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ABSTRACT

HEIKKI MÄENPÄÄ: User tracking and incentive management in smart mobility
systems
Tampere University of Technology
Master of Science thesis, 58 pages, 2 Appendix pages
April 2017
Master’s Degree Programme in Automation Technology
Major: Automation Software engineering
Examiners: Prof. Jose L. Martinez Lastra and Dr. Andrei Lobov
Keywords: Machine learning, index structures, travel mode recognition

A system for offering incentives for ecological modes of transport is presented. The
main focus is on the verification of claims of having taken a trip on such a mode of
transport. Three components are presented for the task of travel mode identification:
A system to select features, a means to measure a GPS (Global Positioning System)
trace’s similarity to a bus route, and finally a machine-learning approach to the
actual identification.

Feature selection is carried out by sorting the features according to statistical sig-
nificance, and eliminating correlating features. The novel features considered are
skewnesses, kurtoses, auto- and cross correlations, and spectral components of speed
and acceleration. Of these, only spectral components are found to be particularly
useful in classification.

Bus route similarity is measured by using a novel indexing structure called MBR-
tree, short for "Multiple Bounding Rectangle", to find the most similar bus traces.
The MBR-tree is an expansion of the R-tree for sequences of bounding rectangles,
based on an estimation method for longest common subsequence that uses such
sequences. A second option of decomposing traces to sequences of direction-distance-
duration-triples and indexing them in an M-tree using edit distance with real penalty
is considered but shown to perform poorly.

For machine learning, the methods considered are Bayes classification, random for-
est, and feedforward neural networks with and without autoencoders. Autoencoder
neural networks are shown to perform perplexingly poorly, but the other methods
perform close to the state-of-the-art.

Methods for obfuscating the user’s location, and constructing secure electronic
coupons, are also discussed.
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Tässä diplomityössä esitellään järjestelmä tarjoamaan kannustimia ympäristöystä-
vällisten ajoneuvojen käyttöön. Pääpaino on matkan väitetyn kulkuneuvon tai kul-
kuneuvojen tarkistamisessa. Tarkistamiseen esitellään kolme komponenttia: Mene-
telmä piirteiden valitsemiseen koneoppimista varten, menetelmä jäljen vertaamiseksi
bussiaikatauluun, ja koneoppimisjärjestelmä itse kulkuneuvon tunnistamiseen.

Piirteiden valinta tapahtuu järjestämällä piirteet tilastollisen testiarvon mukaan ja
eliminoimalla keskenään korreloivat piirteet. Uusina harkittuina piirteinä esitellään
nopeuden ja kiihtyvyyden vinoudet, huipukkuudet, kurtoosit, auto- ja ristikorrelaa-
tiot, ja spektrikomponentit. Näistä vain spektrikomponentit havaitaan hyödyllisiksi.

Bussiaikatauluun vertailuun käytetään uutta hakurakennetta nimeltä MBR-puu (Mul-
tiple bounding rectangle). MBR-puu on R-puuhun perustuva rakenne, jossa jäljet
lajitellaan jäljen sisältävän suorakulmiosarjan perusteella. Ajatuksen taustalla on
tapa estimoida LCSS-mittaa (Longest Common SubSequence) suorakulmiosarjojen
avulla. Tämä hakurakenne osoitetaan nopeammaksi kuin lineaarinen haku. Vaih-
toehtona esitellään M-puu joka perustuu ERP-mittaan (Edit Distance with Real
Penalty) suunta-pituus-kesto-kolmikoiden sarjojen välillä, mutta tämän rakenteen
näytetään toimivan huonosti.

Koneoppimiseen harkitut menetelmät ovat Bayes-luokittelija, random forest ja feedforward-
neuroverkko autoenkooderilla tai ilman. Autoenkooderilla neuroverkon osoitetaan
hämmästyttävän huonosti toimiviksi, mutta muut menetelmät yltävät alan nykyti-
laa vastaaviin tarkkuuksiin.

Lisäksi työssä esitellään järjestelmät käyttäjän sijainnin peittämiseen ja turvallisten
elektronisten alennuskuponkien luomiseen.
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1. INTRODUCTION

The goal of this thesis is a system to offer incentives for ecological modes of transport.
The research problem considered is verifying that a journey has taken place, with
the stated mode of transport, without unduly compromising the user’s privacy.

1.1 Motivation

A certain inability to delay gratification is hard-wired into the human brain[21].
However, the rewards from reducing greenhouse gas emissions will be reaped largely
by future generations. For this reason, offering more immediate rewards for eco-
friendly modes of transport may be necessary to reduce traffic-related greenhouse
gas emissions.

To this end, a system is needed to identify the user’s mode of transport, and to
confirm that the stated journey has taken place. In particular, it would improve the
system’s usability if the system could infer the user’s mode of transport without the
user’s input.

A system to actually deliver the incentives to users is also needed. The envisioned
system will involve several vendors associated with the service provider, and it would
be impractical to individually integrate each vendor’s system into the incentive sys-
tem.

1.2 Travel mode detection

As mentioned in the research problem, a system is required to verify whether or
not the user has completed the journey with a given mode of transportat. For
this reason, a machine learning system was trained to recognize the user’s mode of
transport.

Knowing the mode of transport currently employed by the user has many other
applications. Among these are tracking the user’s exercise goals [33], more accurate
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household travel surveys [20] and better informed participant selection for such
surveys[36], and even targeted advertisements[41].

The features considered for this task are mainly characteristics of distribution of
speed and absolute acceleration, as well as spectral components and auto-and cross
correlations of the same.

An algorithm to select a limited amount of features is described in section 5.3. Three
different statistical tests are used for the selection of the most significant features for
the machine learning algorithm. The tests used are Welch’s t-test, Mann-Whitney
U-test, and the F-test.

After the feature selection, the features are used to train three different machine
learning algorithms. These are four-class feed-forward neural network, a four-class
Bayes classifier, and a random forest. To validate the feature selection, a deep au-
toencoder was trained and used in conjunction with a neural network. The principle
behind these classifiers is explained in section 5.2.

The training data consisted of GPS traces of Tampere city buses and GPS traces ac-
quired from the OpenStreetMap and Microsoft GeoLife projects. The preprocessing
for this data is described in 3.

The neural network, Bayes classifier and random forest produced roughly compa-
rable results. The autoencoder produced a fairly poor result, and only succeeded
in differentiating between muscle-powered and motorized modes of transport. More
in depth results are outlined in section 6.2, and discussion of the results is given in
section 7.1.

1.2.1 Bus route similarity

Experimentation showed that buses as a mode of transport tend to confound the
machine learning algorithms. For this reason, measuring a trajectory’s similarity to
a bus route could be expected to be useful.

The bus route similarity metric makes use of the flexible similarity measures de-
scribed in section 2.2. A novel data structure, based on an R*-tree, is used to index
these, and is described in section 5.4.
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1.3 Incentive management

Incentive management has been utilized in various fields, from customer loyalty
programs to peer-to-peer networks. Much research has been done on the subject,
and most of it has shown incentive management to be a cost-effective means to the
desired end.

Most research on incentive management toward ecological goals has been targeted at
business and land owners. In particular, a city in Korea managed to cut the cost of
reducing marine litter by a factor of ten by buying fishermen’s trash from them[12].
A study in Australia offered land-owners an economic incentive to preserve critically
endangered forest types on their land, which resulted in generally positive effect on
biodiversity[26].

Research has also been done on using incentives to affect private citizens’ behavior.
A study of the staff of an institution for mentally retarded children discovered that
not only did rewarding lack of unscheduled leave reduce absenteeism, it reduced the
disruptive behavior by the patients[16]. This suggests that incentivising one facet
of the desired behavior will positively affect the others.

1.4 Hypotheses

Research and experimentation on the subject of travel mode detection yielded the
following four hypotheses.

Hypothesis 1 Frequency-domain features can be used to differentiate between modes
of transportation.

A number of factors could be expected to create fluctuation in the speed at which
a person or vehicle is traveling at. For buses, there are stops along the way which
would necessitate coming to a full stop to load and unload passengers. All traffic
would be expected to pause or slow down at intersections, but cars and bicycles
would reach the intersections faster than walkers.

Frequency domain features have been used in travel mode recognition with accele-
rometer data[24], and on dense GPS data [35]. However, little research was found
studying the spectral features of sparse GPS data.

Hypothesis 2 Auto- and cross correlation of velocity and acceleration can be used
to differentiate between various modes of transport.
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A person walking would maintain a fairly steady speed from minute to minute.
Similarly, a car that is moving slower than the speed limit would be expected to
accelerate, as can a bus at a stop.

Features such as this seemed conspicuously absent from prior research, and are
therefore considered here.

Hypothesis 3 Skewness and kurtosis of speed and acceleration can be used to dif-
ferentiate between modes of transport.

A car’s velocity distribution would be expected to be skewed toward the speed
limit, only dropping for intersections and such, whereas a walker’s speed would
remain fairly constant and a bicycle would accelerate and decelerate as the road’s
inclination and other traffic allow.

Lower statistical moments and other features of the distribution of acceleration and
velocity have been studied [41, 35, 39]. However, skewness and kurtosis seem not to
have been considered as features before.

Hypothesis 4 Bus route similarity will be an useful tool in differentiating between
buses and non-buses.

Scatter plots from an initial experiment, presented and discussed on page 47, showed
that the bus class overlaps with the car and bicycle classes, with the other classes
being almost linearly separable.

To verify these four hypotheses, statistical tests will be used to identify the most
suitable features, as proposed by Bolbol et al.[9]. A number of features considered by
previous research, namely the mean, median and variance of speed and acceleration,
will be considered alongside these for reference.

1.5 Structure of this thesis

Chapter 2 presents the theoretical background of this thesis. Section 2.1 discusses
the methods of obfuscating an user’s location to improve privacy. Section 2.2 intro-
duces the reader to the concept and examples of flexible distance measures. Section
2.3 discusses prior work on travel mode detection. Section 2.4 discusses the M-tree
and R-tree. Section 2.5 presents the current state of research into secure mobile
coupons, and the mathematical basis thereof. Section 2.6 gives the definition of a
smart mobility system.
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Chapter 3 pertains to the sources and pre-processing of the training data used
for training the machine learning. Section 3.1 introduces the sources of the data.
Section 3.2 discusses the issues with the labeling of the data, and the measures
taken to circumvent these issues. Section 3.3 discusses the travel survey application
created to gather data from within the city of Tampere.

Chapter 4 describes the approach taken to the research problem. Section 4.1 dis-
cusses the approach to travel mode detection. Section 4.2 describes the rationale
behind creating the MBR-tree. Section 4.3 discusses the approach to incentive man-
agement.

Chapter 5 presents the implementation of the above. Section 5.1 will describe the
location obfuscation system used. In section 5.2, the inner workings and training
algorithms of the used classifiers are described. Some thought is also given to the
classification of a continuous multimodal trace. The algorithm for selecting fea-
tures for the classifiers is described in section 5.3. The MBR-tree is described at
length in section 5.4. Section 5.5 describes the initially considered but ultimately
unsuccessful second approach to bus schedule indexing, and presents the shared pa-
rameters of various flexible distance measures. Finally, section 5.6 will describe the
implementation of the incentive management.

Chapter 6 will give the results of experiments run on these. The results of ex-
periments in travel mode recognition are presented in two parts, first the feature
selection experiments in section 6.1, and then the actual classification results in sec-
tion 6.2. Section 6.3 will present the performance metrics of the bus route indexing
methods.

Chapter 7 will give discussion on the results. Section 7.1 will discuss the travel mode
detection, and section 7.2 the bus route indexing. Finally, section 7.3 will discuss
the results of the travel survey.

Conclusions and future work will be given in chapter 8.



6

2. BACKGROUND

2.1 User Tracking

A major issue in user tracking is privacy. Most mobile app users are uncomfortable
with letting an app track their precise location.[19, 34]

As privacy safeguards, the following methods have been used in the past:

Perturbation The introduction of random or pseudorandom noise to the location
signal to mask the signal.[37]

Cloaking region Reporting the user’s location only at precision low enough to
always match at least k other users’ location. [22]

Silent period Tracking is stopped at certain times or in certain areas, and resumed
with a new identifier when the period expires or the user leaves the area.

On the other hand, systems have been proposed to track an user’s location from very
rough data. One method involves repeatedly querying a routing engine to discover
a likely route traveled, using cell tower’s signal strength to produce a rough fix[4].

2.2 Flexible similarity measures

A trajectory is the path that a moving object follows through space as a function
of time. Trajectory recognition has been considerably successful in handwriting
recognition[30]. It has also been used to index videos according to the movement of
objects on screen[25]. Also, much like any pair of real numbers can be expressed as
a point in a two-dimensional plane and vice versa, much of trajectory recognition
can be generalized to time-series.

For the purposes of this thesis, a similarity measure between two trajectories is suffi-
cient and necessary. Magdy et al.[27] made a broad literature review, and produced
a taxonomy of measures for trajectory similarity.
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Of particular interest in this thesis are flexible similarity measures, or measures
intended to gauge the similarity of time series of different lengths. Flexible similarity
measurements tend to adhere to the template

dist(R, S) = min


f(r0, s0) + dist(R1..n, S1..m)

g(r0) + dist(R1..n, S)

g(s0) + dist(R, S1..m)

(2.1)

Where R is a time series of length n, S is a time series of length m, r0 and s0 are the
first elements of the respective series, and R1..n and S1..m are the time series with
the first element removed. Function f is the cost of altering one argument to the
other, and function g is the cost of deleting the argument.

Where flexible similarity measures differ is the sorts of changes allowed, and the
cost function for these changes, and the distance between and empty and non-
empty series. The plain edit distance simply counts the amount of changes. A
slightly more refined measure, Edit distance with real penalty (ERP) also factors
in the magnitude of these changes[10], and some variants of dynamic time warping
account for the distance in time[29].

Most flexible similarity measures require recursion over every possible combination
of the edit actions to find the cheapest one. This means that it is necessary to have a
lower bound for these. Marteau[29] recommends that the metric used should satisfy
the triangle inequality ||a−c|−|c−b||≤ |a−b|≤ |a−c|+|c−b|. Using this inequality,
the difference between distances to a trivial case such as an empty sequence can be
used to establish a minimum distance, permitting pruning recursions that can not
produce a smaller distance than already completed recursions.

It is useful if an edit distance is a metric. The definition of a metric is

d(x, y) ≥ 0 (2.2)

d(x, y) = 0 ⇔ x = y (2.3)

d(x, y) = d(y, x) (2.4)

d(x, z) ≤ d(x, y) + d(y, z) (2.5)

(2.6)
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If the similarity measure used is a metric, the set of trajectories becomes a metric
space which, among other things, can be indexed with an M-tree.

2.2.1 Edit distance

Edit distance measures the amount of elements that need to be changed in one time
series to match another. This is not a metric, which is why Edit distance with real
penalty is used in this thesis. Edit distance with real penalty(ERP)[10] is a similarity
measurement for two time series R and S, of the form[10]

erp(R, S) = min


f(r, s) + erp(R2..n, S2..m)

f(r, g) + erp(R2..n, S)

f(s, g) + erp(R, S2..m)

(2.7)

Where the element g is a gap element, or an element used as a reference point.

In the special case that one series (marked below with S) is empty, the distance
becomes

erp(R, S) =
n∑
i=0

f(ri, g) (2.8)

Where ri is the i:th element of R, which is the non-empty series. Intuitively, it
follows that if both sets are empty, the distance is zero.

ERP has been shown to satisfy the triangle inequality [10]. Therefore, the triangle
inequality can be used to eliminate recursions with help of a reference value. The
simplest reference value, and the one used in this paper, is an empty series.

The function is also trivially symmetric as long as f(r, s) is a metric. It is also plain
that erp(S,R) = 0 ≡ S = R if f is a metric. Therefore, ERP is a metric. This
enables the use of an M-tree to index bus schedules.

2.2.2 Longest Common Sub-Sequence

Longest common sub-sequence (LCSS) is a special case of edit distance that discovers
the length of the longest sequence that can be converted into either of the sequences
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compared through insertions. This is not a proper metric, either, but there is a
method to find a lower bound for it[40].

The lower bounding method is based on sequences of bounding rectangles, and is
the basis of the MBR-tree.

The equation for LCSS is

lcss(R, S) =


1 + lcss(R2..n, S2..m) ifr = s

max

lcss(R2..n, S)

lcss(R, S2..m)
otherwise

(2.9)

2.2.3 Dynamic Time Warping

Dynamic time warping (DTW) stretches and contracts the elements of one series to
fit the other series as close to another as possible. It is challenging since it neither
satisfies the triangle inequality nor has a finite trivial case [23, 29].

DTW’s main strength is that it matches sequences that are out of phase in time[23],
which makes it useful for measuring similarity of a segment of a bus route to the
entire bus route.

Methods to find a lower bound for a DTW distance have been developed[23].

The equation for Dynamic Time Warping is as follows

dtw(S,R) = min


f(r0, s0) + dtw(R1..n, S1..m)

dtw(R1..n, S)

dtw(R, S1..m)

(2.10)

2.2.4 Average Euclidean Distance

In this thesis, a flexible metric called Average Euclidean Distance (AED) is used as
a metric unrelated to LCSS, DTW or ERP, for comparison of the indexing methods’
performance. This is similar to the modified Hausdorff distance used by Atev et
al.[5], except instead accounting for the order this metric accounts for the time
coordinate.

The distance is calculated as follows:
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aed(R, S) =

∑
n
i=1minj∈[1,m](d(si, rj))

n
(2.11)

where the function d is a weighed sum of spatial distance and difference in time of
day.

This is not transitive if m 6= n, although this can be worked around as defining the
output as aed(S,R) if n > m. A counter-example to the triangle inequality can be
constructed by taking two distinct sub-sequences of a sequence, and measuring the
AED between the three sequences. This counter-example also disproves aed(R, S) =

0⇔ R = S. Therefore, AED is not a metric.

2.3 Travel mode recognition

Travel mode recognition refers to classifying the kind of vehicle a trip has been made
on. This has been of interest for various application, and there is a large body of
research available on the subject. For instance, Su et al.[38] made a fairly broad
review of the literature in 2014, with an eye to using the entire sensor suite of a
smartphone for this task. Their study did not touch on the subject of using only
sparse GPS data.

Bolbol et al. have both shown that a 30 to 60 second sampling period is sufficient
for travel mode recognition[8], and provided an useful methodology for the selection
of most discriminating features[9]. Another purely GPS study was carried out by
Gong et al.[20] who combined the GPS data with information about public transport
stops in order to identify modes of transport in New York City.

State of the art for travel mode recognition is a 2016 study by Zhu et al.[41], in which
a deep learning algorithm achieved a 93% overall accuracy. They compared their
algorithm, a deep neural network with a stacked auto-encoder with several other
state of the art methods. A similar study from eight years before[35] had found that
a decision tree combined with a hidden Markov model performed best.

A study comparing a Bayes classifier, a feedforward neural network and a random
forest has been submitted to Transportation Research Part C[31]. The findings of
the article are contained in this thesis, particularly in sections 1.2, 5.3 and 6.2

A common feature of studies on travel mode recognition is that walking can be easily
identified. The other modes of transport tend to be harder to discern.
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2.4 Index structures

2.4.1 M-tree

Figure 2.1 An M-tree constructed with random data. Index spheres appear elliptical due
to scaling.

An M-tree is an data structure for indexing metric spaces[13]. Nodes of an M-tree
are defined by a centroid and a radius. The centroid is a reference element, and the
radius is the maximum distance the node’s descendants will be from the centroid,
as determined by the associated metric.

Figure 2.1 shows an M-tree constructed out of two-dimensional random data. The
circles represent the index spheres, with red as the first layer and yellow as the
second layer. The index spheres appear elliptical due to the coordinates’ scaling.
The rash of red points almost obscured by the index spheres is the underlying data.
As can be seen, the index spheres overlap quite a bit, and overflow the training
data’s boundaries.

In this thesis, a metric space of bus routes measured with ERP will be indexed with
M-tree.

During insertion, the element is inserted into the subtree whose centroid is closest
to the element, recursively until the correct leaf node is found.
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If a node’s child count is above a pre-set maximum, the node is split. In a split, two
child nodes are selected, and their centers are used as the centers of new nodes. The
split node’s children are then inserted under the new nodes, and the new nodes are
inserted into the split node’s parent.

Dividing a metric space that is not spatial is not an intuitive process, since things like
coordinates do not exist. The implementation used in this thesis splits the node by
selecting the child node furthest from the parent’s center as the first pseudo-medoid,
and then selecting the child node furthest from the first one as the second pseudo-
medoid. The children are then divided according to the pseudo-medoid closest to
them, and the medoid of each group is set as the corresponding new node’s center.

2.4.2 R-tree

Figure 2.2 An R-tree constructed with random data

The R-tree is the basis on which the MBR-tree is built. An R-tree is a data struc-
ture for storing spatial data[6]. Nodes of an R-tree are defined by their bounding
rectangles. The R*-tree is a particularly well-performing variant of the algorithm.

Figure 2.2 shows an R*-tree constructed out of random data. The large red rectangle
represents the parent node of the whole tree, the yellow rectangles are the first layer
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and the blue rectangles the second layer. As can be seen, there is some overlap in
the index rectangles, but not much. The rash of red points is the underlying data.

During insertion, the element is inserted to a sub-tree selected depending on whether
the sub-tree contains only leaf nodes or other branches.

If the sub-tree contains other branches, the element is inserted into the sub-tree
whose bounds require the least expansion. If the sub-tree contains only leaf nodes,
the sub-tree whose bounds need to be expanded to add the least overlap with its
neighbors is selected.

If a node’s child count is over a pre-set number, the node is either split or undergoes
forced reinsertion. During a split, the coordinate axis is found for which the total
width of the child nodes’ bounds is smallest, and the child nodes are ordered ac-
cording to their bounds’ position on the axis. The children are then divided at the
location where the division results in the least overlap between the two new nodes,
with ties broken by lesser total volume.

Forced reinsertion is carried out the first time a node on a given level of the tree
is split during an insertion. In a forced reinsertion, the node’s children are sorted
by their bounding rectangle’s center’s distance to the node’s bounding rectangle’s
center, and the most distant child nodes are removed and inserted back into the
tree. Beckmann et al. found that the amount of reinserted nodes should be 30%
of the node’s size, and that the best performance is achieved when the reinsertion
order is in ascending order of distance.

2.5 Incentive management

The incentives the system will offer are discount coupons. Most research on elec-
tronic coupons has focused on creating privacy-preserving schemes that permit
coupons to be validated without the issuer being able to track the coupons.

Nguyen[32], whose work built on Chen et al. [11], approaches the issue through
pairing-based cryptography. Enzmann et al.[17] used elliptic curve cryptography.
Since cryptographic pairings only exist (so far) for elliptic curve points, it is safe to
say that elliptic curve cryptography is a common theme in the literature.

2.5.1 Elliptic curve cryptography

An elliptic curve is of the form
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Figure 2.3 Illustration of the chord and tangent rule

y2 = x3 + ax+ b (2.12)

The field law for points on an elliptic curve is defined by the chord and tangent rule:
draw a line passing through the two points (or a tangent at the single point being
squared) and negate the y-coordinate of the third point the line passes through. If
there is no such third point, the result is a point at infinity O, which is considered
to be directly above any point.

This is illustrated in figure 2.3. The two round dots in red are the operands, the
green cross is the third point, and the black circle is the end result.

The chord and tangent rule can be expressed mathemathically as

xR = λ2 − xP − xQ (2.13)

yR = −(λxR + ν) (2.14)
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Figure 2.4 The elliptic curve from figure 2.3 over F61

Where the chord or tangent’s equation is y = λx+ ν, the operands are (xP , yP ) and
(xQ, yQ) and the output is (xR, yR).

For cryptographic purposes, elliptic curves over finite fields are used. In finite fields
of prime power, equation 2.12 turns to

y2 ≡ x3 + ax+ b mod p (2.15)

for a finite field of prime order p. Equations 2.13 and 2.14, and the chord’s formula,
are similarly altered. Figure 2.4 shows a plot of elliptic curve points over F61, which
is illustrative of the magnitude of the effect of these changes.

Enzmann et al.’s[17] signature method is as follows: to initialize the system, the
vendor selects a secret key γ, an elliptic curve point g, and a public key w = gγ.
The user selects a serial number s for their "zero-counter", and hashes it to the same
elliptic curve to produce c0 = H(s).
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To increment the counter, the customer selects a random scalar ri, and calculates
bi = ci−1g

ri , which they send to the vendor. The vendor calculates bγi , and returns
that to the customer, who calculates

ci = bγi V
−r = cγi−1g

γrig−γri = cγi−1 (2.16)

When the customer wishes to redeem the points, they send cn, n and s to the vendor,
who verifies cn = H(s)γ

n .

2.5.2 Pairing-based cryptography

At time of writing, pairing-based cryptography is a subset of elliptic curve cryptog-
raphy. It forms the basis of Nguyen’s[32] electronic coupon scheme.

A pairing is a non-degenerate bilinear function e : G1 × G2 → GT , i.e. it satisfies
the conditions

e(P,QR) = e(P,Q)e(P,R) (2.17)

e(PQ,R) = e(P,R)e(Q,R) (2.18)

e(P,Q) 6= 1 (2.19)

It follows from equations 2.17 and 2.18 that e(P n, Qm) = e(P,Q)nm. Because of
the requirements, the definitions of pairings tend to become complicated.

In particular, the pairing definitions rely on divisors, which are a "convenient way
to denote a multi-set of points"[14] on an elliptic curve over a finite field. A divisor
is written as the formal sum

D =
∑

P∈E(Fp)

nP (P ) (2.20)

If D is the divisor of a function, a positive nP indicates a zero of order nP , and a
negative nP a pole of order −nP . A function for elliptic points is evaluated at a
divisor as
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f(D) =
∏

P∈E(Fp)

f(P )nP (2.21)

Pairings rely on evaluating a function, whose divisor is defined according to the
other operand, at one operand (and vice versa, in the case of the Weil pairing).

As an example of the use of pairings in cryptography, the Boneh-Boyen signature
is calculated as follows: g1, g2 are the generators of G1 and G2, γ is the secret key,
w = gγ2 is the public key and r is the message. The signature a = g

1
γ+r

1 , and it is
verified by e(a, wgr2) = e(g1, g2).

To compute g
1

γ+r

1 , the following must be done: since G1 is of order k, find l so that
lk+1
γ+r

is an integer, which would leave the verification equaling e(g1, g2)lk+1. Because
GT is also cyclic with order k, this is equal to e(g1, g2).

l can be found by the following:

lk + 1 ≡ 0 mod γ + r (2.22)

lk ≡ −1 mod γ + r (2.23)

l ≡ −k−1 mod γ + r (2.24)

The signature scheme of Nguyen[32] is considerably more involved.

2.6 Smart Mobility Systems

Smart mobility systems are services that provide various types of real-time informa-
tion on the traffic conditions, to the citizenry at large [28]. The information provided
is typically aggregated from multiple sources. The EU directive 2010/40/EU defines
Intelligent Transport Systems as "...advanced applications which without embody-
ing intelligence as such aim to provide innovative services relating to different modes
of transport and traffic management and enable various users to be better informed
and make safer, more coordinated and ‘smarter’ use of transport networks"[18].

2.7 Summary

Random forest classification has been found to perform well in travel mode recog-
nition, as have neural networks[41, 35]. In this thesis, these two methods will used
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as a classification

To measure bus route similarity, an index of bus routes will be used. For this purpose,
an index structure based on the LCSS estimation by Keogh et al.[23] and the R-tree
will be used. For comparison, an M-tree will also be used. The performances of
these will be measured by LCSS, DTW and AED between the query and the 5NN
result.

The incentive management portion of this thesis will make use of elliptic curve
cryptography.
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3. DATA ACQUISITION AND PREPARATION

In order to train machine learning algorithms, a large data set is generally required.
For this reason, GPS traces for each mode of transport were acquired from three
sources: The OpenStreetMap project[3], Microsoft’s Geolife[2], and the Innovative
Tampere Site[1].

3.1 Sources of data

OpenStreetMap is an open-source cartography project. Its purpose is to provide
and maintain an open-data map of the world[3].

The project has amassed a large collection of GPS traces, some of which were tagged
with a mode of transport. Unfortunately, some of the traces were tagged with more
than one mode so an initial heuristic was used to reduce the amount of false positives.

Microsoft GeoLife is a location-based social networking service[2]. The purpose of
the service is to mine multiple users’ data for typical travel sequences and to use
individual location histories to measure similarity between users and provide friend-
and location recommendations.

The project has made the GPS traces of 182 users from a period of April 2007 to
August 2012 available. The dataset was collected by Microsoft Research Asia.

The Innovative Tampere Site provides, among other things, real-time data on bus
locations[1]. These were logged for three hours on a working day to collect bus
traces.

3.2 Pre-processing

To improve the trained system’s reliability for short segments, and to further increase
the size of the training set, the traces were split into ten minute chunks. Tracks were
also split if the location didn’t move 50m in three minutes, corresponding to 1km/h
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For each mode of transport, a trace was rejected if the speed, inferred from location
change and timestamps, stayed over vmax for thirty consecutive seconds. Also, if
the inferred speed did not exceed vmin for thirty consecutive seconds at some point,
the trace was rejected. Individual track points were rejected as corrupt if the in-
ferred speed was over 200km/h, and the entire trace was rejected if there were ten
consecutive corrupt track points. The parameters are in table 3.1.

Mode vmax vmin
Bicycle 40km/h 10km/h
Walking 15km/h 0
Car 80km/h 40km/h

Table 3.1 The parameters for initial classification

If any trace was over three standard deviations away from the mean for any of the
features described in 5.3, they were discarded as outliers. The final filtration results
are in table 3.2. Finally, because the walking class was excessively large, it was
truncated to two times the size of the car class before eliminating outliers.

For the initial experiment, five percent of the size of the car class, 70 traces, were
set aside as a final validation set and to draw visualizations of the results.

Mode N v > vmax v < vmin corrupt 3σ final
Bicycle 3086 384 276 161 564 2449
Walking 10438 144 0 180 550 2250
Car 1403 1580 24369 3417 168 1094
Bus 1826 0 0 0 239 1465

Table 3.2 Number of accepted and rejected segments by mode and rejection criterion

Of the filtered traces, 453 walking-, 107 bicycle- and 40 car traces were within
Tampere and could be used to train classifiers in conjunction with the MBR tree.
For this experiment, each class was trimmed until it was no more than twice the
size of the smallest class, which were the car traces.

3.3 Travel survey application

Because the OpenStreetMap project’s GPS traces were from all around the world,
and the Geolife traces were from Beijing, China, they could not be used to train the
travel mode detection algorithm in conjunction with the bus route similarity mea-
surement. For this reason, an Android application was built, with a corresponding
server backend.
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The application collected the user’s location data from the system’s location service.
It then used a neural network trained without bus route similarity to gauge when
the user had changed mode of transport. The user was then given the opportunity
to correct any mislabeled segments before finally submitting the data to a central
server, where the traces were anonymously stored.

The central server was built with Node.js. The traces were anonymized by generating
a pseudorandom filename for each uploaded trace. Requests to download traces were
authorized by HMAC[7] with a hard-coded application secret as the key.

The participants pool consisted of the employees at FAST laboratory at TUT, and
the students of a single course in Factory Automation and Industrial Informatics.
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4. APPROACH

Figure 4.1 The overall architecture of the system

The overall architecture of the system is given in figure 4.1. The arrows represent
the flow of data, and are labeled with the type of data carried. The blocks represent
the modules of the system. Requests sent by the user have been omitted for clarity.

The user’s data is passed through location obfuscation into the DB, from where it
will be read with deobfuscation when travel mode recognition becomes necessary.
The travel mode recognition consults bus route similarity for one feature in the
recognition task, and passes the likelihoods of each travel mode to the green points
repository which allocates green points according to the "greenness" of the trip.
When the user wishes to redeem green points for real world benefits, the green point
repository asks the coupon issuer to issue an electronic coupon to the user.
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4.1 Travel mode estimation

The experiments in this thesis were carried out using reasonably precise and accurate
GPS data. Such data is also required for the bus route similarity measurement.
These two factors necessitate a reversible obfuscation of location data.

4.2 Bus route similarity

During experimentation with the travel mode detection algorithms it became ap-
parent that buses are difficult to differentiate from the other modes of transport,
and especially that the other three modes considered were fairly distinct. For this
reason, a bus route similarity metric is needed.

The main weakness of indexing a sequence of MBRs in a regular R tree, as in [40] is
that it is sensitive to the starting times and/or -points of the traces being compared.
In the case of bus-route similarity measurement, the start of the query trace will
very likely be after the start of the scheduled trace, which would result in the first
bounding box of the query trace corresponding to the middle of the bounding boxes
of the scheduled trace, which in turn would tend to produce a large distance between
the coordinates corresponding to the first bounding boxes.

A different granularity in the query trace and the scheduled trace could also impact
the construction of the bounds, especially when coupled with the difference in length
and duration between the traces. Therefore, the method doesn’t lend itself very well
to the task at hand.

A modification of the algorithm needs to be undertaken. Two indexing methods of
non-metric similarity measures have been proposed, both dealing with sequences of
minimal bounding rectangles. This suggests that the R-tree could be generalized to
use a sequence of bounding rectangles in order to efficiently index trajectories.

For comparison, an M-tree using Edit distance with real penalty will be used. Be-
cause there is no trivial and useful gap variable for spatio-temporal traces, a decom-
position of the trace to compass directions, durations and distances will be used as
the basis for the M-tree.

4.3 Incentive management

The incentives that can be purchased with green points are virtual coupons. A major
risk of such a system is coupon forging, which will be mitigated by cryptographically
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signing each issued coupon.

The delivery of coupons to the user’s device is a second concern. The most universal
way to approach this would be displaying the coupon’s data in an optically-readable
format on the device’s screen, i.e. as a QR-code.
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5. IMPLEMENTATION

5.1 Location obfuscation

Because travel mode recognition requires accurate data, perturbation is the only
viable method. For this reason, the method of Ruppel et al.[37] will be used for
location obfuscation.

The method is based on a two-step obfuscation. First, rotate all coordinates a pre-set
amount around a pre-set centerpoint, followed by applying a pre-set offset. Second,
use a random oracle to generate a second offset to the latitude and longitude based
on the timestamp of the location.

A random oracle rather than a random generator in the second step in order to both
introduce an appreciable amount of fuzz and be able to reverse the step. A salted
cryptographic hash will be used as this random oracle, with the intent that the salt
will make it harder for an attacker to recreate the oracle.

5.2 Classifiers

Three different classifiers were tested for travel mode detection. These were a Bayes
classifier, a decision tree based on Bayes classifiers, and a neural network. Testing
proved that the neural network slightly outperformed a single-layer Bayes classifier.

5.2.1 Bayes classifier

The Bayes classifier is based on Bayes’ theorem. The basic idea of the classifier is
to find the likeliest class given the features. In other words,

Y (x̄) = arg max
Y

P (Y |x̄) = arg max
Y

P (x̄|Y )P (Y )

P (x̄)
(5.1)

Where Y is the class and x̄ is the feature vector.
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In this thesis, the probability density function of a multivariate normal distribution
is used as a proxy for the probabilities. For instance, P (x̄|Y ) is calculated as

fY (x̄) =
e−

1
2

(x̄−µ̄Y )TΣY (x̄−µ̄Y )√
(2π)d|ΣY |

(5.2)

Where µY is the mean vector, ΣY is the covariance matrix, and d is the dimension
of the feature vector.

5.2.2 Continuous classification

The classifiers described above can be used to acquire the momentary likelihoods for
the current trace via a moving window method. Relying on momentary outputs may
cause aberrations in the output in case of momentary confusion by the classifier.

The classification will be bolstered against such confusions by using Bayesian in-
ference to account for the confusion matrix of the classifier and the likelihoods of
transferring from one mode of transport to another.

Let A∗ denote the event of the classifier classifying the mode of transport as A,
Bpr denote the event that the previous mode of transport was B, CAB denote a
classification of A as B, and TBA denote the transfer from B to A. Let M denote
the set of all modes of transport.

The probability of A given A∗ is

P (A|A∗) =
∑
B∈M

P (A|A∗ ∩Bpr)P (Bpr) (5.3)

P (A|A∗ ∩Bpr) =
P (A∗ ∩Bpr ∩ A)

P (A∗ ∩Bpr)
(5.4)

P (A∗ ∩Bpr ∩ A) = P (A∗ ∩ A|Bpr)P (Bpr) (5.5)

The event A∗∩Bpr above means "previous mode of transport was B and the classifier
classifies the current mode as A".

In an ideal case, changing modes of transport and the classifier correctly classifying
the current mode of transport would be unrelated. If we consider a correction of a
past mis-classification as a transfer, we can write
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P (A∗ ∩ A|Bpr) = (P (TBA) + P (CAB))P (CAA) (5.6)

In which case equation 5.4 becomes

P (A|A∗ ∩Bpr) =
(P (TBA) + P (CAB))P (CAA)P (Bpr)

P (A∗ ∩B)
(5.7)

Further,

P (A∗ ∩Bpr) = P (Bpr)P (A∗|Bpr) = P (Bpr)
∑
C∈M

P (TBC)P (CCA) (5.8)

Therefore, equation 5.3 becomes

P (A|A∗) =
∑
B∈M

(P (TBA) + P (CAB))P (CAA)P (Bpr)

P (Bpr)P (A∗|Bpr)
P (Bpr) (5.9)

P (A∗|A)P (A)

P (A∗)
=

∑
B∈M

(P (TBA) + P (CAB))P (CAA)

P (A∗|Bpr)
P (Bpr) (5.10)

P (CAA)P (A) = P (A∗)
∑
B∈M

(P (TBA) + P (CAB))P (CAA)

P (P (A∗|Bpr)
P (Bpr) (5.11)

P (A) = P (A∗)
∑
B∈M

(P (TBA) + P (CAB))

P (A∗|Bpr)
P (Bpr) (5.12)

Notice that (P (TBA)+P (CAB))
P (A∗|Bpr) can be tabulated beforehand for more efficient compu-

tation.

Equation 5.12 lets the likelihood of each mode of transport be updated based on
the previous modes’ likelihoods, using the likelihood from the classifier’s momentary
output as P (A∗) and the previously calculated value for P (Bpr). The confusion
matrix can be calculated from the training dataset, and the transfer likelihoods can
be calculated from travel survey data.

Transfer likelihoods calculated from the GeoLife data are in 5.1. The likelihoods
were calculated by counting the amount of transfers from one mode to another, and
the amount of minutes a each mode lasted.
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To
From Walking Bike Bus Car

Walking 99% 0,056% 0,57% 0,24%
Bike 1,5% 98% 0,18% 0,034%
Bus 5,2% 0,055% 95% 0,020%
Car 2,7% 0,0036% 0,0072% 97%

Table 5.1 The transfer likelihoods calculated from the GeoLife data

5.3 Feature selection

5.3.1 Features considered

For each segment, the following statistics were calculated for speed and magnitude
of acceleration:

• Minimum and maximum

• Median

• Average

• Variance

• Skewness

• Kurtosis

The minimum and maximum speed were ignored, because they had previously been
used to filter out the data. Magnitude of acceleration was used because the sum of
accelerations would be zero for a segment between two stops.

In the frequency domain, a spectrum was calculated up to the Nyquist frequency,
8mHz, in four one-octave bins. Cross- and autocorrelations for speed and accelera-
tion were calculated for up to three samples to the past and future.

The segments were classified by mode, and the means and standard deviations were
calculated for the features inside each mode. Segments that had one feature more
than three standard deviations from the mean were discarded as outliers for each
mode.

After initial experimentation, it was found that the correlation, skewness and kur-
tosis features were of little worth. Therefore, a second experiment was conducted
excluding these features from consideration.
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Bus route dissimilarity, defined as the smallest DTW with a 3NN output of the
MBR tree, was considered in the second experiment. For this reason, the traces
from OpenStreetMap were filtered if they were outside a rectangle of specified lati-
tudes. The parameters for this were latitude between 61.25 and 62.25, and longitude
between 23.2 and25.2. These values were the approximate bounds of Tampere bus
routes.

5.3.2 Dimensionality reduction

[41] used auto-encoders to reduce the dimensionality of a feature vector. In this the-
sis, however, the aim is to reduce the amount of features that need to be calculated.

Two methods of feature selection were based on two-sample statistical tests. For
these, the data was first split to three pairs of classes. Because walking has been
found to be easy to classify, the first sub-classification was Walking/Wheeled. Since
bicycles were the only muscle-powered mode left Bicycle/Motorized was second,
leaving the Car/Bus distinction last. Two statistical tests were then run for all
features on each pair of classes.

The first test was Welch’s t-test. Because of the large degrees of freedom produced,
a comparison of p-values proved impractical. Therefore, the features were ranked
on based on their t-values, a larger t-value being more significant.

Because some of the features, such as variances, were not normally distributed,
Mann-Whitney U test for large samples was used as the second test.

In the Mann-Whitney U test, each feature was ranked by value, and the output was
the smaller of R − n(n+1)

2
, n being the class size and R being the sum of ranks. A

lower output was considered more significant.

A third test, the F-test, could be used to test multiple groups of features at once.
The F-test ranks features by the ratio of between-groups variability to within-group
variability. A larger F-statistic was therefore more significant.

A number of features for each pair of classes were selected with the procedure in
algorithm 5.1.

Since experimentation proved that auto- and cross-correlations were weak distin-
guishing features (as shown in figure 7.2), the amount of good features returned by
each statistical test were estimated by the number of features more significant than
the first correlation feature. These amounts are in table 5.2. For the t- and U-tests,
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1. Select the next most significant feature not already considered. Call this fea-
ture f0.

2. Select all other features for which correlation with f0, |Ccorr|> Ct.

3. Choose f0 as an accepted feature.

4. Mark the other selected features as already considered.

5. Iterate until all features are considered or desired number of features are se-
lected.

Algorithm 5.1 The algorithm for selecting features

Ct t-test U-test F-test
0.1 1 1 1
0.2 1 1 1
0.3 1 1 1
0.4 2 1 2
0.5 2 2 2
0.6 3 2 3
0.7 3 2 4
0.8 4 4 5
0.9 6 6 8
1.0 6 6 17

Table 5.2 Number of good features for each correlation threshold

the smallest value for any split (typically the car/bus split) was used.

Correlation threshold of 0.7 was selected, which corresponded to three features per
split. The selections from the U- and t-tests were combined. Because this increased
the amount of features used, for the F-test, seven indices were selected by that with
the correlation threshold 0.9.

5.4 MBR-tree

The method used by Vlachos et al.[40], the storing of a fixed amount of minimum
bounding rectangles’ coordinates in an R-tree, proved impractical for the purposes
of indexing bus routes to measure bus route similarity. If a query trace started
in the middle of a scheduled trace, the sequence of bounding boxes translated to
a high-dimensional vector a considerable distance away from the scheduled trace’s
sequence. However, the fact that the method is based on sequences of bounding
rectangles suggests a modification to the R-tree.
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The MBR-tree is a generalization of the R-tree to use multiple bounding rectangles.
For this thesis, a simple generalization of the R*-tree was created by summing costs
over a collection of bounding rectangles.

5.4.1 Insertion

Upon insertion, the trace’s minimum bounding rectangles are found, and this col-
lection of bounding rectangles is then used as basis for all calculations of insert cost.
The insertion cost is defined as the expansion of total bounding rectangle volume
required to fit the inserted bounding rectangles, unless the nodes being considered
for insertion are leaf nodes. In the case of leaf nodes, the additional overlap with
sister nodes is used as the insertion cost, instead.

If the insertion cost ends up being more than a fraction p of the total volume of the
node’s sequence of bounds, an entirely new node is created with bounds equal to
the inserted child node.

If the insertion brings the node’s child count over a set number, the node is split.

5.4.2 Split

There are two kinds of split used by the MBR tree: forced reinsertion and regular
split. In the first instance of split being invoked for a given level during a "top-level"
insertion, a forced reinsertion takes place.

Forced reinsert

In a forced reinsert, the node’s children are sorted according to their bounds’ average
center point’s distance from the node’s average center point. Then, a fraction q of
the outermost nodes are removed from the tree, in ascending order of distance, and
inserted back into the tree. The purpose of this procedure is to optimize the tree
and offset any non-optimalities introduced by the order of insertion.

If a node split occurs during forced reinsertion, if it is not on a level already under-
going forced reinsertion, another forced reinsertion takes place. Otherwise a regular
split is carried out to prevent infinite recursions.



5.4. MBR-tree 32

Regular split

In a regular split, the dimension in which the total of all children’s bounding boxes’
widths is smallest is found, and the children are sorted according to their bounding
boxes’ extreme in that dimension. The children are then split into two at the index
where the inter-group overlap is smallest. Two nodes are then filled with the two
groups of children, and are inserted under the split node’s parent. The split node is
then removed from the parent.

If the split node is the root node of the tree, a new root node is created and the two
new nodes inserted under it.

5.4.3 Querying

Two sorts of queries are used in this thesis. For purposes of bus route similarity
measurement, a kNN query was carried out. The similarity measurement used is
LCSS, with ties broken by DTW. A contains-query was used during the construction
of the index to avoid inserting duplicate traces.

For the kNN query, a lower bound for the LCSS is established by counting the
amount of points in the query trace that are contained by each node’s bounding
boxes. Nodes containing at least two thirds of the query’s points are considered for
return. The traces contained in the leaf nodes are also filtered according to their
bounding boxes, and the remainder are sorted according to their LCSS and DTW
with the query. During experimentation, filtering by the actual LCSS proved too
strict to return any results.

The contains-query was implemented in a similar fashion, except that the bounds
were required to contain all the query’s points, and instead of sorting, the candidate
traces were tested for equality.

5.4.4 Finding minimum bounding rectangles

Two methods were considered for generating a sequence of bounding rectangles: a
method to find the genuine minimum bounding rectangles, and splitting the trace
into five-minute segments.

The method for genuine bounding rectangles was lined out in [40]. The trace is
first split into two-sample overlapping boxes, and then the two boxes that can be
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combined with the least increase in total volume are combined, repeating until the
amount of boxes is the desired amount. For this thesis, the desired amount was set
at the square root of the trace’s length in samples.

The bounding rectangles were in four dimensions: latitude, longitude, time of day
and day of week. Since Tampere bus schedules apply to either single days or con-
tinuous stretches of days, it was trivial to generate the "day of week" dimension of
the bounding rectangle. If the bus routes had run on non-continuous days, it would
have been necessary to create duplicates of the route for each block of days.

5.5 Compass directional decomposition

The decomposition discussed here makes use of a method of approximating deviation
from a straight line. The approximation is calculated by dividing the area inside
the polygon defined by track points by the direct distance between the start and
end of the track. This was done to further reduce the effect of road curvature on
the perceived direction of movement. A threshold of 50 meters was used

Li et al. introduced the idea of comparing trajectories by representing each trajec-
tory as a series of compass directions[25]. In this paper, this method is expanded by
including the length and duration of the path segment in question to the comparison.

The scheduled trace is decomposed into a list of segments consisting of a principal
wind, distance and duration. The distance metric f(r, s) is defined as a weighted sum
of the difference in durations, difference in distances and the amount of compass-
point intervals between the directions. A gap segment is defined as having zero
distance and duration, and zero difference in direction to any other.

The decomposition is carried out by algorithm 5.2.

5.5.1 Parameters of flexible measures

The following weights were used for the flexible distance measurements are presented
in table 5.3. If multiple measures used a parameter with the same name, the same
value was also used.

5.6 Incentive management

One challenge in incentive management is the delivery of an electronic coupon with
a pair of cryptographically large numbers representing a point in a cryptographic
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1: segmentStart:=first point of trace
2: previousPoint:=segmentStart
3: currentDir:=none
4: for all trackpoint in trace do
5: calculate deviation between trackpoint and segmentStart
6: if direction from previousPoint to trackpoint 6= currentDir and deviation ≥

threshold then
7: Add segment with direction currentDir and distance and duration between

segmentStart and previousPoint to decomposition
8: segmentStart:=previousPoint
9: currentDir:=direction from previousPoint to trackpoint

10: end if
11: previousPoint:=trackPoint
12: end for
13: Add segment with direction, distance and duration between segmentStart and

previousPoint to decomposition

Algorithm 5.2 Algorithm for the compass-directional decomposition.

Parameter Value Explanation
Distance weight 1/km Base weight

Time weight 0.0139/s Corresponds to ve-
locity of 50 km/h

Compass point weight sin(π
4
) Distance between

two lines 1 compass
point apart at the
1 km mark

Distance stretch 50m Allow for location
queries happening
when the bus is be-
tween stops.

Time stretch 5 min Allow some de-
viation from bus
schedule.

Table 5.3 The parameters used for the metrics

elliptic curve. For example, the signature of Enzmann et al. was calculated for a
mockup payload, and was encoded to the QR code in figure 5.1.

It appears that a single elliptic curve point is close to the maximum for a QR code
that can be shown on a smartphone screen.

While there are Java libraries for pairing-based cryptograpy, such as JPBC[15], for
this thesis tools for elliptic-curve arithmetic were implemented as a learning exercise.
Elaborating these tools to a coupon system will be left to future work.
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Figure 5.1 A QR code encoding a mockup payload and an Elliptic-curve based signature

The decision whether or not to award green points will be based on a slightly modi-
fied DTW between the stated and observed trace, segmented by mode. The distance
between and observed and stated segment will be the a weighted sum of the DTW
between the corresponding GPS traces and the complement of the likelihood given
to the stated segment’s mode by classifying the observed trace.
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6. RESULTS

6.1 Selected features

As mentioned in 5.3, two experiments were run on the same data. The main dif-
ference between the two experiments was that the confounding effect of buses was
eliminated by introducing a bus route similarity metric.

Because non-bus traces did not match a single bus route, they were assigned a
random DTW evenly distributed in the range [58, 65] to prevent divisions-by-zero
in the statistical tests. The range was selected because the maximum DTW of the
bus traces was approximately 61.

6.1.1 Initial experiment

Ranking by the t-test produced the features, eight in total, in table 6.1. Ranking
by the U-test produced the features, six in total, listed in table 6.2. Ranking by
the F-test produced the features listed in table 6.3.

6.1.2 Second experiment

The second feature selection yielded results similar to the first, except for the absence
of the eliminated features, and the prominent presence of bus route dissimilarity.
The correlations between all features are in appendix 8.1. The F-statistics for each
feature are in appendix 8.1

All the feature selections were affected by to the eliminated variables, and the promi-
nent presence of the bus route dissimilarity. The outputs are in tables 6.4 and 6.5,
respectively. The F-test results are in table 6.6.
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# Walk/Wheeled Bicycle/Motorized Car/Bus
1 Speed. spectrum 1− 2mHz (119) Speed spectrum 4− 8mHz (88.4) Average speed (50.9)
2 Accel. spectrum 2− 4mHz (85.7) Speed spectrum 2− 4mHz (57.3) Speed skewness (16.0)
3 Minimum acceleration (56.1) Minimum acceleration (37.2) Speed variance (14.3)

Table 6.1 Features selected with Welch’s t-test, t-values in parentheses

# Walk/wheeled Bicycle/Motorized Car/Bus
1 Average acceleration (247) Average acceleration (156) Average speed (112)
2 Average speed (272) Speed spectrum 2− 4mHz (837) Speed skewness (515)
3 Minimum acceleration (937) Minimum acceleration (1323) Speed variance (550)

Table 6.2 Features selected with U-test, u-values/1000 in parentheses

# Feature
1 Speed. spectrum 1− 2mHz (8069)
2 Speed. spectrum 4− 8mHz (7336)
3 Acceleration Spectrum 0− 1mHz (7075)
4 Average acceleration (6944)
5 Speed spectrum 2− 4mHz
6 Minimum acceleration (1265)
7 Speed skewness (1187)

Table 6.3 Features selected with F-test, f-statistic in parentheses

# Walk/Wheeled Bicycle/Motorized Car/Bus
1 Speed. spectrum 4− 8mHz (24.0) Speed spectrum 1− 2mHz (13.8) Bus route dissimilarity (46.1)
2 Bus route dissimilarity (15.2) Average acceleration (13.5) Speed spectrum 2− 4mHz (11.6)
3 Median speed (13.7) Speed spectrum 4− 8mHz (7.34) Minimum acceleration (4.41)

Table 6.4 Features selected with Welch’s t-test (2nd experiment), t-values in parentheses

# Walk/wheeled Bicycle/Motorized Car/Bus
1 Speed spectrum 1− 2mHz (194) Median speed (362) Bus route dissimilarity (0)
2 Acceleration spectrum 0− 1mHz (309) Average acceleration(370) Speed spectrum 2− 4mHz (153)
3 Median acceleration (384) Speed spectrum 4− 8mHz (1236) Minimum acceleration (829)

Table 6.5 Features selected with U-test (2nd experiment), u-values in parentheses

# Feature
1 Speed spectrum 1− 2mHz (382)
2 Acceleration spectrum 1− 2mHz (207)
3 Speed spectrum 4− 8mHz (181)
4 Speed spectrum 0− 1mHz (159)
5 Bus route dissimilarity (145)
6 Average acceleration (118)
7 Acceleration variance (68.1)

Table 6.6 Features selected with F-test (2nd experiment), f-statistic in parentheses
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6.2 Travel mode detection

6.2.1 Initial experiment

As explained in section 3.2, 70 traces from each class were set aside as a validation
set. The rest of the data was used to train each classifier with 5-fold cross-validation.

The average F1 scores, weighed with the inverse of class size, over the four classes
are in table 6.7. Only one value is shown for the autoencoder because the feature
selection step was bypassed for that method.

Ranking criterion BC NN1 NN2 RF AE
Welch’s t 0.865 0.856 0.862 0.850

0.651U-test 0.856 0.849 0.845 0.846
F-test 0.841 0.859 0.848 0.813

Table 6.7 Average F1 scores, for each classifier and feature selection method

Ranking the results by t-test produced the classifier with the highest F1 score for
each case except single-layer neural network. An additional layer in the neural
network provided a small benefit for one test and a marginally worse result for the
other two.

The confusion matrices of the best-performing instance of each classifier will be
presented next. Table 6.8 presents the confusion matrix and recall rates for a Bayes
classifier.

Correct label Classified as
Walk Bicycle Bus Car

Walk 97.7% 2.31% 0.0% 0.0%
Bicycle 1.06% 92.4% 6.21% 0.367%
Bus 0.0% 17.3% 77.3% 5.32%
Car 0.0% 1.37% 23.1% 75.5%
Precision 98.8% 87.6% 73.7% 90.5%

Table 6.8 Confusion matrix of the Bayes classifier

The way buses confound this classifier is obvious from the 73.7% precision and 77.3%

accuracy. A Similar confounding can be seen in tables 6.9, 6.10, which present the
confusion matrices of the one- and two layer neural networks. As can be seen, the
difference between one and two layers is a few percent points one way or the other in
accuracy for each class, although there was a 5.6% increase in precision for bicycles
and 6.9% for cars.
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Correct label Classified as
Walk Bicycle Bus Car

Walk 100% 0.0% 0.0% 0.0%
Bicycle 2.90% 89.9% 5.80% 1.45%
Bus 0.0% 14.3% 70.0% 15.7%
Car 0.0% 0.0% 15.7% 84.3%
Precision 97.2% 86.1% 76.6% 83.1%

Table 6.9 Confusion matrix of the neural network (1 hidden layer)

Correct label Classified as
Walk Bicycle Bus Car

Walk 97.1% 2.86% 0.0% 0.0%
Bicycle 2.9% 87.0% 10.1% 0.00%
Bus 0.0% 14.3% 71.4% 14.3%
Car 0.0% 1.43% 15.7% 82.9%
Precision 97.7% 91.7% 78.8% 90.0%

Table 6.10 Confusion matrix of the neural network (2 hidden layers)

Table 6.11 presents the confusion matrix for the autoencoder, which performed
all-around abysmally with an F1-score of 0.651. This is a considerably poorer per-
formance than in Zhu et al.’s 93.58% precision and 93.32% recall[41].

Correct label Classified as
Walk Bicycle Bus Car

Walk 88.6% 11.4% 0.0% 0.0%
Bicycle 31.9% 62.3% 5.8% 0.0%
Bus 4.29% 17.1% 51.4% 27.1%
Car 0.0% 0.0% 21.4% 78.6%
Precision 71.3% 68.3% 65.5% 74.3%

Table 6.11 Confusion matrix of the autoencoder neural network

Table 6.12 presents the confusion matrix for the random forest. The classifier had
particular problems within the motorized and non-motorized vehicle classes, as it
classified 31.9% of bicycles as walking and over 20% of buses as cars and vice versa.

The percentages in the confusion matrices are the ratio of the known class classified
as each class, meaning the diagonal values constitute the recall rates. The precision,
or percentage of traces classified into a mode belonging to that mode, is given below
each confusion matrix.
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Correct label Classified as
Walk Bicycle Bus Car

Walk 98.6% 1.43% 0.0% 0.0%
Bicycle 1.45% 89.9% 8.7% 0.0%
Bus 0.0% 12.9% 75.7% 11.4%
Car 0.0% 1.43% 22.9% 75.7%
Precision 98.2% 94.7% 75.1% 91.7%

Table 6.12 Confusion matrix of the random forest

6.2.2 Second experiment

As explained in section 3.2, the entire data set was used as the validation set.

Isolating buses from the other modes of transport by the bus route similarity metric
produced higher accuracy and precision in all four classes, except for the still-addled
autoencoder. The F1-scores are in table 6.13. In fact, the classification results are
fairly similar to Zhu et al.[41].

Ranking criterion BC NN1 NN2 RF AE
Welch’s t 0.978 0.974 0.980 0.953

0.599U-test 0.969 0.988 0.978 0.926
F-test 0.975 0.968 0.980 0.859

Table 6.13 Average F1 scores (2nd experiment), for each classifier and feature selection
method

The confusion matrices are presented next, as with the first experiment.

Correct label Classified as
Walk Bicycle Bus Car

Walk 98.4% 1.59% 0.0% 0.0%
Bicycle 0.0% 100% 0.0% 0.0%
Bus 0.0% 8.57% 91.4% 0.0%
Car 0.0% 0.0% 0.0% 100%
Precision 100% 90.1% 100% 100%

Table 6.14 Confusion matrix of the Bayes classifier (2nd experiment)

As can be seen from table 6.14, trimming the useless features and incorporating
bus route similarity reduced most misclassifications to or from the bus class to near
zero.

Tables 6.15 and 6.16 show the one- and two-layer neural networks’ confusion
matrices, with the two-layer network performing slightly worse. The difference is,
however, only a few percent points. Indeed, the difference in F1 scores is only 0.008.
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Correct label Classified as
Walk Bicycle Bus Car

Walk 100% 0.0% 0.0% 0.0%
Bicycle 0.0% 96.9% 3.13% 0.00%
Bus 0.0% 2.86% 97.1% 0.0%
Car 0.0% 0.00% 0.0% 100%
Precision 100% 96.9% 97.1% 100%

Table 6.15 Confusion matrix of the neural network (1 hidden layer, 2nd experiment)

Correct label Classified as
Walk Bicycle Bus Car

Walk 96.8% 3.17% 0.0% 0.0%
Bicycle 1.56% 93.8% 4.69% 0.0%
Bus 0.0% 0.0% 100% 0.0%
Car 0.0% 0.0% 0.0% 100%
Precision 98.4% 96.8% 95.9% 100%

Table 6.16 Confusion matrix of the neural network (2 hidden layers, 2nd experiment)

The bus/bicycle class division was the only cause of confusion for the one-layer
network, with 3.13% being misclassified as bicycles, and 2.28% of bicycles as buses.
The confusion shifted to the bicycle class in the two-layer network, with all three
cases of misclassification being to or from the bicycle class.

Correct label Classified as
Walk Bicycle Bus Car

Walk 95.2% 4.76% 0.0% 0.0%
Bicycle 37.5% 43.8% 10.9% 7.81%
Bus 0.0% 22.9% 25.7% 51.4%
Car 0.0% 0.0% 0.0% 100%
Precision 71.4% 59.6.5% 72.6 47.4%

Table 6.17 Confusion matrix of the autoencoder neural network (2nd experiment)

As can be seen from table 6.17, the autoencoder was even more addled than in the
first experiment.

The random forest’s confusion matrix is in table 6.18. This classifier, too, had hardly
any confusion. It would appear that bicycles and buses confounded the classifier at
approximately equal degrees. The 88.6% accuracy in particular stands out.



6.3. MBR-tree 42

Correct label Classified as
Walk Bicycle Bus Car

Walk 100% 0.0% 0.0% 0.0%
Bicycle 4.69% 92.2% 3.13% 0.0%
Bus 0.0% 11.4% 88.6% 0.0%
Car 0.0% 0.0% 2.70% 97.3%
Precision 95.5% 88.1% 95.4% 100%

Table 6.18 Confusion matrix of the random forest (2nd experiment)

6.3 MBR-tree

The performances of the indexing methods are in table 6.19. Standard deviations
are also shown. The indexes did not return a single trace for queries with certain
traces, the number of these is shown in the "missed traces" column. A one-sided
Welch’s t-test was performed to gauge the significance of the differences, the results
are in table 6.20.

Index time (ms) DTW LCSS/length AED missed traces
MBR-tree (actual MBR) 7.99± 17.4 21.4± 17.4 0.20± 0.14 1.79± 0.13 9
MBR-tree (time split) 10.7± 33.2 28.9± 68.5 0.19± 0.14 9.27± 64.8 9

M-tree 20.3± 80.2 350± 149 0.0± 0.002 345± 148 0
Linear search 29.3± 23.0 21.4± 17.4 0.20± 0.14 1.79± 0.13 9

Table 6.19 Performance of the indices

P-value
Metric MBRt-MBRm MBRm-M MBRm-L M-L

Query time 0.005 0.0 0.0 0.0
DTW � 0.001 0.0 0.5 0.0
LCSS 0.05 0.0 0.5 0.0
AED � 0.001 0.0 0.5 0.0

Table 6.20 P-values between M-tree (M), MBR-tree with time split (MBRt) and minimum
bounding(MBRm), and Linear search (L)

Some of the missed traces may have been caused by buses still reporting their loca-
tion while returning to the garage for refueling etc.. In any case, this amounted to
0.08% misses, an acceptable rate for most cases.

Examples of the 5NN outputs of the indexes are in figure 6.1 for the M-tree, and
figures 6.2 and 6.3 for the MBR-tree. The query trace is marked in red, and the
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other five traces are the 5NN query outputs in order of proximity. As could be
expected, linear search and the corresponding MBR-tree performed identically in
terms of accuracy, and its outputs are excluded.

Figure 6.1 5NN output from the M-tree

All the traces returned by a query to the M-tree seem to be of approximately the
same length as the query trace. This is shown in 6.1

Figure 6.2 5NN output from the MBR-tree (actual mbr)
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Using genuine MBRs, the tree returned one exactly matching bus route, one near
miss and two that appear to only intersect the query, as can be seen from figure
6.2.

Figure 6.3 5NN output from the MBR-tree (time split)

Figure 6.3 shows that the first trace returned is the same, but the other traces seem
to only intersect the query trace.

A visualization of the spatial dimension bounding rectangles of every trace inserted
is in figure 6.4. For comparison, the MBR tree’s first three levels’ bounds are in
figure 6.5 for the genuine minimum bounding rectangles and figure 6.6.

From figure 6.4, it can be seen that the Tampere bus routes cover an approximately
triangular area some two hundred kilometers east-to-west, and approximately a
hundred kilometers north-to-south. The closer one goes to the center of Tampere,
the more densely packed the bus routes are.

The two large bounding boxes in figure 6.5 split the region into, roughly, northern
and southern sections, with an overlap around Tampere proper. What the figure
doesn’t show is that the large northern box is duplicated over the first three levels,
which results in the apparent emptiness of the bounding box.

As can be seen from figure 6.6, there are a few very tight envelopes in each level
of the time-split tree, combined with several larger bounding boxes. A north-south
divide similar to the genuine-MBR tree is evident on the third level. Once again,
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Figure 6.4 The bounding rectangles of all scheduled traces

Figure 6.5 The first three levels of the MBR-tree (genuine MBR)

the largest bounding box has been duplicated on level 2.
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Figure 6.6 The first three levels of the MBR-tree (time split)
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7. DISCUSSION

7.1 Travel mode recognition

7.1.1 Hypothesis testing

For all three hypotheses outlined in 1.4, the F-test produced p-values lower than
floating point precision on at least one feature.

Spectral components for acceleration and speed were selected for each sub-classification.
The F-test ranked spectral features at ranks 2-7. Most of the frequency bins selected
by U- and t-tests did not contain zero, suggesting that there was more to this sig-
nificance than the average. Therefore, hypothesis 1 can be accepted.

As a further illustration of the spectral components’ suitability for the classification
task, a scatterplot of two speed spectral components is shown in figure 7.1.

Figure 7.1 Scatter plot two spectral components of speed and acceleration

Auto- and cross-correlations of speed and acceleration were selected to differentiate
between walking and wheeled modes of transport. Therefore, hypothesis 2 might be
accepted.

However, looking at the scatterplot of autocorrelations in figure 7.2 reveals that the
classes are heavily overlapped. Therefore the hypothesis can be discarded.
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Figure 7.2 Scatter plot of Speed and acceleration autocorrelations

Skewness of speed was selected as one of the best features to differentiate cars and
buses, and the seventh most discriminating feature. Therefore, hypothesis 3 might
be accepted. However, as with the correlations, the scatterplot in figure 7.3 tells a
different story. The hypothesis can also be discarded.

Figure 7.3 Scatter plot of Speed and acceleration skewnesses

Bus route similarity ended up having slightly worse than median F-statistic, possibly
because only bus- and bike traces really had any similarity to bus routes in the
training data. For the same reason, it ended up being the most significant feature
for the car/bus split.

A scatter-plot of bus-route dissimilarity is shown in figure 7.4. The band of data-
points to the right are the ones assigned a random maximum dissimilarity. Looking
at the scatter plot, it would appear that hypothesis 4 would be valid.
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Figure 7.4 Scatter plot of Speed and acceleration autocorrelations

7.1.2 Classification

Buses stood out as a confounding class in the initial experiment, as can be seen from
figure 7.1. In particular, the class had a precision of under 80% where the rest of
the classes typically had at least 83% precision.

In the initial experiment, the Bayes classifier performed best, with a slight margin
of 0.003 over the two-layer neural network. In the second experiment, the two-layer
neural network performed best with all three ranking criteria.

The autoencoder neural network performed abysmally in both experiments. One
possible cause is that the autoencoder was trained with regular backpropagation
rather than an autoencoder- or deep neural network-specific algorithm. It is also
possible that the autoencoder or classifier were not deep enough to truly leverage
the benefits.

Visualizations were made for the highest F1 score classifier of each type, by assign-
ing points at (0,±1) and (±1, 0) to the four classes counter-clockwise from (1, 0),
and assigning each datapoint a location as a sum of these points weighted by the
likelihood, normalized to between 0 and 1, given by each classifier.

As can be seen from figure 7.5, the Bayes classifier occasionally assigned high
likelihoods to two or more classes.

Figure 7.6 shows the visualization for the neural network. The classifier did not,
as a rule, output high likelihoods for more than one class, but did on occasion
output middling likelihoods for two classes. The intermingling of buses with cars
and bicycles is clearly visible.
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Figure 7.5 Visualization of the Bayes classifier

Figure 7.6 Visualization of the Neural network

Figure 7.7 shows the visualization of the random forest. The forest’s likelihoods
were discrete due to the implementation, and appear fairly widely spread.

From all three visualizations, it would appear that the classifiers would have a near-
perfect accuracy if it were not for the bus class.

7.2 Results of the MBR-tree

The genuine minimum bounding rectangles method significantly outperformed the
time-split method on all metrics. The slight increase in computational complexity
(O(nlogn) vs O(n)) is most likely worth the increased precision in most applica-
tions. In either case, the lower bound for LCSS was not very tight, and consistently
produced scheduled traces of less than the minimum LCSS. This may be due to the
scheduled traces’ granularity being dictated by the time between bus stops, whereas
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Figure 7.7 Visualization of the random forest

the testing data had an approximately 30 second granularity.

As can be seen both from the metrics, and the figures, the modified R-tree produced
more spatially similar traces than the M-tree. A most likely cause is that ERP, due
to triangle inequality, is offset by the difference in lengths of the trace. This is also
the likely cause of the M-tree returning mostly shorter scheduled traces.

The average query time was also significantly faster with the MBR-tree than either
the M-tree or a linear search. This may be in part due to differences in imple-
mentation. Another contributing factor is that ERP’s computational complexity is
quadratic in the worst case, whereas the bounding rectangle method used to upper-
bound LCSS was linear.

All query times varied greatly. One explaining factor is that a large number of bus
routes pass through certain nexuses, such as Keskustori in the center of Tampere.
Therefore, a trace passing through one of these nexuses would resemble a large
amount of scheduled traces, whereas a trace of an out-of-the-way bus route might
only resemble it’s own schedule.

7.3 Travel survey

The travel survey produced no car traces, a total of four bus traces, 64 bicycle traces
and 12 walking traces, after splitting by time but before filtering outliers. Compared
to the 441 walking-, 55 bicycle-, and 40 car traces from the Openstreetmap data,
only bicycle traces were numerous enough to make a difference in the data.
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8. CONCLUSION

This thesis has presented a means of classifying sparse GPS data into four modes of
transport.

For this purpose, algorithm 5.1 was presented for selecting features. Spectral compo-
nents were found to be among the most significant features to be considered. Auto-
and cross correlations, skewnesses and kurtoses of speed and acceleration were found
to be of little value for this classification task.

In order to account for bus-route similarity, an index structure for spatio-temporal
traces was introduced in section 5.4, and shown to be more efficient than linear
search. ERP on sequences of triples of compass-point, duration and distance, con-
structed by algorithm 5.2, was found to be unsuitable for comparing route fragments.
The MBR-tree performed significantly faster, both in the statistical and absolute
sense, than a linear search, but the query times had considerable variance.

A proof-of-concept comparison of machine-leaning approaches to travel mode recog-
nition with and without a bus route similarity measure, based on the MBR-tree,
was provided in chapter 6, and the bus route similarity was shown to improve the
results.

Methods of obfuscating the user’s location were discussed, and only reversible per-
turbation was compatible with the travel mode recognition described above.

Tools for elliptic curve cryptography were implemented, up to providing a mockup
of an electronic coupon system. If electronic coupons are to be delivered as QR
codes on a phone screen, a single elliptic curve point is fairly close to the limit of
what can be delivered as a signature.

8.1 Future work

A wider travel survey is needed to gather proper training data. Possible causes of
poor attendance were the lack of incentives for participation, and the poor usability
of the travel survey application.
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The MBR-tree had an issue where the parent tree’s bounds were copied exactly by
the child tree. There was also some imbalance to the size of the bounds of nodes
in a given level. Both of these should be addressed to develop the MBR-tree as an
indexing algorithm.

The possibility of using non-reversible location obfuscation while still inferring the
user’s mode of transport was not studied. Literature on the subject of travel mode
recognition does not appear to consider intentionally obfuscated data. Therefore,
combining location obfuscation and travel mode recognition is a possible avenue of
future research.

This thesis did not touch on the subject of identifying location spoofing. If the
incentives are to be worth money, this consideration must be made. For instance,
the system of Pham et al. [34] could be either used as-is or modified for the needs
of Tampere Smart Mobility Engine. As mentioned in section 5.6, implementing the
incentive management has also been left for future work.
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F-STATISTICS IN ORDER OF SIGNIFICANCE

# Feature f-statistic
1 Speed spectrum 1− 2mHz 382
2 Average speed 308
3 Median speed 286
4 Speed spectrum 2− 4mHz 265
5 Acceleration spectrum 1− 2mHz 207
6 Speed spectrum 4− 8mHz 181
7 Acceleration spectrum 0− 1mHz 180
8 Acceleration spectrum 2− 4mHz 175
9 Acceleration spectrum 4− 8mHz 169
10 Speed spectrum 0mHz − 1mHz 159
11 Bus route dissimilarity 145
12 Average Acceleration 118
13 Speed variance 114
14 Median Acceleration 88.7
15 Maximum Acceleration 84.3
16 Acceleration variance 68.1
17 Minimum Acceleration 50.6
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