
JOONA LAINE

LOW LATENCY HIGH-DEFINITION VIDEO STREAMING FOR

REAL-TIME TELEOPERATION PLATFORM

Master of Science thesis

Examiner: Prof. Atanas Gotchev

Examiner and topic approved by the

Faculty Council of the Faculty of

Computing and Electrical Engineering

on 7th December 2016

i

ABSTRACT

JOONA LAINE: LOW LATENCY HIGH-DEFINITION VIDEO STREAMING
FOR REAL-TIME TELEOPERATION PLATFORM
Tampere University of Technology

Master of Science thesis, 42 pages, 0 Appendix pages

May 2017

Master's Degree Programme in Information Technology

Major: Signal Processing

Examiner: Prof. Atanas Gotchev

Keywords: teleoperation, real-time, low latency, GStreamer, H.264

Teleoperation is the remote controlling of machines using a real-time video stream

to support the controlling decisions. The key components of a teleoperation system

are video streaming through a network to enable the control, low enough latency

to ensure real-time control and latency - bandwidth - resolution balance of the

streaming system. In general, a low latency means high bandwidth consumption

and the used resolution relates also straight to the bandwidth. Using the modern

video coding method H.264/AVC allows for the reduction of bandwidth and latency

by selecting a suitable H.264 pro�le.

This thesis studies the possibility and e�ect of maximizing the usage of a graphics

processing unit (GPU) in the streaming pipeline of a teleoperation platform and

presents measurements to show the impact on the streaming latency. An open

source multimedia framework GStreamer is used in the pipeline construction of

the platform. The thesis presents the creation of two teleoperation platforms and

examines their features. Latency measurements between an existing system and

one of the developed systems are compared and results discussed. The results show

that employing a GPU in the streaming pipeline greatly improves the performance

of the system and allows the streaming of multiple simultaneous low latency high

resolution video streams.

ii

TIIVISTELMÄ

JOONA LAINE: Matalan latenssin korkealaatuinen videon suoratoisto reaaliaikaiseen
teleoperointialustaan
Tampereen teknillinen yliopisto

Diplomityö, 42 sivua, 0 liitesivua

Toukokuu 2017

Tietotekniikan koulutusohjelma

Pääaine: Signaalinkäsittely

Tarkastaja: Prof. Atanas Gotchev

Avainsanat: teleoperointi, reaaliaikaisuus, matala latenssi, GStreamer, H.264

Teleoperointi on koneiden kauko-ohjausta, jossa hyödynnetään reaaliaikaista videon

suoratoistoa ohjauspäätösten tukena. Teleoperointijärjestelmän keskeisiä kompo-

nentteja ovat verkon läpi tapahtuva videon suoratoisto ohjauksen mahdollistamiseksi,

riittävän matala latenssi varmistamaan reaaliaikainen ohjaus sekä latenssin, kaistankäytön

ja resoluution tasapaino suoratoistojärjestelmässä. Yleisesti ottaen matala latenssi

tarkoittaa korkeaa kaistankäyttöä, johon käytetty resoluutio suoraan vaikuttaa. Mod-

ernin videokoodekin H.264/AVC käytöllä voidaan vaikuttaa kaistankäyttöön ja latenssiin

valitsemalla sopiva H.264 pro�ili.

Työssä tutkitaan näytönohjaimen (GPU) käytön maksimoinnin mahdollisuutta ja

vaikutusta teleoperointialustan suoratoistoputkessa ja esitetään mittaustulokset ja

käytön vaikutus suoratoiston latenssiin. Alustan suoratoistoputken rakentamisessa

käytetään avoimen lähdekoodin viitekehystä GStreameria. Työ esittelee kahden

teleoperointialustan kehitystyön ja tarkastelee niiden ominaisuuksia. Työssä vertail-

laan jo olemassa olevan ja toisen työssä kehitetyn alustan latenssimittauksia ja po-

hditaan saatuja tuloksia. Tulokset vahvistavat, että näytönohjaimen käyttö paran-

taa suuresti suoratoistojärjestelmän performanssia ja mahdollistaa usean samanaikaisen

matalan latenssin sekä korkean resoluution videon suoratoiston.

iii

PREFACE

This thesis was written at OptoFidelity Oy. The thesis was done as a result of

developing a new version of the OptoFidelity OptoMon teleoperation platform for

industrial environment. I want to thank my superior Lasse Lepistö for giving me

this opportunity to work with the project and learn a ton of programming.

I also want to thank my supervisor professor Atanas Gotchev for supervising and

taking it also his personal agenda to help me get this work �nished. Especially I owe

my endless gratitude to my colleagues Juha Leino and Kari Mäkelä who both acted

as mentors and provided invaluable support and advice during the development

process. I also want to thank Janne Honkakorpi and especially Rebekah Rousi for

their valuable advice on spelling and structuring of the thesis.

Finally, I want to thank my family and friends and especially my wife Maria, who has

been supporting me tirelessly throughout this process in every aspect imaginable.

Tampere, 22.05.2017

Joona Laine

iv

TABLE OF CONTENTS

1. Introduction . 1

2. Background . 3

2.1 Teleoperation . 3

2.2 Video streaming . 4

2.3 GStreamer . 9

2.4 Platform requirements and goals . 13

3. Platform development . 15

3.1 Development using Qt . 15

3.2 Development using Glib . 23

4. Platform evaluation . 28

4.1 Latency benchmark . 28

4.2 OptoMon v1 latency measurements 31

4.3 OptoMon v2 latency measurements 33

4.4 Comparison between platforms . 35

5. Discussion . 39

6. Conclusions . 41

Bibliography . 43

v

LIST OF FIGURES

2.1 Di�erences of image resolutions . 7

2.2 Graph illustration of end-to-end latency 8

2.3 A simple GStreamer pipeline . 10

2.4 An advanced GStreamer pipeline . 11

3.1 H.264 pro�les . 18

3.2 Qt platform work�ow . 19

3.3 Architectural overview of the Qt platform 21

3.4 Architectural overview of the Glib platform 24

3.5 Work�ow of the Glib platform . 25

3.6 Work�ow of the Stream Manager . 26

4.1 Display setup used in latency measurements 29

4.2 Camera and LED target setup used in latency measurements 30

4.3 Latency measurements using camera Q1765-LE and MJPEG 35

4.4 Latency measurements using camera Q3709-PVE and MJPEG for

OptoMon v1, H.264 for OptoMon v2 36

4.5 Latency measurements using camera Q1765-LE and H.264 37

4.6 Latency measurements using camera Q3709-PVE and H.264 38

vi

LIST OF TABLES

4.1 Benchmark latencies measured from Axis Live View 31

4.2 Latency measurements of OptoMon v1 platform 32

4.3 Latency measurements of four simultaneous streams using OptoMon

v1 platform . 32

4.4 Latency measurements of OptoMon v2 platform 33

4.5 Performance measurements of OptoMon v2 platform 34

vii

LIST OF ABBREVIATIONS AND TERMS

API Application Programming Interface
AVC Advanced Video Coding
CPU Central Processing Unit
FHD Full High-De�nition
fps Frames Per Second
GPU Graphics Processing Unit
GUI Graphical User Interface
H.264 ITU-T naming convention for video codecs, see AVC
HD High-De�nition
HTTP Hypertext Transfer Protocol
HW Hardware
JPEG Joint Photographic Experts Group
LED Light Emitting Diode
MB/s Megabytes per second
MPEG-4 Moving Picture Experts Group number 4
ms millisecond
NAL Network Abstraction Layer
NTP Network Time Protocol
OpenGL Open Graphics Language
POE Power Over Ethernet
PPS Picture Parameter Set
RTCP Real-Time Control Protocol
RTP Real-Time Transfer Protocol
RTSP Real-time Session Protocol
SD Standard De�nition
SDK Software Development Kit
SPS Sequence Parameter Set
SW Software
TCP Transfer Control Protocol
UAV Unmanned Aerial Vehicle
UDP User Datagram Protocol
UHD Ultra High-De�nition
VAAPI Video Accelerated API
VM Video Multimeter

1

1. INTRODUCTION

We live in a world of automation. We already have lawnmowers and vacuum cleaner

bots that do not need a human operator. We also have unmanned aerial vehicles

(UAVs) in the military �eld. Even some consumer grade drones have features like

automatic return to home on low battery or when out of reach of the controller.

In addition, there is a lot of research going on about autonomously driving vehicles

[1, 23, 33]. Many of these vehicles greatly bene�t from camera-based sensory input

and some can only be operated by using a video stream. In this case we are talking

about teleoperation.

At the core of any teleoperation system there is a camera or a number of cameras.

The videos from these cameras are streamed to the operator who makes control-

ling decisions based on the video streams. In order for this to work properly and

accurately, the system should allow the operator to get up-to-date information and

feedback on the controls he or she makes on the machine or device being operated.

In order to give the operator as much information as possible about the �eld con-

ditions, it is possible to use high-de�nition (HD) video streams. A key term in

teleoperation is latency; the time di�erence between the actions in the real world

and what is shown on the display at the operator's end.

This combination of cameras, possibly high-de�nitions cameras, real-time video

streaming and low latency requirements poses a lot of challenges to the teleopera-

tion system. There are many companies o�ering di�erent possibilities to overcome

these challenges. Some companies, such as NanoCosmos, Wowza and StreamBox,

o�er streaming solutions that do not quite satisfy the low-latency part and are more

suited to streaming videos to massive amounts of people with a latency of a couple

of seconds. On top of these there are some that o�er a lower, close to one second

end-to-end latency for the video streams. Companies such as The Streaming Com-

pany, Phoenix P2P and Unreal Streaming Technologies fall in to this category. Then

there are those who can o�er a low enough latency to allow real-time teleoperation.

1. Introduction 2

These are companies such as Ittiam Systems, CoreEl technologies, IPX communica-

tions and OptoFidelity. Some of the companies o�er purely software solutions such

as their own customized platforms, whereas some of the systems are cloud-based

streaming services. Among the companies there are also those who o�er highly op-

timized hardware for video encoding, decoding and transcoding to o�er the lowest

possible latency for varying environments and devices.

OptoFidelity Oy has developed a multimedia platform for making complex mon-

itoring and teleoperation applications for their customers. The platform is called

OptoMon and consists of several self-built libraries used by the applications to en-

able video streaming and rendering. The development of the platform was originally

started in 2008 when it was used for in monitoring industrial processes. From 2010

onwards it was introduced in the teleoperation environment. The platform is now

facing multiple challenges. For this reason the system is now being remade.

From a customer perspective a teleoperation system is a matter of cost, latency and

bandwidth. With a low-cost software solution you probably get adequate latency

with relatively low bandwidth consumption. Whereas, with a high-cost hardware

and software solution you get dedicated hardware and possibly very low latency,

the drawback is that the price of extremely low latency is very high bandwidth.

What if there was a software-based solution that could o�er the best of the two; low

latency and low bandwidth consumption at a reasonably low price? This current

thesis presents the development of a system that is intended to possess low latency,

require low bandwidth and be relatively inexpensive.

This document is structured as follows. Chapter 2 covers the background informa-

tion, including the problem setting and main concepts of the thesis. In Chapter 3

we look at the two developed solutions to the problem. Chapter 4 includes an eval-

uation of the solutions presented earlier. In Chapter 5 we discuss the signi�cance of

the work. Finally, Chapter 6 includes conclusions and presents the future outline of

the work.

3

2. BACKGROUND

In this chapter, the core concepts of the study are presented. First, the meaning

of teleoperation is de�ned. Then, video streaming and the concepts involved in

streaming is looked at. Next, GStreamer and the way it enables creating video

streaming pipelines is explained. Finally, the main goals of the thesis are presented.

2.1 Teleoperation

Teleoperation is the remote controlling of machines and is used in situations where

the robot or machine is unable to perform a task, subsequently necessitating the

guidance of a human operator [26]. In the context of this thesis, teleoperation is

used in the exact aforementioned way. For most of the time the machine operates

autonomously, yet there are some scenarios in which it is unable to ful�ll its task.

This can be due to bad weather conditions if the machine is outdoors, or it can be a

task that requires extreme precision or human judgement. The way teleoperation is

made possible is through a video stream from the controlled machine to the operator

that is further away from the machine. There might not even be a direct line of

sight between the two. In this case, the video stream can be the only feedback the

operator gets from operating the machine.

In a situation described above, it is of utmost importance that the feedback is

appropriately controlled. There is a high chance of hazard if the feedback from a

manoeuver comes too late to the operator. Even a couple hundreds of milliseconds

might be too much for precision demanding tasks. The ultimate goal in teleoperation

could be to enable the controls to feel as if the operator was present at the scene.

This would mean zero latency in the operation. However, in true life situations,

where teleoperation is used, this is usually not the case. Luckily latency can be

reduced to a degree where real-time teleoperation is possible.

2.2. Video streaming 4

2.2 Video streaming

Streaming is de�ned as digital distribution of audio or video material in real-time

[3]. Usually this happens over a network, which can be wired, wireless or both.

The used network infrastructure a�ects the amount of latency experienced when

streaming and the available bandwidth of the network a�ects, e.g., the quality of

the streamed media. In this thesis the streaming is concentrated on video and audio

is not considered.

Streaming a video has multiple steps. The most important being, from the point of

view of this thesis, the encoding of the video, transmission over a network, decoding

and �nally rendering. The encoding usually happens in the camera. Encoding is

a process where the video data is transformed into another form. The raw video

data that is read from the sensor of a camera would be impractical to transmit as it

is. Thus, encoding methods have been developed to transform the data into a more

compact form without changing the content, or if necessary, changing it as little as

possible. The encoded stream is not such that it could be viewed as it is, but needs

to be decoded �rst. A corresponding decoder to the utilised encoder must be used.

Encoding is also referred to as compression, simply because it compresses the data.

The main video compression technique in OptoMon is the MPEG-4 Advanced Video

Codec (AVC), or more commonly known as H.264. It is one of the most used and

best performing video codecs today [21] and has therefore been chosen to be used in

OptoMon as well. Also, since most of the cameras employed by the users are capable

of encoding video streams with H.264, it is a logical choice. The current OptoMon

implementation also supports motion JPEG (MJPEG) encoded video streams due

to legacy cameras. The use of MJPEG in encoding and decoding has the bene�t

of decreasing latency by being less complex than H.264. However, the downside

of this is its much larger resulting bitstream. This is extremely noticeable when

simultaneously streaming multiple streams or HD streams.

Decoding

The decoding of a video stream is one of the key steps in the streaming pipeline. It

might introduce a great deal of latency or missing frames to the stream if not handled

appropriately. The used network architecture has subsequently a large impact on the

latency. However, we are not considering it here as a problem, since it is up to the

user to manage the network. The main problem with the current implementation

2.2. Video streaming 5

in OptoMon is that the decoder is solely based on software decoding. This means

that the decoding is performed among all the other processing steps in the system

and the computing unit used is the central processing unit (CPU).

The proposed method for solving the issues related to decoding is to use the graphics

processing unit (GPU) of the computer for decoding. It is expected to dramatically

increase the overall performance of the system due to the fact that multiple simul-

taneous streams can be decoded parallel on the GPU. In addition, each individual

stream can be decoded in a parallel fashion due to the parallel architecture of the

GPU and the advanced decoding algorithms.[6, 34]

Frames per second

Frames per second (fps) is a property of a video describing the smoothness of motion

in the video. It speci�es how many frames are displayed in one second. The more

frames are shown to the human eye, the less it sees di�erence between adjacent

frames and the sequence of frames give the impression of moving objects. By showing

10 to 12 fps to the human eye make the brain think it sees motion [29]. The higher

the fps value, the smoother rapid movements appear.

The problem with OptoMon in some environments and hardware is that to ensure

the latency stays within limits, the fps of the stream has been forced to be decreased.

This has the e�ect that motion appears jerky. The jerkiness a�ects the experience

in a negative way, since it makes it harder to follow the stream. The key point with

fps really is in the operation part of teleoperation. It can make it really hard to

operate a machine when the feedback from the video stream is lacking information.

It is expected that the use of a GPU in the pipeline will help with this issue.

Real-time streaming protocol

The transmission of video data is usually performed by streaming it over a network.

There are a number of ways this can be made possible and the two commonly used

methods are hypertext transfer protocol (HTTP) and real-time streaming protocol

(RTSP). OptoMon uses RTSP whenever possible and within RTSP there is a user

datagram protocol (UDP) based real-time transport protocol (RTP) delivery. RTSP

is the command protocol. The actual video data is not transferred over RTSP, but

over RTP. RTP in turn is a thin protocol sent over UDP or transport control pro-

tocol (TCP) [31]. The use of UDP is preferred due to its nature of performing

2.2. Video streaming 6

connectionless communication. This means, that by using UDP there are no con�r-

mation messages ensuring that all packets have arrived at their destination. In the

case of real-time streaming this is not a problem, since we aim for minimum latency

and packets arriving late would be discarded anyway. TCP works in a di�erent

way by making sure that all packets arrive at their destination. This is achieved

by retransmitting lost packets. TCP is capable of introducing more latency to the

streaming in challenging network conditions and is more suitable for less time critical

communication, e.g. Youtube streaming.

Visual quality

Visual quality of a video can be understood in a multitude of ways. When talking

about the quality of a video people might refer to its resolution, fps, smoothness of

motion or visual artifacts in the playback. In this thesis the interest is mostly in the

resolution of the video. The su�ciency of the visual quality of the video stream is

de�ned by the user. In addition, the purpose of the video can critically a�ect the

quality requirements. There are no strict guidelines when it comes to quality. The

main focus is on the reliability of the stream; that a captured frame is displayed as

soon as possible on the display. The settings of the streams can be adjusted to an

appropriate level of visual quality depending on the user's requirements, environment

and available hardware.

The problem in OptoMon is that the used hardware is unable to decode and render

high resolution streams. A hardware update might help with the issue, but it has

not been investigated and is out of the scope of this thesis. OptoMon is currently

capable of streaming multiple standard de�nition (SD) quality streams, but has se-

vere problems with high-de�nition (HD) quality. The customers have been adopting

modern camera technology which means they want to increase the resolution of the

streams.

HD video is considered to be a resolution of 1280 by 720 pixels per frame. The

numbers refer to the horizontal and vertical number of pixels in each frame, re-

spectively. This resolution is also called a 720p resolution and analogously 1080p is

called Full-HD (FHD) resolution. With an aspect ratio of 16:9, which is often used

in images, video and monitors, gives FHD frame a horizontal pixel count of 1920.

The di�erences are displayed in Figure 2.1.

The more pixels there are in a frame the harder it is to encode. This increased

2.2. Video streaming 7

Figure 2.1 An illustration of image resolutions to the image quality, details and area.
(Source: https://www.worldeyecam.com/4-HD-1080P-Security-Dome-HD-CVI-DVR-Kit-
for-Business-Professional-Grade.html. Image by WorldEyeCam Inc.)

amount of data in turn takes up more bandwidth from the network and is harder to

decode. Processing becomes even more demanding with numerous streams running

simultaneously. As proposed in earlier sections, the use of a GPU plays a key role

regarding the increasing resolution and data �ow.

Until recently, the resolution in the industry-grade camera's video frames has been

up to SD, or 480p, but the new cameras and technology has brought HD and FHD to

the teleoperation �eld. OptoMon works adequately with SD streams, but has severe

di�culties with HD and FHD. The main motivation with the new OptoMon is to

enable streaming of multiple FHD streams, while keeping steady and low latency.

Latency

Latency refers to the time it takes from the moment a camera captures an image to

the moment it is transferred through a network and rendered on a screen. Therefore,

we talk about end-to-end latency. Figure 2.2 illustrates the di�erent components

each a�ecting the total latency of a video streaming system. The aim is to enhance

the real-time monitoring and control of machinery as if the operator were actually

2.2. Video streaming 8

Figure 2.2 An illustration of end-to-end latency in video streaming. (Source:
http://www.ittiam.com/key-technologies/low-latency-video. Image by Ittiam Systems.)

present in the cabin of he controlled machine. This is why it is important to try to

maintain low latency. However, even more important is to know what the latency

is and whether it is too high. There are two ways latency is being monitored in

OptoMon. The �rst is the company's own product Video Multimeter (VM). The

VM works by �ashing an light emitting diode (LED) light with a known frequency.

The light is positioned in a way that it is captured by the camera. There is an

optical �bre on the display positioned where the blinking LED is shown. The device

can then measure the end-to-end latency of the system, because it knows when the

LED is lit in the real world and when the LED is lit on the display.

Measuring latency using the VM is a useful method in the laboratory environment

and development phase, however it is not suitable for the �eld, since the machines

are usually tens or even hundreds of meters away from the displays. The other

way to measure the latency, which is feasible also in the �eld, is using a timestamp

overlayed on the video. The timestamp is inserted onto every frame containing

the time of capture, preferably in milliseconds, since latency should be determined

in milliseconds. When the timestamped frame is transferred over the network the

received and decoded frame's timestamp can be compared to the time of the com-

puter. This requires that the server on the camera and the client computer are

2.3. GStreamer 9

synchronized using, e.g., network time protocol (NTP).

Keeping up a steady, low latency in the stream is the main motivation of OptoMon.

In recent tests, it has been noticed that OptoMon is unable to keep the latency as

low as it would need to be. This is apparent with streams from HD cameras, but

also noticeable with multiple streams from SD cameras. It is the result of OptoMon

not being able to process all the data in the streams. The system needs to bu�er

each stream in order to be able to process them. This in turn, increases the latency.

The means by which to reduce this behaviour is to use the GPU in the decoding to

free up the resources of the CPU and share the processing workload. In the current

systems, the GPU is not used in processing in any way. This means that signi�cant

performance upgrades can be gained by putting it to use. Another way to help with

keeping up low latency is to change the currently used software components.

2.3 GStreamer

GStreamer is an open source multimedia framework for creating streaming media ap-

plications. Its foundations are at the Oregon Graduate Institute's video pipeline and

ideas adopted from DirectShow. GStreamer allows for arbitrary pipeline construc-

tion which makes it an ideal tool when building any multimedia related applications.

It is also extendable, meaning anyone can write their own plugins. This is a highly

valued feature from the perspective of this thesis. [8]

At the hearth of GStreamer are the plugin packages, named the core, base, good,

bad and ugly. In addition, there are also other packages, e.g. ,Video Accelerated API

(VAAPI) and libav, which contain many encoders and decoders for audio and video

formats to name some. The core and base packages are required to perform any

basic media processing and usually some other packages are also needed depending

on the requirements of the application. The packages contain plugins which in turn

may have several elements. In this thesis, there are plugins and elements being used

from all packages, except the ugly.

Before any actual platform development could be started there had to be a form

of technology evaluation. This was necessary to ensure that the chosen multimedia

framework was capable of performing the tasks it would need to do. It was also

the appropriate time to learn how the whole framework functioned. After some

2.3. GStreamer 10

Figure 2.3 An illustration of a simple GStreamer pipeline with a source element, one
�lter and a sink.

preliminary pipeline construction and testing it was decided that the GStreamer

pipeline was a suitable way to manage the video streams from multiple cameras.

Pipeline

The processing in GStreamer takes place in a pipeline. The pipeline is constructed

from a number of elements and at minimum the pipeline needs a source and a

compatible sink. The source provides data to the pipeline and can be, e.g., a �le

or a live source, such as a camera. The sink at the end of the pipeline ends the

data�ow and outputs the stream e.g. into a �le or renders it on a display. Between

these two there can be a number of other elements, often called �lters, which take

data in from an upstream element, modify or otherwise process it and pass it on

to a downstream element. A �lter element might not do anything with the data

in which case it just passes it through. Figure 2.3 shows an example pipeline. As

can be seen, the data from the source �ows downstream to the �lter element and

continues to the sink.

In an application there might only by one pipeline. This can be suitable when the

pipeline has a relatively simple task, such as reading a source, processing it somehow

and then displaying it. It is also possible to have multiple pipelines running at the

same time. In the case of this thesis it was practical to have each video stream in

its own pipeline. The simple reason is that this way the individual pipelines do not

interfere with each other.

A real example of a pipeline is shown in Figure 2.4. The function of each element

in the pipeline is explained in the following sections.

2.3. GStreamer 11

Figure 2.4 An illustration of a real GStreamer pipeline with a source element, multiple
�lter elements and a sink.

rtspsrc

The data�ow in this pipeline starts from the source. The source element is an

rtspsrc, because the network protocol used in the streaming is RTSP. If we would

use, e.g., HTTP we would need to have another source element and make some

other modi�cations to the pipeline. The purpose of the source is to request a stream

from the camera. This can be provided with additional parameters, such as the

latency and whether to drop the connection in case of too much latency. The source

negotiates the streaming details with the camera, such as the used transfer protocol

and utilised ports. Once this is �nished, the data starts streaming from the camera

to the source element. The camera itself is usually pre-con�gured to some certain

settings regarding the encoding method, resolution and compression of the stream.

[13]

rtph264depay

The next element in the pipeline is a �lter, rtph264depay, which by nature is a

depayer object. The purpose of this element is to remove the RTP payload from the

coming bitstream and pass on the rest of the data to the next element. [12]

h264parse

The h264parse element is used to parse the incoming bitstream in both H.264 and

AnnexB standards. It provides the following element with a decodable H.264 bit-

stream that has the Network Abstraction Layer (NAL) units ordered the correct

2.3. GStreamer 12

way. The payload data in H.264 is transferred using NAL units and there are a

number of di�erent NAL units for di�erent purposes; the coded slices contain en-

coded frame data, whereas, Sequence Parameter Set (SPS) and Picture Parameter

Set (PPS) contain parameters related to the whole video stream or certain slices

and macroblocks. [9, 30]

queue

The queue element is used to bu�er the bitstream to allow the decoder to decode the

stream with all of the needed slices and macroblocks required for the next frame. It

also launches a new thread for the rest of the pipeline that continues from its source

pad. The queue can be set to bu�er a certain maximum amount of data and can be

set into a leaky state using its properties. [11]

decoder

The decoder makes the most di�erence in the pipeline, since it does most of the

work in transforming the encoded bitstream into renderable frames. The decoder

is not speci�ed here for the reason that there are two di�erent decoders in use; the

software decoder avdec_h264 and the hardware accelerated decoder vaapidecode.

[10, 14]

videoconvert

The videoconvert element is used to convert the stream type when the vaapidecode

element is used in the decoding. The videocrop element is not compatible with

vaapidecode which is why videoconvert is needed. When using avdec_h264 this

conversion is not needed and videoconvert only passes on the bu�ers it receives. [16]

videocrop

There are situations where the area of the frame needs to be altered. In practice,

this means cutting away a certain amount of rows or columns from a frame. The

videocrop element is used for that. It has four properties for cropping a frame from

top, right, left and bottom of a frame. After cropping, the videocrop element passes

on a cropped frame to the next element in the pipeline. [17]

video�ip

The video�ip element can be used to perform a �ipping or rotating operation to a

2.4. Platform requirements and goals 13

frame. The element can perform the rotation in 90 degree increments and �ipping

along vertical, horizontal and both diagonal axes. [18]

glimagesink

The last element in the pipeline is the sink. In this thesis we used the glimagesink,

which is an Open Graphics Language (OpenGL) enabled element. This means that

the rendering in OptoMon is performed on the GPU even if all the other processing

blocks were still implemented using the CPU. One of the reasons the glimagesink

was selected was in fact the OpenGL capability. In addition, it was also the best

performing sink from the selection of sinks that were tested; the other possibilities

being ximagesink, xvimagesink and vaapisink. [7, 19, 20, 15]

2.4 Platform requirements and goals

The main requirement for the platform is to be able to stream multiple FHD streams

simultaneously. Accomplishing this requirement will be a great bene�t for the plat-

form, since it is the largest weakness in the existing platform. In addition, the latency

of the streams needs to be within reasonable limits that suit real-time teleopration.

The new platform should perform equally or better than the existing platform. Fur-

ther, the platform is to be independent of proprietary platforms and support GPU

plugins in its streaming pipeline.

Dependency with Axis' DirectShow plugin

OptoMon's existing media streaming pipelines are based on the DirectShow mul-

timedia API. DirectShow is made and maintained by Microsoft and it is a part

of the Windows software development kit (SDK). OptoMon utilizes a DirectShow

plugin made by Axis Communications for the DirectShow multimedia API since

the cameras used by the consumers are often Axis cameras. The aforementioned

plugin is used to input the streams from the cameras into a DirectShow pipeline.

The problem with the plugin is that it is no longer o�cially supported by Axis.

Instead, Axis o�ers a new component to replace the old one, except the two are not

interchangeable since the new Axis Media Control ActiveX component works in a

di�erent way to the old [2].

The main issue with the plugin is that it leaks memory [5]. In addition, there are no

�xes to be seen by Axis since the plugin is not o�cially supported anymore. On top

2.4. Platform requirements and goals 14

of this, although the plugin works most of the time, it is not capable of streaming

multiple HD video streams. To solve these issues we decided to replace the plugin

and DirectShow with a better supported and performing multimedia solution.

Lack of GPU plugins in DirectShow API

The main motivation for creating a new generation of OptoMon was to get a better

performing and �exible platform. With HD and beyond resolution in cameras it

becomes necessary to talk about using GPUs in the processing. DirectShow does

not o�er such a solution out of the box. It would have meant considerable amounts

of programming to achieve these desired goals and DirectShow might not have been

the best environment in which to place that e�ort.

In addition, the very �rst task in this project was to determine the technology that

would allow for the accomplishment of goals with OptoMon. Thus, GStreamer was

chosen to be that technology. The main undesirable features of DirectShow were its

lack of support for GPUs, dependency of a proprietary platform and di�culty to

modify existing plugins, and plugin creation.

15

3. PLATFORM DEVELOPMENT

In this chapter the development of the new platform is described. The development

work is split into two parts. In the �rst part a version of the platform that was

developed using the Qt framework is presented. In addition, its design principles

and an analysis of its features and short-comings is revealed. In the second part

an enhanced platform developed using the Glib framework is presented. Also, a

description of its architecture and problems solved from the Qt-based version are

discussed.

3.1 Development using Qt

The �rst version of the new platform was decided to be built around Qt. Qt is a

cross-platform application development framework [27] and provides tools to make

a graphical user interface (GUI) for our application. GStreamer also has a wrapper

for Qt that allows for the integration of streaming pipelines into the application.

Design principle

A list of basic functionality was de�ned for the platform and consisted of the fol-

lowing:

• A way to con�gure the stream parameters

• Starting a stream

• Closing a stream

• Cropping the frame of a stream

• Rotating the frame of a stream

3.1. Development using Qt 16

1 <?xml version="1.0" encoding="utf -8"?>

<ViewConfiguration xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

3 xmlns:xsd="http: //www.w3.org /2001/ XMLSchema">

<Streams >

5 <Stream ID="Axis_Q1765 -LE_Stream" CameraID="88" Type="Video"

Device="Axis">

7 <Host>110.120.130.140 </Host>

<Username >user</Username >

9 <Password >pswd</Password >

<Codec>H264</Codec >

11 <TransmitType >UnicastRTP </TransmitType >

<UseVaapi >true</UseVaapi >

13 </Stream >

</Streams >

15 <StreamStyles >

<StreamStyle ID="BasicStyle">

17 <TopCrop >0</TopCrop >

<RightCrop >0</RightCrop >

19 <BottomCrop >0</BottomCrop >

<LeftCrop >0</LeftCrop >

21 <Rotation >0</Rotation >

</StreamStyle >

23 </StreamStyles >

<StreamPanels >

25 <StreamPanel ID="Axis_Q1765 -LE_StreamPanel"

StreamRef="Axis_Q1765 -LE_Stream" StreamStyleRef="BasicStyle" />

27 </StreamPanels >

<Views>

29 <View ID="Axis_Q1765 -LE" DestinationArea="VideoPanel">

<CompositePanel ID="Fill" Weight="100" Orientation="Horizontal">

31 <VideoPanel ID="Left" Weight="100"

StreamPanelRef="Axis_Q1765 -LE_StreamPanel" />

33 </CompositePanel >

</View>

35 </Views>

</ViewConfiguration >

Program 3.1 An example of a con�guration �le. The �le con�gures one stream with

one style and one streampanel in one view.

By using these basic features it is possible to set up a stream, close it down and

modify the frames captured by a camera. One important feature of the platform

is the ability to freely con�gure the used streams and set required parameters. For

3.1. Development using Qt 17

this, a scheme, independent of the source of the con�guration data, was made. The

con�guration could be read, e.g., from a database or a �le. An example of such

con�guration is shown in Program 3.1.

The key information in the con�guration are the streams, stream styles, stream

panels and views. A stream speci�es the address of the camera, its username and

password, which encoding method to use, transmission type and whether to use

hardware acceleration in decoding. The stream style speci�es how to crop the frames

and what kind of rotation should be applied. The stream panels are the individual

streams that are rendered on the screen. The stream panel combines a speci�c

stream with a speci�c style. Views are compositions of streams that are con�gured

in a speci�ed layout. In the example one stream is con�gured in the view, however

more complex views are possible. For instance, a quad view, where four streams are

ordered in a two-by-two grid can be created.

The ability to con�gure the used decoder was added to this version of the platform.

There are two possibilities for a decoder; the software decoder avdec_h264 and the

hardware accelerated decoder vaapidecode. The choice for the decoder is not trivial,

since the software driver enabling hardware acceleration supports all except one

H.264 pro�le; the baseline pro�le. This makes choosing the decoder tricky, since

many of the cameras used by the customers are models so outdated that they do

not support other pro�les. The newer cameras have usually the following list of

supported H.264 pro�les:

• Constrained Baseline

• Main

• High

A stream having any of the above pro�le could be e�ciently decoded using the

vaapidecode element. A selection of H.264 pro�les is shown in Figure 3.1. As can

be seen, di�erent pro�les use di�erent sets of tools in the encoding process and the

decoder has to be able decode the stream using the same tools.

As discussed earlier in Section 2.3, the sink in the pipeline is the element that is

used to render the video frames on the display. In OptoMon, every individual stream

from a camera would have its own pipeline and the pipeline would have a target

window on which to render the frames.

3.1. Development using Qt 18

Figure 3.1 A selection of H.264 pro�les and coding tools used by the di�erent pro�les.[25]

On the application side, there would usually be more than one video stream playing

at the same time. This means that on the platform side an equal amount of streams

would have to exist. It made sense to have a stream object for each stream that

had a reference to a speci�c window on the GUI upon which to render. The Stream

class that handled the pipeline construction and all GStreamer related activities was

inherited from a Qt widget that would also perform the rendering. A block diagram

of the architecture is shown in Figure 3.2.

3.1. Development using Qt 19

Figure 3.2 Platform work�ow from con�guration to streaming.

As shows in the diagram, the con�guration is read and parsed from the con�guration

data. Based on the con�guration a view object is created that holds all the streams

3.1. Development using Qt 20

in a layout speci�ed by the con�guration. A grid layout was chosen due to its

versatility when con�guring arbitrary 2D layouts. A stream object is created for

every videopanel object in the layout and the stream parameters are set according

to the con�guration. Lastly, the play()-method of each stream object is utilised

to start the streaming. The platform connects to the cameras and employs the

GStreamer pipeline to stream and render to a speci�c location on the display. The

application may allow the user to be able to change the views and the platform

will open and close streams according to the con�guration. The architecture of the

platform is presented in Figure 3.3.

3.1. Development using Qt 21

Figure 3.3 Architectural overview of the Qt-based platform.

In the �gure, the di�erent modules and their relation in the platform can be exam-

ined.

Problems with the design

As was stated earlier, the Qt version of OptoMon had issues. The severity of these

issues ultimately lead to the rewriting of the whole platform from scratch. The

main issues related to this �rst version were the seemingly random crashes during

3.1. Development using Qt 22

view switching in the application. A view in the context of this thesis is a layout

con�guration of windows upon which each would have a stream playing. A fairly

common view for the users was a quad view. At the time the application switches

a view it �rst needs to stop the playback of each stream one by one, then destroy

the Qt widgets representing the windows in the view, each containing a GStreamer

pipeline, and �nally construct the new view with new widgets. After the new win-

dows had been created the application would con�gure each new stream with their

corresponding parameters and start each of the new pipelines.

The issue in this process was that there was practically no way of knowing the timing

of each of these steps. Ultimately, there were some steps that needed to be made in

a speci�c order. First, the streaming would need to be stopped. For this the client

computer would send a STOP message using RTCP to the server; the server being

the camera. After getting acknowledgement and reply message from the server to

the STOP message, the client computer would send a TEARDOWN message, which

would tell the server to tear down the streaming pipeline. After the TEARDOWN,

the server would reply to the client with an OK message. The opening and closing

of the streams would fail sometimes, because of thread deadlocks. A deadlock is a

situation where one thread wants to access a resource, but that resource is locked

by another thread that has been suspended. This leads to the resource being locked

inde�nitely and that no thread can access it, leading to a deadlock situation [24].

The deadlock situation would not always crash execution and it would seem that

everything is working as expected. In reality, the deadlock would reserve an X server

connection from the operating system. The X server is an essential part of the X

window system, also called X11, on UNIX-like operating system such as Linux. The

X11 has an X server on a machine which works between the computer hardware;

the graphics card, mouse and keyboard, and the applications which on a GUI have

their own X client. Basically having multiple windows open on Linux means having

multiple X client connections to the X server [28, 22]. The X11 has a maximum

capacity of connections since it was discovered by trial and error that connecting

the 257th window resulted in the system becoming unresponsive. The maximum

amount of connections can be changed, but since the code severely misbehaved, the

appropriate decision was not to try and go around it, but to �x it.

3.2. Development using Glib 23

3.2 Development using Glib

As discussed earlier, the Qt version was not a successful attempt in creating a mul-

timedia streaming platform. One of the issues was the outdated and incomplete Qt

wrapper for GStreamer and while replacing it with another wrapper could have been

an option, it was decided not use any wrappers. Instead, the same programming

environment used for making GStreamer would be used, namely the Glib library for

C language. Glib is a general-purpose utility library providing a cross-platform in-

terface for application making [22]. Essentially it provides C programming language

with a C++ type of functionality, such as object-oriented programming scheme,

threading and many other useful features not found in plain C language.

One important reason for choosing C and Glib was the need to make a unique

functionality to the platform. In GStreamer context this would mean making our

own plugins and elements. The GStreamer elements are made using C and Glib.

Therefore, is was a perfect match to learn and use Glib while making OptoMon too.

Further, since GStreamer is an open source platform, modi�cations to the existing

plugins can easily be made. This would require knowlegde of the development

of GStreamer itself. There is one downside with Glib and that is the amount of

boilerplate code that has to be made for classes in comparison with other modern

programming languages, such as C#.

Design principle

For this enhanced version of OptoMon the whole implementation had to be rewritten

from scratch. That is why the existing functionality, including the decoder selection,

was decided to be implemented �rst from the Qt version. Additionally, there was

the need to make OptoMon into a library that could more easily be maintained and

deployed into more than one application. This lead to the rethinking of the archi-

tecture, and realization that instead of providing stream objects to the application,

OptoMon should manage the streams by itself. The platform would be used to ask

for a stream based on a con�guration object and a target window on which to ren-

der. The application would not even need to know anything about the streams. It

would be enough to return a "yes" or "no" answer to the stream request in regards

to whether or not it could be done. An overview of the architecture is presented in

Figure 3.4.

3.2. Development using Glib 24

Figure 3.4 Architectural overview of the Glib-based platform.

Comparing the architectures presented in Figures 3.3 and 3.4 it can be noticed

that the latter has had a few changes. The most obvious change is the separation of

application and platform. The con�guration scheme is the same as with the earlier

platform, however, in addition to the application's con�guration object there is also

a separate con�guration object for the Stream Manager on the platform. A place

for self-made plugins for the GStreamer framework has been added also.

3.2. Development using Glib 25

The work�ow of the new platform is shown in Figure 3.5.

Figure 3.5 Work�ow of the Glib platform version.

In the architecture the application reads, parses and creates a con�guration object.

The application takes care of creating a view and requesting a stream for each of the

video panels in the view. The application provides a Stream Manager Con�guration

object to OptoMon containing the information of the requested stream and the

window ID of the target window. The Manager object in the platform takes care

of the streams, con�gures a stream for the application and draws the stream on to

the provided window. On view change the application asks the manager to stop the

streaming of a particular stream and provides a new Stream Manager Con�guration

object. The Manager object takes care of the stopping and starting of the new

3.2. Development using Glib 26

stream.

The work�ow of the Stream Manager module is shown in Figure 3.6.

Figure 3.6 Work�ow of the Stream Manager module.

The application requests a stream from the manager, which �rst checks if the re-

quested stream is designated to an existing window ID. If it is, the manager stops,

recon�gures and resumes the streaming using the same Stream object. Otherwise,

the manager checks if it already has an idle Stream object available for use. If it

does, then it is used, however if not, the manager will create a new Stream object.

3.2. Development using Glib 27

After the Stream object has been determined the manager will con�gure it according

to the request and start streaming. From the application point of view the stream

change is faster and does not exhibit a blinking e�ect if the view con�guration stays

the same. That is, the same window IDs are used in the view. The deployed Stream

objects are put to an active stream's list, while the stopped and displaced streams

are put to a stream pool for later use. In this architecture no stream is destroyed

and new streams are always drawn from the pool by default.

At this stage it would be the application's responsibility to close the stream. Later

there could be a signaling from the application window to OptoMon, e.g., about

the closing of a window, while OptoMon could manage the closing of the stream

on its own. Using this new architecture and programming tools the absence of

crashing on stream change was noticed. In addition, a clear separation of platform

and application code was acquired, which made it much easier to manage the code

and functionality.

The same con�guration scheme was implemented in C using Glib, simply because

there was no need to change it. It is �exible, allowing for complex view con�gurations

and extendable with the possibility of adding new parameters to stream and view

con�gurations.

Bene�ts of the design

A clear bene�t of the new design was the stream handling procedure which �xed

the crashing and deadlock issues experienced with the Qt version. The separation

of platform and application code made it easier to maintain both code bases and

develop multiple OptoMon-powered applications. There was no longer a need to

update changes made to OptoMon in multiple projects, but updating the library

would be enough.

A major step forward was also the increased knowledge of GStreamer via the use of

Glib which allowed us to better understand how it works. This was also bene�cial

considering the fact that there might be a need to debug and create self-made

GStreamer plugins in the future. In addition, learning Glib made it possible to dive

deeper in GStreamer and its concepts, such as the bus, messages and pads [8].

28

4. PLATFORM EVALUATION

In this chapter the new platform is evaluated and its suitability for replacing our

existing platform examined. At �rst a benchmarking method is presented. It will be

used as the main target for our platforms. The evaluation in this thesis is performed

by analyzing the measured latencies in the streams and the resolution of the streams.

A low latency is better and having the latency as a function of resolution gives us a

sense of how much the increased amount of data a�ects the streaming performance.

The device used in the measurement is the OptoFidelity Video Multimeter, the

company's own video performance analyzer. The measurements for the benchmark

will be shown �rst. After that, the performance metrics of the old OptoMon will be

shown. Then, the measurement metrics of the new platform will be presented. In

the end, there will be a comparison of the old and new platforms.

4.1 Latency benchmark

We used two di�erent camera models in the testing of the platforms. Both are

Axis' cameras and the models are Q1765-LE and Q3709-PVE. They both produce

up to FHD video, H.264 encoded bitstream and the Q3709-PVE also allows us to

test the limits of our platform with its UHD resolution support. The cameras were

connected to a Cisco Gigabit power over ethernet (POE) switch, since both of the

cameras take their power from the Ethernet port. The cameras were con�gured

to the same network as our computer that was running the OptoMon-powered test

application.

4.1. Latency benchmark 29

Figure 4.1 Latency measurement setup of the display using the OptoFidelity Video Mul-
timeter.

4.1. Latency benchmark 30

Figure 4.2 Latency measurement setup of the camera and LED targer using the OptoFi-
delity Video Multimeter.

The benchmark for our measurements is the Axis Live View web server running

on each camera. Using this tool enables us to stream a high quality, low latency

video stream and measure its latency. The test setup is presented in Figure 4.1

and Figure 4.2. In Figure 4.1 the Video Multimeter is measuring the latency from

the display. The optical �bre on the display is connected to the Video Multimeter

allowing continuous measurement. The LED shown in Figure 4.2 is blinking at

a known threshold. The camera is capturing the blinking and the resulting video

stream is presented on the display where the latency is being measured.

The stream from Live View is an MJPEG stream which makes it propitious in the

latency sense since each frame is processed in a minimal way when compared to,

e.g., H.264. MJPEG stream causes a larger load on the network than H.264, but

since we only have one stream at a time the impact of network on latency can be

neglected. The benchmark measurement are displayed in Table 4.1.

4.2. OptoMon v1 latency measurements 31

Table 4.1 Benchmark latencies measured from Axis Live View

Camera Codec Resolution Latency

(ms)

Q1765-LE MJPEG FHD 180 ± 24
Q3709-PVE MJPEG FHD 235 ± 18

As can be seen from the table, there are signi�cant di�erences between cameras

which makes choosing a camera not self-evident. The average latency has a rather

large variation, but the di�erence between the latencies from these two cameras is

apparent. We are using the latency of a FHD stream as a benchmark for all stream

resolutions from both versions of OptoMon, since it is expected that with lower than

FHD resolution the latency is less than the benchmark and with higher resolution

it will be greater.

4.2 OptoMon v1 latency measurements

We measured the latencies of OptoMon v1 using the same cameras as in our bench-

marking measurements. We used both cameras on three di�erent resolutions, in

addition to the Q3709-PVE with UHD, and with two di�erent codecs; the MJPEG

and H.264. The results are shown in Table 4.2.

As can be seen from the table, the MJPEG streams from Q1765-LE perform well

compared to the benchmark up to HD resolution, but with a larger resolution the

latency increases dramatically. Whereas, the MJPEG streams from Q3709-PVE

perform exceptionally well when compared to the benchmark; the latency is clearly

shorter. The latencies from Q1765-LE using H.264 are not as good as with MJPEG

on SD and HD resolutions, but on FHD they are the same within the measurement

accuracy. On the Q3709-PVE the H.264 streams are more stable, but introduce a

larger latency compared to benchmark. Surprisingly, the measurements from Q3709-

PVE are similar within the limits of measurement accuracy. It was not possible to

measure any latencies on UHD, since the stream had a lot of missing frames and

the motion was very jerky. This makes measuring the latency impossible using the

video multimeter.

OptoMon v1 performance

Additionally, measurements were performed on a con�guration of four streams play-

4.2. OptoMon v1 latency measurements 32

Table 4.2 Latency measurements of OptoMon v1 platform

Camera Codec Resolution Latency

(ms)

Q1765-LE MJPEG SD 164 ± 15
HD 174 ± 15
FHD 262 ± 15

H.264 SD 208 ± 15
HD 218 ± 15
FHD 265 ± 15

Q3709-PVE MJPEG SD 193 ± 15
HD 207 ± 15
FHD 216 ± 15
UHD N/A

H.264 SD 250 ± 15
HD 243 ± 15
FHD 256 ± 15
UHD N/A

ing at the same time and measured the latencies as above from one of the four

streams. The results of this quick test are shown in Table 4.3.

Table 4.3 Latency measurements of four simultaneous streams using OptoMon v1 plat-
form

Camera Codec Resolution Latency

(ms)

Q1765-LE H.264 SD 196 ± 15
HD 206 ± 15
FHD N/A

These tests were performed to verify our experiences with higher resolutions for the

fact that OptoMon v1 was not able to stream multiple FHD streams at the same

time. In addition, they were performed to later prove the point that OptoMon v2

was in fact more e�cient when processing multiple high resolution streams at once.

As can be seen from the measurements in Table 4.3 the SD and HD latencies are

measurable and in fact rather good results, but using FHD resolution the latencies

were not being able to be measured at all. The streams had multiple seconds of

latency, something which could be determined simply by looking at the streams.

The video multimeter was not able to measure the latency in this case, because the

latency was more than the measurement lights blinking frequency.

4.3. OptoMon v2 latency measurements 33

4.3 OptoMon v2 latency measurements

The measurements for OptoMon v2 were performed in the same way as with Op-

toMon v1 with the addition of hardware decoded streams for both MJPEG and

H.264 codecs. It was not possible to make any MJPEG measurements using Q3709-

PVE, since GStreamer was not able to produce a reliable pipeline. The measurement

results are presented in Table 4.4.

Table 4.4 Latency measurements of OptoMon v2 platform

Camera Codec Resolution Latency SW decoded Latency HW decoded

(ms) (ms)

Q1765-LE MJPEG SD 165 ± 15 232 ± 15
HD 170 ± 15 214 ± 15
FHD 192 ± 15 203 ± 15

H.264 SD 130 ± 15 210 ± 15
HD 145 ± 15 215 ± 15
FHD 185 ± 15 245 ± 15

Q3709-PVE H.264 SD 207 ± 15 243 ± 15
HD 215 ± 15 248 ± 15
FHD 228 ± 15 258 ± 15
UHD N/A 312 ± 15

As can be seen from Table 4.4, similar or even better results than the benchmark

can be reached using OptoMon v2. This requires selecting a proper camera and

codec combination, but it can be clearly seen that it is possible. The MJPEG mea-

surements are similar with OptoMon v1 with the exception that the measurement

made using FHD resolution does not spike in the same way it did for OptoMon v1.

The FHD MJPEG measurement is still a little larger than the benchmark, but it is

very close. The hardware accelerated decoding results seem peculiar using MJPEG,

since it is apparent that the latency is decreasing as the resolution is increasing,

while the opposite would seem like the right behaviour. It is unclear as to why this

happened, but although the trend would be to decrease as a function of resolution, it

is not believed that this is in fact the case. There might be an issue in the hardware

accelerated JPEG decoder or it could be an issue with the measuring equipment.

The H.264 measurements are equal or better than the benchmark using software

decoding for both cameras. The H.264 measurements using hardware accelerated

decoding result in a slightly longer latency overall, but compared to the benchmark

they are very close with Q1765-LE within the limits of measurement accuracy. For

4.3. OptoMon v2 latency measurements 34

Q3709-PVE the hardware accelerated decoding latencies are longer than the bench-

mark on all resolutions. In addition to all earlier measurements, the latency of an

UHD stream is being able to be measured. This was possible only using hardware

accelerated decoding. The latency is a lot more than the other measurements which

can be partly explained with the greatly increased amount of data to be processed

by a pipeline in both encoding and decoding ends and in the transfer media.

OptoMon v2 performance

One of the key aspects of making a new version of OptoMon was to have a more

powerful platform for multiple simultaneous streams. Now that the latencies using

the system had been measured, it was time to evaluate the performance and put it to

a more serious test. Performance for OptoMon v2 was examined using the operating

system's System Monitor applet, which is the equivalent of Windows' Task Manager

on Linux. We were particularly interested in the CPU usage of the system during

streaming. All the measurements were performed using 16 simultaneous streams

each presenting a view with varying motion. The used cameras were the same two

cameras as earlier and the used codec was H.264 with 25 fps and variable bitrate.

The measurements are presented in Table 4.5.

Table 4.5 Performance measurements of OptoMon v2 platform

Stream setting HW decoded HW decoded SW decoded SW decoded

CPU usage % CPU peaks % CPU usage % CPU peaks %

16 x HD 20 - 45 65
16 x FHD 20 - 60 80
4 x FHD + 9 x 4K 35 - 95 -
16 x 4K 35 - 95 -

As can be seen from Table 4.5, the HW decoded streams put the CPU on a much

more lighter load compared to the SW decoded streams. In addition, using SW

decoding the CPU usage peaks during rapid motion resulting in missing frames,

jerkiness of motion or other visual artifacts in the video playback. The dashes in

the table represent a non existing value. For example, HW decoded streams did

not exhibit any peaks even during rapid motion. On the other hand, when UHD

streams were in use the CPU usage was already at its maximum so no peaks could

be made visible. The results prove that hardware accelerated decoding is clearly the

only way to enable high resolution streaming using multiple video sources.

4.4. Comparison between platforms 35

Figure 4.3 Latency measurements of both OptoMon platforms using camera Q1765-LE
and MJPEG.

One interesting observation during these performance measurements was that the

network became the bottleneck in the system. From Table 4.5 it can be seen that

even though the amount of data to be streamed increased from four FHD and nine

UHD streams to 16 UHD streams, the CPU usage did not change. Even more

interesting was that the CPU usage did not increase while the CPU clearly was

capable of extra processing. The network load was measured to around 72 MB/s in

both cases, indicating that the network was in fact limiting the streaming.

4.4 Comparison between platforms

Now that measurements have been presented and observations made, it is time

for a more thorough comparison and analysis of each platform's capabilities. By

examining the tables and �gures in this chapter it is noticed that OptoMon v1 can

barely keep up with the benchmark. As Figure 4.3 and Figure 4.4 show, it is able

to compete with the benchmark on HD and lower resolution on MJPEG, but other

than that it starts to lag behind in latency. There is one exception to this, which is

using the Q3709-PVE and MJPEG. However, an even comparison cannot be made,

4.4. Comparison between platforms 36

since OptoMon v2 could not initiate a stream using the same con�guration. This

could on the other hand be seen as one of the few pros with OptoMon v1 over

v2. Compared to the single streaming latency measurements, a similar behavior

can be seen from the performance measurements using multiple streams as FHD

multistreaming was not even possible.

Figure 4.4 Latency measurements of both OptoMon platforms using camera Q3709-PVE
and MJPEG for OptoMon v1 and H.264 for OptoMon v2.

On the contrary, OptoMon v2 is similar or better in the latency sense on H.264. As

Figure 4.5 and Figure 4.6 show, using software decoding OptoMon v2 is better

than OptoMon v1 on all resolutions. Hardware accelerated streams using OptoMon

v2 are comparable with those of OptoMon v1 using H.264. Due to the problem with

OptoMon v2 MJPEG measurements, as seen in �gure 4.3, it is hard to say whether

the hardware accelerated measurements are better than those of OptoMon v1, but

the software decoded streams apper to be better.

4.4. Comparison between platforms 37

Figure 4.5 Latency measurements of both OptoMon platforms using camera Q1765-LE
and H.264.

The true di�erence between the two platforms comes from the multistream test

measurements. As stated above, OptoMon v1 was not able to stream four FHD

streams. A massive di�erence was found with OptoMon v2 using 16 FHD streams

on both software and hardware decoding. In addition to this, OptoMon v2 has the

ability to decode a number of FHD streams plus a number of UHD streams using

hardware decoding, something that is unimaginable for OptoMon v1. The actual

number of UHD streams was not possible to determine based on the measurements,

since the used network architecture became the bottleneck in the testing system.

Based on the CPU usage on our measurements there is clearly capacity, since 16

FHD streams used around 20% of the CPU's resources.

4.4. Comparison between platforms 38

Figure 4.6 Latency measurements of both OptoMon platforms using camera Q3709-PVE
and H.264.

However, some areas of the new platform are not developed to the same level as

with the existing platform. For example, the old platform supports overlay graphics

on top of the streams. The overlay graphics allow augmenting the streamed videos

with additional information, such as the real-time latency or system speci�c textual

and graphical information. Also, the old platform includes a method for calculating

the real-time latency of the stream using timestamps on the video frames. There is

also a feature on the old platform that allows stacking the video or graphics streams

in an arbitrary con�guration. This feature permits overlaying streams on top of

each other and adds a third dimensions for the con�gurability of the platform.

39

5. DISCUSSION

The goal of this thesis was to develop a new and modern version of the OptoFidelity

OptoMon teleoperation platform by solving the issues identi�ed in the existing im-

plementation. The core issues were:

• Decoding of multiple simultaneous streams as only a software decoder was

used

• HD quality streams

• Latency with multiple streams

• Limited fps in some environments

• Dependency of Axis multimedia components for DirectShow API

• Dependency of DirectShow API in pipeline construction

• The platform had been developed over time and not necessarily designed to

address all the issues it was now facing.

The development of a new platform has been presented in this thesis and that by

using the new OptoMon v2 platform it is possible to stream and decode multiple si-

multaneous streams, even if only a software decoder was used. The platform receives

a massive performance upgrade when employing hardware accelerated decoding in

the streams. Also, stream quality issues have been solved by making it possible to

stream UHD resolution streams. It was discovered that the used decoders did not

o�er any possibility to a�ect the way the decoding is performed. In the case of GPU

decoding it would be bene�cial to have better access to the GPU's resources and

a�ect on its utilization. In addition, we do not have full access to the used cameras

and their encoding parameters. At least not with the Axis' cameras.

5. Discussion 40

Latency issues have been solved in the previously problematic case of multiple

streams in OptoMon v1. In addition, by carefully choosing an appropriate cam-

era and video codec it has been shown that it is possible to achieve even shorter

latencies using the new platform when compared to the old. Furthermore, the fps is

no longer an issue, as all measurements featured a full 25 fps, which is the maximum

fps available from the used cameras. In comparison with an existing video streaming

solution by Ittiam [4, 32], OptoMon v2 cannot achieve as low latencies as the Ittiam

solution. It is able to provide an end-to-end latency of 70 ms on 1080p video with

60 fps, while OptoMon is capable of o�ering a stream with 185 ms of latency using

25 fps and 1080p video. Clearly OptoMon is not able to compete with Ittiam in

this area. However, the Ittiam solution is built upon a highly customized hardware

solution that is based on a Texas Instruments digital signal processing (DSP) chip.

OptoMon, on the other hand, is using a common microprocessor and a separate

GPU.

Perhaps the most limiting factors of the old platform were the dependencies and

limitations of third party software components and APIs. Namely the Axis mul-

timedia component used in communicating with the cameras and the Microsoft

DirectShow API used in pipeline construction. By deploying the open source multi-

media framework GStreamer, there is no need for the components provided by Axis,

since GStreamer is capable of communicating with the cameras using standardized

protocols, such as RTP, RTSP and RTCP. Additionally, the platform is no longer

dependent on Axis' cameras, but can use practically any IP cameras given that

they ful�ll the platform's and the consumer's requirements. GStreamer also enables

getting rid of the DirectShow pipeline, which was missing many plugins that were

desperately needed. The most critical ones were the hardware accelerated decoding

and maximized utilization of the GPU resources in the pipeline.

Using the new platform there are much less limitations in the future, since the

platform is based on an open source multimedia framework, which is constantly

developed by an active community. If there is something needed in the future it

can be relatively e�ortlessly implemented, or if any bugs are found from the existing

code it will be possible to �x them and not being bound to wait for somebody

else to do it. In conclusion, the means of achieving real-time video streaming for a

teleoperation platform have been successfully created to answer and solve the earlier

set needs.

41

6. CONCLUSIONS

It is clearly possible to reach low latencies when streaming high resolution content in

an IP network by using only a software decoder in the streaming pipelines. However,

it is a lot more e�ctive from a computing perspective to use a hardware accelerated

decoder which allows for the streaming of either higher resolution streams, or more

streams of the same resolution at the same time. As stated at the beginning of this

thesis, the users had many problems that were due to the use of DirectShow API

in the pipelines. Another way of achieving the same or better results have been

presented in the latency sense, a lot better results in e�ciency sense and complete

freedom from any ties to any software that could not be altered. In this respect, the

problem presented in this thesis has been solved.

It was predicted at the beginning of the work that the use of a GPU in the streaming

pipeline would allow for the achievement of the main goals of this development.

However, it came as a surprise that the latencies were poorer using low resolutions

on the GPU than on the CPU. It was also predicted that decoding the same stream

with the GPU would result in a lower latency than by using the CPU in the decoding.

For higher resolutions this is in fact true, but it was discovered that the lowest

latencies for sub-HD resolutions were in fact achieved using a CPU decoder.

These results imply that OptoMon is capable of providing real-time streaming with-

out using any additional hardware components, such as speci�c encoders or decoders.

Using these may allow for a shorter latency, but they instantly add complexity and

cost for the overall system. OptoMon is free of these while o�ering good-enough

latency for real-time teleoperation at a lower cost.

Future work

The work presented in this thesis does not mean that the development of the plat-

form has �nished. A basis for future development has been merely created. One of

the �rst future additions to the platform will be a latency monitoring mechanism.

6. Conclusions 42

Currently, there is no way of monitoring the latency in real-time on the �eld. How-

ever, we have made some initial testing with the timestamping method as discussed

in Chapter 2.2. The method was not robust enough, since it only works on certain

text fonts. In the future a more robust latency measurement method will be need to

be developed. For this, the use of optical character recognition (OCR) algorithms

could be experimented to help in recognizing the timestamps.

Another future development subject is adding information on the streams by over-

laying graphics. Information such as stream statistics, real-time latency and guid-

ance for the operator such as wind speed and direction indicators. The graphics

should utilize the GPU as much as possible and will likely require their own graph-

ics pipeline. There is a likely need for both 2D and 3D graphics meaning that the

graphics processing will consume computing resources from the streams. However,

the graphics should not under any circumstances interfere or radically increase the

stream latency.

43

BIBLIOGRAPHY

[1] N. H. Amer, H. Zamzuri, K. Hudha, and Z. A. Kadir, �Modelling and

control strategies in path tracking control for autonomous ground vehicles:

A review of state of the art and challenges,� Journal of Intelligent &

Robotic Systems, vol. 86, no. 2, pp. 225�254, 2017. [Online]. Available:

http://dx.doi.org/10.1007/s10846-016-0442-0

[2] Axis Communications AB, �Windows development, axis media contol,�

[online], http://www.axis.com/�/en/support/developer-support/windows-

development, January 2017.

[3] D. Chandler and R. Munday, �A dictionary of media and communication,� 2016.

[4] A. Charbonnier, �Ittiam unveils 60ms ultra low-latency

streaming systems for high de�nition video,� 2009. [On-

line]. Available: https://www.ittiam.com/newsroom/news/2009-2/

ittiam-unveils-60ms-ultra-low-latency-streaming-systems-for-high-de�nition-video

[5] V. Šor, S. N. Srirama, and N. Salnikov-Tarnovski, �Memory leak detection in

plumbr,� Software: Practice and Experience, vol. 45, pp. 1307�1330, 2014.

[6] H. Deng, C. Deng, and J. Li, �Gpu-based real-time decoding technique for high-

de�nition videos,� 2012 Eighth International Conference on Intelligent Infor-

mation Hiding and Multimedia Signal Processing (IIH-MSP), 2012.

[7] GStreamer community, �glimagesink documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-

bad-plugins/html/gst-plugins-bad-plugins-glimagesink.html, January 2017.

[8] GStreamer community, �Gstreamer documentation,� [online],

https://gstreamer.freedesktop.org/documentation/, January 2017.

[9] GStreamer community, �h264parse documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-

bad-libs/html/gst-plugins-bad-libs-h264parser.html, January 2017.

[10] GStreamer community, �libav avdec_h264 documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-libav-

plugins/html/gst-libav-plugins-plugin-libav.html, January 2017.

http://dx.doi.org/10.1007/s10846-016-0442-0
https://www.ittiam.com/newsroom/news/2009-2/ittiam-unveils-60ms-ultra-low-latency-streaming-systems-for-high-definition-video
https://www.ittiam.com/newsroom/news/2009-2/ittiam-unveils-60ms-ultra-low-latency-streaming-systems-for-high-definition-video

BIBLIOGRAPHY 44

[11] GStreamer community, �queue documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-

plugins/html/gstreamer-plugins-queue.html, January 2017.

[12] GStreamer community, �rtph264depay documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-

good-plugins/html/gst-plugins-good-plugins-rtph264depay.html, January

2017.

[13] GStreamer community, �rtspsrc documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-

good-plugins/html/gst-plugins-good-plugins-rtspsrc.html, January 2017.

[14] GStreamer community, �vaapidecode documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-

vaapi-plugins/html/gstreamer-vaapi-plugins-vaapidecode.html, January 2017.

[15] GStreamer community, �vaapisink documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-

vaapi-plugins/html/gstreamer-vaapi-plugins-vaapisink.html, February 2017.

[16] GStreamer community, �videoconvert documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-

base-plugins/html/gst-plugins-base-plugins-videoconvert.html, January 2017.

[17] GStreamer community, �videocrop documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-

good-plugins/html/gst-plugins-good-plugins-videocrop.html, January 2017.

[18] GStreamer community, �video�ip documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-

good-plugins/html/gst-plugins-good-plugins-video�ip.html, January 2017.

[19] GStreamer community, �ximagesink documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-

base-plugins/html/gst-plugins-base-plugins-ximagesink.html, February 2017.

[20] GStreamer community, �xvimagesink documentation,� [online],

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-

base-plugins/html/gst-plugins-base-plugins-xvimagesink.html, February 2017.

BIBLIOGRAPHY 45

[21] B. Juurlink, M. Alvarez-Mesa, C. C. Chi, A. Azevedo, C. Meenderinck, and

A. Ramirez, Scalable parallel programming applied to H.264/AVC decoding.

Springer, 2012.

[22] A. Krause, Foundations of GTK+ Development. Apress, 2007.

[23] Q. Li, L. Chen, M. Li, S. L. Shaw, and A. NÃ1
4
chter, �A sensor-fusion drivable-

region and lane-detection system for autonomous vehicle navigation in chal-

lenging road scenarios,� IEEE Transactions on Vehicular Technology, vol. 63,

no. 2, pp. 540�555, Feb 2014.

[24] M. Ljumovic, C++ Multithreading Cookbook. Packt Publishing, Birmingham,

GB, 2014.

[25] D. Marpe, T. Wiegand, and G. J. Sullivan, �The h.264/mpeg4 advanced video

coding standard and its applications,� IEEE Communications Magazine, pp.

134�143, 2006.

[26] M. Mihelj and J. Podobnik, Teleoperation. Dordrecht: Springer Nether-

lands, 2012, pp. 161�178. [Online]. Available: http://dx.doi.org/10.1007/

978-94-007-5718-9_9

[27] D. Molkentin, Book of Qt 4 : The Art of Building Qt Applications. No Starch

Press, 2007. [Online]. Available: http://site.ebrary.com/lib/ttyk/detail.action?

docID=10202508

[28] V. Quercia and T. O'Reilly, X Window System User's Guide for X11 R3 and

R4, ser. The De�nitive Guides to the X Window System, vol. 3. Sebastopol,

CA: O'Reilly & Associates, 1990.

[29] P. Read and M.-P. Mayer, Restoration of Motion Picture Film, ser. Conserva-

tion and Museology. Elsevier Science, 2000, pp. 22�24.

[30] I. E. Richardson and P. Anthony, H.264 Advanced Video Compression

Standard. Wiley, 2010. [Online]. Available: http://site.ebrary.com/lib/ttyk/

detail.action?docID=10392946

[31] M. Syme and P. Goldie, �Optimizing network performance with content

switching; server, �rewall, and cache load balancing,� 12 2003, copyright -

Copyright Book News, Inc. Dec 2003; Last updated - 2010-06-06. [Online].

Available: http://search.proquest.com/docview/200137064?accountid=27303

http://dx.doi.org/10.1007/978-94-007-5718-9_9
http://dx.doi.org/10.1007/978-94-007-5718-9_9
http://site.ebrary.com/lib/ttyk/detail.action?docID=10202508
http://site.ebrary.com/lib/ttyk/detail.action?docID=10202508
http://site.ebrary.com/lib/ttyk/detail.action?docID=10392946
http://site.ebrary.com/lib/ttyk/detail.action?docID=10392946
http://search.proquest.com/docview/200137064?accountid=27303

Bibliography 46

[32] I. Systems, �Ittiam unveils a full hd low latency streaming solution with a

glass-to-glass latency of less than 70ms at nab 2013,� Apr 02 2013, copyright -

Copyright PR Newswire Association LLC Apr 2, 2013; Last updated - 2013-

04-02. [Online]. Available: https://search.proquest.com/docview/1322262002?

accountid=27303

[33] J. Vilca, L. Adouane, and Y. Mezouar, �Optimal multi-criteria waypoint

selection for autonomous vehicle navigation in structured environment,�

Journal of Intelligent & Robotic Systems, vol. 82, no. 2, pp. 301�324, 2016.

[Online]. Available: http://dx.doi.org/10.1007/s10846-015-0223-1

[34] B. Wand, M. Alvarez-Mesa, C. C. Chi, and B. Juurlink, �Parallel h.264/avc

motion compensation for gpus using opencl,� IEEE Transactions on Circuits

and Systems for Video Technology, vol. 25, pp. 525 � 531, 2014.

https://search.proquest.com/docview/1322262002?accountid=27303
https://search.proquest.com/docview/1322262002?accountid=27303
http://dx.doi.org/10.1007/s10846-015-0223-1

	Introduction
	Background
	Teleoperation
	Video streaming
	GStreamer
	Platform requirements and goals

	Platform development
	Development using Qt
	Development using Glib

	Platform evaluation
	Latency benchmark
	OptoMon v1 latency measurements
	OptoMon v2 latency measurements
	Comparison between platforms

	Discussion
	Conclusions
	Bibliography

