
TERO JOENTAKANEN
EVALUATION OF HLS MODULES FOR ASIC BACKEND

Master of Science thesis

Examiner: Prof. Timo D. Hämäläinen

Examiner and topic approved by the

Faculty Council of the Faculty of

Computing and Electrical Engineering

on 17th August 2016

i

ABSTRACT

TERO JOENTAKANEN: Evaluation of HLS modules for ASIC backend
Tampere University of Technology

Master of Science thesis, 71 pages

May 2017

Master's Degree Programme in Electrical Engineering

Major: Embedded systems

Examiner: Prof. Timo D. Hämäläinen

Keywords: High-level synthesis, System-on-Chip, ASIC backend design

Digital systems continue growing in complexity, but the design and veri�cation pro-

ductivity has not been able to improve in the same manner, which has led to a

productivity gap. Raising the abstraction level of the design with high-level syn-

thesis (HLS) has been proposed to increase productivity. However, at the higher

abstraction level, the designer has less control on the generated register-transfer level

(RTL) code, which might cause problems later in the design �ow. Moreover, certain

design steps might be impractical to carry out with HLS.

This thesis work investigates if HLS is compliant with an existing ASIC implementa-

tion �ow. The research is conducted by creating an IP (intellectual property) block

with a modern HLS tool and passing the generated RTL code through the various

steps in the �ow. The quality of results and design e�ort are also compared to the

manually coded RTL implementation of the same IP.

The HLS tool and the generated RTL code are found mostly compliant with the

existing �ow, but a few problems are identi�ed in the ECOs (engineering change

orders) and technology-speci�c component instantiation. The HLS design has al-

most equal physical area with the hand-written RTL design, and it meets the given

timing constraints. Design e�ort with HLS is estimated 20�50% smaller compared

to traditional RTL design, and the C++ code contains 60% fewer lines of code than

the manually written VHDL code.

ii

TIIVISTELMÄ

TERO JOENTAKANEN: HLS-lohkojen evaluointi ASIC-piirien toteutusvuossa
Tampereen teknillinen yliopisto

Diplomityö, 71 sivua

Toukokuu 2017

Sähkötekniikan koulutusohjelma

Pääaine: Sulautetut järjestelmät

Tarkastaja: Prof. Timo D. Hämäläinen

Avainsanat: Korkean tason synteesi, System-on-Chip, ASIC-piirien toteutus

Digitaalijärjestelmät kasvavat yhä monimutkaisemmiksi. Suunnittelun ja varmen-

nuksen tuottavuus ei ole kuitenkaan pysynyt tämän kehityksen perässä, mikä on ajan

myötä johtanut tuottavuusvajeeseen. Eräs ratkaisu tuottavuuden parantamiseksi on

nostaa suunnittelun abstraktiotasoa käyttämällä korkean tason synteesiä (high-level

synthesis, HLS). Korkeampi abstraktio rajoittaa kuitenkin suunnittelijan mahdol-

lisuuksia vaikuttaa tuotettuun rekisterisiirtotason (register-transfer level, RTL) ku-

vaukseen ja saattaa myös vaikeuttaa suunnittelun muita vaiheita.

Tässä diplomityössä tutkitaan HLS:n soveltuvuutta ASIC-piirien toteutukseen. Tut-

kimusta varten luodaan IP-lohko (Intellectual Property) käyttäen HLS-työkalua,

jonka tuottama RTL-koodi viedään suunnitteluvuon eri vaiheiden läpi. Myös työ-

määrää ja tulosten laatua verrataan käsinkirjoitettuun RTL-kuvaukseen, joka sa-

masta IP:stä on saatavilla.

Tässä työssä käytetty HLS-työkalu ja sen tuottama RTL-koodi osoittautuvat sovel-

tuvan olemassa olevaan suunnitteluvuohon, mutta myös muutamia ongelmia nousee

esille ECO-muutoksissa (Engineering Change Orders) ja teknologiakomponenttien

käytössä. HLS-lohkon pinta-ala on lähes sama kuin käsinkirjoitetulla, ja sen ajoi-

tus pysyy vaadituissa rajoissa. Työmäärä HLS:llä on arviolta 20�50% pienempi

verrattuna perinteiseen RTL-suunnitteluun, ja C++-koodi sisältää 60% vähemmän

koodirivejä kuin käsinkirjoitettu VHDL-kuvaus.

iii

PREFACE

This thesis work was done in the SoC organization of Nokia during fall 2016 and

early 2017.

I would like to thank all of my colleagues for the great working environment, and

also for the support and guidance they have provided for this thesis work. Especially

I want to thank my supervisors Dr. Erno Salminen and Prof. Timo D. Hämäläinen

for their excellent and valuable feedback. I also want to thank my line manager Jyrki

Hyrsylä for the opportunity to do this thesis at Nokia, and Dr. Ari Kulmala for

providing an interesting topic to the thesis. Many thanks also to Rich Toone and

Richard Langridge at Mentor Graphics for their excellent support in tool-related

matters.

Finally, I want to thank my family and friends for supporting me during this thesis

work and the many years of studies.

Tampere, 4.5.2017

Tero Joentakanen

iv

TABLE OF CONTENTS

1. Introduction . 1

2. ASIC design . 3

2.1 Abstraction levels . 5

2.2 Design �ow . 7

2.3 Productivity . 8

3. High-level synthesis (HLS) . 11

3.1 Fundamentals . 12

3.1.1 Compilation and optimization . 13

3.1.2 Constraints . 14

3.1.3 Resource allocation, scheduling and binding 16

3.1.4 RTL generation . 17

3.2 Advantages . 17

3.3 Problem areas . 20

4. Case study . 22

4.1 Decimator . 22

4.1.1 Cascaded integrator-comb �lter (CIC) 23

4.1.2 Polyphase decimator . 24

4.1.3 Arbiter . 25

4.1.4 Packager . 26

4.2 Catapult HLS . 26

4.2.1 User interface . 27

4.2.2 Hardware interfaces . 28

4.2.3 Veri�cation . 29

5. Research questions . 30

5.1 Technology library characterization 30

5.2 Technology library abstraction . 31

5.3 Design-for-testability (DFT) structures in RTL code 32

v

5.4 Engineering change order (ECO) . 34

5.5 Static code analysis . 34

5.6 Logical equivalence checking (LEC) 35

5.7 Area and timing . 36

5.8 Power e�ciency . 37

6. Results . 41

6.1 Design entry and e�ort . 41

6.2 Technology library characterization 42

6.2.1 Flow evaluation . 46

6.3 Technology library abstraction . 47

6.3.1 Memory libraries . 47

6.3.2 Custom components . 51

6.4 Design-for-testability (DFT) structures in RTL code 51

6.5 Engineering change order (ECO) . 52

6.6 Static code analysis . 54

6.7 Logical equivalence checking (LEC) 55

6.8 Area and timing . 56

6.9 Power e�ciency . 61

7. Recommendations . 62

7.1 Designers . 62

7.2 Tool developers . 63

8. Conclusions . 65

Bibliography . 67

vi

LIST OF ABBREVIATIONS AND SYMBOLS

AC Algorithmic C

AES Advanced Encryption Standard

ANSI American National Standards Institute

ASIC Application-Speci�c Integrated Circuit

ASSP Application-Speci�c Standard Product

BIST Built-In Self Test

CDC Clock Domain Crossing

CDFG Control and Data Flow Graph

CIC Cascaded Integrator-Comb �lter

CMOS Complementary Metal-Oxide Semiconductor

CPLD Complex Programmable Logic Device

DFG Data Flow Graph

DFT Design For Testability

DMA Direct Memory Access

DSP Digital Signal Processing

ECO Engineering Change Order

FIFO First-In First-Out

FIR Finite Impulse Response �lter

FF Flip-Flop

FPGA Field-Programmable Gate Array

FSM Finite-State Machine

GUI Graphical User Interface

HDL Hardware Description Language

HLS High-Level Synthesis

IC Integrated Circuit

IP Intellectual Property

IQ In-phase and Quadrature

LEC Logical Equivalence Checking

LTE Long-Term Evolution

LUT Look-Up Table

NRE Non-Recurring Engineering

PCB Printed Circuit Board

RAM Random Access Memory

RTL Register-Transfer Level

SAIF Signal Activity Interchange Format

SC SystemC

vii

SoC System-on-Chip

TCL Tool Command Language

TLM Transaction-Level Modeling

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

XML Extensible Markup Language

1

1. INTRODUCTION

Digital systems have grown extremely complex over the years, and the amount of

functionality integrated in these systems will only keep increasing in the future. De-

signing and manufacturing an integrated circuit (IC) (Figure 1.1) may require years

worth of design e�ort from hundreds of engineers. At the same time, the demand for

shorter time-to-market and reduced costs limit the possibility to increase the prod-

uct development time or the size of the engineering teams. Hence, the productivity

per engineer has to improve to enable the development of the increasingly complex

systems.

Figure 1.1 Integrated circuit on a printed circuit board [51].

Over the past two decades, the design work has been mainly carried out at register-

transfer level (RTL) using hardware description languages (HDL), such as VHDL or

Verilog. At this abstraction level, the designer describes the digital logic on a cycle-

accurate basis, implying every register in their code. However, as the digital systems

continue growing in complexity, designing them at RTL will eventually become im-

practical. Therefore, designers are nowadays looking to raise the abstraction level

such that instead of hand-coding the architecture at RTL, they would describe the

algorithmic behavior, which would then be synthesized to RTL using a high-level

1. Introduction 2

synthesis (HLS) tool.

The demand for a higher abstraction level has led to the development of a large

number of HLS tools, both academic and commercial. Many research papers have

addressed this abundance by providing evaluation methods for choosing a suitable

tool [27, 23]. Previous studies have also compared HLS to the traditional RTL

design, and the current generation of tools have shown promising results in terms

of design productivity and quality of results [53, 54, 17]. However, as these papers

focus on the frontend design (i.e. generating the RTL description out of the given

algorithm), only few of them consider the subsequent design steps and checks that

the RTL code goes through before it is implemented as a physical circuit on silicon.

Nevertheless, it is possible that the tool-generated RTL code contains structures

that are not feasible to implement or otherwise cause problems in the later stages

of the design �ow.

This thesis work evaluates the suitability of HLS-generated RTL code

to the backend design �ow of ASICs (Application-Speci�c Integrated Circuit)

and develops means to integrate HLS methodology into an existing RTL design �ow.

The purpose of this thesis is also to provide HLS tool vendors with feedback on how

to improve the tools in the future to make them more suitable for ASIC design.

This work is continuation to previous theses [45, 18, 30, 15] that have evaluated the

frontend design �ow with several HLS tools.

This study is carried out by creating a HLS design and passing the generated RTL

code through the various steps of the backend implementation �ow. Although the

main focus of this thesis is on the backend �ow, the HLS design is also brie�y

compared to the existing hand-coded RTL design in terms of the quality of results

and design e�ort, and the problems are assessed that are still present in the current

tools.

The structure of this thesis is following. Chapter 2 covers the design process of

ASICs and introduces the abstraction levels of the design �ow. The fundamentals

of HLS are described in Chapter 3, as well as the advantages and problem areas of

the current generation of the HLS tools. Chapter 4 presents the design that is used

as a test case and the HLS tool that is evaluated in this thesis work. The research

questions are covered in Chapter 5, which is followed by the results in Chapter 6.

Chapter 7 provides recommendations for both the designers looking to use HLS and

the tool vendors to further develop the HLS tools. Finally, Chapter 8 concludes the

results of this thesis work.

3

2. ASIC DESIGN

Digital systems are extremely complex nowadays. A single system might contain

several processors, memories, and peripherals, which together may comprise billions

of transistors [37]. Therefore, the only practical way to realize these systems is to

use integrated circuits (IC) where a large amount of transistors are integrated on a

single silicon die. In the past, the systems were built of several chips so that each

component, such as processor or memory, had its own respective IC. However, as

the level of integration has increased, a single chip has been able to contain more

functionality, and nowadays whole systems can be included on a single chip. This

kind of system is commonly known as a System-on-Chip (SoC) [38]. An example

of a modern SoC is shown in Figure 2.1 that represents a layout of Qualcomm's

Snapdragon 810 mobile chip used in smartphones and tablets. As can be seen, the

chip contains several functional blocks, such as processing units, LTE (Long-Term

Evolution) modem, and positioning systems.

Figure 2.1 Layout of Qualcomm's Snapdragon 810 SoC [10].

2. ASIC design 4

For many applications, general-purpose processors and microcontrollers are suitable

for implementing the desired functionality. However, these general-purpose compo-

nents are typically designed for a wide range of applications, and thus they often

contain excessive functionality. This overhead means wasted area and increased

power consumption which might be impractical for certain applications. Further-

more, the performance of these components might not be su�cient for applications

that require heavy computation and low latency [11]. When more specialized com-

ponents are needed, there might be readily available ICs that are designed for a

speci�c functionality. These application-speci�c standard products (ASSP) are typ-

ically available for applications that are needed often and by many manufacturers

[38]. A typical example of an ASSP would be a bridge component for connecting a

bus using USB (Universal Serial Bus) protocol to a UART (Universal Asynchronous

Receiver/Transmitter) bus.

If there is no suitable component readily available, the manufacturer might have

to design a customized logic circuit. In some cases, it might also be cheaper to

produce own circuit instead of buying them from another manufacturer when a large

amount of components is needed. In general, there are two options for implementing

customized digital logic: one option is to use a programmable logic device, such as

a FPGA (Field-Programmable Gate Array) or a CPLD (Complex Programmable

Logic Device); the other option is to design an ASIC that is a customized IC where

the logic is �xed and cannot be altered after fabrication.

There are naturally trade-o�s for both options. Since the programmable devices

are designed to be used in many applications, they will contain extra logic which

degrades their performance and power e�ciency [19]. On the other hand, designing

them contains fewer risks since they allow �xing bugs afterwards by recon�guring

the logic. In contrast, a defective ASIC would have to be completely remanufactured

in the worst case.

The development time and cost are also signi�cant factors in the choice between

an ASIC and a programmable device. The development time for FPGAs can be

in the order of months whereas an ASIC design cycle may take more than a year

to complete [19]. Moreover, the NRE (non-recurring engineering) costs of an ASIC

are tremendously higher: creating the masks and fabricating the �rst sample might

cost millions of dollars [19]. For FPGA designs, the NRE costs can be an order of

magnitude lower. However, the unit price of an ASIC is generally less compared to a

programmable device. Therefore, the more chips are needed, the more cost-e�ective

option the ASIC will be.

2.1. Abstraction levels 5

2.1 Abstraction levels

Digital logic is modeled at several abstraction levels to manage the design complexity

[6]. The most often considered levels are algorithm level, register-transfer level,

gate level, and transistor level. This is not an exhaustive list, however, as one

might also include intermediate levels between these. For example, transaction-level

modeling (TLM) can be used between algorithm level and RTL, so that the system

is modeled at the level of transactions, such as sending a data packet to another

module [9]. Moreover, all abstraction levels can be divided into more �ne-grained

levels. For instance, algorithm-level model may be timed or untimed, or it might

use bit-accurate data types instead of �oating point numbers. Nevertheless, these

four abstraction levels are the main ones that are considered in most designs.

Figure 2.2 illustrates the abstraction levels in three di�erent domains. Each row

represents an abstraction level such that the uppermost row shows the highest ab-

straction level � which is the algorithm level � and below are the RTL, gate level,

and transistor level in a descending order. The �gures on the left show a typical

input format at that particular abstraction. For example, in the case of RTL, the

input is a VHDL process that implements the RTL architecture. The �gures in

the middle show a schematic or layout that represents the logic, and the rightmost

�gures show a typical output format that a simulator might provide at that abstrac-

tion level. At algorithm and RT levels, the �gure shows an implementation of a

multiply-accumulate circuit that calculates the result of ab + c. For the other two

abstraction levels, only parts of the circuit are shown due to increasing complexity

of the presentation.

Algorithm level is used to describe the behavior of the logic. In other words, it

describes the function that relates its inputs to outputs, and it has no concept of

timing. Algorithm level is often used in behavioral modeling, where the algorithm

designer explores di�erent options for the algorithm and investigates which of them

ful�lls the given speci�cations. Once a suitable algorithm is found, the model is often

re�ned to a more accurate representation of the hardware [9]. For example, numbers

can be presented with formats that are more suitable for hardware implementation,

which also allows using the model to de�ne the minimum data width that does not

cause too much quantization noise in the results. A bit-accurate model has also the

advantage that it can generate reference data for the functional veri�cation that is

carried out at lower abstraction levels.

A RTL description introduces timing to the model at the level of clock cycles [6].

Events happen only at the clock edges, and all the operations related to that event

2.1. Abstraction levels 6

int multiply_accumulate(int a, int b, int c)
{
 return (a*b) + c;
}

process (clk, rst_n)
begin
 if (rst_n = ’0') then
 mul_res_reg <= 0;
 c_reg <= 0;
 result_out <= 0;
 elsif (rising_edge(clk)) then
 mul_res_reg <= a_in * b_in;
 c_reg <= c_in;
 result_out <= mul_res_reg + c_reg;
 end if;
end process;

module mac(a_in, b_in, c_in, res_out);
 input [3:0] a_in;
 input [3:0] b_in;
 input [3:0] c_in;
 output [8:0] res_out;
 wire [5:0] tmp0;
 ...
 nand (tmp1, tmp2, n12);
 or (n32, a_in[0], tmp3[0]);
 buf (x[3], tmp3[2]);
 buf (y[3], tmp3[1]);
 not (z, x[2]);
 ...
end module;

D Q

+

+

D Q

D Q

a_in

b_in

c_in

mul_res_reg

c_reg

result_out

a

b

c

result
Inputs: a = 1; b = 2; c = 3;
Result: 5

A
lg

o
ri
th

m
R

T
L

G
a

te
T

ra
n

s
is

to
r

Design entry Schematic/

layout
Simulation

a_in[0]

clk

mul_res[0]

tprop

CMOS

NAND
VDD

A

B

OUT

Figure 2.2 Abstraction levels in digital design. From top to bottom: algorithm level,
RTL, gate level, and transistor level [49].

are executed instantaneously. RTL describes the data �ow between registers, and

the operations between registers are de�ned only at high level. For example, the

RTL code might describe that the outputs of two registers are summed and stored

to another register, but it does not care about the implementation details of the

adder. RTL is nowadays the main abstraction level for designing digital logic.

At gate level, the logic is implemented with gates that are primitive logic elements

such as NOT, AND, and OR [6]. Gate-level description is already close to the actual

physical implementation. If the physical characteristics of the gates are known, it

is possible to get rather accurate estimates of the design area and power, and it

also allows analyzing the timing of the circuit. In a typical design �ow, gate-level

netlist is automatically generated from the hand-written RTL description using a

2.2. Design �ow 7

RTL synthesis tool.

The transistor level is considered mainly in the �nal layout design before the masks

used in the silicon fabrication are created. Since the gate-level abstraction is already

a rather accurate representation of the physical circuit, most of the physical design

�ow that contains, for example, the placing and routing of the components is done at

the gate level. The transistor level is, nonetheless, important for the engineers devel-

oping new technologies and creating standard cell libraries. However, at transistor

level, the design is no longer digital, but involves also the analog characteristics of

the transistors [6].

2.2 Design �ow

The design �ow for digital systems can be roughly divided into three phases: spec-

i�cation, design, and veri�cation. Each of these phases are carried out at several

abstraction levels. For example, the speci�cation phase consists of tasks such as

specifying the algorithm, RTL architecture, and the target technology of the physi-

cal circuit. Hence, these three phases typically proceed in parallel in the design �ow.

This has been demonstrated in Figure 2.3 that shows how the design phases might

progress in a typical ASIC project. It is also common that the design �ow contains

iteration loops between the phases. For instance, if a bug is found in the functional

veri�cation of the RTL, or the synthesized gate-level implementation does not meet

the timing constraints, the RTL designer will �x the issue by modifying the RTL

code according to the given feedback.

Time

Effort

Specification Design Verification

Figure 2.3 Design phases and their e�ort in the ASIC project timeline.

The design �ow starts with the high-level speci�cation of the functionality of the

system. This speci�cation is then partitioned and re�ned into a more detailed

description, and eventually to an algorithm or behavioral model. In SoCs, this

phase also includes decisions such as how the functionality is split between software

and hardware [50]. In ASIC design, the target technology should also be speci�ed

2.3. Productivity 8

at an early stage to allow evaluating the feasibility of the physical implementation

of the system.

The design phase consists of the implementation of the system, which can be gen-

erally divided into frontend and backend design [26]. The frontend design consists

of implementing the RTL architecure based on the behavioral model provided by

the algorithm designer. The backend design comprises the physical implementation

steps, such as mapping the RTL structures to standard cells of the target technology

(i.e. RTL synthesis), placing and routing the cells on the physical layout, and check-

ing that the physical netlist meets all of the requirements related to the physical

parameters, such as area, timing, and power.

Functional veri�cation ensures that the designed logic behaves as described in the

speci�cation [9]. At algorithm level, the behavioral model is veri�ed by simulating

the model and examining the performance metrics or other measures depending on

the application. As the high-level model is transferred to lower abstraction levels, the

veri�cation mainly checks that the functionality is equivalent with the higher level

model. This can be accomplished by simulating both models with same stimulus

and comparing their outputs, or the equivalence can be shown formally through a

mathematical proof. In ASIC design, the role of functional veri�cation is extremely

important since even a small bug can make the chip unusable, which might lead to

enormous costs.

2.3 Productivity

The exponential growth of digital systems increases the design and veri�cation e�ort

constantly. Increasing the engineering team sizes or extending the design cycle in

the same vein is impractical, and hence the amount of logic designed per engineer

has to increase. In other words, design productivity has to improve. There have

been many technology advancements in the past that have improved productivity.

Table 2.1 lists some of them and provides also estimates for their associated design

productivity improvement [13]. Two methods that are especially relevant to this

thesis work are design reuse and higher abstraction level.

Design reuse has been realized in the form of IP (intellectual property) blocks [47].

These IP blocks are design entities that implement certain functionality and can

be instantiated multiple times in the system as well as reused in several chips. IP

blocks can be relatively simple single-function designs such as FIFO (�rst-in �rst-

out) bu�ers, but they can also comprise whole processor subsystems that are built

of several smaller IPs. IPs typically use standardized bus interfaces such that they

2.3. Productivity 9

Table 2.1 Design technology improvements and their impact on productivity [13].Table DESN13 Design Technology Improvements and Impact on Designer Productivity

DT Improvement Year Productivity Delta Productivity
(Gates/Year/Designer)

Cost Component
Affected

Description of Improvement

None 1990 4K HW

In-House Place and Route 1993 38.90 % 5.55K HW PD Integration Automated block placement and routing, transferred
from the semiconductor house to the design team

Tall-Thin Engineer 1995 63.60 % 9.09K HW Chip/circuit/PD
verification

Engineer capable of pursuing all required tasks to
complete a design block, from RTL to GDSII

Reuse—Small Blocks 1997 340 % 40K HW Circuit/PD
verification

Blocks from 2,500–74,999 gates

Reuse—Large Blocks 1999 38.90 % 56K HW Chip/circuit/PD
integration
verification

Blocks from 75,000–1M gates

IC Implementation Suite 2001 63.60 % 91K HW, 87K SW Chip/circuit/PD
integration

EDA support

Tightly integrated tool set that goes from RTL
synthesis to GDSII through IC place and route

RTL Functional Verification Tool
Suite

2003 37.50 % 125K HW, 87K SW SW development
verification

Tightly integrated RTL verification tool suite
including all simulators and formal tools needed to
complete the verification process

Transactional Modeling 2005 60 % 200K HW, 250K SW SW development
verification

Level above RTL, including both HW and SW design
and consisting of behavioral (where the system
function has not been partitioned) and architectural
(where HW and SW are identified and handed off to
design teams) levels

Very Large Block Reuse 2007 200 % 600K HW, 323K SW Chip/circuit/PD
verification

Blocks >1M gates; intellectual-property cores

Homogeneous Parallel Processing 2009 100% HW, 100% SW 1200K HW, 646K SW Chip/circuit/PD design
and verification

Many identical cores provide specialized processing
around a main processor, enabling performance,
power efficiency, and high reuse

Software Virtual Prototype 2011 300% SW 1200K HW, 2584K SW SW development Virtualization tools used to allow development prior
to completed silicon

Intelligent Testbench 2012 37.5% HW 1650K HW, 2584K SW System design and
verification

Like RTL verification tool suite, but also with
automation of the verification partitioning step

Reusable Platform Blocks 2013 200% HW, 100% SW 4949K HW, 5168K SW Chip/circuit/PD
verification

Fully functional platforms used as a block in larger
platform design (e.g., ARM in OMAP)

Silicon Virtual Prototype 2015 100% HW 9897K HW, 5168K SW System design and
verification

A hardware virtualization platform that enables an
RTL handoff of a SOC

Heterogeneous (AMP) Parallel
Processing

2017 100% HW, 100% SW 19794K HW, 10336K SW SW development
verification

Many specialized cores provide processing around a
main processor, which allows for performance, power
efficiency, and high reuse

Many-Core SW Development Tools 2019 60% SW 19794K HW, 16537K SW SW development Enables compilation and SW development in highly
parallel processing SOCs

Concurrent Memory 2021 100% SW 19794K HW, 33074K SW SW development Memories capable of on-chip memory management

System-Level Design Automation
(SDA)

2023 60% HW, 37.5% SW 31671K HW, 45476K SW System design and
verification

Automates true system design on- and off-chip for the
first time, including electronic, mechanical and other
heterogeneous technologies

Executable Specification 2025 200% HW, 200% SW 95013K HW, 136429K SW System design and
verification

Describes the system specification in a manner that
allows automated design and validation

Total 7920% HW, 21119% SW

The International Technology Roadmap for Semiconductors, 2011 Edition

can be easily used in many di�erent environments. Figure 2.4 represents an artistic

view of the concept of building a chip out of several IP blocks.

It is a common practice nowadays to buy ready-made IPs from IP core vendors,

and thus reduce the total design e�ort (see e.g. [8]). There are also open-source

IPs available, especially if the functionality of the IP is needed frequently in many

designs (see e.g. [31]). The IPs can be delivered in the form of soft, �rm or hard

IPs. The soft IPs are delivered as a RTL description that the user can modify to

�t in their needs and synthesize to the target technology. The �rm IPs are already

2.3. Productivity 10

Figure 2.4 Artistic view of IP-based design [3].

synthesized to a gate-level netlist, but still allow small modi�cations. Hard IPs, on

the other hand, are already implemented as a physical layout and cannot thus be

altered. Hard IPs are typically memories and analog components, such as analog-

to-digital converters or phase-locked loops that the silicon foundry provides to be

used in a chip that they fabricate.

IP reuse has been a subject to extensive research (see e.g. [14]), and many method-

ologies have been developed based on the studies. One practical example is the

IP-XACT standard [1] that de�nes a common XML (Extensible Markup Language)

format for hardware component descriptions, which, for instance, eases the integra-

tion of IP blocks from multiple companies. The bene�t of reuse can also be seen in

Table 2.1 where it has been one of the most signi�cant contributors to the design

productivity improvement.

Another way to improve productivity is to design the logic at a higher abstraction

level. In practice, this means that the functionality is described at the algorithm

level, and automatically synthesized to a RTL description. This process is called

high-level synthesis (HLS), which is the main topic of this thesis and will be described

in more detail in the next chapter.

11

3. HIGH-LEVEL SYNTHESIS (HLS)

High-level synthesis, also known as behavioral or algorithm synthesis, is the process

of converting a higher level algorithm description to a RTL architecture. Although

HLS is only now becoming more widely used in the industry, its history dates back

to the 1970s. Martin and Smith [21] divide the history of HLS tools into three gen-

erations. The �rst generation (1980s � early 1990s) was mostly used in research but

was still signi�cant for the future development of the tools. The second generation

(mid-1990s � early 2000s) already found some real applications, but it was a com-

mercial failure nonetheless. The main reasons for the lack of success were the poor

quality of results and input languages that did not �t well into high-level modeling,

and neither algorithm nor hardware designers considered them worthwhile to learn.

The current, third generation (starting from early 2000s) has demonstrated better

results, and the tools have already been used in numerous real-world applications.

Most of the present tools use some common algorithm modeling language, such as

C/C++ or MATLAB, as their input language. This allows designers to use the

untimed algorithm model as a starting point for their hardware design. Ideally,

HLS would allow designers to use the algorithm model as such, but the tools still

require guidance from the designer to produce the desired hardware architecture.

Therefore, the designer has to also have a solid understanding of hardware design

to achieve good results with the HLS tools.

Table 3.1 lists a few examples of modern high-level synthesis tools and some of their

features, such as the target platform and input language. More detailed information

about the tools can be found on the websites of the vendors that are referenced in

the table. In addition to these, there are many other tools available. More thorough

list of HLS tools can be found in references [27] and [23] that also include compar-

isons of the tools.

3.1. Fundamentals 12

Table 3.1 Examples of modern high-level synthesis tools.

Tool Vendor Ref Target Input
platform language

Catapult HLS Mentor Graphics [24] ASIC/FPGA C/C++/SystemC
CyberWorkBench NEC [28] ASIC/FPGA C
HDL Coder Mathworks [22] ASIC/FPGA MATLAB/Simulink
LegUp Univ. of Toronto [29] FPGA (Altera) C
Stratus HLS Cadence [5] ASIC/FPGA C/C++/SystemC
Synphony C Compiler Synopsys [41] ASIC/FPGA C/C++
Vivado HLS Xilinx [52] FPGA (Xilinx) C/C++/SystemC

3.1 Fundamentals

This section covers the fundamentals of HLS by going through the steps of a typical

HLS process that is illustrated in Figure 3.1. This is a rather generic description

of the �ow, as in practice these steps are di�erent for each tool, and their order of

execution varies. Nevertheless, most of the tools go through these steps in some way

or another [7].

Figure 3.1 Flow diagram of the high-level synthesis process [7].

3.1. Fundamentals 13

3.1.1 Compilation and optimization

The high-level code is �rst compiled to the internal format of the HLS tool. During

compilation, the tool extracts information that is needed in the further processing of

the design. For example, it might evaluate the dependencies between variables, the

amount of loop iterations, and possible parallel structures in the code. Moreover,

the tool checks that the code contains no structures that would be infeasible for

hardware implementation, such as recursion, dynamic memory allocation and �le

operations.

At this point, the tool also optimizes the design by taking the hardware implementa-

tion into account. The optimizations might include removing parts of the code that

are never executed, limiting the widths of the signals, or determining the minimum

depth for bu�ers.

The compilation output is typically a data �ow graph (DFG) that represents the

data operations and their dependencies [7]. This is demonstrated with an example

shown in Program 3.1. It implements a for-loop that gets three integer arrays � a,

b, and c � as an input, and calculates the result of a ∗ b + c for each of the array

elements. The extracted DFG is shown in Figure 3.2. The nodes in the graph

represent data operations, and the edges are input, output or intermediate data.

1 for (int i = 0; i < 3; i++) {

d[i] = a[i]*b[i] + c[i];

3 }

Program 3.1 Example for-loop that gets three arrays � a, b, and c � with three integers,

and calculates the result d for each of them.

*
+

a[0] b[0] c[0]

d[0]

*
+

a[1] b[1] c[1]

d[1]

*
+

a[2] b[2] c[2]

d[2]

Figure 3.2 Data �ow graph of the example for-loop.

Control dependencies are often also included to the graph, resulting in a control and

data �ow graph (CDFG). The CDFG consists of basic blocks that contain the data

3.1. Fundamentals 14

dependencies, and the connections between basic blocks depict the control �ow.

3.1.2 Constraints

After the design has been compiled, user sets constraints to the design. The amount

of control the user has depends on the tool. Some tools let the user specify only

high-level targets in terms of area and latency, whereas others allow the user to

a�ect the architecture in more detail.

The constraints often involve making trade-o�s between di�erent quantities, such

as area, power, latency, and throughput. There is typically no single solution that

would minimize all of these quantities simultaneously. Instead, there is a range of

Pareto optimal solutions where one quantity can be improved only by degrading

another [4]. Figure 3.3 demonstrates this for area and latency. The Pareto optimal

solutions form a curve that is also called Pareto front. At any point of the Pareto

front, the latency cannot be decreased without increasing the area, and vice versa.

The grey area beyond the Pareto front contains solutions that are infeasible, and

on the other side of the curve are the actual implementations. At both ends of the

Pareto front, there is a point after which any increase in area (or latency) will not

improve the latency (or area).

Latency

Area

Pareto front

Solutions

Pareto-optimal

solutions

Figure 3.3 Pareto front for area and latency.

A typical user-de�ned constraint is the way loop structures are implemented. Loops

can be pipelined or unrolled to optimize the latency and throughput of the design.

The previously discussed for-loop example (Program 3.1) is used to demonstrate

these loop optimizations. This example had no dependencies between the loop it-

erations, and hence there is a wide range of possible schedules. Figure 3.4 shows

3.1. Fundamentals 15

*
+

*
+

*
+

*
+

Clock

cycles

0

1

2

3

4

5

0 1 2

Loop

iterations

6

7

0 1 2

*
+ *

+ *
+

0

1

2

3

4

5

0 1 2

Loop

iterations

6

7

0 1 2

*
+ *

+ *
+

*
+

*
+

*
+

0

1

2

3

4

5

0 1 2

Loop

iterations

6

7

0 1 2

*
+

*
+

*
+

2nd execution

of the loop
2nd execution

of the loop

2nd execution

of the loop

Latency = 6 cycles

Throughput = 1/6

Latency = 4 cycles

Throughput = 1/3

Latency = 2 cycles

Throughput = 1/1

(a) Sequential loop

*
+

*
+

*
+

*
+

Clock

cycles

0

1

2

3

4

5

0 1 2

Loop

iterations

6

7

0 1 2

*
+ *

+ *
+

0

1

2

3

4

5

0 1 2

Loop

iterations

6

7

0 1 2

*
+ *

+ *
+

*
+

*
+

*
+

0

1

2

3

4

5

0 1 2

Loop

iterations

6

7

0 1 2

*
+

*
+

*
+

2nd execution

of the loop
2nd execution

of the loop

2nd execution

of the loop

Latency = 6 cycles

Throughput = 1/6

Latency = 4 cycles

Throughput = 1/3

Latency = 2 cycles

Throughput = 1/1

(b) Pipelined loop

*
+

*
+

*
+

*
+

Clock

cycles

0

1

2

3

4

5

0 1 2

Loop

iterations

6

7

0 1 2

*
+ *

+ *
+

0

1

2

3

4

5

0 1 2

Loop

iterations

6

7

0 1 2

*
+ *

+ *
+

*
+

*
+

*
+

0

1

2

3

4

5

0 1 2

Loop

iterations

6

7

0 1 2

*
+

*
+

*
+

2nd execution

of the loop
2nd execution

of the loop

2nd execution

of the loop

Latency = 6 cycles

Throughput = 1/6

Latency = 4 cycles

Throughput = 1/3

Latency = 2 cycles

Throughput = 1/1

(c) Unrolled loop

Figure 3.4 Three possible schedules for the example for-loop: (a) Sequential loop that
corresponds most to the C code. (b) Pipelined loop where the multiplier and the adder can
operate on every clock cycle. (c) Unrolled loop where all 3 array elements are processed
simultaneously.

3 di�erent schedules. Figure 3.4(a) corresponds most to the original sequential for-

loop. It calculates the product and the sum on separate clock cycles, and this is

repeated for each set of integers to get the �nal results. Therefore, this implemen-

tation has latency of 6 clock cycles and can take new inputs every 6th cycle. In

Figure 3.4(b), the loop is pipelined such that both the multiplier and the adder

can operate on every clock cycle. Hence, this implementation can take new inputs

every 3rd clock cycle, and the overall latency is 4 clock cycles. Figure 3.4(c) shows

an unrolled loop, where the result is calculated simultaneously for each set of inte-

gers. This implementation requires two additional adders and multipliers, but can

take new inputs every clock cycle, and the latency is only 2 clock cycles. This also

demonstrates the Pareto optimality since the latency is decreased with the cost of

additional operators (i.e. increased area).

Another main constraint is the target technology which limits the amount of opera-

tions that can be executed within one clock cycle and also the amount of components

that can �t into a certain area. Therefore, most HLS tools require information about

the technology library to be able to �nd the optimal hardware architecture within

the given area and latency constraints. For ASIC designs, this information is usu-

ally provided by the silicon vendor in the form of a Liberty �le which contains the

timing, area and power characteristics of each standard cell, such as NAND gate

or �ip-�op. Some tools use the Liberty �le as such during synthesis, whereas other

3.1. Fundamentals 16

tools create their own component library and synthesize each component with a 3rd

party RTL synthesis tool to observe the correlation between area and timing.

3.1.3 Resource allocation, scheduling and binding

After the design has been constrained, the tool determines the resources that are

needed to implement the functionality. At this point, the the tool concentrates

mainly on the functional units, such as adders and multiplexers, but might also

include registers, memories and connectivity components to the allocated resources.

However, the amount of registers cannot be completely de�ned until the design is

scheduled and the length of each register pipeline is known.

Next, the functional operations are scheduled into the states of the control logic,

also known as control steps. Each control step takes at least one clock cycle but

might also contain several cycles in case of a nested control logic, where the control

step contains another control sequence. If the required operations cannot �t into

a single control step, the tool divides them into several steps. The tool might also

optimize area by using slower but smaller components divided into several control

steps. However, each additional control step increases latency, and thus the tool

considers also the latency constraints while optimizing the design.

The tool takes also the dependencies between variables into account during schedul-

ing. For example, if some variable in a loop depends on the result of the previous

loop iteration, and the user has pipelined the loop such that it should start a new

iteration every clock cycle, all operations of the iteration must be scheduled within

one clock cycle. If this is not possible with the target technology, the tool will inform

the user that the design cannot be scheduled, and the user might have to modify

either the source code or relax the loop constraints to solve the issue.

In binding phase, the tool examines the allocated resources and scheduling, and

checks if some resources could be shared. For example, if the same adder type

is used exclusively in two di�erent operations, the adder could be shared between

them. Therefore, these two operations can be bound to same physical resource. In

addition to functional units, the storage elements, such as registers, might also be

shared in case of variables having separate lifetimes. As the �nal result of binding,

each operation, variable and connectivity element is bound to a physical resource.

Resource allocation, scheduling and binding are interdependent phases, and the

tool would ideally consider these phases simultaneously or iterate between them

[7]. However, this would lead to a very complex problem, and therefore the phases

3.2. Advantages 17

are typically executed in a sequence. Their ordering might vary depending on the

optimization target. For example, when optimizing latency within a given area

constraint, it would be preferable to allocate the resources before scheduling the

design.

3.1.4 RTL generation

Finally, the tool generates the RTL architecture by using the results of resource

allocation, scheduling and binding. The generated RTL code is typically divided into

data path and control logic. In the data path, the tool instantiates the functional

units and storage elements that were bound to the operations and variables. The

control logic is realized with �nite-state machines (FSM) that comprise the control

steps derived during scheduling.

Continuing with the for-loop example (Program 3.1), Figure 3.5 represents possible

RTL architectures for the 3 scheduling results shown in Figure 3.4. In Figure

3.5(a), the multiplier and the adder are shared for all loop iterations. Here the

register is also shared such that it stores both the sum and multiplication results

on separate clock cycles. The pipelined version in Figure 3.5(b) can also share the

arithmetic units and registers between the loop iterations, but the registers cannot

be shared within one loop iteration anymore since they have to be able to store the

intermediate results every clock cycle. In Figure 3.5(c), there is no resource sharing

at all. Although the control logic is not drawn in the �gure, in practice there is still

a trivial FSM that will indicate when the result is valid.

The �nal result is the synthesizable RTL code, typically in the format of VHDL or

Verilog, depending on the tool. Generally, all of the code is generated into a single

�le, but it might also require compiling additional RTL libraries provided by the

HLS tool vendor.

3.2 Advantages

One of the main advantages in HLS is the increased productivity in frontend design,

as the designer can focus on the functionality instead of implementation details.

Table 3.2 lists results from previous case studies where HLS has been compared to

traditional RTL design. Many of them have demonstrated 2�5 times higher design

productivity compared to manually written RTL. In addition to e�ort estimations,

the table shows the quality of results in terms of design area (or resource utilization

for FPGAs) and maximum clock frequency fmax that can be achieved with the

3.2. Advantages 18

+

*

a[0]

a[1]

a[2]

b[0]

b[1]

b[2]

c[0]

c[1]

c[2]

d[0]

d[1]

d[2]

Control logic

Control

Data path

+

*

a[0]

a[1]

a[2]

b[0]

b[1]

b[2]

c[0]

c[1]

c[2]

d[0]

d[1]

d[2]

Control logic

Control

Data path

* +

a[0]

b[0]

c[0]

d[0]

* +

a[1]

b[1]

c[1]

d[1]

* +

a[2]

b[2]

c[2]

d[2]

(a) Sequential loop

+

*

a[0]

a[1]

a[2]

b[0]

b[1]

b[2]

c[0]

c[1]

c[2]

d[0]

d[1]

d[2]

Control logic

Control

Data path

+

*

a[0]

a[1]

a[2]

b[0]

b[1]

b[2]

c[0]

c[1]

c[2]

d[0]

d[1]

d[2]

Control logic

Control

Data path

* +

a[0]

b[0]

c[0]

d[0]

* +

a[1]

b[1]

c[1]

d[1]

* +

a[2]

b[2]

c[2]

d[2]

(b) Pipelined loop

+

*

a[0]

a[1]

a[2]

b[0]

b[1]

b[2]

c[0]

c[1]

c[2]

d[0]

d[1]

d[2]

Control logic

Control

Data path

+

*

a[0]

a[1]

a[2]

b[0]

b[1]

b[2]

c[0]

c[1]

c[2]

d[0]

d[1]

d[2]

Control logic

Control

Data path

* +

a[0]

b[0]

c[0]

d[0]

* +

a[1]

b[1]

c[1]

d[1]

* +

a[2]

b[2]

c[2]

d[2]

(c) Unrolled loop

Figure 3.5 RTL architectures for the three schedules of the example for-loop. (a) Sequen-
tial loop that corresponds most to the C code. (b) Pipelined loop where the multiplier and
the adder can operate on every clock cycle. (c) Unrolled loop where all 3 array elements
are processed simultaneously.

design. The percentages stand for the increase or decrease of the respective quantity

in the HLS design compared to the manually coded RTL. Within these studies, the

area di�erence varies from −38% to +173%, and fmax di�erence ranges from −29%
to +10%.

The design e�ort is reduced also by the fact that the high-level description is at the

same abstraction level with the algorithm model. Hence, it may be possible to reuse

parts of the model in the HLS design, especially if the HLS tool uses same input

language with the model. This is not possible with RTL code, as its representation

di�ers greatly from the behavioral model.

3.2.
A
d
van

tages
19

Table 3.2 Quality of results and design e�ort of HLS compared to hand-written RTL in several case studies.

Author Ref Tool Application Target Area (ASIC) / fmax E�ort
platform Resources (FPGA) estimation

Ollikainen P. [30] N/A DSP + control ASIC +15% � −17%
Järviluoma J. [15] HDL coder IQ data scaling ASIC −29% � �

Zhu Q. & Tatsuoka M. [53] Stratus DMA controller ASIC −38% � −66%
Sun Z. et al. [39] N/A AES encryption ASIC +37% +1.5% 0%

Torppa E. [45] Catapult Adder-tree FIR ASIC −30% +1.6%
Systolic FIR ASIC −11% ±0%
Basis functions ASIC −36% −3.3%
Adder-tree FIR FPGA +36% LUT, −31% FF −8.5%
Systolic FIR FPGA +23% LUT, +11% FF −29%
Basis functions FPGA +35% LUT, +0.5% FF +10% −80%

Kivimäki I. [18] Vivado Signal correction FPGA +173% LUT, +34% FF +7.3% −70%
Zwagerman M. D. [54] Vivado Image processing FPGA +61% LUT, −3% FF −10% −55%
Karras K. et al. [17] Vivado Memcached server FPGA −22% LUT, −35% FF � −50%

3.3. Problem areas 20

Another advantage of HLS is easier and faster design space exploration. Designers

can easily try several alternatives for the architecture by using the same high-level

code and modifying only the directives provided to the tool during the synthesis

process, such as the loop pipelining and unrolling. This is signi�cantly faster than

trying di�erent architectures at RTL, where in the worst case, most of the code

would have to be rewritten.

The algorithm-level code is typically technology-independent, which allows using the

same code to synthesize RTL architecture for di�erent target technologies. Since the

optimizations are done during the synthesis process based on the target technology,

the resulting RTL code will always be optimized to that particular technology. Al-

though it is also possible to use the same hand-written RTL code with several tech-

nologies, the resulting hardware would not be optimal without manually adjusting

pipelining in the code. However, some HLS tools are vendor-speci�c such that they

can generate optimal RTL only for the FPGAs of certain vendor. This was seen in

Table 3.1 where Vivado HLS, for example, could target only Xilinx FPGAs.

The higher abstraction level accelerates also the functional veri�cation since the

algorithm-level simulation is considerably faster than RTL simulation. Moreover, the

high-level model can be described with fewer lines of code, which not only consumes

less time, but also decreases the chance of errors in the code. With veri�cation

being one of the largest bottlenecks in the ASIC design today [48], this is one of the

most attractive features of HLS. Nevertheless, for the high-level veri�cation to be

su�cient, the equivalence of the algorithm description and generated RTL should be

proven. Fortunately, many tools provide ways to do this either formally or through

co-simulation of the high-level and RTL codes.

3.3 Problem areas

In spite of its many advantages, HLS imposes also some problems which are often

related to the fact that the designer has less control on the �nal architecture. This

might lead to a less optimal hardware, as the tool creates more complex logic than

expected. Previous research has demonstrated large variation in the quality of re-

sults, which can be seen in the case studies listed in Table 3.2. For example, the

amount of LUTs utilized in the signal correction block [18] was 173% larger com-

pared to hand-written RTL, whereas the DMA controller [53] had 38% smaller area

in the HLS design. This sort of variation makes it di�cult to estimate the area

for the �oorplan of the ASIC. Moreover, it is possible that a small change in the

high-level code has a huge impact on the RTL code and consequently on the physical

3.3. Problem areas 21

area. If this happens late in the design �ow, it might require changing the �oorplan

of the whole chip and delay the tapeout.

The limited control makes it also di�cult to design logic that requires exact timing

or complex control logic. This is complicated further by the fact that the tools use

input languages that are executed sequentially. As the tool tries to create hardware

that matches the sequential logic, there are cases where it is not possible to describe

the desired functionality with the high-level language. Some tools support mixed-

language design where part of the logic can be included in the design as a RTL

description. However, this makes the simulation of the design more complex as RTL

simulation di�ers greatly from the way the high-level code is simulated.

The input languages and synthesis processes for HLS are not currently standardized.

Instead, every tool has its own way of processing the high-level code. Some tools

require pragmas in the code that guide the tool in the synthesis, while others rely

mostly on a GUI-based approach, where the instructions are given by the user

during the synthesis process. This causes a problem where the high-level code can

be processed only by the targeted HLS tool, and if the tool is later changed, the code

would have to be refactored. This will consequently lead to vendor lock-in where

chip manufacturer has to keep using the same tool, as the code modi�cations would

likely consume a signi�cant amount of time. In contrast, VHDL and (System)Verilog

are standardized, vendor-independent languages.

The wide range of applications is also a common challenge for HLS tools. For

example, control logic di�ers greatly from signal processing applications and requires

di�erent kind of algorithm description. Furthermore, the targeted platform a�ects

the architectural choices, since ASIC and FPGA require a di�erent kind of RTL

description to achieve optimal hardware. Therefore, the HLS tools typically focus

on a certain application domain. Thus, if the manufacturer wants to design products

on both ASIC and FPGA, and has a broad range of applications, it might have to

purchase licenses for several HLS tools, which may build up to excessive costs.

The RTL code generated by the HLS tools is generally not human-readable since it

is intended to be parsed only by simulators and RTL synthesis tools. The generated

RTL code may contain hundreds of thousands of lines in a single �le, the signal

and entity names are often very abstract, and the structure of the code is di�cult

to follow. Thus, synthesis and linting logs are di�cult to read due to the long

signal and entity names, and the code is di�cult to debug if bugs are found in the

RTL simulation. Fortunately, some tools allow cross-probing between the RTL and

high-level codes to ease the debugging process.

22

4. CASE STUDY

The HLS �ow and the quality of backend results are evaluated using an example

design that resembles a real use case in IP-based ASIC design. The designed IP

follows a typical structure of an IP block that is shown in Figure 4.1. It includes

two streaming interfaces for data, a bus interface for software con�guration, wrapper

for memories, and a core with the main functionality of the IP. Only the IP core

is created with HLS since the other components are either available as common

modules or generated with in-house tools. The IP that was chosen as a basis for

this work has an existing RTL implementation, which allows comparing the backend

results and the design e�ort of the HLS-generated and manually coded RTL designs.

IP core

(generated with HLS)

S
tre

a
m

 in
te

rfa
c
e

S
tre

a
m

 in
te

rfa
c
e

SW interface Memory

wrapper

IP top level

Figure 4.1 Typical structure of an IP that contains data and con�guration interfaces,
memory wrapper, and the core with the main functionality of the IP.

4.1 Decimator

The IP block used as a test case is a decimator, which is a commonly used component

in digital signal processing (DSP) applications that operate with multiple sample

4.1. Decimator 23

rates. The main functionality of a decimator is to decrease the sample rate of the

signal by a decimation factor M . This means that the decimator passes only every

Mth input sample to the output. However, simply downsampling a signal would

cause distortion since the frequency components above the Nyquist frequency of the

decimated signal would be misinterpreted as low-frequency components. To avoid

this aliasing, the signal is low-pass �ltered1 before downsampling [25], as shown in

Figure 4.2. There are many ways to implement the anti-aliasing �lter, the choice

depending on the application. The �lter types used in this design are cascaded

integrator-comb (CIC) �lter and polyphase decimation �lter.

f

|H(f)|

Low-pass filter

M

Ts MTs

Figure 4.2 Decimation is a combination of �ltering and downsampling. Ts denotes the
sampling interval of the signal.

4.1.1 Cascaded integrator-comb �lter (CIC)

CIC �lter is a common �lter type used in applications that require con�gurable

decimation rate [12]. Figure 4.3 shows the typical structure of a CIC �lter. It

consists of a cascade of integrators followed by downsampling and an equally long

cascade of combs that are essentially digital di�erentiators. The number of integrator

and comb stages a�ects the attenuation of the aliasing spectral components such that

increasing the number of stages improves the attenuation. As all the arithmetic

operators in a CIC �lter are either adders or subtractors, the hardware cost is small

compared to regular FIR �lters with multipliers. Another advantage of the CIC

�lter is that its frequency response depends on the decimation rate such that the

1Bandpass �lters can also be used in decimation, in which case the aliasing is exploited to
translate the bandpass signal to a lower frequency [2].

4.1. Decimator 24

largest attenuation will always occur at the frequency components that would alias

at zero frequency, which often is the frequency where the desired signal is located.

Therefore, it lends itself to applications with con�gurable decimation rate since the

only part that has to be con�gured is the downsampler.

M

z -1

+

z -1 z -1 z -K z -K z -K

- - -

Integrators Combs
Down-

sampling

++ + + +

Figure 4.3 Decimating CIC �lter with three integrator and comb stages.

The CIC �lter is a convenient component for evaluating the optimization capabilities

of HLS tools. As the cascade of adders or subtractors does not necessarily require any

registers between them, the tool would have to �gure out the amount of additions

and subtractions that can be �tted within one clock cycle and decide the optimal

pipelining. Therefore, the CIC �lter is a good test case for evaluating the quality of

the technology library characterization.

4.1.2 Polyphase decimator

As shown in Figure 4.2, decimation can be done simply with a low-pass FIR �lter

followed by a downsampler. However, this structure contains excess computation as

the �lter output is calculated also for samples that are eventually dropped. There-

fore, decimating FIR �lters are often implemented using a polyphase structure [25]

that is shown in Figure 4.4. The name polyphase refers to the fact that the samples

are divided into several branches, each being downsampled at di�erent phases of the

signal. In this example, the decimation rate is two, and thus the input samples are

divided into two branches such that even samples go to the upper branch, and the

odd samples to the lower. Filter H0(z) contains the even coe�cients and H1(z) the

odd coe�cients of the FIR �lter that would have been used in the basic decimator

structure. Polyphase decimators have a �xed decimation rate, and their implemen-

tation requires multipliers, but it is easier to achieve the desired frequency response

with them compared to a CIC �lter [36].

4.1. Decimator 25

+
2z-1

H0(z)

H1(z)

z-1 z-1 z-1

C0 C1 C2 CN

+ + +

2

d5d1 d4d0 d3d2

d4d0 d2

d5d1 d3

Figure 4.4 Two-branch polyphase decimator with decimation factor of 2. Both H0(z)
and H1(z) contain a FIR �lter that is shown on right.

4.1.3 Arbiter

The decimator di�ers from the generic IP shown in Figure 4.1 by having more than

one data stream input. These are sample-based data streams that can transmit

several channels of data by time-division multiplexing the samples of the di�erent

channels to a single data bus. In the input of the decimator, the data streams have

high sample rates, and only few logical streams can �t in a single physical stream.

As the data streams are decimated to a lower sample rate, streams can be combined

to convey more channels. This is done with an arbiter that interleaves samples from

two data streams as shown in Figure 4.5. This arbiter follows a priority scheme such

that the samples in stream 0 are passed to the output by default, and the samples

from stream 1 are passed only when there are no samples arriving from stream 0. To

avoid losing the samples of stream 1, there is a FIFO bu�er that stores the samples

when the context of the arbiter is on the stream 0.

Arbiter

2

2

Stream 0

Stream 1

Figure 4.5 Arbiter interleaves samples from two data streams into a single stream after
decimation.

4.2. Catapult HLS 26

4.1.4 Packager

Finally, as the data streams have been decimated, the samples have to be packed

such that they follow the data stream protocol that is used to connect the decimator

to the next IP. The protocol requires that the samples are sent in packets of 4 samples

as a burst, and all samples in the packet must belong to the same channel. Due to

decimation, however, the samples in the output of the �nal decimating subblock are

in a seemingly random order, and hence the samples have to be organized to the

packets of 4 samples by the help of a packager. The block diagram of the packager

is shown in Figure 4.6 that also demonstrates the timing of the input and output

samples. For each channel, there is a FIFO bu�er where the incoming samples are

stored. Once a bu�er has 4 or more samples, they are sent to the output as a burst.

data_out

Send

process

Control logic

data_in

Channel 1 FIFO

...

Channel 0 FIFO

...

Channel N FIFO

...

tt

Read

process

Figure 4.6 Packager that organizes the samples into packets of four samples. Tim-
ing diagrams are also shown at the input and output where the colors represent di�erent
channels.

4.2 Catapult HLS

The HLS tool used in the evaluation is Catapult HLS by Mentor Graphics [24]. The

tool is targeted for both ASIC and FPGA designs. It uses a large subset of ANSI

C++ and SystemC as its input language, and the output language of the generated

RTL can be selected as either VHDL or Verilog. The code written for the tool is

generic C++ such that it can be compiled with most C++ compilers.

Catapult supports both SystemC (SC) and Algorithmic C (AC) data types for bit-

accurate number representations. The AC data types, for example, contain integer

(ac_int), �xed-point (ac_�xed), and complex number formats (ac_complex), which

makes them convenient especially for DSP applications. They also handle rounding

and saturation automatically when assigning to a variable with a di�erent data

4.2. Catapult HLS 27

format, and the user can choose the rounding and saturation behavior from a wide

range of options. However, the downside of these data types is that they reduce the

reusability of the code since other HLS tools might not support them.

4.2.1 User interface

The instructions and constraints are given to Catapult via a GUI (graphical user

interface) that guides the user through the whole synthesis process (see Figure 4.7).

Code pragmas can also be used to guide the tool, but it is often preferable to leave

the source code untouched and give the instructions through the GUI. Furthermore,

Catapult supports TCL (tool command language) scripting such that each setting

given in the GUI has an equivalent TCL command. During the synthesis process,

the tool stores each instruction into a TCL script, which allows the user to later

repeat the whole process by simply executing the script.

Figure 4.7 The user interface of Catapult HLS.

The user interface lets user to control a wide range of options. The most elementary

options are clock frequency and polarity, and reset type (synchronous, asynchronous

or both) and polarity. In addition, the user can de�ne clock uncertainty and duty

cycle. It is also possible to set multiple clocks to di�erent hierarchical blocks, in

4.2. Catapult HLS 28

which case the tool will replace the ordinary FIFO bu�er between the blocks with

a clock domain crossing (CDC) FIFO.

The architectural constraints let the user choose if the loops are pipelined or unrolled,

and whether the data arrays are implemented as �ip-�ops or memories. In addition

to these, there are plenty of other options, some of them rather detailed. The user

can, for example, adjust the scheduling afterwards by moving the operations from

control step to another.

4.2.2 Hardware interfaces

The C++ function parameters and return values are synthesized to hardware in-

terfaces that can be realized as simple wires, or as streaming or memory-mapped

interfaces. The streaming interfaces are created with ac_channels (included in AC

data types) that can be mapped to a simple handshaking interface with ready/valid

signaling. This provides easy connectivity to other IPs and also allows creating hi-

erarchical designs where two subblocks are connected via ac_channel. The channel

between the subblocks can contain a FIFO for bu�ering data samples. This has been

demonstrated in Figure 4.8 where subblocks block_A and block_B are connected

in the top-level function via an ac_channel.

block_A
channel (FIFO)

...

block_B

void design_top(ac_channel<int> &data_in,
 ac_channel<int> &data_out)
{
 ac_channel<int> channel;

 block_A(data_in, channel);
 block_B(channel, data_out);
}

void block_A(ac_channel<int> &data_in,
 ac_channel<int> &data_out)
{
 int input_data = data_in.read();
 ...
 data_out.write(result);
}

design_top

void block_B(ac_channel<int> &data_in,
 ac_channel<int> &data_out)
{
 int input_data = data_in.read();
 ...
 data_out.write(result);
}

Figure 4.8 Example of the use of ac_channels in hierarchical design.

4.2. Catapult HLS 29

The memory-mapped interfaces are created by using C arrays with �xed length.

If the array is a parameter of the top-level function, Catapult will synthesize a

memory interface with data and address buses, and read/write enable signals. Two

subblocks can also use the same C array for communication, in which case Catapult

instantiates a shared memory between them. The user can de�ne, for example, the

way the C array indices are mapped to memory addresses and the amount of data

samples in a single memory address.

There are also other interfaces options. For example, control data can be provided

as a direct input that has no handshaking or synchronization. This is typically used

only for static control values because a change in direct input produces a di�erent

outcome in the untimed model and the synthesized RTL code, which would lead to

failures in the co-simulation of these two models.

4.2.3 Veri�cation

Catapult has an integrated veri�cation �ow where it automatically generates compi-

lation scripts for running the tests for both the high-level model and the generated

RTL. The user has to only write the testbench logic in C++ (or SystemC), which is

rather straightforward as the testbench and the design are both written in the same

language and at the same abstraction level.

In the beginning of the synthesis process, the C++ testbench is used to verify

the functionality of the design. This is much faster compared to a typical RTL

simulation and allows quick iterations in debugging of the high-level code. During

the synthesis process, Catapult automatically generates a RTL testbench that uses

the C++ testbench as a reference. This RTL testbench is mainly used to ensure

that the generated RTL corresponds to the high-level functionality by co-simulating

it with the C++ testbench. The veri�cation aspect of high-level synthesis has been

covered in more detail in Tulla's thesis work [46].

30

5. RESEARCH QUESTIONS

The purpose of this thesis is to evaluate the suitability of HLS-generated RTL code

for several tools and �ows related to backend design. Following topics are covered:

• Technology library characterization

• Technology library abstraction

• Design-for-testability (DFT) structures in RTL code

• Engineering change order (ECO)

• Static code analysis

• Logical equivalence checking (LEC)

• Area and timing

• Power e�ciency

This chapter introduces these topics and provides evaluation criteria for each of

them. The results are discussed in the next chapter.

5.1 Technology library characterization

The HLS process in Catapult uses its own component library that contains basic

building elements, such as logic gates, registers, multiplexers, and adders. The tool

requires area and timing information for all of these components to schedule the

design and allocate resources properly. This information is provided to the tool by

characterizing the target technology, for which Catapult provices a library builder

tool that will be evaluated in terms of the required time and e�ort.

The characterization process might have to be repeated several times if the area

and timing characteristics of the component library do not correlate with the RTL

synthesis results. For example, if the characterized component delays are too opti-

mistic, the physical implementation of the HLS-generated logic might contain timing

violations. Moreover, technology libraries might get updated during the design pro-

cess, which requires repeating the characterization process. Hence, the �ow should

be automated and repeatable with little manual e�ort.

5.2. Technology library abstraction 31

5.2 Technology library abstraction

Although designs are generally technology-independent until RTL synthesis, there

are certain technology components that have to be instantiated already in the RTL

code. Typical examples of these sort of components are memories and components

used in clock domain crossings (CDC), such as synchronizers.

It is a common practice in RTL design to abstract technology components by cre-

ating wrappers for them with generic interfaces. In this way, the designer will only

have to instantiate these wrappers in the design, and the mapping to the technol-

ogy is done inside the wrapper. If the design is later implemented using di�erent

technology, only the wrappers have to be updated, and the code of the actual IP

can be used as such (assuming that the RTL behavior of the technology component

has not changed). This is illustrated in Figure 5.1 that shows a typical use case

for technology abstraction. In this example, the IP contains several memories that

are instantiated using a wrapper with a generic interface. There are wrappers avail-

able for two di�erent technologies, and depending on the technology which the IP

is targeted to, one of them is selected for the compilation.

IP core

(generated with HLS)

S
tre

a
m

 in
te

rfa
c
e

S
tre

a
m

 in
te

rfa
c
e

SW interface Memory

wrapper

ram_1rw_wrapper

SRAM

(tech X)

ADDR

DIN

WE

RE

DOUT

ram_1rw_wrapper

REG FILE

(tech Y)

ADDR

DIN

WE

RE

DOUT

COMPILE NETLIST

ram_1rw_wrapper

Figure 5.1 Memory wrappers are used in the design to abstract the technology components.
In this example, there are two implementations for the wrappers, and the choice depends
on the target technology.

Technology abstraction also allows using generic technology-independent compo-

nents that model the behavior of the technology component and share the same

interface with the corresponding wrapper. For example, a memory could be mod-

eled simply as an array of �ip-�ops. These technology-independent components can

5.3. Design-for-testability (DFT) structures in RTL code 32

be used in the �rst simulations before the technology components and their wrappers

are available.

HLS has generally two ways to instantiate the technology components in the gener-

ated RTL. One way is to provide the tool with the information about the technology

components, and it instantiates them as such to the RTL code. The other way is

to import the wrappers to the tool, and the mapping to technology components is

done during the compilation of the RTL code. The latter is more �exible way as

it allows using the generic technology-independent components before the wrappers

are available. However, when using the wrappers, the tool has no information about

the timing and area characteristics of the technology components, which makes it

more di�cult to optimize the hardware around these components.

This thesis will investigate the possibilities for technology abstraction in Catapult,

and best practices will be developed based on the trials with the example design.

The �ow will be evaluated based on the e�ort required to both import technology

components to the tool and use them in the design.

5.3 Design-for-testability (DFT) structures in RTL code

Each chip that is fabricated has to be tested for faults that might occur due to

variations in the manufacturing process. These faults include, for example, nodes

stuck at 0 or 1, and shorted and open connections. Simply running the functional

tests for each chip is slow, and thus the chips must have dedicated testing structures

embedded to speed up the testing. Improving the testability in this way is called

design for testability (DFT).

The most common DFT structure in digital circuits is a scan chain [48]. An example

of a scan chain is shown in Figure 5.2 that represents a circuit of 4 �ip-�ops

with some combinatorial logic between. The scan chain is used here to check the

combinatorial logic for faulty gates. It is constructed by adding 2-input multiplexers

in front of each �ip-�op and connecting them in a chain, essentially forming a long

shift register. Now, the �ip-�ops can be loaded with arbitrary values by enabling

the scan chain (by setting scan enable to 1) and inserting the values as a bit stream

through the scan data input. Once the desired values have been loaded, the output

of the combinatorial logic is captured to the �ip-�ops by disabling the scan chain

and sending a single pulse to the clock input. The output values can then be read

from the scan chain output by enabling the scan chain again. Finally, the bit vector

that was read is compared to a golden vector to determine if there were faults in

the circuit.

5.3. Design-for-testability (DFT) structures in RTL code 33

Scan-in Capture Scan-out

Clock

Scan enable

D Q

D Q

1

0

1

0

SCAN

ENABLE

SCAN

DATA IN

D Q

D Q

1

0

1

0

Combinatorial

logic

SCAN

DATA OUT

Functional

data in

Functional

data out

Clock

Figure 5.2 Scan chain inserted to a circuit.

The scan chain is often done automatically to the gate-level netlist, and thus the

designer does not have to implement it in the RTL code. The scan insertion is

done by replacing all �ip-�ops in the design with scan �ip-�ops that include also the

multiplexer and the scan data and enable inputs in addition to the regular �ip-�op

[48]. The test synthesis tool takes also care of the chaining of the �ip-�ops.

Although the scan chain is implemented automatically, there are some cases where

DFT has to be considered already in RTL design. For example, memories might

have built-in self test (BIST) which requires routing the related control ports to the

top level of the IP. Moreover, clock and reset manipulation (e.g. clock division and

gating) requires attention regarding DFT. For instance, if a clock gate is controlled

by a �ip-�op, loading the data through the scan chain will occasionally disable the

clock gate, preventing the scan data from �owing through the other, gated �ip-�op.

Hence, the clock gates must have an additional control for test mode that bypasses

the clock gate.

This thesis will study the possiblity of inserting DFT structures in the RTL code

generated by the HLS tool. The required e�ort will also be evaluated.

5.4. Engineering change order (ECO) 34

5.4 Engineering change order (ECO)

Since the physical implementation of the chip starts well before all veri�cation is

completed, it is possible that bugs are found after placing and routing the design.

Moreover, speci�cations may change at a late stage of the design �ow which requires

modifying the RTL code and consequently the gate-level netlist and layout. Repeat-

ing the whole backend �ow for these changes is costly and delays the tapeout of the

chip, or requires a new tapeout if the masks have been already created. Hence,

the changes are often done to the physical netlist as local modi�cations called en-

gineering change orders (ECOs) [20]. ECOs can be done to the netlist manually or

with a tool that observes the changes in RTL or gate-level netlist and automatically

creates a patch for the existing physical netlist. After the change is done, the netlist

is veri�ed against the modi�ed RTL description with a logical equivalence checking

tool.

Unfortunately, HLS complicates the ECO �ow due to the increased distance between

high-level algorithm and its physical implementation. Even a small change in the

algorithm code may cause massive changes in the gate-level netlist. Therefore, the

ECO �ow is one of the main concerns of HLS in ASIC design. Although it has been

claimed that ECOs are rare with HLS due to the accelerated veri�cation [42], it is

still possible that speci�cations change. Hence, HLS tools targeting ASICs should

provide some means to minimize the RTL changes.

Incremental high-level synthesis has been proposed to ease the ECOs in HLS �ow

[20]. This has been already taken into use in a few HLS tools, and Catapult has

also implemented an incremental �ow. This �ow will be evaluated in this thesis by

observing both the ease of use and the resulting changes in the RTL code. The

scope of the changes will also be examined to see if the alterations are localized or

spread all around the design.

5.5 Static code analysis

Static code analysis is used to check the RTL code for structures that might in-

troduce bugs or other issues in the later veri�cation and physical implementation

phases [44]. The code analysis is carried out with a linting tool that reads the RTL

code and ensures that it ful�lls all the given rules. These rules detect issues such as

unintentional latches, combinatorial loops, �ip-�ops without reset, and unsynthesiz-

able structures. Examples of linting tools used in the industry are Ascent Lint by

Real Intent [33] and SpyGlass Lint by Synopsys [40]. Figure 5.3 shows an example

of a linting tool reporting a length mismatch in a signal assignment.

5.6. Logical equivalence checking (LEC) 35

Figure 5.3 Ascent Lint reporting a length mismatch in a signal assignment in RTL code
[33].

Static code analysis is typically used to check the RTL code before functional veri-

�cation or RTL synthesis such that potential bugs are spotted before proceeding to

these lengthy processes, and thus avoiding unnecessary iteration loops in the design

�ow. It is often the responsibility of the designer to run the RTL linting and check

all the reported warnings. Projects often have a requirement that the linting logs

have to be completely clean, and therefore the designer will either have to �x the

issue that caused the warning or create a waiver with a good reasoning.

It is a good practice to run the static code analysis also for the tool-generated RTL

code, although the designer has little in�uence on the coding style. In this way,

the possible bugs in the HLS tools are spotted and can be reported to the tool

vendor. However, if the linting tool gives warnings, it is di�cult to �x the issue in

the generated code, and hence the only practical way to have clean linting logs is

by creating waivers. Since it is often a time-consuming task to create the waivers,

it would be preferable to have the tool generate as clean RTL code as possible.

5.6 Logical equivalence checking (LEC)

As the design is processed further, for example through RTL synthesis, the behavior

of the design has to stay the same. In other words, the two representations (e.g.

RTL code and gate-level netlist) have to be logically equivalent. Therefore, the

equivalence is often veri�ed with a logical equivalence checking tool that shows the

5.7. Area and timing 36

equivalence formally through a mathematical proof [48]. In RTL-to-gate checking,

the tool typically creates a one-to-one mapping for all registers in the two models

and checks the equivalence of the combinatorial network between these registers.

Although it is also possible to verify the new representation by simulating it, with

large designs it is often impractical to repeat all test cases many times. This is a

problem especially in gate-level simulation that is considerably slower compared to

RTL simulation.

The logical equivalence check is typically run after RTL synthesis to verify that

the synthesized netlist has equivalent behavior with the RTL description. Although

the synthesis tool should produce equivalent netlist, there is always a chance that

the tool has a bug and produces erroneous logic, which would be costly to �x if

not spotted early. In addition to RTL-to-gate checks, it is also common to check

the equivalence of two gate-level netlists after modi�cations, such as scan insertion,

place and route, and ECO.

In this thesis work, the formal veri�cation is run to check the equivalence of the

generated RTL and the synthesized gate-level netlist. The intention is to check if

the generated RTL contains structures that are challenging to verify, which would

be seen in the run time or failures in the veri�cation.

5.7 Area and timing

The physical area of the HLS-generated design will be compared against the hand-

coded RTL design mainly to evaluate the quality and predictability of the results.

Silicon area a�ects the unit price, and thus it should be kept at minimum. The

predictability is important for being able to estimate the design area for initial

�oorplanning of the ASIC that is carried out at an early phase of the design �ow. If

the area varies largely, chip-level area estimation and partitioning becomes di�cult.

For this reason, the stability of the design area for several synthesis runs will also

be examined.

The area and timing will also be compared to the estimates given by Catapult

that are based on the internal component library of the tool. This will be the

main feedback for de�ning the quality of the technology library characterization. If

the area and timing results di�er greatly from the estimates, the characterization

process would have to be repeated with di�erent settings to reach a more accurate

approximation of the physical characteristics of the components.

5.8. Power e�ciency 37

5.8 Power e�ciency

As the number of transistors in integrated circuits grows, power dissipation becomes

more concentrated and power density increases. In addition, the trend of raising

clock frequencies increases the power dissipation even further. As a consequence,

the importance of power management has become more signi�cant in logic design

today. Whereas in the past, power consumption was mostly considered in mobile

devices, nowadays all chip manufacturers have to steer towards low-power design to

minimize the chance of malfunctions in the chips and the cost of cooling systems.

The power consumption in digital circuits can be generally divided into three com-

ponents: leakage, switching, and short-circuit power [32]. These power components

are demonstrated for a CMOS inverter in Figure 5.4. Leakage power is a static

power component that is dissipated continuously as long as the circuit is connected

to a voltage supply. Switching power and short-circuit power are dynamic power

components. That is, they depend on the switching activity of the circuit. Switching

power is the power dissipation that occurs in the transistors when they charge (or

discharge) their load capacitance. Short-circuit power is internal power consumption

in a CMOS cell that takes place in the short time interval during switching when

both transistors are in a conductive state.

VDD

IN

Cload

Switching

Switching

Short

circuit

VDD

IN
Leak

Schematic

symbol

Leak

Leak

Leak

Leak

(a) Static power

VDD

IN

Cload

Switching

Switching

Short

circuit

VDD

IN
Leak

Schematic

symbol

Leak

Leak

Leak

Leak

(b) Dynamic power

Figure 5.4 Leakage, switching and short-circuit power components in a CMOS inverter.

There are many ways to reduce the leakage power, for example by reducing the

supply voltage or using transistors with low-leakage characteristics. However, at IP-

level design, there are only few methods that can be applied to reduce leakage power.

5.8. Power e�ciency 38

Best way to minimize leakage is to minimize the number of transistors in the design.

When the design area is optimized, the leakage power is simultaneously reduced.

It is also possible to utilize power gating, which means shutting down the voltage

supply to the parts of the design that are not needed at that moment. However,

power gating generally requires more control logic, and it cannot be used frequently

since shutting down and waking up the logic takes a relatively large amount of time.

Power gating is usually done at system level, not within a single IP. Therefore, it is

out of the scope of this thesis and not considered in the evaluation. Furthermore,

power gating and supply voltage control is not visible to algorithm level, and thus

it is rarely considered by HLS tools.

Dynamic power can be reduced by decreasing the supply voltage, minimizing the

load capacitances, or lowering the amount of switching in the circuit. However, the

supply voltage is typically decided at system-level, and the load capacitances cannot

be a�ected until the RTL synthesis and physical design phases. The switching

frequency can be reduced by decreasing the clock frequency � which again is a

system-level decision � or by designing the logic such that unnecessary toggling

of the gates is minimized. The latter can be controlled at RTL by avoiding the

unnecessary switching of the states of the registers or the combinatorial logic in the

input. In this way, the combinatorial network will consume only leakage power as

its state is stable.

The most active net in a digital circuit is the clock tree network. Since it toggles its

state twice every clock cycle, the combinatorial logic along the clock network causes

signi�cant dynamic power consumption. This combinatorial logic comprises clock

bu�ers and the clock inputs of �ip-�ops that will switch even if the data input of

the �lp-�op remains stable. In addition, the wire capacitance of the clock network is

relatively large which will increase the dynamic power further. Therefore, the clock

signal should be propagated only to those �ip-�ops that will change their state at

the next clock cycle. This act of isolating certain registers from the clock network

is called clock gating.

Figure 5.5 demonstrates clock gating by showing two implementations of a circuit

that contains a register that will change its output only when the enable input (en)

is active. Figure 5.5(a) shows the classical implementation of the circuit that uses

a multiplexer to preserve the previous state of the register. In Figure 5.5(b), the

circuit is transformed such that the enable input controls the clock input of the

register. When the register is disabled, its clock input is kept low, and the register

retains its state. In this case, the dynamic power of the clock network after the

clock gate is zero. For simpli�cation, the clock gating element is drawn as an AND

5.8. Power e�ciency 39

D Q data out

data in

en

1

0

clk

(a)

D Q data outdata in

en CG

clk

(b)

Figure 5.5 (a) The state of the register is preserved with a multiplexer. (b) The multi-
plexer is transformed into a clock gating element. Both circuits have the same functionality.

gate in the �gure. In practice, however, the clock gating element often includes also

a latch to avoid glitches in the output of the clock gate.

Clock gating can be added to the design at many abstraction levels. At system-level,

IPs or even whole subsystems can be clock gated. Similarly at RTL, clock gates can

be added to gate the clock signal for subblocks that are not needed. The designer can

also do more detailed clock gating at RTL, but usually this is done automatically by

the RTL synthesis tool. The tool can examine the logic and extract the conditions

for updating a group of registers, and insert a clock gate to them. However, to be

able to extract this information, the RTL code has to clearly imply the conditions

for loading the registers with new values. Listing 5.1 shows an example of a VHDL

code that will generate the clock-gated register that was shown in Figure 5.5. As

the if-clause at line 6 is synthesized, the synthesis tool can deduce the condition for

preserving the register state and automatically generate a clock gate.

1 process (clk , arst_n) i s

begin

3 i f arst_n = '0' then

data_out <= (others => '0')

5 e l s i f clk 'event and clk = '1' then

i f (en = '1') then

7 data_out <= data_in;

end i f ;

9 end i f ;

end process;

Program 5.1 Example of a sequential process that will imply an automatic clock gate in

the RTL synthesis.

5.8. Power e�ciency 40

To minimize dynamic power, the enable conditions should be as speci�c as possible

such that the registers are updated only when necessary. For instance, the power

savings in the reference decimator design are mostly achieved by clock gating data

registers separately for each data channel. Hence, the clock input is toggled only

for those registers that belong to the channel that is currently being processed. For

example, in packager (Figure 4.6) only one of the data FIFOs is active at a time.

The simplest measure of the quality of automatic clock gating is the percentage of

registers that have a clock gate. However, this is a static measure that does not

take the switching activity into account. In practice, the e�ciency of clock gating

depends on the use case. For example, in the circuit shown in Figure 5.5, 100% of

the registers are clock-gated, but if the register is always enabled, the clock-gating

e�ciency would be 0%.

To get a better measure of the power savings, clock gating e�ciency is evaluated

with the help of a switching activity �le that is generated during a RTL or gate-level

simulation. This activity �le can either contain the full waveforms of each signal or

statistical information, such as the amount of times the signal has toggled during

the simulation. It is a common practice to generate the signal activity �les for idle,

typical, and maximum use cases. This gives a good power estimate for the whole

range of use cases and reveals possible problems in the clock gating.

In this thesis, the power e�ciency is mainly evaluated by examining the clock gating

e�ciency for three use cases: idle, typical, and maximum. These use cases are

simulated with the RTL code, and the switching activity information is stored in a

SAIF (Signal Activity Interchange Format) �le. This �le is given as an input to the

RTL synthesis tool such that it can back-annotate the signal names of the gate-level

netlist back to the RTL signals. Using this information, the power estimation is

then run for the gate-level netlist of the design.

41

6. RESULTS

This chapter represents the results for the research questions introduced in the

previous chapter. Before going to the results, however, there are a few comments

about the experiences with the HLS design �ow and a comparison of the e�ort

required in HLS and traditional RTL design.

6.1 Design entry and e�ort

When starting to use Catapult, it took a couple of weeks to learn the new coding

style in C++ that creates synthesizable logic. However, after getting used to the

�ow, creating the design was straightforward; especially the signal processing algo-

rithms were easy to describe in the high-level code. Control logic was a bit more

complicated to write, and the code often started to resemble RTL code. For ex-

ample, implementing the downsampler with a proper decimation phase in the CIC

�lter required more lines of code than the actual �lter core.

One feature that was di�cult to implement was clearing data registers and counters

with certain control input. The HLS block stalls when it has no data input, which

also means that it does not read the control inputs (here de�ned as direct inputs).

This problem was circumvented by inserting an extra sample to the HLS block

when the control value changed. As this sample passes through all subblocks, it also

triggers them to read the control input and clear the related registers. Although this

extra sample is fake data, it causes no harmful side e�ects here because the data

processing is disabled during the control input change.

Another, veri�cation-related issue was encountered with the arbiter block. The

arbiter used non-blocking read because it had to be able to check both data inputs

every clock cycle. With blocking read, the arbiter would have stalled waiting for

data if either of the data inputs had no valid data coming. However, when using

non-blocking read, the outcome is di�erent in the RTL and C++ simulations, as

the input samples are interleaved in a di�erent order. Hence, the equivalence of the

two models could not be proven with the co-simulation. Nevertheless, in this case,

the generated RTL could be veri�ed with the RTL testbench of the hand-written

6.2. Technology library characterization 42

version, which showed that the arbiter was functioning correctly.

The decimator was too complex design (in terms of logic size) to be generated at

once, as it took 12 minutes to generate the RTL only for the polyphase decimator.

Moreover, generating the whole IP caused the grid machine to often run out of

memory. Therefore, the design was created with the bottom-up �ow where the

subblocks are generated in separate projects and included as hierarchical blocks in

the top-level integration. This �ow is convenient as it takes less than a minute to

integrate the top level. If there is a need to modify one of the subblocks, only that

subblock has to be regenerated, and the top level reintegrated. This saves time as

the other subblocks do not require regeneration.

Implementing the decimator with Catapult took approximately 1 month, and op-

timizing the design another month. In comparison, the hand-written RTL design

took 3�4 months. However, the comparison is not completely fair as the RTL design

time also contained speci�cation and documentation work. During the HLS design,

all features were clear to the designer, and there was no need for studying the func-

tionality of the decimator. Both designs included a learning period as the designer

had no previous experience with HLS, and the hand-written version was the �rst

RTL design task for the designer. Taking these aspects into account, the estimated

e�ort was 20�50% smaller in the HLS design, depending on the optimization

needs.

The e�ort was estimated also based on the code line count. Commented and empty

lines were excluded from the calculation in both designs. The C++ code consisted of

1 040 lines, whereas the hand-written VHDL code contained 2 800 lines. Hence, the

line count in the C++ code was approximately 60% smaller compared to the hand-

written VHDL. The generated VHDL �le, on the other hand, contained 117 000 lines,

which means 40 times more lines to debug if bugs are found in the RTL simulation.

6.2 Technology library characterization

Technology libraries are characterized with a library builder tool in Catapult. It

requires a Liberty �le of the ASIC technology library as an input. Listing 6.1 rep-

resents the format in which each standard cell is de�ned in the Liberty �le. This

example shows a de�nition of an inverter. The �rst lines contain general information

about the cell, such as area and leakage power. They are followed by pin de�nitions

that include direction of the pin and other related information. Input pins include

their capacitance, and output pins de�ne their function, timing, and power. The

timing and power characteristics are often given in a 2-dimensional table where the

6.2. Technology library characterization 43

value depends on the input transition time (index_1) and load capacitance (in-

dex_2). The units of these quantities are typically de�ned in the beginning of the

Liberty �le. The level of detail in the Liberty �les varies. For example, here the

input capacitance has only one value, whereas some other library may provide sep-

arate values for rise and fall capacitance.

cell(INV) {

2 area : 100.0;

cell_footprint : "inv";

4 cell_leakage_power : 0.1;

pin(A) {

6 direction : input;

capacitance : 0.36;

8 }

pin(Out) {

10 direction : output;

capacitance : 0;

12 function : "!A";

timing () {

14 related_pin : "A";

timing_sense : negative_unate;

16 cell_rise(example_delay_table) {

index_1 ("0.1, 0.2, 0.4, 0.8, 1.5");

18 index_2 ("0.042 , 0.085 , 0.123 , 0.160 , 0.2");

values (\

20 "0.239840 , 0.348317 , 0.513873 , 1.01209 , 1.83128", \

"0.289023 , 0.401293 , 0.678347 , 1.12348 , 1.91349", \

22 "0.379023 , 0.588913 , 0.793819 , 1.18588 , 2.01023", \

"0.512209 , 0.712387 , 0.932173 , 1.48137 , 2.43983", \

24 "0.812348 , 0.943791 , 1.123474 , 1.83847 , 2.84391");

}

26 cell_fall(example_delay_table) {

...

28 }

rise_transition(example_delay_table) {

30 ...

}

32 fall_transition(example_delay_table) {

...

34 }

}

36 internal_power () {

related_pin : "A";

38 ...

}

40 }

6.2. Technology library characterization 44

}

Program 6.1 Standard cell de�nition of an inverter in an imaginary Liberty �le.

Based on the Liberty �le, the library builder creates a collection of basic components,

such as logic gates, adders, multipliers, and registers. Each of these components has

several con�gurations. For example, adders are de�ned for di�erent bit widths, and

registers have several implementations that might di�er by the reset behaviour or

clock polarity.

The timing and area characteristics of each component are determined by synthe-

sizing them with an external RTL synthesis tool. This process is repeated several

times with di�erent timing constraints for each con�guration of the component. In

the �rst synthesis run, the target clock period is set to an extremely small value to

�nd the fastest implementation of the component. Similarly, the slowest and small-

est implementation is found by synthesizing the component with an excessively long

clock period. After �nding the fastest and slowest implementations, the tool will

also evaluate a couple of other measurement points between them. Based on all

these measurements, the tool creates an estimation for the correlation between area

and timing by interpolating between the measured values.

The shortest and longest clock periods are given by the user and might need some

iteration to �nd suitable values. Therefore, it is a good practice to experiment

with these values at �rst by characterizing a simple component, such as an inverter,

and ensuring that with the shortest clock period even the fastest implementation

cannot meet the timing, indicating that the synthesis tool has had to put e�ort

in optimizing the delay of the implementation. Similarly, a slow component, for

example a multiplier with a large bit width, should have some slack in the timing

when synthesized with the longest clock period.

The library builder also needs the technology library in the format that is used by the

backend synthesis tool. In addition, the tool requires a few user-de�ned parameters

for the synthesis, as shown in Figure 6.1. The main ones are the driver cell and load

capacitance that are used to build the synthesis setup shown in Figure 6.2, which

also demonstrates the e�ect of the load capacitance on the area-delay correlation.

These two parameters a�ect the characterization results most and might have to

be adjusted later if the results are found to be inaccurate. The help section in the

library builder gives some guidance for these settings, and the GUI also provides

some suggestions. However, in this �rst experiment, the same driver cell was selected

that is used in the RTL synthesis of the module. The input capacitance of this driver

cell was set as the load capacitance.

6.2. Technology library characterization 45

Figure 6.1 User-de�ned parameters for the library characterization. These values are
given automatically by the tool, and the user can change them if needed.

Load

Characterized

component

(e.g. adder)
Driver

cell

A

t

C0 C1

C0 < C1

Figure 6.2 Synthesis setup used for characterizing the library components, and the e�ect
of the load capacitance on the area-delay correlation.

One of the main concerns in this approach of characterizing the components is that it

only considers the delay of the component itself. However, as the silicon technology

nodes get more miniaturized, the delay of the interconnects between components be-

comes more signi�cant compared to the gate delay [16]. The characterization process

has no visibility to this delay as it has no information about the wire length between

the components. Moreover, the interconnect delay depends on the placement and

routing of the components which might vary signi�cantly between designs. Hence,

it is preferred to leave some safety margin in the characterization by using smaller

driver cell or larger load capacitance such that the measured component delays are

slightly pessimistic.

6.2. Technology library characterization 46

6.2.1 Flow evaluation

The �ow was evaluated by characterizing two di�erent technology libraries. With

the �rst library, there were a few problems when parsing the Liberty �le. These

problems were related to the syntax used in the Liberty �le that di�ered from the

syntax that the parser expected. For this reason, a local copy of the Liberty �le was

created, and the problematic parts were either modi�ed to follow the expected syntax

or removed completely if they were not needed for the characterization. Finding the

issue and modifying the Liberty �le took 1�2 days. The parsing issue was �xed in a

later release of the library builder.

After parsing the Liberty �le, the synthesis �ow was set up by providing the previ-

ously discussed parameters to the tool. Before the actual characterization, the user

can select which components are characterized. By default, the tool characterizes

all of the components that are extracted from the Liberty �le. The default setting

was used in this experiment, which resulted in a library of 1 800 components.

The characterization of the whole component library took 4 days to complete with

one set of parameters. This is a rather long time, but as this process does not have

to be repeated often, it is not seen as a signi�cant problem. Moreover, only one

person has to do the characterization as others can use the same library. However,

if the characterization results are not su�cient, the iteration cycle is quite long.

Therefore, it would be better to only include a subset of the component library

for the iterations, and the whole library would be characterized only after �nding

suitable parameters. There is also a possibility to run the characterization on several

computers in parallel, which would speed up the process. However, this also requires

additional licenses for both library builder and the backend synthesis tool, which

might be infeasible if there are only few licenses available.

The characterization of the second technology library was more straightforward as

its syntax was more compliant with the parser. The characterization of the whole

library took 2 days to complete even though it had an equal amount of components as

the �rst library. The reason for the faster characterization was likely the smaller size

of the standard cell library, as the �le size of the Liberty �le was approximately half

compared to the �rst technology library. The di�erence might also be caused by the

di�erence in the loading of the grid machines on which the library was characterized.

The characterization process can be later repeated by using a script that is cre-

ated automatically during the �rst run. It is rather easy to adjust the necessary

parameters in the script, execute it, and leave running for the duration of the char-

acterization. The process is also simple to repeat with the GUI, as the stored library

6.3. Technology library abstraction 47

can be later opened and the settings modi�ed via the user interface. With this ap-

proach, it is also possible to characterize individual components or a subset of the

library if there is no need to update the whole library.

Overall, the �ow was quite e�ortless, although it took a rather long time to run the

whole characterization. However, as the characterization itself requires little manual

work, it can be left running in the background. The �ow can also be repeated

afterwards with little e�ort if the results are inaccurate or the technology library

gets updated.

6.3 Technology library abstraction

Catapult has two separate �ows that can be used to abstract technology components.

One is targeted only for memories, and the other is a general �ow for importing

customized RTL components to the tool. Since these two �ows are rather di�erent,

they are discussed in separate subsections.

6.3.1 Memory libraries

The memory generator in Catapult can be used to import memories to the tool and

generate a memory library. It parses the RTL description of the memory component

and reads its interface. As it considers only the interface, the user can import a

generic memory wrapper, which can be later switched to the technology-speci�c

memory for RTL synthesis.

The memory generator requires also a few user-de�ned parameters to de�ne the

functional behavior of the memory component. These parameters include the mem-

ory type, delay and latency in terms of clock cycles for both read and write ports,

and behavior of the memory in the case of simultaneous read and write operation

to the same address. The number of read and write ports can be selected freely,

and thus it supports the most typical memory types that are single- and dual-port

memories, and memories with separate read and write ports. This process is carried

out via a GUI (Figure 6.3) which also produces a TCL script that can be used to

regenerate the memory library with di�erent parameters in batch mode.

There are two ways to use the memory components in the design. The memories

can implement either an external array that is used as an input or output for the

design, or an internal array for storing values during data processing. When using

the external arrays, the tool generates memory interfaces to the RTL top entity that

6.3. Technology library abstraction 48

Figure 6.3 User interface of the memory generator.

correspond to the interface of the imported memory component. The memory itself

is instantiated outside of the HLS-generated block, and hence the mapping to the

technology component does not di�er in any way from the traditional RTL design

�ow.

The internal arrays can also be externalized such that the memory interface is

brought to the top-level interface of the HLS block. This is the preferred way

as memories often have other ports in addition to the main functional ports. These

additional ports are typically used to control power saving modes or test the mem-

ory via built-in self test (BIST). It is easier to connect these signals if the memories

are located at the top level of the IP than if they were within several levels of hi-

erarchy in the HLS-generated block. With internally instantiated memories, these

additional signals can also be brought to the top-level interface of the HLS block.

However, not all of these signals are present in the memory wrappers since they

might be connected later in the gate-level netlist. Hence, it is preferred to have all

of the memories external to the design.

This �ow worked well with the existing memory wrappers, and the user interface is

clear and easy to follow. De�ning the delay is a bit di�cult especially with newer

technology nodes since the wire delay is more signi�cant, and thus the total delay

depends on the distance to the memory macro. It is generally a good practice to

6.3. Technology library abstraction 49

register the memory output such that there would be no combinatorial logic between

the memory and the register. In this design, there was none, but since there is no

option to force the register to the memory, it is possible that the tool will generate

some combinatorial logic at the output port. This could be avoided by generating a

memory library where the output latency is increased by one clock cycle, and adding

the register stage outside of the design between the memory and the HLS-generated

IP core. However, this makes the �ow more complicated, and hence the preferred

way would be to add this option to the tool so that it would always add registers to

the memory output.

Using the memory libraries in the design is straightforward. When de�ning the

architectural constraints, the user can select which interfaces or arrays are mapped

to memory blocks. This is demonstrated in Figure 6.4 where the output data array

data_out is mapped to an imported memory. There is also a wide range of options

for de�ning the way the variables are arranged in the address space of the memory.

It is, for example, possible to store several variables or elements of an array to a

single address. In this way, the throughput of the design can be improved since

several values can be written or read within one memory access.

Figure 6.4 Mapping an output data interface to a memory.

The memory usage was trialed with the packager module by implementing the data

FIFOs as a memory as is shown in Figure 6.5. The used memory type had separate

read and write ports such that the read and write accesses could be carried out at

the same clock cycle. However, the memory that was imported to the Catapult had

unde�ned behavior when reading and writing simultaneously to the same address.

Hence, Catapult would not schedule read and write operations within the same clock

6.3. Technology library abstraction 50

cycle, even if the control logic ensured that the read and write addresses are never

the same. This caused a scheduling failure, as the packager could not write samples

to the memory every clock cycle, which was required by the constraints.

Packager

data_out

Send

process

Control logic

data_in

Read

process RAM

WRITE

PORT

READ

PORT

Figure 6.5 Packager with the data FIFOs implemented as a memory.

The problem with the simultaneous read and write accesses was circumvented by

creating separate external memory interfaces for the read and write ports of the

memory and connecting them to the same memory component at the IP top level

(Figure 6.6). Using this approach, Catapult assumes that these two ports are

connected to separate memory components, and thus it can schedule the read and

write operations to the same clock cycle. This implementation gave the maximum

throughput where the packager could take a new sample every clock cycle.

Send

process

Control logic

Read

process

RAM

WRITE

PORT

READ

PORT

Packager

ram_write_interface ram_read_interface

data_outdata_in

Figure 6.6 The read and write ports are implemented as separate memory interfaces that
are connected to the same physical memory.

Later it was found that there is also another way to avoid this problem. Catapult

6.4. Design-for-testability (DFT) structures in RTL code 51

has a separate command for ignoring the memory precedences. This would be a

better solution to the problem, as it does not require adding the memory ports to

the functions, which keeps the code cleaner.

6.3.2 Custom components

The library builder can also create libraries with customized RTL components. How-

ever, the imported components should have such functionality that they can be used

in the high-level model. Therefore, the tool cannot import small technology com-

ponents, such as synchronizers, because they are not seen in the behavioral model.

Instead, to be able to use the synchronizer, the user should import it, for example,

as a part of a CDC FIFO bu�er that can be used as a data channel between two

hierarchical blocks.

The imported components require a SystemC model along with the RTL description.

However, there is currently little documentation about this �ow, as it is not targeted

to end users but requires support from the vendor. Hence, creating the SystemC

model from scratch is di�cult. Some common components, such as RAM-based

CDC FIFOs, have templates available, but the existing RTL component would have

to be modi�ed to match the interface and functionality of the template. Otherwise,

the SystemC model would have to be modi�ed, which is not straightforward due to

lacking documentation. Reverse engineering the model and modifying it would be

time-consuming, and thus it is preferred to contact the tool vendor for support.

After the component has been imported, it is easy to use in the design. This

was demonstrated with a customized stream interface component that maps the

handshaking and data signals of the ac_channel to the corresponding signals in

the customized stream interface. The component library is imported at the same

time with the technology and memory libraries. While setting the architectural

constraints, the customized component can be selected from the drop-down menu

that selects the interface type for the ac_channel (similarly as the memory interface

selection in Figure 6.4).

6.4 Design-for-testability (DFT) structures in RTL code

Catapult has currently no method for including DFT structures in the generated

RTL code. However, as mentioned in the previous chapter, the DFT structures that

are used in RTL are often related to clock and reset manipulation. Since this is not

possible in HLS, there are few needs for specialized DFT structures. If, for instance,

6.5. Engineering change order (ECO) 52

manual clock gating is needed, it should be done outside of the generated block,

and hence the related DFT structures would also be done externally. Moreover, it is

often preferred to do clock manipulations and the DFT structures separately from

the functional units (which typically is the HLS block).

The BIST controls of memories can be routed to the top level of the design, for both

externally and internally instantiated memories. For external memories, the routing

is trivial as they are instantiated in the IP top level that is hand-written RTL code,

and thus it does not di�er from the traditional �ow. For internal memories, the user

can de�ne global ports that are automatically routed to the top level of the HLS

block, and from there the user can connect them to the IP top level.

If there is a need for some other DFT structures, it should be taken into account in

the architecture design such that the DFT would be done outside of the HLS block.

Another option is to implement the blocks with specialized DFT structures with the

traditional hand-written RTL code.

6.5 Engineering change order (ECO)

The incremental �ow in Catapult is very similar to the regular HLS �ow. It starts by

creating a new solution with the incremental option and selecting a baseline design

from the list of previous solutions. Now, the �ow proceeds with same steps as the

basic synthesis �ow, and the user can apply the needed changes in the source codes

or directives at any point. During the incremental compilation, the tool informs the

percentage of variables and operations that have changed compared to the baseline.

This information reveals quickly if the change was not as small as intended. After

the compilation is complete, the tool also creates a report that describes the changes

in more detail.

The incremental �ow is intended to be used only for combinatorial changes. Hence,

sequential changes, such as adding pipeline stages to �x timing issues, are not rec-

ommended. The reason for this is that changing the timing of the logic will also

require changing the control logic that is tied to the amount of control steps. It is,

nevertheless, possible to apply sequential changes as the tool does not prevent them

in any way. However, the RTL changes will be much larger than expected. This was

trialed with the CIC �lter by tightening the timing constraints such that it would

generate an additional register stage in the integrator chain. This resulted in 600

changed lines in the ECO RTL compared to the baseline design.

The experiments with the ECO �ow consisted of doing a dozen of di�erent combi-

6.5. Engineering change order (ECO) 53

natorial changes to the high-level code and examining their e�ect on the generated

RTL code. Some examples of these ECOs are changing the conditions in if-clauses,

rounding styles, and intermediate data widths in arithmetic chains. The amount

of RTL line changes was in the range of 1�513 for these trials (the whole design

containing over 100 000 lines), but most often the number was a few dozens of lines.

It should be noted, however, that this is only a rough estimate of the resulting ECO

changes, as the number of RTL code changes is generally not a good measure of the

ECO implementation quality.

Although the ECOs changed dozens of lines in the generated RTL code, the modi�-

cations were often seen in low-level operations that have little e�ect on the gate-level

netlist. Figure 6.7 shows an example where the polyphase decimator branching logic

was changed such that the even and odd branch were swapped, and the �rst sam-

ple would be sent as such instead of waiting for both even and odd samples. This

resulted in 10 line changes for every polyphase decimator. The changes consisted

mostly of inverting control signals, replacing OR with AND, and swapping multi-

plexer inputs. All of these changes have a relatively small impact on the gate-level

netlist.

Figure 6.7 Incrementally synthesized RTL code compared to the original �le. The ECO
has a�ected several lines, but the changes are seen mostly in gate-level operations.

In all trials, the RTL changes were con�ned within the hierarchical subblock in which

the code was modi�ed. This is convenient as it also means that the changes in the

physical netlist are likely located in a limited area and do not spread all around

the IP block. Hence, from ECO point of view, it is preferred to divide the design

into smaller subblocks. However, this approach also creates area overhead due to

additional registers and data channels between the subblocks.

The results seemed to be rather situational at times. This was noticed when chang-

6.6. Static code analysis 54

ing the rounding scheme for �xed point numbers. In the original design, if the

number to be rounded was exactly at half point, positive numbers were rounded

towards positive in�nity and negative numbers towards negative in�nity. Now, if

the rounding style was changed such that the numbers are always rounded towards

negative in�nity, the di�erence was seen only on 2 lines in the RTL. However, round-

ing always towards positive in�nity changed 513 lines in the RTL code. Hence, it is

di�cult to estimate the extent of the ECO changes as the result can vary greatly

even among similar changes.

Overall, the �ow is easy to use and the results are usually reasonable, but there

are some cases that cause larger changes than expected. The modi�cations are seen

in many lines of the RTL code, but as most of them involve changes in low-level

operations and signal connections, they will likely translate into relatively small

changes in the gate-level netlist. However, as the number of RTL line changes does

not necessarily correlate with the resulting ECO changes, a further study could also

show the actual e�ect on the gate-level netlist and layout.

6.6 Static code analysis

The static code analysis was run for the generated RTL using a 3rd party tool. It

revealed no errors or other severe problems in the code. There were 543 warnings

in total, most of them being duplicates of the same warnings. Excluding these

duplicates, there were only 6 unique warnings reported. These warnings are listed

in Table 6.1. Same linting check was also run for the hand-written RTL code for

comparison. It had 4 warnings in total, none of them being duplicates.

Table 6.1 Lint warnings in the HLS-generated RTL code.

Warning type Source Amount

Multiplexer depth exceeds limit (3) Generated RTL 233
Unnecessary signal in sensitivity list Common libraries 219
Output port of an entity is not used Generated RTL 47
Null range in for-loop Common libraries 33
X value used Common libraries 10
While statement may be unsynthesizable Common libraries 1

Total 543

Closer inspection � which took approximately 15 minutes per warning type � showed

that all of the warnings in the generated RTL code were harmless. The most suspi-

cious thing was the assignment of X value to the signals. For example, the X value

was assigned to the output of a built-in 4-to-1 multiplexer in a case where the select

6.7. Logical equivalence checking (LEC) 55

input is something else than 00, 01, 10, or 11. However, as this is an exhaustive list

of all the possible inputs, there is never a case where the X value would actually be

assigned to the output. Moreover, the X value is often used as a don't care term,

which allows the synthesis tool to optimize the logic.

Other warnings were also harmless cases, such as unused signals. For instance, the

interconnect components had an output that shows the amount of samples in the

FIFO bu�er. Since this output was not needed by the following block, it was left

open which triggered the lint warning. Another warning that had a lot of duplicates

was a signal that was included in a sensitivity list of a process that did not use that

particular signal. The only problem with this is that the process will be executed in

simulation unnecessarily, and thus it slows down the simulation slightly. However, in

practice the simulators will likely optimize the sensitivity lists during compilation.

For synthesis, this does not make any di�erence either.

Most of the warnings were within the common RTL libraries of Catapult that are

shared by many designs. Hence, it is possible to create common waivers for the

warnings that are considered harmless, and thus remove the need for every designer

to check the same warnings many times. This would ease the waiver creation and

consequently improve the productivity of the design �ow. On the other hand, it is

also easy for the tool vendor to �x the problems within these common libraries, and

hence it is preferable to report these issues to the vendor to help them improve the

libraries for later releases.

6.7 Logical equivalence checking (LEC)

Logical equivalence checking was run after RTL synthesis to verify that the netlist

matches the RTL code. The purpose of this trial was to see if the generated RTL

code contains structures that are di�cult to verify or cause failures.

None of the veri�cation runs found failing points, and most of them were �nished

within 30 minutes. However, on one occasion, the LEC tool got stuck for 10 hours

trying to verify one point, and the veri�cation was terminated before �nishing.

The long runtime was caused by the CIC �lter, where Catapult had scheduled the

whole integrator chain within one clock cycle and allocated separate adders for each

channel. As these adders were redundant, the RTL synthesis tool optimized the

arithmetic chain heavily, especially since it formed the critical path. Now, the RTL

and gate-level netlist were structurally so di�erent that proving the equivalence

became di�cult for the tool. This problem has been identi�ed also in previous

studies [34].

6.8. Area and timing 56

The reason for the redundant adders was a coding style where the arithmetic op-

erations were embedded within several loops and conditions. This was a remainder

from the trials with the multiplexer optimizations (more details in Section 6.8) and

was not supposed to be synthesized. Hence, the code was �xed, re-synthesized,

and the formal veri�cation was repeated, this time �nishing successfully within 30

minutes. Nevertheless, the learning point is that complex, nested conditions and

loops should be avoided, as the HLS tool gets confused and cannot produce optimal

logic. Moreover, this shows that it is possible to run into problems with formal

veri�cation if the HLS tool generates redundant logic that is later optimized away

at RTL synthesis, and thus HLS tools should not rely too much on the backend tool

optimizations.

6.8 Area and timing

The HLS-generated and hand-written RTL codes were synthesized with a RTL syn-

thesis tool to compare the areas and to see if the HLS block meets the timing

constraints. Although Catapult provides synthesis scripts automatically, this exper-

iment used the existing ones that have been used in previous ASIC projects. In this

way, the results are expected to be more realistic.

The synthesis was repeated for over 5 di�erent versions of the HLS block to exam-

ine the area variation. All of these versions had the same basic architecture, and

only the implementation details and coding style changed. Previous studies have

already shown that hardware-oriented coding style improves the quality of results

signi�cantly compared to simple algorithm description [18], and thus that kind of

comparison was not considered here. Instead, the di�erent coding style changes were

done from the point of view of a hardware designer.

Table 6.2 lists the area results for 5 variations of the HLS block and also for the

hand-written design that is used as a reference. The table shows both the estima-

tions given by Catapult and the RTL synthesis results, and also the distribution

between sequential and combinatorial area. The HLS results listed here had the

most signi�cant area variations within all trials. The area increase compared to

hand-written RTL was between 1�9% for all implementations.

In the �rst trial, the area was 9% larger compared to the hand-written design. A

closer look at the synthesis results revealed that the data channels between hierar-

chical blocks had FIFO bu�ers even if there was no need for bu�ering. The reason

for this was that the FIFO depths were not explicitly de�ned, but Catapult deter-

mined them automatically to a value that varied between 3�11 words. The area

6.8. Area and timing 57

Table 6.2 Area comparison of the hand-written and several versions of the HLS-generated
designs. All values are scaled to the total area of the hand-written design.

Design description
Catapult estimation Synthesis result
Total Seq Comb Total Seq Comb

Hand-written RTL (reference) � � � 1.00 0.78 0.22

First trial with Catapult 8.3a 1.29 0.75 0.54 1.09 0.80 0.29
Optimized FIFO depths 1.25 0.71 0.54 1.01 0.74 0.27
Same as above with Catapult 10.0 1.25 0.71 0.54 1.01 0.74 0.27
Optimized multiplexer structures 0.96 0.70 0.26 1.01 0.74 0.27
Timing violations �xed (�nal) 0.97 0.71 0.26 1.02 0.75 0.27

decreased by 7% after �xing the issue by explicitly de�ning the FIFO depths to 0.

The time used for this �x was 20 minutes of manual work (including both locating

the issue and �xing it), 30 minutes of RTL generation, and 1 hour of RTL synthesis.

While the FIFO depths were adjusted, a new version of Catapult became avail-

able, so the same design was synthesized also with Catapult 10.0 (8.3a was used

previously). The software update caused practically no di�erence in the results.

The �rst area estimations given by Catapult were 24% larger compared to the �nal

synthesis results. Closer inspection of the resource allocation in Catapult showed

that the multiplexers in the design were larger than expected. As these multiplexers

contributed to a large part of the combinatorial logic, the cause for this was inves-

tigated in more detail. Moreover, large multiplexers may be challenging to route

and cause routing congestion, which increases the area further or might even be

impossible to implement [43].

The problem with the multiplexers was related to the use of 2-dimensional arrays in

the C++ code. An example of such case is shown in Program 6.2 that instantiates a

4×3 array of integers and a for-loop that reads 3 values from the array. The values

are selected with the sel input. The expected RTL structure is shown in Figure 6.8

as well as the actual result. In the expected result, three 4-to-1 multiplexers select

the values from the register array. However, the actual HLS result instantiates three

12-to-1 multiplexers instead. The reason for this is likely that the 2-dimensional

array is �attened to a 1-dimensional, 12-element array during compilation, and the

HLS tool does not recognize the optimization possibility.

6.8. Area and timing 58

1 int reg_array [4][3]; // Later changed to [4][4]

3 // Write data to the register array here

// ...

5

// Select the register outputs with the sel -input

7 for (int i = 0; i < 3; i++)

{

9 mux_out[i] = reg_array[sel][i];

}

Program 6.2 2-dimensional integer array and a for-loop that selects three integers from

the array.

reg reg reg

reg reg reg

reg reg reg

reg reg reg

sel

mux_out[0] mux_out[1] mux_out[2]

reg reg reg

reg reg reg

reg reg reg

reg reg reg

sel

mux_out[0]

mux_out[1]

mux_out[2]

(a) Goal

reg reg reg

reg reg reg

reg reg reg

reg reg reg

sel

mux_out[0] mux_out[1] mux_out[2]

reg reg reg

reg reg reg

reg reg reg

reg reg reg

sel

mux_out[0]

mux_out[1]

mux_out[2]

(b) Result

Figure 6.8 (a) The expected RTL architecture of the code example consists of a 4×3
register array and three 4-to-1 multiplexers. (b) The actual result contains three 12-to-1
multiplexers instead.

A couple of 2-dimensional arrays in the design had properly optimized multiplexers.

The di�erence with the others was that the array size was de�ned with powers of

2. Following this notion, all 2-dimensional arrays were de�ned such that their sizes

were rounded up to the closest power of 2. For instance, in Program 6.2 the array

would be instantiated as a 4×4 array. Now, if the code was otherwise left as is, the
HLS tool would optimize the unused registers away and the �nal result would have

the expected structure shown in Figure 6.8(a). After modifying the code this way,

the estimated area was reduced by 23%. However, the modi�cations also made the

code harder to follow, and thus the issue should be �xed in the tool instead.

RTL synthesis of the optimized design showed no di�erence in the area results com-

pared to previous versions. Seemingly, the synthesis tool had been able to detect

6.8. Area and timing 59

the redundant multiplexers and optimize them away. Now the estimations by Cat-

apult were rather close to the synthesis results, having slightly smaller area. The

smaller area indicates that the technology characterization has been optimistic, and

Catapult has been using smaller but slower components in scheduling. This was

also seen as timing violations in the netlist.

The timing violations were in the integrator and comb chains of CIC �lter, as ex-

pected. Therefore, the design constraints were modi�ed in Catapult. Since the issue

was seen only in the CIC �lter, the constraints were modi�ed locally for these arith-

metic chains. While setting directives to hierarchical blocks, there is an option called

sharing allocation (see Figure 6.9) that de�nes the percentage of the clock cycle

that is reserved for control logic and routing. Increasing this percentage requires

the tool to add pipeline stages in the chain.

Figure 6.9 Sharing allocation can be adjusted separately for each hierarchical block.

If the timing issue was seen all over the design, it would have been better to adjust the

clock uncertainty for the whole IP in the HLS tool, or re-characterize the technology

library. The clock uncertainty option was also tried in solving the timing issue.

It had to be set to a 60% larger value than what is used in the RTL synthesis

scripts to make the scheduler create an additional pipeline stage. This also indicates

that the technology characterization has been too optimistic, which would require

repeating the characterization with di�erent parameters. However, this was not seen

as necessary for this trial since the locally increased sharing allocation solved the

issue.

While �xing the timing issue, it was noticed that the scheduler does not divide the

operations evenly into the control steps (i.e. clock cycles). For example, if there

was a 5-adder chain, but only 4 adders would �t into one clock cycle, the scheduler

would put the �rst 4 adders to the �rst clock cycle and the remaining adder to the

second cycle. It relies on the RTL synthesis tool to optimize the pipelining through

6.8. Area and timing 60

register retiming. Therefore, if the synthesis �ow does not use register retiming,

the designer would have to manually adjust the operations in the control steps.

Fortunately, Catapult lets the user to adjust these in the schedule diagram with a

drag-and-drop interface as shown in Figure 6.10, or with TCL commands.

Figure 6.10 The scheduling diagram lets the user move operations from clock cycle to
another within the limits of data dependencies. The red boxes around the operations show
the sliding window in which the operations can be moved.

With the timing violations �xed, the total area increased by 1%, most of the increase

being in the sequential area due to the additional pipeline stage. Area breakdown of

this �nal design is shown in Figure 6.11. It shows the sequential and combinatorial

area of each subblock for both the hand-written and HLS-generated designs. The

�gure also shows the area estimates given by Catapult. The areas are rather close to

each other, which speaks for the predictability of the results. The estimation error

for the total area was -4%. Generally, it seems that the HLS blocks have slightly

smaller sequential area but larger combinatorial area compared to the hand-written

design. This is expected since the HLS tool does more optimized pipelining which

requires less registers, but faster and larger logic cells.

6.9. Power e�ciency 61

Subblock 1 Subblock 2 Subblock 3 Subblock 4 Total

0

10

20

30

40

50

60

70

80

90

100

110

Combinatorial area

Sequential area

Figure 6.11 Area breakdown of the hand-written and HLS-generated design. Both the
estimation by Catapult and the RTL synthesis result are shown for the HLS block.

6.9 Power e�ciency

The power e�ciency of the HLS-generated block was evaluated mainly by the clock

gating e�ciency and compared to the manually coded version. The �rst measure

of the clock gating quality was given by the RTL synthesis tool as the percentage

of registers that were clock gated. The HLS block had 99.7% of its registers clock

gated which is slightly better than the hand-coded RTL block for which the same

measure was 97.4%. The result is promising and indicates that at least in the idle

case, only small part of the registers are toggling. As previously mentioned, however,

this is only a partial thruth since this simple measure does not take the use case

into account. Hence, the dynamic clock gating e�ciency was measured based on 3

simulations.

The power estimations were run for the RTL code generated with the base version of

Catapult. However, Catapult has also a Low Power version that focuses especially

on the clock gating and generates conditions to the RTL code that enhance the clock

gating e�ciency. As these features were not used, the results do not fully represent

the power optimization capabilities of the tool, and hence they are not shown here.

62

7. RECOMMENDATIONS

This chapter o�ers a few recommendation both for the designers to incorporate HLS

in their design �ow, and for the tool developers to further improve the HLS tools

for ASIC design.

7.1 Designers

The learning curve should be taken into account when starting to work with HLS,

as it takes time to learn the hardware-oriented C++ coding style and get a basic

understanding of the synthesis �ow. Creating the �rst design with HLS might take

twice as long as it normally would, and therefore, the designers that are starting to

use HLS should reserve time for this learning period.

There should be dedicated persons in the company that can help with the tool-

related issues. These key users should also use the HLS tool actively in design

projects and be in close contact with the tool vendor. Asking help from more

experienced users is extremely important with HLS, as it was noticed quickly that

the tool has many ways to approach the design problems, and all of them are not so

apparent. There were plenty of times when the design goals seemed di�cult to reach,

but after expressing the issue to the application engineers at Mentor Graphics, they

came up with a simple solution.

Learning to interpret the resource allocation and scheduling information is essential

to reach good quality of results. Even though the tool creates the RTL architec-

ture automatically, the designer should have a basic understanding of the resulting

hardware and check the resource allocation and scheduling for large deviations from

the expected results, which could reveal problems in the code or directives. More-

over, the HLS tool might have bugs, and reporting them helps the vendor to further

develop the tool.

Best results are generally achieved by keeping the code simple. Trying to opti-

mize the design with complicated code structures usually ended up in worse results.

Moreover, several nested loops and conditions appeared to confuse the tool and

7.2. Tool developers 63

make it more di�cult for it to optimize the logic. This also resulted in redundant

logic, which caused problems in logical equivalence checking as the heavily optimized

gate-level netlist di�ered greatly from the RTL description.

The HLS should be taken into account already in the system architecture design. As

was seen in this design (e.g. with the arbiter), some RTL architectures might cause

problems either in the HLS design or veri�cation �ow. Hence, this limits the possi-

bility to use HLS in every module, and it should be considered when deciding what

parts of the system are done with HLS. Generally, the most suitable design types

for HLS seemed to be simple signal processing pipelines with little dynamic con-

trol. Moreover, specialized DFT structures and technology-dependent parts would

be better to leave outside of the HLS-generated modules, if possible.

7.2 Tool developers

HLS tool developers � especially those targeting ASICs � should generally consider

the backend �ow more. In addition to area, timing and power, the tools should

also take other aspects of the physical implementation into account, such as routing

congestion. This could be done possibly with the help of feedback from the backend

tool as is proposed in [43], or by avoiding hardware architectures that are known to

cause problems. The tools should also provide some means for implementing ECOs

or continue improving the existing ECO �ows such that the resulting changes would

be minimized.

The signal and entity names in the generated RTL code should be informative and

concise, and related to the variable and function names used in the high-level code.

This helps debugging and also keeps reports, such as synthesis and linting logs,

cleaner and easier to read. Moreover, tracing the RTL code structures back to the

high-level code is faster if the signals have informative names.

The HLS tools should not rely too much on the optimization of the backend synthesis

tool, as generating a lot of redundant logic can cause problems later in the �ow. This

was noticed in logical equivalence checking where the tool got stuck for several hours

proving the equivalence of largely di�erent RTL and netlist.

In this study, the IP was structured such that all of the interface components were

outside of the HLS-generated block. However, the downside of this approach that

the interface components are not included in the high-level veri�cation, and thus it

requires additional veri�cation for the IP top level to check that all of the interfaces

function properly. Therefore, it would be preferred if the tool could also generate the

7.2. Tool developers 64

streaming and con�guration interfaces with some common protocols. The register

bank that contains the con�guration values could also be generated, as that is a

common structure in many IPs. If this was possible, the whole IP could be generated

with the HLS tool without the need to separately generate and manually integrate

all of the components.

More e�ort is needed in the standardization of the HLS design entry. Currently,

each tool uses di�erent libraries and pragmas, which requires extensive modi�cation

to the code if the code is synthesized with another tool. This e�ort would be

minimized if there was a standardized way to create HLS designs. Fortunately, some

standardization work has been already started by Accellera to de�ne a synthesizable

subset of C/C++/SystemC that HLS tools should support [35].

65

8. CONCLUSIONS

This thesis work studied the suitability of HLS for the implementation �ow of ASICs.

The HLS �ow was found to be mostly compliant with the existing RTL design �ow,

but a few problem areas were also identi�ed. ECOs may be di�cult to implement, as

the amount of RTL changes can vary signi�cantly. In addition, importing customized

components and adding DFT structures are challenging, which should be taken into

account in the system architecture design.

The second aim of this study was to assess the quality of results and compare design

e�ort to the hand-written RTL design. The physical area of the HLS design was

practically equal to the reference design, the area increase being only 2%. Both

designs met the given timing constraints. The design e�ort in HLS was estimated

20�50% smaller, depending on the optimization needs, and the code contained 60%

fewer lines of code. In itself, this is not a signi�cant improvement to productiv-

ity, considering that the coding is often a relatively small part of the whole design

work that includes also other tasks, such as speci�cation and documentation. The

productivity gain is more likely seen later as improved reusability, since the code is

completely technology-independent and faster to modify and update. However, as

the code is slightly di�erent for each tool, designers have to keep using the same

tool to bene�t from this. The other � and probably more signi�cant � opportu-

nity for productivity improvement is in the veri�cation �ow. The faster test case

development and increased simulation speed have a chance of boosting veri�cation

considerably. Hence, the future of HLS will depend largely on the success of the

high-level veri�cation �ow.

The current generation of HLS tools seems to be capable of generating RTL code

with less e�ort and reasonable quality of results. Hence, the HLS could be already

tried in real applications. However, the �rst trials should be carried out on a small

scale by implementing only a few simple blocks. It is, after all, possible that there

are other complications in the �ow that were not encountered in this thesis due to

limited scope.

The decimator was still a relatively simple design, and hence it would be interesting

8. Conclusions 66

to try creating more complex design types with HLS. These could be implemented

with SystemC instead of C++ to see if it allows easier design entry for more compli-

cated logic. Future study could also evaluate the backend-suitability of other HLS

tools and provide comparison. Moreover, as this thesis considered only the �rst

steps of the backend �ow, it would be interesting to evaluate also the rest of the

physical implementation �ow.

67

BIBLIOGRAPHY

[1] Accellera, IP-XACT, [Online]. Available (accessed on 2017-02-08): http:

//www.accellera.org/downloads/standards/ip-xact

[2] A. N. Akansu and R. A. Haddad, Multiresolution Signal Decomposition - Trans-

forms, Subbands, and Wavelets. Academic Press, Inc., 1992, 376 p.

[3] ARM Developer Day, 3rd, Cypress PSoC, [Online] Available (accessed on 2016-

09-18): https://armdeveloperday3rd.wordpress.com/cypress-psoc/.

[4] A. D. Belegundu and T. R. Chandrupatla, Optimization Concepts and Appli-

cations in Engineering, 2nd Ed., 2011, 480 p.

[5] Cadence, Stratus High-Level Synthesis, [Online]. Available (accessed on 2017-

02-08): https://www.cadence.com/content/cadence-www/global/en_US/

home/tools/digital-design-and-signo�/synthesis/stratus-high-level-synthesis.

html

[6] P. P. Chu, RTL Hardware Design Using VHDL: Coding for E�ciency, Porta-

bility, and Scalability. Wiley-IEEE Press, 2006, 694 p.

[7] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, An Introduction

to High-Level Synthesis, IEEE Design Test of Computers, vol. 26,

no. 4, 2009, pp. 8�17. Available (accessed on 2017-02-08): http:

//ieeexplore.ieee.org/document/5209958/

[8] Design & Reuse, [Online] Available (accessed on 2017-01-24): https://www.

design-reuse.com/.

[9] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded System

Design: Modeling, Synthesis and Veri�cation, 1st ed. Springer, 2009, 352 p.

[10] Greenbot, Qualcomm reveals 64-bit Snapdragon 810 and 808, [Online] Avail-

able (accessed on 2017-01-22): http://www.greenbot.com/article/2140500/

qualcomm-reveals-64-bit-snapdragon-810-its-fastest-ever-mobile-chip.html.

[11] I. Grout, Digital Systems Design with FPGAs and CPLDs, 1st ed. Newnes,

2008, 784p.

[12] E. Hogenauer, An Economical Class of Digital Filters for Decimation and

Interpolation, IEEE Transactions on Acoustics, Speech, and Signal Processing,

http://www.accellera.org/downloads/standards/ip-xact
http://www.accellera.org/downloads/standards/ip-xact
https://armdeveloperday3rd.wordpress.com/cypress-psoc/
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
http://ieeexplore.ieee.org/document/5209958/
http://ieeexplore.ieee.org/document/5209958/
https://www.design-reuse.com/
https://www.design-reuse.com/
http://www.greenbot.com/article/2140500/qualcomm-reveals-64-bit-snapdragon-810-its-fastest-ever-mobile-chip.html
http://www.greenbot.com/article/2140500/qualcomm-reveals-64-bit-snapdragon-810-its-fastest-ever-mobile-chip.html

BIBLIOGRAPHY 68

vol. 29, no. 2, 1981, pp. 155�162. Available (accessed on 2017-02-08):

http://ieeexplore.ieee.org/document/1163535/

[13] ITRS, International Technology Roadmap for Semiconductors, edition 2011,

[Online] Available (accessed on 2017-01-23): http://www.itrs2.net.

[14] L. Juhola, Improving IP Block Design Flow Practices, Tampere University of

Technology, Department of Pervasive Computing, Master's thesis, 2016, 69 p.

[15] J. Järviluoma, Rapid Prorotyping from Algorithm to FPGA Prototype, Uni-

versity of Oulu, Department of Electrical Engineering. Master's thesis, 2015,

59 p.

[16] P. Kapur, J. P. McVittie, and K. C. Saraswat, Technology and Reliability Con-

strained Future Copper Interconnects. I. Resistance Modeling, IEEE Transac-

tions on Electron Devices, vol. 49, no. 4, 2002, pp. 590�597.

[17] K. Karras, M. Blott, and K. A. Vissers, High-Level Synthesis Case Study:

Implementation of a Memcached Server, 1st International Workshop on

FPGAs for Software Programmers, 2014, pp. 77�82. Available (accessed on

2017-02-08): http://arxiv.org/abs/1408.5387

[18] I. Kivimäki, High-Level Synthesis Design Flow in FPGA Design, University of

Oulu, Department of Electrical Engineering. Master's thesis, 2016, 60 p.

[19] I. Kuon and J. Rose, Quantifying and Exploring the Gap Between FPGAs and

ASICs. Springer, 2009, 180 p.

[20] L. Lavagno, A. Kondratyev, Y. Watanabe, Q. Zhu, M. Fujii, M. Tatesawa, and

N. Nakayama, Incremental High-Level Synthesis, 15th Asia and South Paci�c

Design Automation Conference (ASP-DAC), 2010, pp. 701�706.

[21] G. Martin and G. Smith, High-Level Synthesis: Past, Present, and Future,

IEEE Design Test of Computers, vol. 26, no. 4, 2009, pp. 18�25. Available

(accessed on 2017-02-08): http://ieeexplore.ieee.org/document/5209959/

[22] Mathworks, HDL Coder, [Online]. Available (accessed on 2017-02-08):

https://www.mathworks.com/products/hdl-coder.html

[23] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt, An

Overview of Today's High-Level Synthesis Tools, Design Automation for

Embedded Systems, vol. 16, no. 3, 2012, pp. 31�51. Available (accessed on

2017-02-08): http://dx.doi.org/10.1007/s10617-012-9096-8

http://ieeexplore.ieee.org/document/1163535/
http://www.itrs2.net
http://arxiv.org/abs/1408.5387
http://ieeexplore.ieee.org/document/5209959/
https://www.mathworks.com/products/hdl-coder.html
http://dx.doi.org/10.1007/s10617-012-9096-8

BIBLIOGRAPHY 69

[24] Mentor Graphics, Catapult High-Level Synthesis, [Online]. Avail-

able (accessed on 2017-02-08): https://www.mentor.com/hls-lp/

catapult-high-level-synthesis/

[25] L. Milic, T. Saramäki, and R. Bregovic, Multirate Filters: An Overview,

IEEE Asia Paci�c Conference on Circuits and Systems (APCCAS), 2006,

pp. 912�915. Available (accessed on 2017-02-08): http://ieeexplore.ieee.org/

document/4145542/

[26] S. P. Mohanty, Nanoelectronic Mixed-Signal System Design. McGraw-Hill

Education, 2015, 832 p.

[27] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T.

Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels,

A Survey and Evaluation of FPGA High-Level Synthesis Tools, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 35, no. 10, 2016, pp. 1591�1604. Available (accessed on 2017-02-08):

http://ieeexplore.ieee.org/document/7368920/

[28] NEC, CyberWorkBench, [Online]. Available (accessed on 2017-02-08):

http://www.nec.com/en/global/prod/cwb/index.html

[29] U. of Toronto, LegUp High-level synthesis, [Online]. Available (accessed on

2017-02-08): http://legup.eecg.utoronto.ca/

[30] P. Ollikainen, SoC Subsystem Design Using SystemC based High-Level Synthe-

sis, University of Oulu, Department of Electrical Engineering. Master's thesis,

2016, 48 p.

[31] OpenCores, [Online] Available (accessed on 2017-01-24): https://www.

opencores.org/.

[32] P. R. Panda, B. V. N. Silpa, A. Shrivastava, and K. Gummidipudi, Power-

e�cient System Design, 1st ed. Springer, 2010, 253 p.

[33] Real Intent, Ascent Lint, [Online]. Available (accessed on 2017-02-08):

http://www.realintent.com/real-intent-products/ascent-lint/

[34] S. Sarkar, S. Dabral, P. K. Tiwari, and R. S. Mitra, Lessons and

Experiences with High-Level Synthesis, IEEE Design Test of Computers,

vol. 26, no. 4, 2009, pp. 34�45. Available (accessed on 2017-02-08):

http://ieeexplore.ieee.org/document/5209961/

https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
http://ieeexplore.ieee.org/document/4145542/
http://ieeexplore.ieee.org/document/4145542/
http://ieeexplore.ieee.org/document/7368920/
http://www.nec.com/en/global/prod/cwb/index.html
http://legup.eecg.utoronto.ca/
https://www.opencores.org/
https://www.opencores.org/
http://www.realintent.com/real-intent-products/ascent-lint/
http://ieeexplore.ieee.org/document/5209961/

BIBLIOGRAPHY 70

[35] Semiconductor engineering, High Level Synthesis, [Online]. Available

(accessed on 2017-02-08): http://semiengineering.com/kc/knowledge_center/

High-Level-Synthesis/105

[36] D. Sinha and S. Kumar, FIR Filter Compensator for CIC Filter Suitable for

Software De�ned Radio, World Conference on Futuristic Trends in Research

and Innovation for Social Welfare (Startup Conclave), 2016, pp. 1�7. Available

(accessed on 2017-02-08): http://ieeexplore.ieee.org/document/7583915/

[37] G. Strawn and C. Strawn, Moore's Law at Fifty, IT Professional,

vol. 17, no. 6, 2015, pp. 69�72. Available (accessed on 2017-02-08):

http://ieeexplore.ieee.org/document/7332204/

[38] G. Stringham, Hardware/Firmware Interface Design: Best Practices for Im-

proving Embedded Systems Development, 1st ed. Newnes, 2009, 376 p.

[39] Z. Sun, K. Campbell, W. Zuo, K. Rupnow, S. Gurumani, F. Doucet, and

D. Chen, Designing high-quality hardware on a development e�ort budget: A

study of the current state of high-level synthesis, 21st Asia and South Paci�c

Design Automation Conference (ASP-DAC), 2016, pp. 218�225. Available

(accessed on 2017-02-08): http://ieeexplore.ieee.org/document/7428014/

[40] Synopsys, SpyGlass Lint, [Online]. Available (accessed on 2017-02-

08): https://www.synopsys.com/veri�cation/static-and-formal-veri�cation/

spyglass/spyglass-lint.html

[41] Synopsys, Synphony C Compiler, [Online]. Available (accessed

on 2017-02-08): https://www.synopsys.com/implementation-and-signo�/

rtl-synthesis-test/synphony-c-compiler.html

[42] A. Takach, High-Level Synthesis: Status, Trends, and Future Directions, IEEE

Design & Test, vol. 33, no. 3, 2016, pp. 116�124. Available (accessed on

2017-02-08): http://ieeexplore.ieee.org/document/7445863/

[43] M. Tatsuoka, R. Watanabe, T. Otsuka, T. Hasegawa, Q. Zhu, R. Okamura,

X. Li, and T. Takabatake, Physically Aware High Level Synthesis Design Flow,

52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp.

1�6. Available (accessed on 2017-02-08): http://ieeexplore.ieee.org/document/

7167348/

[44] Tech Design Forum, Lint for Hardware Design, [Online]. Available (accessed

on 2017-02-08): http://www.techdesignforums.com/practice/guides/lint-rtl/

http://semiengineering.com/kc/knowledge_center/High-Level-Synthesis/105
http://semiengineering.com/kc/knowledge_center/High-Level-Synthesis/105
http://ieeexplore.ieee.org/document/7583915/
http://ieeexplore.ieee.org/document/7332204/
http://ieeexplore.ieee.org/document/7428014/
https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-lint.html
https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-lint.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/synphony-c-compiler.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/synphony-c-compiler.html
http://ieeexplore.ieee.org/document/7445863/
http://ieeexplore.ieee.org/document/7167348/
http://ieeexplore.ieee.org/document/7167348/
http://www.techdesignforums.com/practice/guides/lint-rtl/

Bibliography 71

[45] E. Torppa, High-Level Synthesis in IP based SoC Development, University of

Oulu, Department of Electrical Engineering. Master's thesis, 2015, 69 p.

[46] H. Tulla, Exploring High-Level Synthesis for ASIC Module Design, Tampere

University of Technology, Department of Pervasive Computing, Master's thesis,

2017, Manuscript in preparation.

[47] F. R. Wagner, W. O. Cesário, L. Carro, and A. A. Jerraya, Strategies

for the Integration of Hardware and Software IP Components in Embedded

Systems-on-Chip, Integration, the VLSI Journal, vol. 37, no. 4, 2004, pp.

223�252. Available (accessed on 2017-02-08): http://www.sciencedirect.com/

science/article/pii/S0167926003001093

[48] L.-T. Wang, Y.-W. Chang, and K.-T. Cheng, Eds., Electronic Design

Automation. Morgan Kaufmann, 2009, 972 p. Available (accessed on 2017-02-

08): http://www.sciencedirect.com/science/article/pii/B9780123743640500023

[49] Wikipedia, NAND gate, [Online]. Available (accessed on 2017-02-08):

https://en.wikipedia.org/wiki/NAND_gate

[50] W. H. Wolf, Hardware-Software Co-Design of Embedded Systems, Proceedings

of the IEEE, vol. 82, no. 7, 1994, pp. 967�989. Available (accessed on

2017-02-08): http://ieeexplore.ieee.org/document/293155

[51] Wonderful Engineering, What Is An Integrated Circuit? [Online]

Available (accessed on 2016-09-18): http://wonderfulengineering.com/

what-is-an-integrated-circuit/.

[52] Xilinx, Vivado High-Level Synthesis, [Online]. Available (accessed on 2017-

02-08): https://www.xilinx.com/products/design-tools/vivado/integration/

esl-design.html

[53] Q. Zhu and M. Tatsuoka, High Quality IP Design using High-Level

Synthesis Design Flow, 21st Asia and South Paci�c Design Automation

Conference, 2016, pp. 212�217. Available (accessed on 2017-02-08): http:

//ieeexplore.ieee.org/document/7428013/

[54] M. D. Zwagerman, High Level Synthesis, a Use Case Comparison with Hard-

ware Description Language, Grand Valley State University, Master's thesis, 36

p.

http://www.sciencedirect.com/science/article/pii/S0167926003001093
http://www.sciencedirect.com/science/article/pii/S0167926003001093
http://www.sciencedirect.com/science/article/pii/B9780123743640500023
https://en.wikipedia.org/wiki/NAND_gate
http://ieeexplore.ieee.org/document/293155
http://wonderfulengineering.com/what-is-an-integrated-circuit/
http://wonderfulengineering.com/what-is-an-integrated-circuit/
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://ieeexplore.ieee.org/document/7428013/
http://ieeexplore.ieee.org/document/7428013/

	Introduction
	ASIC design
	Abstraction levels
	Design flow
	Productivity

	High-level synthesis (HLS)
	Fundamentals
	Compilation and optimization
	Constraints
	Resource allocation, scheduling and binding
	RTL generation

	Advantages
	Problem areas

	Case study
	Decimator
	Cascaded integrator-comb filter (CIC)
	Polyphase decimator
	Arbiter
	Packager

	Catapult HLS
	User interface
	Hardware interfaces
	Verification

	Research questions
	Technology library characterization
	Technology library abstraction
	Design-for-testability (DFT) structures in RTL code
	Engineering change order (ECO)
	Static code analysis
	Logical equivalence checking (LEC)
	Area and timing
	Power efficiency

	Results
	Design entry and effort
	Technology library characterization
	Flow evaluation

	Technology library abstraction
	Memory libraries
	Custom components

	Design-for-testability (DFT) structures in RTL code
	Engineering change order (ECO)
	Static code analysis
	Logical equivalence checking (LEC)
	Area and timing
	Power efficiency

	Recommendations
	Designers
	Tool developers

	Conclusions
	Bibliography

