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ABSTRACT 

SALMAN AHMAD: 30 GHz RF-DAC BASED I/Q MODULATOR 
Tampere University of Technology 
Master of Science Thesis, 44 pages 
June 2016 
Master’s Degree Programme in Electrical Engineering 
Major: Electronics 
Examiner: Professor Jukka Vanhala 
 
Keywords: DAC, RF-DAC, I/Q modulator 
 
 
For massive MIMO systems, large number of antennas and transmitter chains 
are considered. This huge and complex circuitry consume lot of power. For saving 
the power, the modulator and DAC can be integrated in to one. Therefore, by 
taking in to account of power consumption, the 30 GHz RF-DAC based I/Q mod-
ulator has been investigated. The thesis work summarizes the circuit design and 
simulation of digital I/Q modulator based on RF-DAC which is implemented by 
combining digital to analog converter and mixer in to one circuit block. The analog 
blocks are completely removed that saves chip area and power consumption. 
Since large portion of analog circuitry is removed, so it gives high efficiency and 
output power. 
 
In this thesis, the research work is to design 4-bit RF-DAC based I/Q modulator 
in 130nm SiGe, BiCMOS process at 30 GHz. The I/Q modulator consist of several 
blocks: differential branch line coupler, Wilkinson power combiner, 50-100 and 
100-50 Ω input and output BALUN circuit.  
 
The circuit is designed for the four bits’ digital input. The problem of glitches arises 
as the output shifts from one level to next. In order to overcome this problem, the 
concept of thermometer coding logic has been used. So for the four binary bits, 
the thermometer coder gives 15 outputs. Thus, 15 conversion cells are designed 
and arranged in parallel in two quadrant RF-DACs I/Q modulator.  
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1. INTRODUCTION 

1.1 Motivation 

There are lot of design challenges in conventional transmitter and receiver which usually 

contains complex analog baseband components that requires large chip area and power 

consumption. The research in the field of wireless communication has been shifted to-

wards the digital domain since digital designs offer more flexibility and enables a higher 

level of integration. 

A conventional up-conversion transmitter has separate digital to analog converter (DAC) 

and quadrature modulator. A DAC is used to convert digital signals to continuous analog 

time-domain signals. The analog signal is then up-converted by the mixer. A conventional 

up-converter IQ modulator is shown in Figure 1-1. 

        

                          Figure 1- 1 Conventional DAC based transmitter 

To solve the problem of power consumption, the modulator and DAC are integrated in to 

one. This architecture is known as Radio Frequency Digital to Analog Converter (RF-

DAC). The RF-DAC based I/Q modulator is shown in Figure 1-2. 
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                          Figure 1- 2 RF-DAC based transmitter architecture 

The idea of RF-DAC was first introduced by Luschas et al. that fulfills the criteria of high 

output power, high efficiency and high speed [1]. Basically RF-DAC is a combination of 

digital to analog converter and mixer in to one block, omitting the requirement of separate 

DAC and mixer. The digital input data is directly applied to the RF-DAC. Thus, for the 

implementation of the 4 bit I/Q modulator, the RF-DAC conversion cells are arranged in 

parallel for both the I and Q quadrant. Their output is summed together at the RF port. 

There are several advantages of using the digital transmitter because it is easy to integrate 

and to implement on the chip.  

1.2 Objective of thesis 

The main objective of the thesis is to design a modulator for the millimeter wave appli-

cation which gives high power, high efficiency. A 30 GHz RF-DAC based I/Q modulator 

has been implemented in 130 nm BiCMOS technology. Since the DAC and modulator 

has been integrated in to one functional block, it gives high efficiency and output power. 

1.3 Organization of thesis 

The outline of thesis is described as follows: 

 Chapter 1- Introduction: Introduction to thesis 

 Chapter 2- Digital to Analog Converter: the basic introduction of digital to an-

alog converter is described. The dynamic and static performance requirements are 

discussed in detail as well as the architectures of converter. 

 Chapter 3- Quadrature Modulator: The concept of I/Q modulator, characteris-

tic of I/Q modulation and types of mixer are discussed that are pre-requisite of 

RF-DAC. 
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 Chapter 4- Concept and Fundamentals of RF-DAC: The history and back-

ground of RF-DAC is presented. Different architectures of RF-DAC have been 

compared on the basis of implementation and performance has been evaluated. 

 Chapter 5- Components of Proposed I/Q Modulator: The basic components of 

implemented I/Q modulator have been described. 

 Chapter 6- Circuit Implementation and Simulations: the complete circuit im-

plementation and simulations are shown step by step.  
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2. DIGITAL TO ANALOG CONVERTER 

A digital to analog converter is used to convert the digital signal to continuous analog 

signal. The DAC is the boundary between the digital and analog signals that connects the 

abstract world to real world. Signals can be easily restored and can be transmitted in the 

form of digital domain. The converter is briefly explained in the following points. 

2.1 Concept of DAC 

The basic concept of DAC is to take binary data as input and outputs analog continuous 

signal that is voltage or current. Below diagram is the possible representation of the con-

verter [2]. 

                             

                                   Figure 2- 1 Digital to Analog Converter 

A digital to analog converter reconstructs the continuous time varying signal from the 

available sampled data and it introduces the quantization noise during the conversion. 

                                 

                      Figure 2- 2 Reconstruction of signal from sampled data 
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2.2 Current steering DAC 

Current steering mode DAC converter is illustrated in Figure 2-3. The basic principle of 

this converter is, the input digital bits controls the two current steering branches compris-

ing of transistor switches that drives out the current. Here, N-bit digital control words are 

fed to the switch pair that steers the current of the current source to one of the two output 

loads connected. 

The topology of the converter is described as follows: The current source steering 

branches are controlled by the digital words. Depending on the input code, the branches 

drives out the current to the load or to the ground. The advantage of this architecture is 

that it is easy to implement and it provides good efficiency [3]. 

               

                                      Figure 2- 3 Current steering DAC 
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2.3 Performance 

The performance measure of DAC is categorized as static and dynamic performance.  

2.3.1 Static performance 

The static performance of DAC accounts the deviation of the output response than the 

ideal straight curve. It includes DNL (Differential Non-Linearity), INL (Integral Non-

Linearity), offset and gain errors [4]. 

Differential Non-Linearity 

DNL represents the deviation of the two adjacent output values from the ideal value of 1 

LSB. To achieve the monotonicity of output values in accordance with the input values, 

the DNL must be greater than -1 LSB.  The differential nonlinearity DNL and INL are 

illustrated in the Figure 2-4. The height at the digital code 001 is in accordance with the 

ideal curve, i.e., DNL is zero. Whereas the height at the 011 digital code words became 

half of the ideal curve, therefore, 

 DNL3=0.5 LSB (2.1) 

Integral Non-Linearity 

INL represents the maximum deviation from the ideal characteristics curve. In the given 

Figure2-4 the straight line represents the ideal transfer curve [3]. 

                  

                        Figure 2- 4 DNL and INL of digital to analog converter 
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2.3.2 Dynamic performance 

The dynamic performance describes the behavior of DAC when the transition or shifting 

between input level occurs. The most important dynamic performance metrics are SNR, 

total harmonic distortion, Spurious-free Dynamic Range (SFDR), Signal to noise and dis-

tortion ratio (SNDR) and glitches [5] [6]. The performance metrics are illustrated in Fig-

ure 2-5. 

Spurious-free Dynamic Range  

It is the ratio of the fundamental tone to the second harmonic component or the largest 

power component in the frequency domain spectrum. SFDR and unwanted noise are in-

versely proportional to each other. 

Total Harmonic Distortion  

THD is defined as ratio of the total power at the harmonics and the signal power. 

Signal to Noise Ratio  

SNR is the ratio of the fundamental tone to the noise floor in the Nyquist region. It is 

expressed in decibels. 

Signal to (noise + distortion) ratio  

SNDR is the ratio of fundamental tone to the Nyquist region plus the total harmonics. 

Glitches 

This performance metric is important for the behavior of the DAC. A glitch generates 

when the transition takes place. This occurs due to the charge injection in the switch tran-

sistor during the shifting of one output level to other level, as a result it displays a wrong 

code at the output. Let’s take an example, if the code changes from 01111 to 10000, for 

a while it displays 11111 at the output and it creates error [7]. 
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                                  Figure 2- 5 Dynamic performance metrics 

 

2.4 Architectures of DAC 

Generally, there are three types of architectures namely, binary, thermometer and seg-

mented architectures. There are other types of available architectures, but in this section 

only the basic architectures are described. 

2.4.1 Binary weighted architecture 

Binary weighted architecture uses binary input data directly. The number of binary 

weighted current source responds to the corresponding bits applied at the input. There are 

three ways to implement the binary architecture: resistor, charge redistribution and cur-

rent mode. The advantages of this architecture are, easy to implement, less number of 

switches required therefore less chip area is required for integration and gives high power. 

But the problem is, there is large gap between the least significant bit and the most sig-

nificant bit and the matching is not guaranteed between them, therefore, it creates DNL 

and INL errors. If the switching of the current sources is not synchronized properly, 

glitches generates between the transition of two level at the output [6]. 
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                                   Figure 2- 6 An example of 4 bit DAC 

A 4bit binary coded D/A converter is shown in the Figure 2-6. When a digital code 1101 

is applied to DAC it outputs: 

 𝑦(1101) = 8𝑥 + 4𝑥 + 𝑥 (2.2) 

   

When the digital input is 1001, 

 𝑦(1001) = 8𝑥 + 𝑥 (2.3) 

Here, there is large gap between the MSB and LSB. 

2.4.2 Thermometer based architecture 

In the binary weighted architecture, the problem DNL and INL arises as the number of 

bits’ increases. To overcome these problems, a thermometer based DAC is developed. In 

this architecture, a thermometer coder is used that gives 2𝑁 − 1 digital thermometer bits 

to represent 2𝑁 digital input bits. The cost of this architecture is higher in comparison to 

binary weighted architecture. This architecture requires lots of switches, power and large 

area on the chip. Thermometer coding is therefore typically not preferred if number of 

bits larger than ten. [4]. 

There are several advantages of thermometer architecture such as having low DNL, im-

proved monotonicity and reduced glitches problem.  
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                Table 1 Thermometer code representations for 3-bit binary values 

Decimal Binary Thermometer Code 

𝑑0 𝑏2𝑏1𝑏0 𝑠8𝑠7𝑠6𝑠5𝑠4𝑠3𝑠2𝑠1 

0 000 0000000 

1 001 0000001 

2 010 0000011 

3 011 0000111 

4 100 0001111 

5 101 0011111 

6 110 0111111 

7 111 1111111 

                   

By comparing binary weighted DAC and thermometer weighted DAC, it is found that 

using the thermometer architecture, will not increase the size of analog circuit portion. 

This is because, in thermometer weighted architecture, the total resistance is same as the 

resistance used in the binary weighted DAC. Hence, all the conversion cells and switches 

are equal in sizes and all the switches draw equal amount of currents. A binary to ther-

mometer based DAC is shown in Figure 2-7. 

         

           Figure 2- 7 A 3-bit thermometer- based digital to analog converter 
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2.4.3 Segmented architecture 

Segmented architecture describes the DAC in such a way, that some part of the input is 

implemented in the binary and some part is implemented in thermometer coding. This 

means the MSBs are implemented in thermometer elements and other LSBs are repre-

sented in binary elements. In this way, a DAC of large number of bits can be implemented. 

As an example, in the Figure 2-8, a 5-bit DAC is represented, 3-bit are implemented as 

thermometer coding and remaining 2-bit are implemented in binary coding.  

     

 

                                        Figure 2- 8 A 5 bit segmented DAC 

 

2.4.4 DAC realization 

Based on implementation, the DACs can be classified in to three categories: resistive 

ladder, switched-capacitor and current steering DAC. Current steering DAC is already 

explained in section 2.2, remaining types are described in this section. 

Resistor based digital to analog converter 

This architecture is also called as R-2R ladder binary weighted DAC converter, shown in 

Figure2.8. This architecture is easy to implement. Generally, two different resistors are 

used that reduces the complexity of the converter. The characteristic of this architecture 

is, it can be used to implement the binary weighted elements using two different resistors 

that provides more accuracy and better matching.  
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Switched capacitor digital to analog converter 

This architecture is also called as redistribution DAC. In this architecture capacitors are 

used to store the charge unlike the resistor used in R-2R ladder architecture. These capac-

itors are responsible for the conversion of digital bits to analog signal. It is shown in 

Figure 2.9 that when the capacitors are connected to the reference voltage, the feedback 

to the op-amp circuits is connected and the output voltage is the fraction of the reference 

voltage. If it is connected to the ground, both inverting and non-inverting inputs of op-

amp are at zero potential, therefore there is zero voltage at the output. The disadvantage 

of this architecture is same as R-2R ladder, its accuracy depends on the matching of ca-

pacitors.           

 

          

                                                   Figure 2- 9 R-2R ladder 

 

           

                                     Figure 2- 10 Switched capacitor 
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3. QUADRATURE MODULATOR 

In this chapter, the concept and theory of IQ modulation is briefly described. 

3.1 Concept of IQ modulation 

Amplitude and phase of an RF signal can be modulated to convey the message signal: 

 𝑦 = 𝐴(𝑡)cos(𝑤0𝑡 + 𝜑(𝑡)) (2.4) 

The two components are orthogonal to each other. By varying the amplitude of I and Q 

components, the phase of the signals changes automatically without changing the phase 

directly [8]. The I/Q modulator is shown in Fig.3.1. The cross circles are representing the 

mixers which are used to up-convert or down convert the signals. The converted signals 

are combined by the combiner at the output. 

A carrier signal is applied to the circuit that splits in to two parts. Both parts of carrier 

signal are 90 degrees separated to each other. One part is modulated by the I signal and 

other part is modulated by Q signal. The two modulated signals are combined at the out-

put. 

               

                                         Figure 3- 1 I/Q Modulator 

                                                                        

The signal at the output of modulator is given as: 

 𝑐𝑜𝑠(𝛼 + 𝛽) = 𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽) − 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽) (2.5) 

   

Multiply equation 2.6 by A and put 2𝜋𝑓𝑐𝑡 in place of α and φ in place of β. 
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 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡 + 𝜑) = 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡)𝑐𝑜𝑠(𝜑) − 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡)𝑠𝑖𝑛(𝜑) (2.6) 

   

Now, 

 𝐼 = 𝐴𝑐𝑜𝑠(𝜑) (2.7) 

 𝑄 = 𝐴𝑠𝑖𝑛(𝜑) (2.8) 

 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡 + 𝜑) = 𝐼𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) − 𝑄𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡) (2.9) 

Where, I is the amplitude of in-phase component and Q is the amplitude of quadrature 

component. The phase and amplitude of modulating carrier signal can be controlled by 

simply manipulating the amplitudes I and Q signals. 

Two commonly used digital modulation communication techniques are quadrature-

phase-shift-keying (QPSK) and quadrature-amplitude modulation (QAM). In QPSK 

modulation, the signal that changes among the states are 90-degree phase separated. In 

QPSK modulator, two bits are transferred at a time [9]. So there are four states since 22 =

4. The constellation diagram of QPSK is shown in Figure 3.2. 

                                  

                                  Figure 3- 2 Constellation diagram of QPSK 

In 16-QAM techniques, there are four values of I and Q. QAM modulation provides a 

higher spectral efficiency than QPSK since four bits are transmitted per symbol [10]. The 

constellation diagram of 16-QAM is shown in Figure 3.3. 
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                                 Figure 3- 3 Constellation diagram of 16-QAM 

3.2 IQ Modulator Non-idealities 

Practically, the IQ modulator is not perfectly ideal. In practice, non-idealities of mixers, 

90𝜊 phase-shifter degrades the performance of IQ modulators. In the next sections, these 

non-idealities will be described and the error metrics will be introduced. 

3.2.1 Non-idealities 

Due to the mismatches in the amplitude and phase of I and Q signals, the output of the 

I/Q modulator changes and creates the unwanted components in the output.  

In reality, the output equation (2.10) is represented as: 

 𝐴cos(2𝜋𝑓𝑐𝑡 + 𝜑) = 𝐿{𝑔𝐼 ∗ 𝐼cos(2𝜋𝑓𝑐𝑡) − 𝑔𝑄 ∗ 𝑄sin(2𝜋𝑓𝑐𝑡 + 𝜃)} (2.10) 

where 𝑔𝐼 and 𝑔𝑄 are the functions of I and Q, 𝜃 is the phase error, L is the non-linearity 

of the modulator [11]. The final equation when expanded, contains three different errors: 

DC offset, LO leakage and unwanted signal. 

The LO leakage can be represented in the equation (2.12) 

 
𝐿𝑂𝐿𝐸𝐴𝐾𝐴𝐺𝐸 = 10log (

𝑃𝐿𝑂

𝑃𝑆𝐼𝐺𝑁𝐴𝐿
) (2.11) 

where 𝑃𝐿𝑂 is local oscillator power and 𝑃𝑆𝐼𝐺𝑁𝐴𝐿 is RF signal power. 
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3.2.2 EVM 

The concept of EVM (Error Vector Magnitude) is described as follows.  When the signal 

is transmitted by the transmitter or received by the receiver, it has ideally well placed 

constellation points at their respective position. But practically it’s not possible to achieve 

the perfectly placed constellation points. This is because of the error which arises from 

the phase inaccuracies between the I and Q components, amplitude mismatch, LO leakage 

and various distortions present in the transmitter. As a result, the constellation points shift 

from their ideal positions to some other unusual location by the imperfections. EVM is 

defined as the root mean square of reference power and error vector power relation [12, 

13]. The relation is shown in the equation (2.13). 

 
𝐸𝑉𝑀(𝑑𝐵) = 10log10 (

𝑃𝑒𝑟𝑟𝑜𝑟

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) (2.12) 

 

𝐸𝑉𝑀(%) = √
𝑃𝑒𝑟𝑟𝑜𝑟

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
× 100% (2.13) 

 𝑃𝑒𝑟𝑟𝑜𝑟 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 (2.14) 

Where, 𝑃𝑒𝑟𝑟𝑜𝑟 is error vector power and 𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is reference signal power. 

 The EVM is shown in the figure 3.4.  

                                 

                                       Figure 3- 4 Error Vector Magnitude 

                                  

. 
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3.2.3 Distortion 

The transmitter suffers from amplitude mismatches, 90𝜊 phase inaccuracy between t I 

and Q components and non- linearity of the power amplifier that leads to the distortion. 

The distortion of the transmitter is expressed by the ACPR (Adjacent Channel Power 

Ratio) that is used to measure the power in the adjacent channel. It is the ratio of power 

in the adjacent channels to the rms power in the main channel. 

 
𝐴𝐶𝑃𝑅 =

𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

𝑟𝑚𝑠 𝑝𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑠𝑚𝑖𝑡𝑡𝑒𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙
 (2.15) 

It is an important metric which is used to measure the power spectral re-growth of the 

transmitter, since power amplifier is the last part of the transmitter and it introduces non-

linearity in the system. It is also called as ACLR (Adjacent Channel Leakage Ratio). 

3.3 Mixer Figure of Merit 

The mixer specification is described as following. 

Conversion gain 

Conversion gain is the measure of power gain or voltage gain from IF to RF or RF to IF 

ports. The conversion gain of the mixer can be maximized by having a proper conjugate 

matching at IF, RF and LO ports. Active mixers give conversion gain whereas, passive 

mixer gives conversion loss [14, 15]. 

𝑉𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 =
𝑉𝑟𝑚𝑠 (𝑎𝑡 𝐼𝐹 𝑠𝑖𝑔𝑛𝑎𝑙) 

𝑉𝑟𝑚𝑠 (𝑎𝑡 𝑅𝐹 𝑠𝑖𝑔𝑛𝑎𝑙)
 

𝑃𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 =
𝑃𝑅𝐹 (𝑎𝑡 𝑙𝑜𝑎𝑑)

𝑃𝑅𝐹(𝑟𝑚𝑠) (𝑎𝑡 𝑠𝑜𝑢𝑟𝑐𝑒)
 

Linearity 

The linearity of mixer is measured by 1dB compression point 𝑃1dB and third order inter-

cept point at the input, IIP3. Generally, passive mixers exhibit high linearity. 

Noise figure 

Noise figure of mixer is represented by SNR ratio between the IF and RF output and it is 

also calculated from the following expression: 

 𝑁0 = 𝐾𝑇Δ𝑓(𝐺1 + 𝐺2) + 𝑁𝑎 (2.16) 
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Where, 𝐺1and 𝐺2 are the conversion gains, 𝑁𝑖= 𝐾𝑇Δ𝑓 is the input noise power and 𝑁𝑎 is 

the total noise power. 

Isolation 

Isolation is defined as the measure of amount of power leaks or feedthroughs from one 

port to another port. If isolation of mixer is not proper then it will introduce EVM, DNL 

and INL errors at the output. Isolation differs from topology to topology.  

 LO to RF leakage causes self-mixing. 

 RF to LO feedthrough allows interferer to in RF signal to interact with the LO. 

 LO to IF feedthrough produce desensitization. 

 RF to IF feedthrough. 
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4. CONCEPT AND FUNDAMENTALS OF RF-DAC 

4.1 Background 

 The RF-DAC is a combination of mixer and DAC into one structure. It generates modu-

lated RF signal directly from digital base-band data. 

Advantages of RF-DAC 

The RF-DAC has several advantages over conventional D/A converter. 

 The main advantage of RF-DAC is that the mixer and DACs are integrated into 

one circuit. This enables reduced chip area and a lower power consumption.  

 All the transistor of RF-DAC work as switches without any linearity constraints. 

Since the linearity of RF-DAC is mainly determined by the resolution of the con-

verter. 

 As the digital signal is directly applied to the switches therefore it is immune to 

the DC-offsets in the baseband signal [16]. 

4.2 Basic architectures of RF-DAC 

The RF-DAC was first introduced by Luschas et al. shown in Figure 4-1 [1]. 

         

                       Figure 4- 1 RF-DAC implemented by Luschas et. al. 
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Here in the Figure 4-1 LO signal is applied to the tail current source and data signal is 

applied to the differential transistor pair. This architecture is same like single conversion 

mixer but LO and data signals are interchanged.  

The disadvantage of this architecture is, it introduces unwanted signals at other frequen-

cies than 𝑓𝐿𝑂, usually at DC. The phase of data signals and LO signal must be synchro-

nized with each other to avoid the glitches. 

The problem of unwanted signal appearing at the DC in the Luschas et al. architecture 

[1] is overcame by the double balanced architecture of RF-DAC developed by the Elor-

anta et al. [17]. By having the double balanced in nature, the architecture removes the 

components at DC and the even order harmonics. It is closely related to the double bal-

anced Gilbert cell but the position of LO and data signals are interchanged. In this archi-

tecture, the data signal is applied to the differential quad transistor preceded by the LO 

signal applied to differential transistor pair.  

              

                                 Figure 4- 2 RF-DAC by Eloranta et. al. 

The combined output is obtained by summing the output of all the conversion cells. Ide-

ally the linearity of signal is defined by the resolution of the converter. 
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5. COMPONENTS OF I/Q MODULATOR 

5.1 Double balanced Gilbert cell 

Double balanced Gilbert mixer is the most popular topology that is being used in the up 

conversion or down conversion of frequency circuits. It provides the perfect isolation 

between LO-IF, IF-LO and RF-LO. Basically, it consists of two cross coupled differential 

transistor and one transconductance stage that increases gain of signal. 

                   

                                         Figure 5- 1 Double balanced Gilbert cell 

According to simple exponential relation between collector current and base- emitter volt-

age, the differential current between the transistor 𝑄2 and 𝑄3 can be figure out and in the 

same way the current between 𝑄2
′  and 𝑄3

′  can be figure out [15]. 

 
𝐼𝐶 = 𝐼𝑆exp (

𝑉𝐵𝐸

𝑉𝑇
)  and 𝑉𝐵𝐸 = 𝑉𝑇ln (

𝐼𝐶

𝐼𝑆
) (2.17) 

 Let’s suppose U is the voltage difference between 𝑄2 and 𝑄3 and we know, 

 𝐼𝑄1 = 𝐼𝑄2 + 𝐼𝑄3. The difference of the current can be derived as follows, 
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Δ𝐼 = 𝐼𝑄2 − 𝐼𝑄3 = 𝐼𝑆 [exp (

𝑉𝐵𝐸2

𝑉𝑇
) − exp (

𝑉𝐵𝐸3

𝑉𝑇
)]

= 𝐼𝑆exp (
𝑉𝐵𝐸3

𝑉𝑇
) [exp (

𝑈

𝑉𝑇
) − 1] 

(2.18) 

 
𝐼𝑄1 = 𝐼𝑄2 + 𝐼𝑄3 = 𝐼𝑆 [exp (

𝑉𝐵𝐸2

𝑉𝑇
) + exp (

𝑉𝐵𝐸3

𝑉𝑇
)]

= 𝐼𝑆exp (
𝑉𝐵𝐸3

𝑉𝑇
) [exp (

𝑈

𝑉𝑇
) − 1] 

 

(2.19) 

From equation (2.21) and (2.22), 

 
Δ𝐼 = 𝐼𝑄2 − 𝐼𝑄3 = 𝐼𝑄1tanh (

𝑈

2𝑉𝑇
) (2.20) 

Similarly 

 
Δ𝐼 = 𝐼𝑄′2 − 𝐼𝑄′3 = 𝐼𝑄′1tanh (

𝑈

2𝑉𝑇
) (2.21) 

And 

 
Δ𝐼𝐼𝐹 = 𝐼𝑄2 − 𝐼𝑄3 − 𝐼𝑄′2 − 𝐼𝑄′3 = (𝐼𝑄1 − 𝐼𝑄′1) × tanh (

𝑈

2𝑉𝑇
) (2.22) 

The same expression for the transconductance transistor pair, 

 
(𝐼𝑄1 − 𝐼𝑄′1) × tanh (

𝑉

2𝑉𝑇
) (2.23) 

Now, for the current at IF, the expression can be obtained by putting equation (2.25) in 

to (2.24) 

 
𝑣𝐼𝐹 = −𝑅𝐿𝐼𝑇𝐴𝐼𝐿tanh (

𝑉

2𝑉𝑇
) tanh (

𝑈

2𝑉𝑇
) (2.24) 

For small amplitudes, 

 𝑣𝐼𝐹 = −𝑅𝐿𝐼𝑇𝐴𝐼𝐿𝑉𝑈 (2.25) 

As seen from (2.28), the output of a Gilbert cell is multiplication of the two inputs. 
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5.2  Quadrature (𝟗𝟎°) hybrid coupler 

Quadrature hybrid couplers are four terminal device illustrated in Figure 5-1. The incident 

power signal splits in to two at output ports. Here, the power is incident on port 1 and 

splits equally at port 2 and 3 and are 90 degrees out of phase. All the reflections are sent 

to the isolated port 4, therefore no reflected power go back to input. The signals at the 

output port are attenuated by 3 dB, it means 50% of power is lost. In addition to splitting, 

they can also combine power signal if the isolation between the port is high enough. 

Here, the hybrid coupler illustrated in Figure 5-1 is realized by the lumped elements which 

are ideal capacitors and inductors (lossless). Realization of coupler by lumped elements 

provides wider bandwidth, low insertion loss and is very suitable for MMIC applications. 

                                     

                                    Figure 5- 2 Quadrature hybrid coupler                                    

An example of distributed elements coupler is shown in Figure 5-3. The coupler has two 

transmission lines i.e. vertical and horizontal, both transmission lines has quarter wave-

length. 

                               

                                        Figure 5- 3 Branch line coupler 
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The impedance of vertical and horizontal transmission lines is 𝑍 = 𝑍0 𝑎𝑛𝑑  𝑍 =
𝑍0

√2
 re-

spectively, whereas 𝑍0 is characteristic impedance. It is preferred to realize transmission 

lines with lumped component to save area in MMIC realizations. For the MMICs, the 

hybrid coupler is realized with lumped elements using π or T equivalent network. In the 

lumped element configuration, each transmission line is represented by the equivalent π 

network. The values of lumped elements can be calculated by using the ABCD matrix. 

 

(
𝐴          𝐵

𝐶           𝐷
) =  [

cos Ѳ

j
1

𝑍𝑟
sin Ѳ

     
𝑗𝑍𝑟 sin Ѳ

cos Ѳ
] (2.26) 

When Ѳ = 90° , the values of lumped element can be calculated as following; 

𝐿1 =
𝑍𝑟

𝜔0
, 𝐿2 =  

𝑍𝑝

𝜔0
, 𝐶1 =

1

𝑍𝑟𝜔0
, 𝐶2 =

1

𝑍𝑝𝜔0
   

Where, 𝑍𝑟 represents the impedance of horizontal transmission line and 𝑍𝑝 represents the 

impedance of vertical transmission line. 

The s-parameter measurements are given in the Figure 5-2.  

                    

                                  Figure 5- 4 S-parameter of hybrid coupler 

The magnitude of s12 and s13 are very close to -3dB, -2.993dB respectively. The phase 

difference between s12 and s13 is also 90 degrees. 
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5.3  Wilkinson power combiner/divider 

Wilkinson power combiner is a three port network that is lossless when the outputs are 

completely matched. The Wilkinson circuit is used for both combining and splitting sig-

nals. The output is the sum of the in-phase input signals. The Wilkinson combiner has 

good isolation between the ports. 

                         

                                  Figure 5- 5 Wilkinson power combiner   

The characteristic impedance of π network in the branches of combiner is √2𝑍0, and the 

isolator resistor is 2𝑍0. The two transmission line is realized by using the lumped ele-

ments. Lumped elements are easy to integrate and gives wider bandwidth. Since the input 

signals are 90 degrees out of phase in an IQ modulator, half of the power is wasted in the 

isolation resistor. 

The s-parameter simulation of three port device is shown in Figure 5-4.  

                         

                        Figure 5- 6 S-parameter of Wilkinson power combiner      
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For equal split, Wilkinson should half the power to each of the output port. Therefore, 

s12 and s13 are equal to -3dB. The ideal component simulation is very close to the theory 

giving s12=s13= -3.01dB. 

5.4  BALUN 

BALUN is an electronic device that converts single-ended signals to differential signals, 

vice versa. Baluns are widely used in for instance mixer and push-pull amplifier designs. 

Basically, baluns are used to generate 180-degree phase shift signals at the output. 

Baluns can be classified in to two categories; active and passive baluns. Passive baluns 

are further classified in to two; lumped element balun and distributed baluns. L-C Balun 

is shown in the given Figure 5-5. In the proposed I/Q RF-DAC circuit, two baluns are 

used one at the input and other at output. 

                                 

                                                        Figure 5- 7 BALUN 

The phase difference between the two outputs of BALUN is 180 degrees to each other 

given in the Figure 5-6.     
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                          Figure 5- 8 𝟏𝟖𝟎𝟎 phase difference between two outputs 
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6. CIRCUIT DESIGN AND SIMULATIONS 

In this chapter the complete implementation of the four bit 30 GHz RF-DAC based I/Q 

modulator is described. As this thesis is more concerned towards the RF domain, only the 

analog/RF part of circuit is implemented. The circuit is implemented in Cadence environ-

ment and 130 nm BiCMOS technology is used. The complete block diagram is given in 

the Figure 6-1. There are four sub-circuits: input and output BALUN, differential branch 

line coupler, 15 conversion cell stacked in to one box for the two quadrant RF-DACs I/Q 

vector modulator combined and a differential Wilkinson power combiner.  

The main function of differential branch line coupler is to feed differential signal to I and 

Q quadrant. The BALUN has a single-ended input impedance of 50 Ω and a differential 

output impedance of 100 Ω. Differential branch line coupler, BALUN and Wilkinson 

combiner has already been described in detail in Chapter 5. 

 

                                     Figure 6- 1 Block diagram of I/Q modulator 

In order to remove the glitches while switching the output from one level to another level, 

the circuit is designed for Thermometer coding logic. The proposed I/Q modulator is de-

signed for four bits; therefore, it gives 15 output levels. Thus, 15 such RF- DAC conver-

sion cells are designed and arranged in parallel. 

For the simplicity, the circuit is described below in detail step by step. The different build-

ing blocks are added step by step and simulations are performed. The circuit starts from 

RF-DAC unit cell, arrangement of these 15 cells in parallel. Arranging of two quadrant 

RF-DACs that form the I/Q modulator with combined Wilkinson power combiner. The 

complete I/Q modulator by combining input and output BALUN is illustrated in Figure 

6-1. In section 6.7, the 15 bits are turned ON from 1 to 15 in the increasing order and the 

effect on power added efficiency and output power is observed. 
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6.1 RF-DAC unit cell 

The RF-DAC unit conversion cell is shown in Figure 6-2. The RF-DAC consists of sev-

eral parallel unit cells. The output is controlled by switching the unit cells on or off ac-

cording to the applied digital input.  

                     

                                            Figure 6- 2 RF-DAC unit cell 

In the given Figure 6-2, the differential local oscillator signal of 30 GHz is applied to the 

two differential pair of the transistor. These quad transistors are preceded by one differ-

ential pair where the digital bits are applied. Since the digital circuitry is omitted, differ-

ential DC voltage of 100 mV is applied. All the transistors are working as high speed 

switches except tail current source, so all the transistors are biased in the active region. 

Simulations of voltage conversion gain and output power is illustrated in Figure 6-3, 6-4. 
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                                         Figure 6- 3 Voltage conversion gain 

          

                                       Figure 6- 4 Output power vs input power 
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6.2 Arrangement of cells 

 A thermometer coder is used that gives 2𝑁 − 1 digital thermometer bits to represent N 

digital input bits. So for four bits it generates 15 outputs, therefore 15 conversion cells 

are used. The arrangement of cells is illustrated in Figure 6-5. All the cells are organized 

in parallel and their output is summed at the RF port.  

              

                     Figure 6- 5 Arrangement of 15 RF-DAC cells in parallel 

The schematic of test bench for all the 15 cells arranged in parallel is illustrated in Figure 

6-6. The LOP and LON are the 30 GHz differential local oscillator signal that are 180 

degrees out of phase. The differential output is collected at terminal VoutP and VoutN. 

VinP and VinN are differential DC voltage. Hence from now this test bench circuit is 

used for further stages of circuit. 
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                            Figure 6- 6 Test bench of 15 RF-DAC unit cells 

6.3 Input and output matching 

The LO input port and RF output port are matched to differential 100 Ω. The basic idea 

behind the matching is the load pull analysis of one RF-DAC unit cell to get the optimum 

impedance at which maximum performance is achieved. So the optimum impedance for 

the 15 cells arranged in parallel is the optimum impedance of one RF-DAC unit cell di-

vided by 15. The output load is matched to 100 Ω load (RL=100 Ω) and in the same way 

the input is 100 Ω conjugate matched. In the given Figure 6-7, the differential 100 match-

ing is shown at output and input by using the lumped elements. 

           

              Figure 6- 7 100 Ohm differential input and output conjugate matching 
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6.4 IQ RF-DAC arrangement 

The combination of two RF-DACs in parallel makes the I/Q vector modulator. The in 

phase and quadrature part combined with Wilkinson power combiner is illustrated in Fig-

ure 6-8.  

   

Figure 6- 8 Combination of test bench in I and Q part with Wilkinson power combiner 

6.5 Combining of Differential branch line coupler 

At this stage, the differential branch line coupler is added to the circuit illustrated in Fig-

ure 6-10. Differential branch line coupler is basically constructed by using two-single 

ended branch line couplers. Signals in port 2 and port 3 are 90 degrees out of phase. Port 

4 is the isolated port which is terminated with 100 Ω. 

Differential branch line coupler is shown in Figure 6-9. 

                                   

                                   Figure 6- 9 Differential branch line coupler 



34 

Port 4 is isolated, port 2 and 3 are 90 phase difference signal and are 100 Ω matched. 

 

                       Figure 6- 10 Addition of differential branch line coupler 
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6.6 Complete IQ modulator  

                     

                          Figure 6- 11 A 4-bit RF-DAC based I/Q modulator 
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The complete circuit of I/Q modulator is illustrated in Figure 6-11. At this stage balun 

circuit is added to both input and output. Several simulations have been performed which 

are shown in the given figures.  

6.6.1 Simulations 

PAE  

The horizontal axis represents the LO input power and vertical axis represents PAE 

(Power Added Efficiency). In the given Figure 6-12, around at 5 dBm input power, the 

efficiency began to saturate. At 5 dBm input signal power, the observed efficiency is 23%. 

 

                           Figure 6- 12 Power added efficiency vs input power 

The individual RF-DACs have two times higher efficiency but 3 dB power is lost in the 

isolator resistor of Wilkinson power combiner. 

Gain 

In the given Figure 6-13, observed gain is 18-dB at 5 dBm input signal power. The for-

mula of the gain is shown in equation 2.30. 

 
𝐺𝑎𝑖𝑛 = 𝑑𝑏10 (

𝑂𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟

𝐼𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
) (2.27) 
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                                       Figure 6- 13 Gain vs input power 

Output power 

In the given Figure 6-14, the total output power was estimated around 23 dBm at 5 dBm 

input signal power. 

    

                                 Figure 6- 14 Output power vs LO input power 
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DC Power consumption 

In the given Figure 6-15, the power consumption is 859-mW at 5 dBm input signal power.  

  

                                         Figure 6- 15 DC power consumption 

Bandwidth 

The bandwidth of circuit is around 6 GHz. 

      

                                        Figure 6- 16 Gain bandwidth of circuit                    
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6.7 Performance versus number of ON bits 

In the given Figure 6-17, the arrangement of RF-DAC of 15 cells in both I and Q part is 

shown. The idea of this arrangement is to observe the effect on PAE (Power Added Effi-

ciency), output power and relation of PAE vs output power as the number of bits turned 

ON from 1 to 15 bits.  
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                                         Figure 6- 17 Number of ON bits from 1 to 15 
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PAE vs number of bits 

In the given Figure 6-18, the horizontal axis represents the number of bits from 1 to 15 

and vertical axis represents PAE. It appears like an exponential curve and at 15 bits when 

all the RF-DAC cells are ON gives 23 %. 

            

                                  Figure 6- 18 Power added efficiency vs number of bits 

6.7.1 Output power vs number of bits 

The same curve for output power illustrated in Figure 6-19. 

           

                                  Figure 6- 19 Output power vs number of bits                                        
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6.7.2 PAE vs Output power                                                                                                                                                                                

     In the given Figure 6-20, the graph shows linearly straight curve as it was anticipated. 

              

                              Figure 6- 20 Power added efficiency vs output power 
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7. CONCLUSION 

The goal of thesis was to design and simulate the “30 GHz RF-DAC BASED I/Q MOD-

ULATOR” that has been completed successfully. For the implementation of the circuit, 

a RF-DAC, Wilkinson power combiner, differential branch line coupler and balun has 

been designed. The complete circuit have an output power of 23 dBm, efficiency of 23% 

and 18 dB gain. 

The thesis reports the designing of modulator circuit with reasonably low power con-

sumption, high efficiency and good gain. Due to time limits the layout of circuit was not 

made. The project can be continued by making the layout, fabricating the circuit and tak-

ing measurements of hardware in the next stage.  
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