive rate, sample size, 

compression strength at 10% strain, compressive modulus and absorbed energy until 

yield. % errors represent the % difference between compressive results received from 

Airex®.  
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APPENDIX 3: RESULTS OF JOINT SCAFFOLDS 

Table 23.Results of measured diameter (ɸ), intial length (l0), strain at 80N, 220 N and 

440 N and compressive modulus for tested joint scaffolds. 

 ɸ (mm) l0 (mm)  𝜺80N (%) 𝜺220N (%) 𝜺440N (%) E (MPa) 

Bionx, PLA 96/4 

S34 8.2±0.3 3.6±0.1 25.1±11.1 38.5±10.0 48.4±8.0 10.9±7.7 

S37 8.7±0.5 3.8±0.2 30.5±8.6 47.2±6.6 56.0±5.0 6.3±3.4 

S40 8.6±0.4 3.8±0.2 49.7±3.0 60.6±2.0 67.4±2.0 3.4±1.3 

F22 14.3±0.4 4.3±0.1 26.9±2.9 40.3±3.6 48.5±3.4 2.6±0.8 

Linvatec PLA 96/4 

S54 12.0±0.2 4.2±0.1 41.5±3.8 54.2±3.3 62.0±3.0 1.2±0.5 

S54 13.9±0.2 4.6±0.2 33.4±3.3 46.1±3.0 54.0±2.6 3.4±0.8 

S49/E68  13.9±0.2 4.4±0.1 24.4±2.5 37.7±2.7 46.6±2.6 1.9±0.6 

S38 16.0±0.3 4.4±0.1 21.7±3.0 34.9±3.1 44.2±3.0 3.1±0.8 

S38 18.0±0.2 4.7±0.1 27.6±1.9 40.8±1.4 49.7±1.6 2.0±0.9 

Tampere University of Technology PLA 96/4 + PEG 5 % 

- 14.0±0.3 4.4±0.1 57.4±2.3 69.7±2.2 75.4±2.1 0.5±0.1 

 


