
Mikko Lehtimäki
Dimensionality reduction for mathematical models in
neuroscience
Master of Science Thesis

Examiners: Group Leader, Adjunct
Professor Marja-Leena Linne, Emer-
itus Professor Seppo Pohjolainen,
Assistant Professor Lassi Paunonen
Examiners and topic approved in the
Faculty of Natural Sciences council
meeting on 4 May 2016

I

TIIVISTELMÄ
TAMPEREEN TEKNILLINEN YLIOPISTO
Biotekniikan koulutusohjelma
Lehtimäki, Mikko: Matemaattisten mallien dimension redusointi
neurotieteessä
Diplomityö, 67 sivua, 23 liitesivua
Elokuu 2016
Pääaine: Informaatioteknologia terveys- ja biotieteissä
Tarkastajat: Marja-Leena Linne, Seppo Pohjolainen, Lassi Paunonen
Avainsanat: Redusointi, dimension pienentäminen, laskennallinen mallintaminen,
neurotiede, hermosolu

Systeemin dimension redusointi eli koon pienentäminen on menetelmä, jota käytetään
esimerkiksi säätöteorian alalla parantamaan epälineaaristen matemaattisten mallien lasken-
tatehokkuutta. Lisäksi redusointimenetelmien avulla saadaan esiin mallinnettavan sys-
teemin dynamiikkaan merkittävimmin vaikuttavia tekijöitä. Laskennallisessa neuroti-
eteessä aivojen toimintaa kuvaaviin laajoihin matemaattisiin malleihin täytyy sisällyttää
myös solu- ja molekyylitason ilmiöiden kuvauksia, jotta oppimista ja muita aivojen mon-
imutkaisia ilmiöitä voitaisiin ymmärtää. Tämä ei ole mahdollista nykyisillä menetelmillä,
sillä malleista tulisi laskennallisesti liian raskaita pientenkin soluverkostojen toiminnan
simuloimiseksi.

Työn teoriaosuudessa esitellään ja tutkitaan matemaattisten mallien redusointimenetelmien
käyttöä neuro- ja biotieteissä. Biotieteissä mallien yksinkertaistamista lähestytään tyyp-
pilisesti eliminoimalla muuttujia ja yhtälöitä mallinnettavasta systeemistä erilaisten ole-
tusten perusteella. Tämä lähestymistapa ei ole aina suositeltava, sillä se kadottaa mallista
informaatiota. Matemaattisilla redusointimenetelmillä ei ole vastaavaa ongelmaa, sillä
ne approksimoivat kaikkia redusoidun systeemin tekijöitä ja mallin osia hyödyntämällä
pieniulotteisia aliavaruuksia.

Tässä tutkimuksessa redusoidaan aivojen muovautuvuudessa ja siten oppimisessa tärkeän
solunsisäisen signalointiverkoston tutkimusdatalla verifioitu matemaattinen malli. Malli
on yksi laajimmista molekyylitason malleista, joka pystyy kuvaamaan muovautuvuutta
biokemiallisten reaktioiden ja massavaikutuslain mukaisesti. Redusointi tehtiin yhdis-
tämällä Proper Orthogonal Decomposition ja Discrete Empirical Interpolation Method
(POD+DEIM) -redusointimenetelmät. Diplomityön tulokset osoittavat, että mallia on
mahdollista simuloida huomattavasti lyhyemmässä ajassa pienillä virhemarginaaleilla ver-
rattuna alkuperäisen mallin simulointituloksiin. Vaadittava simulaatiotarkkuus vaihtelee
mallin sovelluskohteen mukaan ja tarkkuuden huomattiin riippuvan simulointiajasta. Työn
tuloksena suositellaan mallien redusointia matemaattisin menetelmin laskennallisessa neu-
rotieteessä.

II

ABSTRACT
TAMPERE UNIVERSITY OF TECHNOLOGY
Master of Science Degree Programme in Bioengineering
Lehtimäki, Mikko: Dimensionality reduction for mathematical models in
neuroscience
Master of Science Thesis, 67 pages, 23 Appendix pages
August 2016
Major: Information Technology for Health and Biology
Examiners: Marja-Leena Linne, Seppo Pohjolainen, Lassi Paunonen
Keywords: dimensionality reduction, order reduction, computational modeling,
neuroscience, neuron

Dimensionality reduction is a commonly used method in engineering sciences, such as
control theory, for improving computational efficiency of simulations of complex nonlin-
ear mathematical models. Additionally, it is a way of surfacing the most important factors
that drive the dynamics of the system. In the field of neuroscience, there is a great de-
mand to incorporate molecular and cellular level detail in large-scale models of the brain
in order to produce phenomena such as learning and behavior. This cannot be achieved
with the computing power available today, since the detailed models are unsuitable for
large-scale network or system level simulations.

In this thesis, methods for mathematical model reduction are reviewed. In the field
of systems biology, models are typically simplified by completely eliminating variables,
such as molecules, from the system, and making assumptions of the system behavior, for
example regarding the steady state of the chemical reactions. However, this approach
is not meaningful in neuroscience since comprehensive models are needed in order to
increase understanding of the target systems. This information loss problem is solved
by mathematical reduction methods that strive to approximate the entire system with a
smaller number of dimensions compared to the original system.

In this study, mathematical model reduction is applied in the context of an experimen-
tally verified signaling pathway model of plasticity. The chosen biophysical model is one
of the most comprehensive models out of those that are currently able to explain aspects
of plasticity on the molecular level with chemical interactions and the law of mass action.
The employed reduction method is Proper Orthogonal Decomposition with Discrete Em-
pirical Interpolation Method (POD+DEIM), a subspace projection method for reducing
the dimensionality of nonlinear systems. By applying these methods, the simulation time
of the plasticity model was radically shortened although approximation errors are present
if the model is reviewed on large time scales. It is up to the final application of the model
whether some error or none at all is tolerated. Based on these promising results, subspace
projection methods are recommended for dimensionality reduction in computational neu-
roscience.

III

PREFACE

The work has been carried out in the Computational Neuroscience Research Group at
the Department of Signal Processing, in collaboration with the Systems Theory Group
of the Department of Mathematics. The research leading to these results has received
partial funding from the European Union Seventh Framework Programme (FP7) under
grant agreement no 604102 Human Brain Project (HBP).

I am thankful to my supervisor Marja-Leena for introducing me to the fascinating
world of neuroscience, making this work possible and guiding me through the process of
writing this thesis. I wish to express my gratitude to my supervisors Seppo Pohjolainen
and Lassi Paunonen for their valuable advice and effort for teaching me mathematics
and making me a better engineer. I also thank Riikka Havela and Tiina Manninen for
wisdom and proofreading, Professor Danny Sorensen, Professor Karen Willcox and Doc-
tor Benjamin Peherstorfer for answering my questions regarding the DEIM algorithm and
Professor Elena Kutumova for answering questions about model simplification in systems
biology.

My sincerest thanks goes to all my friends for making the past years forever memo-
rable. A special shoutout is in order for extremely insightful and stimulating lunch ses-
sions during the past year. Finally I wish to thank my family and Anni for their endless
support.

Mikko Lehtimäki
25.7.2016

In God we trust, all others bring data

William Edwards Deming

IV

CONTENTS

1. Introduction . 1
2. Model Reduction Theory and Algorithms . 4

2.1 Important Concepts . 5
2.1.1 Linearity and Linearizations . 5
2.1.2 Stability . 7
2.1.3 Subspace Projection . 8

2.2 Simplification by Pruning . 9
2.3 Balanced Truncation . 13
2.4 Moment Matching . 20
2.5 Proper Orthogonal Decomposition . 28
2.6 Discrete Empirical Interpolation Method 32

3. Case Study: Synaptic Plasticity Model . 37
4. Results . 40

4.1 Finding the Optimal Dimensions . 40
4.2 Analysis of the Dynamics of the Reduced Model 43

5. Discussion . 50
5.1 Model Reduction Methods . 51
5.2 Approximation Error in Reduced Models 54
5.3 Significance of Results and Future Work 55

6. Conclusions . 57
References . 58
A. Appendix . 68

A.1 Synaptic Plasticity Model . 68
A.1.1 Species in the Model . 68
A.1.2 Full Order Plasticity Model . 70
A.1.3 Constants of the Model . 72
A.1.4 Non-Zero Initial Values . 73

A.2 Matlab Code . 74
A.2.1 Kim Model Creation . 74
A.2.2 Full Model Solver . 80
A.2.3 Calcium Stimulus . 80
A.2.4 Glutamate Stimulus . 81
A.2.5 POD Algorithm . 81
A.2.6 DEIM Algorithm . 82
A.2.7 DEIM Reduced Model . 83
A.2.8 Predict Reduction Results . 83
A.2.9 Plot Results . 85

V

A.2.10 Plot Long Interval Results . 86

VI

TERMS AND SYMBOLS

LTP Long term potentiation

LTD Long term depression

HH Hodgkin-Huxley model

MIMO Multi-Input Multi-Output

LTV Linear time-varying

LTV Linear time-invariant

ODE Ordinary Differential Equation

SISO Single-Input Single-Output

QSSA Quasi-Steady-State-Approximation

MiMe Michaelis-Menten

SBML Systems Biology Markup Language

BT Balanced Truncation

SVD Singular Value Decomposition

MM Moment Matching

PVL Padé via Lanczos

POD Proper Orthogonal Decomposition

DEIM Discrete Empirical Interpolation Method

PCA Principal Component Analysis

KLT Karhunen-Loeve Transformation

2Ag 2-arachidonoylglycerol

Ca Calcium

DAG Diacylglycerol

Gabg G protein with α, beta and γ subunits

PLC Phospholipase C

VII

Glu Glutamate

IP3 Inositol trisphosphate

PIP Phosphatidylinositol

DAGK Diacylglycerol kinase complex

A Matrix (capital), state matrix

B Input matrix

C Output matrix

D Feedthrough matrix

In n× n identity matrix

A∗ Conjugate transpose of A

AT Transpose of A

a Scalar

aij Element of matrix A at row i and column j

xxx Vector (bold), state vector

xxx(t) Time dependent vector

uuu(t) Input vector

ẋ Differentiation (Newton’s dot notation)

f() Function

[S] Concentration of S

Wc Controllability grammian matrix

Wo Observability grammian matrix

Σ Matrix of singular values

H(s) Transfer function

1

1. INTRODUCTION

Mathematical modeling of dynamical systems is a way to enhance understanding of the
driving processes of the systems. In biosciences, models provide a safe and low-cost
method of designing laboratory experiments, planning hardware architecture and pre-
dicting drug effectiveness, among others. With the availability of experimental data in
increasing quality and quantity, models become all the more sophisticated. Mathematical
theory provides an analytical method for studying model behavior. However, analyti-
cal solutions are limited to elementary, conceptual models. Computational neuroscience
utilizes numerical methods, such as simulations, for predicting and validating parameter
spaces of large scale models. These two approaches, theoretical and computational, ben-
efit from each other by providing information any one method alone cannot uncover [1].

The purpose of neuroscience is to provide a realistic model of the human brain, which
consists of millions of neurons, their connections and other cells, such as glial cells that
have recently received considerable attention from computational neuroscientists [2]. In
neuroscience, mathematical models are constructed to describe different phenomena from
the molecular level up to networks of cells and brain regions, with the ultimate goal to
explain learning, behavior and diseases in which plasticity has a central role. Plasticity
means adaptation to environment. Moreover, learning can be described by plasticity,
which generally in the context of the brain is a phenomenon where the function of the
synapse, a connective gap between neurons, is modified depending on activity in the
synapse. In other words, the brain is plastic because it is constantly evolving and the
structure is changing. In a recent model developed in [3] plasticity is explained with long
term potentiation (LTP) and long term depression (LTD) that represent strengthening or
weakening of the synapse in information transfer between neurons [3, 4].

Typical models in neuroscience include different types of neurons and other cells, mod-
els of signalling pathways and associated molecular dynamics, models of networks of
cells and cognitive models. Modeling single neuron dynamics is commonly approached
by the Hodgkin-Huxley (HH) model [5] while signalling pathways are traditionally mod-
eled using laws of biochemistry, including the law of mass action and Michaelis-Menten
kinetics [3]. Furthermore, tissue level phenomena are modeled using neural mass theory.
Additionally, many modeling studies combine different approaches and aim to describe
the neural system using a multiscale approach, where a certain behavior is explained bot-
tom up starting from molecular kinetics and chemical equations (further information can

1. Introduction 2

be obtained e.g. from [6, 7]).
Dynamical systems found in nature tend to have nonlinear characteristics so that their

mathematical descriptions become rather complex, making them difficult for humans to
comprehend. In other words, this means that straightforward linear system models (con-
sider for example lines and their equations), with established mathematical properties, are
insufficient for capturing advanced kinetics. Additionally, the lack of linearity results in
difficulty in studying these models analytically, making numerical simulations especially
insightful in understanding their behavior. Moreover, nonlinear systems require more
computing power to solve and simulate compared to linear ones. For instance, chemical
stoichiometric reactions that are the basis of all natural phenomena, when expressed as
differential equations, result in nonlinear equations.

The more detail and explanative capability the model has, the bigger the computational
burden in the simulation and analysis phase. The current state of the art supercomputers
are able to simulate brain activity in one brain region, leaving out molecular mechanics on
cellular level, with animal models that are less complex than human brain models, and the
computations consume weeks of time [8]. Accordingly, in practice constructing a neural
model is always a compromise between fine detail and resolution.

In the recent years the goal of achieving larger and more realistic models has been
brought forward mainly by advances in computing hardware and parallel calculations,
for example with supercomputers. However, the increase of processing power cannot
compete with the rate modern methods collect data, resulting in models and databases of
tremendous size beyond processing capability. Although more powerful computational
machinery is required to further the field, it is not the most scalable and accessible ap-
proach. For this end model reduction serves an important purpose. By providing simpler
yet accurate descriptions of cells and networks, more advanced models can be built, simu-
lated and analyzed with existing hardware and more detail can be included in the models.

Model reduction methods have arisen from the need to diminish the complexity of
heavy models found for example in circuit simulation and structural and flow dynamics.
The mathematical nature of these fields of schience has laid the groundwork for develop-
ing good quality reduced order models. In addition to increasing resolution and simulation
speed for models, reduction methods provide both a basis and a way to analyze large scale
systems more effectively. Examples include equilibrium point analysis (x(t) = 0), fre-
quency response analysis, transient analysis to compute the relation of output to stimulus
and sensitivity analysis to determine reactions to changes in system parameters [9].

Model reduction is not a new concept in neuroscience. The HH model was first sim-
plified from four to only two equations by FitzHugh and Nagumo [10, 11] and later to
three equations by Hindmarsh and Rose [12]. Recently, Diekman introduced a reduced
model of astrocyte metabolism [13]. The common factor in these simplifications has been
the careful elimination and subsequent modification of variables in the models, and in

1. Introduction 3

systems biology this type of simplification by pruning is common practice. Algorithms
to achieve the same especially for nonlinear neuronal models have been proposed for in-
stance by Kepler [14], Woo [15], DeWeerth and Sorensen [16], and later by Shin [17].
These methods are effective in certain specific scenarios, but the perfect model reduction
method would be generally applicably to different types of systems while providing an
approximation of all the variables and preserving the original inputs and outputs of the
system.

In this thesis, general tools for model reduction that are mathematically rigorous and
provide estimates of all system variables will be introduced and their applicability to
models of neuroscience examined. An additional goal is to present the theory behind the
methods so that is approachable with little mathematical background. Furthermore, model
reduction will be performed for a nonlinear chemical equation based data driven model
published in [3], that describes learning in the brain via plasticity and calcium currents.
The original model is too detailed for utilization in network simulations, greatly reducing
the usability of the model but also serving as motivation for the present study. In addition
to nonlinearity, the model includes time-dependent terms, which pose an additional chal-
lenge both computational efficiency and reduction wise. With this case study the aim is
to demonstrate that the behavior of the model can be analysed faster yet with satisfactory
accuracy by using a reduced order model.

Chapter 2 will briefly introduce necessary mathematical concepts for understanding
model order reduction. The concepts are followed by model order reduction algorithms
and insights into applicability of the methods for different types of systems. In chapter 3 a
model for which dimensionality reduction was applied is explained in detail along with the
implementation and reduction method used in this thesis. Chapter 4 presents simulation
results of the reduced order model. Finally in chapter 5 the model order reduction methods
as well as the results obtained in this thesis are discussed further and conclusions are given
in chapter 6.

4

2. MODEL REDUCTION THEORY AND
ALGORITHMS

In this chapter a literature survey of the current model reduction methods and their appli-
cability to nonlinear models is given.

Model order reduction, model rank reduction or model reduction has been an active
research topic in the field of control theory. There, it has been motivated by large scale
models rising in circuit simulation and structural dynamics among other computationally
demanding models. Using reduced order models, control theory studies the behavior of
the system and how it can be directed by modification or excitation. In control theory, a
discrete multi-input multi-output (MIMO) linear time-variant (LTV) first order differential
equation system is commonly written as

ẋxx(t) = A(t)xxx(t) +B(t)uuu(t)

yyy(t) = C(t)xxx(t) +D(t)uuu(t),
(1)

which is also called the state-space representation. In Equation (1) the change of the state
of the system ẋxx is modeled as a linear combination of the current state of the system
A(t)xxx(t) and inputs to the system B(t)uuu(t) by the state equation, where A(t) is a state
matrix and B(t) is an input matrix. The output equation yyy(t) models the outputs of the
system as a combination of the output C(t) and feedthrough D(t) matrices. Moreover,
the general nonlinear form of the state-space system is

ẋxx(t) = f(t,xxx(t),uuu(t))

yyy(t) = g(t,xxx(t),uuu(t))
(2)

where ẋ(t) is again the state of the system and y(t) the output of the system. [18] In
this thesis, the equations in the above systems are ordinary differential equations (ODEs),
although the literature also features models with other types of differential equations.

The dimension of the system is determined by the number of state equations. It is
equal to the number n of state variables in x(t) ∈ Rn, so that the size of vector x(t) is
n× 1. Additionally, the size of the input vector u is determined by the number of inputs r
as r × 1 and the number of outputs is q ≤ n so that y ∈ Rq. Accordingly, the sizes of the
matrices in the linear representation can now be determined so that all dimensions agree
to matrix operations such as addition and multiplication. Matrix A(t) has to be n× n and

2. Model Reduction Theory and Algorithms 5

B(t) is n × r. The number of outputs determines the size of C(t) to be q × n and D(t)

has to be n× r. In the nonlinear case, there are n state functions and q output functions.
Linear time-invariant (LTI) systems, where the coefficient matrices are constant in

time, are the most elementary form of control systems. For an LTI system, the state equa-
tion is written as ẋ(t) = Ax(t) + Bu(t) and the output as y(t) = Cx(t) + Du(t). Given
the transparent nature of LTI systems, they have been a subject of mathematical studies
since their discover and thus additionally the first targets of model reduction methods.

With each model reduction method, a look into modifications for applicability to LTV
systems is also given. While this is reasonable due to the array of time varying systems
found in nature and biology, LTV systems can also be employed in approximating some
nonlinear systems, which as established earlier allow the mathematical presentation of
more complex and diverse phenomena.

2.1 Important Concepts

Here some important concepts for understanding model reduction will be introduced.

2.1.1 Linearity and Linearizations

Linearity is a mathematical property that has been successfully utilized in building models
with analytically analyzable properties. Methods such as stability analysis, phase plane
analysis and optimization techniques are well established for linear systems. For a model
to be linear the principle of superposition has to apply, in other words the equations it
consists of have to satisfy two properties: additivity and homogeneity of degree one.
Additivity is defined as

f(a+ b) = f(a) + f(b) (3)

and homogeneity is defined as
f(αv) = αkf(v), (4)

where k symbolizes the degree of homogeneity, and a function can only be linear if k = 1.
According to these properties, or the principle of superposition, the output of a linear
function is the sum of the individual inputs [18]. An example of a linear function is
f(xy) = x+ y, where as a nonlinear function is for example a parabola f(x) = x2.

Linearization is a process in which the value of a nonlinear function at a certain point
is estimated with a linear approximation. This usually leads to a simpler representation
of the function. The need for linearization stemmed for the difficulty of calculating the
values of a function near a point, rather than the point itself. Consider for example a
quadratic function. Evaluating it around a given point x is more tedious than approxi-
mating the values with the tangent line of the function at point x, which is the essential
motivation for linearization. This is illustrated in Figure 2.1. [19]

2. Model Reduction Theory and Algorithms 6

Figure 2.1: The nonlinear function y = f(x) is linearized at point a; the new linear approximation
y = L(x) is a straight line. Image from [19].

One potential downside of linearization is that depending on the approximated func-
tion, the approximation is valid for a very short range. For example the tangent line
linearization seen in Figure 2.1 is accurate only for evaluating values in close proximity
to point a. As seen in Figure 2.1, the gap between f(x) and L(x) increases as the point
of evaluation moves further from the linearization point a. Although the two functions
might intersect again at unknown points, commonly this cannot be assumed and the error
at points not in adjacency to a is unacceptably large. However, linearization at an equilib-
rium point does not have this problem if the system stays constant at all times, making it
a very useful tool for mathematical analysis in these cases [20].

Multiple linearization techniques exist and only a brief introduction into linearization
methods for differential equations is given here, as non-differentiable equations are a field
of study on their own. The simplest form of linearization is the previously mentioned
tangent line approximation. Another often employed solution is approximation with the
Taylor series. The Taylor expansion uses n terms to arrive at an nth degree approximation
at point a. Each term makes the approximation more accurate but also increases the
complexity. Linearization with the Taylor series is performed by simply using the first
two terms of the series, since they are still linear, making the approach essentially nothing
more than obtaining the tangent line through derivatives.

Increasing the accuracy of linearized models is possible by performing linearization
in a piece-wise manner [21]. With this approach the nonlinear function is linearized at
several points. The approximation then becomes a group of linear functions so that each
one is employed in a range where it has been determined to be accurate enough. In other
words, at a given proximity of a linearization point, only one linear function is chosen for
the approximation. Alternatively a weighing system can be used, where each linearization

2. Model Reduction Theory and Algorithms 7

is given a weight that changes with time. The desired accuracy and complexity of the
nonlinear function determine the number of linearization points.

In addition to piece-wise linearization discussed above, it is also possible bilinearize
a nonlinear equation for example by Carleman bilinearization [22]. A brief look at bi-
linearity is presented here, since in biochemistry stoichiometric equations have bilinear
characteristics. Additionally, bilinearization is not the only form of pseudo-linearization.
The bilinear form is more complex than the linear form, but is however not as complex as
nonlinear forms generally. It allows multiplication and addition of the variables, which is
sufficent for representing a wider variety of dynamical systems than the linear form [23].
Mathematically, a bilinear function satisfies the following conditions, first linearity on the
left

f(u+ v, w) = f(u,w) + f(v, w), (5)

linearity on the right
f(u, v + w) = f(u, v) + f(u,w) (6)

and homogeneity in all variables

f(λu, v) = f(u, λv) = λf(u, v) (7)

which essentially leads to the bilinear state equation

ẋ̇ẋx(t) = A(t)xxx(t) +
m∑
i=0

Nixxx(t)ui(t) +B(t)uuu(t)

yyy(t) = C(t)xxx(t) +D(t)uuu(t),

(8)

where in the MIMO case multiple inputs are multiplied individually with the state vector
and then summed together [22, 24].

2.1.2 Stability

Stability of a linear time-invariant system, modeled for example with ordinary differential
equations, is a phenomenon that is related to the equilibrium state of the system. A stable
system is one that in absence of any disturbance, such as input, the output of the system
remains constant. If a stable system is stimulated, it returns to the equilibrium state after
the stimulus ends. However, stability exhibits many forms. The one discussed above is
referred to as asymptotical stability. Mathematically, matrix A is stable if the real parts of
its eigenvalues are negative and in system theory, such a state matrix of an LTI system is
also called Hurwitz.

An unstable system does not satisfy the Hurwitz criterion and exhibits different dynam-
ical behavior than a stable system. For example unbounded oscillations that continuously

2. Model Reduction Theory and Algorithms 8

increase in magnitude are a sign of an unstable system and imply the system contains pos-
itive feedback loops. A system that, in absence of input, maintains oscillations around an
equilibrium point forever is called marginally or critically stable. Although not unstable,
such a system does not satisfy the Hurwitz criterion. [18]

2.1.3 Subspace Projection

At the heart of many mathematical model reduction methods is subspace projection.
Given that the goal is approximating the output of an original model with less equations,
subspace projection gives the mathematical framework for achieving it. A model of a
system generates values that form a space, for example an n dimensional model generates
n dimensional vectors at every time step t. The space generated by the model can always
be expressed with a linear combination of linearly independent orthonormal vectors that
form the basis of the space. This space is then spanned by basis vectors {vvv1, ...vvvm} of
which there are m. Furthermore, if a subset of those vectors is chosen, say k < m vec-
tors, they span a k dimensional subspace of the original space where the values generated
by the model exist. This subset of basis vectors can via linear combination express some
of the values in the original space. In fact, mathematical model reduction methods find
these basis vectors and subspaces so that as many as possible of the original values can
be expressed with as few basis vectors as possible.

Assuming the orthonormal basis vectors {vvv1, ..., vvvk} have been found and they span a
subspace, a matrix Vk = [vvv1, ..., vvvk] is introduced and the system that is to be reduced can
then be projected onto the subspace spanned by columns of matrix Vk. The projection
happens via matrix multiplication so that the set of basis vectors is treated as a matrix.
Consider the n dimensional (n equations) LTI system in Equation (1). A change of basis
is performed by projecting the n dimensional state vector xxx to k < n dimensional space
by xxxk = V T

k xxx. Then, the rest of the system is projected to the same subspace by

ẋxxk(t) = V T
k AVkxxxk(t) + V T

k Buuu(t)

yyy = CVkxxxk(t) +Duuu(t),
(9)

that defines the reduced order model. Equation (9) is called Galerkin projection. The
resulting matrices Ak = V T

k AVk, Bk = V T
k B and Ck = CVk have sizes k × k, k × r

and q × k, respectively, from where it is seen that the system no longer depends on the
original dimension n. In other words, there are less equations to process. Moreover, since
the matrix multiplications do not depend on time, they can be computed in the so called
offline stage before the system is solved or simulated (online stage). It is worth noting
that the projected matrices can no longer be interpreted with the original meaning of the
variables they consisted of. However, if for example each ẋxxk(t) is saved to matrix Xk,
an approximation of the original time series of the state variables can be retrieved by

2. Model Reduction Theory and Algorithms 9

multiplication with the projection matrix X = VkXk. Additionally, the approximations
of the original outputs yyy(t) are available at all times and the inputs uuu(t) do not need any
processing.

The same subspace projection process can be applied for LTV and nonlinear systems
as well. However, the efficiency of the reduced model suffers as precomputation is not
as widely possible. Consider for example the nonlinear function f(xxx(t)), which only ac-
cepts xxx(t) as input, and not a reduced xxxk(t). In effect, to evaluate this function xxxk(t) has
to be transformed back to the original space at every time step which results in calcu-
lating f(Vkxxxk(t)) at every time step of the simulation, greatly increasing computational
expenses. Typically, the nonlinear reduction problem is solved with a linearization ap-
proach, although it introduces error to the system, or alternatively a very efficient storage
and lookup system has to available for solving f(Vkxxxk(t)) [9]. The same problems stand
true for LTV systems, since a projection such as Ak(t) = V T

k A(t)Vk is only valid as
long as A(t) remains unchanged. If the issue is unhandled and the basis is not changed,
approximation error will increase [25]. Modern approaches for solving these problems,
especially for nonlinear model reduction, will be presented later in the thesis.

2.2 Simplification by Pruning

In this section a collection of methods commonly used to reduce mathematical models of
dynamical system will be introduced. The steps that will be outlined create an approach
that is within biological modelers referred to as model simplification. It differs from more
mathematical model reduction methods, such as subspace projection, in that the equations
are always processed in their original format and less rigorous mathematics are employed.
Simplification done this way is largely heuristic and always slightly ad hoc.

The goal of simplification is to gain understanding of the most significant generators of
model dynamics, while also improving simulation speed and making analysis easier. The
simplification approaches achieve this by identifying unnecessary or low-impact system
variables and equations and consequently removing or combining them, which is well
described by pruning. The end results consists of a smaller number of variables and
equations that are still biologically interpretable. One of the most comprehensive and
coherent descriptions of the procedure for models based on chemical equations is given
by Kutumova et al. [26]. There, a six-step diagram is presented to guide the simplification
workflow, shown also in Figure 2.2.

The process incorporates simplification methods that each address different parts or
properties of the model. The first operation is removal of slow reactions, followed by
quasi-steady-state approximation, lumping analysis and removal of linearly dependent
variables, after which simplification of Michaelis-Menten kinetics and simplification of
equations based on the law of mass action can be done in any order. Once an operation is
performed to an equation or variable, it is suggested to confirm the preservation of dynam-

2. Model Reduction Theory and Algorithms 10

Figure 2.2: The process of simplifying a biochemical model that is based on chemical reaction
equations. The figure is reproduced from [26]
.

ics. This can be done by comparing time series or using a mathematical criterion such as
normalized sum of squared differences, although the problem of defining a suitable error
bound has to then be concerned [26, 27]. Here each of these steps will be explained in
more detail.

Removal of slow reactions is justified by the assumption that fast reactions are mostly
responsible for producing the dynamics of the model. The speed or reaction rate v of a
chemical process is defined as

v = k[Ξ]n[Θ]m, (10)

where [Ξ] and [Θ] denote concentrations of species Ξ and Θ, n and m are reaction orders
that depend on the underlying chemical equation and k is a rate constant that includes
parameters affecting the reaction rate except the concentration. From Equation (10) it is
seen that a reaction can happen fast even with a small rate constant given that the reactant
concentrations are high and vice versa. In [26], a reaction r1 is labelled as slow compared
to reaction r2 if

max
t
|vr1(t)| < kmax

t
|vr2(t)| ,

where vr(t) is the reaction speed at time t and k = 10−2. Basically the maximum speed
of a reaction during the simulation is measured, they are ordered based on this value and
a threshold is used to neglect the slowest reactions. There is a consensus that splitting the

2. Model Reduction Theory and Algorithms 11

fast and slow reactions is effective [28, 29]. However, some sources actually suggest that
the slow reactions dominate the fast ones, thus being mostly responsible for the dynamics
in longer time scales [30, 31]. Additionally, in some situations it could be useful to
actually eliminate equations that reach zero or equilibrium fast [32] or alternatively make
groups of slow and fast equations and approximate them with their own equations [33].
In summary, if equations are going to be removed based on reaction speed as defined here
the result has to carefully validated, since there is no unambiguous conclusion on when
and how the method should be applied.

Quasi-Steady-State-Approximation (QSSA) is another established method for reduc-
ing the number of differential equations resulting from chemical stoichiometry. Consider
for example an irreversible chemical equation

S I P, (11)

where substrate S forms an intermediate complex I before turning into product P . QSSA
is used to obtain new approximated rate constants, maximum reaction speeds and initial
concentrations for the remaining substrates and constant concentrations for the interme-
diates, for modeling the reaction with

S P (12)

[26]. The benefit is that this latter reaction requires less differential equations to model
than the former and moreover, reduces the stiffness of the system by eliminating very
rapid time scales. Originally formulated on the hypothesis that enzyme-substrate inter-
mediate species in chemical reactions have small and stable concentrations or exist only
briefly, QSSA has later been developed further to also extend to reactions where all con-
centrations are comparable, which additionally is more realistic in vivo [34]. However,
the QSSA approach has drawn critique for being used based on insufficient conditions as
for example in [35], where the dynamics of the system were found to considerably change
after applying QSSA. Proper conditions for applying QSSA are given in [36, 37].

In lumping analysis, several species are combined into a single component. Lumping
the selected equations is possible if a species is present in several equations with similar
reaction rates and other reactants have similar concentrations. Consider for example two
reactions

r1 : Ξ + S1 P1, r2 : Ξ + S2 P2, (13)

where the reaction rates k1 = k2 and concentrations [S1](t) = [S2](t), [P1](t) = [P2](t) at
all times t are (near) identical. Then new species S and P can be introduced and reactions
r1 and r2 lumped to arrive at

2 Ξ + S P, (14)

2. Model Reduction Theory and Algorithms 12

which replaces the previous two equations while the reaction rate k = k1 = k2 and
concentrations [S](t) = [S1](t) = [S2](t), [P](t) = [P1](t) = [P2](t) stay the same. Nat-
urally, this leads to smaller number of differential equations needed to model the system.

Removal of linearly dependent variables is a method for reducing the number of in-
dependent variables in the system. If the concentration of Ξ is a constant multiple of
Θ

Ξ(t) ≈ kΘ(t) (15)

at all times t, all occurences of Ξ can be replaced with kΘ [26]. Thus there will be no
need to separately calculate the concentration of Ξ.

The last two steps of the procedure can be completed in any order. If Michaelis-
Menten (MiMe) enzyme kinetics [38] are present, they can under certain circumstances
be simplified. It is worth noting that (MiMe) kinetics is an imperfect model itself, the
purpose of which is to calculate the reaction rate of an enzyme catalysed reaction. Based
on the reaction rate and concentration of the substrate and enzyme, the (MiMe) equation
is

v(t) =
k[E]0(t)[S](t)

KM + [S](t)
, (16)

where KM is the Michaelis constant, [S] is the substrate concentration and [E]0 is the
initial concentration of the enzyme that catalyses the reaction. In the case KM >> [S](t)

for t = [0, T], the term [S](t) from the denominator can be ignored, reducing the com-
plexity of the calculation. Additionally, if the opposite is true KM << [S](t) for all t, the
Michaelis constant is ignored and the entire equation simplifies to

v(t) =
k[E]0(t)���[S](t)

�
��[S](t)

= k[E]0(t), (17)

which again reduces the computational complexity [26]. The value of the threshold for
making the approximation is case specific and no general guidelines exist. It is of extreme
importance to make sure the threshold is such that the dynamics of the system do not
change.

As a final method is simplification if one reactant dominates others in an equation based
on the law of mass action. Law of mass action is a model for calculating the reaction rate
from the masses of the reactants. It is the basis for the reaction rate formula of reaction
aS1 + bS2 P and is written as

v(t) = k[S1]
a(t)[S2]

b(t). (18)

Given the conditions [S1]
a(t) >> [S2]

b(t) and
∫ T

0
[S1]

a(t) dt < ε for t = [0, T], an ap-

2. Model Reduction Theory and Algorithms 13

proximation that is linear in time can be used so that

v(t) = k[S1]
a(0)[S2]

b(t). (19)

In other words, if the concentration of S1 is much larger than the concentration of S2,
while the relative change of the concentration of S1 is also smaller than threshold ε during
a given time frame, the reaction rate is approximated by replacing the time-dependent
concentration of S1 with the initial value of S1 at time t = 0 [26][Personal communication
with Dr. E. Kutumova]. No definitive rules for the required thresholds exist.

Simplification with elimination type of model reduction can be performed with several
software packages used for modeling and simulation in systems biology. These tools
have been extensively revivewed in [39, 40]. A commonly used input format for these
programs is the Systems Biology Markup Language (SBML) [41]. Examples of such
software include BIOCHAM [42], COPASI [43] and GINsim [44].

Compared to subspace projection methods this approach has the advantage that the
simplified model can be interpreted directly and the remaining variables and equations
are immediately meaningful to the modeler and the user. In some sense, this gives great
insight into the source of the dynamics, assuming that the behavior of the system is unal-
tered. However, ultimately ignoring the effects of ions and molecules is not biologically
purposeful. In the following, methods that are able to approximate all the system variables
with reduced systems are introduced.

2.3 Balanced Truncation

Balanced truncation (BT) is a very established model reduction method that is based on
subspace projection. In essence, mathematical systems have defined inputs, outputs and
state variables. With balancing, the states that are difficult to reach become difficult to
observe thus reducing their significance. These states are then truncated, which effec-
tively reduces the dimensions of the model. In such a way the input-output behavior of
the system is approximated with a reduced representation. The general BT method is
only applicable to linear systems. Moreover, the process requires that the state matrix
of the system is stable, or Hurwitz, and this is also used as a condition for whether BT
can be applied or not in the first place. BT approach to model reduction was developed
by Moore [45] in 1981, while the modern version with error bounds was published by
Glover [46] in 1984.

The balancing approach is unique in that the reduction is performed first making the
system equally controllable (in some sources reachable) and observable, which are prop-
erties of control systems. If a system is controllable and observable, it is also called a
minimal realization [47]. BT also operates directly on the system matrices and there is no
need for simulating the large original system before model reduction.

2. Model Reduction Theory and Algorithms 14

Controllability, or controlling a system, signifies to what extent the outputs or the states
of the system can be directed by adjusting the input signal of the system, in a given time
interval [47]. A system is said to be state controllable at time t0 only if it is possible
to transfer it to any other possible state, such as the origo, from the initial state xxx(t0).
The system is not required to maintain that state. Moreover, the same condition can be
established for output controllability with regards to the output yyy(t0), although one form
of controllability does not imply the other [18]. Generally controllability is used as a
measure of state controllability, and in this sense a controllable system may not be out-
put controllable, unless explicitly proved so. Observability on the other hand determines
whether the state of the system at time t0 can be inferred from the output yyy(t) of the
system during a finite time interval t0 ≤ t ≤ t1 [47]. If a state is difficult to observe,
in practice the output cannot be used to infer knowledge of the state of the system. It is
worth remarking that while controllability and observability are properties of any system,
a model of the same system might not possess these characteristics [18]. Moreover, for
linear time invariant systems, the time interval during which controllability or observabil-
ity are studied is irrelevant.

Mathematically controllability and observability can be calculated in many ways. The
following methods can be employed for testing controllability and observability as well
as how achievable the controllable and observable states are. For a linear time-invariant
system xxx(t) = Axxx(t) + Buuu, yyy(t) = Cxxx(t) + Duuu(t), where A is an n × n square matrix,
state controllability can be determined directly from the so called controllability matrix

P =
[
B AB A2B ... An−1B

]
(20)

and output controllability from

PO =
[
CB CAB CA2B ... CAn−1B D

]
, (21)

called the output controllability matrix. The process for finding the observability matrix
Q is similar since

Q =
[
C∗ A∗C∗ (A∗)2C∗ ... (A∗)n−1C∗.

]
(22)

With the controllability and observability matrices defined, controllability is achieved if
P has full row rank, meaning that the rows of the matrix are linearly independent. Due to
the matrix sizes of the state space format, the size of P is n × nr and the full row rank
is thus n. The size of PO is m × (n + 1)r, so full row rank is m. For the observability
matrix Q, n × nm, full column rank n is required, so that all columns of Q are linearly
independent. If the full rank condition is not fulfilled, there are analytical methods for
finding which individual states are controllable or observable. [18]

2. Model Reduction Theory and Algorithms 15

One approach often taken in the literature for determining controllability or observabil-
ity is to calculate the controllability and observability grammian matrices, WC and WO.
The grammians are obtainable as solutions to the continuous Lyapunov equations [47].
For controllability grammian the equation is

AWC +WCA
∗ +BB∗ = 0 (23)

and observability grammian

A∗WO +WOA+ C∗C = 0, (24)

and since both equations are linear their solutions can be calculated analytically. The
solution for the controllability grammian then becomes

WC =

∫ t1

t0

eAtBBT eA
T t dt (25)

and observability grammian

WO =

∫ t1

t0

eA
T tCTCeAt dt, (26)

in the time span [t0, t1] of interest, although in practice the integrals need not to be eval-
uated in order to solve the Lyapunov equations [48]. The matrices WC and WO are Her-
mitian square n×n positive semidefinite matrices [45]. In accordance to the requirement
that the state matrixA has to be stable for BT to be applicable, the Lyapunov equations do
not have unique solutions if this condition is not satisfied. Simply put, the controllability
and observability grammians are not uniquely defined for unstable systems and thus there
is no guarantee that they can be calculated [49].

A system is called controllable or observable if the respective grammian matrix is
invertible. In other words this means that for example WC is invertible if there exists
any matrix X so that XWC = WCX = I , where I is the identity matrix. Otherwise
the matrix WC would be singular and the system could not be said to controllable in this
time window. Moreover, the singularity can also be determined from the eigenvalues of
the matrix among many other properties. If any of the eigenvalues is zero, the matrix is
singular and thus not invertible. The same stands true for the observability grammian.

BT uses the controllability and observability grammians to calculate a reduced order
model. The objective is to remove those states that are difficult to control and observe.
That specific goal is effectively reached when the system is balanced, which means that
the difficult or impossible to control states also become difficult to observe [50]. Achiev-
ing a balanced realization is possible by scaling the system via matrix multiplications

2. Model Reduction Theory and Algorithms 16

using a carefully chosen transformation matrix T . This is also seen as a change of basis
for the state vector x̂xx = Txxx. Assuming that T is available, using a similarity transforma-
tion the state space matrices become

(Â, B̂, Ĉ,D) = (TAT−1, TB,CT−1, D) (27)

where, if the system is balanced, the system matrices are arranged descendingly based on
their contribution to the controllability and observability of the system. Furthermore, this
allows for partitioning the matrices into block matrices as

(Â, B̂, Ĉ,D) = (

[
Â11 Â12

Â21 Â22

]
,

[
B̂1

B̂2

]
,
[
Ĉ1 Ĉ2

]
, D). (28)

Since the system matrices are partitioned and arranged, a reduced system is obtained by
keeping only the the most important states (Â11, B̂1, Ĉ1, D) that are required to approxi-
mate the impulse response of the system [45]. In practice, the sizes of the matrices will be
determined by how much approximation error is tolerated and how greatly the dimension
of the system has to be reduced.

The naturally arising question is then finding the transformation matrix T that balances
the system. First, it is useful to define what a balanced system means in the sense of gram-
mians: a balanced system is one where the controllability and observability grammians
are equal diagonal matrices WC = WO = ΣH that additionally have only positive values
on the diagonal. These diagonal values are called Hankel singular values and their magni-
tude determines the importance of corresponding (balanced) controllable and observable
state [45]. In terms of model reduction, once this condition is achieved, the "low energy"
states that are rarely reached and observed can be removed, thus ΣH provides an error
estimate for model reduction. [50].

Laub et al. [51] propose a numerically stable method for determining T by applying
the Cholesky factorization to the grammians and then the singular value decomposition
(SVD) to the product of the factorizations [51]. The algorithm takes advantage of the
balancing transformation as it establishes a relationship between the grammians, such
that if ŴC = TWCT

∗ and ŴO = T−∗WOT
−1 then ŴC = ŴO = ΣH . More exactly, this

stems from the fact that ΣH can also be obtained as the square roots of the eigenvalues of
the product WCWO of the grammians [50, 52].

Proceed with calculating the Cholesky decomposition

WC = ZZ∗ (29)

and
WO = LL∗, (30)

2. Model Reduction Theory and Algorithms 17

where the grammians are factorized into the product of an uncorrelated lower triangular
matrix and its conjugate transpose. Strictly speaking the decomposition can only be cal-
culated if the source matrix is positive definite. As the grammians are only guaranteed to
be semidefinite, this step might require the use of an approximate factorization, such as
finding the nearest factorizable matrix [53]. Moreover, there are numerical methods for
solving the Lyapunov equations directly for U and L so that the grammians and their fac-
torizations are not explicitly computed [51]. Next, singular value decomposition (SVD)
is applied as

Z∗L = UΣV ∗ (31)

to obtain the left singular vectors in U and right singular vectors in V . Then, the left
balancing transformation is obtained as

T = V ∗L∗ (32)

and the right balancing transformation, which is the inverse of T , is obtained from

T−1 = ZU (33)

in order to avoid computing actual matrix inversions. The singular values Σ obtained with
SVD equal exactly the Hankel singular values in ΣH [51].

Recall that the singular values Σ can be used as a metric for the importance of states.
If the result of SVD is partitioned as the system earlier

Z∗L =
[
U1 U2

] [Σ1

Σ2

][
V ∗1

V ∗2

]
, (34)

the truncation step is performed by discarding U2,Σ2 and V ∗2 . Σ1 should include as many
singular values as deemed important for the approximation. Typically the singular values
decay exponentially, so that a very good approximation is obtained with relatively few
values. If the original dimension of the system is n (A is an n × n matrix), k singular
values are chosen so that k < n and Σ1 becomes a k × k matrix, while U1 is n × k and
V ∗1 is k × n. In other words, this is extracting k first columns from U and rows from
V ∗ (columns from V), effectively defining the number of states that the reduced model
will have. In practice, the truncation step is built into the balancing transformation so that
both steps are applied concurrently. A left truncating and balancing T1 that reduces the
dimension of the original system is then calculated from

T1 = V ∗1 L
∗. (35)

2. Model Reduction Theory and Algorithms 18

Additionally, the right truncating transformation matrix

T̃1 = ZU1, (36)

that is equal to truncating the result of Equation (33). The dimension of T1 is k × n and
T̃1 is n× k as per the matrix multiplications.

Performing the Galerkin projection of Equation (27) with the truncating transformation
matrices T1 and T̃1 results in exactly the reduced state matrices

(T1AT̃1, T1B,CT̃1, D) = (Â11, B̂1, Ĉ1, D) (37)

that are the most controllable and observable blocks of Equation (28). Moreover, the
(initial) state vector is also transformed by reduced balancing basis T1 so that x̂xx = T1xxx

with dimensions of x̂xx being k × 1, which completes the model reduction with BT. The
final system is

dx̂xx(t)

dt
= Â11x̂xx(t) + B̂1uuu(t)

ŷyy(t) = Ĉ1x̂xx(t) +Duuu(t).

(38)

Here, the input vector uuu(t) remains at original dimensions r × 1, Â11 is a k × k matrix,
B̂1 is k × r and Ĉ1 is n × k, while D stays n × r. It is noteworthy that the reduction
process is computed in the so called offline stage of simulating the system, meaning that
the calculations are only performed once. Simulating the system in this form then grants
a computational advantage due to a smaller number of differential equations that have to
be solved. The outputs of the system in ŷyy(t) are direct approximations of the outputs of
the original system.

Error bounds for the BT approximation can be calculated for example with the (Han-
kel) singular values σ of the system. The upper bound for the time domain error between
the original and reduced outputs ‖yyy(t)− yyyr(t)‖ at time t is

‖yyy(t)− yyyr(t)‖ ≤ 2
n∑

i=k+1

σi ‖uuu(t)‖ (39)

where ‖uuu(t)‖) is the Euclidian norm of the input vector and k and n the dimensions as
number of singular values of the reduced and original system, respectively [46]. More-
over, the calculation is feasible due to Hankel singular values being invariants of the sys-
tem, meaning they are uneffected by transformations such as the one used for balancing
and truncating the original system. It is seen that increasing the number of singular values
used in the approximation reduces the error, but the magnitude of σi also has an effect. If
the singular values decay exponentially, there are diminishing returns in increasing their
number in the reduced model, with regards to the output error. Finally, it is notewor-

2. Model Reduction Theory and Algorithms 19

thy that the presented error definition only measures the distance between original and
reduced outputs and does not account for actual behavior of the models.

Preservation of stability of the original system in the reduced system is an important
aspect of model reduction. BT almost always preserves the stability of the original sys-
tem [45], which is partly due to the original requirement that A is Hurwitz. However,
there are other forms of balancing approaches developed for specific situations, such as
LQG balancing [54] for unstable systems, where stability of the reduced model cannot be
guaranteed. Generally, the reduced model will be stable if the Hankel singular values do
not contain any duplicates [55].

Although the rigorous mathematical proof that exists for calculating and proving con-
trollability and observability makes BT an order reduction method with very solid foun-
dations, the additional required algorithms are also the biggest bottleneck of the process.
Matrix computations, such as those required for establishing controllability and observ-
ability through Lyapunov equations, are very memory intensive operations on the hard-
ware of the computation system. With large equation systems memory demands for the
computational process become intolerable. Solving this problem is related to approxi-
mating the solutions to the Lyapunov equations, in other words the grammians, instead of
calculating them explicitly [56], after which BT proceeds normally.

BT has extensions for LTV systems [57]. The original procedure is generally not valid
since the transformation matrices should now change with time. Time-dependence also
causes the choice of suitable reduced block matrices to be very problematic and addition-
ally might affect the stability of the system if the state matrix A changes. However, if in
the interval [t0, t1] stability can be verified and grammians computed, the traditional BT
method can be applied, although similar performance to LTI systems cannot be expected.
In principle, if a matrix varies A(t) with time, the transformation At(t) = TA(t)T−1 is
only valid until A(t) changes again, requiring the Galerkin projection to be computed on-
line at every t where A(t) changes, thus negating much of the performance improvement
gained through model reduction. Furthermore, consider a time-varying system,

Â(t) = TAcT
−1 + TAt(t)T

−1 (40)

where from the time-varying matrix terms are separated into At(t) and a time-invariant
Ac. If such a reformation is feasible and At(t) is sparse or changes rarely, reduction could
be beneficial for computational speed. Shokoohi et al. propose a reduction method for
LTV systems through uniformly balanced realizations [57] that results in a periodic sub-
space projection, which is the simplest form of time-varying, and Ma et al. use the method
of snapshots [58] for the same purpose [59]. Moreover, Stykel and Vasilyev present a
method by which a time-varying system matrices B(t) and C(t) are made (almost) time-
invariant by shifting time-variability to the input vector uuu(t) [60]. Additionally, although

2. Model Reduction Theory and Algorithms 20

a reduced time-varying model would not achieve computational savings, reduction can
still be feasible for analyzing the system mathematically.

Balancing of time-invariant nonlinear systems has to deal with the same problems as
LTV systems: how to define the grammians, since for nonlinear systems, the grammians
do not necessarily exist or are not unique. Moreover, there are no a priori guarantees
of good approximations. If the grammians can be defined, the nonlinear system can be
balanced, with some restricting assumptions [61]. Assuming that the grammians and thus
a balancing transformation are found, the next problem is that a nonlinear function cannot
be reduced to a subspace by linear projection in the offline stage, since it is only defined in
the original space. Consider the case of a reduced model with a nonlinear function f(xxx)

and a change of basis by T , so that x̂xx = Tx. The reduced nonlinear function is then

Gr(T
−1x̂xx(t)) = Tf(T−1x̂xx(t)), (41)

where Gr(·) is a reduced realization and f(·) is a nonlinear function that produces an
output vector from input vector x = T−1x̂xx(t). It becomes imminent that the projection is
possible only after the function has been evaluated. This is a process of first projecting x̂xx to
the original space, evaluating the function in the original (high) dimension and finally left
multiplication with T . Furthermore, this would mean the projection has to be calculated
at every time step t, which is expensive and completely negates the benefits of model
reduction. Moreover, nonlinear BT often relies on linearization of the system [61–64].

2.4 Moment Matching

Model reduction by moment matching (MM) encompasses a wide array of methods that
are based on approximating the transfer function, which is a compact representation of
the input-output behavior of a system in the frequency plane. A filter-function approach
to low rank approximation was first suggested in [65] and later revised in [66]. In some
sources MM methods are referred to as rational interpolation methods, since the transfer
function is interpolated at specific moments. Typically the algorithms in this category
are efficient to calculate but struggle to provide error bounds or stability of the reduced
model. Additionally, the transfer function is challenging to define for a nonlinear system,
making MM a method primarily for linear systems.

Although the transfer function is a very complex topic, a short introduction is given
here. Let us define the transfer function H(s) for a MIMO LTI system such as the one in
Equation (1). Applying the Laplace transform to the state-space matrices of the system
leads to a definition of the transfer function as

H(s) = C(sI − A)−1B +D (42)

2. Model Reduction Theory and Algorithms 21

where s = σ + jω is a complex number on the s-plane on which the Laplace transform
is defined [18]. With a discrete time system, the z-transform is used to arrive at similar
representation. Using the transfer function, the Laplace transform of the output pmby(t)

of the system in the s-plane can be calculated by

Y (s) = H(s)U(s) (43)

where the transfer function is multiplied with U(s), the Laplace transform of the inputs
uuu(t) of the system. Furthermore, H(s) is a matrix of size q × r, where q is the number of
outputs and r is the number of inputs to the system. Basically, each input in r is mapped
to q outputs, which creates the matrix structure. In the special SISO case, H(s) is reduced
to one function, and due to this simpler structure many MM methods have been, at least
initially, developed for SISO systems. Most importantly, it is seen from Equation (42)
that the complexity of the transfer function depends on the original dimension N of the
system due to operations with state matrix A and accordingly.

MM model reduction finds a suitable approximation Hk(s) of H(s) so that some mo-
ments of Hk(s) are matched to the original moments of H(s). The moments of a function
are found through power series expansions. Power series, such as the Taylor expansion
detailed in the linearization section, represent the target function at a given point s0 as
a sum of terms that form an infinite polynomial. Summing the terms then gives an ap-
proximation of the original function at the expansion point based on how many terms are
included in the addition [19]. The moments are another characterization of the system
dynamics and different expansions are possible for calculating them and while such a
representation has many benefits, here it will be employed in model reduction. Several
algorithms have been developed to perform MM at different expansion points s0. For ex-
ample, if s0 = ∞ the Padé via Lanczos [67] or the Arnoldi procedure [68] are preferred
for solving the problem, and in the general case of arbitrary s0 the rational interpolation
methods are suggested [50]. Different s0 can be related to different properties of the re-
duced model; s0 = 0 achieves steady state accuracy, small values achieve accuracy at slow
dynamics and the larger the value of s0, the better high frequencies of the transfer func-
tion are approximated [69]. Additionally, imaginary expansion points can be related to
good local accuracy near s0, but less generalization capability of the reduced model [69].
Additionally, due to the locality of the expansion point based approach, the choice of the
expansion point s0 is very application dependent and often requires manual selection [50].

Calculating the moments of the transfer function for model reduction purposes is best
illustrated under certain assumptions and preparations. First, the target system is LTI and
SISO so that matrices C andB are vectors ccc, bbb, and additionally the feedthrough matrixD
is assumed to be zero. Let us introduce matrix G and vector rrr according to Equation (42)

2. Model Reduction Theory and Algorithms 22

of the transfer function
G = −(sI − A)−1 (44)

and
rrr = (s0I − A)−1bbb (45)

where in both equations A, bbb are state space matrices. Furthermore, H(s) of a SISO
systems then becomes a scalar valued function

h(s) = cccT (I − (s− s0)G)−1rrr (46)

that now only depends on one matrix G. For very small systems G can be diagonalized
and reduced, thus reducing h(s) to k < N dimensions. However, the process is numeri-
cally unstable so the general case requires extra steps. Next h(s) is expanded for example
with the Taylor series to obtain

h(s) =
∞∑
j=0

(cccTGjrrr)(s− s0)j

= cccTrrr + cccTGrrr(s− s0) + cccTG2rrr(s− s0)2 + ...

= m0 +m1(s− s0) +m2(s− s0)2 + ...,

(47)

where mj = cccTGjrrr is the jth moment of h(s) at the expansion point s0. [9] Moreover,
each moment mj can be seen as the j:th derivative of the transfer function.

A function that matches as many moments of another function at expansion point s0
is called a Padé approximant. In other words, the Padé approximant of a function has the
same power series as the approximated function, at a given expansion point. The Padé
approximant has an order of two values, marked with [m/n] and it uses two polynomial
functions Pm(x) and Qn(x) to describe any other function f(x) with the notation

[m/n]f =
Pm(x)

Qn(x)
, Qn(x) 6= 0 (48)

and for the moments to match f(x) it satisfies the equation

f(x) =
Pm(x)

Qn(x)
+O(xm+n+1) (49)

up to order O(xm+n+1). If hk(s) is the Padé approximant of the transfer function h(s), it
is written as

h(s) = hk(s) +O((s− s0)2n). (50)

The k moments of h(s) are already defined from the Taylor series, so the next step is

2. Model Reduction Theory and Algorithms 23

defining hk(s). Choosing the order of the Padé approximation as m = n− 1 gives

hk(s) =
Pn−1(s)

Qn(s)
=

an−1s
n−1 + ...+ a1s+ a0

bnsn + bn−1sn−1 + ...+ b1s+ 1
(51)

where b0 is set to 1. The coefficients aj and bj have to be solved in order to obtain
the approximant. Since Equation (50) contains the condition for the moments to match,
multiply it by Qn(s) on both sides to obtain

h(s)Qn(s) = Pn−1(s) +O((s− s0)2n). (52)

Moreover, inserting the moments of hk(s) to the above equation ultimately leads to the
equation system for the coefficients bj of Qn(s)

m0 m1 · · · mn−1

m1 m2 · · · mn

...
...

mn−1 mn · · · m2n−2



bn

bn−1
...
b1

 = −


mn

mn+1

...
m2n−1


Mnbbb = −mmm

(53)

where Mn is the Hankel matrix and also known as a moment matrix. Since the moments
mj are known, bbb can be solved, given that Mn is nonsingular. Furthermore, aj of Pn−1(s)

can now be computed according to

a0 = m0

a1 = m0b1 +m1

...

an−1 = m0bn−1 +m1bn−2 + ...+mn−2b1 +mn−1

(54)

from where it is seen that hk(s) is a nth Padé approximant of h(s) [9, 67]. The biggest
drawback of the above method, also known as Asymptotic Waveform Evaluation [70], is
that Mn quickly becomes ill conditioned for more accurate approximations (n > 20, [9])
which basically prevents the approximation of large frequency ranges. Additionally, com-
pared to the already local nature of the moment matching approach, this greatly reduces
the usability of MM methods.

As stated above, a more numerically stable method is required for obtaining better
approximations and ultimately reductions. Such a method can be found by exploiting
the connection between Padé approximants and the Lanczos process, and it is known as
Padé via Lanczos (PVL) [67]. PVL is effective, because it avoids the computation of the
moments directly, thus the numerically poor matrix Mn is not formed at all. To explain

2. Model Reduction Theory and Algorithms 24

the Lanczos process the meaning of Krylov subspaces has to first be established.
The Krylov subspace is spanned by the column vectors that result from the multipli-

cation between a square matrix G and a starting vector rrr, for example the matrix G and
vector rrr defined earlier in the context of transfer functions in Equations (44) and (45).
The nth order Krylov subspace is

Kn(G,rrr) = span{rrr,Grrr,G2rrr, .., Gn−1rrr} (55)

also known as the right Krylov subspace, and if GT 6= G, the left Krylov subspace is
defined as

Kn(G,ccc) = span{ccc,GTccc, (GT)2ccc, .., (GT)n−1ccc} (56)

with a starting vector ccc that is the output vector of a SISO LTI system. With these se-
lections, the Krylov subspace is connected to the previously defined moment matrix Mn

through inner products between the left and right subspace as

m2j = ((GT)jccc)T · (Gjbbb)T

where m is an element of Mn for j = 1, 2, ..., n − 1. However, Gjrrr and (GT)jccc lack
the numerical qualities for being linearly independent basis vectors. The goal then be-
comes finding basis vectors (Lanczos vectors) {vvv1, vvv2, ..., vvvn} and {www1,www2, ...,wwwn} that
span the same Krylov subspaces Kn(G,rrr), Kn(G,ccc) defined earlier but with better nu-
merical properties, which is what the Lanczos process does [9]. In summary, the Krylov
subspace contains the necessary information to numerically robustly define more mo-
ments than by Padé approximation, and the Lanczos process [71] is a way to find these
basis vectors that span these exact subspaces.

The Lanczos process is a step-wise process, which eventually tridiagonalizes the target
square matrix G of size n × n [71]. It generates two matrices Vn and Wn for which the
columns are exactly the respective Lanczos vectors of {vvvi} and {wwwi}.

Algorithm 1 depicts the Lanczos process to obtain a projection subspace for a SISO
LTI system. In Algorithm 1 the inputsG and rrr are derived from the state space matrices at
expansion point s0 and ccc is the output vector while the outputs are two subspaces spanned
by the linearly independent basis vectors in matrices Vn and Wn. Here rrr and ccc are used as
starting vectors based on which biorthogonal vvv andwww are calculated, so that a connection
to the state space matrices is established [67]. Moreover, the process itself is iterative and
runs at most for n steps that ultimately equals the dimension of the square state matrix
A. However, the process might terminate prematurely, in which case the basis generation
process is not complete and only reaches k < n steps, resulting in Vk and Wk that have
only k columns. On the other hand, the process might be voluntarily terminated early. The
resulting two matrices can be used to project onto the subspacesKn(G,rrr) andKn(GT , ccc).

2. Model Reduction Theory and Algorithms 25

Algorithm 1 Lanczos process

INPUT: rrr = ((s0I − A)−1)bbb, ccc, G = −(s0I − A)−1

OUTPUT: Vn = v1, ..., vn, Wn = w1, ..., wn

1: ρ1 = ‖rrr‖, η1 = ‖ccc‖, vvv1 = rrr/ρ1,www1 = ccc/η1
2: for k = 1 to n do
3: δk = wwwT

kvvvk
4: αk = wwwT

kGvvvk/δk
5: βk = (δk/δk−1)ηk
6: γk = (δk/δk−1)ρk
7: vvv = Gvvvk − vvvkαk − vvvk−1βk
8: www = GTwwwk −wwwkαk −wwwk−1γk
9: ρk+1 = ‖vvv‖

10: ηk+1 = ‖www‖
11: vvvk+1 = vvv/ρk+1

12: wwwk+1 = www/ηk+1

13: end for

Assuming a completed process, after the Lanczos matrices are constructed tridiagonal-
ization is performed by similarity transformation as

V −1n GVn = Tn (57)

where

Tn =


α1 β2

ρ2 α2
. . .

. βn

ρn αn

 (58)

and additionally
T̃ T
n = DnTnD

−1
n , where Dn = W T

n Vn.

In case the process encountered a termination at step k, the transformation is

W T
k GVk = W T

k VkTk = DkTk. (59)

If tridiagonalization with the Lanczos process is applied to matrix G of SISO LTI system,
the transfer function becomes

h(s0) = (cccTrrr)eeeT1 (I − (s0 − s))Tn)−1eee1 (60)

where eee is the first column vector of In and which equals the original transfer function of
the system. However, with large systems, the process is likely to encounter a breakdown
at k steps, in which case a smaller dimensional Tk consisting of the leading k × k block

2. Model Reduction Theory and Algorithms 26

of Tn is obtained. This leads to a reduced transfer function

hk(s0) = (cccTrrr)eeeT1 (I − (s0 − s))Tk)−1eee1 (61)

that corresponds to the Padé approximant of the original transfer function, since Tk is
calculated in a subspace chosen so that the moments of the Krylov subspace transformed
system match the original moments [9]. The difference is that the calculation method
was more robust, allowing for a larger k and a better approximation and that instead of
approximating with a polynomial function, a matrix representation was obtained. This
resolves the problem of approximating very large systems with moment matching, since
a good approximation that still has a smaller dimension compared to the original system
is now obtainable.

The incomplete Lanczos projection matrices Vk and Wk can also be be applied for
model reduction in time domain, although the basis vectors are still first calculated in the
Laplace domain. They can be obtained by voluntarily interrupting the Krylov process or
by calculating as many steps as possible. However, reaching n steps in the Algorithm 1
serves no purpose for model reduction. Under expansion at s0 and further employing G
and r from Equation (44) and Equation (45), the SISO LTI system is

ẋxx(t) = −(I + s0G)xxx(t) + rrru(t),

y(t) = cccxxx(t)
(62)

and a reduced form is obtained with the change of basis V T
k xxx(t) = xxxk(t) and transforma-

tion by W T
k which yields

ẋxxk(t) = −W T
k (I + s0G)Vkxxxk(t) +W T

k rrru(t),

y(t) = cccVkxxxk(t)
(63)

that is an k < n dimensional system that matches as many moments of the transfer
function of the original system, making it a Padé approximant. Additionally, the original
inputs are preserved and a direct approximation of the outputs is obtained. The reduced
matrices can be precomputed, so that in the online phase of simulating the model a smaller
amount of differential equations has to be processed.

Generally MM methods are defined for SISO systems and applications to MIMO sys-
tems are a case requiring special consideration. There are special procedures for the
MIMO case depending on whether B and C are symmetric and positive semidefinite (in
which case a symmetric Lanczos process can be used [72]) [9, 50] or bilinear [24]. The
general approach to MIMO systems with Krylov subspace is called Block-Krylov [73]
and a universally applicable reduction procedure that handles all sizes of non-Hermitian
input and output matrices based the block approach is given in [74], although the authors

2. Model Reduction Theory and Algorithms 27

note that the connection to Padé approximation still has to be verified. Additionally, the
Lanczos algorithm is only one possibility to finding the Krylov subspaces, and for ex-
ample the iterative Arnoldi algorithm or tangential interpolation methods might be more
suitable in application where Lanczos fails.

One solution to the problem of very local approximations generated by moment match-
ing methods is calculating approximations at several expansion points. The approach is
called multipoint moment matching or multipoint interpolation [48]. However it is com-
putationally more expensive compared to increasing the order k of a single approximation.

The error of the reduced model obtained from MM methods depends on the algorithm
that is used to calculate the approximation of the transfer function. In PVL, the order of
the Padé approximant, that is the column number of the Krylov projection subspace or
number of steps taken in the Lanczos algorithm, determines the error [9]. If a kth order
SISO LTI approximation is used, the error at expansion point s0 is determined by

h(s)− hk(s) = (cccTrrr)(
ρk+1ηk+1

γk
)[s20τk1(s0)τ1k(s0)]γk+1(s0), (64)

where τk1(s0) = eeeT1 (I−s0Tk)−1eeek, τ1k(s0) = eeeTk (I−s0Tk)−1eee1 and γk+1(s0) = wwwT
k+1(I−

s0G)−1vvvk+1 which are obtained from the Lanczos process in Algorithm 1 [75]. Moreover,
the term s20τk1(s0)τ1k(s0) is most dependent on k of the terms in the equation and can thus
be used as an indication for the quality of the approximation. As a function of the number
of iterations k in the Lanczos process, it should exhibit exponential decay as k increases,
indicating a smaller error as the approximation quality improves.

PVL does not necessarily preserve asympotic stability of the model during the re-
duction process even if the original model is SISO LTI and stable [9, 76]. This can be
confirmed from the eigenvalues of matrix Tk. However, due to the iterative nature of the
process it is possible to inspect the real parts of the eigenvalues of Tk at each step during
the algorithm and stop the process if stability is lost, assuming that there is a chance a sta-
ble reduced model could be found. Furthermore, an extension to the PVL method named
PVLπ has been developed that attempts to stabilize an unstable PVL-reduced model [76].

Reducing time varying systems with moment matching method has also been studied.
The LTV system has to be periodic for the model order reduction to be possible [77, 78].

Aside from linearization approaches, moment matching methods are not very advanced
with regards to reducing nonlinear systems. The difficulty stems from the transfer func-
tion not being clearly defined for nonlinear systems. However, it is possible to determine
moments for the nonlinear functions of a given system and approximate those with re-
duced models, resulting in a group of Padé approximations with an equal dimension to the
original nonlinear system. The problem is that, as stated in the linear case, using a single
larger Padé approximation is more efficient than having several small Padé approxima-
tions. Bilinear MIMO systems have been reduced in [24] using a block Krylov approach

2. Model Reduction Theory and Algorithms 28

and in [9] using Carleman bilinearization and a multidimensional Laplace transform.

2.5 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is a model order reduction method that is in
some sources used synonymously with Principal Component Analysis (PCA) [79, 80],
Kosambi-Karhunen-Loeve Transformation (KLT) [81] or Singular Value Decomposition
(SVD) [82]. The confusion around naming the method stems from it being highly flexible
with regards to finding the projection space. Lumley originally introduced POD as a
model order reduction method for studying the structure of turbulent flows [83]. Here the
term POD actually refers to an empirical three step process that seeks to approximate the
targeted behavior and dynamics of the system rather than all possible states. The method
trades mathematical rigour for flexibility as it is applicable to nonlinear and time-varying
systems, but gives no guarantee of stability, controllability or observability of the system.

A time-domain derivation of POD will be presented here. In essence, the process
begins with the method of snapshots outlined by Sirovich [58], which includes simulation
and sampling of the full dynamics of the system that is to be reduced, followed by SVD
of these snapshots, and finally Galerkin projection of the original full dimension system
to a mean squared error optimal reduced orthonormal subspace. The singular vectors
that span this subspace are often called POD modes. Since the full system has to be
simulated before POD can be applied, it is an a posteriori method and does not rely on any
other prior knowledge of the system [84]. POD can then be summarised as a method for
approximating the system dynamics in a lower dimension than the original system. This
can be contrasted with other order reduction methods of control theory that are mostly
concerned with maintaining the input-output relation of the system, such as BT.

POD is directly applicable to time-invariant nonlinear systems of Equation (2). The
derivation here will be for the time-invariant case for simplicity. However, it is mandatory
to separate the linear coefficients, nonlinear function and external inputs of the system
that were previously grouped in f(xxx(t),uuu(t)), so that the state equation

ẋxx(t) = Axxx(t) + F (xxx(t)) +Buuu(t) (65)

contains the linear coefficients in the state matrix A and the nonlinear functions in the
vector F and linear inputs grouped in the vector B. The same formalism can be applied
to the output equation and will not be explicitly written for the rest of the section.

In order to obtain the reduced order model from POD the full dimensional system
has to be simulated first. The purpose is to sample time points from the solutions of the
simulation that the reduced model will approximate. This method of snapshots has two
main reasons; the full solution space contains a lot of redundant information and pro-
cessing a smaller data matrix (the snapshots) is efficient. Moreover, it gives the modeler

2. Model Reduction Theory and Algorithms 29

control over the desired features of the reduced model. Consequently, generation of the
snapshots for computing the POD modes is a crucial part of the POD process, since the
reduced order model will be built to approximate the dynamics contained in them.

A subsequently arising question considering the generation of the snapshots is the so
called excitement function used to produce the sampled trajectories. This is highly de-
pendent on the application of the reduced order model. In case the approximation should
be accurate for a variety excitation, it is possible to use any different input functions and
catenate the resulting data matrices together before selecting snapshots. An additional
benefit achieved from catenation is that each input can be emphasized as wished by ma-
nipulating the length of the matrix. However, a very specific reduced model is obtained
by using perhaps only one input function. Another consideration is the simulation time.
If the original model exhibits a wide range of dynamics as time increases, then a longer
simulation period is warranted.

After the original system has been simulated for data collection, there are several meth-
ods for finding the snapshots that minimize the error between the POD-solution and origi-
nal trajectories. To write the above in mathematical notation, simulating the system grants
a matrix X ∈ Rn×t, where n is the number of state variables or dimensions of the system
and t is the number of time steps at which the system was solved. In other words, X
contains the time trajectories of the solutions to the system from initial time t0 to tend. As
per the method of snapshots, X is then sampled at every i:th index to obtain the matrix of
snapshots S = [xxx1,xxxi, ...,xxxs] ∈ Rn×s, where s is the total number of snapshots.

Oftentimes, a very good approximation is obtained by simply choosing the snapshots
with a constant interval. A suitable interval can be selected for example by boosting
the information content of each snapshot by evaluating the eigenvalues of a snapshot
covariance matrix [85, 86]. There, the focus is on maximizing the magnitude of the
smallest eigenvalue. Moreover, the approximation quality can be increased by adding
extra snapshots between the intervals [87]. Finally, a selection method that that uses a
logarithmic interval by either emphasizing the early or late values has been suggested [85].
After the snapshots are obtained, in certain scenarios it might be beneficial to center them
with a normalizing process, for which an algorithm is given in [88].

The snapshots will be used to compute a set of orthonormal basis vectors that span
a reduction subspace for POD. Applying SVD to the snapshots S results in the singular
values of the system as well as the singular vectors of the system. The singular vectors
are a set of linearly independent orthonormal vectors that span the space in which S is
observed. This means that the values of the snapshots, or the dynamics of the system, can
be reconstructed from these basis vectors. SVD of the snapshot gives

S = V ΣD∗ (66)

2. Model Reduction Theory and Algorithms 30

where Σ ∈ Rn×i is a diagonal matrix of singular values that are real and positive, and
both V ∈ Cn×n and D ∈ Ci×i are square matrices whose columns are the orthonormal
left and right singular vectors {vvv1, ..., vvvn} and {ddd1, ..., dddi} of S, respectively. The name
D is used here by convention and the matrix is not to be confused with the feedthrough
matrix of the state space equation. Additionally, both V and D are unitary so that V V ∗ =

V ∗V = I . The singular values in Σ are ordered by their magnitude and can be interpreted
as a measure of the importance of the corresponding singular vectors.

Next, from the result of SVD a set of POD modes that can best approximate the full
system will be selected. Since the purpose is to be able to reproduce the most important
dynamics of the system in a lower dimension, a subspace that is spanned by the most
important singular vectors of the snapshots should theoretically be able to generate most
of the states and outputs of the system. Because the singular values are already ordered
by magnitude, and that magnitude is used as a metric for importance, the first k columns
of V can then be chosen as a basis for a reduced subspace of the original system, so that
they form a matrix Vk = [vvv1, ...vvvk] ∈ Zn×k. The basis is optimal for reconstructing the
snapshots of the original system, since it minimizes the mean squared error between the
original system outputs y and the reduced solution [48]. The minimized optimization
problem is

min
rank{Vk}=k

n∑
j=1

∥∥∥yyyj − VkV ∗k yyyj∥∥∥2 , (67)

where V ∗k Vk = I and this is solved in the POD process [89].
The accuracy of the reduced subspace of dimension k can be estimated from the decay

of the singular values of the snapshots. If the singular values σ are interpreted as the
"energy" the system contains, the energy contained in the k:th dimensional approximation
is

e =

k∑
i=1

σi

n∑
i=1

σi

(68)

where the singular values σ are sorted in a descending order of magnitude as they are when
SVD is applied. Typically the decay of the singular values is exponential, in which case
only a small portion of them is required to reach e > 0.99. SVD makes the assumption
that the underlying data has a Gaussian distribution. If the singular values do not decay
exponentially, this approximation might not hold, which tends to indicate poor results
from POD model reduction. This problem will be elaborated on in the Discussion chapter.

The next step is applying Galerkin-projection to project the full dimensional system
on the reduced subspace spanned by columns of Vk. With this linear transformation the
matrices of the system are rescaled and shaped to smaller dimension. Since the projection
basis is constructed from snapshots of the solutions to the system, the new reduced system

2. Model Reduction Theory and Algorithms 31

should maintain this quality. Consider a change of basis for the state vector xxx to a k
dimensional subspace so that xxxr = V ∗k xxx. The reduced system is then

ẋxxk(t) = V ∗k AVk︸ ︷︷ ︸
k×k

xxxk(t) + V ∗k F (Vkxxxr(t))︸ ︷︷ ︸
n×1

+V ∗k B︸︷︷︸
k×r

uuu(t)

yyy(t) = CVk︸︷︷︸
q×k

xxxk(t) +Duuu(t)
(69)

and due to the smaller size of the linear matrices, a computational and mathematical
advantage is gained. The reduced matrices of the linear terms V ∗k AVk = Ak, V ∗k B = Bk

and CVk = Ck can be precomputed in the offline stage of the simulation, which directly
results in improved simulation time on the online stage since a smaller amount of simpler
differential equations has to be solved. If the input matrix does not depend on time it
can be reduced by precomputation as well. However, the nonlinear term in V ∗k F (Vkxxxr(t))

needs to be evaluated in the original dimension at each time step and in this sense the
complexity of the system still depends on the original dimension n (see Subsection 2.1.3
Subspace Projection). Depending on the structure of the model, this format might actually
increase simulation time if the complexity of the nonlinear term is not further reduced.
After simulating the reduced system, an approximation of the original system is obtained
by transforming the solutions back to the original space with X̃ ≈ VkXr, where Xr is the
matrix of solutions at every time step the system was solved.

POD does not consider stability of the reduced order model [84, 90, 91]. That said,
it does not necessarily turn a stable system unstable either. Moreover, POD approaches
to enforce stability have been developed and they are applicable to linear and nonlinear
systems [92]. In [92] a method for keeping stable continuous-time models bounded in
asymptotically stable range during reduction has been extended to the discrete case that
has been discussed in this thesis. However, forcing such boundary conditions comes at
the cost of accuracy of the reduced model.

There are no constraints to applying POD to time-varying systems, after all the em-
pirical basis contains information of the evolution of the system. Moreover, due to the
empirical nature of the method obtaining the basis for time-varying systems is no dif-
ferent than for time-invariant systems. However, LTV systems have the same difficulty
regarding reduction as the nonlinear term, as it is not possible to reduce them entirely
on the offline stage. As such, much of the discussion regarding subspace projection in
Subsection 2.1.3 and BT of time-varying systems applies here.

An interpolation approach can be used to reduced the complexity of the nonlinear
term and remove the dependency on the original dimension. The following section will
introduce the Discrete Empirical Interpolation Method that does precisely this. There,
POD will be used on the nonlinear part of the model separately.

2. Model Reduction Theory and Algorithms 32

2.6 Discrete Empirical Interpolation Method

An empirical interpolation method for reducing the complexity of nonlinear functions was
first proposed by Barrault, Maday, Nguyen and Patera [93] in 2004. The discrete version
Discrete Empirical Interpolation Method (DEIM) was then introduced by Sorensen and
Chaturantabut in 2010 [89]. The previous five years have seen DEIM developed further
with localized, adaptive and stability conserving variants [25, 94, 95]. It is a method
that complements POD by reducing the nonlinear term so that together the two arrive
at a reduced model which no longer depends on the original dimension of the system.
Alternatively, DEIM can be used for standalone reduction of nonlinear functions.

DEIM is a projection based method, like POD and BT, combined with an interpolation
approach. Given a system in the format of Equation (65), the goal is to find an approx-
imation for F (xxx(t)) that does not depend on the original dimension n. From POD and
BT the reduced format of the nonlinear term V ∗k F (Vkxxxk(t)) was obtained, which does
not allow precomputation in the offline stage since F (xxx(t)) is not defined in the reduced
space. Consequently, Vkxxxk has to be computed during simulation run-time in order to
evaluate the function vector F (xxx(t)) for subspace projection. A solution proposed with
DEIM is to reduce the complexity of the nonlinear function by interpolating at specific
indices of the function vector and projecting the result onto a basis that spans the space
of the output values of the nonlinear function [89]. The basis vectors are the columns of
a matrix denoted by U and the following will outline the calculations required for finding
them along with the interpolation indices.

The first step in DEIM is calculating a projection subspace spanned by linearly inde-
pendent orthonormal vectors Um = [uuu1, ...,uuum] ∈ Rn×m also called DEIM modes. The
process begins with applying POD to values of the nonlinear function at the solutions of
the full-order system. In summary, as the full system is simulated for [t0, tend], the outputs
of F (xxx(t)) are saved at every t to matrix Xf = [F (xxx(t0)), F (xxx(t2)), ..., F (xxx(ti))]. The
values can be collected during simulation of the full system for POD, so no unnecessary
computational burden is introduced. Afterwards, SVD is applied to snapshots of Xf in
order to obtain the first m ≤ n left singular vectors {uuu1, ...,uuum} = Um from U := VSV D.
Again as with POD, the approximation error of the reduced system can be estimated from
the magnitude of singular values [96]. Moreover, if DEIM is used in conjunction with
POD, calculating separate subspaces for POD (spanned by columns of Vk) and DEIM
(spanned by columns of Um) has the additional benefit that an individual number of modes
can be chosen for approximating the linear (POD) and nonlinear (DEIM) terms so that k
does not necessarily equal m and k,m ≤ n.

Once Um is defined, it is possible to derive a reduced order model of the nonlinear
function by reducing the number of nonlinear component functions in F (xxx). Recall that
columns of Um span the subspace where (most of) the output values of the vector of

2. Model Reduction Theory and Algorithms 33

nonlinear functions F (xxx(t)) exist. Assuming for a moment an m dimensional vector of
functions selected from F (x) exists in coefficient vector f(x) and is available, an approx-
imation of the original outputs is obtained by matrix multiplication

F (x) ≈ Umf(x), (70)

which is a linear projection of the coefficients to the space spanned by columns of Um. If
the above is interpreted as an equation group of m equations and since F (x) and Um are
known, it stands to reason that this equation could be used to define the coefficient vector
f(x). Commonly matrix equations of type Mααα = βββ with unknown ααα are solved with the
least squares method by ααα = M−1βββ. However, there are more equations in the rows of
U than there are unknowns in f(x), hence the system is overdetermined and cannot be
uniquely solved. The least squares solution to overdetermined systems is

MTMααα = MTβββ

ααα = (MTM)−1MTβββ,
(71)

that would lead to
f(x) = (UT

mU)−1UTF (x), (72)

where the multiplication between UT and F (x) results in a dependency on the original
dimension n in the online phase of solving the system. This means that further processing
is required to calculate a reduced nonlinear function vector.

The reduction method proceeds by selecting m rows from Equation (70), so that the
system is no longer overdetermined. Let a matrix for extracting the rows be

P = [eee℘1 , ..., eee℘m] ∈ Rn×m, (73)

where eee℘i
is the ℘ith column of an n×n identity matrix In for i = 1, ...,m [89]. Obtaining

P and the interpolation indices {℘1, ..., ℘m} is an integral part of the DEIM procedure.
As such, the subspace Um is employed in the derivation of the indices as described in
Algorithm 2 by maximizing variation in the result of multiplication with P .

In Algorithm 2 the input is a set of n dimensional column vectors, which now is Um.
The function max returns in ρ the largest value of the input and in ℘ the first correspond-
ing index. In the initialization phase of steps 1 and 2, ρ and ℘1 are obtained from the
absolute values of the first column in Um by max |uuu1|, after which a temporary matrix U
is initialized with uuu1, matrix P with the ℘th column of I , eee℘1 and index vector ℘℘℘ with
℘1. Then, the m columns of Um are processed. In step 4 a vector ccc of weights is de-
termined from the columns processed so far. In step 5 it is employed for calculating a
component-wise difference rrr between the current and processed entries. Step 6 then finds
the magnitude and index of the most differing value. Before the loop restarts, U is ap-

2. Model Reduction Theory and Algorithms 34

Algorithm 2 Discrete Empirical Interpolation Method

INPUT: {uuul}ml=1 ⊂ Rn linearly independent
OUTPUT: ℘℘℘ = [℘1, ..., ℘m]T ∈ Rm

1: [|ρ| , ℘1] = max |u1|
2: U = [u1], P = [e℘1],

−→℘ = [℘1]
3: for l = 2 to m do
4: Solve Uccc = uuul for c
5: rrr = uuul − Uccc
6: [|ρ| , ℘l] = max |r|

7: U ←
[
U ul

]
, P ←

[
P e℘l

]
,℘℘℘←

[
℘℘℘
℘l

]
8: end for

pended with the currently processed vector, P with the ℘th column of the identity matrix,
and the index vector with ℘. According to this process, P will contain interpolation in-
dices that select the most essential rows from Um. It is also seen that P TU is nonsingular.
[89]

Once P is obtained, left multiplication with P T gives

P TF (x) = (P TUm)f(x), (74)

that can be solved assuming P TUm is nonsingular. P TF (x) results in anm×1 vector and
P TUm in anm×mmatrix, so that as a result of reducing the number of components in Um

and F (x), the equation group is not overdetermined anymore. Although F (x) is a vector
of functions, by still assuming the above equation is solved for f(x), the m coefficients
become

f(x) = (P TUm)−1P TF (x), (75)

where all terms on the right hand side are known. An important point to consider is
that computing P TF (x) is interpreted as extracting rows of F (x) at the interpolation
points in P T , in the current case leading to the reduced function Fm(x) := P TF (x) ∈
Rm×1. Additionally, the extracted format Fm(x) is defined in the offline stage of the
simulation, which removes the dependency of the nonlinear term on n, further reducing
computational expenses in the simulation phase. Finally, an approximation of the original
nonlinear outputs at time t is obtained by projecting the output of the reduced function to
the subspace spanned by columns of Um as

F (x(t)) ≈ Umf(x) = Um(P TUm)−1Fm(x(t)), (76)

and this format is employed later in the process to complete the model reduction.
Now that n and m dimensional approximations for the nonlinearity are established via

interpolation, the reduction itself can be finalized by utilizing the POD basis Vk. This step

2. Model Reduction Theory and Algorithms 35

is necessary in order to process the system matrices in the same subspace and to make
matrix dimensions of the model agree. Define the k dimensional reduced nonlinearity

Fk(xxxk(t)) = V T
k Um(P TUm)−1︸ ︷︷ ︸

k×m

Fm(Vkxxxk(t))︸ ︷︷ ︸
m×1

, (77)

where V T
k Um(P TUm)−1 = Nk can be precomputed in the offline stage since it does not

depend on time. This equation can be interpreted as projection of them point interpolation
approximation of the nonlinearity to the k dimensional POD subspace.

In the special case that the function vector F (xxx) evaluates the input vector xxx compo-
nent wise so that the ith function in F (xxx) depends only on the ith component of xxx, the
evaluation of the nonlinear term simplifies even further. The reason is that Fm(xxx) will
only need and use m components of xxx. Although during simulation xxxk still has to be
transformed back to the original space, it becomes possible to precompute an extracted
version of V P

k = P TVk that only calculates the required m components, similarly to how
rows were selected from the function vector by P . V P

k does not depend on n and thus has
reduced complexity. Evaluation of the function vector then becomes

Fm(V P
k xxxk(t)), (78)

where xxxP = V P
k xxxk(t) only contains the m components the DEIM reduced function re-

quires for evaluation and the unnecessary components are not computed at all so that
computation speed is improved. However, in the general case this cannot be assumed
feasible. Given that usually m < n, the sparse evaluation of Fm can be efficiently imple-
mented with a compressed sparse roi data structure for indexing vector xxx. [89]

DEIM can be used alone without multiplying the approximation of the nonlinear func-
tion with the POD basis. In this case, the result is just an n dimensional m point interpo-
latory approximation of the original system. When combined with POD, a reduced order
model that does not depend on n is obtained. If desired, a separate Wp basis (comparable
to Nk) for p interpolation points is first calculated for the output function g(t,xxx(t),uuu(t)).
However, depending on the size and structure of the outputs of the system, this might not
bring considerable computational savings. Recalling the POD result of Equation (69), the
reduced form of the nonlinear system in Equation (2) is then

ẋxxk(t) = Ak(t)xxxk(t) +NkFm(Vkxxxk(t)) +Bk(t)uuu(t)

yyy(t) = Ck(t)xxx(t) +WpGp(Vkxxxk(t)) +D(t)uuu(t),
(79)

Due to the empirical POD basis used in DEIM there are no guarantees of persevering
stability in the reduced model. Additionally, the interpolation method poses an additional
challenge for applying methods that guarantee POD stability to DEIM. However, a sta-

2. Model Reduction Theory and Algorithms 36

bility persevering reduction method based on non-negative matrix transformations called
Non-Negative Discrete Empirical Interpolation Method (NNDEIM) exists and has been
shown to be effective for model reduction of networks of neurons modeled with the cable-
equation [95].

Although DEIM is a relatively recently developed algorithm, a modification for time
varying systems has already been presented in [25, 95]. Both approaches are based on
constructing multiple interpolation function sets and choosing the best approximation in
the online phase of the simulation with efficient lookup methods.

37

3. CASE STUDY: SYNAPTIC PLASTICITY MODEL

In order to test the effectiveness of model reduction in biological context a mathematical
model of signaling pathways in striatal synaptic plasticity by Kim et al. [3] was chosen
for a case study. The model is specific for the basal ganglia area of the brain and it
explains how certain molecules in intercellular information transfer points of neurons,
synapses, are responsible for plasticity, which is presumably a prerequisite for learning, in
the brain. It is a biophysical model that is based on experimental data, in contrast to being
a phenomenological model. Originally the model was employed in studying the effects
of different stimuli to the synapse and how they could direct plasticity. Additionally,
the predictions from the model have been verified experimentally and the model itself is
based on validated experimental data, which contributed to the decision of choosing this
specific model.

This striatal synaptic plasticity model is based on chemical reactions of the molecules
in the synapse. The stoichiometric equations obey the law of mass action, which leads
to a deterministic system of ordinary differential equations. For the following analysis
five biologically interesting species included in the model were chosen as outputs of the
system to studied in more detail. These were 2-arachidonoylglycerol (2Ag), calcium (Ca),
diacylglycerol (DAG), G protein with α, beta and γ subunits (Gabg) and phospholipase
C (PLC). Their behavior is significant as these substances can connect the current model
to a larger, even more detailed model and they are known to be active influencers in LTP
and LTD [4].

For this thesis the model of Kim et al. [3] was implemented based on the equations
given in the original publication. This implementation of the model contains n = 44

ordinary differential equations, and further details regarding the model and the species it
contains can be found in Appendix A.1. The output species 2AG, Ca, DAG, Gabg and
PLC are modeled by equations x1, x2, x21, x25 and x43, respectively. Compared to the
original model, the differential equation for external glutamate (Glu) was omitted in favor
of having Glu as a purely external time-dependent stimulus, which is also justified by the
fact that the model is tested as stand-alone system instead of being coupled to a larger
system. In addition to Glu, the implementation contains external calcium stimulus as an-
other time-dependent variable, which appears also to the power of two in some equations.
The end result is a nonlinear control system of the format shown in Equation (2), and
additionally the system has bilinear characteristics. The five first equations of the model

3. Case Study: Synaptic Plasticity Model 38

are
ẋ1 = kprodAGc ∗ x4 − kdegAGf

∗ x1
ẋ2 = kPMCAc ∗ x15 + kNCXc ∗ x11 − kLeakf ∗ x2 ∗ x36 + kLeakb ∗ x10
ẋ3 = kbufferf ∗ Capost(t) ∗ x19 − kbufferb ∗ x3
ẋ4 = kprodAGf

∗ x21 ∗ x7 − kprodAGb
∗ x4 − kprodAGc ∗ x4

ẋ5 = kDAG3c ∗ x8 − kDAG4f ∗ x5,

(80)

and they illustrate the nonlinearity of the system in equation of ẋ2, where two state vari-
ables x2 and x36 are multiplied together and the time-dependence of the system in the
equation of ẋ3 where a state variable is multiplied with calcium stimulus.

Model order reduction was performed with the Proper Orthogonal Decomposition and
Discrete Empirical Interpolation Method (POD+DEIM) approach because of its applica-
bility to nonlinear systems without having to linearize the original model. Additionally,
the method is readily applicable to multiple-input multiple-output systems.. POD+DEIM
requires that the linear and nonlinear terms are separated as in Equation (65) in order to
reach the format of Equation 79. However, time-dependent variables posed an additional
challenge. Without further processing of the state matrix, the reduction of the linearity
could not have been precomputed because with the POD+DEIM method, the time-varying
parameters need to be updated in the original dimension. (In effect, this requires the sys-
tem to be in the full order format to calculate the updates of the terms that are multiplied
with any time-dependent variables.) With these issues acknowledged, the equation system
was written as

dxxx(t)

dt
= (A0 +A1 ∗Ca(t) +A2 ∗Ca(t)2 +A3 ∗Glu(t))xxx(t) + F (xxx(t)) +Buuu(t), (81)

where the bilinear characteristics of the system A(t) = A0 + A1Ca(t) + A2Ca(t)2 +

A3Glu(t) are observable. Here Ai ∈ Rn×n for i = 0, 1, 2, 3. The matrices A1, ..., A3 are
sparse coefficient matrices for each of the time varying variables and were separated from
A0 so that precomputing their order reduction in the offline stage would become possible.
Matrix B ∈ Rn×r contains the coefficients for each input in rows of uuu ∈ Rr×1 and uuu(t) in
this system only contains Glu, so r = 1. Due to the equation of x32 B is nonzero and the
system is called forced in control theory terms. This is because Glu acts as an input to the
system so that in some state equations it is not directly multiplied with state variables.

Recalling the ultimate reduced format of the nonlinear system, the reduced form of the
Kim model obtained by projecting xxx onto Vk as V T

k xxx = xxxk and thus the equation was
written as

dxxxk(t)

dt
=Vk

T (A0 + A1 ∗ Ca(t) + A2 ∗ Ca(t)2 + A3 ∗Glu(t))Vkxxxk(t)

+NFm(Vkxxxk(t)) + Vk
TBuuu(t)

(82)

3. Case Study: Synaptic Plasticity Model 39

where the reduced linear part by commutativity of matrices becomes

Ak =(Vk
TA0Vk + Vk

TA1 ∗ Ca(t)Vk + Vk
TA2 ∗ Ca(t)2Vk + Vk

TA3 ∗Glu(t)Vk)xxx(t)

=(Ak0 + Ak1 ∗ Ca(t) + Ak2 ∗ Ca(t)2 + Ak3 ∗Glu(t))xxx(t)
(83)

where columns of Vk span the k-dimensional subspace obtained from POD,N = Um(P TUm)−1

where Um and P are calculated during DEIM and Fm hasm rows extracted from it by P T .
This allowed the precomputation of the reduced k × k square matrices Ak0 = Vk

TA0Vk,
Ak1 = Vk

TA1Vk, Ak2 = Vk
TA2V , Ak3 = Vk

TA3Vk and the k × r matrix VkTB = Bk, so
that much of the computational load in the simulation phase was distributed to the offline
stage. The only dependency of the system on the original dimension n was then the input
to the nonlinear term Vkxxxk and the reduced form allowed testing of different values of k
and m effortlessly.

The time-varying variables depicting external stimulus to the system Ca and Glu were
implemented as sine wave signals that had amplitudes in the physiological range. Stimu-
lus was applied during time t = [5, 10] whereas otherwise it was zero, so that

u(t) =

A
2

+ A
2

sin(−π ∗ t(n)), 5 ≤ t ≤ 10

0, otherwise
, (84)

where u(t) is the output amplitude at time t and A is the desired physiologically realistic
maximum stimulus amplitude.

40

4. RESULTS

This chapter details how the effectiveness of model reduction was evaluated and what
were the results of model reduction for the selected case study. First, the expected results
are compared to empirical findings. Afterwards, several variations of the reduction and
their results are presented. The code used for producing the results presented in this
chapter is available in Appendix A.2.

4.1 Finding the Optimal Dimensions

To predict the successfulness of the reduction in advance the SVD of the solutions at each
time step (POD SVs) and the SVD of the values of the nonlinear term (DEIM SVs) were
calculated by simulating the system for t = [0, 10000] seconds with the aforementioned
stimuli. A constant snapshot interval of 5 was used, meaning that every fifth value of the
solutions and nonlinear term values was included in the calculation of the SVD. Figure 4.1
shows the singular values obtained from SVD for both POD (on the left) and DEIM
(right). The singular values are ordered and plotted on a base 10 logarithmic scale to
better illustrate their behavior, since the difference between the largest and smallest value
was orders of magnitude. Recall that an exponential decay on a linear scale implies that
the system is possibly suitable for SVD based reduction methods. Here both POD and
DEIM SVs were found to exhibit this radical decay, with the DEIM scale indicating 5
to 13 modes (dimensions) and the POD scale 4 to 10 modes as a sufficient selection to
capture most of the dynamics of the system.

In order to compare the original model versus POD+DEIM reduced models the simu-
lation speed and error of several subspace dimensions were measured. The original and
reduced ordinary differential equation systems were simulated in Matlab for time span
t = [0, 10000] using the variable time step ODE15S solver for stiff differential equa-
tions. For each POD dimension k = 2 : 2 : 40 (Matlab notation), DEIM dimension
m = 5 : 5 : 30 reduced models were calculated. For each combination, 20 simula-
tions were performed and their average computation times and system solutions at each
time step were stored. Before calculating the mean of the solutions from several simula-
tion executions, the results obtained from ODE15S had to be interpolated into matching
lengths. Since the solver uses a variable time step, the number and location of time steps
the solution is evaluated at is not constant. The Matlab function DEVAL was employed
for interpolation into time points t = 0 : 10000. Additionally, before the solutions of the

4. Results 41

Figure 4.1: Decay of the singular values of solution snapshots of the system (left) and values of
the nonlinear term (right). The y-axis uses a base 10 logarithmic scale to indicate the magnitude
of each value on the x-axis.

reduced model were interpolated, they were transformed back into the original dimension
of the system by Ỹ = VkYreduced, where Yreduced is the matrix of solutions obtained from
the solver and columns of Vk span the subspace to which the model was projected. By
doing this the approximations of all system variables given by the reduced model could
be compared to the solutions calculated from the full dimensional model.

Figure 4.2 shows the root mean square (RMS) error between the full dimension model
and different reduced models averaged from 20 simulations of each POD+DEIM combi-
nation. The y-axis contains the error values on a logarithmic scale, while x-axis indicates
the number of POD dimensions. Each line in the plot corresponds to a DEIM dimension.
For example the blue line with the highest error values has been calculated for all POD
dimensions while DEIM dimension was locked to five. RMS error was calculated by

eRMS =

√√√√1

k

k∑
n=1

(Y − Ỹ)2 (85)

where Y is the interpolated matrix of solutions of the original system and k is the number
of elements in the matrices. The approximation yielded by the reduced model is sub-
tracted from the original solutions and the values in the difference matrix are squared.
The mean is then calculated by squaring and summing the elements and dividing by the
number of elements. Finally, the square root of this value is taken to display the error. It
should be emphasised that this calculation is only possible after the simulation results of
the reduced model are transformed back into the original dimension and interpolated to

4. Results 42

Figure 4.2: Root mean square error of the solutions at each time step. X-axis shows POD dimen-
sion and y-axis the error on logarithmic scale. Each distinctly colored plot corresponds to different
dimensions used in DEIM.

matching size, otherwise the reduced model describes incomparable system and addition-
ally the dimensions of the matrices will not agree.

From Figure 4.2 it is seen that regardless of the DEIM mode, or the nonlinear di-
mensionality, the error decays rapidly until POD dimension 15 is reached. This suggests
that more than 15 POD dimensions is not beneficial, since the accuracy will not improve
with further dimensions. Until 15 POD dimensions, the error diminishes exponentially.
The slight increase in error between 25 and 30 POD modes is inconsistent with the ex-
pected behavior, and suggests that these dimensions introduce something to the system
that increases numerical inaccuracy of the employed solver. This could be stiffness that
is resolved again when more equations are added. Depending on the application, as little
as five to ten dimensions could be sufficient for simulating this model while keeping the
error tolerable. Moreover the RMS error is seen to not depend radically on the DEIM
dimension. Increasing the DEIM modes from 5 to 10 reduces the error if the POD mode
is already over 15. This suggests that the linear part of the model that is reduced with
POD is dominant in terms of approximation error and that the interpolation approach to
reducing the nonlinear complixity is effective.

Figure 4.3 displays the computational advantage gained from the reduced model in
terms of simulation speed. The tests were performed on a Windows 7 desktop PC with
Intel Core i5-4690K processor clocked at 3.50GHz and 8GB memory. Simulation times
were obtained from Matlab using the TIC and TOC functions to record the time to execute
ODE15S. In the figure, the simulation time of the original full dimension model is plotted

4. Results 43

Figure 4.3: Mean simulation times of 20 executions of each POD+DEIM reduced model compared
to the original model, plotted as a straight red line. Y-axis shows the simulation time in seconds,
and x-axis shows the POD dimension. Each colored plot corresponds to a DEIM dimension.
Simulation time interval was t = [0, 10000].

as a straight red line. This simulation duration for solving the original system for time
interval t = 0 : 10000 averaged to 0.23 seconds for 20 simulations. From Figure 4.3
it is seen that the simulation time is approximately halved by using a 20 DEIM modes,
which also corresponds to roughly halving the dimension of the nonlinear term. Each
time five dimensions are removed, the simulation speed is increased by between 0.01 and
0.02 seconds, starting from 40 DEIM modes. The simulation times seem to depend on
POD reduction only when less than 15 modes are chosen. In summary, this suggests that
for this specific model, the nonlinear term is largest computational burden, since reducing
it has the largest effect on simulation times. However, if error is not of concern, the
simulation can be made very fast by using less than 5 POD modes.

4.2 Analysis of the Dynamics of the Reduced Model

With the information obtained from Figure 4.2 and Figure 4.3 a reduced model was con-
structed and the resulting approximations of solutions were compared to the solutions
calculated from the original model. The POD and DEIM modes were chosen so that
the error was kept reasonable while simulation time would be maximally reduced. By
reading Figure 4.2 it is seen that after ten POD modes, the approximation error does not
significantly decrease, meaning that 10 POD modes were required to keep the error in
reasonable bounds. Moreover, since at ten POD modes the error does not seem to depend

4. Results 44

significantly on the number of DEIM modes, the number of dimensions for the DEIM
reduced nonlinear term was chosen to be five. Judging from Figure 4.3 the simulation
time for this reduced model should be approximately 0.075 seconds if the previous time
span is maintained, which was confirmed to be true by performing the simulation with
these dimensions.

Figure 4.4 displays how the dynamics of the output species given by the reduced order
model (red line) compared to the original model (blue line) in the first 5000 seconds. Here
y-axis shows the concentration of each substance and x-axis the time. Analyzing the time-
series in this format is important, for the absolute error measured earlier does not take into
account how the actual behavior of the model is affected by dimension reduction. In the
context of neural models, it is important that the dynamics are preserved. For example
information transmission via calsium signaling between astrocytes and neurons is known
to be amplitude and frequency modulated, so even a slight defect might cause the higher
level behavior of the model to change. However, different applications require different
error tolerances. With this in mind, it is seen from Figure 4.4 that all the approximated
outputs of the reduced model behave very similarly to the original model. In the beginning
at t = 5 the reaction to the external stimulus is similar in both models while also the
recovery that begins at t = 10 adheres to the same dynamics. The notable exception
here is DAGpost, which is seen to exhibit slight unnecessary oscillations, although the
oscillation amplitude is very small. Interestingly, if the chosen POD mode is increased
to 15 while maintaining DEIM mode 5, these deviations from the original model are no
longer observed.

An interesting observation with regards to the nonlinear equations chosen by DEIM
for approximating the entire system. As there were 5 DEIM modes, 5 indices mapping
to equations were obtained in a step-wise manner. The output was x2, x25, x34, x12, x22,
which correpond to the equations of biological processes of external calcium, postsynap-
tic Gabg, inositol trisphosphate (IP3) degradation, Ca phosphatidylinositol PLC complex
(CA-PIP-PLC) and DAG diacylglycerol kinase complex (DAG-DAGK). It is worth not-
ing that these selections are specific to the stimulus used in creating the original results
as well as to the length of the simulation. To elaborate on the result, for the present simu-
lation these five equations provide the best approximation of all the original 44 equations
when their output is projected onto the subspace spanned by columns of Uk.

Although the approximation with 10 POD modes and 5 DEIM modes was not perfect,
another interesting question is does the long time behavior of the reduced system change
significantly. For example a reasonable concern would be if the unnecessary oscillations
continue to gain amplitude with time. This was studied by using an extended simulation
time of t = 5 ∗ 105 seconds. Figure 4.5 illustrates the error between the original and
reduced order model at every ten time points with this longer simulation time. It can be
interpreted that as time passes, the approximated solution differs increasingly from the

4. Results 45

Figure 4.4: Time series of the dynamics of the biologically interesting output variables. Five
species were tracked and their behavior plotted as a function of time. Y-axis displays the concen-
tration of each ion/molecule. Blue line is the original model, and red is the approximation from
the reduced order model with 10 POD and 5 DEIM modes.

original one, which suggests that whereas the original model reaches an equilibrium, the
reduced one does not. Moreover, there is no reason to expect the solution to improve even
with time. In the declared time frame, Capost performs the worst, with absolute error
reaching over two thousand units. Given the initial calcium concentration of 2000µM ,
this error is definitely intolerable. Although less radical in the other output species, the
approximations are not satisfying. However, increasing the accuracy of the reduced model
by employing more dimensions in POD, specifically 30 while keeping DEIM at 5, was the
lowest dimension combination that produced more tolerable but still not perfect results
in this time frame, while still radically reducing the simulation speed as estimated in
Figure 4.3. (Simulation times between POD 10 and POD 30 were 0.0900 vs 0.0920, the
increase corresponds to predicted times). An additional observation made during even
longer simulations of the reduced model with t > 5 ∗ 105 was that the solver could not
meet error tolerances during integration, unless both POD and DEIM dimensions were
increased along with the simulation time, which practically nullified the effectiveness
of the reduction altogether. Moreover, there were no problems with any time frames
simulating the original model.

Possible reasons for the erroneous approximation are the numerical accuracy of the
solver that was used, inexact interpolation or insufficient capability of the reduced model
to imitate the original model. The final point is the most probable reason given that in the
above example, the POD and DEIM approximations were trained on only 10000 seconds.

4. Results 46

Figure 4.5: Absolute error between the reduced model (POD 10 DEIM 5) and the original model
for each species at every tenth second, when the models were simulated for 5 ∗ 105 seconds.

The reduced model performs well when relatively many POD modes are used or when the
reduced model is only used for prediction in the time span it was constructed in. Given
the external stimulus in the early phase of simulation and a shorter time span of interest,
it is logical that especially with only a few modes SVD emphasizes the dynamics caused
by the stimuli.

In order to test a hypothesis that a low number of POD modes would be able to perform
a near-correct approximation for a very long time span if the snapshots were also taken
from a prolonged simulation, new reduced models were generated. (An additional reason
is that the reduced model trained with 10k seconds was not numerically stable for long
simulations even with high dimensions.) However, this time the snapshots were taken in
the time span t = [0, 5 ∗ 109] while persevering the original stimuli. The snapshot interval
was kept at 5 and the reduced model was constructed first with ten POD and five DEIM
modes and afterwards with 30 POD and 10 DEIM modes.

The results of the longer simulations are shown in Figure 4.6. On the left side are
the results with 10 POD and 5 DEIM modes, for which the DEIM interpolation indices
were the same as in the shorter simulation. It seems that in this simulation all species
in the original and reduced models now reach a steady state, although the approximation
is not perfect. Especially in the beginning of the simulation the reduced model exhibits
different dynamics than the original model. This is probably directly related to the length
of the training time interval, which causes SVD to emphasize the equilibrium behavior.
Moreover, Gabgpost and PLCpost never seem to recover from the initial stimulus and thus

4. Results 47

Figure 4.6: Behavior the reduced order model in a long duration simulation using ten POD and
five DEIM modes on the left while 30 POD and 10 DEIM modes are used on the right hand side
plot. Blue line is the original model and red is the reduced model for each output variable. The
simulation time was 5 ∗ 109 seconds.

reach a different steady state than the original model, which is seen as a constant deviation
of the blue plot from the red plot towards the end of the simulation in Figure 4.6 on the
left. In the steady state, the highest error is seen at Gabgpost. The reduced model predicts
it and PLCpost would both reach zero, which is not the case in the original model. For
both molecules, the size of the error is roughly 100% of the true concentration, which
would in most applications be devastating. However, a positive aspect is that the reduced
model keeps the concentrations in physiologically meaningful bounds above or at zero.
Additionally, the 10 POD 5 DEIM reduced model was three times faster to simulate than
the full model.

Finally, a very good approximation was obtained with 30 POD and 10 DEIM modes,
which is seen in Figure 4.6 on the right, while almost maintaining a simulation time of
one third of the original model. Of the ten DEIM indices that the algorithm chose for the
reduced order model, five first were identical to those chosen for the shorter simulation.
The five additional ones were equations x29, x21, x40, x37, and x14. These correspond to
the equations of the biological species of postsynaptic G-protein with α subunit guanosine
triphosphate PLC complex (Ga-GTP-PLC), DAG, phosphatidylinositol 4,5-bisphosphate
(PIP2), metabolic glutamate receptor activation (mGlur) and Ca-PLC complex, respec-
tively. The reduced model has gained more pronounced unnecessary oscillations, al-
though their amplitude is extremely low. Moreover, the steady state concentrations are

4. Results 48

physiologically very close to the original and in an acceptable range considering the in-
herent errors a deterministic model such as the one studied here always has. Whether
the errors seen here would affect the behavior of a multi-scale model, such as learning,
remains a question for another study.

Figure 4.7: Absolute error (left) and relative error (right) between the 30 POD and 10 DEIM
modes reduced model and the original model at every 106 seconds when simulated for 5 ∗ 109
seconds.

The magnitude of the errors with a long simulation time was further studied using the
absolute and relative errors between the original model and the 30 POD 10 DEIM reduced
model. After recovering the outputs from the reduced model by matrix multiplication and
interpolation as described earlier, the absolute error was calculated as

eabsolute = |yreduced − yoriginal| (86)

and the relative error as
erelative =

|yreduced − yoriginal|
ε+ yoriginal

, (87)

where ε was added to the denominator to prevent division by zero, as zero concentrations
are abundant in the original model. The errors are visualized in Figure 4.7. As already
hinted by Figure 4.6, the absolute errors are small, with the size being less than 10−6 for

4. Results 49

all species except calcium, where the range is approximately 10−2. The relative errors for
PLC andGabg confirm that the observed variation is extremely small. The relative errors
forAG, Ca andDAG on the other hand first display well the unnecessary oscillations the
reduced model makes and second are in a completely different magnitude than the two
other output species, going as high as 108. However, the magnitude can be explained by
the epsilon used in the denominator, since the true concentration reaches zero at all points
where a high error is seen, except the very beginning of the simulation where stimulus
is applied. Moreover, the relative error proves that these three species actually correctly
predict the steady state concentration, eventually, seen as the error degrading to zero.

50

5. DISCUSSION

Employing a mathematical description of the modeled system is an advantageous method
in neuroscience. For example, most ordinary differential equation systems can be written
in the control system formalism presented in this thesis, where inputs and state variables
interact to produce an output. Describing the system in such a standardized manner is
insightful from the perspective of the modeler in itself while also enhancing collaboration
due to a common representation and allowing for additional mathematical analysis, such
as optimal control studies or perturbation analysis. An important fact for model reduction
is that the state space representation naturally leads to the problem of finding the minimal
combination of state variables and inputs that produce the desired dynamics or outputs of
the system. Such methods are extremely useful for connecting reduced small scale models
via the inputs and outputs to form optimally performing large scale models [1]. Indeed
methods exist that strive to preserve the input-output behavior, with balancing being the
most studied one [45].

Although the need for simplifying models is often recognized in biological sciences,
the methods for pursuing model reduction remain ad hoc and not enough attention is paid
to mathematical properties of the simplified models. This trend is supported by recent
model reduction publications in biosciences that strive to provide a reproducible method-
ology for the simplification process [26, 28, 29, 97, 98]. The consensus is that if the sim-
ulation results look like the original, the simplification was successful. However, since
this approach is not concerned with actually reproducing the properties of the original
system with a reduced order model, it has serious drawbacks when the models are applied
in different time scales or as parts of larger simulations if the generalization capability
of the model is not carefully confirmed. Model reduction has been studied extensively
in applied mathematics which has, especially in the previous ten years, led to reduction
methods that are also applicable to the highly nonlinear models arising from molecular
chemistry and complex neural circuits [48].

Reduced order models have benefits in addition to less expensive computation and
analysis. A good reduced order model increases the usage and thus the lifespan of a
given model, since the reduced version has the possibility to be usable in a wider array
of conditions such as real time applications, brain-inspired machine learning algorithms
or brain-like computational hardware [50, 99, 100]. This allows for the model to evolve
into a better one, since it will be expanded and modified to fit specific use cases and have

5. Discussion 51

inherent errors corrected. Moreover, reduced order modeling leads to a better coverage
of already modeled systems, which in turn promotes cost savings and increases available
time for other research tasks as existing models can be recycled. Additionally, reduced
order models will make more detailed models possible, as even more information can be
included to large scale network studies [1]. These motivating factors should contribute to
the reduction decision equally with computational savings.

5.1 Model Reduction Methods

Simplification is possible by eliminating reactions and variables from the system and thus
obtaining a new, smaller model [26]. This occasionally leads to great results and is also
the approach still taken in the field of neuroscience today (see e.g. [13]). However,
the preferred model reduction approach would be one that does not lose details of any
species in the system as a result of the dimensionality reduction. This is precisely where
mathematical model order reduction methods such as those based on subspace projection
are at their strongest, since the entire original system is approximated by a smaller di-
mensional one in the simulation and analysis phase. Additionally, the original inputs and
outputs of the system are preserved, giving mathematical methods another advantage over
elimination approaches.

Linearization as a simplification method was briefly mentioned in this thesis. It is a
noteworthy method when an approximation that is valid in a very small parameter range
is acceptable. An additional benefit is that the linear result can be further reduced with
mathematical methods. However, locality of the result is the biggest drawback of lin-
earizing models because the result lacks generalization and this leads to loss of nonlinear
dynamics outside the linearization point [21].

In [101], a nonlinear model was divided into a subsystem and an environment, fol-
lowed by linearization and reduction of the environment model with balanced truncation.
This way the more interesting subsystem of a biochemical pathway model was modeled
accurately while the reduced environment part provided computational efficiency. It is an
interesting approach which should be considered if reducing the entire model produces er-
roneous results yet additional complexity can be tolerated. Moreover, large models might
contain linear subsystems even without linearization and this could be exploited in model
reduction.

Balanced Truncation (BT) [45] is a model order reduction method that is greatly rec-
ommended for linear models when optimal control of the reduced system is one of the
primary goals of the reduction. In the context of neuroscience the greatest benefit of BT
is arguably the insight it gives into the behavior of the system controllability and ob-
servability wise, since much could be learned by studying the controllability of neurons
and neuronal networks [102]. While a great benefit of BT is the preservation of stability
in the reduced order model, the stability of models in neuroscience remains a topic that

5. Discussion 52

has received little concern, which possibly negatively affects the interest towards BT in
neuroscience. Another concern is the efficiency and numerical stability of solving the
grammians through Lyapunov equations for very large systems. Although approximative
methods can be employed if numerical or performance restrictions occur, the quality of
the reduced order model will likely suffer as a result [56].

Balanced Truncation has been applied to a model of a dendrite of a neuron with a com-
bination of Hodgkin-Huxley, Connor-Stevens and Hoffman kinetics and 5000 compart-
ments, which totalled at 50000 ordinary differential equations [103]. Each compartment
modeled the membrane potential dynamics with nonlinear equations, which meant that
linearization at resting potential was performed before BT. The study performed a param-
eter sweep analysis with the reduced order model and achieved comparable results to the
full model while reducing the computation time to one fourth of the original.

Moment Matching (MM) [65, 66] methods rely on the Padé approximant theory for
finding reduced order models and in this thesis the Padé via Lanczos algorithm [67]
for MM was studied. While their computation is efficient, applicability of MM methods
to different types of models, such as nonlinear models, is the most limited out of the
methods presented in this thesis. The biggest difficulty with MM methods is finding a
suitable expansion point, which often requires manual selection [50]. Although using
many points relieves the need for a single point to be perfectly chosen, the efficacy of the
reduced order model also suffers as a result [9].

Compared to BT, the MM reduced order model has weaker properties with regards to
controllability and stability, but their computation is likely to be comparatively efficient
and the resulting reduced order models achieve very low dimensions. Due to the locality
of MM methods, they generally produce a weaker approximation of the original model
compared to other methods, especially if evaluated far from the expansion point [50].
On the other hand, the calculation becomes more expensive if additional accuracy and
better numerical qualities are desired, such as in the case of achieving stability of the
reduced order model through a restarting scheme [50]. Moreover, the choice of algorithm
plays a large role in determining the quality of the reduction. For example, Lanczos
methods might not be able to reach the desired order of the model before unintended
termination [67], while Arnoldi methods do not handle MIMO models as well [74] and
do not generally manage to match as many moments as Lanczos methods [69].

An interesting thought is the use of MM methods for reducing spiking neuron mod-
els, since the transfer function has been shown to be effective in modeling neurons be-
fore [104]. Spiking neuron models are characterized by a certain rate of spiking, where
the voltage of the cell membrane rapidly raises and falls when some stimulus is applied
to the system [5]. The spiking is known as limit cycle dynamics. Moreover, neuroscience
has an abundance of simple spiking neuron models of the integrate-and-fire type, but
none of the simple models are able to model the exact waveform of the action potential

5. Discussion 53

responsible for a spike accurately. As the strength of MM methods is in approximating
the dynamics in a narrow frequency range, it makes sense to combine the two. Especially
in network simulations there is a need for a variety of different neurons, which could be
generated by using a variety of different expansion points [8].

Proper Orthogonal Decomposition (POD) [83] is a model order reduction method char-
acterized by applicability to different types of systems, which include time-dependent and
nonlinear systems. POD takes advantage of the observed dynamics of the [58] system in
model order reduction by the method of snapshots [58]. However, it must be noted that
the method achieves true independency of the original dimension only for linear systems
and might even be counter productive for heavily nonlinear systems [89]. POD does not
guarantee stability of the reduced order model and requires the full original system to be
simulated before order reduction. Although the method might seem less mathematically
rigorous compared to BT and MM, calculating the basis for subspace projection via this
data driven approach is less likely encounter numerical instability, making POD a very
accessible method altogether [105].

Discrete Empirical Interpolation Method has seen applications in reducing models of
neuroscience, probably because it is one of the few suitable methods for reducing large
nonlinear systems. However, the number of studies employing DEIM in neuroscience is
surprisingly low given the potential of the method, and several more studies are needed to
validate and popularize use of DEIM. A contributing fact to the non-utilization of mathe-
matical model reduction methods might be a lack of mathematical training in biosciences.
In neuroscience, DEIM has been used for reducing the dimension of the partial differen-
tial equation form of the FitzHugh-Nagumo model and the theoretical speed advantage
and approximation error have been promising [89]. The time-varying form of the same
equation has been reduced with a DEIM variation in [25]. In these two studies, the aim is
proving the succesful order reduction rather than studying the results from a neuroscience
point of view. Furthermore, spiking neurons modeled by the cable equation with sim-
plified and realistic morphologies including several compartments and stimulation points
have been reduced [106]. The reduced order models achieved six to thirty times faster
simulation speeds with varying error rates. Additionally, a detailed compartmental neuron
model with multiple dendritic branches and Hodgkin-Huxley kinetics has been reduced
with DEIM [107]. In that study it is concluded that a detailed model of 879 compartments
can be accurately reduced to only eight compartments. Very recently a non-negative vari-
ation of DEIM (NNDEIM) was used in reducing a neuronal network model constructed
from cables with HH dynamics where a 20 fold speedup was obtained with slight approx-
imation error [95]. All studies employed discretized partial differential equations in order
to obtain the ordinary differential equation systems for model reduction.

Proper Orthogonal Decomposition and Discrete Empirical Interpolation Method are
the only methods presented in this thesis that reduce the order of the model based on

5. Discussion 54

the observed dynamics of the system by the method of snapshots [58]. The sampling
approach minimizes an error between the snapshots and the trajectory of the original so-
lution vector, instead of focusing on input-output characteristics as heavily as BT and
MM. Additionally, this method of snapshots provides a possibility to tune the reduced
order model for different stimuli, since the snapshots contain information of how the sys-
tem reacts to excitation, or to the external inputs of the system [48]. It becomes possible
to create very specific, very low order reduced model for a small number of stimuli in
this way, which was done in this thesis. Moreover, snapshots of simulations with differ-
ent excitation can be combined together in order to produce a reduced order model with
considerable generalization capability so that it is accurate for an array of stimuli.

5.2 Approximation Error in Reduced Models

Obtaining an estimate of the error introduced in the reduction is an essential part of the
reduction process. Consequently, established model reduction methods have analytical
apriori error measures developed for controlling the result of the reduction. As an exam-
ple, the accuracy of SVD based methods, such as POD and DEIM, can be estimated from
the behavior of singular values calculated during the reduction process [89, 96]. Although
error estimates are available for each method, the estimates are not necessarily compara-
ble between methods. As such, they are best used for tuning the model under study at
the time, rather than for deciding which reduction method to use. Additionally, error can
reference multiple measurable quantities. For example, the sensitivity of the reduced sys-
tem to perturbations may have changed, which in some applications can be considered
reduction error. It is again the responsibility of the modeler to consider the importance of
such factors and their reporting.

For all methods it is possible to evaluate the error from the result of the reduction com-
pared to original time-series data of the state variables or outputs, or both. Additionally,
the error calculation can include only some selected species of the model. Determining
the size of an acceptable distance-based error is always dependent on the application. In
very sensitive systems, such as the nervous system or the brain, even minor errors might
lead to differences in observed behavior on a larger scale. On the other hand, there are
also systems that are resistant to minor perturbations. As such, a larger error does not
necessarily mean a worse reduction result, meaning that the context and future applica-
tion of the reduced order model are important factors when evaluating error values. In
this regard, a first consideration is that mathematical models of natural systems inherently
contain inaccurate assumptions and measurement flaws, which makes chasing zero error
a fruitless endeavour. Second, distance based error might be large for some species of the
model and small for others, which is a detail that is hidden by averaged error measures,
and the model could still be usable if the relevant species are approximated well.

5. Discussion 55

5.3 Significance of Results and Future Work

In this thesis, Proper Orthogonal Decomposition and Discrete Empirical Interpolation
Method (POD+DEIM) were applied to reduce a neural plasticity model that is an inte-
gral piece in modeling learning in the mammalian brain. POD+DEIM was chosen since
it is directly applicable to nonlinear models, unlike most of the other methods which
would require linearization. Additionally, the method scales to very large systems, which
again is a property not possessed by all the existing methods. Further still, it allows
for a purely mathematical approach, eliminating the need of converting the model to a
simulator-specific format or hand-picking variables and equations for removal. Novel
results were obtained since the previous studies employing DEIM have targeted models
obtained from discretization of partial differential equations [89, 95, 106, 107], which is
not the case here. Moreover, previously nonlinear systems in neuroscience have been re-
duced with linearization methods. Linearization was not used here, which theoretically
makes the reduced order model more globally accurate. Additionally, this study marks the
first time the dimension of the plasticity model from [3] is reduced. Although the model
itself is rather small with 44 equations, remarkable performance gains were obtained. It
could be hypothesized that larger models, such as those obtained from discretizing partial
differential equations, are more compressible and reducible given the inherent linearities
and correlations, which would lead to even better performance gains percentage wise.

DEIM is especially interesting in the sense that the original functions are employed in
the interpolation, in contrast to projecting to a non-human comprehendable subspace. The
indices picked by DEIM directly show which equations can be used for the best possible
approximation, and from this it can be deduced that they are also the ones most respon-
sible for the nonlinear behavior of the system. This allows the researcher to interpret the
value of each nonlinear function for driving the dynamics of the system.

In the present study, the biological species whose nonlinear equation the DEIM algo-
rithm selected for interpolation with five equations were external calcium, postsynaptic
Gabg, IP3 degradation, calcium-PIP-PLC and DAG-DAGK (see Appendix A.1). The
selection of the interpolation points depends on both the input to the system and the sim-
ulation time. In addition to the results presented in this thesis, it is interesting to note how
the output of the DEIM algorithm changes in the scenario where no external stimuli to the
system is employed. Basically this means that the system finds an equilibrium point with
a set of initial values. Under those circumstances, the five selected species of equations
selected for interpolation were external calcium and IP3 degradation as before, and ad-
ditionally three new species, postsynaptic DAG, Ca-DAG-diacylglycerol lipase complex
and 2AG from equations x21, x4 and x1 respectively (see Appendix A.1).

The greatest challenge with POD+DEIM was found to generalization to time scales
outside of the time scale in which the training data was created. Here the ordinary ver-

5. Discussion 56

sion of POD+DEIM was used, although DEIM has already been developed further so that
the interpolation points change during the simulation. These methods are called Local-
ized DEIM (LDEIM) [94] and Adaptive DEIM (ADEIM) [25] and they strive to provide
greater accuracy while still maintaining a low number of DEIM modes. Moreover, de-
spite the young age of the DEIM method, a variation that keeps the results positive and
maintains stability has been developed, called NNDEIM [95]. The positivity guarantee
is definitely a useful addition to the reduced order model, since in theory, the reduced
order model might introduce errors with negative values, which are usually not mean-
ingful in biological models. An interesting research question would be if these methods
with increased complexity improve the accuracy of the original POD+DEIM while still
maintaining the performance improvements.

Although the results presented in this thesis contained error introduced by the reduc-
tion method, the magnitudes of the deviations were not dramatically high. Additionally,
the dynamics of the original model were not perfectly predicted in very long simulations,
although the steady states after applying stimuli were eventually practically equal. Possi-
ble reasons for the erroneous approximation are the numerical accuracy of the solver that
was used, inexact interpolation or insufficient capability of the reduced order model to
imitate the original model. Even with the current small model used in this study, it was
not possible to perform long time scale simulations with continuous time-varying input
to the system due to performance reasons of the computation hardware. Future studies
are needed to determine the usefulness of reduced order models as parts of increasingly
detailed models, since with the current knowledge it is impossible to predict if the dy-
namics and emergent features of very large models would be altered by the inaccuracies
introduced in the model order reduction process.

When reduced models are included in large network models, it is often important that
they correctly react to many types of different stimuli, and this is made possible by POD
and DEIM especially. To this end, the recently published Localized DEIM looks ex-
tremely promising for maintaining a low number of approximation modes throughout dif-
ferent environments, such as changing excitation [94], given that the inputs were present
in the offline training phase of POD+DEIM. Moreover, the adaptive version ADEIM is
able to react to unanticipated behavior on the online stage of a simulation by efficiently
querying the original system [25]. Further studies are needed to evaluate the performance
of these new methods in delivering reduced order models for extremely heterogeneous
environments and multiscale simulations.

57

6. CONCLUSIONS

Model order reduction is an essential process for improving the scale and quality of future
computational models of the human brain. Although many methods of simplifying exist,
subspace projection methods studied especially in the field of control theory, show most
promise for they can be automatically applied, have adjustable error bounds and scale
to virtually any size of systems. Additionally, they are applicable to nonlinear systems,
either directly or via linearization, which greatly increases their applicability to complex
models in neuroscience.

In this thesis Proper Orthogonal Decomposition and Discrete Empirical Interpolation
Method (POD+DEIM) was applied to a data driven biological model of plasticity in the
brain. Five equations that model important molecules and ions were chosen for special
analysis, since these species have the greatest potential to link the model to a larger system
comprising more areas and features of the brain. This nonlinear system had a sparse linear
part and included a time dependent stimulus.

Model reduction with POD+DEIM was found to significantly reduce the simulation
time. An additional benefit is that the approximation can be tuned by adjusting the POD
and DEIM dimensionality independently. However, the reduced order model did not per-
fectly reproduce the dynamics of the original model in long time scales and the steady
states also had slight deviations from the results of the original model. Whether the ob-
served error is tolerable depends on the final purpose of the model. All in all, subspace
projections methods seem suitable for reducing the dimensionality of signaling pathway
models in neuroscience.

58

REFERENCES

[1] W. Gerstner, H. Sprekeler, and G. Deco. Theory and simulation in neuroscience.
Science, 338, October 2012.

[2] M.L. Linne and T. Jalonen. Astrocyte-neuron interactions: from experimental
research-based models to translational medicine. Progress in Molecular Biology
and Translational Science, 123:191–217, 2014.

[3] B. Kim, SL. Hawes, F. Gillani, LJ. Wallace, and KT. Blackwell. Signaling path-
ways involved in striatal synaptic plasticity are sensitive to temporal pattern and
exhibit spatial specificity. PLoS Comput Biol, 9(3), March 2013.

[4] T. Manninen, K. Hituri, J. Hellgren-Kotaleski, K. Blackwell, and M.L. Linne.
Postsynaptic signal transduction models for long-term potentiation and depression.
Frontiers in Computational Neuroscience, 4(152):1–29, December 2010.

[5] A. Hodgkin and A. Huxley. A quantitave description of membrane current and
its application to conduction and excitation in nerve. Journal of Physiology,
117(4):500–544, August 1952.

[6] U. Bhalla. Multiscale interactions between chemical and electric signaling in ltp
induction, ltp reversal and dendritic excitability. Neural Networks, 24(9):943–949,
November 2011.

[7] G. Einevoll, C. Kayser, N. Logothetis, and S. Panzeri. Modelling and analysis of
local field potentials for studying the function of cortical circuits. Nature Reviews
Neuroscience, 14(11), November 2013.

[8] H. Markram, E. Mulle, S. Ramaswamy, M. W. Reimann, M. Abdellah,
C. Aguado Sanchez, A. Ailamaki, L. Alonso-Nanclares, N. Antille, S. Arsever,
G Antoine Atenekeng Kahou, T. K. Berger, A. Bilgili, N. Buncic, A. Chalimourda,
G. Chindemi, J-D. Courcol, F. Delalondre, V Delattre, S Druckmann, R. Dumusc,
J. Dynes, S. Eilemann, E. Gal, M. Gevaert, J-P. Ghobril, A. Gidon, J. W. Gra-
ham, A. Gupta, V. Haenel, E. Hay, T. Heinis, J. B. Hernando, M. Hines, L. Kanari,
D. Keller, J. Kenyon, G. Khazen, Y. Kim, J. G. King, Z. Kisvarday, P. Kumbhar,
S. Lasserre, J-V. Le Bé, B. R. C. Magalhães, A. Merchán-Pérez, J. Meystre, B. R.
Morrice, J. Muller, A. Muñoz-Céspedes, S. Muralidhar, K. Muthurasa, D. Nach-
baur, T. H. Newton, M. Nolte, A. Ovcharenko, J. Palacios, L. Pastor, R. Perin,
R. Ranjan, I. Riachi, J-R. Rodríguez, J. L. Riquelme, C. Rössert, K Sfyrakis,
Y. Shi, J. C. Shillcock, G. Silberberg, R. Silva, F. Tauheed, M. Telefont, M. Toledo-
Rodriguez, T. Trönkler, W. Van Geit, J. Díaz, R. Walker, Y. Wang, S. M. Zaninetta,

REFERENCES 59

J. DeFelipe, S. L. Hill, I. Segev, and F. Schürmann. Reconstruction and simulation
of neocortical microcircuitry. Cell, 163(2), October 2015.

[9] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale
dynamical systems. Applied Numerical Mathematics, 43(1):9–44, October 2002.

[10] R. FitzHugh. Impulses and physiological states in theoretical models of nerve
membrane. Biophysical Journal, 1(6):445–466, July 1961.

[11] J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line sim-
ulating nerve axon. Proceedings of the IRE, 50:2061–2070, 1962.

[12] J. Hindmarsh and R. Rose. A model of neuronal bursting using three coupled first
order differential equations. Proceedings of the Royal Society, Series B: Biological
Sciences, 221(1222):87–210, March 1984.

[13] C. Diekman, C. Fall, J. Lechleiter, and D. Terman. Modeling the neuroprotective
role of enhanced astrocyte mitochondrial metabolism during stroke. Biophysical
Journal, 104(8):1635–1838, April 2013.

[14] T. Kepler, L. Abbot, and E. Marder. Reduction of conductance-based neuron mod-
els. Biological Cybernetics, 55(5):381–387, 1992.

[15] B. Woo, D. Shin, D. Yang, and J. Choi. Reduced model and simulation of neuron
with passive dendritic cable: an eigenfunction expansion approach. Journal of
Computational Neuroscience, 19(3):379–397, December 2005.

[16] M. Sorensen and S. DeWeerth. An algorithmic method for reducing conductance-
based neuron models. Biological Cybernetics, 95(2):185–192, August 2006.

[17] D. Shin, D. Yang, and J. Choi. On the use of pseudo-spectral method in model
reduction and simulation of active dendrites. Computers in Biology and Medicine,
39(4):340–345, April 2009.

[18] K. Ogata. Modern Control Engineering. Prentice Hall, 5 edition, 2008.

[19] J. Stewart. Calculus Early Transcendentals. Thomson Brooks/Cole, 6 edition,
2008.

[20] D. Jordan and P. Smith. Nonlinear Ordinary Differential Equations. Oxford Uni-
versity Press, 4 edition, 2007.

[21] M. Rewieński and J. White. A trajectory piecewise-linear approach to model order
reduction and fast simulation of nonlinear circuits and micromachined devices.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
22(2), February 2003.

REFERENCES 60

[22] W. Rugh. Nonlinear System Theory. The John Hopkins University Press, Balti-
more, 1 edition, 1981.

[23] M. Condon and R. Ivanov. Krylov subspaces from bilinear representations of non-
linear systems. COMPEL - The international journal for computation and mathe-
matics in electrical and electronic engineering, 26(2):399–406, February 2007.

[24] Y. Lin, L. Bao, and Y. Wei. Order reduction of bilinear MIMO dynamical systems
using new block Krylov subspaces. Computers and Mathematics with Applica-
tions, 58(6):1093–1102, October 2009.

[25] B. Peherstorfer and K. Willcox. Online adaptive model reduction for nonlinear sys-
tems via low-rank updates. SIAM Journal of Scientific Computing, 37(4), August
2015.

[26] E. Kutumova, A. Zinovyev, R. Sharipov, and F. Kolpakov. Model composition
through model reduction: a combined model of CD95 and NF-κB signaling path-
ways. BMC Systems Biology, 13, July 2013.

[27] J. Whiteley. Model reduction using a posteriori analysis. Mathematical Bio-
sciences, 225(1):44–52, May 2010.

[28] O Radulescu, A. N. Gorban, A. Zinovyev, and V. Noel. Reduction of dynamical
biochemical reactions networks in computational biology. Frontiers in Genetics,
131(3), July 2012.

[29] Westm S., L. Bridge, M. White, P. Paszek, and V. Biktashev. A method of ’speed
coefficients’ for biochemical model reduction applied to the NF-κB system. Jour-
nal of Mathematical Biology, 70:591–620, March 2015.

[30] D. Lebiedz, D. Skanda, and M. Fein. Automatic Complexity Analysis and Model
Reduction of Nonlinear Biochemical Systems. In M. Heiner and A. M. Uhrma-
cher, editors, Computational Methods in Systems Biology, pages 123–140. Springer
Berlin Heidelberg, October 2008.

[31] A. Gorban and I. Karlin. Method of invariant manifold for chemical kinetics.
Chemical Engineering Science, 58(21), November 2003.

[32] I. Surovtsova, N. Simus, K. Hübner, S. Sahle, and U. Kummer. Simplification of
biochemical models: a general approach based on the analysis of the impact of
individual species and reactions on the systems dynamics. BMC Systems Biology,
6(1), March 2012.

REFERENCES 61

[33] Y. Tang, J. Stephenson, and G. Othmer. Simplification and analysis of models of
calcium dynamics based on IP3-sensitive calcium channel kinetics. Biophysical
Journal, 70(1), January 1996.

[34] J. Borghans and L. Segel. Extending the quasi steady state approximation by
changing variables. Bulletin of Mathematical Biology, 58(1):43–63, 1996.

[35] E. H. Flach and S. Schnell. Use and abuse of the quasi-steady-state approximation.
Systems biology, 153(4), July 2006.

[36] S. Schnell and P. K. Maini. A century of enzyme kinetics. Reliability of the KM

and vmax estimates. Comment. Journal of Theoretical Biology, 8:169–187, 2003.

[37] I. Stoleriu, F. A. Davidson, and J. L. Liu. Effects of periodic input on the quasi-
steady state assumptions for enzyme-catalysed reactions. Journal of Mathematical
Biology, 50:115–132, 2005.

[38] L. Michaelis and M.L. Menten. Die Kinetik der Invertinwirkung. Biochemische
Zeitschrift, 49:333–369, 1913.

[39] A. Pettinen, T. Aho, Smolander O.P., T. Manninen, A. Saarinen, K.L. Taattola,
O. Yli-Harja, and M.L. Linne. Simulation tools for biochemical networks: evalua-
tion of performance and usability. Bioinformatics, 21(3):357–363, February 2005.

[40] R. Alves, F. Antunes, and A. Salvador. Tools for kinetic modeling of biochemical
networks. Nature Biotechnology, 24(10):667–672, October 2006.

[41] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A.P. Arkin,
B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D.
Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J.-H.
Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer,
N. Le Novère, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness,
Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro,
T. S. Shimizu, H. D. Spence, J. Stelling, K. Takashi, M. Tomita, J. Wagner, and
J. Wang. The Systems Biology Markup Language (SBML): A medium for repre-
sentation and exhange of biochemical network models. Bioinformatics, 19:524–
531, October 2003.

[42] L. Calzone, F. Fages, and S. Soliman. BIOCHAM - an environment for model-
ing biological systems and formalizing experimental knowledge. Bioinformatics,
22(14):1805–1807, 2006.

REFERENCES 62

[43] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu,
P. Mendes, and U. Kummer. COPASI - a COmplex PAthway SImulator. Bioinfor-
matics, 22(24):3067–3074, December 2006.

[44] A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, and C. Chaouiya. Logical
modelling of regulatory networks with GINsim 2.3. Biosystems, 97(2):134–139,
August 2009.

[45] B. Moore. Principal component analysis in linear systems: Controllability, observ-
ability, and model reduction. IEEE Transactions on Automatic Control, 26(1):17–
32, February 1981.

[46] K. Glover. All optimal Hankel-norm approximations of linear multivariate systems
and their l∞-error bounds. International Journal of Control, 39(6):1115–1193,
1984.

[47] R. Kalman. Contributions to the theory of optimal control. Boletín de la Sociedad
Matemática Mexicana, 5:102–119, 1960.

[48] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduc-
tion methods for parametric dynamical systems. Society for Industrial and Applied
Mathematics Review, 57(4):483–531, November 2015.

[49] K. Zhou, G. Salomon, and E. Wu. Balanced realization and model reduction for
unstable systems. International Journal of Robust Nonlinear Control, 9(3):183–
198, March 1999.

[50] C Antoulas, D. Sorensen, and S. Gugercin. A survey of model reduction methods
for large-scale systems. Contemporary Mathematics, 280:193–220, 2001.

[51] A. Laub, M. Heath, C. Paige, and R. Ward. Computation of system balancing
transformations and other applications of simultaneous diagonalization algorithms.
IEEE Transactions on Automatic Control, 32(2):115 – 122, February 1987.

[52] K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal
decomposition. The American Institute of Aeronautics and Astronautics Journal,
40(11):2323–2330, November 2002.

[53] N. Higham. Computing a nearest symmetric positive semidefinite matrix. Linear
Algebra and its Applications, 103:103–118, May 1988.

[54] P. Opdenacker and E. Jonckheere. Lqg balancing and reduced lqg compensation of
symmetric passive systems. International Journal of Control, 41(1), 1985.

REFERENCES 63

[55] L. Pernebo and L. Silverman. Model reduction via balanced state space represen-
tations. IEEE Transactions on Automatic Control, 27(2):382–387, April 1982.

[56] P. Benner and J. Saak. Numerical solution of large and sparse continuous time
algebraic matrix riccati and lyapunov equations A state of the art survey. GAMM
Mitteilungen, 36(1):32–52, 2013.

[57] S. Shokoohi, L. Silverman, and P. Van Dooren. Linear time-variable systems: Bal-
ancing and model reduction. IEEE Transactions on Automatic Control, 28(8):810–
822, August 1983.

[58] L. Sirovich. Turbulence and the dynamics of coherent structures. I-III. Quarterly
of Applied Mathematics, 45(3):561–590, October 1987.

[59] Z. Ma, C. Rowley, and G. Tadmor. Snapshot-based balanced truncation for linear
time-periodic systems. IEEE Transactions on Automatic Control, 55(2):469–473,
January 2010.

[60] T. Stykel and A. Vasilyev. A two-step model reduction approach for mechanical
systems with moving loads. Journal of Computational and Applied Mathematics,
297:85–97, May 2016.

[61] J. Scherpen. Balancing for nonlinear systems. Systems & Control Letters, 21:143–
153, 1993.

[62] J. Bouvrie and B. Hamzi. Model reduction for nonlinear control systems using
kernel subspace methods. CoRR, abs/1108.2903, 2011.

[63] O. Nilsson and A. Rantzer, editors. A novel approach to balanced truncation of
nonlinear systems, August 2009.

[64] I. Dones, S. Skogestad, and H. Preisig. Application of balanced truncation to
nonlinear systems. Industrial & Engineering Chemistry Research, 50(17):10093–
10101, 2011.

[65] H. James, N. Nichols, and R. Phillips. Theory of Servomechanisms, chapter 7.
McGraw-Hill, 1 edition, 1947.

[66] L. Meier. Approximation of linear constant systems. IEEE Transactions on Auto-
matic Control, 12(5):585–588, 1967.

[67] P. Feldmann and R. Freund. Efficient linear circuit analysis by Padé approxima-
tion via the lanczos process. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 14(5):639–649, May 1995.

REFERENCES 64

[68] W. Arnoldi. The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Auarterly of Applied Mathematics, 9(1):17–29, April 1951.

[69] E. Grimme. Krylov Projection Methods for Model Reduction. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, 1997.

[70] L. Pillage and R. Rohrer. Asymptotic Waveform Evaluation for timing analysis.
IEEE Transactions on Computer-Aided Design, 9(4):352–366, April 1990.

[71] C. Lanczos. An iteration method for the solution of the eigenvalue problmen of lin-
ear differential and integral operators. Journal of Research of the National Bureau
of Standards, 45(4):255–282, October 1950.

[72] A. Ruhe. Implementation aspects of band lanczos algorithms for computation of
eigenvalues of large sparse symmetric matrices. Mathematics of Computation,
33(146):680–687, 1979.

[73] R. Craig and A. Hale. Block-Krylov component synthesis method for structural
model reduction. Journal of Guidance, Control and Dynamics, 11(6):562–570,
November 1988.

[74] S. Gugercin. An iterative SVD-Krylov based method for model reduction of large-
scale dynamical systems. Linear Algebra and its Applications, 428(8):1964–1986,
April 2008.

[75] Z. Bai, R. Slone, W. Smith, and Q. Ye. Error bounds for reduced system model
by Padé approximation via the Lanczos process. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 18(2):133–141, February 1999.

[76] Z. Bai and R. Freund. A partial Padé-via-lanczos method for reduced order mod-
eling. Linear Algebra and its Applications, 332-334(1):139–164, August 2001.

[77] J. Roychowdhury. Reduced-order modeling of time-varying systems. IEEE Trans-
actions on Circuits and Systems, 46(10), October 1999.

[78] R. Phillips. Projection-based approaches for model reduction of weakly nonlinear,
time-varying systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 22(2):171–187, February 2003.

[79] K. Pearson. On lines and planes of closest fit to systems of points in space. Philo-
sophical Magazine, 2(11):559–572, 1901.

[80] H. Hotelling. Analysis of a complex of statistical variables into principal compo-
nents. Journal of Educational Psychology, 24:417–441 and 498–520, 1933.

REFERENCES 65

[81] D. Kosambi. Statistics in function space. Journal of the Indian Mathematical
Society, 7:76–88, 1943.

[82] G. Golub and C. Reinsch. Singular value decomposition and least squares solu-
tions. Numerische Mathematik, 14(5):403–420, 1970.

[83] G. Berkooz, P. Holmes, and J. Lumley. The Proper Orthogonal Decomposition in
the analysis of turbulent flows. Annual Review of Fluid Mechanics, 25:539–575,
1993.

[84] M. Rathinam and L. Petzold. A new look at Proper Orthogonal Decomposition.
SIAM Journal on Numerical Analysis, 41(5):1893–1925, 2003.

[85] M. Kowalski and J.M. Jin. Model-order reduction of nonlinear models of electro-
magnetic phased-array hyperthermia. IEEE Transactions on Biomedical Engineer-
ing, 50(11):1243–1254, November 2003.

[86] A. Siade, M. Putti, and W.G. Yeh. Snapshot selection for groundwater model re-
duction using proper orthogonal decomposition. Water Resources Research, 46(8),
24 2010.

[87] K. Kunisch and S. Volkwein. Optimal snapshot location for computing POD basis
functions. ESAIM: Mathematical Modelling and Numerical Analysis, 44(3):509–
529, November 2010.

[88] S. Glavaski, J. Marsden, and R. Murray. Model reduction, centering, and the
karhunen-loeve expansion. IEEE Decision and Control, 2:2071–2076, 1998.

[89] S. Chaturantabut and D. Sorensen. Nonlinear model reduction via discrete em-
pirical interpolation. SIAM Journal of Scientific Computing, 32(5):2737–2764,
September 2010.

[90] B. King. Nonuniform grids for reduced basis design of low order feedback con-
trollers for nonlinear continuous systems. Mathematical Models and Methods in
Applied Sciences, 8(7):1223–1241, November 1998.

[91] J. Atwell and B. King. Proper orthogonal decomposition for reduced basis feed-
back controllers for parabolic equations. Mathematical and Computer Modelling,
33(1):1–19, January 2001.

[92] I. Kalashnikova and M. Barone. Efficient non-linear proper orthogonal decompo-
sition/galerkin reduced order models with stable penalty enforcement of bound-
ary conditions. International Journal for Numerical Methods in Engineering,
90(11):1337–1362, June 2012.

REFERENCES 66

[93] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An empirical interpolation
method: application to efficient reduced-basis discretization of partial differential
equations. Comptes Rendus Mathematicue, 339, June 2004.

[94] B. Peherstorfer, D. Butnaru, K. Willcox, and H.J. Bungartz. Localized discrete em-
pirical interpolation method. SIAM Journal of Scientific Computing, 36(1), Febru-
ary 2014.

[95] D. Amsallem and J. Nordstróm. Energy stable model reduction of neurons by non-
negative discrete empirical interpolation. SIAM Journal of Scientific Computing,
38(2), April 2016.

[96] S. Chaturantabut and D. Sorensen. A state space error estimate for pod-deim non-
linear model reduction. SIAM Journal on Numerical Analysis, 50(1):46–63, Jan-
uary 2012.

[97] A. Saysel and Y. Barlas. Model simplification and validation with indirect structure
validity tests. System Dynamics Review, 22(3):241–262, November 2006.

[98] S. Tewari, M. Gottipati, and V. Parpura. Mathematical modeling in neuroscience:
neuronal activity and its modulation by astrocytes. Frontiers in Integrative Neuro-
science, February 2016.

[99] E. Oja. Simplified neuron model as a principal component analyzer. Journal of
Mathematical Biology, 15(3):267–273, November 1982.

[100] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras, and S. Furber. SpiN-
Naker: Mapping neural networks onto a massively-parallel chip multiprocessor. In
IEEE International Joint Conference on Neural Networks, pages 2849–2856, 1993.

[101] W. Liebermeister, U. Baur, and E. Klipp. Biochemical network models simpli-
fied by balanced truncation. Federation of Europen Biochemical Societies Journal,
272(16):4034–4043, August 2005.

[102] S. Gu, F. Pasqualetti, Q. Telesford, A. Yu, A. Kahn, J. Medaglia, J. Vettel,
M. Miller, S. Grafton, and D. Bassett. Controllability of structural brain networks.
Nature Communications, 6, October 2015.

[103] A. Kellems, D. Roos, N. Xioa, and S. Cox. Low-dimensional, morphologically
accurate models of subthreshold membrane potential. Journal of Computational
Neuroscience, 27(2):161–176, October 2009.

[104] S. Ostojic and N. Brunel. From spiking neuron models to linear-nonlinear models.
PLOS Computational Biology, 7(1), January 2011.

REFERENCES 67

[105] M. Safonov and R. Chiang. A schur method for balanced-truncation model reduc-
tion. IEEE Transactions on Automatic Control, 34(7):729–733, 1989.

[106] A. Kellems, S. Chaturantabut, D. Sorensen, and S. Cox. Morphologically accurate
reduced order modeling of spiking neurons. Journal of Computational Neuro-
science, 28(3), June 2010.

[107] B. Du, D. Sorensen, and S.J. Cox. Model reduction of strong-weak neurons. Fron-
tiers in Computational Neuroscience, 8(164), December 2014.

68

A. APPENDIX

A.1 Synaptic Plasticity Model

A.1.1 Species in the Model

Chemical species Abbreviation Variable
2-arachidonoyl glycerol 2AG x1

Calcium Ca x2

Calcium - calcium-binging protein complex Ca-Calbindin x3

Calcium - diacylglycerol -
diacylglycerol lipase complex Ca-DAG-DAGL x4

Calcium - diacylglycerol - G-protein
α-subunit - guanosine-5’-triphosphate -
phospholipase C complex Ca-DAG-GaGTP-PLC x5

Calcium - diacylglycerol -
phospholipase C complex Ca-DAG-PLC x6

Calcium - diacylglycerol lipase complex Ca-DAGL x7

Calcium - G-protein α-subunit -
phosphatidylinositol 4,5-bisphosphate -
phospholipase C complex Ca-GaGTP-PIP2-PLC x8

Calcium - G-protein α-subunit -
guanosine-5’-triphosphate -
phospholipase C complex Ca-GaGTP-PLC x9

External leak calcium Ca-Leak x10

Calcium - sodium-calcium exchange
protein complex Ca-NCX x11

Calcium - phosphatidylinositol 4,5-
bisphosphate - phospholipase C complex Ca-PIP2-PLC x12

Calcium - protein kinase C complex Ca-PKC x13

Calcium - phospholipase C complex Ca-PLC x14

Calcium - plasma membrane Ca2+

ATPase complex Ca-PMCA x15

Calmodulin C-terminal domain - calcium

A. Appendix 69

complex CaMC-Ca2 x16

Calmodulin N-terminal domain - calcium
complex CaMN-Ca2 x17

Calciumsaturated calmodulin CaM-Ca4 x18

Calcium-binding protein calbindin x19

Calmodulin CaM x20

Diacylglycerol DAG x21

Diacylglycerol - diacylglycerol kinase
complex DAG-DAGK x22

Diacylglycerol kinase DAGK x23

Diacylglycerol lipase DAGL x24

G-protein with α, β and γ subunits Gabg x25

G-protein with α, β and γ subunits -
glutamate - metabotropic glutamate
receptor complex Gabg-Glu-mGluR x26

G-protein α subunit -
guanosine diphosphate complex GaGDP x27

G-protein α subunit -
Guanosine-5’-triphosphate complex GaGTP x28

G-protein α subunit -
Guanosine-5’-triphosphate -
phospholipase C complex GaGTP-PLC x29

Glutamate - metabotropic glutamate
receptor complex Glu-mGluR x30

Glutamate - desensitized metabotropic
glutamate receptor complex Glu-mGluRdesens x31

Inactive glutamate GluInact x32

Inositol 1,4,5-trisphosphate IP3 x33

Degraded inositol 1,4,5-trisphosphate IP3deg x34

Inositol 1,4,5-trisphosphate -
phosphatidylinositol-4,5-bisphosphate
3-kinase complex IP3-PIKin x35

Leak channel protein Leak x36

Metabotropic glutamate receptor mGluR x37

Sodium-calcium exchange protein NCX x38

Phosphatidylinositol-4,5-bisphosphate
3-kinase PIKin x39

Phosphatidylinositol 4,5-bisphosphate PIP2 x40

Active protein kinase C PKCa x41

A. Appendix 70

Inactive protein kinase C PKCi x42

Phospholipase C PLC x43

Plasma membrane Ca2+

ATPase complex PMCA x44

Table A.1: Processes included in the plasticity model of [3]

A.1.2 Full Order Plasticity Model

The time varying parameters of the model are Capost and Gluext.

ẋ1 = kprodAGcx4 − kdegAGf
x1

ẋ2 = kPMCAcx15 + kNCXcx11 − kLeakfx2x36 + kLeakbx10

ẋ3 = kbufferfCapost(t)x19 − kbufferbx3
ẋ4 = kprodAGf

x21x7 − kprodAGb
x4 − kprodAGcx4

ẋ5 = kDAG3cx8 − kDAG4fx5

ẋ6 = kDAG1cx12 − kDAG2fx6

ẋ7 = kDAGLf
Capost(t)x24 − kDAGLb

x7 − kprodAGf
x21x7 + kprodAGb

x4

+ kprodAGcx4

ẋ8 = kDAG3fx9x40 − kDAG3bx8 − kDAG3cx8

ẋ9 = kGPLC2fx28x14 − kGPLC2bx9 + kCaPLC2fCapost(t)x29 − kCaPLC2bx9

− kDAG3fx9x40 + kDAG3bx8 + kDAG4fx5 − kGAP2fx9

˙x10 = kLeakfx2x36 − kLeakbx10 − kLeakcx10
˙x11 = kNCXf

Capost(t)x38 − kNCXb
x11 − kNCXcx11

˙x12 = kDAG1fx40x14 − kDAG1bx12 − kDAG1cx12

˙x13 = kCaPKCf
Capost(t)x42 − kCaPKCb

x13 − kDAGPKCf
x21x13 + kDAGPKCb

x41

˙x14 = kCaPLC1fCapost(t)x43 − kCaPLC1bx14 − kGPLC2fx28x14

+ kGPLC2bx9 − kDAG1fx40x14 + kDAG1bx12 + kDAG2fx6 + kGAP2fx9

˙x15 = kPMCAf
Capost(t)x44 − kPMCAb

x15 − kPMCAcx15

˙x16 = kCaM1fCa
2
post(t)x20 − kCaM1bx16 − kCaM2fCa

2
post(t)x16 + kCaM2bx18

˙x17 = kCaM3fCa
2
post(t)x20 − kCaM3bx17 − kCaM4fCa

2
post(t)x17 + kCaM4bx18

˙x18 = kCaM2fCa
2
post(t)x16 − kCaM2bx18 + kCaM4fCa

2
post(t)x17 − kCaM4bx18

˙x19 = −kbufferfCapost(t)x19 + kbufferbx3

˙x20 = −kCaM1fCa
2
post(t)x20 + kCaM1bx16 − kCaM3fCa

2
post(t)x20 + kCaM3bx17

A. Appendix 71

˙x21 = kDAG2fx6 + kDAG4fx5 − kprodAGf
x21x7 + kprodAGb

x4 − kinacDAGf
x21x23

+ kinacDAGb
x22 − kDAGPKCf

x21x13 + kDAGPKCb
x41

˙x22 = kinacDAGf
x21x23 − kinacDAGb

x22 − kinacDAGcx22

˙x23 = −kinacDAGf
x21x23 + kinacDAGb

x22

˙x24 = −kDAGLf
Capost(t)x24 + kDAGLb

x7

˙x25 = −kGactfx25x30 + kGactbx26 + kregenGf
x27

˙x26 = kGactfx25x30 − kGactbx26 − kGactcx26

˙x27 = kGAP1fx29 + kGAP2fx9 + khydrGf
x28 − kregenGf

x27

˙x28 = kGactcx26 − kGPLC2fx28x14 + kGPLC2bx9 − kGPLC1fx28x43

+ kGPLC1bx29 − khydrGf
x28

˙x29 = kGPLC1fx28x43 − kGPLC1bx29 − kCaPLC2fCapost(t)x29 + kCaPLC2bx9

− kGAP1fx29

˙x30 = kmGluRf
Gluext(t)x37 − kmGluRb

x30 − kmGluRdesfx30 + kmGluRdesbx31

− kGactfx25x30 + kGactbx26 + kGactcx26

˙x31 = kmGluRdesfx30 − kmGluRdesbx31

˙x32 = −kGlub
x32 + kGluf

Gluext(t)

˙x33 = kDAG1cx12 + kDAG3cx8 − kdegIP3fx33

˙x34 = kdegIP3fx33 − kPIP2fx34x39 + kPIP2bx35

˙x35 = kPIP2fx34x39 − kPIP2bx35 − kPIP2cx35

˙x36 = −kLeakfx2x36 + kLeakbx10 + kLeakcx10

˙x37 = −kmGluRf
Gluext(t)x37 + kmGluRb

x30

˙x38 = −kNCXf
Capost(t)x38 + kNCXb

x11 + kNCXcx11

˙x39 = −kPIP2fx34x39 + kPIP2bx35 + kPIP2cx35

˙x40 = −kDAG1fx40x14 + kDAG1bx12 − kDAG3fx9x40 + kDAG3bx8

+ kPIP2cx35

˙x41 = kDAGPKCf
x21x13 − kDAGPKCb

x41

˙x42 = −kCaPKCf
Capost(t)x42 + kCaPKCb

x13

˙x43 = −kCaPLC1fCapost(t)x43 + kCaPLC1bx14 − kGPLC1fx28x43

+ kGPLC1bx29 + kGAP1fx29

˙x44 = −kPMCAf
Capost(t)x44 + kPMCAb

x15 + kPMCAcx15

A. Appendix 72

A.1.3 Constants of the Model

Constant Value Unit
kPMCAf

0.05 1 / (msµM)

kPMCAb
7e− 3 1 / ms

kPMCAc 3.5e− 3 1 / ms

kNCXf
0.0168 1 / (msµM)

kNCXb
11.2e− 3 1 / ms

kNCXc 5.6e− 3 1 / ms

kLeakf 0.0015 1 / (msµM)

kLeakb 1.1e− 3 1 / ms

kLeakc 1.1e− 3 1 / ms

kbufferf 0.028 1 / (msµM)

kbufferb 19.6e− 3 1 / ms

kCaM1f 0.006 1 / (msµM)

kCaM1b 9.1e− 3 1 / ms

kCaM2f 0.1 1 / (msµM)

kCaM2b 1 1 / ms

kCaM3f 0.1 1 / (msµM)

kCaM3b 1 1 / ms

kCaM4f 0.006 1 / (msµM)

kCaM4b 9.1e− 3 1 / ms

kGluf
2e− 3 1 / ms

kGlub
2e− 8 1 / ms

kmGluRf
0.0001 1 / (msµM)

kmGluRb
10e− 3 1 / ms

kmGluRdesf 0.25e− 3 1 / ms

kmGluRdesb 0.001e− 3 1 / ms

kGactf 0.015 1 / (msµM)

kGactb 7.2e− 3 1 / ms

kGactc 0.5e− 3 1 / ms

kCaPLC1f 0.02 1 / (msµM)

kCaPLC1b 120e− 3 1 / ms

kGPLC2f 0.1 1 / (msµM)

kGPLC2b 10e− 3 1 / ms

kGPLC1f 0.01 1 / (msµM)

kGPLC1b 12e− 3 1 / ms

kCaPLC2f 0.08 1 / (msµM)

kCaPLC2b 40e− 3 1 / ms

A. Appendix 73

kDAG1f 0.0006 1 / (msµM)

kDAG1b 10e− 3 1 / ms

kDAG1c 25e− 3 1 / ms

kDAG2f 200e− 3 1 / ms

kDAG3f 0.015 1 / (msµM)

kDAG3b 75e− 3 1 / ms

kDAG3c 250e− 3 1 / ms

kDAG4f 1 1 / ms

kdegIP3f 10e− 3 1 / ms

kPIP2f 0.002 1 / (msµM)

kPIP2b 1e− 3 1 / ms

kPIP2c 1e− 3 1 / ms

kGAP1f 30e− 3 1 / ms

kGAP2f 30e− 3 1 / ms

khydrGf
1e− 3 1 / ms

kregenGf
10e− 3 1 / ms

kDAGLf
0.125 1 / (msµM)

kDAGLb
50e− 3 1 / ms

kprodAGf
0.0025 1 / (msµM)

kprodAGb
1.5e− 3 1 / ms

kprodAGc 1e− 3 1 / ms

kdegAGf
5e− 3 1 / ms

kinacDAGf
0.0007 1 / (msµM)

kinacDAGb
40e− 3 1 / ms

kinacDAGc 10e− 3 1 / ms

kCaPKCf
0.02 1 / (msµM)

kCaPKCb
50e− 3 1 / ms

kDAGPKCf
1.5e− 5 1 / (msµM)

kDAGPKCb
0.15e− 3 1 / ms

Table A.2: Constants included in the model presented in [3]

A.1.4 Non-Zero Initial Values

Variable Value Unit
x2 2015.1 µM

x3 7.648 µM

x4 0.4 µM

A. Appendix 74

x11 0.784 µM

x15 0.178 µM

x16 0.06 µM

x17 0.06 µM

x19 153.290 µM

x20 7.94 µM

x23 1.4 µM

x24 2.4 µM

x25 3.5 µM

x32 1019.1 µM

x34 1.2 µM

x35 0.8 µM

x36 0.6 µM

x37 5 µM

x38 14.980 µM

x39 0.6 µM

x40 48 µM

x42 15 µM

x43 1 µM

x44 0.659 µM

Table A.3: The employed initial values that are different from zero in the model developed in [3]

A.2 Matlab Code

The following Matlab codes have been used to produce the results presented in this thesis.

A.2.1 Kim Model Creation

%% Constants:

kPMCAf = .05;

kPMCAb = 7e-3;

kPMCAc = 3.5e-3;

kNCXf = .0168;

kNCXb = 11.2e-3;

kNCXc = 5.6e-3;

kLeakf = .0015;

kLeakb = 1.1e-3;

A. Appendix 75

kLeakc = 1.1e-3;

kbufferf = .028;

kbufferb = 19.6e-3;

kCaM1f = .006;

kCaM1b = 9.1e-3;

kCaM2f = .1;

kCaM2b = 1;

kCaM3f = .1;

kCaM3b = 1;

kCaM4f = .006;

kCaM4b = 9.1e-3;

kGluf = 2e-3;

kGlub = 2e-8;

kmGluRf = .0001;

kmGluRb = 10e-3;

kmGluRdesf = .25e-3;

kmGluRdesb = .001e-3;

kGactf = .015;

kGactb = 7.2e-3;

kGactc = .5e-3;

kCaPLC1f = .02;

kCaPLC1b = 120e-3;

kGPLC2f = .1;

kGPLC2b = 10e-3;

kGPLC1f = .01;

kGPLC1b = 12e-3;

kCaPLC2f = .08;

kCaPLC2b = 40e-3;

kDAG1f = .0006;

kDAG1b = 10e-3;

kDAG1c = 25e-3;

kDAG2f = 200e-3;

kDAG3f = .015;

kDAG3b = 75e-3;

kDAG3c = 250e-3;

kDAG4f = 1;

kdegIP3f = 10e-3;

kPIP2f = .002;

kPIP2b = 1e-3;

kPIP2c = 1e-3;

kGAP1f = 30e-3;

kGAP2f = 30e-3;

khydrGf = 1e-3;

kregenGf = 10e-3;

kDAGLf = 0.125;

kDAGLb = 50e-3;

kprodAGf = .0025;

A. Appendix 76

kprodAGb = 1.5e-3;

kprodAGc = 1e-3;

kdegAGf = 5e-3;

kinacDAGf = .0007;

kinacDAGb = 40e-3;

kinacDAGc = 10e-3;

kCaPKCf = .02;

kCaPKCb = 50e-3;

kDAGPKCf = 1.5e-5;

kDAGPKCb = .15e-3;

%% Initial states

x0 = sparse(44,1);

x0(2) = 2015.1;

x0(3) = 7.648;

x0(4) = .4;

x0(11) = .784;

x0(15) = .178;

x0(16) = .06;

x0(17) = .06;

x0(19) = 153.290;

x0(20) = 7.94;

x0(23) = 1.4;

x0(24) = 2.4;

x0(25) = 3.5;

x0(32) = 1019.1;

x0(34) = 1.2;

x0(35) = .8;

x0(36) = .6;

x0(37) = 5;

x0(38) = 14.980;

x0(39) = .6;

x0(40) = 48;

x0(42) = 15;

x0(43) = 1;

x0(44) = 0.659;

%%

% Linear autonomous part

A0 = sparse(44,44);

A0(1,[1 4]) = [-kdegAGf kprodAGc];

A0(2,[10 11 15]) = [kLeakb kNCXc kPMCAc];

A0(3,3) = -kbufferb;

A0(4,4) = -kprodAGb-kprodAGc;

A. Appendix 77

A0(5,[5 8]) = [-kDAG4f kDAG3c];

A0(6,[6 12]) = [-kDAG2f kDAG1c];

A0(7,[4 7]) = [kprodAGb+kprodAGc -kDAGLb];

A0(8,8) = -kDAG3b-kDAG3c;

A0(9,[5 8 9]) = [kDAG4f kDAG3b -kGAP2f-kCaPLC2b-kGPLC2b];

A0(10,10) = -kLeakb-kLeakc;

A0(11,11) = -kNCXb-kNCXc;

A0(12,12) = -kDAG1b-kDAG1c;

A0(13,[13 41]) = [-kCaPKCb kDAGPKCb];

A0(14,[6 9 12 14]) = [kDAG2f kGAP2f+kGPLC2b kDAG1b -kCaPLC1b];

A0(15,15) = -kPMCAb-kPMCAc;

A0(16,[16 18]) = [-kCaM1b kCaM2b];

A0(17,[17 18]) = [-kCaM3b kCaM4b];

A0(18,18) = -kCaM2b-kCaM4b;

A0(19,3) = kbufferb;

A0(20,[16 17]) = [kCaM1b kCaM3b];

A0(21,[4 5 6 22 41]) = [kprodAGb kDAG4f kDAG2f kinacDAGb kDAGPKCb];

A0(22,22) = -kinacDAGb-kinacDAGc;

A0(23,22) = kinacDAGb;

A0(24,7) = kDAGLb;

A0(25,[26 27]) = [kGactb kregenGf];

A0(26,26) = -kGactb-kGactc;

A0(27,[9 27 28 29]) = [kGAP2f -kregenGf khydrGf kGAP1f];

A0(28,[9 26 28 29]) = [kGPLC2b kGactc -khydrGf kGPLC1b];

A0(29,[9 29]) = [kCaPLC2b -kGPLC1b-kGAP1f];

%A0(30,[30 31 33]) = [-kGluf kmGluRb kGlub];

A0(30,[26 30 31]) = [kGactb+kGactc -kmGluRb-kmGluRdesf kmGluRdesb];

A0(31,[30 31]) = [kmGluRdesf -kmGluRdesb];

A0(32,32) = -kGlub; %%MUUTA GLU

A0(33,[8 12 33]) = [kDAG3c kDAG1c -kdegIP3f];

A0(34,[33 35]) = [kdegIP3f kPIP2b];

A0(35,35) = -kPIP2b-kPIP2c;

A0(36,10) = kLeakb+kLeakc;

A0(37,30) = kmGluRb;

A0(38,11) = kNCXb+kNCXc;

A0(39,35) = kPIP2b+kPIP2c;

A0(40,[8 12 35]) = [kDAG3b kDAG1b kPIP2c];

A0(41,41) = -kDAGPKCb;

A0(42,13) = kCaPKCb;

A0(43,[14 29]) = [kCaPLC1b kGPLC1b+kGAP1f];

A0(44,15) = kPMCAb+kPMCAc;

%%

% Linear time-dependent part

% Coefficients for the first power of Capost(t)

A1 = sparse(44,44);

A1(3,19) = kbufferf;

A. Appendix 78

A1(7,24) = kDAGLf;

A1(9,29) = kCaPLC2f;

A1(11,38) = kNCXf;

A1(13,42) = kCaPKCf;

A1(14,43) = kCaPLC1f;

A1(15,44) = kPMCAf;

A1(19,19) = -kbufferf;

A1(24,24) = -kDAGLf;

A1(29,29) = -kCaPLC2f;

A1(38,38) = -kNCXf;

A1(42,42) = -kCaPKCf;

A1(43,43) = -kCaPLC1f;

A1(44,44) = -kPMCAf;

% Coefficients for the second power of Capost(t)

A2 = sparse(44,44);

A2(16,[16 20]) = [-kCaM2f kCaM1f];

A2(17,[17 20]) = [-kCaM4f kCaM3f];

A2(18,[16 17]) = [kCaM2f kCaM4f];

A2(20,20) = -kCaM1f-kCaM3f;

% Coefficients for Glu_ext

A3 = sparse(44,44);

A3(30,37) = kmGluRf;

A3(37,37) = -kmGluRf;

Capost = @(t) 0;

Gluext = @(t) 0;

A_lin = @(t) A0+A1*Capost(t)+A2*Capost(t)^2+A3*Gluext(t);

%Input matrix B

B = sparse(44,1); %44 x r is 44 x 1 because Gluext is the only input

%u is r x 1, where r is amount of inputs r = 1

B(32,1) = kGluf;

%Put functions to cells for DEIM

func = {...

@(x)0; ... % 1

@(x)-kLeakf*x(2)*x(36); ... % 2

@(x)0; ... % 3

@(x)kprodAGf*x(7)*x(21); ... % 4

@(x)0; ... % 5

@(x)0; ... % 6

@(x)-kprodAGf*x(7)*x(21); ... % 7

@(x)kDAG3f*x(9)*x(40); ... % 8

A. Appendix 79

@(x)kGPLC2f*x(14)*x(28)-kDAG3f*x(9)*x(40); ... % 9

@(x)kLeakf*x(2)*x(36); ... % 10

@(x)0; ... % 11

@(x)kDAG1f*x(14)*x(40); ... % 12

@(x)-kDAGPKCf*x(21)*x(13); ... % 13

@(x)-kGPLC2f*x(14)*x(28)-kDAG1f*x(14)*x(40); ... % 14

@(x)0; ... % 15

@(x)0; ... % 16

@(x)0; ... % 17

@(x)0; ... % 18

@(x)0; ... % 19

@(x)0; ... % 20

@(x)-kprodAGf*x(7)*x(21)-kinacDAGf*x(21)*x(23)-kDAGPKCf*x(13)*x(21); ... % 21

@(x)kinacDAGf*x(21)*x(23); ... % 22

@(x)-kinacDAGf*x(21)*x(23); ... % 23

@(x)0; ... % 24

@(x)-kGactf*x(25)*x(30); ... % 25

@(x)kGactf*x(25)*x(30); ... % 26

@(x)0; ... % 27

@(x)-kGPLC2f*x(14)*x(28)-kGPLC1f*x(28)*x(43); ... % 28

@(x)kGPLC1f*x(28)*x(43); ... % 29

%-kmGluRf*x(30)*x(38); ... % 30 vanha

@(x)-kGactf*x(25)*x(30); ... % 30

@(x)0; ... % 31

@(x)0; ... % 32

@(x)0; ... % 33

@(x)-kPIP2f*x(34)*x(39); ... % 34

@(x)kPIP2f*x(34)*x(39); ... % 35

@(x)-kLeakf*x(2)*x(36); ... % 36

@(x)-kmGluRf*x(30)*x(37); ... % 37

@(x)0; ... % 38

@(x)-kPIP2f*x(34)*x(39); ... % 39

@(x)-kDAG1f*x(14)*x(40)-kDAG3f*x(9)*x(40); ... % 40

@(x)kDAGPKCf*x(13)*x(21); ... % 41

@(x)0; ... % 42

@(x)-kGPLC1f*x(28)*x(43); ... % 43

@(x)0 ... % 44

};

F = @(y)cellfun(@(x)x(y),func);

%% Simulation

tspan = [0 10^4];

%tic

sol = ode15s(@(t,x) (A0+A1*Capost_sine(t)+A2*Capost_sine(t).^2+...

A. Appendix 80

A3*Gluext_sine(t))*x+F(x)+B*Gluext_sine(t),tspan,x0);

%disp('original = ', num2str(toc))

tt = linspace(tspan(1),tspan(2),100);

xx = deval(sol,tt);

plot(tt,xx(1,:));

%%

plot(tt,xx(20,:));

%% Analysis

figure(1);

spy(abs(A1)+abs(A2));

figure(2);

spy(A0);

eig(full(A0));

%%

semilogy(1:44,svd(full(A0)),'b.','Markersize',10);

A.2.2 Full Model Solver

function dy = Kim_full(t, x, A0, A1, A2, A3, F, B)

% A linear part

% A1 linear calciums

% A2 linear calsium.^2

% B input weights

% F nonlinear part as a vector of functions

Ca = Capost_sine(t);

Glu = Gluext_sine(t);

dy = (A0+A1*Ca+A2*Ca.^2+A3*Glu)*x+F(x)+B*Glu;

end

A.2.3 Calcium Stimulus

function [y] = Capost_sine(t)

A. Appendix 81

%CAPOST_SINE Amplitude of calcium stimulus at time t

if ~isvector(t) && ~isscalar(t)

error('Input should be a vector or scalar');

end

startThreshold = 10;

endThreshold = 15;

stimulusAmplitude = 1.5 / 2; %muM

steps = numel(t);

y = zeros(1,steps);

for n = 1:steps

if t(n) > startThreshold && t(n) < endThreshold

y(n) = stimulusAmplitude+stimulusAmplitude*sin(-pi*t(n));

end

end

end

A.2.4 Glutamate Stimulus

function [y] = Gluext_sine(t)

%%GLUTEXT_SINE Amplitude of glutamate stimulus at time t

if ~isvector(t) && ~isscalar(t)

error('Input should be a vector or scalar');

end

startThreshold = 10;

endThreshold = 15;

stimulusAmplitude = 100 / 2; %muM

steps = numel(t);

y = zeros(1,steps);

for n = 1:steps

if t(n) > startThreshold && t(n) < endThreshold

y(n) = stimulusAmplitude+stimulusAmplitude*sin(-pi*t(n));

end

end

end

A.2.5 POD Algorithm

function [basis] = calculate_POD(Y, order)

A. Appendix 82

%CALCULATE_POD returns a POD projection basis from the give solution matrix

% Y the solution matrix with timesteps in columns and variables in rows

% order is the desired order of the projection basis

snapshot_interval = 5;

%Calculate the basis by the method of snapshots

snapshots = Y(:,1:snapshot_interval:end);

[U,V,~] = svd(snapshots);

% figure;

% plot(diag(V));

% title('Singular values of solution snapshots')

% xlabel('Index of value')

% ylabel('Magnitude')

basis = U(:,1:order);

end

A.2.6 DEIM Algorithm

function [P, U, ind] = calculate_DEIM(solutions, dimension, nonlinHandle)

%CALCULATE_DEIM Calculates the DEIM matrices and indices

% SOLUTIONS solutions to the full system

% DIMENSION desired dimension of the result

% NONLINHANDLE function handle to the nonlinear part of the system

%Generate values for the nonlinear function

vals = zeros(size(solutions));

snapshot_step = 5;

for n = 1:size(solutions,2)

vals(:,n) = nonlinHandle(solutions(:,n));

end

[U, V, ~] = svd(vals(:,1:snapshot_step:end));

U = U(:,1:dimension);

[P, ind] = deim(U);

P = sparse(P);

end

A. Appendix 83

A.2.7 DEIM Reduced Model

function [dy] = Kim_reduced_DEIM(t, y, A_red, A1, A2, A3,...

B, F, V, N)

% A_red reduced linear part

% A1 linear calciums

% A2 linear calsium.^2

% B input weights

% F nonlinear part as a vector of functions

% V projection basis

% N the nonlinear projection basis precomputed V'*U*inv(P'U)

Ca = Capost_sine(t);

Glu = Gluext_sine(t);

dy = (A_red + A1*Ca + A2*Ca.^2 + A3*Glu)*y + N*(F(V*y)) + B*Glu;

end

A.2.8 Predict Reduction Results

Kim_model_44_cells;

close all;

dimensions = 2:2:40;

DEIM_dimensions = 2:3:40;

num_runs = 20;

mean_times = zeros(numel(DEIM_dimensions), numel(dimensions));

sqr_errors = zeros(numel(DEIM_dimensions), numel(dimensions));

sol_rows = size(sol.y, 1);

%We need to interpolate the results in order to calculate errors

tFine = 0:tspan(2);

mean_original_res = zeros(sol_rows, numel(tFine));

%% Calculating groundtruths for simulation results and time

reduced = zeros(1,num_runs);

for k = 1:num_runs

tic

sol = ode15s(@(t,x) Kim_full(t, x, A0, A1, A2, A3, F, B),tspan,x0);

reduced(k) = toc;

%save the results for averaging since the solver is stochastic

A. Appendix 84

mean_original_res = mean_original_res + deval(sol, tFine);

end

original_time = mean(reduced);

mean_original_res = mean_original_res./num_runs; %average concentrations

%% Calculating the errors and run times of the reduced models

for n = 1:numel(dimensions)

disp(strcat(...

'Calculating error and simulation time with dimension ', ...

' ', num2str(dimensions(n))));

num_dims = dimensions(n);

%Get the basis for this new dimension

basis = calculate_POD(sol.y, num_dims);

A_red = basis'*A0*basis;

A1_red = basis'*A1*basis;

A2_red = basis'*A2*basis;

A3_red = basis'*A3*basis;

B_red = basis'*B;

%Run another loop to go through DEIM dimensions

for m = 1:numel(DEIM_dimensions)

mean_err_sol = zeros(44, numel(tFine));

reduced = zeros(1,num_runs);

[P, U, ind] = calculate_DEIM(sol.y, DEIM_dimensions(m), F);

%Run a loop to get a mean of computing times for this POD dimension

F_red = @(y)cellfun(@(x)x(y),func(ind));

%pick the functions shown by DEIM

N = basis'*U*inv(P'*U); %nonlinear basis

for k = 1:num_runs

tic

sol_red = ode15s(@(t,y) Kim_reduced_DEIM(t,y,A_red, A1_red, ...

A2_red, A3_red, B_red, F_red, basis, N), ...

tspan, basis'*x0);

reduced(k) = toc;

%We need to interpolate to matching dimensions

try

mean_err_sol = mean_err_sol + basis*deval(sol_red, tFine);

catch

mean_err_sol = mean_err_sol + interp1(sol_red.x, ...

(basis*sol_red.y)', tFine, 'spline')';

end

end

A. Appendix 85

%Store the results of DEIM to the rows. Each column corresponds to

%a POD dimension. So plotting the first row gives the same DEIM

%dimension for all POD dimensions

mean_times(m,n) = mean(reduced);

%Calculate the total squared error

sqr_errors(m,n) = sqrt(mean((mean_original_res(:) - (mean_err_sol(:)./num_runs)).^2));

end

end

%% plotting

figure;

plot(dimensions, mean_times);

title('Mean simulation times (20 runs)')

ylabel('time (s)')

xlabel('POD dimension')

hold on

plot(original_time*ones(1,max(dimensions)))

legendCell = cellstr(num2str(DEIM_dimensions', 'DEIM=%-d'));

legend([legendCell; {'original'}])

hold off

figure;

semilogy(dimensions, sqr_errors)

title('RMS error for all variables summed')

ylabel('error')

xlabel('POD dimension')

legend(legendCell)

A.2.9 Plot Results

clear all;

Kim_model_44_cells;

close all;

%% Test some dimensions

basis = calculate_POD(sol.y,10);

A_red = basis'*A0*basis;

A1_red = basis'*A1*basis;

A2_red = basis'*A2*basis;

A3_red = basis'*A3*basis;

B_red = basis'*B;

[P, U, ind] = calculate_DEIM(sol.y, 10, F);

F_red = @(y)cellfun(@(x)x(y),func(ind)); %pick the functions shown by DEIM

N = basis'*U*inv(P'*U); %nonlinear basis

A. Appendix 86

%Using the time span of the original model

tFine = 0:tspan(2);

tic

sol_red = ode15s(@(t,y) Kim_reduced_DEIM(t,y,A_red, A1_red, ...

A2_red, A3_red, B_red, F_red, basis, N), ...

tspan, basis'*x0);

toc

tic

sol = ode15s(@(t,x) Kim_full(t, x, A0, A1, A2, A3, F, B),tspan,x0);

toc

yred = basis*deval(sol_red, tFine);

yorig = deval(sol, tFine);

figure;

subplot(5,1,1);

hold on

plot(tFine, yorig(1,:));

plot(tFine, yred(1,:));

title('Output variables')

ylabel('AG_{post}')

subplot(5,1,2);

hold on

plot(tFine, yorig(2,:));

plot(tFine, yred(2,:));

ylabel('Ca_{ext}')

subplot(5,1,3);

hold on

plot(tFine, yorig(21,:));

plot(tFine, yred(21,:));

ylabel('DAG_{post}')

subplot(5,1,4);

hold on

plot(tFine, yorig(25,:));

plot(tFine, yred(25,:));

ylabel('Gabg_{post}')

subplot(5,1,5);

hold on

plot(tFine,yorig(43,:));

plot(tFine,yred(43,:));

ylabel('PLC_{post}')

xlabel('Time (s)')

A.2.10 Plot Long Interval Results

A. Appendix 87

Kim_model_44_cells;

close all;

%% plot errors for a really long time

PODdims = [10, 30];

DEIMdims = [5, 10];

lim = 5*10^4; %Set the time used for training AND simulation

time = [0 lim];

res = cell(1,2);

grid = time(1):10:time(2);

tic

sol2 = ode15s(@(t,x) Kim_full(t, x, A0, A1, A2, A3, F, B),time,x0);

toc

yorig2 = deval(sol2, grid);

indices = []

for n = 1:2

basis = calculate_POD(sol2.y, PODdims(n));

A_red = basis'*A0*basis;

A1_red = basis'*A1*basis;

A2_red = basis'*A2*basis;

A3_red = basis'*A3*basis;

B_red = basis'*B;

[P, U, ind] = calculate_DEIM(sol2.y, DEIMdims(n), F);

%Run a loop to get a mean of computing times for this POD dimension

F_red = @(y)cellfun(@(x)x(y),func(ind)); %pick the functions shown by DEIM

%F_red = getFunHandles(func, ind); %not for the cell version

N = basis'*U*inv(P'*U); %nonlinear basis

tic

sol_red2 = ode15s(@(t,y) Kim_reduced_DEIM(t,y,A_red, A1_red, ...

A2_red, A3_red, B_red, F_red, basis, N), ...

time, basis'*x0);

toc

yred2 = basis*deval(sol_red2, grid);

res{n} = yred2;

indices = [indices ind'];

end

yred2 = res{1};

A. Appendix 88

figure;

subplot(5,2,1);

hold on

plot(grid, yorig2(1,:));

plot(grid, yred2(1,:));

title('Output variables (POD 10 DEIM 5)')

ylabel('AG_{post}')

subplot(5,2,3);

hold on

plot(grid, yorig2(2,:));

plot(grid, yred2(2,:));

ylabel('Ca_{ext}')

subplot(5,2,5);

hold on

plot(grid, yorig2(21,:));

plot(grid, yred2(21,:));

ylabel('DAG_{post}')

subplot(5,2,7);

hold on

plot(grid, yorig2(25,:));

plot(grid, yred2(25,:));

ylabel('Gabg_{post}')

subplot(5,2,9);

hold on

plot(grid,yorig2(43,:));

plot(grid,yred2(43,:));

ylabel('PLC_{post}')

xlabel('Time (s)')

yred2 = res{2};

subplot(5,2,2);

hold on

plot(grid, yorig2(1,:));

plot(grid, yred2(1,:));

title('Output variables (POD 30 DEIM 10)')

ylabel('AG_{post}')

subplot(5,2,4);

hold on

plot(grid, yorig2(2,:));

plot(grid, yred2(2,:));

ylabel('Ca_{ext}')

subplot(5,2,6);

hold on

plot(grid, yorig2(21,:));

plot(grid, yred2(21,:));

ylabel('DAG_{post}')

A. Appendix 89

subplot(5,2,8);

hold on

plot(grid, yorig2(25,:));

plot(grid, yred2(25,:));

ylabel('Gabg_{post}')

subplot(5,2,10);

hold on

plot(grid,yorig2(43,:));

plot(grid,yred2(43,:));

ylabel('PLC_{post}')

xlabel('Time (s)')

figure;

subplot(5,2,2);

bar(grid, abs(yorig2(1,:)-yred2(1,:))./(eps + abs(yorig2(1,:))),1);

xlim(time)

title('Relative errors in output variables (POD 30 DEIM 10)')

ylabel('AG_{post}')

axis tight

subplot(5,2,4);

bar(grid, abs(yorig2(2,:)-yred2(2, :))./(eps + abs(yorig2(2,:))),1);

xlim(time)

ylabel('Ca_{ext}')

axis tight

subplot(5,2,6);

bar(grid, abs(yorig2(21,:)-yred2(21,:))./(eps + abs(yorig2(21,:))),1);

xlim(time)

ylabel('DAG_{post}')

subplot(5,2,8);

bar(grid, abs(yorig2(25,:)-yred2(25,:))./(eps + abs(yorig2(25,:))),1);

xlim(time)

ylabel('Gabg_{post}')

subplot(5,2,10);

bar(grid, abs(yorig2(43,:)-yred2(43,:))./(eps + abs(yorig2(43,:))),1);

xlim(time)

ylabel('PLC_{post}')

xlabel('Time (s)')

subplot(5,2,1);

bar(grid, abs(yorig2(1,:)-yred2(1,:)),1);

xlim(time)

title('Absolute errors in output variables (POD 30 DEIM 10)')

ylabel('AG_{post}')

subplot(5,2,3);

bar(grid, abs(yorig2(2,:)-yred2(2, :)),1);

xlim(time)

A. Appendix 90

ylabel('Ca_{ext}')

subplot(5,2,5);

bar(grid, abs(yorig2(21,:)-yred2(21,:)),1);

xlim(time)

ylabel('DAG_{post}')

subplot(5,2,7);

bar(grid, abs(yorig2(25,:)-yred2(25,:)),1);

xlim(time)

ylabel('Gabg_{post}')

subplot(5,2,9);

bar(grid, abs(yorig2(43,:)-yred2(43,:)),1);

xlim(time)

ylabel('PLC_{post}')

xlabel('Time (s)')

	Introduction
	Model Reduction Theory and Algorithms
	Important Concepts
	Linearity and Linearizations
	Stability
	Subspace Projection

	Simplification by Pruning
	Balanced Truncation
	Moment Matching
	Proper Orthogonal Decomposition
	Discrete Empirical Interpolation Method

	Case Study: Synaptic Plasticity Model
	Results
	Finding the Optimal Dimensions
	Analysis of the Dynamics of the Reduced Model

	Discussion
	Model Reduction Methods
	Approximation Error in Reduced Models
	Significance of Results and Future Work

	Conclusions
	References
	Appendix
	Synaptic Plasticity Model
	Species in the Model
	Full Order Plasticity Model
	Constants of the Model
	Non-Zero Initial Values

	Matlab Code
	Kim Model Creation
	Full Model Solver
	Calcium Stimulus
	Glutamate Stimulus
	POD Algorithm
	DEIM Algorithm
	DEIM Reduced Model
	Predict Reduction Results
	Plot Results
	Plot Long Interval Results

