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From the beginning of time, people are concerned to compare different things. On this 

thesis, it will be analyzed the performance of a NoC architecture. To complete this pur-

pose, it is used a program called Transaction Generator (TG). TG is a program devel-

oped in TUT, and it is used to benchmark various parameters of NoC architecture. Dif-

ferent traffic models will be executed using TG, to know how the different characteris-

tics (number of tasks, existence of periodical events or number of PEs) of these models 

will influence on the performance of the NoC architecture. 

To get a better knowledge of the behaviour of the NoC, traffic models are executed sev-

eral times using TG while some of the attributes of the NoC are modified. With these 

changes (different traffic models and different attributes), the thesis presents a wider 

view of the NoC’s behaviour.  

Results and conclusions are presented on the final chapter of the thesis. The difference 

on the performance of the NoC is more reduced than expected when different traffic 

models are executed. This is because the traffic models selected do not present a huge 

difference between them. Besides, the impact of the attributes modified on the NoC is 

easily appreciated, and basically do not depend on the traffic model selected. However, 

this not implies that all the attributes measured have the same impact. For example, the 

activation of the DMA presents a high difference on the performance, while different 

NoC frequencies do not have any impact. 

TG allows the user to monitor the execution of the traffic model in real time, but that 

stays out of the scope of this thesis. This tool of TG is called Execution Monitor and it 

could be a good choice to use it in futures thesis. With Execution Monitor the user could 

do a deeper research on the performance of a NoC architecture. 
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1. INTRODUCTION 

The purpose of this project is to analyse the performance of a Network on Chip (NoC) 

system in different situations. There are multiple programs that can be used to achieve 

this purpose. In this case, Transaction Generator (TG) is the program that has been se-

lected. There have been selected a group of traffic models with different characteristics, 

such as number of tasks, number of PEs, or existence of periodical events. These traffic 

models will be simulated with TG. Every traffic model will be simulated several times 

to compare the performance of the NoC, when the attributes change, such as frequency, 

packet size or type of modelling. After every simulation, a group of log files are back-

filled with the simulations results, and these log files will be used to compare and ana-

lyse the different performance of the NoC. Figure 1.1 shows a summary of the process 

to get these analyses.  

 

Figure 1.1: Summary of the project. First of all, a group of traffic models with differ-

ent characteristics are required. Then, these traffic models are simulated using 

Transaction Generator (TG). Finally, the results obtained are compared to analyze 

the different behavior of the NoC. 
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2. RELATED WORK 

This chapter presents a briefly introduction about Network-on-Chip (NoC) and Design 

Space Exploration (DSE). Furthermore, are also presented other simulators and different 

case studies.  

 

 Network on Chip (NoC) 2.1

 

Network on Chip (NoC) is a communication system built on an integrated circuit. NoC 

were created to improve the structure, modularity and performance compared to the 

conventional bus or point-to-point networks. NoC consists on a set of modules where 

the data is transferred among themselves. NoCs usually utilize a multi-hop topology 

instead of direct wires [7]. On multi-hop networks the wires can be shared by many 

modules. The advantages of this paradigm include: local performance is not degraded 

when scaling; network wires can be pipelined because links are point-to-point. [8] 

The modules are the functional units of the NoC architectures, and they are Intellectual 

Property (IP) blocks. These blocks are connected to the network by a network inter-

face. NoC architectures also have routers to select the routing convention and links to 

connect these routers in order to define a network topology [9]. Nowadays, there are 

multiples network topologies defined to implement a NoC. For example, those in Figure 

2.1. Some of the design aspects that vary between these topologies are: physical area, 

power consumption or latency. It is not easy to choose the best topology in each case to 

get the best trade-off between the design aspects. 

NoC architectures can be configurable. The user can change and modify some parame-

ters, such as the scheduling algorithm, the packet size sent or buffer depth. This can be 

done in order to have the characteristics the user find more suitable for his purposes. 

Besides, the applications tasks can be mapped and scheduled in many different ways. 

To find the most efficient combination for each application many tests are required [10]. 
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Figure 2.1: Three different NoC topology examples. The image shows the routers and 

the links that connect them. The functional elements linked to the routers are not 

shown [9]. 

 

 Design Space Exploration (DSE) 2.2

It is difficult to find an efficient combination of parameters. In order to find it, many 

simulations have to be made to find a valid solution. This process is called Design 

Space Exploration (DSE) [11]. A usual scheme for this process is commonly called “Y-

chart”, as shown in figure 2.2. The application is mapped to the architecture, and then, 

this configuration is simulated, gathering all the necessary data to measure if it fits he 

desired requirements. There is a lot of data that could be measured, such as power con-

sumption, usage of the processors, or time to complete the application. 

 

Figure 2¡Error! No hay texto con el estilo especificado en el documento..2: Y-chart 

Design Space Exploration workflow [10]. Continuous arrows show the steps followed 

of the main workflow, while the dashed arrows show the feedback paths. 
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DSE has 3 important aspects.  

1) Accuracy. The first simulations do not necessarily need a very precise accuracy, 

because the point is to discard the configurations that clearly are not suitable and 

to estimate the variation between solutions. Later, the accuracy can be increased 

to finally select the configuration to choose.  

2) Exploration speed. The exploration speed could be increased by decreasing the 

accuracy, or moving from Register Transfer Level (RTL) modelling, which is 

slower but more accurate, to Transaction Level Model (TLM).  

3) Amount of work the modelling requires. 

 

 Simulation utilities 2.3

Other simulators have been created with a similar purpose than Traffic Generator (TG). 

The purpose of these simulators is to benchmark different applications mapped in NoC 

architectures to find the most efficient or suitable configuration in each case. 
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3. TRANSACTION GENERATOR (TG) 

Different programs have been designed to benchmark multiple NoC systems. One of 

these programs was created in the Technological University of Tampere in 2003. Its 

name is Transaction Generator (TG) [2]. TG is an open-source program and it allows 

the user to generate network traffic and benchmarking it to evaluate and explore the 

architecture of NoCs. 10 years later the program was redeveloped by Lasse Lehtonen 

for his Master thesis. The new version of the program develops some new features. It is 

now written in SystemC 2 TLM and it uses OCP-IP TLM sockets. It also implements an 

Accurate Dynamic Random Access Memory (DRAM) Model (ADM). [3] 

To perform the different simulations and evaluate the different NoC architectures and 

their performances, the models that have been used are written in eXtensible Markup 

Language (XML). This language eases the understanding of the code, so it is easier for 

the user to know all the properties of the NoC architecture. 

The version of Transaction Generator used during this thesis was implemented as a part 

of NOCBENCH project [4], funded by the Academy of Finland [5]. TG is now on its 

second version. C++ is implemented in TG and uses SystemC libraries to allow the no-

tion of time. To enable the use of other different tools like Execution Monitor, it also 

uses some libraries from Boost [6]. These libraries also let the program to parse the 

XML input models that are used to evaluate the NoC architecture, which are the files 

that indicates all the conditions the simulation will have. 

A basic structure of how TG works is shown in Figure 3.1. The first stage is Applica-

tion, which defines the tasks, how they work, and the ports associated to each task. The 

second stage is Mapping, which defines where the tasks will be executed. The third 

stage is Platform, which defines PEs and its elements, such as cache or DMA. The 

fourth and last stage is Interconnection, which defines the characteristics and properties 

of the NoC architecture. 
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Figure 3.1: Conceptual view of TG. Simulation model is divided into four main parts 

[3]. This structure is saved into an XML file that is read by TG upon start. 

 

To make easier the parsing of the input XML files the program is designed to parse their 

tags in smaller parts. This can be done because the implementation of TG is split in 15 

classes. In this way, each class has only its own information and properties, and each 

tag or sub-tag of the XML files will be analysed on its own class. Figure 3.2 shows a 

diagram with the 15 classes of the implementation and the main relationships between 

the different classes. 

Amount: During the simulation this class enables the evaluation of the distributions and 

polynomials that are defined in XML description. This allows knowing the amount of 

sent or received bytes. 

Configuration: This class analyses the constraints of the input XML file and contains 

the general information of the simulation. It also has other data that is useful like the 

length of the simulation, the interval between the measurements, the NoC class or the 

mapping information. 

 



7 

 
Figure 3.2: Diagram showing the classes of Transaction Generator implementation 

and the most important relationships between the classes [3]. 

 

CostFunction: As its name notices, this class analyses the different cost functions and 

execute a calculator to know them at the end of the simulation. The cost functions are 

the most important class to analyse the different performance that a same NoC class has 

when some parameters have been changed, like the frequencies of the CPUs. Some ex-

amples of the cost functions are the amount of times that a task has triggered or the per-

centage of utilization of a CPU. 

Event: This class implements a SystemC thread to start the different events while the 

simulation is running. It also parses the description of the events. 

Buffer: This class sets the model of the PEs internal memory. It also establishes the 

communication interface between the resources and the network model. 

BufferInterface: This class establishes the interface that the network model sees from 

the Buffer class. 

Measure: This class creates the SystemC threads to have all the measurements joined 

while the simulation is running and communicating with the Execution Monitor. 

Resource: This is a base class for the Memory Model and the PEs. It analyses the in-

formation they have in common, as the frequency, the packet size or the buffer sizes. 

MemArea: This class parses the data relevant to the memory areas. 

MemoryModel: This class analyses the information related to memory elements and 

manages the communication with the ADM DRAM models. 
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ProcessingElement: This is the most important class and parses the data relevant to 

PEs and sets some properties, such as the communication and execution of the tasks, the 

scheduling algorithms (like FIFO), or the cache miss models. 

ResourceUser: This is the base class for MemArea and Task classes. It gathers the in-

formation they have in common, like input and output ports or the identification num-

bers. 

Task: This class analyses the most general task information from the task tags. It also 

sets the task model’s internal state machine. 

Trigger: This class analyses the trigger tags and gathers a set of operations to run after 

being triggered. 

TcpServer: This class builds a TCP server to communicate with the Execution Monitor 

 

 XML Models 3.1

To perform the simulations, TG uses models written in eXtensible Markup Language 

(XML) [1]. This language is made up of storage units that are called entities. Each enti-

ty contains data, and this data can be parsed or not. If the data is parsed, it is made up of 

characters. Some of them are character data, and others are markup. Markup encodes a 

description of the document’s logical structure and storage layout. The most remarkable 

goals that XML development set are: easily usable over the Internet, support a wide 

range of applications, easy to write a program to process XML documents, formal and 

concise design on the documents, which should be human-legible and clear.  

The XML documents used to perform the simulations on TG are clearly divided into 4 

main parts: Application, Mapping, Platform and Constraints. This division has a main 

purpose. It helps the user to understand better how the model works. The four sections 

answer 4 important questions: What, Where, When and How. 

3.1.1 Application 

The first part of the XML models is the Application part. Here are defined the tasks and 

the events, how are the tasks connected between them and the triggers for each task. 

Figure 3.3 shows a task graph with the content of the application part of a XML model. 

In this case, the example presents: the events that triggers some tasks (i.e. adc); the dif-

ferent tasks, like load or norm; and the channels that communicate the tasks, indicating 

the amount of bytes sent between each pair of tasks and the input and output ports. 
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Figure 3.3: Visualized task graph presented in [5]. The events are represented by the 

small black dots; circles represent the tasks with their names; and the edges represent 

the communicational channels and the amount of data of the transmissions. 

 

The application part of the models used with TG describes the tasks involved on the 

execution of the model. This part of the model consists of 3 main groups: 

Events: Here are defined the external inputs and the timers. They are used to trigger the 

execution of some tasks of the model. The difference between them is the timers are 

executed indefinitely and the external inputs are executed only a certain amount of 

times. On each of them it can be set the name, the id, the destination (out_port_id), the 

amount of data to send, the probability to be executed, the offset, the period, and in case 

of the normal inputs, the amount of times to be executed. 

 

Tasks: After the events, it is the turn for the tasks to be defined. Figure 3.4 shows an 

example of how are defined the tasks on a XML file. The tasks contain lot of infor-

mation. First of all, the communication channels are defined, so the input and output 

ports are set. Then, it has to be defined what is going to be the element that triggers the 

execution of the task. It could be some of the events previously defined, or some data 

send by another task. The triggers could be of different types, such as AND or OR. The 

tasks also carry an internal count (trigger’s counter) about the amount of times the trig-

ger has been triggered during the execution of the simulation. This allows the task to 

perform different operations depending on the amount of the trigger’s counter.  
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   < t a sk  name = " Task1 "  i d= " 0"  c l as s  = "  g ener a l  " >  

     < in_ po r t  i d= ”10 ”/>  

     < in_ por t  i d= ”11 ”/>  

     <out_ por t  i d= ”15 ”/>  

     < t r i gg er  dependence_ t ype= ”OR” >  
 < in_ por t  i d= ”10 ”/>  

 < in_ por t  i d= ”11 ”/>  

 < exec_ count  m in= "0 "  max=" 100 "  mod_pe r i od= " 150" >  

     < op_ coun t>  

       < in t _ ops>  

  <po l ynomia l >  
    <par am v a lue= " 13"  e xp= " 0 "/>  

  </po lynomia l>  

       </ in t _ ops>  

     </op_ count >  

     < s end  out _ i d= " 7 "  p r ob= " 1" >  

       <by t e_ amount>  
  <po l ynomia l >  

    <par am v a lue= " 384 "  e xp= " 0 "/>  

  </po lynomia l>  

       </by t e_ amount >  

     </send>  
     <nex t _ s t a t e  v a lue= "READY"/>  

 </exec_ c ount>  

     </ t r i g ge r>  

   </ task>  

 

Figure 3.4: Example of a task on a XML model used with the TG. 

 

After that, it is time to define the execution counts. The execution counts can be execut-

ed a certain amount of times, or its execution could be also periodic and executed an 

unlimited amount of times, stopping only when the simulation finishes. The amount of 

clock cycles needed to execute a task, or the amount of bytes to send or read for each 

execution count could be calculated by three different methods. First of them is a poly-

nomial equation (3.1) where we define the an terms, and depends on the amount of data 

received (x). 

                                              𝑎𝑛𝑥𝑛 ··· 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0             (3.1) 

 

The second option is a uniform distribution (3.2). In this case, it does not depend on the 

amount of data received, but it provides a uniform random amount, which is useful 

when only the range of the amount incoming data is known: 

                                                          𝑈(𝑎, 𝑏)          (3.2) 
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The last option is a normal distribution (3.3). In this case, the mean of the distribution 

could be a parameter (µ) or the amount of data received (x), and the standard deviation 

is a constant (𝜎2). 

                                                          N(x;µ, 𝜎2)     (3.3) 

 

It exists also the possibility to combine the different options. Finally, each execution 

count depends also on a probability to be executed. If this probability is less than 1.0 

(100%), the execution count will not be executed each time it is triggered. In this case, 

the probability is checked every time the trigger is fired. 

Port connection: Here are defined the channels that connect every task and explains 

where the tasks send data. It could be possible two tasks have more than one channel 

between them in common. For example, both tasks could be a sender and a receiver to 

the other task; or one task could send data through two different channels to the same 

task because it wants to send different data.  

Figure 3.5 shows an example of an application part on a XML model. 

 

<app l i ca t i on>  

< t ask_gr aph>  
< ev en t _ l i s t>  

…  

</  ev en t _ l i s t  >  

< t ask  name = " Task1 "  i d= " 0"  c l as s  = "  gener a l  " >  

…    
</  t a sk  >  

<  por t _ connec t i on  s r c  = " 1 "  ds t  = " 10 "/>  

…  

…  

<  por t _ connec t i on  s r c  = " 95"  ds t  = " 100 " />  

</  t a sk_ gr aph  >  
</  app l i c a t i on  >  

 

Figure 3.5: Application section of a XML model used with the TG. 

 

3.1.2 Mapping 

On this section of the XML files is defined define where the tasks are going to be exe-

cuted. This section is a link between the application section, and the platform section. 

Tasks will be situated on software platforms, and multiple tasks could share the same 

platform. If they are grouped together the communication costs could be affected. Tags 
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could be used to characterize these software platforms. These tags could be used by 

some external DSE tools to get information about the resources (i.e. PEs and memo-

ries), the software platforms and the tasks. There are two kinds of tags: contents and 

position. The contents tag refers to the possible modification of the mapping by the DSE 

tool. If a tag is set as mutable, DSE tools are able to modify the mapping. Otherwise, if 

it is set as immutable, the mapping cannot be modified by DSE tools. Position tag ap-

pears on the software platforms, groups (formed by tasks) and tasks, but not on the re-

sources. When it appears on the software platforms or the groups, it defines if the DSE 

tools are allowed to be remapped them as a whole. In case that is set on the tasks, it de-

fines if the tasks can be remapped or not. If this tag is set as movable, the remapping 

could be modified by the DSE tools. Otherwise, if it is set as immovable DSE tools 

cannot modify the remapping. Figure 3.6 shows the mapping section of a XML model. 

<mapp ing>  

 < r e sour ce  name= "cpu1"  i d= " 0"  c on t en t s= " mut ab l e ">  

  < sw_ p l a t f o r m pos i t i on= "mov ab l e "  i d= " 0 "  c on t en t s= " mutab l e ">  

   <g r oup pos i t i on= " mov ab le "  name=" g1 "  i d = " 0"   

c on t en t s= " mut ab l e ">  

     < t a sk  pos i t i on= " mov ab le "  name=" Task1”  i d= " 1 "/>  

     < t a sk  pos i t i on= " immov ab l e "  name=" Task2 "  i d= " 2" />        

   </gr oup>  

  </sw_ p la t f o r m>  

 </r esource>  

 < r e sour ce  name= "cpu2"  i d= " 1"  c on t en t s= " immut ab l e " >  

 . .  

. .   

 </ r e source>  

</mapp ing>  

Figure 3.6: Extract of an example of the port connections of a XML model used with 

the TG. 

 

3.1.3 Platform 

This section defines the Processing Elements (PEs) where the tasks are going to be exe-

cuted. These PEs could be different hardware resources, such as hardware accelerators, 

processors or memories. The descriptions of the different PEs are defined in a separate 

file, the PE library. So, on the platform section, it has to be described the characteristics 

of the PEs, but not their definition. The parameters include on the PE library are: 

Type: classifies PE’s in different groups: general processors, memories and hardware 

accelerators. 
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Frequency bounds:  defines a range for the operating frequency of the PEs. 

Direct Memory Access (DMA) controller: specifies if the PE can carry communica-

tion and computation operations at the same time. 

Communication overhead: defines the timing modifiers used in the communication 

transactions. 

Computation performance: describes the performance characteristics for the different 

type of data, such as integer, floating point and memory instructions. 

Area: estimates the cost in mm
2
 or kilogates of the platform when the DSE optimiza-

tions are utilized. 

Power consumption: estimates the power consumption in DSE optimizations. 

Last two parameters refer to the estimated consumption a PE will cause when it is a part 

of a NoC chip. However, they are estimations. For example, a PE with a high operating 

frequency could cost less total power than a PE with a lower operating frequency due to 

the time spent to execute the tasks. Type parameter defines the kind of applications a PE 

can execute when the mapping is made automatically. For example, when an application 

model is used, it will not allow executing some tasks in the PEs that cannot execute 

them in the real world. Finally, the rest of the parameters refer to the operating speed of 

the PEs. 

It is time to describe the parameters of the PEs that are included in the main XML file. 

These are the parameters that have to be modified to know the performance of the NoC 

with PEs with different characteristics. 

Frequency: establishes the operating frequency of the PE. The unit is MHz. 

Type: sets the type of PE is going to be used. It must be defined this type in the PE li-

brary with its characteristics. 

RX buffer size: defines the maximum amount of bytes of data that can be received and 

have not been consumed by the task models. A token of data is considered received 

when the task that has received the token has read it. It could be read it by the task itself 

or by the DMA unit. When this occurs, the equivalent size of the token is liberated of 

the RX buffer. If the buffer is full, it will stop reading data, so the model will stall. 

TX buffer size: establishes the maximum size of tokens that are going to be sent by the 

PE. Like in the other buffer, if it ever becomes full of tokens, it will stop the sending of 

tokens. And this will cause the stall of the tasks and the congestion of the model. 
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Packet size: defines the maximum amount of bytes of a token, because the interconnec-

tion channels cannot send a token with unlimited size. If the token sent is bigger than 

the size allowed, it will be automatically separated in smaller tokens with the size per-

mitted. When the tokens are received, they will be recombined into the original token. 

Scheduler: defines the scheduling algorithm that is used by the PE to execute a task 

when the previous one has finished its execution. The possible algorithms are: First In 

First Out (FIFO), fixed priority and sequence scheduling schemes. 

Figure 3.7 shows an example of the mapping section in a XML model. 

 

 

<p l a t f o r m>   

  < r e sour ce  i d= " 0 "  name=" c1"  f r equency= " 50 "  t ype= " CPU_ TYPE_ 1"  

   r x _ buf f e r _ s i z e= " 262144 "  t x _ buf f e r _ s i z e= " 1024"   

   packe t _ s i z e= " 16"  schedu l e r = ” f i f o ”>    

  </ re sour ce>  

 

  < r e sour ce  i d= " 1 "  name=" c2"  f r equency= " 500 "  t ype= " R ISC_ CPU"  

  r x _ buf f e r _ s i z e= " 131072 "  t x _ buf f e r _ s i z e= " 2048"   

  packe t _ s i z e= " 16"  schedu l e r = ” f i f o ”>  

      </ r e sour ce>  

</p l a t f o r m>  

Figure 3.7: Extract of an example of the mapping section of a XML model used with 

the TG. There are two PEs defined with different characteristics. 

 

The scheduling algorithm selected in each PE could affect the execution time of the 

tasks, because some tasks could be ready for their execution, while the PE is waiting 

until the task with preference is ready to its execution.  

Figure 3.8 shows the application’s state in TG. It is represented as a state machine, and 

all tasks starts in the WAIT state. 

 

Figure 3.8: Application’s state in TG represented as a state machine [3]. 
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Different state transitions that exist in the application’s state represented previously are 

defined in the next list. 

a) Task was waiting for a reply from external memory, and before it has executed a 

READ statement. When the reply arrives, the task will be moved to RUN state. 

 

b) Task’s trigger is prepared to be fired because its conditions has been completed, and 

task moves to READY state waiting to be selected by the scheduling algorithm. 

 

c) Task is selected for its execution by the scheduling algorithm, so it is moved to RUN 

state. 

 

d) Task has been executed but it has more triggers to execute, but it is been moved to 

READY state by the scheduling algorithm. 

 

e) Task has been executed, and at the moment it does not have more pending triggers, 

so it is moved to WAIT state. 

 

f) Task has been executed and its last trigger has been fired also. Besides, task no de-

pends any more on data during the simulation, so it is moved to FREE state. 

 

Finally, another thing it can be described is the time a PE needs to execute the tasks it 

has assigned. When a task trigger’s is fired and the task is moved to RUN state, TG cal-

culates the operations that needs to be executed based on the amount of tokens received 

and the probabilities of the triggers defined in the application section of the XML mod-

el. After that TG calculates the data needed and some random values, and starts to exe-

cute the operations in order. 

The time needed to execute the operations depends on the type and operating frequency 

of the PE, and the presence of a DMA controller ready to be use. One of the differences 

about the various types of PEs is the amount of cycles they need to execute an instruc-

tion in an operation. There are also 3 classes of operations: integer, floating-point and 

memory operations. Integer operations are mainly use in primary instructions that are 

normally executed in a fixed amount of time and do not depend on the PE they are go-

ing to be executed. That is not the case of the floating-point and the memory operations. 

These operations depend a lot on the PE they are going to be executed. For example, 

there are defined some types of PEs that have a dedicated floating-point unit. In this 

case, these types of PEs are going to need less time to execute floating-point operations 

than the PEs without that unit. 
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In order to calculate the cycles needed to execute a task, TG follows the next equation 

[3]  

                     𝑁𝑐𝑦𝑐𝑙𝑒𝑠,𝑖,𝑝𝑒 =
𝑁𝑖𝑛𝑡,𝑖

𝐼𝑃𝐶𝑖𝑛𝑡,𝑝𝑒
+

𝑁𝑓𝑙𝑜𝑎𝑡,𝑖

𝐼𝑃𝐶𝑓𝑙𝑜𝑎𝑡,𝑝𝑒
+

𝑁𝑚𝑒𝑚,𝑖

𝐼𝑃𝐶𝑚𝑒𝑚,𝑝𝑒
                       (3.4) 

where scripts and subscripts on the equation mean: Ncycles is the amount of clock cycles; 

Nint, Nfloat and Nmem are the amount of integer, floating-point and memory operations; 

IPC is the PEs instructions per second; i is the id of the task we want to calculate the 

amount of cycles needed to its execution; and pe is the PE where the task will be exe-

cuted. In order to know how much time is needed to execute the task, the amount of 

cycles needed using the PEs operating frequency fpe, have to be converted into SI units. 

This is the equation that should be used: 

                                                   𝑡𝑖,𝑝𝑒 =
𝑁𝑐𝑦𝑐𝑙𝑒𝑠,𝑖,𝑝𝑒

𝑓𝑝𝑒
                                       (3.5) 

3.1.4 Constraints 

This is the last of the four sections that a XML model is divided into. In this section it is 

going to be defined the parameters of the NoC architecture that are going to be used 

during the simulation. There are also set some parameters of the simulation. Figure 3.9 

shows an example of this section in a XML file. 

 

 

< cons t r a in t s>   

  <noc  c l a ss= " mesh_ 2d "  t ype= " s c_ t lm_1 "  sub type= " 2x2 "   

noc_ f r eq_g= " 500 "/>    

  < r ng_ seed   v a lue= ”42 ”/>  

  < s im_r eso lut i on   t ime= " 1 . 0 "  un i t = "ns " />  

  < s im_ l eng th   t ime= " 180 "  un i t = "ms "/>  

  <measurement s   t ime= " 5 . 0 "  un i t = " ms " />  

  < exec_ mon   us ing= " t r ue "/>  

  < l og_ exec_ mon    f i l e= " l og_ ex ecmon . t x t " />  

  <pe_ l i b    f i l e= " examp l e s/pe_ l i b . xm l "/>  

  < l og_ t oken        f i l e = " l og_ t oken . c sv " />  

  < l og_ summary      f i l e= " l og_ summary . c s v "/>  

  < cos t _ f unc t i on    f unc= " pu_ 1" />  

  < cos t _ f unc t i on     f unc= " pu_ avg " />  

  < cos t _ f unc t i on     f unc= " t c_ 1" />  

</cons t r a in t s>  

Figure 3.9: Extract of an example of the constraints section of a XML model used 

with the TG.  
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The parameters that are usually set about the NoC architecture in the XML models are 

class, type, subtype and its operating frequency. However, the definition of a NoC ar-

chitecture, presents more attributes that can be also changed in the XML models. But, if 

they are not modified, all of them have a default value defined on the NoC description 

XML source. Some of these parameters are: depth of the FIFO, operating frequency of 

the IP or maximum size of the packet. 

In this section, there are defined some parameters of the simulation. These parameters 

are: 

rng_seed: sets a seed to calculate the random values. If this parameter is not set, the 

system will choose a random one. 

sim_resolution: establishes the amount of time a clock cycle last on the simulation. 

sim_length: defines the length of the simulation with the value and the unit. 

measurements: set the amount of time between each measure the system does during 

the simulation. In other words, it sets the frequency of the measurements. 

exec_mon: defines if it is going to be used Execution Monitor or not, and where the log 

file with the data is going to be saved. 

cost_function: defines which cost functions are going to be calculated. It can be added 

or deleted as many cost functions as users wants. 

Finally, it is also set the path where the PEs library is located and the paths where log 

files are going to be saved. 

 

 

 

 



18 

4. OWN EXPERIMENTS 

In this chapter is going to be presented some of the simulations that have been done to 

acquire more knowledge about how the NoC works. First of all, there is a little descrip-

tion about the installation of TG and how it has been used. Then, the log files that will 

have been created are described. These files are automatically generated when a simula-

tion is ran using TG, and provide valuable information about the model executed. Final-

ly, some of the models that have been used are presented. In each model, it is included a 

brief description of it, and detail the analysis that have been made, listing the parameters 

that have changed in each file. 

 

 Setup 4.1

Transaction Generator is the program that has been used to benchmark the NoC archi-

tectures. It can be downloaded from the webpage of the NOCBENCH project [12]. 

Some examples models are included with this version. There are also some traffic mod-

els that are included in the zip package [13]. Some of these traffic models are used to 

perform the simulations described here. Besides, it has been used some Multi-Constraint 

System Level (MCSL) traffic patterns to have a better knowledge about the perfor-

mance of the NoC with different kind of models [14]. These MCSL models can be 

downloaded from here [15]. 

 

 Modified parameters 4.2

To analyse the different behaviour of the NoC, there has been ran several simulations of 

each model. Some parameters have been modified to compare how the NoC works on 

different conditions. There are many parameters that can be modified, so the possible 

combinations are too huge to approach all of them. Figure 4.1 shows a summary of all 

the modelling parameters that can be modified to benchmark the different NoC architec-

tures. 
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Figure 4.1: Modelling parameters addressed by TG [13]. 

 

The parameters that have been modified to run the different simulations are the follow-

ing: 

RTL vs TLM modelling: As it has been explained before, RTL is slower but more ac-

curate. Comparing different simulations it can be estimated how much is the difference 

between the accuracy and the speed of both of them. If the accuracy of the TLM model-

ling is at least 98% of th RTL accuracy, and TLM is at least 15% faster, TLM will be 

chosen to perform our simulations. 

Frequency: The frequency of the processors will be modified, and also, the frequency 

of the NoC. After that, it will be analysed how affect each of them to the performance of 

the NoC. 

DMA: Some simulations will be performed with DMA activated, and some of them 

with DMA disabled. 

PE: The number of PEs will be modified. To make these simulations easily repeatable, 

the tasks will be mapped by their index. For example, if there are 24 tasks and 2 PEs, 

task #1 to task #12 will be mapped to PE #1, and the rest of the tasks to the second PE. 

If there are 8 PEs, tasks will be mapped in groups of 3. 

Mapping: It is going to be a remap of some tasks in some of the models to analyse how 

this affect to the performance of the NoC. 

Packet size: Finally, the amount of bytes of the packets will be modified. 
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 Log files 4.3

Five log files are generated automatically when a simulation is executed. They are saved 

on the path set in the model that has been executed. The format of these files is Comma 

Separated Value (CSV), which can be read with Excel or OpenOffice Calc. In each log 

file, user can find information about the simulation, such as processors utilization, to-

kens sent between tasks or the amount of clock cycles a task need to be completed. 

Now, each log file is described to know the information each of them have. 

 

4.3.1 App 

This log file shows the state and useful information about all the tasks from the begin-

ning of the simulation till the end of it. The interval between the measurements can be 

changed in the XML model. Table 4.1 shows an example of the information this log file 

shows. 

Time 
[us] 

   
Id 

           
Name 

PE 
id 

 Cur. 
state 

 Tot 
#trig 

 Tot. 
#cy-
cles 

 Tot. Tx 
tokens 
[B] 

 Sent 
local 
[B] 

 Sent 
remote 
[B] 

 Cur. 
RxBufUsage 
[B] 

1000 0 
            
FP1 7 

      
READY 32 32 380288 128 380160 1 

 
1000 1 

             
ME 6 

       
WAIT 0 0 0 0 0 11880 

 
1000 2 

            
DCT 5 

       
WAIT 0 0 0 0 0 0 

 Table 4.1: Extract of log_app generated with the simulation of av_bench.xml 

As it can be seen in the table, the program writes the information of the simulation when 

it is running and makes the measurements. This log file provides the following infor-

mation: 

Time: It shows the time when the data was measured. 

Id: It gives the ID of the task. 

Name: It shows the name of the task. 

PE id: It provides the ID of the PE where the task is mapped. 

Current state: It gives the current state of the task. It could be READY, WAIT or 

RUN. 
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Total triggers: It shows the amount of times the task has been triggered. 

Total cycles: It provides the amount of cycles the task has been running. 

Total Tx Tokens: It gives the amount of tokens the task has sent. 

Sent local: It gives the amount of bytes the task has sent to another task mapped in the 

same PE. 

Sent remote: It gives the amount of bytes the task has sent to another task mapped in a 

different PE. 

Current Rx Buffer usage: It shows the amount of bytes there are currently in the Rx 

buffer. 

 

4.3.3 Packet 

This log file shows information about the tokens sent between tasks. It provides infor-

mation about the amount of time a token of data needs to reach its destination. Besides, 

it tells the user between which two ports is the token sent. Table 4.2 shows an extract of 

this log file. 

It can be seen on the table every token receive an ID. This allows the user to identify the 

path follow by a token. The log file also provides the time needed to send the token, and 

this time converted to amount of clock cycles. If the amount of bytes of the token is 

bigger than the packet size defined, the log file tells the user when the simulation starts 

sending that token, when ends, and the cycles needed to send each byte. Besides, it 

gives the ID of the source and destination ports, and the type of the token.  

Rx Time 
[1 ns] 

 
To-
ken 
# 

  
Byt
es 

Token 
begin 

Token 
end 

 Time 
interval 

 Interv 
[cyc] 

   Src 
port 

   Dst 
port 

 
Ty
pe 

 

4 2 4            b          e 2 1 2119 1921 
   
wr 

 

355 4 8            b            350 175 1 10 
   
wr 

      21 
cyc/Byte 

406 0 8            b            404 202 2423 2324 
   
wr 

      25 
cyc/Byte 

Table 4.2: Extract of log_packet generated with the simulation of av_bench.xml 
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4.3.4 PE 

This log file shows information about each PE every time the program does the meas-

urements, like in log_app. When the program does the measurements the information 

about the PEs is filled. It contains very detailed information of every PE. First of all, the 

log file provides the time when the measurement has been done, the name and the ID of 

the PE. Then, it provides its current state, that can be send or idle, and its percentage of 

utilization. It also gives information about the amount of bytes that have been sent and 

received, and the amount of bytes that are currently in the transmission and receiver 

buffers. Finally, it provides information about the amount of clock cycles the PE has 

been doing different tasks, such as being idle, busy, executing, sending or communi-

cating with itself. Besides, it provides the amount of cycles that the buffers have been 

waiting. 

 

4.3.5 Summary 

As it name expresses, this log file provides a summary of the simulation. In this case, 

the log file is not structure like a big table. First of all, it shows the name of the model 

used in the simulation, along with some information of it, such as length of the simula-

tion and class, subclass and type of the NoC chosen. Then it provides the values of the 

cost functions included on the model that has been executed. Finally, it shows infor-

mation about every PE. Table 4.4 shows an extract of this log file with this information. 
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Table 4.4: Extract of log_packet generated with the simulation of av_bench.xml. It 

shows the information related to the PEs. 

First of all, it shows the name of the PE with its ID and its frequency expressed in MHz. 

Then, it provides information about the amount of cycles, and percentage of time, the 

PE had been busy or idle during the simulation. Furthermore, it presents the different 

operations done by the PE, such as execution of tasks, communication with itself, send-

ing data to other PEs, or receiving data from other PEs. It provides the amount of cycles 

and bytes used to perform the different operations, along with the speed of transmission 

of the data. Besides, it appears if there has been any data or instruction miss, and in that 

case, the amount of bytes and cycles of them. Finally, it presents the size of the buffers, 

and the amount of bytes in the buffers on the moment when they were being more used. 

 

4.3.6 Token 

This log file provides the ID of the token, the time when the token was sent and when 

the complete token arrived to its destination. With this data, it shows the latency of this 

transmission, which is the difference between when the time was sent, and when it ar-

  Resource DSP4, id=1,freq=200 
                    cycles          %      Mcycles 

       idle 29918400      99.7%         29.9 

       busy 81600     0.272%       0.0816 

       ------------------------------------------ 
        total 30000000     100.0% 30 

    

        Operation     Cycles      Bytes    Comment 

    Task exec 4800          -   

  Intra PE TX 0 0    0 MB/s 

  Inter PE TX 76800 307200    2.05 MB/s 

  Inter PE RX 0 230400    2 MB/s 

       Instr miss 0 0    Tx + Rx = 0 * (8 +   4) bytes 

   Data  miss 0 0    Tx + Rx = 0 * (8 +   4) bytes 

  -----------  ---------  ---------    ----------- 

          Sum 81600 537600 
   Intra + Tx + Rx = 0 + 307200 + 230400 
bytes 

                   81  k     537 kB 
 

    Buffer usages    Max [Bytes]        Max [%]   Size [Bytes] 

           Tx 56        1.3e-06 4294967295 

           Rx:          48      1.12e-06 4294967295 

 



24 

rived. This latency is calculated in nanoseconds and also in clock cycles. Then it pro-

vides the amount of bytes of the token and the number of packets that the token was 

divided to be sent. Furthermore, it gives the information about the task, PE and port that 

were source and destination of the token. Finally, it shows the type of the token, and if 

the token has more than one packet, it shows the speed of transmission. 
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5. RESULTS AND ANALYSIS 

This is the main chapter of the thesis. Here are showed the results of the simulations that 

have been done with the models selected. Besides, it compares results of the simulations 

and analyse how the behaviour of the NoC change when some parameters of the models 

are modified. First of all, a brief summary of every model is presented, showing in some 

cases a figure that can help to understand how the model works. It is also explained the 

parameters we are going to analyse in each case. Then, some graphs are showed with 

the results obtained during the simulations. Finally, these results are explained to ease 

the understanding of the graphs. 

 

 Selected traffic profiles 5.1

There have been selected 6 models to perform the simulations. 4 of them are some traf-

fic models gathered from different publications and included with the current version of 

TG. These models are: av_bench [16], VOPD [17], mpeg4_decoder [17] and radio_sys 

[18]. The other two models are some MCSL NoC traffic patterns. These two models 

are: H264-1080p_dec [14] and Robot [14]. 

 

5.1.1 Av_bench 

This model is an audio-visual benchmark. It has 40 tasks, 56 edges and 16 PEs to exe-

cute them. Figure 5.1 shows the tasks that are mapped on the PEs and how they com-

municate between them. 

On the figure, it can be seen the tasks included in this traffic model, and the PEs that 

execute them. It can also be observed which tasks send data to others and the amount of 

bytes sent. The tasks and PEs come with their names instead of their ID, so it is easier to 

understand the graph. 
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Figure 5.1: Dot graph of the av_bench traffic model. White rectangles represent the 

Pes, grey rounded rectangles inside the PEs represent the tasks and the arrows repre-

sent the communication channels between tasks and the amount of bytes transmitted 

by them. 

 

In this case, it is analysed the effects of modifying the following parameters: RTL vs 

TLM, PEs frequencies, DMA and packet sizes. 

Figure 5.2: The difference between RTL or TLM modelling measured with AV bench 

is small (<2%). The freq is scaled 1-1000 MHz. 

 

Figure 5.2 a) shows the difference about RTL and TLM modelling in the PEs average 

utilization. At low frequencies, the PEs utilization is 41% less in RTL case. This differ-

ence is reduced when the frequencies of the PEs increases, but is always lower than 
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TLM modelling. Figure 5.2 b) presents the amount of times task FS0 is executed. In this 

case, there is no difference in this parameter when RTL or TLM are selected. 

 

 

Figure 5.3: This graph shows the PEs average utilization when the DMA is OFF or 

ON along different CPUs frequencies. 

 

 

Figure 5.4: This graph shows the amount of times task FS0 is executed when DMA is 

ON or OFF along different CPUs frequencies. 

Figures 5.3 and 5.4 present the different behaviour of the NoC if DMA is selected or 

not. Figure 5.3 shows the average PE utilization. In this case, when the DMA is OFF, 

the average PEs utilization is 13500% higher than the utilization when the DMA is on 
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and the CPUs frequency is 10 MHz. This difference is higher when the CPUs frequency 

is increased. At 1000 MHz, the average PE utilization without DMA is 313924% higher 

than the PE utilization with the DMA. Figure 5.4 shows the amount of times task FS0 is 

executed with and without the DMA. While without the DMA this task is only executed 

161 times at 10 MHz, with the DMA it is executed 4800 times, which is the maximum 

number of times that task is executed. Without the DMA, the task is executed that 

amount of times only when the CPUs frequency is 500 MHz or higher. 

 

 

Figure 5.5: This graph shows the PEs average utilization along different CPUs fre-

quency with different packet sizes.  

 

Figure 5.6: This graph shows the number of times task FS0 is executed along differ-

ent CPUs frequency with different packet sizes. 
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Figures 5.5 and 5.6 show the behaviour of the NoC when the packet sizes are modified. 

Figure 5.5 presents the average PEs utilization. There is no difference when the packet 

size is 2 or 4 bytes, but when the packet size is 8 bytes the utilization is 1% higher at 10 

MHz, and when the amount of bytes is 16, the utilization is 13% higher. When the 

packet size is 2 or 4 there is no information about the average PE utilization if the CPUs 

frequency is 500 MHz or higher, because the simulation is killed before the simulation 

is completed. However, figure 5.6 shows no difference about the amount of times task 

FS0 when the packet size is modified. 

5.1.2 Test_mesh 

This file is an example included with TG. It has 11 tasks and 4 PEs. It also has 2 period-

ical events, and it includes operation counts. In this case, it is going to be analysed the 

effects of modifying the following parameters: PEs frequencies, DMA and NoC fre-

quencies. 

Figures 5.7 and 5.8 show the different performance of the NoC when the DMA is acti-

vated or not using test_mesh file. Figure 5.7 presents the average PEs utilization. As it 

can be seen on the graph there is no difference when the frequency is low (10 and 50 

MHz). Nevertheless, when the frequency is increased it can be observed a slightly dif-

ference. For example, when the frequency is 100 MHz, the PEs utilization is 0.1% low-

er when the DMA is activated, and when the frequency is 500 MHz this difference in-

creases to 0.8%. Figure 5.8 shows the amount of tasks that have been executed when the 

frequency changes. In this case, as it can be seen on the graph, the influence of the 

DMA is observed at low frequencies (10, 50 and 100 MHz). When the frequency is 

higher the NoC complete all the tasks included on the file, and the presence of the DMA 

is only noticed on the PE utilization, as it can be seen in figure 5.7. When the frequency 

is 10 MHz, the amount of tasks executed with the DMA activated is 0.3% higher than 

the amount of tasks executed without the DMA. When the frequency is increased to 50 

MHz, this difference increases to 0.4%. Finally, if the frequency is 100 MHz, the differ-

ence between the amount of tasks executed when the DMA is activated or not, is over 

1%. 

The impact of DMA in this file is really low. Nevertheless, in the previous file 

(Av_bench), DMA has a great influence in the performance of the NoC. This could be 

caused because test_mesh file is less complex than Av_bench.  
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Figure 5.7: This graph shows the PEs average utilization when the DMA is OFF or 

ON along different CPUs frequencies. 

 

Figure 5.8: This graph shows the amount of tasks executed when the DMA is OFF or 

ON along different CPUs frequencies. 

Figures 5.9 and 5.10 present the different behavior of the NoC when test_mesh is exe-

cuted and the frequency of the NoC is changed with different frequencies of the PEs. 

Figure 5.9 shows the average PE utilization. As it can be seen on the graph there is no 

difference in this output except when the CPU frequency is 100 MHz. With other values 

of CPU frequency the average PE utilization is the same even though the NoC frequen-

cies are different. When the CPU frequency is 100 MHz, the NoC frequency that gives a 

higher value is 10 MHz (0.759), and the lower value is given when the NoC frequency 

is 1000 MHz (0.749). Therefore, when the CPU frequency is 100 MHz, the average PE 

utilization is 1.34% higher when the NoC frequency is 10 MHz than when it is 1000 

MHz. Figure 5.10 presents the amount of tasks executed along different CPU frequen-
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cies when the NoC frequencies are changed. As it happens in figure 5.9, the amount of 

tasks executed only is different when the CPU frequency is 100 MHz. With other values 

of CPU frequency, the amount of tasks executed with different NoC frequencies is the 

same. When the CPU frequency is 100 MHz, the higher amount of tasks executed oc-

curs when the NoC frequency is 10 MHz (4681 tasks), and the lower amount when the 

NoC frequency is 1000 MHz (4576 tasks). Therefore when the NoC frequency is 10 

MHz, the amount of tasks executed is 2.29% higher than when the frequency is 1000 

MHz. 

 

Figure 5.9: This graph shows the PEs average utilization when the NoC frequency 

has different values along different CPUs frequencies. 

 

 

Figure 5.10: This graph shows the amount of tasks executed when the NoC frequency 

has different values along different CPUs frequencies. 
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5.1.3 Mpeg4_decoder 

This traffic model is a video decoder for the MPEG-4 format. The model has 12 tasks, 

16 PEs, 26 edges and 3 periodical events. Simulating this model it will be compared the 

effects of modifying the following parameters: frequencies, RTL-TLM and packet sizes. 

Figure 5.11 shows a pattern of the traffic model. White circles are the different tasks are 

going to be executed in this traffic model and their respective names. Arrows connect-

ing the tasks represent the communication channels between the tasks and the required 

bandwidth in MB/s. 

 

Figure 5.11: Dot graph of the Mpeg4_decoder traffic model. White circles represent 

the tasks to be executed and the arrows represent the communication channels be-

tween tasks and the required bandwidth in MB/s. 

Figures 5.12 and 5.13 shows the different performance of the NoC when the traffic 

model is executed with RTL and TLM modelling. Figure 5.12 presents the average PE 

utilization with these types of modelling. As it can be seen on the graph, RTL modelling 

involves less PE utilization than TLM modelling. The difference between both model-

lings decreases when the frequency is increased. When the frequency is 10 MHz, TLM 

modelling requires 166.8% more PE utilization than RTL modelling. Nonetheless, when 

the frequency is 1000 MHz, TLM only requires 0.9% more PE utilization than RTL. 

Figure 5.13 shows the amount of tasks executed when “Mpeg4_decoder” is executed 

with RTL and TLM modelling. In this case, there is no difference in this output when 

RTL or TLM are used. Therefore, using RTL or TLM only involves a difference in 

terms of average PE utilization. As it has been described before, RTL modelling needs 

less time to execute the traffic models. 
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Figure 5.12: This graph shows the PEs average utilization when the 

“Mpeg4_decoder” is measured with TLM and RTL modelling. 

 

Figure 5.13: This graph shows the amount of tasks executed when the 

“Mpeg4_decoder” is measured with TLM and RTL modelling. 

Figures 5.14 and 5.15 presents the different behavior when “Mpeg4_decoder” is execut-

ed with different packet sizes. It has been chosen packet sizes of 2, 4, 8 and 16 bytes. 

When the frequency is 500 or 1000 MHz, the execution of the traffic model stops and 

do not give data when the packet sizes are 2 or 4 bytes. Figure 5.14 shows the average 

PEs utilization. A packet size of 8 bytes involves less PE utilization than other packet 

sizes, and a packet of 16 bytes involves higher PE utilization. Higher differences are 

obtained at low frequencies (10 MHz), when the PE utilization with a packet size of 16 

bytes is 10.7% higher. When the frequency is 1000 MHz, this difference reduces to 

0.95%. In figure 5.15 can be observed the amount of tasks executed. In this case, the 

situation is pretty similar to when RTL and TLM modelling are compared. Changing 
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the packet size does not involve any difference in the amount of tasks executed, no mat-

ter the frequency chosen to execute the traffic model. 

 

Figure 5.14: This graph shows the PEs average utilization when the 

“Mpeg4_decoder” is executed using different packet sizes. 

 

Figure 5.15: This graph shows the amount of tasks executed when the 

“Mpeg4_decoder” is executed using different packet sizes. 
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5.1.4 Radio_sys 

This traffic model is an Ericson radio system. This model has 15 tasks, 16 PEs, 26 edges 

and 8 periodical events with different frequencies. In this case, it is going to be analysed 

the effects of modifying the following parameters: frequencies, DMA and packet sizes. 

Figure 5.16 shows a pattern of a radio system representing its node to node traffic-flow. 

Each square represents a PE, and the arrows the communication channels and the 

amount of data transmitted in each case. 

 

Figure 5.16: The graph represents a node-to-node traffic flow of the “Radio_sys” 

traffic model 

Figures 5.17 and 5.18 show the different performance of the NoC when “Radio_sys” is 

executed with the DMA activated and not. On figure 5.17, it can be seen the average PE 

utilization. This output is very different when the DMA is active or not. When the fre-

quency is 10 MHz, the average PE utilization without the DMA is 8286% higher than 

the case with the DMA. This difference increases when the frequency is higher. When it 

is 1000 MHz, the difference boosts up to 223000%. Therefore, the presence of the 

DMA has a really influence in this output. Figure 5.18 presents the influence of the 

DMA on the total amount of tasks executed. As it can be observed on the graph, when 

the DMA is activated, the total amount of tasks executed is the same for all the frequen-

cies tested. Nevertheless, without the DMA, the total amount of tasks executed increas-

es when the frequency increases too. With frequencies of 500 and 1000 MHz, this out-

put has the same value than when the DMA is activated. Nonetheless, at 10 MHz, the 

amount of tasks executed without DMA is only 5% of the amount executed with DMA 

active. 
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Figure 5.17: This graph shows the PEs average utilization when the DMA is OFF or 

ON along different CPUs frequencies. 

 

Figure 5.18: This graph shows the total amount of tasks executed in “Radio_sys” 

when the DMA is OFF or ON along different CPUs frequencies. 

Figures 5.19 and 5.20 present the performance of the execution of “Radio_sys” using 

different packet sizes. In this case, TG does not give data when the packet size is 2 or 4 

bytes and the frequency is 100 MHz or lower. On figure 5.19, it can be seen the average 

PE utilization with the different values of packet size. A packet size of 8 bytes involves 

less PE utilization than other packet sizes at every frequency tested. At 10 MHz, PE 

utilization when a packet size of 16 bytes is 5.68% higher than with an 8 bytes packet 

size. This difference decreases to 0.7% when the frequency chosen is 1000 MHz. On 

figure 5.20, the output analyzed is the amount of tasks executed. In this case, there is no 

difference in the output no matter the packet size is chosen. Every packet size chosen 
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execute the same amount of tasks. Therefore, the only difference related to the packet 

sizes is on the average PE utilization. 

 

Figure 5.19: This graph shows the PEs average utilization when the “Radio_sys” is 

executed using different packet sizes. 

 

Figure 5.20: This graph shows the amount of tasks executed when the “Radio_sys” is 

executed using different packet sizes. 
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and 7781 edges. It will be analysed the effects of modifying the following parameters: 

RTL vs TLM, frequencies and DMA. Figure 5.21 shows a graph showing an extract of 

the task communication of this model. In this graph, the tasks are represented by white 

circles, and the arrows connecting the circles, represent the communication channels 

between the tasks. 

 

Figure 5.21: Extract of the H.264 decoder’s task graph. Circles represent tasks, while 

arrows represent communication channels between tasks [14]. 

Figure 5.22 and 5.23 show the performance of the NoC while “H.264 decoder” is exe-

cuted using two types of modelling: RTL and TLM. Figure 5.22 shows the influence of 

these types of modelling on the average PE utilization. At every frequency tested, the 

value of the output is lower when “H.264 decoder” was executed using RTL model. The 

highest difference between both modelling is produced at 1000 MHz. At this frequency, 

average PE utilization using TLM modelling is 76.4% higher than when RTL modelling 

is used. At 10 MHz, the difference between the modelling is 29.2%. Therefore, the rela-

tive difference involving this output increases with the frequency. Figure 5.23 presents 

the amount of tasks executed using both modelling. In this case, as it has been seen in 

previous traffic models, using different modelling does not change the amount of tasks 

executed at every frequency. In both modelling, the execution of “H.264 decoder” only 

gets the total amount of tasks (5191), at the higher frequency, 1000 MHz. 
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Figure 5.22: This graph shows the PEs average utilization when the “H.264 decoder” 

is measured with TLM and RTL modelling. 

 

 

Figure 5.23: This graph shows the amount of tasks executed when the “H.264 decod-

er” is measured with TLM and RTL modelling. 
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the average PE utilization without the DMA is 1264% higher than the PE utilization 

with the DMA. At 1000 MHz, the difference is 1999%. Figure 5.25 shows the impact of 
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they are executed only 89.6% of the tasks (4653). Without the DMA, it is the opposite 

case. All the tasks are only completed at the highest frequency, 1000 MHz. At 10 MHz, 

they are only executed 137, and that means only 2.94% of the tasks executed at that 

frequency with the DMA. 

 

Figure 5.24: This graph shows the PEs average utilization when the DMA is OFF or 

ON along different CPUs frequencies. 

 

Figure 5.25: This graph shows the total amount of tasks executed in “H.264 decoder” 

when the DMA is OFF or ON along different CPUs frequencies. 
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5.1.6 Robot 

This is the last file that will be analysed. This model is a MCSL NoC traffic pattern, 

which represents Newton-Euler dynamic control calculation for the 6-degrees-of-

freedom Stanford manipulator. The model has 88 tasks and 131 edges. With this last 

model, it is going to be analysed the effects of modifying the following parameters: fre-

quencies, DMA and NoC frequency. 

Figures 5.26 and 5.27 present the influence of the DMA on the execution of the “Robot” 

model. Figure 5.26 shows this influence in the average PE utilization. The PE utilization 

is lower with the DMA activated at every frequency. The difference is higher when the 

frequency is also higher. At 10 MHz, the PE utilization without the DMA is 53% higher 

than the utilization with the DMA. Besides, at 1000 MHz, this difference increases up to 

147%. On figure 5.27, it can be observed the influence of the DMA on the amount of 

tasks executed. When the DMA is not active, all the tasks (88) of the model are execut-

ed at every frequency tested, except at 10 MHz. At this frequency, only 76.1% of the 

tasks (67) are executed. DMA allow the program to execute the tasks faster. Therefore, 

it is normal that in this case, all the tasks are executed at every frequency without excep-

tions. 

 

Figure 5.26: This graph shows the PEs average utilization when the DMA is OFF or 

ON along different CPUs frequencies. 
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Figure 5.27: This graph shows the total amount of tasks executed in “Robot” when 

the DMA is OFF or ON along different CPUs frequencies. 

Figure 5.28 and 5.29 present the different performance when the frequencies of the NoC 

are changed. On figure 5.28 it is analyzed the effect of the variation of this parameter on 

the average PE utilization. The PE utilization is the same for every NoC frequency at 

every CPU frequency, except when the CPU frequency is 50 MHz. In this case, the 

highest PE utilization is produced when the NoC frequency is 10 or 50 MHz, and the 

lowest when the NoC frequency is 1000 MHz. It is 97% of the PE utilization when NoC 

frequency is 10 or 50 MHz. Figure 5.29 shows the influence on the amount of tasks ex-

ecuted. In this case, there is no difference at all when different NoC frequencies are 

used. When CPU frequency is 10 MHz, 67 tasks are completed at every NoC frequency. 

At the rest of CPU frequencies, all the tasks (88) are completed at every NoC frequency. 

 

Figure 5.28: This graph shows the PEs average utilization when the NoC frequency 

has different values along different CPUs frequencies. 
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Figure 5.29: This graph shows the amount of tasks executed when the NoC frequency 

has different values along different CPUs frequencies. 
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6. CONCLUSIONS 

In this chapter it is presented a summary of the results obtained on the parameters ana-

lyzed. Table 6.1 shows a table comparing the parameters used with the outputs that have 

been studied. 

 PE utilization Tasks executed 

RTL- TLM modelling RTL involves less PE utilization No influence 

DMA DMA involves less PE utilization DMA involves faster 

completion of all tasks 

Packet sizes Slight difference No influence 

NoC frequencies No influence No influence 

Table 6.1: Summary of the influence of the parameters on the outputs observed. 

RTL-TLM modelling: RTL and TLM modelling have been analyzed with the next 

traffic models: Av_bench, Mpeg4_decoder and H.264_decoder. RTL modelling in-

volves less PE utilization than TLM and the execution is faster. Nevertheless, the 

amount of tasks executed is the same with both modellings. 

DMA: The influence of the DMA has been analyzed with the next traffic models: 

Av_bench, Test_mesh, Radio_sys, H.264_decoder and Robot. The presence of the 

DMA involves less PE utilization and the amount of tasks executed is higher than when 

the DMA is not active. 

Packet sizes: Packet sizes is a parameter analyzed in the next traffic models: Av_bench, 

Mpeg4_decoder and Radio_sys. Different packet sizes involve a little difference on the 

PE utilization. Usually one of the packet sizes implies less PE utilization and the other 

packet sizes have the same PE utilization. Nonetheless, packet sizes have no influence 

on the amount of tasks executed. Besides, packet sizes of 2 and 4 bytes have problems 

at high frequencies and do not give data. 

NoC frequencies: This attribute has been tested on the next traffic models: Test_mesh 

and Robot. The impact of the NoC frequency on the PE utilization is null. This applies 

also on the amount of tasks executed. 
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