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ABSTRACT 

TUULI SEPPÄNEN: Improving distillation modelling in a dynamic process simu-
lator 
Tampere University of Technology 
Master of Science Thesis, 66 pages, 5 Appendix pages 
August 2016 
Master’s Degree Programme in Automation Engineering 
Major: Process Automation 
Examiner: Professor Matti Vilkko 
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The need of maximizing the economic benefits of a distillation unit often requires oper-

ating close to its capacity limits. The limits of an operating column depend on the inter-

nal vapor and liquid flows and their physical properties. In this thesis, distillation mod-

elling in a dynamic process simulator was improved to consider internal phenomena in a 

distillation column i.e. tray hydraulics. 

The structure of the original distillation model was first reconsidered. In the developed 

model, separate flash separators were used to represent an active area and a downcomer 

of a tray. The hydraulic phenomena included in the model were jet flooding, downcom-

er backup flooding, downcomer choke flooding and weeping. Downcomer backup 

flooding occurred in the model automatically due to the model structure and configura-

tion. To represent the other hydraulic phenomena in the model, correlations were used. 

These correlations were rationalized based on the literature study. For determining the 

limit values, at which each phenomenon begins, and maximum jet flooding and down-

comer choke flooding occurs in a specific distillation column, Koch-Glitsch’s KG-

TOWER software was utilized. 

The developed distillation model was first implemented in the dynamic process simula-

tor with fixed pressure, and jet flooding, downcomer choke flooding and weeping oc-

curring only on one tray. The liquid flow rates, pressures and levels of the tanks were 

also calculated manually with a spreadsheet, and simulation results were compared to 

those to verify the accuracy of the simulation model. After ensuring the reasonable 

function of the correlations, the calculation of the correlations was implemented in the 

simulator code by programming. For more extensive examination, the model was im-

plemented in a distillation game model. The function of the model was studied by vary-

ing the reboiler duty, feed rate and reflux rate. 

The simulation results showed that some oscillation occurs easily both in flooding and 

in weeping. To ensure the stability in all situations, the model configuration needs fur-

ther examination. All the hydraulic phenomena did, however, occur in the model ac-

cording to implemented calculation as assumed. 
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TIIVISTELMÄ 

TUULI SEPPÄNEN: Dynaamisen prosessisimulaattorin tislausmallin kehittämi-
nen 
Tampereen teknillinen yliopisto 
Diplomityö, 66 sivua, 5 liitesivua 
Elokuu 2016 
Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma 
Pääaine: Prosessien hallinta 
Tarkastaja: Professori Matti Vilkko 
 
Avainsanat: dynaaminen simulointi, tislaus, välipohjahydrauliikka 

Tislauskolonnin taloudellisten hyötyjen maksimoiminen vaatii usein kolonnin operoi-

mista lähellä sen kapasiteettirajoja. Nämä rajat riippuvat kolonnin sisäisistä kaasu- ja 

nestevirtauksista sekä niiden fysikaalisista ominaisuuksista. Tässä diplomityössä kehi-

tettiin dynaamisen prosessisimulaattorin tislausmallinnusta siten, että se ottaa huomioon 

tislauskolonnin sisäiset ilmiöt eli välipohjahydrauliikan. 

Ensimmäisenä alkuperäisen tislausmallin rakennetta harkittiin uudelleen. Kehitetyssä 

mallissa käytettiin erillisiä sekoitussäiliöitä kuvaamaan välipohjan aktiivialuetta ja pa-

luukaukaloa. Työssä mallinnetut hydrauliset ilmiöt olivat roiskinta, paluukaukalon tul-

viminen sekä itkeminen. Paluukaukalon tulviminen johtuen nesteen ajautumisesta aktii-

vialueelta takaisin paluukaukaloon tapahtui mallissa sen rakenteen ja konfiguraation 

vuoksi automaattisesti. Muiden hydraulisten ilmiöiden kuvaamiseen käytettiin korrelaa-

tioita. Korrelaatioiden määrittämisessä hyödynnettiin työn kirjallisuusosan selvitystä. 

Kunkin ilmiön alkamisen ja maksimitulvimisen raja-arvojen määrittämisessä tietylle 

kolonnille käytettiin Koch-Glitsch KG-TOWER -ohjelmistoa. 

Kehitetty tislausmalli rakennettiin ensin dynaamiseen prosessisimulaattoriin vakiopai-

neella ja siten, että roiskinta, paluukaukalon tulviminen ja itkeminen tapahtuivat vain 

yhdellä välipohjalla. Nestevirtaukset, paineet ja säiliöiden pinnankorkeudet laskettiin 

myös taulukkolaskentaohjelmalla, ja simulointituloksia verrattiin laskujen tuloksiin si-

mulointimallin tarkkuuden verifioimiseksi. Kun korrelaatioiden toiminta varmistettiin 

järkeväksi, korrelaatioiden laskenta implementoitiin simulaattoriin ohjelmoimalla. Laa-

jempaa tutkimista varten mallia sovellettiin tislauspelimalliin. Mallin käyttäytymistä 

tutkittiin vaihtelemalla kiehuttimen tehoa sekä syötön ja huipunpalautuksen määrää. 

Simulointitulokset osoittivat, että mallissa esiintyy helposti oskillointia sekä tulvimisen 

että itkemisen aikana. Mallin konfiguraatio tarvitsee lisää tarkastelua, jotta mallin stabii-

lius voidaan taata kaikissa tilanteissa. Kaikki hydrauliset ilmiöt esiintyivät kuitenkin 

mallissa toteutetun laskennan mukaan, kuten oletettiin. 
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LIST OF SYMBOLS AND ABBREVIATIONS 

 

PR Peng-Robinsin equation of state 

SRK Soave-Redlich-Kwong equation of state 

VLE  Vapor-liquid equilibrium 

 

𝐴𝑎𝑝𝑟𝑜𝑛  Area of downcomer apron, m2
 

𝐴𝑎   Active tray area, m2 

𝐶𝑑   Discharge coefficient, - 
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𝐸𝑖,𝑛   Murphree tray vapor efficiency for component n in tray i, - 

𝐹𝑖   Feed molar flow to tray i, mol/h 

𝑔   Acceleration of gravity, m/s
2
 

𝐻𝑖   Enthalpy of vapor phase leaving tray i, J/mol 

𝐻𝑖+1   Enthalpy of vapor phase coming to tray i, J/mol 

ℎ𝑐𝑙   Clear liquid height on tray, m 

ℎ𝑐𝑙𝑖   Clear liquid height at liquid entry in downcomer, m 

ℎ𝑑𝑐   Liquid height in downcomer, m 

ℎ𝑓   Enthalpy of feed, J/mol  

ℎ𝑓𝑑   Froth height in downcomer, m 
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ℎ𝑖−1   Enthalpy of liquid phase coming to tray i, J/mol 

ℎ𝑛   Pressure increase across nappe, m of liquid 

ℎ𝑢𝑑𝑐   Pressure drop for flow under downcomer, m of liquid  

ℎ𝑡   Total pressure drop, m of liquid 

ℎ1   Clearance under downcomer, m  

𝐾𝑖,𝑛   Equilibrium constant for component n in tray i, - 

𝐿   Characteristic length, m 

𝐿𝑎𝑡𝑡    Liquid amount attempting to flow to downcomer, t/h 

𝐿𝑐ℎ𝑜𝑘𝑒   Liquid flow rate from active area to downcomer, t/h  

𝐿𝑖   Liquid molar flow leaving tray i, mol/h 

𝐿𝑖−1   Liquid molar flow coming to tray i, mol/h 

𝐿𝑗𝑒𝑡   Liquid entrainment rate, t/h 

𝐿𝑙𝑖𝑚   Liquid flow at which choke flow is first limited, t/h 

𝐿𝑚𝑎𝑥,𝑐ℎ𝑜𝑘𝑒  Liquid flow at which maximum limitation of choke flow occurs, t/h 

𝐿𝑚𝑎𝑥,𝑗𝑒𝑡  Maximum liquid entrainment rate, t/h  

𝐿𝑚𝑎𝑥,𝑤𝑒𝑒𝑝  Maximum liquid weeping rate, t/h  

𝐿𝑤𝑒𝑒𝑝   Weeping liquid rate, t/h 

𝑀𝑖,𝑛   Total molar holdup of component n in tray i, mol 

𝑀𝑖   Total molar holdup in tray i, mol 

𝑀𝑖ℎ𝑖   Molar holdup of the liquid phase enthalpy in tray i, J 

𝑃𝑖   Total pressure in tray i, kPa 

𝑃𝑖,𝑛
0    Vapor pressure of component n in pure liquid phase in tray i, kPa 
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𝑃𝐿𝑖   Liquid product flow, mol/h 

𝑃𝑉𝑖   Vapor product flow, mol/h 

𝛥𝑝𝑡𝑟𝑎𝑦  Pressure drop over tray, kPa 

𝛥𝑝𝑠𝑡𝑎𝑡𝑖𝑐  Liquid head on tray, kPa 

𝛥𝑝𝑑𝑟𝑦   Dry pressure drop, kPa 

𝛥𝑝𝑟   Residual pressure drop, kPa 

𝑄𝑖   Heat input to tray i, W 

𝑄𝐿   Liquid flow rate, m
3
/s 

𝑄𝑡   Liquid flow under downcomer, m
3
/s 

𝑄𝑉   Vapor flow rate, m
3
/s 

𝑆𝐹   System factor, - 

𝑣𝑑𝑐   Velocity under the downcomer apron, m/s 

𝑣ℎ   Vapor velocity through hole, m/s 

𝑉𝑖   Vapor molar flow leaving tray i, mol/h 

𝑉𝑖+1   Vapor molar flow coming to tray i, mol/h 

𝑉𝑙𝑖𝑚,𝑗𝑒𝑡   Vapor rate at which jet flooding starts to occur, t/h 
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𝑦𝑖+1,𝑛   Mole fraction of component n in vapor phase coming to tray i, -  

𝑦𝑖.𝑛
∗    Vapor mole fraction of component n leaving tray i in equilibrium, - 

𝛼̅𝑑   Mean liquid volume fraction in downcomer, - 

𝛾𝑖,𝑛   Liquid activity coefficient of component n, - 

𝜁   Resistance coefficient, - 

𝜉   Orifice coefficient, - 

𝜌𝐿   Liquid mass density, kg/m
3 

𝜌𝑉  Vapor mass density, kg/m
3
 

𝜎   Surface tension, N/m 

ɸ𝑛   Vapor fugacity coefficient, - 
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1. INTRODUCTION 

Distillation is one of the most widely used unit operations in the chemical industry [1]. 

Distillation is a process in which a liquid or vapor mixture is separated into its compo-

nent fractions by utilizing different volatilities of the components. In a distillation col-

umn the more volatile, or lighter, components are removed from the top of the column 

and the less volatile, or heavier, components are removed from the lower part of the 

column. The reboiler vaporizes some of the liquid from the base of the column and va-

por flows upwards in the column. The condenser liquefies vapor and liquid flows 

downward in the column. To provide the vapor-liquid contacting, there are either trays 

or packings in the column. 

Distillation operations consume vast amounts of energy. Consequently, great economic 

savings can be achieved with relatively modest energy saving. The energy consumption 

of the distillation can be affected by constructional design of the column and the mode 

of operation. The choice of column internals creates frames for energy consumption and 

thus defines the lower limit of energy consumption. Nevertheless, efficient operation of 

the distillation column can significantly affect its energy consumption. [2, p. 1] For a 

distillation column to operate efficiently, not only must it be well-designed, but the con-

trol strategies must be effective to ensure that controlled variables remain at set point in 

the presence of disturbances that frequently occur in industrial situations. 

Simulators are essential appliances for today’s process designers. They can be divided 

into two groups: steady-state and dynamic simulators. Steady-state simulation calculates 

the state of a stable system whereas dynamic simulation models the behavior of a sys-

tem over time. With dynamic simulation the behavior of a distillation column can be 

studied especially in shut-down, start-up and upset situations. In Neste there are several 

operator training simulator environments in use. More realistic dynamic behavior of the 

modelled system provides opportunities for developing the training possibilities. This 

again helps operators to avoid disturbances and to operate the process faster to normal 

condition in unusual situations.  

1.1 Problem of current distillation model 

The need of maximizing the economic benefits of a distillation unit very often requires 

operating close to its capacity limits. The limits of an operating column depend on the 

internal vapor and liquid flows and their physical properties. [3, p. 131] The process of 

vapor flowing up the column and liquid flowing across each tray and down the column 

is called tray hydraulics. It imposes constraints on the range of permissible vapor and 



2 

 

liquid flow rates. [4, p. 29] If the high limit is exceeded, the column may reach unac-

ceptable condition and can no longer be operated. In the low-limit conditions the col-

umn can still be operated but with an unacceptable loss of efficiency. [3, p. 132] 

As the operation of the distillation column is poor if the vapor or liquid flow rate limit is 

exceeded, it is important for operators to recognize when the operation approaches these 

limits. This way the distillation column can be operated as efficiently and economically 

as possible. In this matter, the operator training simulators can be profitable, if the distil-

lation model in operator simulators can realistically model the operation of the distilla-

tion column in limit conditions.   

The distillation model utilized in the operator training simulators is modelled with a 

dynamic process simulator called NAPCON ProsDS. It is software developed by Neste 

Jacobs and programmed in ANSI Common Lisp. Development of the first version start-

ed in 1987 and the software is being continuously improved and extended. [5] In 

ProsDS there are number of unit models available. The current model of a distillation 

column in ProsDS basically consists of several flash separators combined together. In 

addition, some heat-exchangers can possibly be included. [6]  

The distillation model utilized in the operator training simulators is currently restricting 

the development of operator training. The model does not take into account the capacity 

limits of the column. Hence, the model is not realistic and operators cannot be trained to 

operate the column in its limit conditions. The inner phenomena of a distillation column 

are not modelled in the current distillation model. As the column internals are not mod-

elled accurately, it is not possible to examine the internal flows of the column. Training 

of inner phenomena of the column, like flooding, requires a more accurate distillation 

model that will also take tray hydraulics into consideration. 

1.2 Distillation in other dynamic process simulators 

There are several dynamic process simulators commercially available, which can be 

utilized in dynamic simulation of a distillation column. In process simulators, there usu-

ally is a graphical user environment that pictures the simulated model. Most process 

simulators can be divided into sequential modular or equation-oriented approaches. In 

sequential modular i.e. block-oriented approaches, every process consists of standard-

ized blocks that model the behavior of a process unit or a part of it. Blocks are linked by 

connections that represent information, material or energy flow. The blocks are selected 

from the library, and the model built upon equations and variables, is hidden from the 

user. [7] A modular strategy is based on the concept that the solution of the individual 

units of the flowsheet is delegated into the unit level. This means that each unit opera-

tion is solved by means of an appropriate solver. Thus, the units provide only input-

output information. Convergence is achieved by means of a certain coordination algo-

rithm on the flowsheet level which is usually iterative. The dynamic sequential modular 
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simulation algorithm operates on bounded integration intervals. The integration contin-

ues until the end of the simulation time horizon is reached. [8] Sequential modular ap-

proach is user-friendly as it makes simulators easy to implement and understand, but the 

rigid blocks make it inflexible since the user cannot make any changes to the blocks. In 

equation-oriented approaches, modelling is addressed on the equations level and each 

block is solved independently.  In addition, in equation-oriented simulators, a library of 

unit operations is available, but blocks can be modified as well. Although equation-

oriented approach is more flexible than sequential modular, it can be demanding to use. 

[7] Some of the most established commercial dynamic process simulators are discussed 

below. 

Aspen Plus Dynamics is a software program of Aspen Technology planned for dynamic 

process simulation. It is an extension to Aspen Plus and steady-state models from Aspen 

Plus can be imported to Aspen Plus Dynamics. Library of equipment models include 

rigorous distillation with hydraulics.  In addition, Aspen Custom Modeler can be used 

for creating user-defined unit operations. [9]  

The other dynamic simulation software solution of Aspen Technology is Aspen HYSYS 

Dynamics. It is integrated into Aspen HYSYS making the converting of steady-state 

process model into a dynamic process simulation model possible. Aspen HYSYS Dy-

namics focus mainly on time-dependent oil and gas processes, including gas processing 

and petroleum refining. [10] In Aspen HYSYS Dynamics, some coefficients consider-

ing hydraulic phenomena of the distillation column, as foaming factor, weeping factor 

and maximum flooding percent, can be specified in Tray section. [11] 

Chemstation’s CHEMCAD is a flexible chemical process simulation environment. It is 

capable of modelling batch, semi-batch and continuous systems. One of the CHEM-

CAD modules, CC-DYNAMICS, enables designing and rating processes using a dy-

namic simulation. Columns in CHEMCAD can be modelled as high- or low-fidelity. 

Distillation column can be chosen as tray or packed type. CHEMCAD also provides 

hydraulic performance such as predicted amount of flooding. [12] 

Process Systems Enterprise’s (PSE) process simulator gPROMS is an equation-oriented 

modelling and optimization software program. In gPROMS both steady-state and dy-

namic simulation can be done within the same framework. By using the gRPOMS lan-

guage, it is also possible to create custom process models as the physical and chemical 

relationships representing the modelled process can be written down. [13] Utilizing this 

feature, nonlinear equations capturing the fluid behavior in the column can also be in-

cluded in the model. Chang et al. [14] studied rigorous industrial dynamic simulation of 

a crude distillation column. In addition to material and energy balance and equilibrium 

relations, tray hydraulics was modelled with gPROMS. 
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The commercial process simulators always require licenses. Software packages that 

convert steady-state simulation to dynamic mode, especially if additional software is 

also needed for custom models, will often take more than one license reservation from 

the total number of licenses in the company. Thus in-house software has the benefit of 

free usage, even though the development of the software will require effort. Tu & Ri-

nard [7] claim that although there are commercially available dynamic simulators, hard-

ly any of them have a library of equipment that is extensive enough to satisfy even the 

needs of the most routine projects. Hence, the most important advantage of in-house 

software is the possibility to customize it according to the needs of the company.  

1.3 Aim of this thesis 

The aim of this thesis is to improve distillation modelling in ProsDS. In ProsDS the 

advantages of sequential modular and equation-oriented simulators come together since 

as a sequential modular simulator it is easy to use, but it is also flexible, because as in-

house software, models can be modified when needed.  

As described in the first subchapter, tray hydraulics is not taken into consideration in the 

current distillation model of the operator training simulators. Thus, operators cannot be 

trained to operate the column in its limit conditions and it is not possible to examine the 

internal flows of the column. In Neste, training and competence of the operators are 

highly valued. One part of the operator training system is the understanding of the inner 

phenomena in a distillation column. Currently, as the simulators cannot be utilized in 

this training due to the insufficient distillation model, there is educational material pro-

vided for the operators. However, it is noted that in addition to theoretical training, prac-

tical training with simulators is beneficial in understanding of the function of the pro-

cesses. Training with simulators helps operators to understand how changes in process-

es affect the system dynamics. 

In this thesis, the distillation model is improved, so that the model also considers tray 

hydraulics. The purpose of this is that the distillation model is able to take into account 

the vapor and liquid flow rate limits and model the consequences of exceeding these 

limits. The modelling is first outlined manually. The correlations for hydraulic phenom-

ena are defined by utilizing KG-TOWER software of Koch-Glitsch. The tray and pack-

ing manufacturer Koch-Glitsch is a major company of designing and manufacturing 

mass transfer, mist elimination and liquid-liquid coalescing equipment in the field of 

refining, chemical, petrochemical and gas processing industries. After the correlations 

are defined, they are implemented in ProsDS by programming in ANSI Common Lisp.  

As the distillation model is improved, it can be utilized in the operator training simula-

tors. With the distillation model of a realistic behavior, the operators can be trained to 

recognize when a distillation column is approaching or exceeding the hydraulic con-

straints and thus operators can avoid upset situations and operate process faster back to 
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the normal condition. The model will also offer beneficial support for operator training 

considering the inner phenomena of a distillation column and provide a possibility to 

examine the internal flows of the column. 

1.4 Content of thesis 

The literature part of this thesis consists of Chapter 2 and Chapter 3. In the second chap-

ter, tray and packed columns and hydraulic constraints of a tray column are discussed. 

In third chapter, basic equations and modelling of hydraulic constraints are presented.  

The applied part of this thesis includes Chapters 4, 5 and 6. The current distillation 

model in a dynamic process simulator, KG-TOWER software as well as the defining of 

the correlation are described in Chapter 4. In Chapter 5 the development and implemen-

tation of the improved distillation model is represented. Chapter 6 consists of a discus-

sion of the results as well as their sensibility and reliability. In addition, the future as-

pects are considered. Finally, the thesis is summarized in Chapter 7.  
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2. HYDRAULICS IN DISTILLATION COLUMN 

The purpose of the column internals is to ensure separation of multicomponent mixtures 

by promoting an intimate contact of liquid and vapor. There are two types of distillation 

columns. One uses stages, i.e. trays or plates, to obtain a contact between the counter-

current flows of vapor and liquid. These are called tray columns. The second type of 

columns, packed columns, bring a differential contact between the countercurrent flows 

of vapor and liquid over the surface of some packing. [1, pp. 219−221]   

In both types of columns, there are limits of operability near or beyond which the col-

umn will fail to function. These hydraulic constraints are critical and important to rec-

ognize. [1, p. 221] In the following chapter, first tray and then packed columns are elab-

orated. After that the hydraulic constraints of tray column operability are explored.     

2.1 Tray columns 

Many industrial distillation columns are equipped with trays or plates. Typically, these 

trays are equally spaced inside the cylindrical column shell. In each tray there are usual-

ly two conduits, one on each side, called downcomers. In addition to these one-pass 

trays, two-pass, three-pass and four-pass trays are also used to avoid excessively short 

liquid paths. Nevertheless, the number of passes should be minimized, since trays con-

taining a large number of passes are prone to maldistribution. [15, p. 167] Due to gravi-

ty, liquid flows down from the tray through a downcomer, across the tray below and 

then over a weir into another downcomer. The weir on one side of the tray maintains the 

level of liquid on the tray at a desired level. The area between the downcomers is called 

the active area, where ascending vapor from the tray below passes through the liquid 

and makes contact with it. [1, pp. 4−5; 16, p. 2] A downcomer must be sufficiently large 

to permit the froth clarification to liquid and liquid to flow to the tray below without 

choking [15, p. 175]. The distance between two trays is called tray spacing. There is a 

vapor space above the active area. In that area, liquid is separated from vapor, as vapor 

flows up and sloshing liquid drops fall back to the active area. Prime factor in setting 

tray spacing is the economic trade-off between column height and column diameter. 

[17] In Figure 2.1 there is a schematic of a typical sieve type tray.  
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Figure 2.1. Schematic of a typical sieve tray [4, p. 29]. 

There are a variety of tray types available commercially. The simplest one is a sieve 

tray, which is a flat plate with a number of perforations that are provided for vapor flow. 

Vapor flow through the holes must be sufficiently high to prevent the liquid from falling 

through the holes. In Figure 2.2, the function of the sieve type tray is represented. 

 

Figure 2.2. Function of a sieve type tray. Adapted from [18]. 

In a bubble-cap tray there is a riser or a chimney fitted over each hole and a cap cover-

ing the riser. The cap is mounted so that there is sufficient space between the riser and 

the cap for vapor to pass. Vapor rises through the chimney and is directed downward by 

the cap. Vapor discharges from the slots in the cap and bubbles through the liquid on the 

tray. Figure 2.3 shows the basic function of a bubble-cap tray. The components of a 

bubble-cap are also presented in the figure.  
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Figure 2.3. Function of a bubble-cap tray. Adapted from [18]. 

Bubble-cap trays were the best-known vapor-liquid contacting devices in chemical in-

dustry for years, but valve trays have since become more common in distillation opera-

tions. In a valve tray, the perforations are covered with caps that can be lifted. Upward 

flowing vapor lifts the cap, thus creating a flow area for the vapor passage. Vapor flows 

horizontally into the liquid, and therefore a better mixing is provided than in sieve trays 

where the vapor passes straight upward through the liquid. Sieve and valve trays have 

replaced bubble-cap trays in many applications due to their high efficiency, wide oper-

ating range and low cost. [1, pp. 4−5] In Figure 2.4 the function of a valve tray is illus-

trated with normal, low and high vapor flow. 

 

Figure 2.4. Function of a valve tray. Adapted from [18]. 

Trays in a distillation column promote mass transfer of heavy components into the liq-

uid flowing down the column and of light components into the vapor flowing up the 

column. Vapor flows from one tray up to another through the tray above, because the 

pressure is lower on the upper tray. Thus there is an increase on pressure from the top of 

the column to its base. Liquid phase is denser than the vapor phase. Hence, the liquid 

flows against the positive pressure gradient. In the downcomer, liquid level is built up to 

a height sufficient to overcome the static pressure difference between two trays. The 

pressure difference depends on the vapor pressure drop through the tray and the average 

liquid height on the tray. [4, pp. 28−29] In order for liquid to flow through the down-

comer to the tray below and to prevent vapor to flow flowing through the downcomer, 

the hydrostatic pressure of the liquid in the downcomer must compensate the liquid flow 

resistances in the downcomer and in transfer to the active area, in addition to the pres-

sure loss of the tray [19]. 
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2.2 Packed columns 

While trays are evenly spaced apart, packing usually fills all of the available space in-

side a column. All the various packings are based on the fact that an effective mass 

transfer between liquid and vapor requires an extensive surface. For good separation, 

the liquid and vapor should be uniformly spread over the cross-section of the column. 

Redistribution and intermixing should be frequent with the film thickness remaining as 

uniform as possible. The packing elements should be low-weight and mechanically and 

chemically resistant. In addition, the pressure loss of the vapor flowing through the 

packing should be small. As none of the known packings offers a maximum of all these, 

it must be decided, which type of packing is the most suitable in each case. In all types 

of packings the separation effect depends significantly on a uniform distribution of the 

reflux across the column cross-section. [20, p. 86] In the past several decades, following 

the appearance on the market of high-performance packings, continuous vapor-liquid 

devices have replaced trays with respect to increasing column capacity and/or reducing 

pressure drops [1, pp. 21−22] 

In packed columns, the liquid-vapor contacting is achieved with packed beds i.e. pack-

ings. Liquid and vapor flow in the counterflow direction and zigzag through the column. 

Even relatively small reflux quantities will be uniformly dispersed into the liquid film, 

because of the strong capillary action of the surfaces. The inclination of the channels 

formed provides good intermixing of the phases. [20, p. 92] Two types of packings can 

be used in the distillation column: a random packing or a structured packing. Random 

packings usually consist of 1-3 cm sized pieces. The pieces of random packings are 

usually either some kind of rings or saddles. The structured packings are systematically 

shaped for achieving a good vapor-liquid contact. [19] 

As the problems of the packed columns are usually uniform liquid distribution and 

maintaining the distribution, there are several devices for distribution in a packed col-

umn [19]. The main devices for setting the quality of distribution are the top or reflux 

distributor, the intermediate feed distributor, the redistributor and sometimes the vapor 

distributor [15, p. 35]. Beside packings and distributors, the packed column internals 

also include packing supports that physically support the packed bed while permitting 

unrestricted flow of liquid and vapor [15, p. 211]. In Figure 2.5 typical internals of a 

packed column are represented. 
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Figure 2.5. A cutaway of a packed column [15, p. 212]. 

The capacity of a packed column is usually restricted by vapor flow. Great vapor flow 

rate will increase the pressure loss and sometimes also decrease the column efficiency.  
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2.3 Hydraulic constraints 

Column throughput is restricted by one of several different mechanisms [15, p. 141]. 

These mechanisms are outlined in this subchapter. The efficient and safe operation zone 

of a distillation column is bounded by vapor and liquid flow rates. In Figure 2.6 the ef-

fect of vapor and liquid flow rates on operation is presented. 

 

Figure 2.6. Stable operating zone for tray columns [21]. 

Flooding in a distillation column is excessive accumulation of liquid on a tray [15, p. 

376]. Flooding is synonymous with the distillation column maximum capacity and 

reaching this limit is detected by a sharp increase in the pressure drop. There are two 

types of flooding mechanisms, jet flooding and downcomer flooding. Weeping is a phe-

nomenon that can occur especially in perforated tray columns while foaming is an ex-

pansion of aerated liquid. [1, pp. 221−222] 

2.3.1 Jet flooding 

Jet flooding is triggered by excessive liquid entrainment [1, p. 134]. Entrainment occurs 

if vapor flow rate and velocity are too high considering liquid flow rate and tray cross-

section area [19]. Entrainment is defined as liquid drops carried away with vapor from 

the tray to the one above [1, p. 221]. It is detrimental for two reasons. Since liquid of 

lower volatility is carried to the tray containing liquid of higher volatility, entrainment 

lowers the tray efficiency. It can also contaminate the high-purity distillate, since it car-

ries nonvolatile components upwards. Thus, there is a maximum value for vapor flow 

velocity between trays that cannot be exceeded. [19] In Figure 2.7 the condition of jet 

flooding compared to the normal operation of a distillation column is illustrated. 
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Figure 2.7. Jet flooding. 

When jet flooding begins, the downcomer can be only partially filled with liquid. As jet 

flooding develops further, the downcomer becomes filled with liquid and all of the liq-

uid fed to the tray is carried to the tray above. Jet flooding is characterized by a large 

increase in the pressure drop across the column as the column becomes flooded. [16, p. 

424] 

There are two mechanisms identified for entrained drop generation. The mechanism 

depends on the flow regime. Different correlations are required in the spray and froth 

regimes. In the spray regime, entrainment increases with increased vapor velocity in 

tray holes and diameter of the holes. Entrainment decreases with increased liquid weir 

load and fractional perforated area. In the froth regime, entrainment primarily depends 

on the approach of the upper surface of the froth to the tray above. The factors that in-

crease froth height, increase entrainment. Those factors are vapor velocity, liquid load 

and weir height. In both regimes, a reduction of tray spacing increases entrainment. [22, 

pp. 94−95] 

2.3.2 Downcomer flooding 

Downcomer flooding occurs when the liquid height in the downcomer equals or ex-

ceeds the height between trays i.e. tray spacing [4, p. 30]. Flooding is caused by too 

high liquid flow rate. If downcomer flooding occurs, a sharp increase in pressure drop 

across the column is observed. [16, p. 424] Downcomer flooding is caused either by 

downcomer backup flooding mechanism or downcomer choke flooding mechanism.  

Liquid is conveyed through the downcomer from a lower to a higher pressure. Conse-

quently, liquid backs up in the downcomer to overcome the pressure difference. Thus, it 

is essential that downcomer height is sufficient to accommodate this backup to avoid 

flooding. [22, pp. 98−99] However, when liquid flow is raised, pressure drop of the tray 
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along with liquid height on the tray and frictional losses in the downcomer increase. 

Consequently, aerated liquid on the tray is backed up to the downcomer. When the 

backup of aerated liquid in the downcomer exceeds the tray spacing, liquid accumulates 

on the tray above. This phenomenon is called downcomer backup flooding. [15, p. 376] 

Downcomer must be sufficiently large to transport all liquid downflow. Downcomer 

choke flooding occurs as the velocity of aerated liquid in the downcomer increases due 

to the liquid flow rate increase. When the velocity of aerated liquid exceeds a certain 

limit, friction losses in the downcomer and its entrance become excessive. Consequent-

ly, all of the frothy mixture cannot be transported to the tray below, which causes accu-

mulation of the liquid on the tray above. [15, pp. 376−377] In addition, excessive flow 

rate of vapor venting from downcomer in counterflow, will impede liquid downflow 

[21]. In Figure 2.8 downcomer flooding mechanism of both downcomer backup and 

downcomer choke are presented beside the normal operation of a tray column. 

 

Figure 2.8. Downcomer flooding caused by downcomer backup and downcomer choke. 

Downcomer choke flooding is also called downcomer entrance flooding or downcomer 

velocity flooding. The prime parameter in downcomer design that affects the downcom-

er choke flooding is the downcomer top area. Further down the downcomer, vapor dis-

engages from liquid, and thus the volumes of aerated liquid flowing down and vented 

vapor flowing up are greatly reduced. [21]  

2.3.3 Weeping 

In perforated tray columns, if vapor rates are decreased, a point is reached at which the 

liquid head on the tray is equal to the pressure holding it on the tray. Consequently the 

vapor pressure drop through the openings in the tray is not high enough to keep liquid 

from flowing down through the perforations. This is known as weeping. Weeping oc-

curs to some extent over a range of conditions due to sloshing and oscillation of the liq-
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uid on the tray, but when it becomes continuous and excessive, the phenomenon is 

called dumping. In that case, all the liquid fed to the tray weeps through the holes of 

tray and no liquid flows over the weir to the downcomer. Dumping affects seriously the 

operation of the column and leads to a sharp decrease in efficiency and increase in pres-

sure drop [1, p. 222] If weeping occurs, fractionation suffers as vapor-liquid contacting 

is poor [4, p. 30]. Figure 2.9 illustrates weeping in a distillation column. 

 

Figure 2.9. Weeping occurring in a sieve type tray. 

The main factor affecting weeping is the fractional hole area. The larger the area is, the 

smaller the vapor pressure drop and consequently, the greater the weeping tendency. 

Larger liquid rates and higher outlet weirs also increase the liquid heads on the tray and 

therefore weeping as well. Weeping is often non-uniform.  Some hydraulic conditions 

favor weeping from the tray inlet and others from the tray outlet. Weeping from the tray 

inlet is particularly detrimental to tray efficiency as the weeping liquid bypasses two 

trays. [21] 

Valve trays can be operated at relatively low vapor rate because the valve openings 

close as the vapor rate decreases. Bubble-cap trays can operate at very low vapor rate 

due to their sealing arrangement. Thus, weeping does not occur in distillation columns 

of bubble-cap trays. [16, p. 424] 

2.3.4 Foaming 

Foam forms when vapor bubbles rise to the liquid surface and persist without coales-

cence with one another or without rupture into the vapor space [15, p. 393]. Since foam-

ing provides a high interfacial area for the vapor-liquid contact, it is desirable to a cer-

tain degree. However, excessive foaming results in a liquid buildup on the tray. If the 

foam buildup becomes high enough to pass through the risers in a bubble-cap column or 

through the holes in a perforated-tray column to mix with the liquid on the tray above, 
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the condition is known as priming. That greatly reduces the separation efficiency of the 

column. [1, p. 221] In Figure 2.10 foaming in a distillation column is illustrated. 

 

Figure 2.10. Foaming in a distillation column. 

Foaming is primarily a function of the physical properties of the liquid. In addition, the 

method and degree of aeration impact foaming. [1, p. 221] Foaming can be prevented 

with foam inhibitors. They are insoluble materials and spread spontaneously over the 

surface of the foamy liquid. The film of foamy liquid is replaced by a film of spreading 

liquid, which cannot support an extended liquid film, thus causing rupture. [15, pp. 

396−397] The disadvantages of foam inhibitors are their cost and the possibility of 

product contamination [22, p. 53].  
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3. MODELLING OF HYDRAULICS 

The mathematical model formed for a process describes the system behavior on equa-

tion level. It introduces the most essential factors concerning the process and causal 

relationships between process variables. Highly accurate models are extremely compli-

cated and both forming and solving them take plenty of time. Depending on the applica-

tion, some assumptions can be made about the process behavior, so that the model will 

be simpler. It is essential to derive the simplest possible model that is capable of a real-

istic representation of the process. [23, pp. 1−3] 

Forming the mathematical model for a distillation column is based on fundamental con-

servation laws of mass and energy. By means of these conservation laws the mass, 

component and energy balances can be formed. In addition, there are algebraic equa-

tions involved. They describe hydraulics in the column and also physical properties of 

the components. In this chapter, the basic equations and modelling of hydraulic phe-

nomena are presented. 

3.1 Basic equations 

Tray columns are usually modelled by using balance equations. The mass, energy and 

component balances are presented in this subchapter. After that, vapor-liquid equilibri-

um (VLE) and tray efficiency are considered. Each additional component of the feed 

mixture must be expressed by a separate component material balance and by its own 

equilibrium relationship. The pressure drop of a tray is also examined in this subchapter. 

3.1.1 Balance equations 

The basic principle for modelling conservation of mass or matter can be expressed as 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑛 − 𝑂𝑢𝑡.                      (1) 

That is to say, the rate fed into the system must equal the rate that comes out or accumu-

lates in the system [23, pp. 4−10]. The system in this content can be a tray in a distilla-

tion column. In a steady-state system there is no accumulation, but in a dynamic process 

model accumulation usually occurs. The equation (1) is valid for mass and energy bal-

ances and can be applied for each chemical component of the system, provided no 

chemical change occurs. In component balance, the change due to reaction can be taken 

into account by adding a reaction term into the equation (1). 
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In Figure 3.1 a tray i of a distillation column is presented. The tray is heated with a heat 

supply Qi and the feed Fi to the tray can be either vapor or liquid or a mixture of both. 

In addition, a vapor product flow PVi or liquid product flow PLi can be taken out of the 

tray. If some of these do not exist, they can be set to value 0 in the model. The vapor 

flow Vi+1 comes to the tray i from the tray below and the vapor flow Vi goes to the tray 

above. On the contrary, the liquid flow Li-1 comes to the tray i from the tray above and 

the liquid flow Li goes to the tray below.  

Figure 3.1. A scheme of a separation state of the tray i. Adapted from [24]. 

For each tray, the mass and energy balances can be formed. In addition, n-1 component 

balances can be formed for n components in a tray i. The balances are in form of differ-

ential equations. [24] 

The total mass balance for two phases can be presented as 

𝑑(𝑀𝑖)

𝑑𝑡
= 𝐹𝑖 + 𝐿𝑖−1 + 𝑉𝑖+1 − 𝐿𝑖 − 𝑉𝑖 − 𝑃𝐿𝑖 − 𝑃𝑉𝑖 ,                               (2) 

where the total molar holdup Mi in the tray i is the sum of the molar liquid holdup and 

the molar vapor holdup in the tray i, that is 𝑀𝑖 = 𝑀𝑖
𝐿 + 𝑀𝑖

𝑉. When two phases come 

into contact, there is a net flow of material from one phase to another until equilibrium 

is reached. In steady-state situation the value of the equation (2) is 0.  

The mass balance of a component between two phases can be expressed as 

𝑑(𝑀𝑖,𝑛)

𝑑𝑡
= 𝐹𝑖𝑥𝐹,𝑛 + 𝐿𝑖−1𝑥𝑖−1,𝑛 + 𝑉𝑖+1𝑦𝑖+1,𝑛 − 𝐿𝑖𝑥𝑖,𝑛 − 𝑉𝑖𝑦𝑖,𝑛 − 𝑃𝐿𝑖𝑥𝑖,𝑛 − 𝑃𝑉𝑖𝑦𝑖,𝑛 ,      (3) 

where the molar holdup of the component n in the tray i can be presented as 𝑀𝑖,𝑛 =

𝑀𝑖
𝐿𝑥𝑖,𝑛 + 𝑀𝑖

𝑉𝑦𝑖,𝑛. In the equation (3) xF,n is the mole fraction of the component n in the 

feed, xi-1,n is the mole fraction of the component n in liquid phase coming to the tray i, 

xi,n is the mole fraction of the component n in liquid phase leaving the tray i, yi+1,n is the 

mole fraction of the component n in vapor phase coming to the tray i and yi,n is the mole 

fraction of the component n in vapor phase leaving the tray i. 

Tray i 

𝐿𝑖−1 

𝑉𝑖+1 𝐿𝑖  

𝑉𝑖  

𝐹𝑖  

𝑃𝐿𝑖  

𝑃𝑉𝑖  

𝑄𝑖  
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The energy balance and the mass balance of a system interrelate with each other. The 

internal energy depends on temperature, mass and composition of the system. [23, p. 

22] The energy balance can be written as 

𝑑(𝑀𝑖ℎ𝑖)

𝑑𝑡
= 𝐹𝑖ℎ𝑖 + 𝐿𝑖−1ℎ𝑖−1 + 𝑉𝑖+1𝐻𝑖+1 − 𝐿𝑖ℎ𝑖 − 𝑉𝑖𝐻𝑖 − 𝑃𝐿𝑖ℎ𝑖 − 𝑃𝑉𝑖𝐻𝑖 − 𝑄𝑖.       (4) 

In the equation above, Mihi is the molar holdup of the liquid phase enthalpy in the tray i, 

hF is the enthalpy of the feed, hi-1 is the enthalpy of the liquid phase coming to the tray i, 

hi is the enthalpy of the liquid phase leaving the tray i, Hi+1 is the enthalpy of the vapor 

phase coming to the tray i and Hi, is the enthalpy of the vapor phase leaving the tray i.  

3.1.2 Equilibrium relations 

The system state equilibrium can be determined with the help of an equilibrium con-

stant. The equilibrium between vapor and liquid phases is determined as 

𝑦𝑖,𝑛 = 𝐾𝑖,𝑛𝑥𝑖,𝑛 ,              (5) 

where Ki,n is the equilibrium constant for the component n in the tray i. The sum of the 

mole fractions in liquid phase in the tray i equals the sum of the mole fraction in vapor 

phase in the tray i and is valued as 1. With the equation (5), the vapor phase composi-

tion can be calculated if the composition of liquid is known and vice versa. In an ideal 

mixture, Raoult’s and Dalton’s laws can be used for determine the K values:  

  𝐾𝑖,𝑛 =
𝑦𝑖,𝑛

𝑥𝑖,𝑛
=

𝑃𝑖,𝑛
0

𝑃𝑖
.              (6) 

In the equation (6) 𝑃𝑖,𝑛
0  is the vapor pressure of component n in pure liquid phase in the 

tray i and Pi is the total pressure in the tray i. However, many mixtures show non-ideal 

behavior in the liquid phase. In such cases, the equation (6) is modified to include the 

liquid activity coefficient 𝛾𝑖,𝑛. At high pressure conditions, the vapor fugacity coeffi-

cients ɸ𝑛 become necessary for the better equilibrium defining. In this condition the 

equation is 

  𝐾𝑖,𝑛 =
𝑃𝑖,𝑛

0 𝛾𝑖,𝑛

𝑃𝑖ɸ𝑛
 .              (7) 

The liquid activity coefficient 𝛾𝑖,𝑛 depends on the composition of the liquid phase. The 

standard state of reference is 𝛾𝑖,𝑛 = 1 for a pure component n. [3, pp. 3−4] 

In distillation, the separation is based on the different composition between vapor and 

liquid in equilibrium. In ideal equilibrium stage, one or more material or energy streams 

enter and one vapor and one liquid stream leave the stage in thermodynamic equilibri-

um. [3, p. 8] Real trays in a distillation column are not ideal and do not function as ideal 
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stages. Vapor leaving the tray is not in equilibrium as determined in the equation (5), if 

the contact time between vapor and liquid is too short. The high viscosity derives small 

diffusion coefficients and poor mass transfer, resulting in low efficiency. In addition, 

high pressure often deteriorates the function of the trays and packings. [19] A common-

ly adopted approach to evaluate the operation of a real tray is to add to the model Mur-

phree tray vapor efficiency, which is defined as 

  𝐸𝑖,𝑛 =
𝑦𝑖,𝑛−𝑦𝑖+1,𝑛

𝑦𝑖.𝑛
∗ −𝑦𝑖+1,𝑛

 .              (8) 

In the equation (8), the vapor mole fraction of the component n leaving the tray i in 

equilibrium is defined as 𝑦𝑖,𝑛
∗ = 𝐾𝑖,𝑛𝑥𝑖,𝑛. Murphree vapor efficiency is thus the ratio of 

the vapor mole fraction change across the tray to the change that would occur across an 

ideal stage for a specific component n. If there are m components in the vapor phase, m-

1 Murphree vapor efficiencies could be defined. [3, p. 20] 

As in ProsDS the distillation column is modelled by combining flash tanks, the vapor-

liquid equilibrium (VLE) is calculated in the blocks and do not require any further con-

sideration. The more rigorous examination of vapor-liquid equilibrium can be found in 

the literature of the field, for example Distillation Tray Fundamentals [22] and Funda-

mentals of Multicomponent Distillation [16]. 

3.1.3 Pressure drop 

The pressure drop over the downcomer from the surface of the liquid exiting the down-

comer to the surface of the downcomer level equals the total pressure drop over a tray. 

The flow under the downcomer apron is modelled by instationary Bernoulli equation. In 

the equation (9), the pressure loss due to friction and the acceleration of the liquid under 

the downcomer apron have been taken into consideration. The pressure drop over the 

tray can be defined as 

  𝛥𝑝𝑡𝑟𝑎𝑦 = 𝜌𝐿𝑔ℎ𝑑𝑐 − 𝜁𝑣𝑑𝑐
2 𝜌𝐿 − 𝐿𝜌𝐿

𝑣𝑑𝑐

𝑑𝑡
 ,                     (9) 

where the velocity under the downcomer apron is  

  𝑣𝑑𝑐 =
𝑄𝑡

𝐴𝑎𝑝𝑟𝑜𝑛
 .            (10) 

The characteristic length L is chosen to be equal to the height of the downcomer apron. 

In the equation (9) 𝜌𝐿 is the liquid mass density, g is the standard acceleration of gravi-

ty, hdc is the liquid height in the downcomer and 𝜁 is the resistance coefficient. In the 

equation (10) Qt is the liquid flow under the downcomer and Aapron is the area of down-

comer apron. [25] 
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The total pressure drop over a tray is the difference of the pressure of the vapor entering 

and the vapor leaving the tray. The total pressure drop over a tray equals the sum of the 

liquid head on the tray Δpstatic and the dry pressure drop Δpdry and the residual pressure 

drop Δpr. 

  𝛥𝑝𝑡𝑟𝑎𝑦 = 𝛥𝑝𝑠𝑡𝑎𝑡𝑖𝑐 + 𝛥𝑝𝑑𝑟𝑦 + 𝛥𝑝𝑟                             (11) 

The pressure drop caused by clear liquid head on the tray active area is 

   𝛥𝑝𝑠𝑡𝑎𝑡𝑖𝑐 = 𝜌𝐿𝑔ℎ𝑐𝑙,                      (12) 

where hcl is the clear liquid height on the tray. The dry pressure drop is the pressure 

drop of the vapor flow through the perforated area without liquid flow. There are nu-

merous correlations available for the dry pressure drop. The usual practice is to repre-

sent the dry pressure drop as 

  𝛥𝑝𝑑𝑟𝑦 =
1

2
𝜉𝜌𝑉𝑣ℎ

2 .                      (13) 

In this orifice-type equation, 𝜉 is the orifice coefficient, 𝜌𝑉 is the vapor density and vh is 

the vapor velocity through holes in a tray. [22, pp. 76−77] The residual pressure drop 

should take into account several interacting dynamic phenomena between vapor flow 

and liquid. Usually, it can be considered constant, and in several cases it is negligible. 

[3, pp. 157−158] 

3.2 Modelling of hydraulic phenomena 

The modelling of hydraulic constraints is not simple and there are no straightforward 

physical equations for modelling hydraulic phenomena in a distillation column. None-

theless, there are many different correlations concerning jet flooding, downcomer flood-

ing and weeping available in the literature. In this subchapter, some correlations for 

hydraulic phenomena considered in this thesis are presented. 

3.2.1 Modelling of jet flooding 

The prediction of the onset of jet flooding using a fundamental approach is difficult, 

because correlations for liquid entrainment are insufficiently accurate. Thus, the ap-

proach taken is to utilize an empirical jet flooding correlation. There are some jet flood-

ing correlations at least made by Fair [26] and Glitsch [27]. The capacity factor CF is 

defined as 

𝐶𝐹 = 𝑣𝑉√
𝜌𝑉

𝜌𝐿−𝜌𝑉
 ,                                (14) 
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where the superficial vapor velocity vv is the ratio between the vapor flow rate QV and 

the active tray area Aa, this is 

  𝑣𝑉 =
𝑄𝑉

𝐴𝑎
 .             (15) 

For commercial reasons, the jet flooding correlations are often formed differently in 

manufacturers’ manuals. Glitsch correlation uses system factor SF, which lowers the 

capacity factor if the system is known to foam. [22, pp. 88−90] Thus, the capacity factor 

is expressed as 

  𝐶𝐹 = 𝐶𝐹0 ∗ 𝑆𝐹 .            (16) 

where CF0 is the capacity factor at zero liquid load. The values of the system factor SF 

have been given in Table 3.1. For non-foaming regular systems the system factor has a 

value 1.  

Table 3.1. System factors for different foaming systems. Adapted from [22,  p. 52]. 

    
System factor 

SF 

Slight foaming 0.90 

Depropanisers 0.90 

Freons 
 

0.90 

H2S strippers 0.90 

Hot carbonate strippers 0.90 

   Moderate foaming 0.85 

De-ethanisers 0.85 

Oil absorbers 0.85 

Amine strippers 0.85 

Glycol strippers 0.85 

Sulpholane systems 0.85 

Crude towers 0.85 

Hot carbonate absorbers 0.85 

Furfural refining 0.80 

   Heavy foaming 
 Amine absorbers 0.75 

Glycol contactors 0.65 

Methylethyl ketone 0.60 

   Stable foam 
 Alcohol synthesis absorbers 0.35 

Caustic regenerators 0.30 
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The Glitsch correlation for jet flooding with different tray spacing for Ballast trays is 

presented in Figure 3.2. The figure shows that the capacity factor at zero liquid load is a 

function of vapor density and tray spacing.  

 

Figure 3.2. The flooding correlation for Glitsch Ballast valve trays [26, p. 89]. 

The capacity of Ballast trays increase with increasing tray spacing up to a limiting val-

ue. The energy dissipated by vapor flowing through a tray and the quantity of entrain-

ment generated increase as the vapor density decreases. [27] 

3.2.2 Modelling of downcomer flooding  

As presented in the previous chapter, there are two different mechanisms for downcom-

er flooding. Downcomer backup hfd is calculated from the pressure balance 

  ℎ𝑓𝑑 =
ℎ𝑡+ℎ𝑐𝑙𝑖+ℎ𝑢𝑑𝑐−ℎ𝑛

𝛼̅𝑑
,           (17) 

where ht is the total pressure drop across the tray, hcli is the clear liquid height at the 

liquid entry, hudc is the pressure drop for flow under the downcomer, hn is the pressure 

increase across the nappe and 𝛼̅𝑑 is the mean liquid volume fraction in the downcomer 

[22, p. 99]. In Figure 3.3, the terms used in the equation (17) are illuminated.  
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Figure 3.3. Nomenclature for liquid backup in the downcomer [22, p. 99]. 

At high pressure the equation (17) can be elaborated to also consider vapor density. De-

spite the simplicity of the equation (17), some of the terms are difficult to predict. The 

dominant term, the total pressure drop ht, can be predicted with reasonable accuracy. 

The clear liquid height at liquid entry hcli can be estimated various ways. The simplest 

assumption is to take it equal to the clear liquid height on the tray. It can be increased 

appropriately, if hydraulic gradient is significant.  The pressure drop under the down-

comer  hudc is given by 

  ℎ𝑢𝑑𝑐 =
1

2𝑔
(

𝑄𝐿

𝑊ℎ1𝐶𝑑
)

2

,           (18) 

where QL is the liquid flow rate, W is the weir length, h1 is the clearance under the 

downcomer and Cd is the discharge coefficient. The values of the discharge coefficient 

Cd used by tray manufacturers are 0.54 for Glitsch [27], 0.56 for Koch Engineering [28] 

and 0.60 for Nutter Engineering [29]. A pressure increase across the nappe hn, is created 

when throw of froth over the weir acts as a seal at the mouth of the downcomer. It is 

significant for narrow downcomers and foaming systems, but almost always neglected 

in calculating downcomer backup since it is conservatively acting and reduces backup. 

[22, pp. 99−100] 

For the other downcomer flooding mechanism, downcomer choke, there is no satisfac-

tory published correlation. Nevertheless, a critical value for maximum velocity of clear 

liquid at the downcomer entrance exists. If the critical velocity is exceeded, choking 

occurs. Kister [15] has surveyed the multitude of published criteria for maximum down-

comer velocity and incorporated them into single set of guidelines. [21] This is present-

ed in Table 3.2.  
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Table 3.2. Maximum downcomer velocities. Adapted from [21].  

    
            Clear liquid velocity 
             in downcomer [m/s] 

Foaming  
tendency Example 

457 mm 
Tray 

610 mm 
Tray 

762 mm 
Tray 

    spacing spacing spacing 

Low 
Low-pressure (< 7 bar) light hydrocarbons,  
stabilizers, air-water simulators 0.12−0.15 0.15−0.18 0.15−0.18 

Medium 
Oil systems, crude oil distillation, absorb-
ers, mid-pressure (7 -21 bar) hydrocarbons 0.09−0.12 0.12−0.15 0.12−0.15 

High 
Amines, glycerin, glycols, high-pressure 
(>21 bar) light hydrocarbons 0.06−0.08 0.06−0.08 0.06−0.09 

 

The values of Table 3.2 are not conservative. For conservative use, the values of Table 

3.2 should be multiplied by a safety factor of 0.75. For very highly foaming systems, 

where antifoam application is undesirable, the maximum velocity of 0.03−0.05 m/s is 

beneficial. [21] 

3.2.3 Modelling of weeping 

Some weeping usually occurs in all conditions due to sloshing and oscillation of the tray 

liquid. Generally, as the weeping is small, it does not affect the tray efficiency. The 

weep point is the vapor velocity at which weeping becomes noticeable. As the vapor 

velocity is reduced below the weeping point the weep rate increases. [21] The weep rate 

typically varies with the vapor velocity. A higher exit weir increases the clear liquid 

height and consequently the weep rate is increased. [22, p. 108] 

There are several approaches for theoretical prediction of the weep point. One theoreti-

cal approach according to Lockett [22] was adopted by Ruff et al. [30] who considered 

the stability of the vapor jet connecting a growing bubble to the hole. For ensuring that 

no weeping occurs, it was suggested that for small holes 

  
𝜌𝑉𝑑ℎ𝑣ℎ

2

𝜎
> 2.0 (2.7 𝑓𝑜𝑟 𝑠𝑎𝑓𝑒𝑡𝑦)          (19) 

and for large holes 

  
𝑣ℎ

2

𝑔𝑑ℎ
(

𝜌𝑉

𝜌𝐿−𝜌𝑉
)

1.25

> 0.37 (0.75 𝑓𝑜𝑟 𝑠𝑎𝑓𝑒𝑡𝑦).        (20) 

The transition between small and large holes is given by 

  𝑑ℎ = 2.32 (
𝜎

𝜌𝑉𝑔
)

0.5

(
𝜌𝑉

𝜌𝐿−𝜌𝑉
)

0.625

.          (21) 
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In the equation (19) dh is the hole diameter and 𝜎 is the surface tension. Except for cry-

ogenic application, the holes used in sieve trays are usually determined as large. [22, 

pp. 110−112] 

3.2.4 Modelling of foaming 

Bubble coalescence proceeds by drainage of the intervening liquid film. Foam will tend 

to form when there is a mechanism that maintains the film and prevents it from ruptur-

ing prematurely during the drainage process. The stability of the foam depends on the 

foam’s ability to heal itself against excessive localized thinning as overall film drainage 

proceeds. A range of foam types can be obtained depending on the degree of film stabil-

ity. If film stability is only slight, unstable foam can barely be distinguished from froth. 

Metastable foams persist much longer and the bubbles become distorted into pentagonal 

dodecahedra to give what is usually called cellular foam. [22, pp. 44−45] 

The extent of foaminess and its actual effect on distillation column capacity are difficult 

to predict from chemical composition and process conditions. However, the effect tends 

to be reproducible and is often lumped into a system factor. [31, p. 208]. The system 

factors for different foaming systems were presented in Table 3.1. As foaming is usually 

covered with a system factor, modelling of the foaming is not discussed in the literature 

of the field. 
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4. DISTILLATION MODELLING IN DYNAMIC 

SIMULATOR 

There are no exact physical equations for modelling the hydraulic phenomena in a dis-

tillation column. The correlations presented in Chapter 3 are not straightforward and 

contain parameters that are difficult to determine. Therefore in this thesis, it is decided 

to utilize tray and packing manufacturer’s software to determine the required correla-

tions between vapor and liquid flows and the tray hydraulics. Thus, the manufacturer is 

also responsible of the knowhow development. Nevertheless, as a disadvantage, the use 

of the manufacturer’s software derives a reliance of the software. In addition, the soft-

ware’s correlations for high performance trays are insufficient and the manufacturer 

needs to be consulted. 

In this chapter, the current distillation model in ProsDS is explored in more detail. In 

addition, the manufacturer’s software, KG-TOWER, utilized in this thesis is presented. 

Finally, the methods for defining the hydraulic correlations with Koch-Glitsch software 

are examined.  

The KG-TOWER software does not concern foaming in any way. Since there was very 

little information about modelling of the foaming available in the field’s literature, it 

was decided not to include modelling of the foaming in this thesis 

4.1 Current distillation model in ProsDS 

ProsDS is a dynamic simulation software developed by Neste Jacobs and is designed for 

building and simulating automation and process models. ProsDS is mainly used for pro-

cess design studies and operator training. The development of ProsDS is carried out by 

using the integrated development tool LispWorks. 

The distillation model in ProsDS consists of so called stirred tanks and possibly heat-

exchangers. The stirred tank is a basic process tank corresponding to a flash drum. It 

consists of one calculation element. It is able to split the contents into phases and can 

also be set to apply heating or cooling duty. The heat-exchanger is a combination of two 

stirred tanks, between which energy can flow through a specific heat-exchanger area.  

There is a standard distillation column model in ProsDS. Adding a distillation column 

to a process model starts with column initialization, in which the physical properties of 

the column, possible attachments and basic controls can be determined. The same col-

umn initialization menu can be used both for tray and for packed columns, as the mod-
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elling depends only on the number of the calculation elements and the efficiency of the 

trays. In distillation modelling, the number of the calculation elements is the same as the 

number of the trays in the modelled column. The calculation elements are made unideal 

by setting the value of VLE efficiency smaller than 1. The dynamics of the model is 

thus closer to the one of the real process than if adding fewer ideal calculation elements. 

[6] In Figure 4.1 a distillation column model in ProsDS is presented.  

 

Figure 4.1. A distillation column in ProsDS. 

In Figure 4.1 a distillation column model with five trays can be seen. There is also a 

reboiler, a condenser and an overhead drum included. In addition, the basic controllers 

of distillation columns, such as a level controller LC, a flow controller FC and a pres-

sure controller PC, can be observed from the figure. 

In the column initialization menu the thermodynamics used in the column, the physical 

sizing of the column, the number of the calculation elements and the separation effi-

ciency are specified. Furthermore, the trays for the feed streams and side draws are 

specified. The equation of state used in vapor or liquid phases can be chosen to be ideal, 

Soave-Redlich-Kwong (SRK), Peng-Robinsin (PR) or user identified. Usually, the 

number of calculation elements in the modelled column is defined to be the same as in 
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the real column and the separation efficiency is defined so that the compositions of the 

distillate and bottom product in the model correspond to those of the real column. 

The type of the condenser can be chosen as the condenser can be cooled by water, other 

liquid or air. The overhead drum and the controllers of the upper part of the column can 

be determined according to the case in question. If the overhead drum is not flooded, 

usually the overhead level is controlled with the reflux or distillate rate and the pressure 

is controlled with vapor outlet. If the overhead drum is flooded the pressure is con-

trolled with the reflux or distillate rate, i.e. the level of the condenser. In the reboiler, the 

heating medium can be vapor or liquid. The reboiler duty is controlled with the heating 

medium rate. 

Most parameters can be redetermined afterwards in the model. These parameters are 

column diameter, weir height, tray spacing, separation efficiency and thermodynamics 

used in the column. In addition, the condenser, reboiler and overhead properties can be 

changed after creating the column model. In addition, all controllers can be added or 

removed from the model whenever needed. That is, the number of trays is the only de-

termination that cannot be automatically changed after the column is created.  

The program automatically makes default definitions for inner vapor and liquid flows of 

the column. Definitions are always case-specific depending on the needs of the pressure 

calculation and the construction of the overhead. Definitions can be changed manually. 

The default definition for vapor flow is Line Backward in which case pressure infor-

mation is transferred backward in the column from top to bottom. In line mode, all 

available flow is passed through the line without restrictions. The default definition for 

liquid flow is Fill. The liquid volume exceeding a specified level of the calculation ele-

ment, meaning the height of the weir, is transferred to the lower calculation element. 

The amount of flow depends on the connection level of the lower calculation element. If 

the liquid level of the lower calculation element remains under the connection level, the 

flow is not restricted, but if the liquid level reaches the connection level, the rate flow 

entering the calculation element cannot exceed the flow rate leaving from the calcula-

tion element. In distillation column models, the connection level is usually 1, that is, the 

liquid from the higher calculation element flows to the top of the lower calculation ele-

ment and the calculation element has to be full before the flow entering it is limited. 

The hydrostatic pressure in the column is resulting from the height of the weir. The 

pressure drop is caused as the vapor flows through the liquid volume. There can also be 

pressure loss added to vapor flows presenting the dry pressure drop. The vapor flow 

leaves from the top of the calculation element and enters the bottom of the calculation 

element above. The liquid flow passes over the weir and drops into the top part of the 

calculation element below. [6] In Figure 4.2 a schematic of the current distillation mod-

el in ProsDS is presented. Each tray is modelled with one stirred tank. 
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Figure 4.2. A schematic of the current distillation model. 

In a current distillation model, flooding may occur. If the liquid height on the tray 

equals the tray spacing, all the liquid from the tray above will no longer flow to the tray 

below and liquid begins to accumulate to the tray above. As shown in Figure 4.2, each 

tray is modelled with one stirred tank and the active area and the downcomer are not 

separated. As a consequence, downcomer backup effect cannot be illustrated. For the 

same reason, it is also not possible for weeping to occur. As there is no liquid flow to 

the tray above, jet flooding cannot occur in the model. In addition, downcomer choke 

flooding is not possible to appear in the current distillation model, since there is no limi-

tation for liquid flow to the tray below. 

4.2 Koch-Glitsch KG-TOWER software 

KG-TOWER software is a software program for sizing tray and packed columns. It is 

developed by the tray and packing manufacturer and vendor Koch-Glitsch. With the 

program, conventional and high performance valve trays as well as random and struc-

tured tower packings can be rated. The KG-TOWER software version 5.2 is used in this 

thesis. 

When rating a column, first step is to enter the internal vapor and liquid rates and densi-

ties in the software. Vapor and liquid viscosities and liquid surface tension should be 

entered if they are known. In addition, the system factor presented in Table 3.1 is en-

tered. It is possible to observe up to five cases with different loadings at the same time. 
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After entering the loading information, it is possible to select either tray or packing de-

sign. The second step requires entering the tray information. Tray type is chosen from 

the list and tower diameter and number of passes are entered. The valve type is chosen 

and valve quantity is determined along with tray spacing. After entering downcomer 

and weir geometry information, the results can be seen.  

The results given by KG-TOWER are presented in Table 4.1. The quantities of the re-

sults and in which units are they reported are shown in the table. There are some rec-

ommendations on some of the result values, as preferred maximum or minimum values. 

They are also shown in the table.   

Table 4.1. Tray results of KG-TOWER software. 

Tray Results Unit Recommended limit 

Jet Flood % max 85 % 

Downcomer Flood % max 85 % 

Downcomer Backup mm liq / % (TS+W) max 40 % 

Dry Tray Pressure Drop mm liq max 15 % of tray spacing 

Total Tray Pressure Drop mm liq 
 

Head Loss Under DC mm liq 1.5−25 mm 

Turndown % min 50 % 

Downcomer Exit velocity m/s max 0.46 m/s 

Cf Active Area m/s 
 Weir Load m3/h/m max 75−90 m3/h/m 

Weir Crest mm liq min 6 mm 

Equation 13 %  

DC Residence Time s 
 

DC Loading m3/h/m2 
 

Blow Rating % 
 

System Limit % 
 

Unit Reference % 
 

 

Jet flood and downcomer flood are reported as a percentage of the predicted point at 

which massive liquid accumulation will occur. Downcomer flood represents the chok-

ing effect at the entrance of the downcomer. Downcomer backup is reported in both 

millimeters of liquid and as a percentage of the tray spacing plus weir height. Dry tray 

pressure drop provides a relative indication of vapor velocity through the valves. For 

Total pressure drop, usually there is no specific limit on. Head loss under the down-

comer is based on the downcomer clearance and the shape of the downcomer edge. 

Turndown is an approximation of the minimum vapor rate required for efficient tray 

activity. Downcomer exit velocity is the liquid velocity as it flows horizontally through 

the downcomer clearance. Capacity factor Cf is commonly a used density-corrected 

vapor velocity term on a per unit active area basis and is calculated according to the 
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equation (14) presented in the previous chapter. Weir load is generally used to deter-

mine the liquid load of the tray. Crest is the theoretical height of clear liquid flowing 

over the outlet weir and is directly associated with weir loading. Equation 13 is the con-

ventional valve tray jet flood capacity model from Glitsch Design Manual. There are 

also some results as the residence time in the downcomer, the downcomer loading, the 

blow rating, the system limit and the unit reference, but they are not relevant in this the-

sis. [32] 

4.3 Determining hydraulic correlations 

Determining the correlation between vapor and liquid flows and the tray hydraulics re-

quires examination of results with several different vapor and liquid loads. With these 

different cases, the correlations between vapor flow and jet flooding as well as liquid 

flow and downcomer choke flooding and downcomer backup can be made. With made 

correlations, the limit value for the appearance of each phenomenon can be defined. The 

limit values for jet flooding and downcomer choke flooding can be determined accord-

ing to limit value of 85 %. The limit value for weeping can be determined by multiply-

ing the turndown ratio and the vapor rate. For the downcomer backup there is no need 

for defining a certain limit value, since as a phenomenon, it does not begin or stop at a 

certain loading, but is constantly occurring. The values at which the maximum jet flood-

ing and maximum downcomer choke flooding are reached can be determined according 

to the value of 100 % of flooding. 

As the limit values are defined, the correlations for liquid flow in jet flooding and weep-

ing and downcomer choke flooding can be made. Jet flooding begins to occur, if the 

vapor rate exceeds a certain limit. At a certain point, all of the liquid fed to the tray is 

carried to the tray above. The function representing the correlation between the vapor 

rate to the tray and liquid rate carried to the tray above, is valued as zero as the vapor 

rate remains under the defined value. After that, simplified, the function is a linear cor-

relation and reaches its maximum value at the defined value of 100 % of jet flood. In 

Figure 4.3 correlation for jet flooding in principal is presented. 
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Figure 4.3. General correlation form for jet flooding. 

The correlation for jet flooding can be presented as an equation. The liquid entrainment 

rate Ljet is represented as a function of vapor rate entering the tray in the following equa-

tion. 

𝐿𝑗𝑒𝑡 = {
0,                                                       𝑉 < 𝑉𝑙𝑖𝑚,𝑗𝑒𝑡

−
𝐿𝑚𝑎𝑥,𝑗𝑒𝑡

𝑉𝑚𝑎𝑥,𝑗𝑒𝑡−𝑉𝑙𝑖𝑚,𝑗𝑒𝑡
(𝑉 − 𝑉𝑙𝑖𝑚,𝑗𝑒𝑡), 𝑉 ≥ 𝑉𝑙𝑖𝑚,𝑗𝑒𝑡 

              (22) 

In the equation, Ljet is the liquid entrainment rate, Vlimit,jet is the limit value for vapor rate 

in jet flooding (85 % of jet flood), Vmax,jet is the vapor rate at which the maximum jet 

flooding occurs (100 % of jet flood) and Lmax is the maximum entrainment rate. As in jet 

flooding at the maximum vapor rate, all of the liquid fed to the tray is carried to the tray 

above, the maximum entrainment rate is the current liquid flow entering the active area 

from the downcomer. Thus, the value of the maximum liquid entrainment rate and the 

value of the equation (22) depend on the amount of the liquid flow from the downcomer 

to the active area. 

Weeping occurs if the vapor flow holding the liquid on the tray decreases under a cer-

tain point. If no vapor flows through the tray, all the liquid fed to the tray weeps to the 

tray below. Thus, it can be determined, that simplified, there is a linear function that 

represents the correlation between vapor flow and wept liquid flow. The function reach-

es its maximum value when the vapor flow is zero, and is valued as zero, if the vapor 

flow exceeds the defined limit value. In Figure 4.4 the general correlation for weeping 

in principal is presented. 
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Figure 4.4. General correlation form for weeping. 

The weeping correlation can be presented as an equation. The liquid weeping rate Lweep 

is represented as a function of vapor rate entering the tray in the following equation. 

𝐿𝑤𝑒𝑒𝑝 = {
−

𝐿𝑚𝑎𝑥,𝑤𝑒𝑒𝑝

𝑉𝑙𝑖𝑚,𝑤𝑒𝑒𝑝
∗ 𝑉 + 𝐿𝑚𝑎𝑥,𝑤𝑒𝑒𝑝 , 𝑉 ≤ 𝑉𝑙𝑖𝑚,𝑤𝑒𝑒𝑝

0,                                                   𝑉 > 𝑉𝑙𝑖𝑚,𝑤𝑒𝑒𝑝

            (23) 

In the equation, V is the vapor rate entering the tray and Vlimit,weep is the limit value for 

vapor rate in weeping. The maximum weeping rate Lmax can be calculated from the flow 

coefficient equation. As the flow coefficient remains constant, the value of the maxi-

mum weeping rate depends on the pressure loss and density of the weeping liquid flow. 

The higher the liquid level on the tray is, the greater the weeping flow rate is. Thus, the 

value of the maximum weeping liquid flow rate varies according to the pressure loss 

and density and, at the same time, the value of the correlation of the equation (23) var-

ies. 

In downcomer choke flooding when a large liquid flow rate is attempting to flow to the 

downcomer, the mouth of the downcomer can act as a restriction to flow and so require 

an increase in the froth height on the tray in order to achieve the required flow rate. The 

phenomenon can be presented with three functions. If the liquid flow rate from the ac-

tive area to the downcomer remains under the limit of 85 % of downcomer flood, the 

flow is not restricted. Nevertheless, the liquid flow becomes limited as it exceeds the 

defined value of 85 % downcomer flood.  After exceeding the value of 100 % down-

comer choke, the liquid flow is entirely restricted to a constant value that is decided to 

be 90 % of the maximum value of downcomer choke. In Figure 4.5 the correlation for 

downcomer choke flooding is presented in principal. 
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Figure 4.5. General correlation form for downcomer choke flooding. 

In Figure 4.5 the actual liquid flow passing the mouth of the downcomer is presented as 

a function of the liquid flow attempting to downcomer. As there is no limitation for liq-

uid flow before the certain limit, the angular coefficient of the function is valued as 1. 

This signifies, that all liquid rate attempting to the downcomer is also flowing to it. 

The correlation for downcomer choke flooding consists of three parts. The actual liquid 

flow rate Lchoke from active area to downcomer can be presented as 

𝐿𝑐ℎ𝑜𝑘𝑒 = {

𝐿𝑎𝑡𝑡 ,                                              𝐿𝑎𝑡𝑡 < 𝐿𝑙𝑖𝑚 
0.9∗𝐿𝑚𝑎𝑥,𝑐ℎ𝑜𝑘𝑒−𝐿𝑙𝑖𝑚

𝐿𝑚𝑎𝑥,𝑐ℎ𝑜𝑘𝑒−𝐿𝑙𝑖𝑚
∗ (𝐿𝑎𝑡𝑡 − 𝐿𝑙𝑖𝑚) + 𝐿𝑙𝑖𝑚𝑖𝑡  , 𝐿𝑙𝑖𝑚 ≤ 𝐿𝑎𝑡𝑡 < 𝐿𝑚𝑎𝑥,𝑐ℎ𝑜𝑘𝑒 

0.9 ∗ 𝐿𝑎𝑡𝑡 ,                                               𝐿𝑎𝑡𝑡  ≥ 𝐿𝑚𝑎𝑥,𝑐ℎ𝑜𝑘𝑒

, (24) 

where Latt is the amount of the liquid flow attempting to flow to the downcomer, Llim is 

the limit value at which the liquid flow is first limited (85 % of downcomer flood) and 

Lmax,choke is the liquid value at which the liquid flow becomes limited to a constant value 

(100 % of downcomer flood). The value of the liquid flow attempting to flow from ac-

tive area to the downcomer can be calculated from the mass balance of the active area 

and is thus conditional on the flows entering and leaving the tray and the liquid accumu-

lation on the tray. 
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5. IMPLEMENTATION OF THE HYDRAULIC 

CALCULATION 

The improvement of the distillation model began with determining the structure of the 

new model. It was also considered, how the hydraulic constraints appear in the model 

and which flows needed to be added to the model. For determining the hydraulic corre-

lations the KG-TOWER software was utilized. 

The function of the developed model was first tested with a small ProsDS model of five 

separation elements and fixed pressure. The flow rates, pressures and levels of the tanks 

were also calculated manually with a spreadsheet and the simulation results were com-

pared to those to verify the validity of the test model. After that, the calculation of the 

hydraulic correlations was implemented in the simulator by programming.  

For more extensive examinations, the model was implemented in a distillation game. 

The model of the distillation game was rebuilt with the model structure developed in 

this thesis.  

5.1 Development 

The KG-TOWER software was utilized for determining the limit values in the correla-

tions of jet flooding, downcomer choke flooding and weeping. Figure 5.1 shows the 

procedure of defining the limit values and flow coefficients that are needed in ProsDS, 

before the developed model can be used. 

First, the tray geometry and loading information at several operating points need to be 

added in the KG-TOWER software. From the results of the software the limit value for 

weeping can be calculated based on the turndown ratio. For jet flooding and downcomer 

choke flooding, linear functions can be formed based on the results of different load-

ings. From the linear functions, limit values of 85 % and 100 % i.e. the start point of 

flooding and the point of maximum flooding can be defined. With these limit values, 

the correlations for jet flooding, downcomer choke flooding and weeping can be de-

fined. 

The ProsDS model also uses flow coefficients in vapor flows and liquid flows from the 

active area to the downcomer. In vapor flow the flow coefficient represents the dry 

pressure drop and in liquid flow the head loss under the downcomer. The values of the 

flow coefficients can be defined based on the KG-TOWER results.  
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Figure 5.1. The steps involved in defining the needed values to a ProsDS model. 

In this subchapter, first the developed model structure is described. Then, some special 

tray constructions are considered. In addition, the defining of the correlations for jet 

flooding, downcomer choke flooding and weeping and the built ProsDS test model of 

five separation elements and fixed pressure are presented. Finally, the simulation results 

of the model are examined.  

5.1.1 Model structure 

Since the current distillation column model cannot model the tray hydraulics due to its 

structure of one stirred tank representing each tray, it was essential to reconsider the 

structure of the model. It was decided to separate the active area and the downcomer of 

a tray to separate stirred tanks instead of one stirred tank representing each tray. In this 

way, the realization of all hydraulic constraints was possible. In Figure 5.2 the schemat-

ic of the improved distillation model compared to the function of a tray column is pre-

sented.  
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Figure 5.2. Schematic of the improved distillation model. 

In Figure 5.2, the tanks representing the active areas and the downcomers as well as the 

vapor and liquid flows between them are presented. In addition, the scene of the each 

hydraulic phenomenon is shown. To represent all hydraulic phenomena, some liquid 

flows needed to be added to the model. In jet flooding, the liquid from the tray is carried 

to the tray above. Thus, for jet flooding there needs to be a liquid flow from the active 

area N to the one above. In weeping the liquid flows through the active area to the tray 

below. In reality, weeping may occur across the whole active area. If the liquid weeps 

through the tray straight after the downcomer, it bypasses basically two active areas, the 

one it weeps from and the one it weeps to. Instead, if the liquid weeps just before the 

outlet weir, it does not bypass any active areas. There is a liquid gradient on the tray and 

for that there is more liquid on the tray right after the downcomer than just before the 

outlet weir. Consequently, as the vapor flows more easily through the liquid of lower 

level, the weeping is more probable to occur right after the downcomer. Nevertheless, in 

this thesis it is assumed that as an average, liquid bypasses one active area. Thus, for 

weeping, there is a liquid flow from the downcomer N-1 to the downcomer below, and 

so one active area is bypassed. The structure of separate stirred tanks for an active area 

and for a downcomer enables the downcomer backup and downcomer choke effect to 

occur according to the configuration and do not require any additional flows to the 

model. In the schematic of the improved distillation model shown in Figure 5.2 jet 

flooding concerns the tray N. Downcomer choke and downcomer backup as well as 

weeping are the phenomena of the tray N-1. 
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5.1.2 Special tray constructions 

The distillation model presented above is developed for tray columns in general. The 

model can be applied for several tray constructions. For valve and sieve trays the model 

is valid as it is. If the modelled column consists of bubble-cap trays, the weeping liquid 

flow will be valued as zero since bubble-cap trays cannot weep.  

Liquid and vapor feeds can be added to the model. The liquid and vapor feeds are usual-

ly fed to an active area. What need to be considered when adding a feed flow to the 

model, is that the liquid and vapor feeds are added to the correct trays. In an actual dis-

tillation column if the vapor-liquid mixture is fed to the tray, liquid flows down to the 

active area, but vapor flows up to the tray above. The vapor fed to the tray does not in-

teract with the liquid on the tray but the liquid on the tray above. Consequently, in the 

model, separate liquid and vapor feeds are required and the vapor needs to be fed to the 

bottom of the tray above the tray in which the liquid is fed. In Figure 5.3 vapor and liq-

uid feeds are presented. 

 

Figure 5.3. Vapor and liquid feeds. 

Vapor is not often withdrawn from the column, but in the model a vapor draw-off can 

be added to the top part of the active area. Chimney trays are often used for withdraw-

ing intermediate liquid streams from the column. Chimney trays are preferred especially 

when all liquid in a column section is withdrawn. Alternative devices used for liquid 
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withdrawal are downcomer trapouts. They are mainly used for partial liquid draw-off 

from tray columns. [15, pp. 103−111] 

In the model liquid can be withdrawn partially or totally from a column section. In 

chimney trays, the vapor and liquid are not in contact on the tray the liquid is withdrawn 

from and the composition of the withdrawn liquid is near the composition of the liquid 

in the downcomer above. Therefore, in the model the liquid draw-off cannot be added to 

the active area, but to the downcomer above. In that way, liquid is not in contact with 

vapor in the model. As the liquid is withdrawn totally, there is no liquid flow to the ac-

tive area below, unless there is a feed or reflux flow to that tray. In Figure 5.4 total 

draw-off from the column are presented.  

 

Figure 5.4. Total draw-off from column section. 

In chimney trays, the liquid level can exceed the height of the chimneys and conse-

quently the liquid will flow to the overflow downcomer and from there to the active 

area below. In the model, the liquid flow from the downcomer to the active area can be 

defined to leave the downcomer from the height of the chimneys. Thus, if the liquid 

level exceeds the height of the chimneys the liquid will flow to the active area below. 

Downcomer trapouts are used for partial draw-off from the distillation column. In Fig-

ure 5.5 a partial draw-off from the downcomer is presented. 
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Figure 5.5. Partial draw-off from column section. 

The partial draw-off is added to the bottom of the downcomer in the model. Because the 

liquid is only partially withdrawn, the liquid flow from downcomer to the active area 

continues but decreases as part of the liquid flow is withdrawn. 

5.1.3 Correlation determining 

For testing, the developed distillation model was applied to a top part of the dehexanizer 

column DA-10203 of the Porvoo refinery. First, the tray information with vapor and 

liquid loadings of normal operation as well as loadings of 60 %, 80 % and 120 % were 

entered to KG-TOWER software. The results of the software are presented in the ap-

pendix A. Linear functions for jet flooding percentage and downcomer choke flooding 

percentage were formed based on the result. In Figure 5.6 jet flooding percentage is 

presented as a function of vapor flow rate and in Figure 5.7 downcomer flooding per-

centage is presented as a function of liquid flow rate.  

From the functions of Figure 5.6 and 5.7 the limit values of 85 % and 100 % of flooding 

were defined. For jet flooding the vapor flow limit values were 218 t/h and 257 t/h. The 

limit values of liquid flow in downcomer choke flooding were 190 t/h and 223 t/h. The 

limit value for weeping was calculated based on the result value of turndown ratio, that 

is, limit value for weeping equals the multiplication of vapor rate and turndown ratio. 

The limit value for vapor rate in weeping was 80 t/h. 
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Figure 5.6. Percentage of jet flooding as a function of vapor flow rate. 

 

Figure 5.7. Percentage of downcomer choke flooding as a function of liquid flow rate. 

After knowing the limit values for vapor and liquid rates, the correlations for jet flood-

ing, weeping and downcomer choke flooding were defined according to equations pre-

sented in Subchapter 4.3 by placing the defined limit values to the equations (22), (23) 

and (24). The liquid entrainment flow rate in jet flooding was given by 

𝐿𝑗𝑒𝑡 = {
0,                                   𝑉 < 218

−
𝐿𝑚𝑎𝑥,𝑗𝑒𝑡

33
(𝑉 − 218), 𝑉 ≥ 218

 . 

In weeping, the amount of the liquid wept from tray to one below could be calculated as 

follows. 

𝐿𝑤𝑒𝑒𝑝 = {
−

𝐿𝑚𝑎𝑥,𝑤𝑒𝑒𝑝

80
∗ 𝑉 + 𝐿𝑚𝑎𝑥,𝑤𝑒𝑒𝑝 , 𝑉 ≤ 80

0,                                                   𝑉 > 80
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In downcomer choke flooding, the actual flow rate entering the downcomer could be 

calculated based on the liquid attempting to flow the downcomer according to  

𝐿𝑐ℎ𝑜𝑘𝑒 = {

𝐿𝑎𝑡𝑡 ,                     𝐿𝑎𝑡𝑡 < 190 
0.33 ∗ 𝐿𝑎𝑡𝑡 + 128.39 , 190 ≤ 𝐿𝑎𝑡𝑡 < 223 

0.9 ∗ 𝐿𝑎𝑡𝑡 ,         𝐿𝑎𝑡𝑡  ≥ 223
. 

5.1.4 Model building 

The model was built in ProsDS according to the developed model structure by using the 

stirred tanks. The stirred tanks were connected with vapor and liquid flows as showed in 

Figure 5.2. The model was first built with five separation elements and so that the liquid 

and vapor flows could be separately varied for making the testing of the model easier. In 

addition, the correlations were first built in the model with function blocks so that they 

could be easily modified. In Figure 5.8 the first version of the model is presented.  

 

Figure 5.8. First version ProsDS model for testing. 

Vapor flows from top of the active area tank to bottom of the one above. In vapor flow 

there is a flow coefficient representing the dry pressure drop. Liquid flows from the 
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weir height of the active area tank to the top of the downcomer tank, and from the bot-

tom of that to the bottom of the active area tank below. The liquid flow rate from down-

comer to active area is calculated based on the pressures at the downcomer bottom and 

the active area bottom. In the flow, there is also a flow coefficient representing the head 

loss under the downcomer. Values of the flow coefficients were defined based on the 

KG-TOWER results. The values of dry pressure drop and head loss under downcomer 

were utilized. 

In the model, pressure propagation is backward from column top to bottom since pres-

sure control of the column is usually in overhead drum. The downcomers are in the 

same pressure than the active areas above. The model calculates the downcomer backup 

according to total pressure drop, liquid height on the tray and head loss under the down-

comer. As the liquid flow from active area to downcomer is defined so that, if the tank 

is full, the liquid flow entering the tank cannot exceed the liquid flow leaving the tank, 

the liquid starts to accumulate to the active area. Thus, downcomer backup flooding 

occurs. Correlations for jet flooding, weeping and downcomer choke flooding are de-

termined in the model according to the ones presented in the previous subchapter. The 

liquid flow rates for jet flooding and weeping are controlled according to the correla-

tions. The liquid flow from the active area to the downcomer is restricted according to 

downcomer choke correlation. 

As liquid flows from the active area to the downcomer from the weir height, in weep-

ing, the liquid level on the active area remains at the weir height. At zero vapor flow, 

the liquid flow from downcomer to the active area is zero, since all the liquid weeps and 

bypasses the active area. The liquid flow from the active area to the downcomer is thus 

also zero, since there is no liquid volume exceeding the weir height on the active area. 

In reality, when the feed is stopped and all the liquid has wept in the column, there are 

no liquid volumes on the trays. For emptying the active area tanks in the model, extra 

lines needed to be added from bottom of the active area to the top of the downcomer. 

The lines are controlled so that they are zero as long as there is any vapor or liquid flow 

to the active area. If there are not any other flows, the liquid volume from the active 

area flows to the downcomer and from there weeps to the next downcomer. 

5.1.5 Testing 

The geometry information of the trays, composition of the feeds and pressure and tem-

perature values were determined in the model. The function of the all hydraulic con-

straints was tested by varying the liquid and vapor rates. The liquid flow rates, pressures 

and levels of the tanks in the simulation model were also calculated manually with a 

spreadsheet to verify the accuracy of the simulation model. In the spreadsheet calcula-

tions, the vapor flow to the bottommost tank and the liquid flow to the topmost tank 

were valued the same as in the simulation. In addition, the pressure and the level of the 

topmost tank were defined based on the simulation results. In the calculations, flashing 
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was not taken into consideration. Thus, it was assumed that all the vapor rates were 

equal to the vapor flow to the bottommost tank i.e. the mass flows of vapor and liquid 

were not mixed. Liquid fed to the topmost tank did either flow to the next tank or accu-

mulate. In the calculations, the mass balance and flow coefficient equations were uti-

lized. The calculations were repeated to all time steps of the simulation time. The results 

of some calculations for the first time steps are presented in the appendix B. The values 

that were defined based on the simulation results are marked with grey and the values 

that were calculated are marked with black. In addition, the equations used in calcula-

tions are shown in the appendix. 

First, the downcomer choke flooding was tested. The liquid rate was increased ramp-

wise from the value 119 t/h to the value 220 t/h. Both simulated and calculated liquid 

flow rates can be seen in Figure 5.9. 

 

Figure 5.9. Simulated and calculated liquid flow rates in downcomer choke. 

In the figure, downcomer choke effect can be seen. As the liquid flow rate from down-

comer to active area increases, the liquid flow from active area to next downcomer is 

limited to a constant value. Since the liquid flow leaving the active area is less than the 

liquid flow entering the active area, the liquid starts to accumulate to tray which causes 

that the liquid flow entering the active area decreases. Consequently, the liquid flow rate 

from active area to the next downcomer also decreases. In Figure 5.10 the liquid heights 

on the active areas and downcomers are presented.  
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Figure 5.10. Downcomer and active area levels in downcomer choke flooding. 

The figure shows that the liquid starts to accumulate to the active area and the down-

comer above the limited flow as the downcomer choke effect occurs. The level of the 

downcomer which the limited liquid flow rate enters does not rise significantly and the 

level of the active area below remains constant, as the restriction of the flow was im-

plemented only to one flow. The simulated and manually calculated results do not differ 

notable from each other. 

Weeping was tested by decreasing the vapor flow from 235 t/h to 0 t/h. As explained in 

Subchapter 5.1, the actual weeping of a tray is modelled as a liquid flow from a down-

comer to the one below. In Figure 5.11 the ramp-wise decreasing vapor rate is presented 

with liquid flow rates. As the vapor flow rate decreases to the limit value of 80 t/h, the 

weeping begins to occur. As the vapor flow rate stops, the weeping liquid rate reaches 

its maximum value which is the amount of liquid rate fed to the downcomer. The liquid 

flow fed to the downcomer where weeping occurs, remains almost constant apart from 

moderate varying during the vapor decrease. As the weeping flow rate increases, the 

liquid flow rate from downcomer to active area decreases, and at the zero vapor rate, all 

liquid fed to the downcomer weeps to the one below and no liquid enters the active area. 

In Figure 5.12 the simulated and calculated liquid levels of the column model are 

shown. 
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Figure 5.11. Flow rates in weeping. 

 

Figure 5.12. Downcomer and active area levels in weeping. 
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From Figure 5.12 it can be noticed that weeping does not affect the liquid heights on the 

active areas. In downcomers the level lowers as the dry pressure drop decreases due to 

vapor rate decrease. Consequently, the total pressure drop of a tray decreases affecting 

the liquid backup to the downcomer. The levels do not lower more due to constant liq-

uid feed. The simulation and calculation results do not differ much from each other in 

weeping. 

Lastly, jet flooding was tested. The vapor flow rate was increased ramp-wise from the 

value of 235 t/h to 280 t/h. In jet flooding, there is a liquid flow rate from the active area 

to the one above. As the entrainment liquid rate is added up to liquid rate entering the 

active area from downcomer, the liquid flow rate from the active area to the downcomer 

starts to increase massively. Nevertheless, the flow rate is limited by downcomer choke 

effect. Thus jet flooding and downcomer choke effect occur at the same time. In Figure 

5.13 the increased vapor flow is shown with liquid flows. As the vapor flow reaches the 

limit value of 218 t/h, jet flooding starts to occur. At the same time, the liquid flow from 

the active area to the downcomer increases and when it reaches the choke flooding limit 

value of 201 t/h, the flow is limited to constant value. At the maximum vapor rate limit 

of 257 t/h, the jet flooding equals the liquid fed to the active area, that is, all liquid fed 

to the tray is carried away with vapor to the tray above. This can also be noticed by ob-

serving the liquid flow from the lower active area to the next downcomer, since after jet 

flooding starts to occur, the liquid rate from the active area to the next downcomer starts 

to decreases and is valued as zero as jet flooding reaches its maximum value. The upper 

active area and the downcomer start to fill, and due to the increased level of the active 

area, the liquid from the downcomer to active area decreases and stops. 

 

Figure 5.13. Flow rates in jet flooding. 
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In the Figure 5.14 the levels of the downcomers and active areas are presented in jet 

flooding. The level of the active area where the entrainment liquid is carried and the 

level of the downcomer above that, increase as jet flooding starts to occur. The down-

comer becomes full of liquid so the liquid accumulation will also occur on trays above. 

The level of the downcomer through which the entrainment liquid flows increases a bit, 

as the amount of the liquid fed to the downcomer increases, but the downcomer does 

not fill more, since the liquid flow entering the downcomer is restricted. The level of the 

active area below remains on constant level.  

 

Figure 5.14. Downcomer and active area levels in jet flooding. 

The simulated and calculated results of the jet flooding do not differ significantly from 

each other. However, at the second half of the simulation time, there are some oscilla-

tions in simulated liquid flow rates, whereas the calculated flows are constant. 

After verifying that the simulation results equal the manually calculated results, all the 

hydraulic correlations were implemented in ProsDS by programming in ANSI Common 

Lisp. The programming was carried out by using the integrated development tool 

LispWorks 6.1.1 32-bit Professional Edition for Windows, which is also used in ProsDS 

development. In the code, mass flow for weeping and jet flooding flows and the value 

of maximum flow allowed for liquid flow from the active area to the downcomer are 

calculated in each time step according to current vapor and liquid flow rates. 
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5.2 Implementation 

For more extensive examination of the developed hydraulic calculation, it was decided 

to implement the model in the distillation game. In Neste there are several different en-

vironments for focused training in use. These so called games are smaller entities than 

operator training simulators and with them more detailed observation of some part of 

the process, for example distillation or condensing, is possible. In games, there are dif-

ferent cases, in which typically something is changed, and the user gets points according 

to his corrective actions. 

In the distillation game, the model is applied for the dehexanizer column DA-10203 of 

the Porvoo refinery. The current model of the distillation game uses the ProsDS distilla-

tion model in which there are no separate tanks for downcomers. It was decided to re-

build the model of the distillation game with the model structure developed in this the-

sis.  

The process of the implementation of the distillation game model was similar to the test 

model. First, the KG-TOWER software was utilized for defining the limit values for jet 

flooding, choke flooding and weeping. Then, the model was built in ProsDS. Configura-

tion of the model was more troublesome than the small test model. Before any hydraulic 

phenomena were added in the model, the distillation column was stabilized. After that, 

the defined limit values were entered to the model for the programmed hydraulic calcu-

lation. Finally, the function of the column with hydraulic phenomena was tested. In this 

subchapter, the correlation defining, the distillation game model and the simulation re-

sults of the model are presented. 

5.2.1 Correlations 

The tray information of the dehexanizer column DA-10203 along with vapor and liquid 

loadings of normal operation as well as loadings of 60 %, 80 % and 120 % were entered 

to KG-TOWER software. Since in the column there are different kind of trays in the top 

part of the column (trays 1…19) and in the bottom part of the column (trays 20…40), 

the information needed to be entered to the software separately for both column sec-

tions. As the trays in the column are special high performance trays, so called Superfrac 

trays, the software gave only the jet flooding percentage and the total tray pressure dif-

ference as a result. These results given by the software are presented in the appendix C.  

For defining the limit values for downcomer choke flooding and weeping, Koch-Glitsch 

needed to be consulted. With the additional information received from Koch-Glitsch, 

the limit value for weeping was defined to be 30 t/h and it was same for the whole col-

umn. Linear functions for jet flooding percentage and downcomer choke flooding per-

centage were formed based on the software results and the received additional infor-

mation. For jet flooding, the software gave a range for each loading rate. The linear 
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functions for jet flooding percentage were formed based on the average value of each 

range. In Figure 5.15 jet flooding percentage is presented as a function of vapor flow 

rate for the top and bottom parts of the column. For defining the linear function for 

downcomer flooding percentage, the additional information was utilized. Figure 5.16 

downcomer flooding percentage is presented as a function of liquid flow rate for both 

top and bottom part of the column.  

 

Figure 5.15. Percentage of jet flooding as a function of vapor flow rate. 

 

Figure 5.16. Percentage of downcomer choke flooding as a function of liquid flow rate. 

From the functions of Figure 5.15 and 5.16 the limit values of 85 % and 100 % of flood-

ing were defined. For jet flooding the vapor flow limit values were 253 t/h and 298 t/h 

for the top part of the column and 211 t/h and 247 t/h for the bottom part of the column. 

The limit values of liquid flow in downcomer choke flooding were 190 t/h and 224 t/h 

for the top part of the column and 450 t/h and 529 t/h for the bottom part of the column.  
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5.2.2 Model  

The distillation model of the distillation game consists of a reboiler, a column, a con-

denser and an overhead drum. There are 40 trays in the distillation column. Liquid is fed 

to the tray 20. The geometry information of the active areas and downcomers as well as 

composition, pressure and temperature of the feed were determined in the model. 

Since the overhead drum of the model is flooded, the pressure calculation in the model 

is in the condenser. ProsDS uses equation of state in pressure calculation, so the pres-

sure calculation is preferred to take place in an object containing more vapor. The pres-

sure propagation in the model is forward from condenser to overhead drum and back-

ward from condenser to reboiler through the active areas. The downcomers are in the 

same pressure that the pressure at the weir height of the active areas.  

The flows are defined the same way they are defined in the test model. Vapor flows 

from top of the active area tank to bottom of the one above. Liquid flows from the weir 

height of the active area tank to the top of the downcomer tank, and from the bottom of 

that to the bottom of the active area tank below. The liquid flow rate from active area to 

downcomer is defined so that, if the tank is full, the liquid flow entering the tank cannot 

exceed the liquid flow leaving the tank. The liquid flow rate from downcomer to active 

area is calculated based on the pressures at the downcomer bottom and active area bot-

tom. In the flow, there is also a flow coefficient representing the head loss under the 

downcomer. In addition, in the vapor flow there is a flow coefficient representing the 

dry pressure drop. Values of the flow coefficients were defined based on the KG-

TOWER result values of dry pressure drop and head loss under downcomer.  

The model calculates the downcomer backup according to the total pressure drop, liquid 

height on the tray and head loss under the downcomer. Due to the configuration of the 

liquid flow from active area to downcomer, the liquid starts to accumulate on active 

area, if the downcomer if full. Thus, downcomer backup flooding occurs. Jet flooding 

flow and weeping flow as well as the maximum flow from the downcomer to the active 

area are calculated in the code according to the limit values and current vapor and liquid 

values. The set points for jet flooding and weeping flow rates are given at each time step 

according to the values of the correlations calculated in the code. The maximum liquid 

flow rate from the active area to the downcomer at a moment is set according to calcu-

lated value of the downcomer choke correlation. In Figure 5.17 the top, center and bot-

tom part of the model are presented. In the figure, jet flooding lines are colored with red 

and weeping lines with blue. The flows that empty the active areas in weeping, when all 

the flows entering the active area are stopped, are colored with green. In addition, some 

controllers can be seen from the figure, but they are in manual mode, because the pur-

pose of the distillation game is that the operator controls the valves according to his 

consideration. 
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Figure 5.17. Top, center and bottom part of the distillation column model. 
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5.2.3 Simulation 

After building and initializing the model, the model was run to steady-state first without 

occurring jet flooding, downcomer choke flooding and weeping. Dynamic distillation 

column models are often quite demanding to configure regarding the stability of the 

model. This particular distillation model, however, turned out to be very challenging, 

and finding the proper configuration took more time than expected. The pressure calcu-

lation in the condenser and the function of the reboiler seemed especially problematic.  

Pressures and vapor flow rates needed to be damped with pressure and flow filters. 

Nevertheless, even then, only small changes in the reboiler duty could be made to en-

sure the stability of the model. The flow rates, pressures, temperatures and composition 

of the distillate and bottom product were tried to get as near the corresponding of the 

original distillation game model as possible. However, some compromises needed to be 

done, since hydraulic limits were also considered and the normal operation of the col-

umn wanted to remain in the operation zone. 

When the model remained stable in normal operation, the calculation of the hydraulic 

correlations was added to the model. It was soon noticed, that in the model the hydraulic 

phenomena do not occur as smooth as in the test case of the fixed pressure and couple 

of stirred tanks. There are many variables that interact with each other, i.e. in jet flood-

ing when vapor flow is increased the entrainment liquid flow raises the levels of the 

tanks. That decreases the vapor flow, since the liquid accumulation increases the hydro-

static pressure and as the vapor flow also decreases jet flooding decreases. For this rea-

son, the model is very difficult to get function smoothly and oscillation occurs easily in 

both flooding and in weeping. In the following, some simulation results of all the hy-

draulic phenomena are presented. 

For examining jet flooding in the column, the reboiler duty was increased ramp-wise so 

that the vapor flow from the column base to the bottommost tray increased from 208 t/h 

to 374 t/h.  In Figure 5.18 the vapor rate and in Figure 5.19 the liquid entrainment rate 

are presented as a function of the vertical column length at four different time steps. The 

lightest curves present the flows at the start time, the darker ones at certain time steps 

after that and the black curves present the flows at the latest time step. In Figure 5.18 

the limit vapor flow value for jet flooding to occur is marked with orange dashed line 

for the top and the bottom part. The limit value for maximum jet flooding is marked 

with red dashed line. From Figures 5.18 and 5.19, it can be noticed that at the first, va-

por flow is under the limit value of jet flooding and liquid entrainment rate is zero 

through the column, as in the normal operation. At the second captured time step, vapor 

flow is increased as the reboiler duty increases. Jet flooding occurs at almost all trays 

except trays 17…18 and 28…30. The reason why there is no jet flooding in these trays 

is that right above these trays there is a liquid accumulation, and thus there is no liquid 

flow to these trays. At the third captured time step, vapor rate reaches its maximum val-

ue and jet flooding increases. Because jet flooding causes liquid accumulation, and high 
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liquid levels on the trays increase the hydrostatic pressure, vapor flow starts to decrease 

despite that the reboiler duty remains at constant value. At the last captured time step, it 

can be observed that the vapor flow is decreased and jet flooding is almost totally 

stopped. 

 

Figure 5.18. Vapor flow rate through the column at four captured time steps. 

 

Figure 5.19. Jet flooding through the column at four captured time steps. 
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The downcomer choke flooding occurrence was examined by increasing the feed rate 

and then the reflux rate. The feed rate was increased ramp-wise from 312 t/h to 500 t/h 

and after a while the reflux rate was increased ramp-wise from 133 t/h to 218 t/h. In 

Figure 5.20 liquid flow rates from active areas to downcomers are presented as a func-

tion of the vertical column length at four different time steps. The limit value for down-

comer choke effect to occur is marked in the figure with orange dashed line for the top 

and the bottom part. The limit value for maximum choke flow rate is marked with red 

dashed line. In Figure 5.21 liquid levels of the active areas are presented at the same 

time steps. The lightest curves present the flows and levels at the start time, the darker 

ones at certain time steps after that and the black curves present the flows and levels at 

the latest time step. 

At the first time step, the feed and reflux rates are as in the normal operation. At the 

next captured time step, feed is increased. From Figure 5.20 can be seen, that the liquid 

flow rate from active area 20 to downcomer is restricted to its maximum value of 476.1 

t/h. The flow rates in trays below the feed i.e. below tray 20 are approximately 450 t/h. 

Figure 5.21 shows that liquid starts to accumulate to tray 20 and the trays below. At the 

third captured time step reflux rate is also increased. It can be noticed, that now also the 

liquid rates in the top part of column become restricted. In addition, the liquid accumu-

lation starts to occur in top of the column. In the last captured time step, feed and reflux 

are remained in constant value, but since there is a massive liquid accumulation in trays 

10…19, the liquid flow starts to decrease. 

 

 

Figure 5.20. Liquid flow rate from active areas to downcomers through the column. 
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Figure 5.21. Liquid levels of active areas at four captured time steps. 

Lastly, the weeping in the column was examined by decreasing the reboiler duty ramp-

wise. The vapor flow from column base to the bottommost tray however started to oscil-

late after the reboiler duty was set to zero instead of remaining at value of zero. In order 

to observe weeping properly, the vapor flow rate was manipulated to be zero by adding 

a negative heat input to the column base after the reboiler duty was decreased to zero. In 

Figure 5.22 the vapor flow rates are presented as a function of the vertical column 

length at four different time steps. The limit value for weeping, 30 t/h, is marked in the 

figure with red dashed line. In Figure 5.23 the weeping liquid flow through the column 

are shown at the same time steps. The lightest curves present the flows at the start time, 

the darker ones at certain time steps after that, and the black curves present the flows at 

the latest time step. 

At the first time step, the reboiler duty is in normal level and the vapor rate is high 

enough to prevent weeping. At the second captured time step, the reboiler duty is started 

to decrease and the vapor flow is under the limit value for weeping in trays 20...27 and 

thus weeping occurs at these trays. At the third captured time step, the reboiler duty is 

decreased to zero and vapor flow in all trays below the feed is zero. Since some of the 

liquid feed vaporizes in the tray 20, the vapor flow above it is still above the limit value. 

Weeping occurs below the tray 20 and as the vapor flow is zero, all liquid fed to the tray 

20 weeps to the bottom. At the last captured time step the vapor flow from column base 

to bottom remains zero, but the feed is also stopped. Now the vapor flow through the 

column is under the limit value, and all the reflux fed to the topmost tray is wept 

through the column. 
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Figure 5.22. Vapor flow rate through the column at four captured time steps. 

 

Figure 5.23. Weeping through the column at four captured time steps. 

As the results presented above are only from few specific time steps, it is not possible to 
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6. RESULTS AND DISCUSSION 

The objectives of this thesis was to examine and explain the tray hydraulics in the distil-

lation column, describe the function of the current distillation model in the dynamic 

process simulator and develop an improved distillation model which takes into account 

the tray hydraulics. The hydraulic calculation was also purposed to implement in the 

dynamic process simulator by programming. The intention of the distillation model im-

provement was to utilize the model in operator training. With a distillation model of tray 

hydraulics, the operators could be trained to recognize when a distillation column is 

approaching or exceeding the hydraulic constraints. Thus, upset situations could be 

avoided and faster corrective actions to get the process back to the normal condition 

could be made by the operators. 

6.1 Conclusions 

The literature part of the thesis offered an overview of distillation columns and their 

internals as well as the hydraulic constraints of a tray column. The modelling of the hy-

draulic phenomena as jet flooding, downcomer backup flooding, downcomer choke 

flooding, weeping and foaming was studied. It was noticed that there is plenty of pub-

lished information about the limit values for all hydraulic phenomena to occur. Never-

theless, there is very little information about the amounts of the liquid entrainment rate, 

limitation of the choke flow, liquid weeping rate and foaming. All the information 

found in the literature study, was utilized to rationalize the correlations for the hydraulic 

phenomena. 

In the applied part of this thesis, the distillation model with hydraulic calculation was 

developed. The structure of the distillation model was changed to enable the hydraulic 

phenomena to occur in the model. As before in the distillation column model, each tray 

was modelled with one stirred tank, in the developed model, there was one tank repre-

senting the active area and one tank representing the downcomer. With a structure like 

that, it was possible to add flows in the model that enabled hydraulic phenomena as jet 

flooding, downcomer choke flooding and weeping to occur in the model. Downcomer 

backup flooding occurred in the model automatically due to the structure and the con-

figuration of the model. Instead, the amount of jet flooding and weeping flows along 

with the maximum allowed flow of the downcomer choke effect was calculated based 

on the correlations. The calculation of the correlations was implemented in the dynamic 

simulator by programming.  
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Since the correlations found in the literature part were not straightforward and contained 

parameters that are difficult to determine, it was decided to utilize the tray manufacturer 

Koch-Glitsch’s commercially available KG-TOWER software for defining the correla-

tions for jet flooding, weeping and downcomer choke flooding. The software did not 

concern foaming in any way, and since there was very little information about model-

ling of the foaming available in the field’s literature, it was decided not to include foam-

ing in the model. 

The KG-TOWER software did give as a result the limit values at which each hydraulic 

phenomenon begins. The values at which the maximum jet flooding and maximum 

downcomer choke flooding occurs could also be defined based on the results. Neverthe-

less, the software did not give any information about the amount of liquid entrained to 

the tray above in jet flooding nor the amount of liquid wept to the tray below in weep-

ing. Neither did the software give any information about the value to which the liquid 

flow from the active area to the downcomer is limited. For that reason, the correlations 

were rationalized based on the information found in the literature study.  

The maximum amount of entrained liquid was described to be all the liquid fed to the 

tray. The function between the limit value and maximum value was assumed to be line-

ar, since there was no further information of that. In the extreme weeping, it was related 

that all liquid is wept and no liquid will flow through the downcomer. The vapor flow 

rate at which maximum weeping occurs was rationalized to be zero. The correlation for 

weeping was assumed to be linear between zero and the limit value of weeping.  

For downcomer choke effect, it was described that as the as the frictional losses become 

excessive at the downcomer inlet, the normal weir flow is prevented and not all of the 

frothy mixture can be transported to the tray below. As there was not more specific in-

formation available, it was assumed that the flow is limited according to linear function 

if the liquid attempting to flow to the downcomer is between the limit value of choke 

effect to begin and the limit value of maximum downcomer choke flooding to occur. It 

was also hypothesized that after exceeding the limit value of maximum downcomer 

flooding the liquid flow is constant. The constant value at which the flow is restricted 

was decided to be 90 % of the limit value of maximum downcomer choke flooding. The 

value of 90 % was decided based on the fact that it needed to be more than the limit 

value of choke effect to begin to occur and less than the limit value of maximum choke 

flooding, since some restriction was known to occur in exceeding the first limit value, 

but the total limitation was supposed to occur after exceeding the limit value of maxi-

mum flooding. 

The function of the developed model was first tested with a small test model of five 

separation elements and fixed pressure. The vapor and liquid flows were varied to ob-

serve the behavior of the hydraulic calculation in the model. The pressures, liquid levels 

and flows were also calculated manually with a spreadsheet and the simulation results 
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were compared to those. As expected, the simulation results corresponded to the manu-

ally calculated ones. After ensuring the hydraulic phenomena functioned in the model as 

expected, the hydraulic calculation was programmed into the dynamic process simulator 

with ANSI Common Lisp. 

The validity of the developed hydraulic correlations could not be verified, since there 

was no point of comparison for those in the literature. Regardless, the function of jet 

flooding, downcomer choke flooding and weeping in the model was considered reason-

able and the accuracy of them was sufficient considering the initial purpose of the mod-

el development, operator training. 

For more extensive examination of the developed hydraulic calculation, it was decided 

to implement it in a distillation game model. The model was reconfigured and run to 

steady-state first without the hydraulic calculation. Finding the proper configuration was 

challenging and some pressure and flow filters needed to be added in the model. The 

model was able to get stable, but only small changes in the reboiler duty could be made 

to ensure the stability of the model.  

After stabilizing the column model, the hydraulic calculation was added to the model. In 

the model the hydraulic phenomena did not occur as smooth as in the case of the fixed 

pressure and couple of stirred tanks. There are many variables that interact with each 

other and it was very difficult to get the model to function smoothly. Some oscillation 

occurred easily both in flooding and in weeping. However, all the hydraulic phenomena 

did occur in the model according to implemented calculation as planned. 

In this thesis, fouling and coking were not taken into account in distillation modelling. 

Both are phenomena that occur in the distillation column over the time. Since the opera-

tor training simulator, which was the initial target of the developed model, is not used to 

simulate columns for months or years uninterrupted, fouling and coking was not consid-

ered relevant to the model. 

6.2 Future work 

The model built for the distillation game remains stable only if small changes are made 

with the reboiler duty. Some oscillation also occurs easily both in flooding and in weep-

ing. Since, in the game, users can do very large changes, the model configuration needs 

further examination for ensuring the stability in the whole operating range regardless of 

the magnitude of the rate of change.  

The distillation model developed in this thesis concerns only tray columns. Packed col-

umns differ quite much from tray columns, and the modelling of them would be a dif-

ferent case. Nevertheless, it would be advantageous to develop a distillation model that 
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also takes into account hydraulic phenomena in the packed column, since in the operator 

training simulators there are numerous packed columns.   

As intended, the hydraulic calculation was implemented in the dynamic process simula-

tor by programming ANSI Common Lisp. However, the user of the model would bene-

fit if a user interface would have been created. The required values, defined based on 

the KG-TOWER results, have to be entered to the model manually for all lines separate-

ly; although, some simple programmatic commands can be utilized to enter the needed 

information to several lines at once. With a user interface, defining and changing the 

limit values for correlations could be faster and simpler.  

In ProsDS, there is a standard distillation column model for the current column model. 

The model can be created and initialized easily with the initialization menu. Program-

ming a same kind of initialization menu also for the developed column model would 

make the adding and configuration of the model easier and faster. 
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7. CONCLUSION 

The need of maximizing the economic benefits of a distillation unit very often requires 

operating close to its capacity limits. The limits of an operating column depend on the 

internal vapor and liquid flows and their physical properties. The aim of this thesis was 

to improve distillation modelling in an in-house dynamic process simulator, ProsDS, to 

consider internal phenomena in a distillation column i.e. tray hydraulics. The purpose of 

the model improvement was to utilize it the in the training simulators.  

The improved distillation model can provide beneficial support for operator training, in 

addition to theoretical training, considering the inner phenomena of a distillation col-

umn. With the improved model, it is possible to train operators to recognize the hydrau-

lic constraints of a distillation column. Consequently, upset situations can be avoided 

and a process can be operated faster back to the normal condition. The model also offers 

a possibility to examine the internal vapor and liquid flows of a distillation column. This 

is a great advantage, since internal flows cannot be measured in a real column and thus 

it is difficult to obtain information about the inner phenomena of a distillation column. 

In the literature part of the thesis, distillation columns and their internals as well as hy-

draulic constraints of a tray column were discussed. Modelling of the hydraulic phe-

nomena as jet flooding, downcomer backup flooding, downcomer choke flooding, 

weeping and foaming was studied. It was noticed that there is plenty of information 

available in literature about determining the limit values for liquid and vapor rates, but 

very little information about the amounts of the liquid entrainment rate, limitation of the 

choke flow and liquid weeping rate. 

In the applied part, the structure of the original distillation model was first reconsidered. 

Instead of one flash separator representing each tray, separate flash separators were used 

to represent an active area and a downcomer of a tray. The hydraulic phenomena that 

were decided to include in the model were jet flooding, downcomer backup flooding, 

downcomer choke flooding and weeping. Downcomer backup flooding occurred in the 

model automatically due to the model structure and configuration. For representing the 

other hydraulic phenomena correlations were used. These correlations were rationalized 

based on the literature study. For determining the limit values for each phenomenon to 

begin, and for maximum jet flooding and downcomer choke flooding to occur, Koch-

Glitsch’s KG-TOWER software was utilized. 

The developed distillation model was first implemented in the dynamic process simula-

tor with fixed pressure, and jet flooding, downcomer choke flooding and weeping oc-
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curring on only one tray. The function of all the phenomena was tested by varying va-

por and liquid flows in the model. The liquid flow rates, pressures and levels of the 

tanks were also calculated manually with a spreadsheet, and simulation results were 

compared to those to verify the accuracy of the simulation model. After ensuring the 

reasonable function of the correlation, the calculation of the correlations was imple-

mented in the ProsDS by programming ANSI Common Lisp.  

For more extensive examination, the model was implemented in a distillation game 

model. The model was first stabilized without hydraulic phenomena. After finding the 

proper configuration, hydraulic calculation was added to the model. The function of the 

model was studied by varying the reboiler duty, feed rate and reflux rate.  

The simulation results showed that some oscillation occurs easily both in flooding and 

in weeping. Further examination of the model configuration is needed for ensuring the 

stability of the model when used in a training simulator or the distillation game. All the 

hydraulic phenomena did, however, occur in the model according to implemented cal-

culation as assumed. 
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APPENDIX A: KG-TOWER RESULTS FOR TEST CASE 

 

 



 

 

APPENDIX B: SPREADSHEET CALCULATIONS (1/2) 

Area AA [m
2
] 9.31   Time   

Area DC [m
2
] 0.64 2.9667 2.9700 2.9733 

AA-2 level [mm] 50.0000 50.0000 50.0000 

  pressure [kPa] 180.8969 180.8969 180.8969 

  pressure difference [kPa] 0.3145 0.3145 0.3145 

  bottom pressure [kPa] 181.2114 181.2114 181.2114 

  density [kg/m3] 641.2413 641.2417 641.2423 

AA-2 to  flow [t/h]  127.8413 128.0579 128.3175 

DC-2         

DC-2 level [mm]   ℎ𝑡 = ℎ𝑡−1 + (𝐿𝑡−1
𝑖𝑛 − Lt−1

out )/(3.6 ∗ 𝜌𝐴𝐷𝐶) ∗ ∆𝑡 ∗ 1000 214.5780 214.6067 215.8220 

  pressure [kPa]  𝑝 =  𝑝𝐴𝐴−2 180.8969 180.8969 180.8969 

  pressure difference [kPa]  ∆𝑝 =  𝜌𝑔ℎ 1.3498 1.3500 1.3576 

  bottom pressure [kPa]  𝑝𝑏𝑜𝑡 = 𝑝 + ∆𝑝 182.2467 182.2469 182.2545 

DC-2 to  flow [t/h] 𝑄 = 𝐾𝑣 ∗ √∆𝑝/√𝜌/𝜌𝑤𝑎𝑡𝑒𝑟  127.6299 119.0800 129.8236 

AA-3 hudc [kPa]  ∆𝑝 =
𝑄2∗𝜌/𝜌𝑤𝑎𝑡𝑒𝑟

𝐾𝑣
2  0.1411 0.1254 0.1490 

LIQUID 

 
      

AA-3 level [mm]   ℎ𝑡 = ℎ𝑡−1 + (𝐿𝑡−1
𝑖𝑛 − Lt−1

out )/(3.6 ∗ 𝜌𝐴𝐴𝐴) ∗ ∆𝑡 ∗ 1000 50.0000 49.9895 49.9941 

  pressure [kPa]  𝑝 =  𝑝𝐴𝐴−2 + 𝑑𝑝𝑑𝑟𝑦 181.7927 181.8087 181.7927 

  pressure difference [kPa]  ∆𝑝 =  𝜌𝑔ℎ 0.3129 0.3128 0.3128 

  bottom pressure [kPa]  𝑝𝑏𝑜𝑡 = 𝑝 + ∆𝑝 182.1056 182.1215 182.1055 

  density [kg/m3]  637.8657 637.8658 637.8659 

AA-3 to  flow [t/h] 216.4161 217.0322 217.0323 

AA-2 dpdry [kPa]  ∆𝑝 =
𝑄2∗𝜌/𝜌𝑤𝑎𝑡𝑒𝑟

𝐾𝑣
2  0.5813 0.5973 0.5973 

VAPOR density [kg/m3] 5.1847 5.1847 5.1847 

AA-3 to  flow [t/h] Lt
out = 𝐿𝑡

𝑖𝑛 +
ℎ𝑡−ℎ𝑡−1

1000
∗ 3.6 ∗ 𝐴𝐴𝐴 ∗ 𝜌/∆𝑡 128.0838 117.9542 130.3224 

DC-3         

DC-3 level [mm]   ℎ𝑡 = ℎ𝑡−1 + (𝐿𝑡−1
𝑖𝑛 − Lt−1

out )/(3.6 ∗ 𝜌𝐴𝐷𝐶) ∗ ∆𝑡 ∗ 1000 215.3267 215.3272 214.9638 

  pressure [kPa]  𝑝 =  𝑝𝐴𝐴−3 181.7927 181.8087 181.7927 

  pressure difference [kPa]  ∆𝑝 =  𝜌𝑔ℎ 1.3474 1.3474 1.3451 

  bottom pressure [kPa]  𝑝𝑏𝑜𝑡 = 𝑝 + ∆𝑝 183.1401 183.1561 183.1378 

DC-3 to  flow [t/h] 𝑄 = 𝐾𝑣 ∗ √∆𝑝/√𝜌/𝜌𝑤𝑎𝑡𝑒𝑟  128.0799 120.6247 125.7229 

AA-4 hudc [kPa]  ∆𝑝 =
𝑄2∗𝜌/𝜌𝑤𝑎𝑡𝑒𝑟

𝐾𝑣
2  0.1427 0.1293 0.1405 

LIQUID 

 
      

AA-4 level [mm]   ℎ𝑡 = ℎ𝑡−1 + (𝐿𝑡−1
𝑖𝑛 − Lt−1

out )/(3.6 ∗ 𝜌𝐴𝐴𝐴) ∗ ∆𝑡 ∗ 1000 50.0000 49.9954 49.9971 

  pressure [kPa]  𝑝 =  𝑝𝐴𝐴−3 + 𝑑𝑝𝑑𝑟𝑦 182.6853 182.7148 182.6853 

  pressure difference [kPa]  ∆𝑝 =  𝜌𝑔ℎ 0.3121 0.3120 0.3120 

  bottom pressure [kPa]  𝑝𝑏𝑜𝑡 = 𝑝 + ∆𝑝 182.9974 183.0268 182.9974 

  density [kg/m3]  636.2181 636.2181 636.2181 

AA-4 to  flow [t/h] 216.8703 217.0322 217.0323 

AA-3 dpdry [kPa]  ∆𝑝 =
𝑄2∗𝜌/𝜌𝑤𝑎𝑡𝑒𝑟

𝐾𝑣
2  0.5798 0.5932 0.5932 

VAPOR density [kg/m3] 5.2202 5.2202 5.2202 



 

 

APPENDIX B: SPREADSHEET CALCULATIONS (2/2) 

AA-4 to  flow [t/h] 0.0000  0.0000  0.0000 

AA-3         

AA-4 to  flow [t/h]  Lt
out = 𝐿𝑡

𝑖𝑛 +
ℎ𝑡−ℎ𝑡−1

1000
∗ 3.6 ∗ 𝐴𝐴𝐴 ∗ 𝜌/∆𝑡 128.2414 120.1324 125.9037 

DC-4 
 

      

DC-3 to  flow [t/h] 0.0000  0.0000  0.0000 

DC-4          

DC-4 level [mm]   ℎ𝑡 = ℎ𝑡−1 + (𝐿𝑡−1
𝑖𝑛 − Lt−1

out )/(3.6 ∗ 𝜌𝐴𝐷𝐶) ∗ ∆𝑡 ∗ 1000 215.4392 215.4398 215.2928 

  pressure [kPa]  𝑝 =  𝑝𝐴𝐴−4 182.6853 182.7148 182.6853 

  pressure difference [kPa]  ∆𝑝 =  𝜌𝑔ℎ 1.3446 1.3446 1.3437 

  bottom pressure [kPa]  𝑝𝑏𝑜𝑡 = 𝑝 + ∆𝑝 184.0300 184.0594 184.0290 

DC-4 to  flow [t/h] 𝑄 = 𝐾𝑣 ∗ √∆𝑝/√𝜌/𝜌𝑤𝑎𝑡𝑒𝑟  128.2372 121.2093 126.4732 

AA-5 hudc [kPa]  ∆𝑝 =
𝑄2∗𝜌/𝜌𝑤𝑎𝑡𝑒𝑟

𝐾𝑣
2  0.1434 0.1309 0.1425 

LIQUID 

 
      

AA-5 level [mm]   ℎ𝑡 = ℎ𝑡−1 + (𝐿𝑡−1
𝑖𝑛 − Lt−1

out )/(3.6 ∗ 𝜌𝐴𝐴𝐴) ∗ ∆𝑡 ∗ 1000 50.0000 50.0000 50.0000 

  pressure [kPa]  𝑝 =  𝑝𝐴𝐴−4 + 𝑑𝑝𝑑𝑟𝑦 183.5746 183.6166 183.5746 

  pressure difference [kPa]  ∆𝑝 =  𝜌𝑔ℎ 0.3119 0.3119 0.3119 

  bottom pressure [kPa]  𝑝𝑏𝑜𝑡 = 𝑝 + ∆𝑝 183.8866 183.9285 183.8865 

  density [kg/m3]  635.8866 635.8866 635.8866 

AA-5 to  flow [t/h] 217.0320 217.0322 217.0323 

AA-4 dpdry [kPa]  ∆𝑝 =
𝑄2∗𝜌/𝜌𝑤𝑎𝑡𝑒𝑟

𝐾𝑣
2  0.5772 0.5898 0.5898 

VAPOR density [kg/m3] 5.2509 5.2509 5.2509 

 

 

 

 

 

 

 

 

 

 

 



 

 

APPENDIX C: KG-TOWER RESULTS FOR DISTILLATION GAME 

MODEL TOP PART (1/2)  

 



 

 

APPENDIX C: KG-TOWER RESULTS FOR DISTILLATION GAME 

MODEL BOTTOM PART (2/2)  

 

 


