
JOONAS JÄRNSTEDT
DESIGN OF AN ENTERPRISE RESOURCE PLANNING SYS-
TEM USING SERVICE-ORIENTED ARCHITECTURE

Master of Science thesis

Examiner: Prof. Petri Ihantola
Examiner and topic approved by the
Faculty Council of the Faculty of
Pervasive Computing
on 5th October 2016

i

ABSTRACT

JOONAS JÄRNSTEDT: Design of an Enterprise Resource Planning System Using
Service-Oriented Architecture
Tampere University of Technology
Master of Science thesis, 52 pages
May 2017
Master’s Degree Programme in Information Technology
Major: Software Engineering
Examiner: Prof. Petri Ihantola
Keywords: service-oriented architecture, enterprise resource planning, SOA, ERP, REST,
API

A typical ERP (Enterprise Resource Planning) system integrates many business
functionalities such as billing, accounting, order processing, manufacturing and cus-
tomer relationship management. Generally they are implemented as separate mod-
ules that are changed and modified as needed. However, lack of proper design can
cause the modules to become tightly coupled. Unnecessary dependencies decrease
maintainability because change in one part of the system can affect other parts.
Large enterprise applications are often build by multiple organizations using vary-
ing methods and technologies. Development teams are not always fully aware of the
work of others. This makes reusing existing features difficult and causes developers
to recreate the same logic multiple times.

This thesis describes how a monolithic architecture can be migrated into a service-
oriented architecture (SOA). An ERP system designed for Apple service providers
is used as an example. The large example system is converted into small services
to improve its maintainability. The aim is to create an architecture that does not
depend on a specific technology and supports reusing functionality. Although SOA
has many benefits, effective use of it requires technological changes and adjustments
to the whole development process. In the example system, lots of changes were made
to the development, testing and deployment processes. The new architecture lead to
eliminating lots of manual work. This was achieved by implementing a deployment
pipeline that takes advantage of Docker virtual containers.

ii

TIIVISTELMÄ

JOONAS JÄRNSTEDT: Toiminnanohjausjärjestelmän suunnittelu käyttäen pal-
velupohjaista arkkitehtuuria
Tampereen teknillinen yliopisto
Diplomityö, 52 sivua
Toukokuu 2017
Tietotekniikan koulutusohjelma
Pääaine: Ohjelmistotuotanto
Tarkastajat: Prof. Petri Ihantola
Avainsanat: palvelupohjainen arkkitehtuuri, palvelupohjaiset järjestelmät, toiminnanoh-
jausjärjestelmä, SOA, ERP REST, API

Toiminnanohjausjärjestelmä yhdistää tyypillisesti monia yrityksen toimintoja kuten
laskutusta, kirjanpitoa, varastonhallintaa, tuotannonohjausta sekä asiakastietojen
hallintaa. Nykyaikaisessa järjestelmässä nämä toiminnot voidaan toteuttaa erillisinä
moduuleina, joita kehitetään ja lisätään tarpeen mukaan. Ilman suunnittelua osien
välille voi kuitenkin syntyä tarpeettomia riippuvuuksia, jotka tekevät järjestelmän
ylläpitämisestä haastavaa. Suurta järjestelmää on yleensä kehittämässä useita orga-
nisaatioita, jolloin käytetyt tekniikat ja toimintatavat voivat vaihdella. Tämä voi
johtaa yhteensopimattomiin ja päällekkäisiin toteutuksiin, jotka ovat kalliita yl-
läpitää.

Työssä tutkitaan miten toiminnanohjausjärjestelmä voidaan jakaa itsenäisiksi pal-
veluiksi, jotta ison järjestelmän laajentaminen olisi tehokkaampaa. Esimerkkinä
käytetään Apple huoltoliikkeille suunniteltua toiminnanohjausjärjestelmää. Työ ku-
vaa lyhyesti järjestelmän toiminnalliset sekä tekniset vaatimukset ja havainnollistaa
miten järjestelmä jaettiin itsenäisiksi palveluiksi. Palvelupohjainen arkkitehtuu-
ri on teknologiariippumaton ratkaisu. Sen tarkoitus on parantaa ohjelmistojen
uudelleenkäytetävyyttä sekä jakaa isot kokonaisuudet helpommin ymmärrettäviksi
palveluiksi. Se eroaa kuitenkin monella tapaa perinteisestä monoliittisesta arkkiteh-
tuurista. Esimerkkijärjestelmässä palvelupohjaisuus vaikutti erityisesti valittuihin
testaus- ja kehitysmenetelmiin, jotka toteuttiin käyttäen Docker-virtualisointitek-
niikkaa.

iii

PREFACE

This thesis started in the winter of 2015-16. I had just shifted to a new start-up
company that had decided to create a new version of their software product. The
new version was going to be a huge remake and the software needed an improved
architecture design. My job was to help with the design. We studied countless
technology options and always tried to choose the best for our use case. This cre-
ated the basis for this thesis and motivated me to start researching service-oriented
architecture.

I would like to thank everyone at Voltio who has discussed about the design with me.
We had many great debates that lead me to learn more about software architecture.
I would like to thank my examiner, Petri Ihantola for helping with the writing
process and for all the valuable feedback. I would like to thank my family for the
support they have given me. A special thank you to Milla for your love and care.

Tampere, 24.5.2017

Joonas Järnstedt

iv

TABLE OF CONTENTS

1. Introduction . 1

1.1 Need for the Research . 2

1.2 Goals . 3

1.3 Structure . 4

2. Service-oriented architecture . 5

2.1 History of SOA . 6

2.2 Benefits of SOA . 6

2.3 Reliability . 7

2.4 Scalability . 8

2.5 Web Services . 9

2.6 Representational State Transfer . 9

2.7 Stateless and Stateful Services . 10

2.8 Virtualization . 12

3. Management Software Requirements . 14

3.1 Apple Authorized Service Providers 14

3.2 An Example Use Scenario . 15

3.3 Functional Requirements . 16

3.4 Non-functional Requirements . 17

3.5 Defining the Required Services . 18

4. Architecture, Testing and Deployment . 20

4.1 Monolithic Architecture . 20

4.2 Separating the Application to Services 21

4.3 Connecting Services . 23

4.4 API Gateway . 24

4.5 Multitenancy . 26

v

4.6 Authentication . 29

4.6.1 OAuth 2.0 . 30

4.6.2 Authentication as a Service . 32

4.6.3 JSON Web Tokens . 35

4.7 Deployment . 36

4.7.1 Docker . 37

4.7.2 Deployment Pipeline . 38

5. Evaluation . 42

6. Conclusions . 45

Bibliography . 47

vi

LIST OF FIGURES

1.1 Voltio provides management software for multiple AASPs. 3

2.1 Example of service-oriented architecture. 5

2.2 A load-balanced server cluster. 11

2.3 Server virtualization. 12

3.1 Connections between different parties involved in a repair case. 16

4.1 Old monolithic architecture of SirWise. 21

4.2 SirWise services. 22

4.3 All services implement a REST API. 23

4.4 Overview of the new SirWise architecture. 25

4.5 Multiple client applications and tenants. 27

4.6 SirWise authentication service and database architecture. 33

4.7 Access token validation. 34

4.8 Comparison of virtual machines and Docker containers. 38

4.9 Deployment process. 39

4.10 Docker deployment. 40

4.11 Blue-green deployment. 41

vii

LIST OF ABBREVIATIONS AND SYMBOLS

AASP Apple Authorized Service Provider
API Application Programming Interface
CI Continuous Integration
ERP Enterprise Resource Planning
GSX Global Service Exchange
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
RAM Random-Access Memory
REST Representational State Transfer
SMS Short Message Service
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
UI User Interface
URI Uniform Resource Identifier
URL Uniform Resource Locator
VM Virtual Machine
WWW World Wide Web
XML Extensible Markup Language

1

1. INTRODUCTION

A typical enterprise information system has multiple subsystems. The subsystems
are designed by different companies using varying technologies. New systems are
added when needed and the integrations are not always designed carefully. This
easily causes unnecessary dependencies between the systems.

When the systems are not designed to work together, it is hard to reuse functional-
ities from other subsystems. This forces software developers to implement the same
functionality multiple times. The same feature will have many implementations in
different parts of the system and after a while this type of environment will become
complicated and hard to maintain. Software developers have to understand multiple
different subsystems to make changes to one part of the application and updating
one part of the application can have undesirable effects to the performance of the
whole system.

This is one of the problems service-oriented architecture (SOA) was designed to
solve. SOA is a software architecture that guides how software should be structured.
It is not a technology standard and does not depend on any specific protocols. It is an
architecture blueprint that can be implemented by using many different technologies.

While SOA has become a widely used acronym in software design, the term still
has lots of variation in its use and there is lots of confusion about the terms related
to it. The World Wide Web Consortium (W3C) defines SOA as "A set of compo-
nents which can be invoked, and whose interface descriptions can be published and
discovered" [28]. This is a technical description and considers SOA as a technical
architecture implementation. It does not describe a style or process of building the
architecture. The Open Group’s definition of SOA is a lot wider: "Service-Oriented
Architecture (SOA) is an architectural style that supports service-orientation" [48].
Service-orientation means thinking in terms of services. Features are designed as
services which are self-contained and represent a repeatable business activity.

1.1. Need for the Research 2

SOA promotes re-usability of services and agile development. In SOA, each service
is an autonomous piece of software that performs a certain business function. An
important aspect of SOA is that it takes away the focus from technology oriented
entities like database rows or Java objects and focuses on business-centric services
[37]. "The focus is on defining cleanly cut service contracts with a clear business
orientation" [37]. Abstract services which implement a clear business need, such as a
weather service or restaurant reservation service, are easier to describe for somebody
who does not work in the software industry. Because of this SOA can bring software
engineering closer to the business point of view.

1.1 Need for the Research

Voltio Oy is a Finnish startup company that develops management software for
Apple authorized service providers (AASPs). An AASP is a company that is au-
thorized to provide repair services to all Apple customers [5]. World wide there
exists thousands of AASPs. A typical AASP employs multiple technicians who
make device repairs. Voltio’s management software is designed to speed up the re-
pair process, provide tools for better customer communication and help handling
internal resources and workflows.

The provided management software can be classified as enterprise resource planning
(ERP) software. ERP is a category of business management software that generally
integrates multiple applications together [7, 16]. It can be used to manage data
from many business activities. Service providers need ERP software especially for
handling service orders, billing, shipping and inventory management.

Since 2015 Voltio has operated the first version of the management system called
SirWise. SirWise has been used to fill over 100,000 service orders in Finland and
Sweden. To scale the software for more customers, a new version was needed to
speed up the installation process for new service providers. This project was started
in the beginning of 2016 to create a second version of the SirWise management
system. For the second version the goal was to create a service-oriented architecture
that allows faster development speed of custom components and allows customers
to select and install their own integrations.

As many AASPs have a unique work-flow and even repair technicians work differ-
ently based on their preferences, the software has to be extendable. This means

1.2. Goals 3

Figure 1.1 Voltio provides management software for multiple AASPs. Each AASP can
have one or more service locations.

that the software has to support different organization structures and sizes, operat-
ing platforms, languages and user interfaces. Figure 1.1 displays Voltio related to
its AASP customers. The management software serves AASPs in multiple countries
and service locations. Scaling the software to thousands of service providers requires
that the system can be installed without lots of manual work.

SOA suits well in situations where different parts of the system are developed by
different companies. When a large group of people is responsible for an application, it
is difficult to determine who is accountable for a specific function in the application
[27]. For a SOA service there can be a specific group who is responsible for the
functionality and can be held accountable. For SirWise it is important that new
features can be implemented without re-writing the existing implementations and
developers are not limited to certain implementation technologies. SOA can be used
because it does not require any specific technology.

1.2 Goals

The goal of this thesis is to design a new version of SirWise that is easier to develop,
deploy and scale. The new version of SirWise is designed using service-oriented

1.3. Structure 4

architecture. The management system for service providers is used as an example
case to demonstrate why SOA is needed and what challenges implementing it creates.
The old and new architecture are compared based on reusability, ease of testing and
deployment, fault tolerance, scalability and development environment setup.

Deploying the old version of SirWise requires that the whole application is deployed
at once. For example, making a simple change to the user interface requires updating
the whole application. Deploying the application is done manually, which can cause
downtime.

The old version of SirWise requires lots of time to setup a development environment
that is identical to the production environment. Everything has to be installed
manually by the developer. The old version has a monolithic architecture that can
be hard to extend without breaking code modularity and introducing bugs to other
parts of the system. The monolithic architecture also makes reusing functionality
difficult for developers working outside of the core development team.

1.3 Structure

This document is structured as follows. Chapter 2 explains briefly service-oriented
architecture and technologies that are commonly used to implement it. Chapter 3
specifies software requirements for the management system and defines the different
services needed for the implementation. Chapter 4 describes the architecture of the
example application and what SOA related challenges were solved. It also explains
tools and methods that are used to deploy the application. Chapter 5 has a com-
parison between the old and new management system architecture and it describes
the differences in testing, developing, deploying and maintaining the application.
Chapter 6 summarizes the results and the whole thesis.

5

2. SERVICE-ORIENTED ARCHITECTURE

Service-oriented architecture (SOA) is an architectural style in software engineering
[40]. Its main goal is to achieve loose coupling among interacting software agents
[31]. This means building independent services that implement only a certain func-
tionality, such as providing weather data, checking customer credit or sending an
email.

Figure 2.1 shows an example how the architecture of an online store could look like if
it was implemented using SOA. The architecture is separated into four independent
services: a store front which displays the store’s user interface, an inventory service
that manages warehouse data, a customer service that saves customer information
and a shipping service that handles delivering products to customers.

Figure 2.1 An example of service-oriented architecture.

Each service has a clear business function that can be used by other services. In SOA
all communication between services is done through defined interfaces. A service
from the consumers point of view is a "black box" [48] that has an interface. The
interface abstracts the underlying complexity of a service and the consumer is able to

2.1. History of SOA 6

access it without knowledge of the service’s implementation details. From a software
developers perspective this makes development easier: A developer can concentrate
on developing only one service without knowing the details about how other services
work.

2.1 History of SOA

The first reports mentioning the term SOA were published in 1996 by Gartner Group
[36, 60]. Although multiple companies in the ‘90s were already using similar concepts
[58], they used different terms to describe their implementations. The concept itself
has been used for a long time in distributed computing, especially in the finance and
telecom industries [59]. The term SOA became established after there already were
multiple implementations of the architecture, which makes it difficult to determine
who first invented the idea.

SOA is also not the only architectural style for integrating distributed systems. For
example, CORBA (Common Object Request Broker Architecture) is a standard
developed by the Object Management Group for connecting distributed software
systems [47]. CORBA enables systems that are implemented using different tech-
nologies to communicate with each other. The first version CORBA 1.0 was released
in 1991 [47]. Unlike SOA that divides the architecture into services, CORBA ap-
plications are composed of objects. Each object has an interface that is defined
using an interface definition language. Clients can then use this interface to invoke
operations on the objects.

The big driver that brought SOA to the attention of mainstream users was web
services [36]. Instead of requiring new communication protocols, SOA could take
advantage of established protocols like HTTP and HTTPS [51]. Another reason for
SOAs popularity is that large software companies like Microsoft, IBM and Oracle
started promoting it [59]. Companies marketed lots of tools and platforms that
support SOA.

2.2 Benefits of SOA

SOA does not rely on any specific vendor, product or technology [42]. It is a set of
architectural principles. By being just a collection of best practices [11], it allows

2.3. Reliability 7

developers to choose the best tools and technologies individually for each service
being built. Although SOA does not promote of using different technologies for
each service’s implementation, the architecture allows it, as having many different
technologies is often reality for large software projects.

SOA is suitable in scenarios where different parts of the system are developed by
separate teams or companies. When services are designed to be loosely coupled,
teams can develop them independently of each other. In a tightly coupled system
teams would have to wait for one part to finish before continuing to develop the
depending parts.

From the business perspective SOA can give more control to the organizations.
Instead of creating reusable code structures like classes, the architecture promotes
reuse of services. As each service implements a clear business functionality, the
organization starts understanding existing systems and their interfaces. This can
promote innovation and lower the time needed to get products to the market.

Some software architects argue that SOA can help businesses become more agile
[22, 21]. The business can respond to change more quickly and more cost-effectively.
This will result to an improved return on investment.

2.3 Reliability

Since it is extremely difficult to create failure-free systems under limited development
resources and time, fault-tolerance is important for building reliable systems [65].
Fault-tolerance in software means that the system is able to operate properly even
if some of its components fail to work [34]. In SOA this is particularly important
when systems rely on services controller by third parties [43].

Nascimento et al. [43] have defined five groups of failure modes in SOA-based
applications:

1. Delay failure, which is a failure to operate at the prescribed time

2. Output failure, when the output value provided by the service is incorrect

3. Specification failure, when a service performs a task that differs from what
their name or description suggests

2.4. Scalability 8

4. Server failure, a failure in the application server

5. Communication failure, a failure in the network

The designer of the application should determine how a failure mode should be
detected, how it is handled and what is the best fault tolerance technique to be used.
For example, when a service has performance problems and it cannot complete a
request in a specified time, the fault is categorized as a delay failure. If the fault
is caused by server overload, the failure handling could be to change the server.
However if a fault is caused by an software error, running the same code on a
different server will not fix the problem. In this case if there are no variants of the
service, the application has to use some kind of fault tolerance technique.

In the service provider context some software faults can be tolerated but all faults
should be detected. For example, if a third party integration fails, the system should
still be able to operate and inform the users about degraded service level.

In some cases there are multiple variants of a service. Variants are software compo-
nents, which "have the same or an equivalent specification but with different designs
and implementations" [43, 39]. For example, when fetching device data for SirWise,
there can be two or more services that have similar data. Different services might
have different priorities and for certain operations one service can be preferred over
another. In case one of the variants is not working properly, the system should be
able to switch to the next variant.

2.4 Scalability

A simple approach to scaling a web application for more users and higher usage is to
upgrade the server. This means adding more resources like a better processor, more
memory, more storage and higher networking capacity. Cloud computing makes
the process of hardware upgrades inexpensive, as it is possible to pay only for used
resources [8]. This kind of scaling where more resources are added to an already
running instance is called vertical scaling [66].

Vertical scaling only works to a certain extent as one single machine has its capacity
limits. Adding more instances instead of adding resources to existing instances is
called horizontal scaling [66]. In SOA where every service works independently, it

2.5. Web Services 9

is possible to have each service running in a different instance. Each service can be
scaled independently by using load-balancers to distribute server load between all
service replicas [66]. In a monolithic architecture this is not possible and the only
option is to replicate the whole application.

2.5 Web Services

Web services are a common way to implement a loosely coupled architecture and
they can be used to implement SOA. Web services are not essentially service-oriented
and are not a mandatory component of SOA — they merely have the capability for
implementing SOA [11].

The W3C defines a Web service as a "software system designed to support inter-
operable machine-to-machine interaction over a network" [28]. To be more specific,
Web services can be characterized as "self-contained, modular business applications
that have open, Internet-oriented, standards-based interfaces" [1]. This means that
a Web service has a published interface that can be used over the Internet using
standard protocols.

The two main styles to implement SOA using Web services are SOAP (Simple Object
Access Protocol) and REST (Representational State Transfer). SOAP is a language
and protocol that enables communication between a consumer and a provider ser-
vice. It uses XML information set as a message format. SOAP can be used with
any transport protocol but implementations commonly use HTTP.

2.6 Representational State Transfer

Representational state transfer (REST) is an architectural style [13, 57]. The term
REST was introduced by Roy Fielding in his doctoral thesis [24], which demon-
strates how REST can be used to guide the design and development of modern Web
architecture.

Like World Wide Web (WWW) itself, REST promotes resource-orientedness and
stateless communication. In REST each resource has their own universal resource
identifier (URI). The identifier can be used to access the resource through a uniform
interface such as HTTP. [57]

2.7. Stateless and Stateful Services 10

Web services implementing REST architecture can be called RESTful. RESTful
web services typically use HTTP verbs such as GET, POST, DELETE and PUT to
receive and send data to remote servers. For example, listing a collection of users
could be implemented by calling:

GET http://api.example.com/users

Unlike for SOAP, there is no standard for building RESTful web services. This is
because REST is an architectural style and not a protocol like SOAP.

2.7 Stateless and Stateful Services

Services can be stateless or stateful. A stateless service treats each request as an
independent transaction. Requests are unrelated to each other and the service does
not store information about sessions or other services for a duration of multiple
requests [23]. For web services this means that each HTTP request happens in
complete isolation [57]. A client has to include all information about the request for
the server to process it and the information never relies on previous requests.

Stateless applications are easier to distribute across load-balanced servers [57]. Since
requests do not depend on each other, they can be handled by different servers. As
mentioned in section 2.4 application scaling can be achieved by adding more servers.
In a stateful application adding or removing new servers requires sharing the state
so that each server instance is able to access it.

Caching requests is also easier for stateless services. The application can decide if
the request has to be cached by just looking at that particular request. Whereas a
stateful application would have to worry about the cacheability of previous requests.

Stateless requests can be more easy to monitor because everything needed to under-
stand a message is included in the request [31]. The monitoring software does not
have to keep track of the current state.

Avoiding stateful services can be difficult. For example, a service might need au-
thentication. Instead of sending a certificate with every request it is more efficient
to store a shared authentication token between the consumer and provider [31]. For
instance, Google Gmail has a RESTful API [26] that uses access tokens for authenti-
cating the client application. In this case, the server cannot trust the client to report

2.7. Stateless and Stateful Services 11

Figure 2.2 A load balanced server cluster.

its state. It has to validate the access token and check that it has not expired. This
requires storing the application’s state.

If the application is distributed across multiple machines, every machine in the
cluster has to be aware of the authentication state. Otherwise the server application
cannot verify the client. In Figure 2.2 the user connects to a server cluster. The
load-balancer will route the user’s request to one of the three servers. The server
that the user connects to has to be able to access the current authentication state.
The cluster is usually set up to exchange details between servers so that the state
of one server is replicated at other servers.

An alternative solution is to add a routing rule to the load-balancer to make sure
that every request made by a certain client has to go to the same server. This kind of
method of controlling communication between a client and a server cluster is called
session affinity [61].

Customized service for the consumer requires state, which means that the provider
and consumer have to share the same specific context. Storing this context for
multiple consumers can reduce scalability. This also makes the services more coupled
together and makes switching providers more difficult.

2.8. Virtualization 12

2.8 Virtualization

The end result of building multiple small services is having many small software
projects. Each project should only exist to provide a specific service which makes
projects more simple and easier to understand. As developers switch projects and
new developers are hired, installing projects and their dependencies becomes time
consuming. Traditionally this has been solved by using unified systems and config-
urations for all development machines and servers, or by using virtual machines to
replicate environments.

Modern computers for a while have been powerful enough to use virtualization. By
using virtualization one computer can present an illusion of many smaller virtual
machines (VMs) [10]. Each VM can run a separate operating system and work as if
it was a real physical computer. This has enabled cloud computing providers such
as Amazon, Google and Microsoft to create virtual machines per customer.

Figure 2.3 One server can host multiple virtual machines. Each customer sees the virtual
machine as a real physical server.

The left side of Figure 2.3 illustrates three servers dedicated to three different cus-
tomers. Each customer owns one physical server. On the right side of the Figure,
there is only one physical shared server. The shared server is separated to three
virtual machines that all share the host machine’s resources. Although the three
customers share the same physical server, each customer has their own virtual ma-
chine that acts like it was a real physical server.

Sharing computing resources between multiple customers has cost advantages be-
cause it allows customers to only pay for the used resources [38, 9]. Especially small
companies can benefit from this if they are currently not able to make significant
investments to server hardware but might have to scale up later.

2.8. Virtualization 13

Virtualization is cost efficient for running a service-oriented architecture. Instead of
deploying each service to a physical server, services can be hosted in separate virtual
machines. SOA services can all have different environment requirements, such as dif-
ferent operating systems, server configurations, programming languages or database
engines. By using virtualization, it is possible to create multiple environments to a
single physical server.

Service-oriented architecture can be difficult to maintain when multiple small ser-
vices must be developed, tested and deployed as fast as possible. Software developers
need to be able to setup their development environment for each service and be able
to switch between projects. Manually installing each project and its environment
can be slow and is not economically feasible [29]. By copying the same image for
all development machines, each developer has a similar development environment.
This is helpful for preventing bugs related to different run environments. The same
environment or a slight modification of it, can also be deployed to testing, staging
and production servers. This ensures that the system works almost identically in all
parts of the deployment pipeline.

Virtualization can help avoiding vendor lock-in if the environment can be moved.
Vendor lock-in means that the customer is dependent on a vendor for products and
services and is unable to switch vendor without high costs [38]. Cloud based soft-
ware is often dependent on underlying hosting cloud infrastructure [38]. Although
virtualization can be used to avoid vendor lock-in, it can itself also cause vendor
lock-in if the virtualization platform cannot be changed.

14

3. MANAGEMENT SOFTWARE

REQUIREMENTS

This chapter describes the basic requirements for the service provider management
system called SirWise. SirWise is used as a real example case of why to implement a
service-oriented architecture, what problems SOA can solve and what SOA related
challenges have to be addressed.

The first two sections of this chapter describe background information about the ser-
vice provider industry and what problems SirWise is supposed to solve. Sections 3.3
and 3.4 specify the main functional and non-functional requirements of the software.
The last section 3.5 represents how the system can be separated into independent
services.

3.1 Apple Authorized Service Providers

An AASP (Apple authorized service provider) is a company that is authorized to
provide repair services to all Apple customers [5]. An AASP is able to obtain parts
directly from Apple and receive reimbursement for labor, parts and travel for fixing
Apple devices. In exchange Apple has a list of requirements for AASP’s. One of
the requirements is to keep records of all service events for a period of 5 years and
allow Apple to review these records [3]. Accurate reporting is therefore essential
for AASP’s. Apple also has different metrics for tracking performance and customer
satisfaction [3]. The ratings given by Apple are important for AASPs, because retail
companies use them to compare different service providers.

One AASP can have one or multiple service locations where customers can bring
their devices for repair. Many AASPs also have partnerships with retail stores so
that customers can return their devices to the same store where it was bought from.

3.2. An Example Use Scenario 15

3.2 An Example Use Scenario

An example of a common repair case for smart devices is changing a broken screen.
A customer has a device with a cracked screen and she brings the device back to
the retail store, where the device was bought. A retail store worker then checks if
the device is under warranty and does a basic diagnosis of the problem. In case the
store can not resolve the issue, the device has to be mailed to an authorized service
provider or directly to the manufacturer.

Before mailing the device to an authorized service provider, information about the
customer and the device has to be attached to the package. The service provider’s
technician, who repairs the device, needs to know the customer’s contact details,
required passwords, possible accessories and the problem description. After receiving
the broken device, the technician makes a diagnosis. Depending on the results, the
technician fixes the device, orders new parts if necessary or replaces the device with
a new one.

The device manufacturer might require reporting of repairs. For example, Apple
surveys customers for their repair experience and has four objective criteria [3] to
measure the performance of service providers. This means that technicians have
to report all repairs and end customer contact details to Apple’s Global Service
Exchange (GSX) [4].

Finally when the order is resolved, the customer and the retail store is notified about
the completed order, an invoice is created and the repaired device is returned to the
owner. If the customer had an insurance for the device, the insurance company is
also informed about the repair.

Typical challenges related to the workflow are:

1. The retail store worker has to use multiple systems and type the same infor-
mation many times.

2. All the systems have separate user credentials and varying user interfaces. All
staff members have to be trained to use the systems.

3. Multiple people are working on the same order. They should be able to see
the order statuses, customer messages and device locations.

3.3. Functional Requirements 16

4. Reporting to manufacturers should be mostly automated.

5. The end customer is not able to track the order.

The management system should improve the order process by removing duplicate
work steps. Same information should only be needed once and the data should be
sent automatically to other systems.

Figure 3.1 Connections between different parties involved in a repair case.

Figure 3.1 shows the different parties involved in a typical repair case. The man-
agement system integrates multiple systems from different companies into one. This
enables sharing the repair status between retail store workers, service provider’s
technicians, insurance companies and manufacturers.

3.3 Functional Requirements

To present an example of a service-oriented architecture, we have to first list some
functional requirements for the management system. The following list is not a
complete list of requirements, but it includes most of the main features of the real
system.

The system should be able to

• authenticate a user

3.4. Non-functional Requirements 17

• create an order

• manage customer information

• fetch device info from GSX using a device’s serial number

• send reports to GSX

• send email and SMS notifications to users

• create an invoice.

The system should also have a separate user interface (UI) for customers, technicians
and retail store workers. Customers should only be able to create new orders and
view their order statuses. Technicians should be able to create new orders and be
allowed to manage orders which are assigned to them. Retail store workers should
only be able to see orders for their store location.

Each service provider should be able to create their own UI implementation if needed.
For example, if a service provider uses a different workflow, they should be able to
create a custom software implementation for technicians.

All data should be separated for each AASP. For example, one AASP should not
be able to view other AASP’s customers, users or orders. Data sharing between
different AASPs should not be allowed by default.

3.4 Non-functional Requirements

Modern software development is often driven by agile processes [53]. When the
software is constantly changing the whole development process has to be very nimble.
The management system has many common non-functional software requirements
such as fast development, continuous integration, application scalability and support
for multiple operating platforms [53]. This section defines these requirements and
explains why they are needed.

Fast development speed is required because of quickly changing business needs. A
new developer should be able to set up the whole development environment as fast
as possible and be able to get a working copy of the latest software version. The
developer should be able to contribute to the project without learning all the details

3.5. Defining the Required Services 18

of the entire application. An example of a changing business need for AASPs was
in 2014 when Apple bought Beats headphones [6]. This meant that a new product
category, Beats integration and repair codes had to be implemented. In this case
a developer should be able to create a new software integration for Beats without
breaking other product categories or repair codes.

A common problem in many software projects is that the latest version of the ap-
plication is not always in a working state. This happens because nobody wants to
install the whole application every time it has changed and then try to test it [33].
Continuous integration tries to solve this problem. Continuous integration means
that after any code changes, the software is tested to be deployable. When a devel-
oper creates a new code commit the entire software is first build, then tested using
automated tests and finally, if the tests pass, the software is deployed to a staging
server. According to Humble and Farley (2010), "the goal of continuous integration
is that the software is in a working state all the time" [33].

During business hours, the system must handle a large number of active users who
need the system for their work. To prevent downgraded performance during peak
hours, the system should be able to distribute user traffic to multiple servers. Bal-
ance loading between multiple servers is critical for scaling the application for a
large user base because one server can only handle a limited amount of user traffic.
Having multiple servers also enables the system to stay functional even if one of the
servers must be updated, rebooted or if it for some other reason fails to respond.

The management system should support multiple software clients such as mobile
browsers, desktop browsers and native mobile applications. Service providers should
also be able to create their own custom client applications. Service providers need
to have access to their own repair and customer data to be able to make integrations
for existing systems.

3.5 Defining the Required Services

The management system requires multiple features which can be separated into
services. Each service should be independent and have a clear business need. The
service should also be small enough that it is easy to understand.

Defining how small a service should be, is a controversial subject. It is difficult to
specify how many lines of code a service should have or how many hours it should

3.5. Defining the Required Services 19

take to build. According to Newman (2015) a service should be "small enough and
no smaller"[46]. Michael Feathers suggests that they should be "created by no more
than a handful of people" [19] while Stefan Tilkov suggests that "it’s not a goal to
make your services as small as possible" [64]. Because of this services do not have an
exact size limit, but for the management system we should try to keep each service
small enough to be rewritten in a few weeks.

In the management system, we have at least five features that can be implemented
as separate services:

1. Notification service that sends messages to customers and users using different
integrations such as email, SMS and chat applications like Slack.

2. Order service that manages order information.

3. Customer service that manages customer details.

4. Device service that is connected to different manufacturer applications and
fetches device data. In this example we have an integration for Apple’s GSX.

5. Billing service for sending invoices and storing billing history.

Additionally, the system needs at least three separate user interfaces: one for ser-
vice provider technicians, one for customers and one for mobile customers. The
mobile application will be developed by a company specialized in mobile application
development. The design of the architecture should support this.

20

4. ARCHITECTURE, TESTING AND

DEPLOYMENT

This chapter describes the architecture for the management system specified in
chapter 3. The architecture of the old version of SirWise is first described to
highlight some of its main problems and to explain the reasons why a new version was
needed. Then the old monolithic architecture is transformed into a service-oriented
architecture that has a better support for multiple AASPs. This transformation will
also require making changes to the development, testing and deployment process of
the system. These changes are described at the end of this chapter.

4.1 Monolithic Architecture

The first version of SirWise consists of one core application that handles customer
management, billing, device management, order management and sending notifica-
tions. This kind of monolithic architecture is extremely common [56]. Developers
only have to open one project in their code editor and launch the application to see
how the system works. Deployment is also simple because it can be done by copying
just one project to a server. The application can also be scaled by creating multiple
copies of the system and a load balancer can distribute traffic between these copies.

Figure 4.1 shows a simplified high level architecture diagram of the first SirWise
implementation. The application has integrations to other systems such as Apple
GSX, email servers and SMS services. The application has a web UI, that can
be used by customers and technicians. It also exposes a simple REST API that
can be accessed by other applications, such as mobile applications or other servers.
Most parts of the application are logically separated into modules that can work
independently, but the application is packaged, tested and deployed as a monolith.

This monolithic architecture works well in the early stages of the project. However,
after multiple years of development the application will have millions of lines of code

4.2. Separating the Application to Services 21

Figure 4.1 Old monolithic architecture of SirWise.

and becomes extremely complex. Deploying the application usually requires lots of
manual testing because the impact of a change is not easy to predict.

Another problem in this kind of system is reliability. Because the whole application is
running within the same process, a problem in one part of the system can potentially
slow down or crash the entire process. As all application instances are identical, one
bug can impact the whole monolithic system. Creating variants as described in
section 2.3 is not possible.

A big problem in a monolithic architecture is that it makes adopting new software
frameworks and languages very difficult. An application that has been developed
for several years can have millions of lines of code. In that case rewriting the entire
application to use a new framework or language is extremely expensive. This will
limit how fast new technologies can be adopted and prevent from switching to a
better framework. As a result, the whole development team will be stuck with the
choices made at the start of the project.

4.2 Separating the Application to Services

The first version of SirWise has logically separate modules. These modules can
be decomposed into independent services. In Figure 4.2 the original monolithic
application has been transformed into services where each service works like a small

4.2. Separating the Application to Services 22

application.

Figure 4.2 The monolithic architecture broken down into independent applications.

Services marked with blue hexagons, like the billing or customer management, are
backend services. They generally have a database for storing persistent data and
are responsible for implementing security related logic, such as input validation [49]
and authentication. Backend services also expose an interface that can be consumed
by other services.

Services marked with black circles, like the AASP and customer UIs, expose a user
interface to the end users. These are called frontend services and their main respon-
sibility is to present information to the user and send user input to the backend
services. Frontend services can be installed to many different platforms such as web
browsers, mobile devices or desktop computers.

Compared to the monolithic architecture, this separation of services also changes the
relation between the application and the database. Instead of sharing one database
between all services, each service has its own database. Having a separate database
schema per service is needed to ensure loose coupling, otherwise the database would
create an unnecessary dependency between all services. However, this allows choos-
ing the best type of database for each service as database performance can vary
depending on the use case [41].

4.3. Connecting Services 23

4.3 Connecting Services

The services shown in Figure 4.2 are not yet connected together. To make this
possible, each service has to expose an API that can be consumed by other services.
As mentioned in section 2.5, both SOAP and REST are common techniques for
implementing SOA. We chose to create a RESTful implementation using JSON
(JavaScript Object Notation) because SOAP relies exclusively on XML [12]. SOAP
requires that an XML structure has to be created every time a message is sent. When
working with JavaScript clients, parsing and serializing the XML requires additional
code and creates unnecessary overhead compared to JSON. Unlike SOAP, REST can
be implemented using JSON, which does not require this kind of parsing.

Figure 4.3 All services implement a REST API.

In Figure 4.3 the connections between services have been drawn. All backend ser-
vices expose a REST API that can be consumed by other services. For example,
the order service uses the notification service for notifying customers about repair

4.4. API Gateway 24

statuses. The order service also uses the device service for searching device informa-
tion from manufacturers using serial numbers. Although this thesis only has Apple
GSX as a device information source, the device search can support multiple brands.
The main motivation for using a separate device service is that it can combine all
sources into one stable API. This search API does not have to change when new
sources are added or removed. It can also use alternative information sources or
display cached results if the main information source is not available.

4.4 API Gateway

The Figure 4.3 already has a working architecture that could be implemented.
However, the architecture can become problematic when developing frontend appli-
cations. For example, the mobile application for customers will require miscellaneous
data from the backend services. The mobile application could display lots of repair
information, such as the customer’s order number, repair diagnosis, estimated cost
of repair and order status. Additionally, the application could display the customer’s
name and show if her device is under warranty. In a monolithic architecture, the
mobile client could make a single request to the backend, such as:

GET https://api.example.com/repairs/repairId

The response to this request would then contain everything needed to display the re-
pair status. A monolithic application can fetch all the needed data from its database
and return it to the mobile client.

In comparison, when using a service-oriented architecture the repair status data is
owned by multiple services. The order service has the order number, repair diagnosis,
cost estimate and the repair status. The customer service has the customer’s name
and the device service knows if the device’s warranty has expired. In this example
the data needed by the client is owned by three different services, but a more complex
client could require even more services.

One option is that clients keep a list of services and make requests directly to each
service. Sadly, this approach has many drawbacks. When fetching the repair status,
the mobile client would have to make three different HTTP requests over the public
Internet. Compared to requests made in a local network, requests over the public
Internet are very inefficient. Especially on a slow mobile network extra requests
have a significant performance impact.

4.4. API Gateway 25

Making multiple requests directly to each service also makes the client code more
complex. Clients have to combine multiple responses and check that each response
was successful. Another problem with the approach is that it makes refactoring
difficult. Changing a backend service’s address requires that all client applications
using it are updated. Splitting one service to two services or merging multiple
services to one is difficult if clients are directly connected to them.

A second option for connecting client applications to backend services is implement-
ing a pattern called API gateway. The pattern was made popular by Netflix Zuul
[45, 54]. Instead of connecting directly to each service, clients send requests to an
API gateway. The API gateway then routes these requests to the appropriate ser-
vices. The API gateway can also invoke multiple services and combine the results
into one response [55]. This way a client application only has to make one request
that can return data from multiple different services.

Figure 4.4 Overview of the new SirWise architecture.

In Figure 4.3 the API gateway is used to create a simple unified interface for

4.5. Multitenancy 26

the client side applications. In most cases, frontend services need to fetch data
from multiple backend services. For example, the customer UI needs information
about the current order and has to know if the customer’s device is under warranty.
Without the API gateway, the customer UI would have to know addresses of all
needed backend services and make requests to multiple servers. By using a gateway,
client side applications only have to connect to one end-point.

The API gateway can also be used to simplify the exposed API. In Figure 4.4 there
are two API gateways: the API for service providers and the customer API that
exposes less features and has stricter permissions. The service provider API is used
by trusted clients who are allowed to view and modify sensitive data. They are able
to access customer management and billing services. The customer API is more
simplified and can be used by third party developers who do not need access to all
services.

The API Gateway provides many benefits but it has some drawbacks. It is a central
part of the architecture and must always be updated when service end-points change.
It is important that the update process is fast. Otherwise, developers need to wait
and the API gateway becomes a development bottleneck. A second drawback is an
increase in response times because the API has to make an extra network round-trip.
However, for our use case the time is insignificant because the round-trip is made
inside a fast local network.

4.5 Multitenancy

Multitenancy is a software architecture where one software instance serves multiple
tenants [67]. The term "tenant" refers to a group of users who share access to the
same software instance. The software appears to each tenant as if they were the only
tenant in the system. But in reality the software serves multiple tenants. This allows
software vendors to provide service to many customers on the same infrastructure.

Multitenancy is a common architecture for software as a service (SaaS) applications
[14]. SaaS is a delivery model where customers buy a subscription to use a centrally
hosted application [18]. SaaS applications typically store data from multiple orga-
nizations. To take advantage of the SaaS model, organizations have to trust the
SaaS vendor to keep their data safe. Because of this, creating a secure architecture
should be a high priority for all SaaS vendors.

4.5. Multitenancy 27

The SirWise ERP also uses the SaaS model. In SirWise each AASP is a separate
tenant and has its own data and configurations. Each tenant can edit customers,
create orders and update device data without effecting other tenants. Data is only
shared between tenants if explicitly requested.

Figure 4.5 illustrates how multiple client applications and different service providers
(tenants) use the same interface. All three service providers have implemented two
custom client applications: one client for customers and one for technicians. Users
can not access data stored to another tenant. For example, a user of company A
is not able to use company B’s application, unless the user has accounts in both
companies.

Figure 4.5 Example of multiple client applications and tenants using the same application
interface.

There are many ways how the architecture in Figure 4.5 can be achieved. However,
RESTful services are usually stateless and store the application state to the database.
Because of this, the architecture design should define how the data is stored.

There are three different approaches how multitenant data can be stored to the
database:

4.5. Multitenancy 28

1. Each record in a database includes a field that has a tenant ID.

2. Database has a separate schema for each tenant.

3. Different database for each tenant. [14]

The first approach of having a shared schema has the lowest cost. One database
server can serve a large number of tenants and only one database has to be backed
up. This approach does not offer good isolation and requires more effort to prevent
tenants from accessing each other’s data. The software must be designed carefully
to only load tenant specific data from the database so that each database query has
the right tenant identifier.

In the second approach, each tenant has its own separate set of tables in a shared
database. In this approach data is moderately isolated. The software cannot load
data from a wrong tenant, unless it queries a wrong database table. This approach
might not be suitable if each tenant has a high number of tables or the number of
tenants is high.

The last approach of having a different database for each tenant offers the best
isolation between tenants. In this case the database security prevents any tenant
reading data from another tenant’s database. Each database can be individually
configured to meet the tenant’s needs and restoring the database from backups is
relatively simple. This is usually the most expensive approach as each database has
to be maintained separately and it requires more database servers.

For SirWise, the first approach is not possible because many customers require that
sensitive data is always stored separately. There is a high risk that a programming
error could leak sensitive information to other tenants. The second approach where
each tenant has its own tables, is possible to implement, but the high number of
tables can make it impractical to manage.

In SirWise all tenants have their own database. All databases do not have a separate
physical server but they require the software to create a new connection when ac-
cessed. This ensures that the software cannot accidentally query data from a wrong
tenant. Services that do not store sensitive data can still take advantage of the other
approaches if needed.

4.6. Authentication 29

4.6 Authentication

When frontend applications make requests to the SirWise API, they have to be
authenticated. As mentioned in section 2.7, frontend applications cannot be trusted
to report their state and because of this, every request must be authenticated. The
API has to keep track of the current state. For example, it should know if the user
has logged in to the application or not.

A SOA that uses HTTP can apply many different authentication techniques. Com-
mon options are basic authentication, digest authentication and bearer tokens [50].

Basic authentication is a simple user authentication method. However, it has some
potential risks because it requires sending a username and password on every re-
quest as a base64 encoded string. An attacker will be able to read the credentials,
if requests are not encrypted. Even when using HTTPS, basic authentication is
vulnerable to replay attacks [50]. Another problem in using basic authentication is
that it has no token management. It is almost impossible to limit access to secured
resources without disabling the user’s account.

Digest authentication is essentially a more complex version of basic authentication.
Instead of sending a readable base64 encoded string, it uses a checksum. The check-
sum is created from the username, the password, a given nonce value, the used
HTTP method, and the requested URI using an algorithm like MD5. This makes
digest authentication more secure compared to basic authentication. However, it
has some limitations that prevent us from using it. [25]

Besides authenticating users, the SirWise API has to support authenticating other
applications. In some cases, it is useful to make automated requests that do not
involve the user. For example, we send repair status notifications to customers. In
this case the request to send a notification is made by another application and there is
no user to authenticate. Simple authentication mechanisms like basic authentication
and digest authentication are mainly designed for user authentication and cannot
identify the client application that made the request.

4.6. Authentication 30

4.6.1 OAuth 2.0

OAuth 2.0 is an authorization framework that allows third-party applications to
request access to HTTP services. By using OAuth1, it is possible to set separate
access limits for each client application [30]. For example, a trusted server side
application could have access to all customer data, whereas a non-trusted mobile
application might only see data of a specific customer.

In the OAuth standard, a client application starts the authorization process by
requesting an access token. The token is obtained using one of the OAuth grant
types: authorization code, implicit, resource owner password credentials or client
credentials [30]. The different grant types and their usage is explained in the official
standard2.

The following examples only use the resource owner password credentials grant,
but actual implementations should choose the grant type depending on the client
application and the use case. Using user credentials is only suitable if the client
application and resource owner, in this case the user, have a high degree of trust
between them [30].

Listing 4.1 Example OAuth token request using resource owner password credentials.

POST /token HTTP /1.1

Accept: application/json

{

"username ": "john",

"password ": "johns_password",

"client_id ": "client123",

"client_secret ": "client123secret",

"grant_type ": "password"

}

Listing 4.1 shows an example OAuth token request. The HTTP request contains
user credentials and client credentials in JSON format. The request also contains
the grant type "password" which equals to the "resource owner password creden-
tials" grant. The client identifier and secret are used for authenticating the client

1Currently OAuth standard has three different versions: 1.0, 1.0a and 2.0. In this thesis
"OAuth" refers to version 2.0.

2https://tools.ietf.org/html/rfc6749

4.6. Authentication 31

application and allows the SirWise API to implement application specific access
control.

All fields in the request body are specified in the OAuth standard [30]. However,
based on this information, the SirWise API would not be able to know the right
tenant and would have to search the user "john" from multiple tenant databases.
To fix this problem, we can add a tenant identifier to the request.

Listing 4.2 Example OAuth token request with an added tenant identifier.

POST /token HTTP /1.1

Accept: application/json

{

"username ": "john",

"password ": "johns_password",

"client_id ": "client123",

"client_secret ": "client123secret",

"grant_type ": "password",

"tenant ": "tenant123"

}

Listing 4.2 extends the earlier request with a "tenant" field that allows the SirWise
API to quickly identify the intended tenant. Based on this field, the API can select
the correct database and query it for a given username. Another popular method for
identifying the tenant is including it in the request URL3. The downside of adding
the tenant in the URL is that implementing authorization across multiple tenants
is more difficult. For example, a "super user" could have access to multiple tenants.

After the API has successfully authenticated the client and user, it creates an access
token response. Besides the access token the response contains information about
how the token should be utilized (token_type), expiration time of the token in
seconds (expires_in) and a refresh token (refresh_token) that can be used to request
a new access token after expiration.

Listing 4.3 Example OAuth token response.

HTTP /1.1 200 OK

Content -Type: application/json;charset=UTF -8

Cache -Control: no-store

3For example, https://tenant123.example.com/token or https://api.example.com/tenant123/token

4.6. Authentication 32

Pragma: no-cache

{

"access_token ": "3 ZomlGZAEdr3sCfecEApFA",

"token_type ": "bearer",

"expires_in ": 3600,

"refresh_token ": "sAGH1KIkA2XV2Ns6LgCGAF"

}

In Listing 4.3 the API has given an OAuth token response. The HTTP headers
specify that the request was successful (200 OK), the content is JSON, as requested
by the client and the two cache headers tell clients to not cache the response. The
token type "bearer" tells the client to add the access token to each protected resource
request. For example, the client could send the following request to access customer
data:

Listing 4.4 Example of an authenticated request using the received access token.

GET /customers /123 HTTP /1.1

Authorization: Bearer 3ZomlGZAEdr3sCfecEApFA

By reading the "Authorization" header, the API is able to identify the user and
client who made the request. In case an attacker is able to read the access token,
the API can simply revoke the token instead of disabling a user’s account. This can
also be implemented so that users are able to revoke their own token if they suspect
that their account is compromised.

It is important to note that the OAuth standard also specifies many other authen-
tication methods, such as refreshing the access token, and it documents common
attack vectors. Most of these are not specific to a service-oriented architecture or
were not required for the implementation of SirWise. Therefore, they are left outside
the scope of this thesis.

4.6.2 Authentication as a Service

The previous section described how the SirWise API can authenticate requests us-
ing the resource owner password credentials grant. However, authentication is not
different from other features. It is a clear business functionality that is likely to be

4.6. Authentication 33

reused in many parts of the system. This means that it should be implemented as
a service like other features.

In Figure 4.6 authentication is shown as a separate service that has connections
to multiple databases. One database named as "master" contains shared data that
does not directly belong to any specific tenant. SirWise uses it for storing all client
applications and tenants. When an application makes an access token request, this
database is queried to validate the tenant and client credentials. If the request is
valid and contains user credentials, the authentication service selects the requested
tenant database and tries to authenticate the user. Finally, if the user is authenti-
cated successfully, the authentication service returns an OAuth access token response
as described in section 4.6.1.

Figure 4.6 SirWise authentication service and database architecture.

The client application can then use the received access token to make requests to
protected resources. Figure 4.7 illustrates how protected SirWise services are related
to the authentication service and how the client has to first obtain an access token
before it can access any protected services. The figure also demonstrates how the
authentication service is separated from the API gateway and other services.

When implementing the architecture in Figure 4.7, one of the first problems will
be, how does the API gateway validate the access token given by the client? Unless

4.6. Authentication 34

Figure 4.7 The client application sends an access token request to the authentication
service. After obtaining a token, the client uses it to send an authenticated request to the
API. The API gateway validates the request before allowing access to any protected services.

the authentication service and the API gateway share a database, the gateway will
not be able to validate tokens.

A simple solution to this problem is to make the API gateway send a HTTP request
to the authentication service every time a client tries to access a protected service.
The authentication service would then tell the API gateway if the access token is
valid. The downside of this approach is the additional overhead of each request.

In many cases validating the access token is not enough because many services

4.6. Authentication 35

also need user data to function properly. For example, a service might require
user roles, permissions or an identifier to decide if the user is allowed to access a
protected resource. One option is that each service fetches the user data from the
authentication service separately. This, however, has a few disadvantages:

• The authentication service becomes a single point of failure. Few seconds
of downtime makes the whole system unusable because requests cannot be
authenticated.

• It is inefficient if many services have to make the same request.

• Each service has to be able to find the authentication service.

• Services need to implement user data fetching, which adds some complexity
and extra code.

• The authentication service has to be mocked for development and testing.

The cause of these issues is that the access token is a reference and is only useful
for locating the data in the authentication service. This can be solved by replacing
the so-called "token by reference" with "token by value" [32, 63]. This means that
the authentication and authorization data is included with the token.

The reason why the authentication and authorization data should not be included
in plain text format is that an attacker could easily read or modify the token. To
make transferring the token secure in untrusted environments, the data should be
encrypted and signed by the authentication service. By using symmetric or public
key cryptography, the authentication service can be used for creating encrypted and
signed tokens. The services can then independently validate these tokens without
communicating with the authentication service.

4.6.3 JSON Web Tokens

A popular solution for transferring signatures and encrypted data is a JSON Web
Token (JWT). JWT is a standard for representing claims to be transferred between
two parties [35]. Claims are statements about an entity like a user’s name or per-
missions. Claims can also contain metadata such as the expiration time, the subject
of the claims or the name of the issuer. A JWT token consists of three parts:

4.7. Deployment 36

1. Header that defines the used algorithm and token type.

2. Payload, which contains the claims.

3. Signature that is used to verify the sender and that the message was not
changed.

The three encoded parts are separated by dots. An example of a JSON Web Token
looks like this:

Listing 4.5 Example of a JWT. Line spaces are added for better readability.

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.

eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IlNPQSJ9.

EvghfGTVIxt7TPrdK_SiIaQ4h1YwZlUup6SN4oTK9A8

The JWT in listing 4.5 is not readable without a valid key. The authentication
service can create a similar token that contains the needed user data and sign it
using a private key. All other services in the system can have a corresponding
public key that can verify and decrypt the token. As long as the authentication
service is kept secure and the used cryptographic algorithm is not broken, services
can trust all messages signed by the private key. If one service is compromised,
it will not compromise the whole system because each service validates the token
independently.

4.7 Deployment

In many organizations application deployment is associated with a high degree of
risk [33]. The deployment process usually involves many steps which have to be
executed in a specific order. For example, upgrading the operating system, installing
new libraries, updating the database schema, changing configuration and copying
the latest stable version to the server. After completing all the steps, the deployment
team might have to make some manual testing to verify that the application still
runs properly.

If anything goes wrong, the users will have a broken system and the development
team receives bug reports stating that the application is not working. The developers
then have hurry for a quick fix, which is deployed to production. In worst case, there
is no time for testing and the fix itself will cause new problems.

4.7. Deployment 37

In this kind of projects, deployment requires lots of manual work and there are many
things that can go wrong. This often leads to infrequent deployments, because the
process is risky and time consuming [33]. The deployment process of a service-
oriented architecture can be even more time consuming and error prone. Instead
of deploying one large application, many small applications have to be deployed.
Because of this reason, automating the deployment process is highly recommended
[33].

4.7.1 Docker

Nane Kratzke (2014) describes Docker as "a lightweight virtualization tool that can
package an application and its dependencies in a virtual container that can run on
any Linux server" [38]. Docker can also be run on Windows 10 and OS X Yosemite
operating systems by using a native Docker application. Despite being a fairly new
project, Docker has gained lots of interest4 and large technology companies, such as
Ebay, Spotify and Uber, have started using it5.

Docker containers can be deployed on a VM (section 2.8) or a "bare metal" non-
virtualized server [20, 52]. Deploying Docker containers directly on a non-virtualized
Linux server removes the overhead of a VM and offers the same isolation [20]. In gen-
eral, performance of Docker is equal or better compared to a Linux virtual machine
[20].

Figure 4.8 compares a virtual machine and a Docker container. The virtual machine
requires a hypervisor, or virtual machine monitor, that creates and runs virtual ma-
chines. Each virtual machine has a unique operating system and contains its own
binaries, libraries and applications. Docker containers do not need a separate oper-
ating system. Only binaries, libraries and application are added to each container,
which leads to a smaller overhead.

Virtual machines take up a lot of system resources. Each VM runs a copy of the
operating system and all the hardware that the operating system needs has to be
virtualized. Compared to Docker, VMs require more RAM and have higher CPU
usage. This limits the number of VMs developer machines and servers can run
simultaneously.

4https://blog.docker.com/2016/02/docker-hub-two-billion-pulls/
5https://www.docker.com/customers

4.7. Deployment 38

Figure 4.8 Comparison of virtual machines and Docker containers [62].

A big difference in Docker, compared to other container tools, is layered filesystem
images. One operating system image can be used as a base for multiple containers.
All extended images can have their own files, configuration and libraries. When
images are shared over a network, this usually saves time and disk storage because
only the changed image layers have to be copied. Another big benefit of a layered
filesystem is caching. If we have a operating system image like Linux Ubuntu and
want to install a PHP interpreter to it. We only have to build the layer that contains
PHP and everything else can be read from cache [2].

4.7.2 Deployment Pipeline

Figure 4.9 shows an overview of the application’s deployment process. The process
starts when a developer commits new changes to the version control system. At this
point, the continuous integration system (CI) is prompted to create a new pipeline.
The pipeline will start by loading the changes from version control and creating a
new Docker container. All code and project dependencies will be then added to

4.7. Deployment 39

the container and the code is compiled, analyzed and unit tested. If the build is
successful and all unit and code quality tests pass, the functional testing stage is
started.

Figure 4.9 Overview of the deployment pipeline.

Functional tests are run separately from unit tests because they typically take longer
to execute. Before starting the functional tests, the CI will launch additional Docker
containers. All services such as databases, caches and worker queues are run in
separate containers. Separating the services to different containers minimizes the
need to build the whole environment when one of the services is updated or changed.
When all needed services are running the CI prepares test databases, warms up
application caches and finally starts the functional test suite.

While running the functional test suite the CI stores the test results in standard
XUnit XML format6. This allows viewing statistics about passed, failed and skipped
tests. It helps spotting out slow running tests and saving test history data.

If all tests have passed, the CI stores the executable application in an artifact repos-
itory. The artifact repository makes it easy for developers and testers to access
the release candidate and allows other servers to load the final build. All software
versions can be downloaded from the artifact repository. If a bug is found, the ar-
tifact repository can be used to find the first occurrence. The artifact repository is
also used for storing test results and code statistics that can be used to track code
quality.

The passing build is deployed to staging servers. The staging environment is ideally
a copy of the production environment [33]. It allows testing that all external services,
databases and configuration settings work as a whole before moving to production.
The staging environment is also used for end-user acceptance testing. Acceptance
testing allows the end-users to determine whether or not to accept the software [17].

6https://xunit.github.io/docs/format-xml-v2.html

4.7. Deployment 40

It is important that the testing environment matches the actual production environ-
ment as closely as possible [44]. Otherwise there is a risk that the production version
works differently from the tested version. By using Docker containers it is possible
to deploy the exact same environment to production that was used in testing.

Figure 4.10 Building, testing and deploying a Docker container.

In Figure 4.10 the CI server fetches new code changes from version control. The
source code also contains a Dockerfile7 that is used to build a Docker image. The
CI builds the image and adds the source code into the image. The image is then
used to start a Docker container that is used to run code analytics and test suites.
If all tests pass successfully the CI uploads the image to a Docker registry. Docker
registry is an application that can store and distribute Docker images. Prebuilt
Finally the CI will notify the hosting server to start a deployment.

After deploying and testing the software in the staging environment, a production
release can be made. Even after testing, the release might have defects. Therefore it

7Dockerfile is a text document that contains command line instructions to assemble an image
https://docs.docker.com/engine/reference/builder/

4.7. Deployment 41

is important to be able to quickly roll back any changes [15]. A deployment method
called blue-green deployment8 is designed to reduce downtime by making it fast to
roll back an update. In blue-green deployment two production environments, blue
and green, are set up. Only one of them is live serving all user traffic.

Figure 4.11 Blue-green deployment.

In Figure 4.11 the old version (green) is live and old version (blue) is idle. Once the
new version (blue) is ready and tested, the router is switched so that all incoming
traffic goes to the new version. If something unexpected happens with the new
version, the old version can immediately be switched back.

8https://martinfowler.com/bliki/BlueGreenDeployment.html

42

5. EVALUATION

This chapter describes the differences between the old and new management sys-
tem’s architecture. The old version of the application has a monolithic architecture
and was originally designed to support only one company. The new version has mul-
tiple independent services and it follows a service-oriented architecture. The new
version is designed to support AASPs and it has an open interface for third-party
applications.

The differences of the old and new versions are presented in Table 5.1. The main
requirement was to support reusing functionality. The system is used on a variety of
different operating platforms. Reusability is important to prevent implementing the
same features multiple times. Although the old version had support for desktop and
mobile browsers, support for third-party applications was very limited. It only had
a simple API for fetching customer and order data. In the new version a separate
REST API for customers and AASPs was implemented. Third-party applications
can have different access scopes by using OAuth 2.0 authentication. For example, a
retailer’s system can place new orders for a certain AASP if they have allowed it.

The old version lacked proper testing and it was done mostly manually. The new
version has a deployment pipeline that builds a new version of the software after
every code change. It also runs automated tests and deploys the software to a staging
server. Using continuous integration ensures that the software is always tested to
be deployable.

The new version consists of multiple independent services. The system is able to
work in a degraded mode if some service stops functioning. Business critical services
can also be duplicated to multiple servers. If one of the servers does not respond
traffic can be redirected to other servers.

The same method can also be used for distributing traffic between multiple servers.
In the old version the server had to be upgraded manually if it was performing

5. Evaluation 43

Table 5.1 Comparison of the old and new architecture.

Old version New version

Reusability Reusing functionality requires
changes to the current system.

Data is accessible to any sys-
tem capable of consuming
REST APIs. New features are
possible to implement without
modifying current code.

Testing Manual testing.
Automated tests are automat-
ically run after each code
change.

Fault tolerance One server. Hardware errors
can cause downtime.

Multiple servers. If one server
fails traffic is redirected to
other servers. Application is
able to function even if some
components stop working.

Scalability
Server resources (RAM, disk
memory, CPU) are added
manually as needed.

Load balanced servers. More
servers are added and removed
automatically when resource
usage changes.

Deployment

Manual updates using version
control or FTP. Restarting the
server or a failing deployment
causes downtime.

Automatic rolling updates. A
high error count causes an au-
tomatic revert.

Development
environment

Requires installing a web
server, compiler, dependency
management system and
database. Manual server,
database and application con-
figuration. Software versions
have to be checked manually.

Requires installing Docker
and running the wanted ser-
vices. Software versions are
managed automatically.

poorly. In the new version more service instances are automatically launched if
resource usage is high. During low usage periods the number of instances is scaled
down.

The old version was updated by pulling code from version control to the production
server. The web server would then be configured to use the new code. Any problems
in deployment could cause downtime or make the system unusable. In the new
version deployment is done by running two Docker containers. After a developer
marks a new deployment the process is fully automatic. A new Docker container

5. Evaluation 44

that has the updated code is run simultaneously with the old version. While both
containers are running, web traffic is slowly redirected to the updated version. The
new container is monitored and if its error rate goes over a threshold, web traffic is
redirected back to the old version. The automated deployment process also mitigates
human errors.

Creating an identical development environment for all developers in the old system
was challenging. The problem was first solved by using virtual machines. Developers
had a copy of a virtual machine image that was very similar to the production
environment. This eliminated most errors like having a wrong compiler version,
different configuration or a file system that worked differently. However, virtual
machines were too resource intensive for running multiple services. Each virtual
machine runs its own operating system which requires lots of system resources,
especially RAM. Using Docker instead of a VM, allows running multiple containers
without having the overhead of many operating systems. Each container can run
an independent service that has custom libraries and dependencies.

45

6. CONCLUSIONS

The first version of SirWise management system was designed for a single company.
After new customers got interested in the software, Voltio started to look for options
to scale the system. In the beginning of 2016 the development of a new version was
started. The new version would use the SaaS model which meant that the same
software should be able to fill the needs of multiple customers. We decided to create
an open REST API to allow customers to integrate existing systems and implement
custom work-flows.

The new version has slowly started to move to a more service-oriented architecture.
New integrations can be easily created as separate applications that connect to the
REST API. These can be either trusted applications that work inside the private
network or third-party applications that connect from the public Internet. As the
development team has grown, more members have specialized to certain parts of the
system. So far this has happened very naturally without too much designing.

All SaaS software designs have to consider, how the customer data is stored. Es-
pecially the level of isolation between different customers has to be decided. Our
decision was to have a database per customer, which gives a high level of isolation
but is more expensive than having shared databases. In a SaaS application that has
lots of customers, this might be too expensive. However, the customers of Voltio are
mainly companies that have many employees. This keeps the number of databases
per customer low.

Design of the API authentication flow was challenging. Although we used OAuth
2.0 for authentication, implementing it for all different application types and use
cases was non-trivial. To simplify the authentication process in a service-oriented
architecture, authentication can be dedicated to single service. We used the JWT
standard for signing requests. Each service can verify a request independently with-
out connecting to the authentication service. This approach requires only a small
amount of authentication logic in each service while keeping services independent.

6. Conclusions 46

At Voltio we have used the described deployment pipeline for a year now. We use the
continuous integration process to make sure our software always builds and passes
tests successfully. Developers will quickly receive a notification of a failing code
change. We have also found it valuable to store each build for later inspection. In
cases where identifying a problem is difficult, comparing different versions of the
software has been helpful. If we can find the first version that started the problem
we can also find the exact code change that caused it.

Docker has quickly become a "must have" tool in our company’s projects. In the
beginning of 2016, when the new SirWise project was started, we started testing if it
was suitable for our use. At that time Docker was still a quite new technology. Since
then it has become mature and a lot easier to use as new native Docker applications
were released and they became stable. Also many cloud hosting providers have
added support and services for managing Docker containers.

47

BIBLIOGRAPHY

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, “Web services,” in Web
Services. Springer, 2004, pp. 123–149.

[2] C. Anderson, “Docker [software engineering],” IEEE Software, no. 3, pp. 102–c3,
2015.

[3] “Apple authorized service provider program,” Apple, Available: https:
//www.apple.com/support/programs/resources/en/AASP_requirements_
summary.pdf.

[4] “Apple GSX,” Apple, Available: https://gsx.apple.com.

[5] “Apple service programs,” Apple, Available: https://www.apple.com/in/
support/programs/aasp/.

[6] “Apple to acquire beats music and beats electronics,” Ap-
ple, Available: http://www.apple.com/pr/library/2014/05/
28Apple-to-Acquire-Beats-Music-Beats-Electronics.html.

[7] T. M. S. Arik Ragowsky, “Enterprise resource planning,” Journal of Manage-
ment Information Systems, vol. 19, no. 1, pp. 11–15, 2002.

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud
computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010. [Online].
Available: http://doi.acm.org/10.1145/1721654.1721672

[9] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D. Leelaratne,
S. Weerawarana, and P. Fremantle, “Multi-tenant soa middleware for cloud
computing,” in 2010 IEEE 3rd International Conference on Cloud Computing.
IEEE, 2010, pp. 458–465.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in ACM SIGOPS
Operating Systems Review, vol. 37, no. 5. ACM, 2003, pp. 164–177.

https://www.apple.com/support/programs/resources/en/AASP_requirements_summary.pdf
https://www.apple.com/support/programs/resources/en/AASP_requirements_summary.pdf
https://www.apple.com/support/programs/resources/en/AASP_requirements_summary.pdf
https://gsx.apple.com
https://www.apple.com/in/support/programs/aasp/
https://www.apple.com/in/support/programs/aasp/
http://www.apple.com/pr/library/2014/05/28Apple-to-Acquire-Beats-Music-Beats-Electronics.html
http://www.apple.com/pr/library/2014/05/28Apple-to-Acquire-Beats-Music-Beats-Electronics.html
http://doi.acm.org/10.1145/1721654.1721672

BIBLIOGRAPHY 48

[11] J. Bloomberg, The agile architecture revolution: how cloud computing, rest-
based SOA, and mobile computing are changing enterprise IT. John Wiley &
Sons, 2013.

[12] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, and D. Winer, “Simple object access protocol (soap) 1.1,” 2000.

[13] S. K. Chakrabarti and P. Kumar, “Test-the-rest: An approach to testing restful
web-services,” Future Computing, Service Computation, Cognitive, Adaptive,
Content, Patterns, 2009. COMPUTATIONWORLD’09. Computation World:,
pp. 302–308, 2009.

[14] F. Chong, G. Carraro, and R. Wolter, “Multi-tenant data architecture,” MSDN
Library, Microsoft Corporation, pp. 14–30, 2006.

[15] G. G. Claps, R. B. Svensson, and A. Aurum, “On the journey to continuous
deployment: Technical and social challenges along the way,” Information and
Software technology, vol. 57, pp. 21–31, 2015.

[16] T. H. Davenport, “Putting the enterprise into the enterprise system,” Harvard
business review, vol. 76, no. 4, 1998.

[17] F. D. Davis Jr, “A technology acceptance model for empirically testing new
end-user information systems: Theory and results,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1986.

[18] A. Dubey and D. Wagle, “Delivering software as a service,” The McKinsey
Quarterly, vol. 6, no. 2007, p. 2007, 2007.

[19] M. Feathers, “Microservices Until Macro Complexity,” Available: https://
michaelfeathers.silvrback.com/microservices-until-macro-complexity.

[20] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance
comparison of virtual machines and linux containers,” in Performance Analysis
of Systems and Software (ISPASS), 2015 IEEE International Symposium On.
IEEE, 2015, pp. 171–172.

[21] G. Feuerlicht, “Enterprise soa: What are the benefits and challenges,” Systems
Integration, pp. 36–43, 2006.

[22] G. Feuerlicht and J. Voříšek, “Utility computing: Asp by another name, or a
new trend,” Proceedings of “Systems Integration, pp. 269–280, 2004.

https://michaelfeathers.silvrback.com/microservices-until-macro-complexity
https://michaelfeathers.silvrback.com/microservices-until-macro-complexity

BIBLIOGRAPHY 49

[23] R. Fielding and J. Reschke, “Hypertext transfer protocol (http/1.1): Message
syntax and routing,” 2014, Available: https://tools.ietf.org/html/rfc7230.

[24] R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, University of California, Irvine, 2000.

[25] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and
L. Stewart, “An extension to http: digest access authentication,” Tech. Rep.,
1996.

[26] Google, “Gmail API,” 2016. [Online]. Available: https://developers.google.
com/gmail/api/

[27] A. Grigoriu, “Soa, bpm, ea, and service oriented enterprise architecture,” BP-
Trends, www. bptrends. com, 2007.

[28] H. Haas and A. Brown, “Web services glossary,” W3C,” W3C Note, Feb. 2004,
Available: https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/.

[29] A. N. Habermann and D. Notkin, “Gandalf: Software development environ-
ments,” IEEE transactions on software engineering, no. 12, pp. 1117–1127,
1986.

[30] D. Hardt, “The oauth 2.0 authorization framework,” 2012.

[31] H. He, “What is service-oriented architecture,” Publicação eletrônica em,
vol. 30, p. 50, 2003, Available: http://uic.edu.hk/~spjeong/ete/xml_what_
is_service_oriented_architecture_sep2003.pdf.

[32] A. Holbreich, “JSON Web Tokens are made for Microservices,” 2016. [Online].
Available: http://alexander.holbreich.org/jwt/

[33] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation (Adobe Reader). Pearson
Education, 2010.

[34] B. W. Johnson, “Fault-tolerant microprocessor-based systems,” IEEE Micro,
vol. 4, no. 6, pp. 6–21, Dec 1984.

[35] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt),”
Internet Requests for Comments, RFC Editor, RFC 7519, May 2015,
http://www.rfc-editor.org/rfc/rfc7519.txt. [Online]. Available: http://www.
rfc-editor.org/rfc/rfc7519.txt

https://tools.ietf.org/html/rfc7230
https://developers.google.com/gmail/api/
https://developers.google.com/gmail/api/
https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://uic.edu.hk/~spjeong/ete/xml_what_is_service_oriented_architecture_sep2003.pdf
http://uic.edu.hk/~spjeong/ete/xml_what_is_service_oriented_architecture_sep2003.pdf
http://alexander.holbreich.org/jwt/
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt

BIBLIOGRAPHY 50

[36] N. M. Josuttis, SOA in practice: the art of distributed system design. " O’Reilly
Media, Inc.", 2007.

[37] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: service-oriented archi-
tecture best practices. Prentice Hall Professional, 2005.

[38] N. Kratzke, “Lightweight virtualization cluster how to overcome cloud vendor
lock-in,” Journal of Computer and Communications, vol. 2, no. 12, p. 1, 2014.

[39] J. C. Laprie, J. Arlat, C. Beounes, and K. Kanoun, “Definition and analysis of
hardware- and software-fault-tolerant architectures,” Computer, vol. 23, no. 7,
pp. 39–51, July 1990.

[40] K. B. Laskey and K. Laskey, “Service oriented architecture,” Wiley Interdisci-
plinary Reviews: Computational Statistics, vol. 1, no. 1, pp. 101–105, 2009.

[41] Y. Li and S. Manoharan, “A performance comparison of sql and nosql
databases,” in Communications, Computers and Signal Processing (PACRIM),
2013 IEEE Pacific Rim Conference on. IEEE, 2013, pp. 15–19.

[42] “Chapter 1: Service Oriented Architecture (SOA),” Microsoft, Available: https:
//msdn.microsoft.com/en-us/library/bb833022.aspx.

[43] A. S. Nascimento, C. M. Rubira, R. Burrows, F. Castor, and P. H. Brito,
“Designing fault-tolerant soa based on design diversity,” Journal of Software
Engineering Research and Development, vol. 2, no. 1, pp. 1–36, 2014. [Online].
Available: http://dx.doi.org/10.1186/s40411-014-0013-7

[44] S. Neely and S. Stolt, “Continuous delivery? easy! just change everything (well,
maybe it is not that easy),” in Agile Conference (AGILE), 2013. IEEE, 2013,
pp. 121–128.

[45] “Announcing Zuul: Edge Service in the Cloud,” Netflix, Available: http://
techblog.netflix.com/2013/06/announcing-zuul-edge-service-in-cloud.html.

[46] S. Newman, “Building microservices,” 2015.

[47] Object Management Group, “Corba,” 2012. [Online]. Available: http:
//www.omg.org/spec/CORBA/

[48] “What Is SOA?” The Open Group, Available: http://www.opengroup.org/soa/
source-book/soa/soa.htm.

https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://msdn.microsoft.com/en-us/library/bb833022.aspx
http://dx.doi.org/10.1186/s40411-014-0013-7
http://techblog.netflix.com/2013/06/announcing-zuul-edge-service-in-cloud.html
http://techblog.netflix.com/2013/06/announcing-zuul-edge-service-in-cloud.html
http://www.omg.org/spec/CORBA/
http://www.omg.org/spec/CORBA/
http://www.opengroup.org/soa/source-book/soa/soa.htm
http://www.opengroup.org/soa/source-book/soa/soa.htm

BIBLIOGRAPHY 51

[49] OWASP, “Input Validation Cheat Sheet,” 2016. [Online]. Available:
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

[50] D. Peng, C. Li, and H. Huo, “An extended usernametoken-based approach for
rest-style web service security authentication,” in Computer Science and Infor-
mation Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference
on. IEEE, 2009, pp. 582–586.

[51] H. Petritsch, “Service-oriented architecture (soa) vs. component based architec-
ture,” Vienna University of Technology, Vienna, 2006.

[52] “OnMetal: The Right Way To Scale,” Rackspace, Available: https://blog.
rackspace.com/onmetal-the-right-way-to-scale.

[53] M. Rahman and J. Gao, “A reusable automated acceptance testing architecture
for microservices in behavior-driven development,” in Service-Oriented System
Engineering (SOSE), 2015 IEEE Symposium on. IEEE, 2015, pp. 321–325.

[54] C. Richardson, “API gateway pattern,” Available: http://microservices.io/
patterns/apigateway.html.

[55] ——, “Building Microservices: Using an API Gateway,” Available: https://
www.nginx.com/blog/building-microservices-using-an-api-gateway/.

[56] ——, “Introduction to Microservices,” Available: https://www.nginx.com/
blog/introduction-to-microservices/.

[57] L. Richardson and S. Ruby, RESTful web services. " O’Reilly Media, Inc.",
2008.

[58] M. Ronayne and E. Townsend, “Case study: Distributed object technology at
wells fargo bank,” Cushing Group white paper) US: The Cushing Group, Inc,
1996.

[59] M. Rosen, B. Lublinsky, K. T. Smith, and M. J. Balcer, Applied SOA: service-
oriented architecture and design strategies. John Wiley & Sons, 2012.

[60] R. W. Schulte and Y. V. Natis, “Service oriented architectures, part 1,” Gartner,
SSA Research Note SPA-401-068, 1996.

[61] G. Shachor, “Maintaining http session affinity in a cluster environment,”
Sept. 20 2005, uS Patent 6,947,992.

https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://blog.rackspace.com/onmetal-the-right-way-to-scale
https://blog.rackspace.com/onmetal-the-right-way-to-scale
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
https://www.nginx.com/blog/building-microservices-using-an-api-gateway/
https://www.nginx.com/blog/building-microservices-using-an-api-gateway/
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/

Bibliography 52

[62] “Docker containers vs. virtual machines: What’s the difference?” SolidFire,
Available: https://www.solidfire.com/blog/containers-vs-vms/.

[63] T. Spencer, “API Security: Deep Dive into OAuth and
OpenID Connect,” 2014. [Online]. Available: http://nordicapis.com/
api-security-oauth-openid-connect-depth/

[64] S. Tilkov, “How small should your microservice be?” Available: https://www.
innoq.com/blog/st/2014/11/how-small-should-your-microservice-be/.

[65] K. S. Trivedi, M. Grottke, and E. Andrade, “Software fault mitigation and
availability assurance techniques,” International Journal of System Assurance
Engineering and Management, vol. 1, no. 4, pp. 340–350, 2010. [Online].
Available: http://dx.doi.org/10.1007/s13198-011-0038-9

[66] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling ap-
plications in the cloud,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 1, pp. 45–52, 2011.

[67] C. D. Weissman and S. Bobrowski, “The design of the force.com multitenant
internet application development platform,” in SIGMOD Conference, 2009, pp.
889–896.

https://www.solidfire.com/blog/containers-vs-vms/
http://nordicapis.com/api-security-oauth-openid-connect-depth/
http://nordicapis.com/api-security-oauth-openid-connect-depth/
https://www.innoq.com/blog/st/2014/11/how-small-should-your-microservice-be/
https://www.innoq.com/blog/st/2014/11/how-small-should-your-microservice-be/
http://dx.doi.org/10.1007/s13198-011-0038-9

	Introduction
	Need for the Research
	Goals
	Structure

	Service-oriented architecture
	History of SOA
	Benefits of SOA
	Reliability
	Scalability
	Web Services
	Representational State Transfer
	Stateless and Stateful Services
	Virtualization

	Management Software Requirements
	Apple Authorized Service Providers
	An Example Use Scenario
	Functional Requirements
	Non-functional Requirements
	Defining the Required Services

	Architecture, Testing and Deployment
	Monolithic Architecture
	Separating the Application to Services
	Connecting Services
	API Gateway
	Multitenancy
	Authentication
	OAuth 2.0
	Authentication as a Service
	JSON Web Tokens

	Deployment
	Docker
	Deployment Pipeline

	Evaluation
	Conclusions
	Bibliography

