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By increased and widespread usage of wearable monitoring devices a huge volume
of data is generated which requires various automated methods for analyzing and
processing them and also extracting useful information from them. Since it is almost
impossible for physicians and nurses to monitor physical activities of their patients
for a long time, there is a need for automated data analysis techniques that abstract
the information and highlight the significant events for clinicians and healthcare
experts.

The main objective of this thesis work was towards an automatic digital signal pro-
cessing approach from physiological signal classification to processing and analyzing
the two most vital physiological signals in long-term healthcare monitoring (ECG
and IP). At the first stage, an automated generic physiological signal classifier for
detecting an unknown recorded signal was introduced and then different algorithms
for processing and analyzing the ECG and IP signals were developed and evaluated.
This master thesis was a part of DISSE project which its aim was to design a new
health-care system with the aim of providing medical expertise more accessible, af-
fordable, and convenient. In this work, different publicly available databases such
as MIT-BIH arrhythmia and CEBS were used in the development and evaluation
phases.

The proposed novel generic physiological signal classifier has the ability to distin-
guish five types of physiological signals (ECG, Resp, SCG, EMG and PPG) from
each other with 100 % accuracy. Although the proposed classifier was not very suc-
cessful in distinguishing lead I and II of ECG signal from each other (error of 27%
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was reported) which means that the general purpose features were enough discrim-
inating to recognize different physiological signals from each other but not enough
for classifying different ECG leads.

For ECG processing and analysis section, three QRS detection methods were im-
plemented which modified Pan-Tompkins gave the best performance with 97% sen-
sitivity and 96, 45% precision. The morphological based ectopic detection method
resulted in sensitivity of 85, 74% and specificity of 84, 34%. Furthermore, for the
first PVC detection algorithm (sum of trough) the optimal threshold and range
were studied according to the AUC of ROC plot which the highest sensitivity and
specificity were obtained with threshold of �5 and range of 11 : 25 that were equal
to 87% and 82%, respectively. For the second PVC detection method (R-peak with
minimum) the best performance was achieved with threshold of �0.7 that resulted
in sensitivity of 68% and specificity of 72%. In the IP analysis section, an ACF
approach was implemented for respiratory rate estimation. The estimated respira-
tion rate obtained from IP signal and oronasal mask were compared and the total
MAE and RMSE errors were computed that were equal to 0.40 cpm and 1.20 cpm,
respectively. The implemented signal processing techniques and algorithms can be
tested and improved with measured data from wearable devices for ambulatory ap-
plications.



iii

PREFACE

This thesis work has been written for Department of Electronics and Communi-
cations Engineering at Tampere University of Technology and that was supported
by the Finnish Funding Agency for Technology and Innovation (TEKES) as a part
of Disappearing Sensors (DISSE) project (decision ID 570/31/2015) which was co-
operated with GE Healthcare, Clothing+, and Elisa. The main objective of this
master thesis was to develop and utilize different signal processing algorithms for
processing and analyzing the two most vital physiological signals in healthcare mon-
itoring applications: electrocardiography (ECG) and electrical impedance pneumog-
raphy (IP).

I wish to express my gratitude to my supervisor Prof. Jari Viik for giving me this
opportunity to be a part of this very interesting project and all his guidance and
patience during the time it took to finalize this master of science thesis. I would
like also thank all the member of DISSE project for providing an inspiring and
communicative working environment.

I would like to thank Vala Jeyhani for his support during this work. Finally, I am
grateful to my family and friends who have been there for me whenever their support
and help was needed during this year.

Tampere, 01.09.2016

Shadi Mahdiani



iv

TABLE OF CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Wearable Technologies in Healthcare Monitoring . . . . . . . . . . . . 5

2.2 Advanced Intelligent Systems in Healthcare Applications . . . . . . . 7

2.3 Physiology of Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Characteristics of ECG . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 ECG Measurement System . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Arrhythmia, Ectopic Beats . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Review of ECG Analysis Methods . . . . . . . . . . . . . . . . . . . . 16

2.7.1 QRS Detection Methods . . . . . . . . . . . . . . . . . . . . . . . 16

2.7.2 PVC Detection Methods . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.3 Heart Rate and Heart Rate Variability Analysis . . . . . . . . . . 20

2.8 Respiratory Rate Monitoring . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.1 Impedance Pneumography Measurement System . . . . . . . . . 21

2.8.2 Respiratory Rate Estimation Techniques . . . . . . . . . . . . . . 23

2.9 Other Physiological Signals . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9.1 Seismocardiography . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9.2 Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9.3 Photoplethysmography . . . . . . . . . . . . . . . . . . . . . . . 24

3. Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Novel Generic Physiological Signals Classifier . . . . . . . . . . . . . . 27

3.1.1 Signal Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Feature Extraction/Selection . . . . . . . . . . . . . . . . . . . . 33

3.1.4 Classification Method: Neural Networks (NN) . . . . . . . . . . . 35



v

3.2 ECG Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 ECG Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Pre-processing Methods . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 R-peak Detection Techniques . . . . . . . . . . . . . . . . . . . . 40

3.2.4 Ectopic Beats Detection . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.5 Ectopic Beats Reduction . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.6 Heart Rate Calculation . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.7 Heart Rate Variability Parameters . . . . . . . . . . . . . . . . . 43

3.2.8 PVC Detection Algorithms . . . . . . . . . . . . . . . . . . . . . 44

3.2.9 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 IP Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 IP Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Respiration Rate Estimation Methods . . . . . . . . . . . . . . . 51

4. Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Novel Generic Physiological Signals Classifier . . . . . . . . . . . . . . 53

4.2 ECG Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 IP Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5. Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



vi

LIST OF FIGURES

1.1 Wireless and wearable gadgets entry’s into different sections of our
lives such as fun and entertainment, healthcare, business and sports
that influences our lifestyles in many ways and improves the quality
of our lives [image purchased from Dreamstime.com] . . . . . . . . . . 2

1.2 Architechture of DISSE project, that includes active measurements
circuit (electrodes are integrated to clothes) , wireless communica-
tion (Bluetooth, mobile device and WiFi), data storage and analysis
(performed on an IoT cloud platform) and graphical user interfaces
(designed in two version of patients and medical experts) sections . . 3

2.1 An example of using wearable technologies such as smart watches
and smart clothes during our daily activities; that provide useful
information about our health and physical condition such as heart
rate changes, speed of running/walking, heart activity during run-
ning/walking, number of steps during a day, burned calories and so
on [image purchased from Dreamstime.com]. . . . . . . . . . . . . . . 6

2.2 Detailes structure of the heart, [image purchased from Dreamstime.com] 8

2.3 Normal features of an ECG signals [1] . . . . . . . . . . . . . . . . . . 9

2.4 Standard 12-lead ECG placement [2] . . . . . . . . . . . . . . . . . . 11

2.5 An example of wearable ECG monitoring system, integration of Cloth-
ing+ textile-integrated electronics (disappeared into fabrics for opti-
mum comfort, durability and convenience) and Suunto wireless trans-
mitter that transfers the recorded data to a smartphone app . . . . . 12

2.6 Premature atrial contractions beats are marked with triangles below
them. [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



LIST OF FIGURES vii

2.7 Two typical types of premature ventricular contractions beats are
shown. In top plot, the one abnormal beat corresponds to one type
of PVC beats and, in below plot, the other typical type of PVC beats
are marked with triangles below them. [3] . . . . . . . . . . . . . . . 15

2.8 Modulated, demodulated and filtered version of demodulated IP signal 22

2.9 These three physiological signals are used in the proposed classifier
in addition to ECG and IP signal. A short example of these signals
are plotted, from top to bottom SCG (ECG is shown in gray color
for showing the periodicity of SCG), EMG and PPG.) . . . . . . . . . 25

3.1 An automated approach: from physiological signal classification to
processing and analyzing ECG and IP signals, that is implemented
in this master thesis. The classifier block is presented in 3.1 section,
after the classifier section the left path corresponds to ECG processing
and analyzing methods that presented in 3.2, and the right path,
shows corresponding analysis methods for IP signal which described
in 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 An automated generic and robust architecture for physiological sig-
nals classification including three main steps: (1) Preprocessing, (2)
Feature extraction and (3) Classification. . . . . . . . . . . . . . . . . 30

3.3 PVC detection Algorithm: Sum of Trough, that is based on summa-
tion of n samples after R-peak (light green stars). Whenever this sum
value is smaller than a threshold (e.g. dashed pink line), the algo-
rithm determines the beat as a PVC otherwise marks it as a normal
beat. The left y-axis corresponds to amplitude of ECG and the right
y-axis corresponds to the threshold values. . . . . . . . . . . . . . . . 46

3.4 PVC detection method: R-peak with minimum, if the diff value com-
puted from the formula is smaller than a threshold, the algorithm
detects the corresponding beat as a PVC. The left y-axis corresponds
to amplitude of ECG and the right y-axis corresponds to the threshold
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



LIST OF FIGURES viii

3.5 Confusion matrix for evaluating QRS detection algorithms, TP: true
positive, FP: false positive and FN: False negative . . . . . . . . . . . 48

3.6 Confusion matrix for evaluating ectopic detection method, TP: true
positive, FP: false positive, FN: False negative, TN: true negative . . 49

3.7 Filtering and respiratory rate estimation by AFC. The top panel
shows the original IP signal, the middle one shows the filtered IP
signal and the panel in the bottom shows the ACF that its first peak
after the mid-point is chosen as the respiratory rate. . . . . . . . . . . 52

4.1 Performance plot of NN for training, validation and testing sets. . . . 53

4.2 Confusion matrix of the network outputs. The rows show the pre-
dicted classes and the columns show the true classes. The column
on the right and the row at the bottom show the accuracy for each
predicted class and each true class, respectively and the cell in the
bottom right, presents the overall accuracy which is equal to 92.7%. . 54

4.3 Effect of filtering on a noisy ECG Signal. Top left shows a noisy ECG
and top right shows its zoomed version. Bottom rows show the top
row record after preprocessing in an original and zoomed version. . . 56

4.4 Detected R-points by Pan-Tompkins, modified Pan-Tompkins and
Area-based methods are marked with black circle, red star and cyan
diamond, respectively for subject 114. . . . . . . . . . . . . . . . . . . 57

4.5 Ectopic beat detection based on RR interval duration and R-peak
amplitude for subject 119. Two ectopic beats are highlighted with
a gray ellipse around them, it can be seen that the previous RRI is
shorter and the next one is longer when ectopic beat happens. In
addition, the R-peaks amplitudes are larger in the ectopic beats. . . . 58

4.6 The effect of ectopic reduction on RR intervals from record 110 of
MIT-BIH Arrhythmia database. Top: RRI before ectopic beats cor-
rection, bottom: RRI after ectopic beats correction . . . . . . . . . . 59

4.7 Heart rate changes during a day for record 102 . . . . . . . . . . . . . 61



ix

4.8 Evaluation of sum of the trough, three ROC curves for three ranges
of n (number of samples after R-peaks) are plotted. For each ROC
curve the threshold values were varied from -100 to 100 with a step
of 0.01. The AUC for each curve was also computed and it is written
on the figure with the same color as its corresponding ROC curve. . . 62

4.9 Evaluation of R-peak with minimum: ROC curve is plotted for the
threshold values that were varied from -10 to 10 with a step of 0.01.
The AUC for this curve is equal to 0.75. . . . . . . . . . . . . . . . . 63

4.10 Three magnified slices of IP signal measured in three phases standing,
walking with 3 km/h, and walking with 6 km/h, from left to right,
respectively. The most bottom panel shows the respiration rate esti-
mated from the signal and a 9-th order polynomial fitted to it. . . . . 64

4.11 Comparing the IP and temperature mask signals measured from sub-
ject 2. The bottom panel shows the respiration rate estimated from
these two signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.12 A comparison between the respiration rate estimated from all the
frames of the data (from the IP and temperature signals) that are
totally 870 frames. The pink circles show the points in which the
error is larger than 3 cpm. . . . . . . . . . . . . . . . . . . . . . . . . 66



x

LIST OF TABLES

2.1 Common ECG Signatures for clinical use [4] . . . . . . . . . . . . . . 10

2.2 Performance of the mentioned QRS detection algorithms on MIT-BIH
arrhythmia database [5], provided by their authors . . . . . . . . . . 18

4.1 The average of percent errors for testing set with different levels of
white Gaussian noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Results of three R-peak detection method on MIT-BIH Arrhythmia
database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Confusion matrix of morphological ectopic detection method on MIT-
BIH Arrhythmia database. Actual classes correspond to real types of
ECG beats based on their annotation file which here Positive classes
are referred to ectopic/premature beats and Negative classed are cor-
responded to normal/other beats of ECG signal. The same principle
is considered for predicted classes which are the results of our ectopic
detection method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 HRV parameters obtained from a 5-min long ECG frame of record 102 61

4.5 MAE and RMSE errors between the respiration rate estimated from
the IP and the reference temperature signals for all the 15 subjects
(10 males and 5 females). The last row shows the total error for all
the subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



xi

LIST OF ABBREVIATIONS AND SYMBOLS

4G Fourth Generation
ACF Autocorrelation function
ADC analog to digital converter
ANS autonomic nervous system
AR Autoregressive
AUC area under the curves
AV node Atrioventricular node
bpm beat per minute
CEBS Combined measurement of ECG, breathing and seismocardiogram
CMRR common mode rejection ratio
cpm cycle per minute
DISSE Dissapearing Sensors
DSP digital signal processing
E

s

Energy
ECG electrocardiography
FFT Fast Fourier Transform
FIR finite impulse response
FN false negative
FP false positive
HR Heart Rate
HRV Heart rate variability
IoT Internet of Things
IP impedance pneumography
LED light-emitting diode
M-Health mobile health
MA Moving Average
MAE mean absolute error
MDF Median Frequency
MNF Mean Frequency
NB normal beat
NN Neural Networks
PAC premature atrial contractions
PE percent error



xii

PFB Population Reference Bureau
PPG photoplethysmography
PVC premature ventricular contractions
Resp respiratory signal
RMSE root mean square error
ROC receiver operating characteristic
RRI RR interval
SA node Sinoatrial Node
SEN Spectral Entropy
ShEN Shannon Entropy
SNR signal to noise ratio
TN true negative
TP true positive
TUT Tampere University of Technology
WBSN wireless body sensor network
WCT Wilson central terminal
WGN white Gaussian noise
WHMS wearable health-monitoring systems
ZCR Zero Crossing Rate



1

1. INTRODUCTION

Wireless sensor technologies with various applications in different fields of science
and industry such as healthcare, transportation, travel, emergency systems etc. have
potential to change our lifestyle in a way to overcome our everyday challenges. In
recent years one of the main issues in developed countries is increasing population
of elderly. Based on Population Reference Bureau (PFB) by 2050 people aged 65
or older will become twenty percent of total population [6]. Therefore, number
of patients suffering from age related disease such as cardiovascular complications,
Alzheimer, atherosclerosis, type 2 diabetes and hypertension will be increasing more
and more [7]. Hence there is a need for providing healthcare systems and services for
this rapidly growing population. Tele-monitoring systems by using wearable sensors
are able to answer this need by monitoring people during their daily activities in-
home and out of hospitals. With this solution, continuous non-invasive or invasive
health monitoring cares and services can be provided with the minimum interaction
between caregivers and patients.

Wearable physiological monitoring technology has quickly become a mainstream
in long-term monitoring applications. During recent years, number of the wearable
devices that monitor the health status of their users has been magnificently increased
and we have witnessed a large popularity among both young and old generations.
In addition, in professional sports, many athletes and teams are using smart clothes
and equipment with embedded sensors that track and record their both physical and
physiological data such as heart rate, speed, workload, distance and etc. [8]. Figure
1.1 illustrates an example of different wireless and wearable devices in different
sections of our lives and their potentials to revolutionize prevention of disease, health
monitoring and treatment process, self-health awareness, entertainment and business
tools.

There are thousands of healthcare wearable devices and gadets that could help
people to live healthier and better. Smart watches, wristband activity trackers,
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Figure 1.1 Wireless and wearable gadgets entry’s into different sections of our lives such
as fun and entertainment, healthcare, business and sports that influences our lifestyles in
many ways and improves the quality of our lives [image purchased from Dreamstime.com]

smart glasses, wearable cameras, smart clothes and motion sensing shoes are just a
few examples of these technologies. According to the latest analyst report in 2014,
Goode Intelligence has forecasted that there will be more that 5.5 billion users of
mobile and wearable biometric technology around the globe by 2019.

By increased widespread usage of healthcare wearable monitoring devices a huge
volume of data is created everyday. Clearly, it is an impossible task for medical ex-
perts to analyze and check this amount of data, hence, there is a need for automated
analysis tools and techniques that can extract significant information for them. This
kind of information then can be used in diagnosis ans treatment purposes.

This master thesis is a part of Disappearing Sensors (DISSE) project which focuses
on new services and care processes that will be enabled by wearable long-term mea-
surements systems and an Internet of Things (IoT) platform. This new approach
will become available for both hospitals and home care purposes. In DISSE project,
the physiological data is captured by a measurement circuit, sent through a wireless
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Figure 1.2 Architechture of DISSE project, that includes active measurements circuit
(electrodes are integrated to clothes) , wireless communication (Bluetooth, mobile device
and WiFi), data storage and analysis (performed on an IoT cloud platform) and graphical
user interfaces (designed in two version of patients and medical experts) sections

communication channel, stored on a cloud platform in which it is also analyzed by
automatic algorithms and eventually the outcome is presented to the user through
a graphical user interface (GUI). Figure 1.2 shows whole architecture of DISSE
project from patient side to the medical experts interface.

In DISSE project, two most vital physiological signals in healthcare monitoring:
electrocardiography (ECG) and impedance pneumography (IP) that have the major
impact on health condition of people especially elderly are measured and proper
methods and algorithms for processing and analyzing them are investigated. In this
project, active electrodes are integrated to the clothes for user comfort and wash
ability need. Since then the measured data are transferred through Bluetooth to a
mobile device and then through Wi-Fi to the cloud service. At this point, various
signal processing methods are needed for processing and analyzing these long-term
measured data and extracting important parameters from them; which is the topic
of this master thesis. These parameters and biomarkers can be useful for clinicians
and healthcare experts in their diagnosis and treatment processes.
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In this regard, design and development of wearable and well-being devices has at-
tracted lots of attention in industry and scientific associations in the last decade.
Advanced and miniaturized electronics with signal acquisition technologies provide
a possibility for designing only one device with several physiological measurement
purposes. In this thesis work, we also proposed an automated generic physiological
signals classifier for detecting unknown recorded signals. Our motivation for this
classifier was toward an automatic healthcare monitoring system that the user can
easily attach the electrodes to the body and the device automatically detects the
measured signal and changes its settings to the appropriate mode for analysis and
representation parts. The generic classifier could be implemented in medical moni-
toring devices for the purpose of merging multiple wearable devices into one piece
and simplifying the usage of them for long-term purposes. In the following, differ-
ent data processing methods and analysis techniques depending on the measured
physiological signals (ECG and IP) are discussed and implemented.

In Chapter 2, the background for this thesis work is covered; by taking a look at
history of wearable technologies in healthcare application, the importance of physio-
logical signals such as ECG and IP, reviewing data processing and analysis methods
used in the literature for applications involving wearable sensing technologies. In
Chapter 3, steps of the proposed classifier are described in details and different
methods and algorithms for analysis of ECG and IP signals are discussed. At the
end, results of the generic classifier and signal processing algorithms are presented
in 4. And the last chapter 5 is dedicated to conclusion of this thesis work.



5

2. THEORETICAL BACKGROUND

2.1 Wearable Technologies in Healthcare Monitoring

In developed countries, fast growth in aging population, has accompanied an in-
crease in the demand for healthcare services that resulted in high healthcare costs
during last decade [9]. Hence, there has been a need for decreasing these costs and
providing healthcare services available at anytime and anywhere. Monitoring health
condition of this group of population at home and during their daily activities can
be resulted in lower healthcare costs, less high risk health conditions and more self-
awareness. On the other hand, the fast increase in availability, miniaturization and
enhanced data rates of mobile communication systems like Fourth Generation (4G)
of digital cellular networks, has had an impact on accelerating the deployment of
mobile health (M-Health) systems and services in recent years. In other words, mo-
bile communications and network technologies with the help of wearable electronics
have merged to create wearable health monitoring systems [10].

Wearable health-monitoring systems (WHMS) have attracted lots of attention in
research areas and industries during the recent years [11–13]. A big variety of
commercial products and prototypes have been produced with the goal of providing
real-time feedback to the user or to a medical center and professional physicians,
while including an alert system in the case of possible imminent health threatening
conditions.

Wearable medical systems may consist of various types of miniature sensors, wear-
able or even implantable ones. These biosensors can measure significant physiolog-
ical data from body such as electrocardiogram, heart rate, respiration rate, blood
pressure, body temperature, oxygen saturation, etc. The recorded parameters are
transferred through Bluetooth and Wi-Fi to a server for storage and analysis. Gen-
erally, healthcare wearable devices contain various components like sensors, wear-
able materials, smart textiles, actuators, power supplies, wireless communication
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Figure 2.1 An example of using wearable technologies such as smart watches and smart
clothes during our daily activities; that provide useful information about our health and
physical condition such as heart rate changes, speed of running/walking, heart activity
during running/walking, number of steps during a day, burned calories and so on [image
purchased from Dreamstime.com].

modules, control and processing units, user interface, and decision making algo-
rithms [14].

Fig. 2.1 illustrates a well-defined example of using wearable health monitoring and
well-being devices that affect our life styles and meanwhile can improve the quality
of our lives. In this picture 2.1, the user’s heart activity is being monitored by the
sensors integrated into his shirt and then the data is being transferred to his smart
watch. In addition, his motion activities are also recorded by e.g. accelerometer
sensors that can be embedded in the smart watch. Since then, all the recorded data
are being transferred to the storage server. In the cloud server, different automatic
analysis algorithms can be applied on the data and some informative figures and
trends are presented about user’s well-being condition such as heart rate changes,
speed of running/walking phases and heart rate changes during these phases, calo-
ries usage during different activities and so on. At the end, it can be concluded
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that WHMS has created a new meaning in self-health awareness and health tele
monitoring applications.

Besides well-being, sports, rehabilitation, entertainment products, wearable elec-
tronics and technologies have also expanded possibilities to improve long-term mon-
itoring applications in a totally new way. Long-term monitoring has been always a
significance way for discovering abnormities in vital signs and avoiding life threat-
ening situations. With the help of wearable electronics and technologies, long-term
monitoring can be available with low cost at anytime and anywhere.

2.2 Advanced Intelligent Systems in Healthcare Applications

In the past decade, with the fast developments and advancement in sensors and wire-
less technologies, the focus of health monitoring systems has been also updated from
mainly obtaining the data to developing intelligent systems that perform a variety of
tasks to help people with their physical and mental challenges [15]. These intelligent
systems include pattern recognition and decision making algorithms, which can be
used in disease detection and prevention, and personal health awareness tasks. Ad-
vance intelligent devices are drawing a serious attention in market since continuous
health monitoring is becoming an inseparable part of healthcare processes.

Automated intelligent systems are able to answer the needs of healthcare profes-
sionals in analyzing, categorizing, and representing long-term physiological signals.
Furthermore, due to the large increase of interest in wearable devices for long-term
measurements, data gathering, data analyzing and data mining of physiological sig-
nals are currently a big challenge in health monitoring systems [16]. Nowadays
wearable monitoring systems are used not only by elderly, athletes or patients but
also increasingly by healthy people. Multi-functional devices can have a significant
role in simplifying the usage of these monitoring devices, since users will be able to
use only one device for monitoring their physiological phenomena instead of multiple
devices one for each measurement purpose.

Fortunately, advanced electronic designs and available signal acquisition technolo-
gies (e.g. analog-front-end solutions) provide such a possibility for designing one
device with various physiological measurements applications. For designing such a
system, it is required to implement a simple generic classifier, which is able to de-
tect the measured data and then automatically changes to the detected mode for the
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further analysis and processing tasks. In this thesis work, a novel robust approach
to physiological signals classification is introduced.

2.3 Physiology of Heart

The heart is the vital organ of the circulatory system that keeps pumping blood
throughout the whole body. The heart is located in the center of the thorax, behind
the sternum. The main responsibility of the heart is circulating the blood in the
veins and enables a sufficient oxygen supply for other organs of body. Figure
2.2 illustrates the details structure of the heart. The heart consists of four separate
champers which upper chambers on each side is called atrium and their responsibility
is receiving and collecting the blood coming to the heart and then delivering the
blood to the lower chambers. The lower left and right chambers are called ventricles
that are responsible for rhythmic contractions and sending the blood away through
the circulation. The right ventricle pumps the deoxygenated blood to the lungs
through pulmonary arteries. Meanwhile, the left ventricle pumps the oxygenated
blood through aorta to the whole body. [17, 18]

Figure 2.2 Detailes structure of the heart, [image purchased from Dreamstime.com]

Each pump of the heart includes two phases: systole and diastole. Systole phase is
the time that cardiac muscle tissues in the ventricles are contracted while the atria
are relaxed and filling. Diastole phase happens when cardiac muscle tissues in the
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ventricles are relaxed and filling while atria contract. In this phase the ventricles
make room for accepting the blood from atria. [19]

A network of nerve fibers controls the contraction and relaxation of cardiac muscle
tissue for achieving the wave-like pumping action of the heart. The sinoatrial node
(SA node) acts like an impulse generator for the heart and sends every electrical
impulse of the heart. The SA node that is located in the area above of the right
atrium, spreads the electrical activity through the atria and causes the muscle tissue
contraction in a wave-like manner. After that the originated impulse from the
SA node reaches the atrioventricular node (AV node) that is located in the lower
area of the right atrium. The AV node also forwards an impulse via the nerve
to the ventricles and initiates the same wave-like contraction in the ventricles. The
electrical signal propagates from AV node through the right and left bundle branches
and constructs the contraction of cardiac tissue muscle. [17–19]

In addition to the heart chambers, veins and arteries, the cardiovascular system also
consists of the heart valves. These valves take care of direction of blood flow by
preventing the backward flow in the circulatory system.

Figure 2.3 Normal features of an ECG signals [1]
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2.4 Characteristics of ECG

Electrocardiography is a sequence of repolarization and depolarization states of atria
and ventricles which produce P, QRS and T waves, and also with occasional U
waves, that are connected with PR, ST and TP segments, respectively. The P wave
represents right and left atrial depolarization, in consequence the PR interval is the
time interval between onset of the P wave and onset of the QRS complex. The QRS
complex itself represents ventricular depolarization. The ST segment (also called
ST interval) is the time between ending point of the QRS complex and onset point
of the T wave. And at the end, the T wave represents ventricular repolarization of
the heart.

Figure 2.3 illustrates a normal clinical electrocardiography signal including the
wave amplitudes and inter-wave timings. Some typical values of common clinical
signatures of ECG signal along with their nominal range for a healthy adult are
also presented in Table 2.1. Based on changes in the clinical signatures of heart in
comparison to their nominal range, medical experts are able to assess heart diseases
and malfunctions of heart. Although various parameters such as age, sex, food
habits, gene etc. are usually taken into account for the actual clinical diagnosis.

Table 2.1 Common ECG Signatures for clinical use [4]

Clinical Signature Typical Values Nominal limits

P width 110 ms ± 20 ms
T width 180 ms ± 40 ms
PR interval 120 ms ± 20 ms
QRS width 100 ms ± 20 ms
QT

c

interval 400 ms ± 40 ms
P Amplitude 0.15 mV ± 0.05 mV
T Amplitude 0.3 mV ± 0.2 mV
QRS Amplitude 1.2 mV ± 0.5 mV

2.5 ECG Measurement System

The electrical activity of the heart can be recorded from electrodes on the body
surface. The standard 12-lead electrocardiogram is a standard representation of the
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(a) Electrode placement (b) Leads in three dimensions

Figure 2.4 Standard 12-lead ECG placement [2]

heart’s electrical activity which gives 12 different views of the heart. These views
are recorded by placing three electrodes on the limbs (two arms and left leg), six
electrodes on the patient’s chest and one electrode on the right leg. The location of
the chest electrodes are depicted in Figure 2.4(a).

The lead is a difference between every two potentials on the body. There are two
types of leads: bipolar and unipolar. The limb leads I, II and III are bipolar and the
three augmented limb leads (aVR, aVL, and aVF) and the six chest leads (V1, V2,
V3, V4, V5, and V6) are unipolar (see Figure 2.4(a)). The bipolar leads are measured
between two electrodes and unipolar leads, on the other hand, are measured with
respect to a common point called Wilson central terminal (WCT). The six limb
leads provide information about heart’s frontal plane and the six chest leads that
are placed in sequence across the chest, provide information about heart’s horizontal
plane (shown in Figure 2.4(b)). These six frontal plane leads (I, II, III) and six
horizontal plane leads form the standard 12-lead ECG system which is the most
common and accepted method for measuring ECG signal from a patient. [17]

Although 12-lead ECG measurement is the clinical standard, it is not required for
well-being, wearable and tele monitoring applications. Wearable monitoring devices
usually consist of one or few ECG leads as long as these leads have a good view of
the different ECG waveforms. The main aim of ECG wearable systems is monitor-
ing the patients with mild heart diseases continuously while they have their active
lifestyle at the same time. Due to this reason, advanced miniaturization in electrical
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components and circuits, ECG recorders have been getting available in very small
size and low weight with capability of recording contentiously for long-term with a
small battery. Fortunately, with the help of advanced stretchable electronic materi-
als, printed active electrodes are also integrated to clothes and provide a wearable
solution for ECG monitoring clothing [20]. Figure 2.5 demonstrates one example
of wearable ECG monitoring system in a form of smart T-shirt that includes textile
electronics and a Suunto wireless transmitter which transfers the data collected by
garment sensors to a smartphone app.

Figure 2.5 An example of wearable ECG monitoring system, integration of Clothing+
textile-integrated electronics (disappeared into fabrics for optimum comfort, durability and
convenience) and Suunto wireless transmitter that transfers the recorded data to a smart-
phone app

Artefacts in ECG

In wearable monitoring devices, the presence of noises and artefacts is inevitable.
The ECG signal is usually disturbed with different types of artifacts. The nature
and origin of these artifacts are exclusively important for long term monitoring
applications. Practically, there are two types of artifacts which are caused due to
physiological and non-physiological reasons [4, 21, 22]. Electromyography (EMG)
noise and slow baseline wandering due to respiration are in category of physiological
origin noises and power-line interference and motion artifacts are in category of non-
physiological noises in ECG. The presence of the artifacts make any morphology
based diagnosis problematic. The common sources of artefact that corrupt ECG
signals are described in the following.
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EMG Noise

Electromyography noise is produced during ECG monitoring due to any muscular
activity in the body. Bandwidth of a surface EMG signal is in the range from 5 to
500 Hz which has overlap with spectrum of the ECG signal. Thus, any muscular
activity may cause interference in the ECG signal. Generally, for clinical purposes
the patient is usually in rest condition but in ambulatory or wearable applications
and for long-term monitoring purposes, the presence of high frequency EMG noise
is inevitable and the level of muscle noise depends quite significantly on the level of
the patient activity [21].

Baseline Wandering

The baseline of ECG known as isoelectric line is a line recorded in the TP interval
during the heart rhythms. Ideally the isoelectric line is considered to have zero
amplitude and anything above the isoelectric line is considered positive and below
the line is negative. Therefore, the baseline of the ECG signal should be at a
constant level. Baseline wandering in ECG might happen due to respiration which
alter the impedance path between the ECG electrodes and then results in a slowly
varying potential difference. During long-term monitoring, baseline wandering is
quite common and can easily be eliminated by applying a high pass filter on the
recorded signals with cut-off frequency of e.g. 0.2 Hz. However, the low frequency
components of ECG like P and T waves might be little disturbed because of this
filtering [21].

Power-line Interference

Power-line interference is a common disturbance in bio-potential measurements
which usually happens due to long wires between subject and amplifier, separa-
tion between electrodes, and capacitive coupling between subject and power-lines.
Since the frequency of power-line is 50/60 Hz, it can be easily distinguished from the
recorded signal by looking at the spectrum of the measured signal. If the distance
between two leads of ECG is very small, the power-line currents would be the same
in both leads and this power-line interference can be rejected with an instrumenta-
tion amplifier that has a very high common mode rejection ratio (CMRR) [1]. A



2.6. Arrhythmia, Ectopic Beats 14

convenient way for eliminating this form of noise is using a single or multiple notch
filter with notch frequency at 50/60 Hz and their harmonics.

Motion Artefacts

Motion artefact is produced by movements of electrodes and cause a non-steady
baseline. Usually, for clinical purposes, the subject is in rest condition and hence
the motion artefacts are inconsiderable but in long term wearable applications due
to any type of motions, the impedance between skin and electrode interface might
be disturbed and produce motion artefacts. Since ECG signal and produced motion
artefacts have an overlap frequency range in their spectra, it is not easy to remove
such an artefact from the recorded signal. Although the motion artefact poses a
major challenge in wearable ECG monitoring, but usually can be partially eliminated
by applying a high pass filter on the corrupted signal. [1, 21].

2.6 Arrhythmia, Ectopic Beats

Any abnormal cardiac rhythm is called arrhythmia. Atrial arrhythmias are the most
common type of arrhythmias that occurs due to impulses originating from the area
outside of the SA node. The origination of ventricular arrhythmias is from inside of
the ventricles below the bundle of His. Ventricular arrhythmias happen when the
electrical impulses that have the role of depolarizing the myocardium use a different
pathway than the normal one. In ventricular arrhythmias, the QRS complex is
usually wider than normal range due to the exceeding conduction time. The QRS
complex and T wave may also appear in opposite directions due to the changes in
action potential. In addition, when the atrial depolarization does not occur, the P
wave may also be absent.

Ectopic beat is an irregular cardiac rhythm which mostly happens when heartbeat
has its origin from fibers or group of fibers outside the region of the heart muscle
rather than from the SA node. These irregular heart rhythms may lead to extra
or skipped heartbeats. Usually the cause of ectopic beats is not clear and most
people may experience extra or skipped beats on occasion. These beats are usually
harmless and there is no need for medical treatment. The two most common types
of ectopic heartbeats are: premature atrial contractions (PAC) (see Figure 2.6) and
premature ventricular contractions (PVC) (see Figure 2.7). When the origin of
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ectopic beat comes from atria, it is called PAC and when it comes from ventricles,
it is known as PVC [2,3].

Figure 2.6 Premature atrial contractions beats are marked with triangles below them. [3]

PAC beats can be recognized based on the time interval between each two consec-
utive R peaks. It can be seen that the time interval between R peaks is narrower
before PAC and wider after that. PVCs are more significant since the occurrences
of them rise with age. PVCs can lead to more critical arrhythmias, like ventricular
tachycardia or ventricular fibrillation. In addition, PVCs can be the cause of less
cardiac output when they occur more often. The PVC beat is mostly wider, its
reduced QRS complex happens early and the P wave is usually absent. The missing
P wave cause distortion in the ST segment. In Figure 2.7 two typical types of PCVs
are shown [2, 3].

Figure 2.7 Two typical types of premature ventricular contractions beats are shown. In
top plot, the one abnormal beat corresponds to one type of PVC beats and, in below plot,
the other typical type of PVC beats are marked with triangles below them. [3]
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2.7 Review of ECG Analysis Methods

By increased usage of wearable monitoring devices, everyday a huge volume of data
is generated that raise the need for developing advanced analysis algorithms. ECG
signal can be recorded by single-lead or multiple-lead depending on the configuration
of the device and hence the automatic analysis methods differ based on the configu-
ration. Single-lead ECG interpretation methods are mainly relying on the morpho-
logical parameters, repeatability of the heart cycle and their spectral features. In
multi-lead ECG processing techniques the concurrency of features in different leads
is also considered which result in more reliable outcomes in noisy environments.
However, in wearable and ambulatory applications using multiple-lead for measure-
ments are not applicable and cause discomfort and difficulty in daily usage for the
patient. Therefore, single-lead algorithms are more used in wearable monitoring
purposes and in this chapter some existing algorithms and methods for single-lead
ECG signals are reviewed.

2.7.1 QRS Detection Methods

The QRS detection is the basis of every ECG processing and analysis algorithms.
The R-peak is the most significant component in the QRS complex which can be
distinguished by its high amplitude and sharp slopes. The heart rate is also com-
puted by calculating the time interval between two consecutive R-peaks. Different
arrhythmias can be detected based on the locations of R-peaks and some other ECG
features. For instance, elevation or depression of ST segment is calculated based on
the amplitude of the signal at a specific time interval from the end point of QRS
complex [21,23].

QRS detection methods have been attracted lots of attention during the last 20 years
in research areas. Various approaches have been introduced for QRS detection such
as artificial neural networks, machine learning tools, genetic algorithms, wavelets and
filter banks and so on [24]. In the following, the basis of some of these algorithms are
shortly described and their detection accuracy on a same database are compared.

Most of the QRS detection approaches are divided into two steps: pre-processing and
decision making. Pre-processing step usually contains different filtering techniques
for noise and artefact reduction such as low-pass, high-pass or band-pass filtering.
Since the next step is usually based on thresholding, then the filtering stage is
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necessary for reducing the impact of P and T waves amplitude that can lead to
wrongly detected point as an R-peak. In most of the algorithms, after pre-processing,
the QRS complex is detected in an adaptive or a non-adaptive thresholding process.
The threshold level is mostly chosen in order to decrease wrongly detected points
(false positives).

Arzeno et al. [25] introduced a simple derivate-based algorithm that uses a high-
pass filter to determine the maximum slope, that corresponds to QRS complexes.
In other algorithms more sophisticated filters are also used [26, 27]. Determining
a threshold for maximum slope is set adaptively in [28, 29]. Generally, in neural
network and machine learning based algorithms, some morphological characteristics
and frequency components of QRS complexes from ECG databases are trained to
a system and then the trained network is applied on an unseen ECG signal for
detection of QRS complexes [30,31].

In wavelet approaches, the ECG signal is decomposed to different frequency bands
and then by applying a certain threshold according the QRS morphologies, the
R-peaks are detected. Wavelet methods are more robust in noisy environments in
comparison to the derivative methods which use simple filtering techniques [31]. Poli
et al. [32] proposed an optimum QRS detectors. They performed the filtering phase
by applying linear and non-linear polynomial filters to enhance the QRS complexes
and then used an adaptive maximum detection approach for distinguishing QRS
complexes from the rest of ECG signal. They have used a genetic algorithm for
setting parameters of the filter and the detector in order to minimize the detection
error.

Zhengzhong et al. [33] have presented a QRS complex detection technique for intel-
ligent ECG monitoring. In pre-processing stage, firstly the power-line interference
and baseline wander were removed. Afterwards, an improved Pan-Tompkins method
was introduced for finding the location of R-peaks. Arteaga-Falconi et al. have pre-
sented a new QRS detection techniques based on the second derivative technique [34].
They introduced a peak detection method using a threshold that depends on the
sampling frequency of the recorded signal. This method is useful for wearable ap-
plication since it is computationally inexpensive that needs less power for detection
of R-peaks. Table 2.2 shows the performance of each algorithm based on the result
provided by their authors on MIT-BIH arrhythmia database [5].
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Table 2.2 Performance of the mentioned QRS detection algorithms on MIT-BIH arrhyth-
mia database [5], provided by their authors

Algorithm by Sensitivity % Pos. Predictivity %

Arzeno et al. [25] 99.68 99.63
Afonso et al. [27] 99.59 99.56
Pan & Tompkins [28] 99.30 -
Hamilton & Tompkins [29] 99.69 99.77
Xue et.al [30] 99.50 97.50
Abibullaev & Seo [31] 97.20 98.52
Poli et al. [32] 99.60 99.51
Zhengzhong et al. [33] 99.90 99.96
Arteaga-Falconi et al. [34] 99.43 99.22

2.7.2 PVC Detection Methods

One of the significant outcomes of long-term ECG monitoring is identification of
abnormal heartbeats such as ventricular ectopic beats. Ventricular premature beat
or PVC is a sign of disturbance in depolarization process of the heart that may lead
to malignant cardiac arrhythmias [35]. Therefore, the detection of this arrhythmia
becomes crucial in the early diagnosis which can prevent life threatening cardiac
diseases in elderly patients. In the last decade, various fast automatic PVC detection
methods have been developed. Some of these algorithms are briefly discussed in the
following.

The classical PVC detection algorithms are based on extracting time domain fea-
tures. Cho and Kwon [36] have used QRS width, RR interval (RRI), and QRS shape
as time domain and morphological variables for distinguishing premature beats from
normal ones. The QRS width was computed by defining the QRS starting and end-
ing points which are Q and S point, respectively. Since the RR interval gets shorter
before premature ventricular contraction and gets wider after that, the RR intervals
were compared between normal and ectopic beats as a time domain variable. Even-
tually, the shape of normal QRS complexes in a template matching approach was
used as the morphological feature in their work. They have evaluated their method
on some records of MIT-BIH arrhythmia database and presented overall specificity
and sensitivity of 99.30% and 98.66%, respectively
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Basically, in time and morphological based algorithms, the QRS shape is the key
factor for detecting the PVC beats from the normal ones. Supat et al. [37] developed
a method with low computational cost for detecting premature ventricular contrac-
tion in real-time applications. The used features were QRS pattern and RR interval.
They have implemented simple decision rules for classifying normal and premature
beats and evaluated their technique on MIT-BIH Arrhythmia database. The ob-
tained result was 91.05% sensitivity and 99.55% specificity. Although the proposed
method has achieved a good performance but it is not robust to interferences in
noisy environments. In conclusion, the advantage of time domain features based
algorithms is low complexity which makes them suitable for implementing in real
time monitoring systems. However, these methods are very sensitive in presence of
noise and artefacts and may result in high number of false alarms.

Garcia and his colleagues [38], proposed a heartbeat detection and classification
method by using four morphological characteristics and eight temporal features. The
three morphological features were defined by calculating maximum cross-correlation
between current, previous and following beats. The last morphological feature was
related to QRS duration when the amplitude of R-peak is halved. The temporal
features were basically related to RRIs. They applied discriminant analysis for clas-
sifying heart beats into three categories: PVC, PAC and normal beat (NB). They
evaluated their algorithm with MIT-BIH Arrhythmia and MIT-BIH Supraventricu-
lar Arrhythmia databases and obtained sensitivities of 97.17%, 97.67% and 92.78%
for correctly detected NB, PVC and PAC beats, respectively. They achieved very
good performance in the detection of PVC and normal beats. This algorithm can
be integrated in wearable measurement systems and analyze each recorded signal
automatically beat to beat.

Chang and his colleagues [39] have presented a real time high precision PVC detec-
tion method. Initially, R-peak is detected by applying wavelet transform method
and then two PVC detection algorithms, sum of trough and sum of R-peak with
minimum are introduced for detecting every possible shapes of PVC beats. They
evaluated their algorithms on four records of MIT-BIH Arrhythmia database which
contained normal beats with PVCs only (No. 119), only normal beats (e.g. No.
100), different types and numbers of PVCs (No. 116) and mixed with other types of
arrhythmia (No. 114) and eventually presented the average accuracy of 94.73%. In
this master thesis, this PVC detection method was implemented and the obtained
results are presented in the result chapter.
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2.7.3 Heart Rate and Heart Rate Variability Analysis

Generally, studying the electrical activity of heart gives us lots of information about
our body. Heart rate variability (HRV) has been known as a non-invasive tool
for studying the operation of autonomic nervous system (ANS). HRV represents
the variation between consecutive heartbeats and can be influenced by different
physiological phenomena inside our body such as physical activity, exercise and
recovery from physical activity, movements and changes in posture and also stressed
and relaxed situations. HRV varies from day to day according to amount of work
loads, physical activity and stress level.

Basically, heart rate and HRV follow an inverse relationship. In other words, heart
rate variability is higher when the heart beats slowly and diminishes whenever the
heart beats faster. HRV parameters are computed in time and frequency domain
and represent activity of sympathetic and parasympathetic nervous system. First-
beat Technologies Ltd. has developed various HRV based algorithms for stress and
recovery analysis, metabolic processes and energy expenditure estimation, detection
of movements and changes in posture. Firstbeat is the leading provider of physio-
logical analytics for sports and well-being and their algorithms have been integrated
into a variety of well-known wearable fitness and tracking products such as Sam-
sung, Garmin and Suunto. Due to importance of HRV analysis, in this master thesis,
different parameters of HRV are studied in the method chapter.

2.8 Respiratory Rate Monitoring

Respiratory rate is number of breaths per minute. Respiratory rate monitoring is one
of the vital measurements for assessing the subject health condition in both clinical
and well-being applications. There are various measuring methods for acquiring
the respiratory rate. Spirometry is the golden standard method which measure
the direct flow rate of breathing air. Spirometry is the most common pulmonary
function test that provides the precise clinical information of long volume, speed of
inhaled/exhaled air, respiratory rate etc. Other approaches such as thermography
by using nasal or oronasal thermistor [40, 41], monitoring the pressure by using
facemask [42] also employed for estimating the respiratory rate. However, none of
above methods are applicable in wearable applications.

Other methods such as impedance pneumography [43], inductance pneumography
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[44] and using physiological signals like electrocardiography and photoplethysmog-
raphy (PPG) [45, 46] were developed for monitoring respiratory rate in ambulatory
and wearable cases. In these methods, sensors are not required to be placed on the
facial area, then it provides more comfortable situation for the patient. In addition,
IP technique has another significant advantage in comparison to the other methods,
that is the ability to be recorded from the ECG electrodes on the body surface
and it does not require additional sensors or electrodes worn by the user. In DISSE
project, the electrodes are manufactured by printed electronic technologies for usage
in flexible and stretchable physiological monitoring devices, that are integrated into
a shirt and eventually the IP signal is recorded with the same electrodes as ECG
signal.

2.8.1 Impedance Pneumography Measurement System

Impedance pneumography measures changes in the electrical impedance of the per-
son’s thorax caused by breathing. The principle of IP measuring system follows
Ohm’s law and like every bio-impedance measurement system is based on the re-
lationship between the injected current I to the tissue through electrodes and the
measured voltage U between the electrodes, as Z = U/I.

IP is measured by feeding a high frequency AC current signal to thoracic area and
measuring the voltage changes. This gives the impedance changes due to respiration
such that inspiration typically results in an increased impedance. The increased
impedance in inspiration is mainly due to an increase in air volume of the chest
in relation to the fluid volume and an increase of conductance paths due to the
expansion. The allowed amount of current by the ANSI/AAMI IS1-1993 standard is
larger in higher frequencies. This signal acts as a carrier that is amplitude modulated
by the respiration changes. Finally, it is demodulated to remove the high frequency
component. The demodulation signal has the same frequency as the carrier with
a phase shift to account for the phase delay in the signal path. This phase delay
is important in the impedance measurement since an inappropriate amount of the
phase shift results in a low demodulator gain and a poor extraction of the signal
of interest. The first panel Figure 2.8 depicts a simulated 3 Hz square signal (low
frequency carrier signal for the ease of illustration) which is modulated by a measured
IP signal. The second and third panels illustrated the demodulated signal before
and after filtering, respectively.
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Figure 2.8 Modulated, demodulated and filtered version of demodulated IP signal

The IP is usually measured through 2- or 4-electrode measurement circuit. In the
four configuration (tetrapolar), two electrodes are used for feeding the AC current
and the other two are used for measuring the voltage changes. In the case of having
only two electrodes, voltage is measured from the same electrodes used for applying
the current. The two-electrode configuration introduces some errors due to the
nonlinear voltage changes generated by current at the electrode-tissue interface.
Using the four-electrode configuration minimizes the effect of this issue by having
physically separated voltage measurement points and therefore, yields a more precise
measurement [47]. Although in ambulatory devices with two electrodes for ECG
monitoring, the bipolar IP technique is usually implemented since the tetrapolar
technique requires two additional electrodes. However, in tetrapolar measurements
in addition to the respiratory rate, tidal volume and respiration cycle length can also
be observed and estimated [43]. Hence, there has been always a trade-off between
bipolar and tetrapolar IP techniques. A comprehensive description of IP measuring
system for respiration measurements has been written by Ville-Pekka Seppä in his
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PhD thesis [48].

2.8.2 Respiratory Rate Estimation Techniques

A variety of digital signal processing methods have been proposed for estimating the
respiratory rate. Autoregressive (AR) modeling have been widely used for estimation
of respiratory rate. Nepal et al. [49] have developed an automatic algorithm for
estimation of respiration rate and apnea detection. They have combined a second
order autoregressive modeling and a modified zero-crossing technique for classifying
the respiratory signal into three categories, apnea, respiration, or respiration with
motion artifacts. Johnson and his colleagues [50] have been employed AR modeling
for estimating respiratory rate from ECG signal. Karlen et al. [51] have introduced
a method based on Fast Fourier Transform (FFT) for extracting respiration rate
from PPG signal.

Autocorrelation function (ACF) that measures the similarity of a signal with itself
at different points in time, has been applied in many physiological signal processing
approaches for rate detection e.g. in ECG and PPG signals [52, 53]. This model is
usually used for finding the repeated patterns in a signal such as respiratory rate.
Sun and Matsui [54] have presented an autocorrelation model for a rapid and stable
respiratory rate estimation from Doppler radar’s signals. They considered the first
peak after the midpoint of the auto correlation function (ACF) as the respiration
rate from Doppler radar signals and then evaluated their method with a reference
measurement that is the respiratory rate measured by a respiratory belt. They
have shown that in autocorrelation technique the effect of body movement artefacts
is decreased in comparison to the traditional approach. Above methods have been
used for other physiological signals that carry respiration information as well. In this
master thesis, the autocorrelation technique is used for estimating the respiratory
rate from IP signals.

2.9 Other Physiological Signals

In this thesis work, a novel generic physiological signals classifier is proposed which
has the ability for classifying five different physiological signals from each other.
These signals are electrocardiography (ECG), impedance pneumography (IP), seis-
mocardiography (SCG), electromyography (EMG) and photoplethysmography (PPG).
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In above section, origin and characteristics of ECG and IP signals are described.
Since, the other three signals are not included in DISSE project, no signal processing
method was developed for them and they were used only for designing the classifier
which is explained in details in chapter 3. In the following the basic definition of
these three signals (SCG, EMG and PPG) are briefly explained.

2.9.1 Seismocardiography

Seismocardiography measures the cardiac vibrations induced by the heart beat. SCG
contains information about the mechanical events of heart like heart sounds and
cardiac output. SCG measurement system has been changed during the years due to
development in accelerometer technologies. Current SCG measuring systems contain
miniature accelerometers which are based on microelectromechanical technology.
SCG signal is formed of several systolic and diastolic components. A comprehensive
study about seismocardiography and its practical implementation and feasibility has
been made by Mikko Paukkunen in his doctoral dissertation [55]. A short example
of SCG signal is shown in Figure 2.9.

2.9.2 Electromyography

Electromyography records the electrical activity of muscles that helps in the di-
agnosis of neuromuscular abnormalities. Motor neurons send electrical signals to
muscles and stimulates them. The stimulation produces electrical signals that lead
to muscle contraction. There are two types of EMG measurement system: surface
and intramuscular. In the surface method, the muscle activity is measured from
above the muscle on the skin with surface electrodes. This method provides limited
information of muscle activity although in intramuscular way, which is recorded by
inserting needle electrodes into the muscle, more details and accurate information
of the muscle are obtained [56]. A short example of EMG signal is shown in Figure
2.9.

2.9.3 Photoplethysmography

Photoplethysmography is a simple optical method for observing changes of blood
volume in peripheral circulation. PPG is a low cost and non-invasive measurement
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Figure 2.9 These three physiological signals are used in the proposed classifier in addition
to ECG and IP signal. A short example of these signals are plotted, from top to bottom
SCG (ECG is shown in gray color for showing the periodicity of SCG), EMG and PPG.)

that provides useful information about the cardiovascular system and widely used
in clinical physiological measurement and monitoring. PPG measurement system
contains high-intensity (usually green) light-emitting diodes (LED) and photode-
tectors that measure the intensity of light absorbed by blood. Wearable pulse rate
monitoring devices are built in based on the same technology and detect the changes
in light intensity that transmitted through or reflected from the tissue [57]. A short
example of PPG signal is shown in Figure 2.9.

In Figure 2.9, top subplot shows SCG and ECG signals from one subject at the
same time. The ECG signal is just shown for better observation of SCG periodicity
in response to ECG signal. The middle subplot shows the EMG signal from tibialis
anterior muscle of a healthy subject during dorsiflexion. The last one represents the
PPG signal. These signals are obtained from databases that were used in design-
ing the physiological signal classifier and their details information are provided in
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chapter 3.
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3. MATERIALS AND METHODS

In Figure 3.1, an overall view of the proposed automated approach from physiologi-
cal signal classification to ECG and IP analyses, implemented in this thesis work, is
illustrated. In this block diagram, our motivation toward developing an automated
algorithm that can detect the measured signal and then automatically changes to
the detected mode for the further analyzing and processing tasks is depicted. Fur-
thermore, in the proposed automated algorithm, if an input signal is known, it
automatically goes to its analysis section, otherwise it is passed through our pro-
posed generic classifier to get known and then it goes to the processing part. In
this thesis work, five different physiological signals were considered for classification
part, but only for two of them (ECG and IP) different signal processing methods
and techniques were developed and implemented.

All the signal processing methods and algorithms were implemented in MATLAB
software (R2015b) from MathWorks Inc., Natick, MA, USA. In the following sec-
tions, first we go through the proposed robust physiological classifier and then the
implemented analysis methods and processing techniques are presented.

3.1 Novel Generic Physiological Signals Classifier

Fig. 3.2 shows the architecture of the proposed physiological signal classifier that
consist of data preprocessing, signals segmentation, feature extraction/selection and
classification parts. For developing this classifier different databases were used that
are described in section 3.1.1. It can be seen that used databases were divided into
training and testing sets. Firstly, the training set is passed through all the steps
of the classifier (pink arrows). Whenever the best performance was achieved, the
classifier parameters are stored for evaluation phase. During evaluation phase (gray
arrows), the testing set passes also through the same steps except the last one that
is the learning phase (Modeling/ Learning block). Instead of that, the testing set
is evaluated by a trained neural network (Detection/ Decision Making block). Each
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Figure 3.1 An automated approach: from physiological signal classification to processing
and analyzing ECG and IP signals, that is implemented in this master thesis. The classifier
block is presented in 3.1 section, after the classifier section the left path corresponds to
ECG processing and analyzing methods that presented in 3.2, and the right path, shows
corresponding analysis methods for IP signal which described in 3.3.
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part of the classifier is described in details in the following sections.

3.1.1 Signal Database

Combined measurement of ECG, breathing and seismocardiogram (CEBS)
Database

The measurements have been recorded by using a Biopac MP36 data acquisition
system in supine position from 20 healthy volunteers. Each record lasts for about
one hour. The CEBS database is publicly available at PhysioNet archive [58]. ECG
signals from leads I and II were respectively measured thorough channels 1 and
2 of the system with a bandwidth between 0.05 Hz and 150 Hz. The channel 3
was devoted to measure the respiratory signal by using a thoracic piezo-resistive
band with a bandwidth of 0.05 Hz to 10 Hz (since here, Resp corresponds to
the respirarory signals measured by using a thoracic piezo-resistive band) and the
channel 4 was used to obtain SCG using a triaxle accelerometer and a bandwidth
between 0.5 Hz and 100 Hz. Each channel has been sampled at 5 kHz.

Electromyography

EMG signals were recorded by using Myontec measuring device. The signals were
measured from front thighs and rear thighs of the healthy subjects during walking.
The sampling rate of the measurement was 1 kHz. In addition, another database for
EMG signals were also considered which data were acquired with a Medelec Synergy
N2 EMG Monitoring System. A needle electrode was placed into the tibialis anterior
muscle of each subject and the patient was supposed to dorsiflex the foot softly
against the resistance. The EMG signals were then recorded for several seconds,
at the point when the patient was relaxed and the needle electrode was removed.
Three subjects were participated in this study that one of them was healthy and the
two others had neuromuscular and neuropathy disease, respectively. The frequency
rate of the signals was 4 kHz. This database is publicly available at Physionet
archive [59].
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Figure 3.2 An automated generic and robust architecture for physiological signals clas-
sification including three main steps: (1) Preprocessing, (2) Feature extraction and (3)
Classification.
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Photoplethysmogram

PPG signals were collected from 19 subjects with the monitoring system proposed
by Peltokangas et al. [60]. All the subjects were healthy male with age of 38.2±13.1

years. The sampling rate of PPG signals were 500 Hz and the signals were recorded
using wireless body sensor network (WBSN). These measurements have been done
at department of Automation Science and Engineering of Tampere University of
Technology.

Noisy Signals

In order to evaluate the influence of noisy environments on the performance of our
generic classification algorithm, white Gaussian noise (WGN) were artificially added
to a part of database which were used as the testing set. The level of noise was 0,
10 and 20 dB. WGN were added 10 times at each noise level to confirm the results.
The signal to noise ratio (SNR) for each data is calculated by

SNR = 10 log

P
clean

P
noise

(3.1)

where P
clean

is power of clean signal and P
noise

is the power of WGN.

3.1.2 Data Preprocessing

An essential part of every pattern recognition system is preprocessing. In this work,
preprocessing of the data consists of the following stages: detrending (baseline re-
moval), moving average filtering, median filtering and thresholding. Since the aim
was classification of different physiological signals which, have different bandwidths,
then frequency based filtering methods were not applicable. In addition, since some
parts of the used database in this project were obtained by wearable devices then
occurrence of noise, motion artifacts and sensors error were inevitable. Therefore,
the following filtering methods are applied on the signals to subtract their existing
offset, reduce random noises and impulse interferences.
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Detrending

Detrending methods can be used to remove a constant, linear, or curved offset from
our signals if is present. Detrending methods fit a polynomial of a given order to
the entire signal and simply subtracts this polynomial from the original signal. In
this work, due to the restriction in applying frequency based filtering algorithms,
detrending was a good choice for removing offset of our signals. The polynomial
with order 6 was used for this approach.

Moving Average (MA) Filtering

MA filter works like a low pass filter which commonly used for smoothing and is
an optimal choice for reducing random white noise. In biomedical applications, the
MA filter is usually applied to reduce motion artifacts and works very good for a
limited artifact range. Lee et al. [61] applied periodic moving average filter on PPG
signals for removing motion artefacts. In MA filtering, each output sample is the
average of M samples from the input signal at a time. The output is a convolution
of the input signal with a rectangular pulse (with length M) having an area of one.
MA filter is calculated as follow

y[i] = 1/M
M�1X

j=0

x[i+ j] (3.2)

where M is the number of points in the averaging process which is set to 3 in this
work, x is the input signal and y is the filtered output signal.

Median Filtering

Median filtering is applied on the signals to remove any possible spike, glitch or spike
that might occur in the process of measurements due to digitization of analog to
digital converter (ADC). The window size of five second is chosen in this algorithm.
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Thresholding

One artefact in physiological signals measurement is large amplitude that exceeds
a certain value. This artefact might be happened at the beginning of the mea-
surement due to e.g. electrodes disattachment. Since our aim was proposing a
generic automated algorithm that can classify raw unlabeled physiological signals
into the correct categories, it was necessary to remove this artefact. Defining a
certain threshold or thresholding the amplitude of the measured signal is a good
solution for discarding this kind of artefacts. By assuming that our measured sig-
nals are enough long that have Gaussian distribution and artefacts cause strongly
deviating values, setting threshold can be straightforward. By estimating the mean
µ and standard deviation � of the amplitudes in a signal, it can be expected that
99 % of the amplitude values are suited between µ � 3� and µ + 3�. In this work,
the interval (µ � 3�, µ + 3�) was chosen as the thresholding value for each signal’s
amplitudes.

3.1.3 Feature Extraction/Selection

Signals Segmentation

After preprocessing section, each signal was segmented into 10-second frames. Every
10-second frame of the signals was used in feature extraction section. In below
steps, some features were extracted from every preprocessed 10-second frames of
our database. Then these features were used as the training data and test data of
the classifiers.

Mean Frequency (MNF)

MNF is an average frequency which is calculated as the sum of product of the
frequency and the signal power spectrum, divided by the total sum of the power
spectrum. MNF commonly referred to centroid frequency were used as a feature for
EMG and ECG classification in [62] and [63], respectively. It can be defined as

MNF =

MX

j=1

f
j

P
j

. MX

j=1

P
j

(3.3)
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where f
j

is the frequency value of signal power spectrum at frequency bin j, P
j

is
the signal power spectrum at frequency bin j, and M is the length of frequency bin.

Median Frequency (MDF)

MDF is a frequency at which the signal power spectrum is divided into two re-
gions with equal amplitude which also were used as a feature for a robust EMG
classification system by Phinyomark et al. [62]. It can be expressed as

MDFX

j=1

P
j

=

MX

j=MDF

P
j

=

1

2

MX

j=1

P
j

. (3.4)

Spectral Entropy (SEN)

SEN is a normalized form of Shannon’s entropy which uses power spectrum ampli-
tudes components of the time series for entropy evaluation [64]. Shannon Entropy
(ShEN) of a signal is the measure of set of relational parameters that vary linearly
with the logarithm of the number of possibilities and describes its average uncer-
tainty [65]. SEN can be calculated as follow

SEN = �
f

highX

j=f

low

P
j

logP
j

.
logN

f

(3.5)

where f
low

and f
high

are the lowest and highest frequencies in the spectrum, respec-
tively. N

f

is the number of frequency bins.

Energy (E
s

)

Energy E
s

of a discrete-time signal x(t) is defined as

E
s

=

1X

�1
|x(t)|2dt. (3.6)

In this work, the energy E
s

for each 10-second segment of the data was calculated
and used as an input to the classifier.
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Zero Crossing Rate (ZCR)

ZCR refers to the number of times that the amplitude values of a signal pass the
zero y-axis and it presents an approximation of frequency domain properties of the
signal. It can be expressed as follow

ZCR = 1/N

NX

n=2

|sign(x(n))� sign(x(n� 1))|. (3.7)

3.1.4 Classification Method: Neural Networks (NN)

From previous section, five general purpose features were extracted from every seg-
mented frame of our signals (which were ECG lead I, ECG lead II, Resp, SCG,
EMG from thigh, EMG from anterior tibia and PPG). These five features of each
frame were considered as one feature vector in the training or testing phase of the
classifier. The number of feature vectors were 4934, 4934, 5017, 4934, 1800, 1946
and 5253 for ECG lead I, ECG lead II, Resp, SCG, EMG from thigh, EMG from
anterior tibia and PPG signals, respectively. These feature vectors were placed into
a matrix and created the neural network dataset.

Neural network is one of the most popular modeling methods which is used in the
medical research fields [66]. The NN learns the labeled classes of the database by
modeling the training data and compares them with the predicted classes with the
purpose of modifying the network weights for the next iterations of training [67].
Different steps of the classification method are described as follow:

Feature Normalization

Data normalization is an essential part of each pattern recognition systems. This
step is very important when dealing with parameters of different units and scales.
By normalization, the feature matrix will have zero mean and unit variance that can
be calculated as x

norm

=

x�µ

�

, which x and x
norm

are the original feature matrix and
normalized one, respectively. µ is mean and � is standard deviation of the feature
matrix.
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Modeling/Learning phase by NN

First of all, our feature matrix was randomly divided into three subsets by different
ratios. The first subset included 70% of the feature matrix that was assigned to the
training set, the second and third subsets with equally 15% of the feature matrix were
assigned to the validation set and testing set, respectively. The layers of NN consist
of X input neurons, N hidden neurons and Y output neurons. Where X is equal to
the number of feature vectors of the training set, N has been set to 15 heuristically,
and Y is equal to 7 that represents seven different physiological classes that were
considered in this classifier including ECG lead I, ECG lead II, Resp, SCG, EMG
(from tibialis anterior), EMG (from thigh) and PPG signals. The sigmoid transfer
function was selected and for the training of the weights, back propagation method
was used.

The error between the network outputs and the target outputs on the training
set was calculated during the learning phase. In addition to that, the error on
the validation set was also monitored in order to determine when overfitting has
begun. The validation and training set errors usually decrease at the beginning of
the training phase but the validation error begins to rise if the network starts to
overfit the data. The network weights and biases were saved at the minimum of the
validation set error. In addition to error rate, the percent error (PE), fraction of
samples that were misclassified, was also determined as an evaluation factor. The
training process (with different initial weights and biases) was repeated 10 times and
the parameters were saved for the decision making phase when the lowest percent
error was obtained; In other words, when the least misclassification happened in the
learning phase.

Detection/Decision Making phase by NN

Testing set was used for evaluating the performance of our model (trained NN) in
response to unseen data with and without occurrence of noise. WGN with level 10
and 20 dB were artificially added to the original database (raw database) and then
all the steps of the block diagram in Fig 3.2, were applied on the noisy signals (gray
arrows). Eventually, parts of noisy signals which had the same indexes as testing
set were evaluated in the result chapter. WGN were added 10 times to the signals
to confirm the results. Finally, the average PE values of the testing set with 0, 10
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and 20 dB WGN were calculated and analyzed. The performance of the classifier is
presented in chapter 4.

It should be mentioned that the novel generic physiological signals classifier proposed
in this master thesis work is also published and presented in XIV Mediterranean
Conference on Medical and Biological Engineering and Computing 2016 [68].

3.2 ECG Signal Analysis

The ECG analysis path is expressed in the bottom left part of the block diagram
shown in Figure 3.1. Over the past thirty years, different algorithms were proposed
for ECG signal analysis and some of them have achieved better accuracy than the
others. Although none of them has presented a result with 100% accuracy. A few
of them are selected in this work according to their presented results. This chapter
describes the materials and methods used for ECG analysis within this work. Firstly,
all the used materials are introduced. Then selected digital signal processing (DSP)
methods are described.

3.2.1 ECG Database

We needed databases which include sets of annotations for each recording to evaluate
our developed algorithms. Annotations are referred to specific points of a recording
and describe events at those locations. For instance, for ECG signals, annotations
indicate the times of occurrence and types of event.

MIT-BIH Arrhythmia Database MIT-BIH Arrhythmia database was chosen
for evaluating our implemented analysis techniques. This database contains 48 half-
hour of two-channel ambulatory ECG recordings. The database was recorded with
sampling rate 360 Hz per channel with 11-bit resolution. Two or more cardiologists
independently annotated each record; disagreements were resolved to obtain the
reference annotations for each beat included with the database. This database is
publicly available [5].
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3.2.2 Pre-processing Methods

In ECG analysis path of the block diagram in Figure 3.1, the first step is referred
to preprocessing; since the ECG signals may be corrupted by different types of
noises/artefacts such as power-line interference, motion artefacts and muscle con-
tractions.

Power-line Interference Rejection

The most common form of noise is power-line interference and its harmonics [69].
Using single or multiple notch filters are the simplest ways for removing this form of
noise from measured signals [70]. Although, when using conventional digital filtering,
beginning of the signals, which might include some significant information, is entirely
lost due to transient state of the filter. In this work, we applied a modified notch
filter with transient suppression method called vector projection which prevents any
transient response at the beginning of filtered signal [71].

In 1995, Pei and Tseng introduced vector projection to find non-zero initial condi-
tions for IIR notch filter [72]. In this method, first, vector projection is applied to
break down the first M samples of noisy signal into two parts; clean (desired) and
sinusoidal interference parts. Then, the clean part is used as initial values for the
traditional notch filter. The algorithm is explained in following. First, the input
data is arranged as vector X =

h
x(0) x(1) · · · x(M � 1)

i
T

, then matrix A is
constructed as

A =

"
1 cos(⌦0) · · · cos((M � 1)⌦0)

1 sin(⌦0) · · · sin((M � 1)⌦0)

#
, (3.8)

and projection matrix P is computed as

P = A(ATA)�1AT . (3.9)

The first M samples of the output signal are then obtained by

Y =

h
y[0] y[1] · · · y[M � 1]

i
T

= QX, (3.10)
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where Q = (I � P ) and I is identity matrix. The rest of the signal samples, which
are samples M to N �1, can be calculated by Equation ( 3.11) which is the transfer
function of a second order IIR notch filter with pole radius r and notch frequency
⌦0.

H(z) =
1� 2 cos(⌦0)z

�1
+ z�2

1� 2r cos(⌦0)z�1
+ r2z�2

. (3.11)

According to [73], the length of the input vector should cover the period of power-
line fundamental frequency to achieve the optimal non-zero initial conditions for the
notch filter. This indicates that with higher sampling rate a longer window of input
samples is needed to reconstruct the noise accurately.

Baseline Wander Removal

Baseline wander removal has been one of the very first challenges in ECG signal
processing [74]. There are two common techniques for removal of baseline wander
that are linear filtering and polynomial fitting (that is also called de-trending). In
this thesis work, we first applied a linear, time-invariant high-pass filter on the signal.
The cut-off frequency is set to 0.2 Hz so that the clinical information in ECG remain
unchanged. And for preventing any phase distortion, finite impulse response (FIR)
high-pass filter is selected. Unfortunately, filtering based techniques cannot remove
baseline wander that occur e.g. due to stress or body movement. Therefore, we also
applied polynomial fitting technique to diminish the amount of baseline wander as
much as possible. This method, fit a polynomial of a given order to the entire signal
and simply subtracts this polynomial from the original signal. A polynomial with
order 6 was used for this approach.

Muscle Noise Removal

An appropriate way for removing high frequency muscle noises is low-pass filtering.
As it is mentioned in 3.2.2 part, here also FIR low-pass filter is designed to prevent
any phase distortion on the filtered signal. Cut-off frequency of the low-pass FIR
filter is set to 200 Hz.
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Thresholding

As it is mentioned in the section 3.1.2, one of common artefacts in physiological
measurements is occurrence of large amplitude that is usually happened at the
beginning of the measurement due to e.g. electrode dis-attachments. By defining
a threshold, we can get rid of this type of artefact. Choosing the threshold value
is straightforward and can be selected in an adaptive manner. To be more precise,
for each specific signal which is enough long that we can assume the measured
signal have Gaussian distribution, the threshold value is chosen based on mean µ

and standard deviation � of the signal amplitudes. It is expected that 99 % of the
amplitude values are suited between µ�3� and µ+3�. Those parts of a signal that
exceed this interval (µ� 3�, µ+ 3�) will be automatically removed.

3.2.3 R-peak Detection Techniques

Accurate R-peak detection is an important step in every ECG analysis tasks. A
variety of methods have been proposed in the past years, here we implemented one
of the well-known method [28], its modified version [75] and also an accurate R-peak
detection for telemedicine [76] and then compared their results with the annotated
file available in database.

Pan-Tompkins QRS Detection Algorithm

The well-known QRS detection algorithm proposed by Pan and Tompkins in 1985
was applied on ECG signals to detect the R-wave fiducial points [28]. The Pan-
Tompkins method recognizes QRS complexes based on analyses of the slope, ampli-
tude, and width. The algorithm includes filtering, derivative, squaring and integra-
tion steps. First of all, a band-pass filter reduces the impact of T wave and remove
baseline drift and power-line interferences, if present. Then, derivative procedure
suppresses the low frequency components such as P and T waves, and provides a
large gain to the high-frequency components arising from high slopes of QRS com-
plex. The squaring operation re-emphasizes on high-frequency components in the
signal that related to QRS complex. At the end, the squared waveform passes
through a moving window integrator. Since rising edge of the integration waveform
corresponds to QRS complex then the fiducial point can be determined as the peak
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of the R-wave [28,77].

Pan-Tompkins Algorithm with Optimal FIR Band-pass Filter

Schlindwein et al. [75] in 2006 proposed some optimal values for center frequency
and bandwidth of Pan-Tompkins’s band-pass filter. They performed an exhaustive
search for center frequencies ranging from 13 to 20 Hz and for band-widths from 5
to 12 Hz, at integer values of 1 Hz for both. They applied the new FIR band-pass
filters on MIT-BIH Arrhythmia database and chose the optimal values based on
produced minimum number of errors i.e. sum of false-positives and false-negatives
(according to the available annotations from database). The optimum point was
found at center frequency 19 Hz and bandwidth 9 Hz.

Area-based R-Peak Detection Algorithm

The method proposed by Liao et al. [76] is an area-based approach based on the fact
that QRS complexes are very narrow and tall which result in large areas over the
curve around QRS complex locations. The motivation of this method is come from
the fact that if the amplitude of T-wave is even higher than R-peak, QRS complex
is still recognizable due to its narrow and tall morphological characteristics. In this
method, it is considered that the typical QRS complex is last up to 120ms, then for
each local maximum M, N neighbors have been chosen as the set of points within
60ms from M. Then, M’s area over the curve is defined as the sum of the magnitude
of M minus the magnitude of every point in N. The peaks are then sorted by their
area under the curve, and those with the greatest areas are considered as R-peaks.

After obtaining R points from above R-peak detection methods, the detected R
fiducial points from each individual method are compared to the annotated R points
in every signals of database. The evaluation method was based on number of missed
detected points and false alarms. The R-peak detection method that results in
highest sensitivity and lowest false alarm was chosen as the best one and its output
is used for further steps. The evaluation method is presented in section 3.2.9.

Eventually, by obtaining the R-wave fiducial points from the best R-peak detec-
tion method, the RR intervals for each signal were calculated as the time intervals
between each two successive R peaks of the ECG.
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3.2.4 Ectopic Beats Detection

The goal of this section is recognition of ectopic beats from normal beats. In this
section, we used morphological features of R-peaks of ECG to find out time of
occurrence and type of ectopic beat. Firstly, we applied a simple morphological
technique to distinguish ectopic beats from normal ones. This technique is based
on evaluating the RRIs duration and amplitude of R-peak [78]. In this method,
the current RRI (RR

i

) is compared to the running average of the last six normal
RRIs (RR

m

). Then according to three rules presented in Equation 3.12, current
heartbeat is considered as an ectopic or a normal beat.

The first condition says that, if the value of current RRI (RR
i

) is less than 85% of
RR

m

; it is too short for a normal heartbeat then the current heartbeat is considered
as abnormal. For the second condition, if the value of (RR

i

) lies within 90� 110%

of (RR
m

), the current heartbeat is considered as normal. Finally, for the third
condition, if the amplitude of current R-wave (RR

i

) lies within 60�130% of average
value (R

m

), the heartbeat is classified as a normal one, otherwise it is marked as
an abnormal beat. In this technique, we assumed that the first six heartbeats were
normal.

1st condition :

8
<

:
if RR

i

< 85%RR
m

, then abnormal

else, normal

2nd condition :

8
<

:
if 90%RR

m

< RR
i

< 110%RR
m

, then normal

else, abnormal

3rd condition :

8
<

:
if 60%R

m

< R
i

< 130%R
m

, then normal

else, abnormal

(3.12)

After detection of ectopic beats with the simple morphological based method, for ev-
ery subject of MIT-BIH Arrhythmia database, the heartbeat was marked as normal
or abnormal. Then the accuracy of the ectopic beat detection method was evaluated
with the annotated file from the database. In this works, all the annotations related
to ectopic beats and premature beats were considered for evaluating the ectopic de-
tection method. The evaluation method is based on the confusion matrix presented
in Figure 3.6 in evaluation 3.2.9 section.
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3.2.5 Ectopic Beats Reduction

Many algorithms have been developed for correcting the ectopic beats in heart rate
and HRV analyses. In fact, the effect of ectopic beats on heart rhythm can be cor-
rected by removal or replacement process. The simplest method is deletion that re-
moves all ectopic beats from ECG signal and subsequently, normal beats are shifted
which results in shorter ECG signal. Therefore, deletion method can alter time,
frequency and non-linear parameters of the signal. The method used in this work
called interpolation of zero degree. This method is useful when the occurrence of
ectopic beats is very occasional. In this technique, ectopic beats are replaced by the
average of N surrounded normal beats. It can be calculated by given formula

RR
new

(t) =
1

N

NX

i=1

RR(i) (3.13)

where RR
new

(t) is the corrected value of the detected ectopic beat. In this work N
is set between 3 and 10.

3.2.6 Heart Rate Calculation

For heart rate analysis, the corrected RR interval obtained from previous step is
used. Heart rate can be calculated from following formula

HeartRate = 60/RR Interval, (3.14)

in which, RRInterval is the time interval between each two consecutive R peaks of
the ECG signal that is represented in seconds. Therefore, the unit of HeartRate(HR)

is beat per minute (bpm).

3.2.7 Heart Rate Variability Parameters

Heart rate variability analysis has become a non-invasive tool for studying the op-
eration of autonomic nervous system. The analysis of beat-to-beat heart rate can
be approached in several ways such as time domain analysis, spectral analysis and
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non-linear analyses. In this work, some widely used linear and non-linear time do-
main parameters were calculated. The parameters were implemented based on their
standard definitions in [79] as following:

• SDNN: Standard deviation of all RR intervals

• RMSSD: Root mean-square of successive differences of adjacent RR intervals

• pNN50: Percentage of pairs of adjacent RR intervals differing by more than
50 ms from all RR intervals

• SD1: Standard deviation of data against the axis x = y in Poincaré plot

• SD2: Standard deviation of data against the axis, which is orthogonal to the
axis x = y in Poincaré plot (crosses this axis at the mean value of the data)

Poincaré plot is constructed by plotting the RR intervals as a function of itself
with a delay of 1 sample. The accuracy and precision of HRV parameters that were
computed by implemented methods were validated with Kubios software, which is an
open license HRV analysis software developed in University of Kuopio, Finland. [80].

3.2.8 PVC Detection Algorithms

During a PVC beat, ventricular contraction happens earlier than usual which means
the R-peak appears earlier. Hence, RR intervals of PVCs are smaller than normal
heartbeats. According to the second condition in Equation 3.12, initially normal and
ectopic beats are distinguished from each other, then the PVC algorithm determines
the occurrence of PVC beats beyond the detected ectopic beats. As mentioned
earlier in section 2.7.2 and shown in Figure 2.7, there are two typical shapes of
PVC beat. Chang et al. [39] have proposed a PVC detection algorithm that can
detect both types of these PVC beats. Their algorithm is a combination of two
methods that are called sum of the trough, and sum of the R-peak with minimum.
Both methods that are defined based on morphological features of PVC beats are
implemented in this thesis work.
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Sum of Trough

Chang and his colleagues proposed Sum of Trough method for a PVC beat that has
below morphological features:

1. The RRI is smaller than the mean RRI; (RR
i

< RR
m

).

2. There is a huge and wide negative wave after R-peak.

3. There is a big pause before beginning of the next heartbeat.

According to above characteristics, they have summarized their method in below
formula

sum =

k2X

n=k1

x[Rpoint[i] + n] (3.15)

where function x represents the amplitude of the ECG signal, Rpoint correspond
to the location of R-peak and n is the number of samples after R-peak which is set
to range 35 : 85 by Chang et al. If the sum value is smaller than a threshold, this
method detects the occurrence of PVC. Figure 3.3, presents the logic of this PVC
detection method very well that is saying if the summation of n samples (indicated
with a pink arrow) after R-peak (light green stars) is smaller than a threshold
(dashed pink line), the algorithm determines the beat as a PVC. The left y-axis
corresponds to amplitude of ECG and the right y-axis corresponds to the threshold
values. Since the threshold value was not defined by Chang and his colleagues,
we have studied the outcome of this algorithm with different threshold values. In
addition to that, the range of n was also experimentally studied in this work.

R-peak with minimum

This method covers the other typical type of PVC beats that have the following
characteristics

1. The RRI is smaller than the mean RRI; (RR
i

< RR
m

).
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Figure 3.3 PVC detection Algorithm: Sum of Trough, that is based on summation of
n samples after R-peak (light green stars). Whenever this sum value is smaller than a
threshold (e.g. dashed pink line), the algorithm determines the beat as a PVC otherwise
marks it as a normal beat. The left y-axis corresponds to amplitude of ECG and the right
y-axis corresponds to the threshold values.

2. The R-wave amplitude is mostly smaller than R-wave in normal beats.

3. There is a huge and narrow negative wave after R-peak.

4. There is a big pause before beginning of the next heartbeat.

According to above characteristics, they have derived the below formula for detecting
this kind of PVC beats.

diff = min + x[Rpoint[i� 1]] (3.16)

whereas, min is the minimum value between two consecutive R-peaks, function x

represents the amplitude of the ECG signal and Rpoint correspond to the location of
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R-peak. If the diff value is less than a threshold; which was set to zero by Chang et
al., the system marks the beat as a PVC. For this method, we also evaluated outcome
of the algorithm with different values for the threshold. Figure 3.4 illustrates how
diff value (summation of pink arrows for each individual beat) is calculated for every
beats of ECG signal and if it is smaller than a threshold, the algorithm detects the
corresponding beat as a PVC. The left y-axis corresponds to amplitude of ECG and
the right y-axis corresponds to the threshold values. One normal and one PVC beats
are shown with a gray ellipse around them.
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Figure 3.4 PVC detection method: R-peak with minimum, if the diff value computed from
the formula is smaller than a threshold, the algorithm detects the corresponding beat as a
PVC. The left y-axis corresponds to amplitude of ECG and the right y-axis corresponds to
the threshold values.

3.2.9 Evaluation Methods

QRS Detection Methods

For evaluation of the QRS detection algorithms, the following scores for each QRS
complex in the ECG records were calculated: TP, the true positive for QRS detec-
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tion, i.e., the number of correctly detected R-peaks; FN, the false negative for QRS
detection, i.e., the number of missed R-peaks; and FP, the false positive for QRS
detection, i.e., the number of false R-peaks. These scores are gathered in confusion
matrix of Figure 3.5 and obtained by comparing the results of our algorithms with
the annotations file included in the database. According to the confusion matrix,
actual classes correspond to annotation file which here positive classes are referred
to the location of R-peaks and negative classes are corresponded to rest of the ECG
signal. The same principle is considered for predicted classes which are the results
of our QRS detection algorithms.
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Figure 3.5 Confusion matrix for evaluating QRS detection algorithms, TP: true positive,
FP: false positive and FN: False negative

Then we calculated standard performance measures; sensitivity and precision, for
evaluating the QRS detection algorithms based on given formula

Sensitivity =

TP

TP + FN
, Precision =

TP

TP + FP
(3.17)

in which, TP, FP and FN are corresponding to true positive, false positive and false
negative, respectively.

Ectopic Beat Detection

For evaluation of the ectopic detection method, following additional scores for each
heart beat are calculated: TP, the true positive for ectopic detection, i.e., the number
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of correctly detected ectopic beats; FN, the false negative for ectopic detection, i.e.,
the number of missed ectopic beats; FP, the false positive for ectopic detection, i.e.,
the number of false ectopic beats and TN, the true negative for ectopic detection,
i.e., the number of correctly detected normal beats. These scores are gathered
in confusion matrix of Figure 3.6 and obtained by comparing the results of the
morphological based ectopic detection method with the annotations file included in
the database. According to the confusion matrix, actual classes correspond to real
types of ECG beats based on their annotation file which here positive classes are
referred to ectopic/premature beats and negative classes are corresponded to normal
beats of ECG signal. The same principle is considered for predicted classes which
are the results of our ectopic detection method.
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Figure 3.6 Confusion matrix for evaluating ectopic detection method, TP: true positive,
FP: false positive, FN: False negative, TN: true negative

Then we calculated standard performance measures; sensitivity and specificity, for
evaluating the ectopic beat detection method based on given formula

Sensitivity =

TP

TP + FN
, Specificity =

TN

TN + FP
(3.18)

in which, TP, FP, FN and TN are corresponding to true positive, false positive,
false negative and true negative, respectively. High sensitivity shows how well ec-
topic beats can be distinguished from normal beats and high specificity presents low
number of false alarm detected by implemented method.
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PVC Detection Algorithms

For evaluating the implemented PCV detection method, receiver operating char-
acteristic (ROC) or ROC curve is applied to illustrate the performance of PVC
detection method when its discrimination threshold is varied. Sensitivity and speci-
ficity values were computed for every threshold values and then the ROC curve is
plotted as a function of sensitivity and 1-specificity. The range of threshold for Sum
of Trough method was chosen between -100 to 100 with a step of 0.01. In addition,
for exploring the optimal range of n (number of samples after R-peaks that must be
summed), different ROC curves were plotted and their area under the curves (AUC)
were computed. The ROC curve which resulted in bigger AUC was chosen as the
best range of n. The other PVC detection method, R-peak with minimum, were
evaluated according to its ROC curve in a similar approach but its threshold was
varied between -10 and 10 with a step of 0.01.

3.3 IP Signal Analysis

3.3.1 IP Database

IP signals were measured from 15 subjects (10 males and 5 females) in sitting po-
sition. The signals were recorded by two devices, one for measuring the IP and
the other for monitoring the changes in the temperature of respiration using an
NTC thermistor placed inside a mask that was worn in front of the mouth and nos-
trils. The temperature device was considered as a reference which provides a clean
artifact-free signal. For more information about measurement procedure refer to the
work by Jeyhani et. al. [81].

3.3.2 Data Pre-processing

According to Jeyhani et. al. [81] the range of respiration rate is considered between
4 to 60 breath per minute (bpm) and therefore the signals were filtered by a high
pass Butterworth filter with cut-off frequency of 0.06 Hz and a low pass filter with
a cut-off frequency of 1 Hz. The filtering was done by forward-backward technique
to eliminate the effect of the non-linear phase of IIR filters.
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3.3.3 Respiration Rate Estimation Methods

Respiration rate can be calculated from IP signal by the means of simple signal
processing techniques. For this purpose, first the filtered signal is divided into 15-
second long frames with 10 seconds overlap and the ACF was calculated for each
frame. Next, a peak detection function is applied to detect the desired peak in the
output of the ACF. The autocorrelation function of a periodic signal represents the
same cyclic behavior of that signal. ACF is defined as

r(⌧) =

N�1�⌧X

n=1

x(n)x(n+ ⌧), (3.19)

where x(n) is one frame of the signals and ⌧ is the lag. Next, the first peak after the
midpoint in ACF was detected and its lag multiplied by 60/f

s

was considered as the
respiration rate in bpm. The minimum horizontal distance for the peak detection
procedure was set to 1s which is according to the respiration rate range considered.

The respiration rates were estimated from both of the signals (IP and the one ac-
quired from the mask) and the results were compared. The results were evaluated
by the means of mean absolute error (MAE) and root mean square error (RMSE)
which are defined as

MAE =

1

N

NX

n=1

|ŷ[n]� y[n]| (3.20)

and

RMSE =

vuut 1

N

NX

n=1

(ŷ[n]� y[n])2, (3.21)

respectively. MAE can be seen as linear score of the magnitude of the individual
errors without considering their direction and each with equal weights. RMSE on
the other hand, gives relatively large weight to large errors (since the squaring is
done before averaging). RMSE, which has a value larger than or equal to MAE, can
give information about the variance in the error point. This can be observed as the
difference between RMSE and MAE.

Figure 3.7 depicts the result of filtering and estimation of the respiration rate. The
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first panel shows a 15-second frame of the IP measurement from one of the subjects.
The second panel shows the effect of filtering and the period estimated by only peak
detection in each cycle of the signal. Although, this method provides an easy and
cycle-to-cycle estimates of the respiration rate, in most of the cases in which the
respiration signal is not clean enough it is prone to be misled by the artifacts. The
last panel shows the ACF, its midpoint and the first peak detected after that. This
value is calculated from each frame of IP signals and temperature signal measured
from the mask and the results are compared to evaluate the agreement between the
two measurements.
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Figure 3.7 Filtering and respiratory rate estimation by AFC. The top panel shows the
original IP signal, the middle one shows the filtered IP signal and the panel in the bottom
shows the ACF that its first peak after the mid-point is chosen as the respiratory rate.
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4. RESULTS AND DISCUSSIONS

In this chapter, results of the proposed classifier and then the implemented signal
processing methods are presented, respectively.

4.1 Novel Generic Physiological Signals Classifier

Figure 4.1 illustrates performance plot of the proposed physiological signal classifier.
The performance plot shows value of Cross-Entropy versus iteration number for
training, validation, and test (with 0 dB noise) sets. Cross-Entropy presents the
network performance based on the mean of error between the network outputs and
the target outputs in logarithmic scale. The intersection point of green dashed
lines (Best), indicates the time when validation set had the minimum error and the
network weights and biases values were saved for the evaluation phase. The best
validation error was 0.029384 and achieved at epoch 112.

Figure 4.1 Performance plot of NN for training, validation and testing sets.
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Figure 4.2 illustrates the confusion matrix of our network output which the rows
show the predicted classes, and the columns show the true classes. The diagonal
cells show where the true classes and predicted classes match. The off diagonal cells
show instances where the classifier had made mistakes. The column on the right
hand side of the matrix shows the accuracy for each predicted class, while the row
at the bottom of the matrix shows the accuracy for each true class. The cell in the
bottom right shows the overall accuracy (obtained by summation of diagonal cells
divided by all) which is equal to 92.7%.

Figure 4.2 Confusion matrix of the network outputs. The rows show the predicted classes
and the columns show the true classes. The column on the right and the row at the bottom
show the accuracy for each predicted class and each true class, respectively and the cell in
the bottom right, presents the overall accuracy which is equal to 92.7%.

It can be seen that the proposed generic classification algorithm was able to dis-
tinguish ECG (lead I and II), Resp, SCG, EMG (from anterior tibia and thigh)
and PPG signals from each other with 100 % accuracy. The only exception was
for ECG lead I and II which there were less than 27% error. It means that used
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Table 4.1 The average of percent errors for testing set with different levels of white
Gaussian noise

Test set Average of PE (%)

with 0 dB WGN 7.60
with 10 dB WGN 8.76
with 20 dB WGN 8.88

general purpose features where enough discriminating to recognize different physio-
logical signals from each other. However, for classifying ECG signals obtained from
different leads or different locations, more specific ECG based features are needed.

Table 4.1, represents the average of PE (fraction of samples that were misclassified)
were obtained from test sets with different level of white Gaussian noise. Results
displayed in Table 4.1 indicate our generic classifier works quite robust in the noisy
environments.

With the proposed classifier we were able to distinguish these five different phys-
iological signals (ECG, EMG, SCG, Resp and PPG) from each other with 100 %
accuracy. Although for distinguishing different leads of ECG, certain additional
features are required. Eventually, it can be reported that the proposed generic
classification algorithm has an excellent discriminatory power for classifying these
different physiological signals from each other.

4.2 ECG Analysis

Pre-processing Figure 4.3 illustrates an example of noisy ECG signal and the
effect of filtering on an it. This signal was measured from SE lead in EASI electrode
configuration (EASI electrode configuration is used in Philips Holter monitoring de-
vices.) in department of automation science and engineering at Tampere University
of Technology (TUT). It can be seen how the baseline of the signal is corrected by
applying the high-pass filter and also the effect of power-line interference is perfectly
removed. On the left side, the whole record is shown and on the right side, zoomed
version of the noisy and filtered signals are illustrated for better visualization.
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Figure 4.3 Effect of filtering on a noisy ECG Signal. Top left shows a noisy ECG and top
right shows its zoomed version. Bottom rows show the top row record after preprocessing
in an original and zoomed version.

QRS Detection Methods For evaluating three QRS detection methods, each
of them individually, was applied on the whole MIT-BIH Arrhythmia database and
then the detected R-point were compared to the annotated R-point from annotation
file provided in the database.

In Table 4.2, numbers of correctly detected R-peaks (TP), missed R-peaks (FN)
and wrongly detected R-peaks (FP) are gathered. According to these scores that
were explained in chapter 3.2.3, sensitivity and precision are calculated for each QRS
detection method. It can be seen that, the modified Pan-Tompkins method with
optimum center frequency and bandwidth for its band-pass filter gave the highest
sensitivity and precision. Therefore, result of the modified Pan-Tompkins method
was chosen for the further analysis parts. It is worth mentioning that the Area-
based R detection method works very well on clean signals but for the corrupted
ECG signals and in noisy environments, number of false alarms (or FP) are much
higher than the two other methods.
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Table 4.2 Results of three R-peak detection method on MIT-BIH Arrhythmia database.

Pan-Tompkins Modified Pan-Tompkins Area-based

True Positive (samples) 102123 105381 101736

False Positive (samples) 4220 3877 8912

False Negative (samples) 6519 3261 6906

Sensitivity (%) 94, 00 97, 00 93, 64

Precision (%) 96, 03 96, 45 91, 94

Figure 4.4 shows a short part of ECG signal (from record 114 of MIT-BIH Arrhyth-
mia database) and the results of QRS detection methods on it. It can be observed
that all three methods detect R-points very well. Although modified Pan-Tompkins
and Area-based methods resulted in more accurate detected fiducial R-points.
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Figure 4.4 Detected R-points by Pan-Tompkins, modified Pan-Tompkins and Area-based
methods are marked with black circle, red star and cyan diamond, respectively for subject
114.
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Ectopic Beats Detection Figure 4.5 illustrates result of the ectopic detection
method for record 119 of MIT-BIH Arrhythmia database. As can be seen here
and explained in chapter 3.2.4, the principle of ectopic beat detection method was
based on RR intervals duration (pink arrows) and amplitude of R-wave peak (light
green arrows). There is a clear difference between RR interval duration and R-peak
amplitude of ectopic (surrounded by gray ellipse) and normal beats. It is worth
mentioning that, although the R-peak detection is not perfect for ectopic beats due
to right bundle branch block of subject 119, ectopic detection method perfectly
distinguished ectopic beats from normal ones.
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Figure 4.5 Ectopic beat detection based on RR interval duration and R-peak amplitude
for subject 119. Two ectopic beats are highlighted with a gray ellipse around them, it can be
seen that the previous RRI is shorter and the next one is longer when ectopic beat happens.
In addition, the R-peaks amplitudes are larger in the ectopic beats.

Table 4.3 presents results of the morphological based ectopic detection method
that are compared with the annotations file included in the database. According
to the confusion matrix explained in chapter 3.2.9, actual classes correspond to real
types of ECG beats based on their annotation file which here positive classes are
referred to ectopic/premature beats and negative classes are corresponded to normal
beats of ECG signal. The same principle is considered for predicted classes which
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are the results of our ectopic detection method. It can be observed that our simple
morphological based ectopic beat detection method was able to distinguished ectopic
beats from the other beats with 85, 74% sensitivity and 84, 34% specificity.

Table 4.3 Confusion matrix of morphological ectopic detection method on MITBIH Ar-
rhythmia database. Actual classes correspond to real types of ECG beats based on their
annotation file which here Positive classes are referred to ectopic/premature beats and Neg-
ative classed are corresponded to normal/other beats of ECG signal. The same principle is
considered for predicted classes which are the results of our ectopic detection method.

Actual Classes

Positive Negative

Predicted Classes
Positive 33579 11147

Negative 5586 60031

Sens = 85, 74% Spec = 84, 34%
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Figure 4.6 The effect of ectopic reduction on RR intervals from record 110 of MIT-BIH
Arrhythmia database. Top: RRI before ectopic beats correction, bottom: RRI after ectopic
beats correction
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Ectopic Beats Reduction After detecting the ectopic beats and checking the de-
tected beats with the annotation file, we applied the interpolation of zero degree for
reducing the ectopic beats and further heart rate and HRV analysis purposes. Figure
4.6 illustrates an example of RR intervals (obtained from time interval between each
two consecutive R-peaks), before and after applying the ectopic reduction method.
In the top panel, it can be observed that there are large changes (surrounded by
pink ellipses) that represents the occurrence of ectopic beats. It can be seen that
how RRI changes are different between normal and ectopic beats. Bottom panel
represents the corrected RRI after applying interpolation of zero degree method on
the above RRI. It can be seen that the variation of RRI changes is more visible after
reducing the ectopic beats.

Heart Rate Analysis Figure 4.7 shows how heart rate has been changed for a
subject (record 102 from MIT-BIH Arrhythmia database) during a day. This graph
provides a momentary heart rate level (beats/min) to a user and can be used e.g. for
monitoring the heart rhythm or controlling the intensity of exercise. Higher values
represent time of the day that subject was more active and smaller values show
the subject was probably in a more relaxed situation. Green and pink lines show
actual heart rate values during the day and the average of heart rate values in every
one-hour frame, respectively. The gray arrows indicate different period of the day
that heart rate activity of the subject was changed.
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Figure 4.7 Heart rate changes during a day for record 102

HRV Parameters In table 4.4 the selected time domain HRV parameters for a 5-
minute long frame from subject 102 whose heart rate activity is plotted in Figure 4.7
are presented. These parameters are wildly used in various HRV based algorithms for
stress and recovery analysis, metabolic processes and energy expenditure estimation,
detection of movements or changes in posture.

Table 4.4 HRV parameters obtained from a 5-min long ECG frame of record 102

Subject SDNN (ms) RMSSD (ms) pNN50 (%) SD1 (ms) SD2 (ms)

102 38.96 53.07 20 37.59 38.96

PVC Detection algorithms The sum of the trough R-peak with minimum meth-
ods were separately applied on the whole MIT-BIH Arrhythmia database. In sum
of trough technique, different thresholds and three different ranges for finding the
optimal range of n were studied. In Figure 4.8, ROC curve for three different ranges
are plotted that are range 11 to 25 (blue curve), range 10 to 60 (pink curve) and



4.2. ECG Analysis 62

range 35 to 85 (green curve). Each ROC curve represents the changes in threshold
values. The threshold values varied from 100 to -100 with steps of 0.01. For each of
the ROC curves the area under curve (AUC) is calculated and written on the figure
with the same color as its corresponding ROC curve. Based on AUC values for the
three studied ranges, it can be concluded that the blue ROC curve that represents
the sample range of 11 to 25 after R-peak, gives the largest AUC value of 0.87 in
comparison to the other ranges.

Although there is always a tradeoff between higher sensitivity and lower specificity
and it highly depends on the application that the algorithm is going to be used
in, then if we want to present a threshold for this PVC detection method (sum of
trough), threshold of �5 can be chosen. Since it results in highest sensitivity of 87%
and specificity of 82% which means the sum of trough PVC detection method with
threshold of �5 provides a good detection rate (large number of correctly detected
PVC beats) and reasonable number of false alarm.
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Figure 4.8 Evaluation of sum of the trough, three ROC curves for three ranges of n
(number of samples after R-peaks) are plotted. For each ROC curve the threshold values
were varied from -100 to 100 with a step of 0.01. The AUC for each curve was also
computed and it is written on the figure with the same color as its corresponding ROC
curve.
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In Figure 4.9, ROC curve is plotted for discovering the optimum threshold value
for the R-peak with minimum method. The threshold value has been changed from
-10 to 10 with a step of 0.01. The obtained AUC for this method was 0.75. Here,
the same as sum of through method, the best threshold value which resulted in
highest sensitivity of 68% and specificity of 72% can be reported at �0.7 for the
whole MIT-BIH Arrhythmia database. Therefore, for using these PVC detection
methods, optimum values for thresholds and range can be set to the above values
that we obtained from the ROC curves.
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Figure 4.9 Evaluation of R-peak with minimum: ROC curve is plotted for the threshold
values that were varied from -10 to 10 with a step of 0.01. The AUC for this curve is equal
to 0.75.

4.3 IP Analysis

Figure 4.10 shows an IP signal measured from one subject in three phases of stand-
ing, walking with 3 km/h, and walking 6 km/h in a continuous measurement. In
the first panel, the dashed pink lines show the annotations where the new phases
are stabilized. Therefore, probably the measurement phases are changed several
seconds before them. There are three small panels that show a magnified version
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of three small slices of the signal. It can be seen that the more intense the activity,
more the number of cycles (in the 10-second frame) and larger the amplitude of the
signals have become. The third panel shows the variation in the respiration rate
(calculated by ACF). The large valleys in the respiratory rate are probably due to
some deep breaths by the subject. The pink line is a 9th order polynomial fitted to
the respiration rate for a better illustration of the increase in this trend.

0 100 200 300 400 500 600 700 800

Time (sec)

100 105 110

Standing

500 505 510

Walking 3 km/h

800 805 810

Walking 6 km/h

20 40 60 80 100 120 140 160

Sample

15

20

25

30

R
es

p
ir

at
io

n
 R

at
e 

(c
p
m

)

Figure 4.10 Three magnified slices of IP signal measured in three phases standing, walking
with 3 km/h, and walking with 6 km/h, from left to right, respectively. The most bottom
panel shows the respiration rate estimated from the signal and a 9-th order polynomial fitted
to it.

The first panel in Figure 4.11 illustrates the temperature signal measured from
mask and IP signal measured from subject 2 as an example. It can be seen that the
signals follow the same frequency and amplitude changes. Although, it should be
noted that this measurement has been done in a steady position and therefore has
almost no artefacts. The second panel shows the respiration rate estimated from
these two signals. The maximum error in this figure is 0.80 cycles per minute (cpm).
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Figure 4.11 Comparing the IP and temperature mask signals measured from subject 2.
The bottom panel shows the respiration rate estimated from these two signals.

Figure 4.12 shows the correlation between the respiration rate resulted from the
IP frames and the ones from the temperature sensor. The pink circles indicate the
points in which the error between the two respiration rates were larger than 3 cpm.
These points were totally 18 points out of 870 (15 subjects each 58 frames) showing
that the error of the 98% of the frames were less than 3 cpm. The dashed blue line
shows the regression line fitted to the data. The correlation coefficient is equal to
0.96.
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Figure 4.12 A comparison between the respiration rate estimated from all the frames of
the data (from the IP and temperature signals) that are totally 870 frames. The pink circles
show the points in which the error is larger than 3 cpm.

Table 4.5 shows the statistical results of the error. MAE and RMSE are computed
between the respiration rate estimated from the IP and the temperature signals.
The maximum MAE and RMSE are related to subject 9 and 14, respectively. It
is worth pointing out that in Figure 4.12 the 11 points out of 18 pink circles are
linked to subjects 9 and 14. The total MAE and RMSE values are 0.40 cpm and
1.20 cpm, respectively. It can be concluded that the respiratory rate estimated from
IP signals is quite close to the respiratory rate estimated from temperature masks
which is not inconvenient in ambulatory applications. Therefore, the IP signal can
be considered as a good alternative for estimating respiratory rate.
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Table 4.5 MAE and RMSE errors between the respiration rate estimated from the IP and
the reference temperature signals for all the 15 subjects (10 males and 5 females). The last
row shows the total error for all the subjects.

Subjects MAE (cpm) RMSE (cpm)

1 0.16 0.28

2 0.20 0.29

3 0.15 0.18

4 0.24 0.33

5 0.15 0.20

6 0.33 0.84

7 0.20 0.27

8 0.08 0.11

9 2.06 0.15

10 0.25 0.48

11 0.56 0.26

12 0.15 0.19

13 0.44 1.10

14 0.69 2.06

15 0.34 1.24

average 0.40 1.20
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5. CONCLUSIONS AND FUTURE WORKS

In this work, the main goal was towards an automatic digital signal processing
approach from physiological signal classification to processing and analyzing the
two most vital physiological signals in long-term healthcare monitoring (ECG and
IP). In addition, our motivation for designing a generic physiological signal classifier
was developing a classification algorithm that can be implemented in automatic
healthcare monitoring system with the purpose of merging multiple wearable devices
into one piece and simplifying the usage of them for long-term purposes.

The objectives of this master thesis was accomplished very well. A novel generic
physiological signal classifier that has the ability to distinguish five types of phys-
iological signals (ECG, Resp, SCG, EMG and PPG) from each other with 100 %
accuracy was developed. The novel generic physiological signals classifier proposed
in this master thesis work is also published and presented in XIV Mediterranean
Conference on Medical and Biological Engineering and Computing 2016 [68]. It
should be mentioned that the proposed classifier was not very successful in distin-
guishing lead I and II of ECG signal from each other (error of 27% was reported)
which means that the general purpose features were enough discriminating to rec-
ognize different physiological signals from each other but not enough for classifying
different ECG leads.

Furthermore, a couple of signal processing methods and algorithms for analyzing
ECG and IP signals based on the presented results by their authors was selected
and then the selected algorithms were implemented in MATLAB with the aim of
long-term physiological signal processing. The analysis approach for ECG signal
processing was included these steps: ECG pre-processing, three QRS detection al-
gorithms, ectopic beat detection and reduction technique, heart rate analysis method
and PVC detection algorithm. And the implemented approach for IP analysis was
included IP pre-processing and respiration rate estimation. In this work, different
publicly available databases were used in development and evaluation phases. In
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the long run, we have evaluated the implemented signal processing techniques and
achieved reasonable performances that were presented in the result chapter.

One part of the future work of this master thesis could be evaluation of the pro-
posed classifier with other databases and also adding other types of physiological
signals to the classifier. In addition, the implemented analysis algorithms can be
tested with real data measured by e.g. DISSE measurement setup. Although differ-
ent pre-processing and filtering techniques for eliminating different types of noise,
interference and artefacts were included in this work but it is not clear what types
of e.g. movement artefact might occur during the wearable measurements and if the
implemented techniques can sufficiently remove those artefacts without losing the
significant information of the recorded data. In addition to that, since the ultimate
goal of DISSE project is to provide a new convenient healthcare system for elderly,
methods for detecting other heart arrhythmia such as ST segment elevation or de-
pression can also be studied. Generally, more sufficient signal processing algorithms
can be implemented and be tested with real data from elderly patients.
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