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ABSTRACT 
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The aim of the thesis was to implement a tool for performance assessment of a multivar-

iable, model-predictive controller which was in this work NAPCON Controller devel-

oped by Neste Jacobs. The aim of control performance assessment and monitoring is to 

ensure that control systems operate as required. In practice, control performance as-

sessment techniques are usually based on a comparison of the current controller perfor-

mance and a benchmark value defined by some criteria. The result of this comparison is 

called the control performance index. In this thesis, the technological performance of 

the controller was measured with two techniques using different criteria for calculating 

the benchmark value. These selected methods were historical and design-case bench-

marks. In addition, the economic performance of the controller was assessed. 

In this work, an OPC UA database was used for storing the calculated performance in-

dices as well as the related configuration parameters. This required the definition of new 

OPC UA based information models. The implemented performance assessment tool 

included a performance calculation application as a Windows service and a graphical 

user interface for configuring the performance assessment calculations. 

The functionality of the implemented controller performance assessment tool was tested 

with a simulator of a distillation unit and against an actual MPC controller. The results 

of the different simulation cases showed that the calculated performance indices re-

sponded as expected when the process conditions or the control objectives changed. The 

tool requires some additional testing and development before it can be deployed to a 

real process environment as a part of the controller software, although the created per-

formance assessment tool worked well according to the simulation results. 
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Diplomityön tavoitteena oli toteuttaa työkalu, jota voidaan käyttää monimuuttujaisen ja 

malliprediktiivisen säätimen suorituskyvyn arviointiin. Työssä käytettävä säädin oli 

Neste Jacobsin kehittämä NAPCON Controller. Säädön suorituskyvyn arvioinnin ja 

mittaamisen tavoitteena on varmistaa, että säätöjärjestelmät toimivat vaatimusten mu-

kaisesti. Usein käytännössä säädön suorituskyvyn arviointimenetelmät perustuvat tutkit-

tavan säätimen suorituskyvyn ja joillakin kriteereillä määritetyn vertailuarvon suhtee-

seen. Tätä suhdelukua voidaan kutsua säädön suorituskykyindeksiksi. Tässä työssä sää-

timen teknisen suorituskyvyn mittaamiseen käytettiin kahta menetelmää, joissa vertai-

luarvojen laskeminen perustuu eri periaatteisiin. Valitut menetelmät olivat historialli-

seen vertailuarvoon (historical benchmark) ja suunnittelukriteereihin (design-case 

benchmark) perustuvat tekniikat. Lisäksi säätimen taloudellista suorituskykyä arvioitiin. 

Laskettavat suorituskykyindeksit ja suorituskyvyn laskentaan tarvittavat konfigurointi-

parametrit tallennettiin OPC UA tietokantaan, mikä vaati ensin uusien OPC UA -

pohjaisten informaatiomallien määrittelyn. Suorituskykytyökalu sisälsi Windows palve-

luna (Windows Services) toteutetun suorituskykylaskentaohjelman ja graafisen käyttö-

liittymän suorituskykylaskentojen konfigurointia varten.  

Työssä toteutetun työkalun toimivuutta testattiin erään tislausyksikön simulaattorin ja 

oikean MPC-säätimen avulla. Eri simulointitapausten tulokset osoittivat, että lasketut 

suorituskykyindeksien arvot reagoivat prosessiolosuhteiden tai säätötavoitteiden muu-

toksiin, kuten saattoi olettaa. Vaikka toteutettu työkalu toimi simulointitulosten perus-

teella, tarvitaan kuitenkin lisätestejä ja -kehitystä, jotta työkalu olisi mahdollista ottaa 

käyttöön oikeassa prosessiympäristössä osana säätimen ohjelmistoa. 
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1. INTRODUCTION 

There are various challenges that the process industries need to face in order to be com-

petitive. For example, price pressure of raw materials and the focus on environmental 

protection have forced the plants to consider their control operations. Advanced process 

control (APC) technologies have been applied to various processes to improve product 

quality and product yield, to ensure consistent process safety and to reduce energy con-

sumption along with environmental emissions. [1] In many process industries, especial-

ly in the oil refining and petrochemical fields, the most popular advanced process con-

trol strategy is the model predictive control (MPC). When compared to other control 

strategies, the most important feature of model predictive control is the ability to handle 

constrained control problems. [2; 3, p. 97] 

Degradation in the performance of advanced process control systems is common in the 

process industries. After the implementation, the control system operates at its nominal 

efficiency. Nevertheless, over the time the performance of the control system usually 

degrades due to various causes, such as a change in process conditions or process 

equipment, lack of maintenance and poor controller tuning. [4; 5] When the controller is 

functioning as designed, it delivers various benefits including the process efficiency and 

safety along with reduced environmental impact. Thus, it can be stated that poor control 

performance leads to poor plant performance. [3, pp. 4-6] The aim of controller perfor-

mance assessment (CPA) and monitoring is to make sure that control systems perform 

according to their specifications. Therefore, control performance assessment is an im-

portant technique for ensuring the effectiveness of process control and safe and profita-

ble plant operation. [5; 6] 

In the process industry, the current trend at plants is a thin organization. This means that 

there is not necessarily expert knowledge of the process and automation at the plant 

itself. The goal of this work is to develop a performance assessment tool for a multivar-

iable, model-predictive controller and then apply it to a process environment to verify 

that the tool is operating as required. The performance indicator tool aims to provide 

beneficial information of the controller's operation and so to ensure effective process 

control.  

1.1 Background 

Most of the theories and applications of control performance monitoring and assessment 

were developed during the 1990's. The first control performance assessment technique 

was established in 1989 by Harris [7] who demonstrated that the minimum variance 
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benchmark can be estimated from routine operating data. Minimum variance control 

(MVC) is based on a comparison of this theoretical lower bound benchmark and the 

variance obtained. However, the minimum variance benchmark is not so easy to apply 

to multivariable processes where an interactor matrix is needed [8]. Other benchmarking 

techniques were developed, such as linear quadratic Gaussian (LQG) benchmark which 

was proposed as an alternative to the minimum variance benchmark by Huang and Shah 

in 1999 in their textbook "Performance Assessment of Control Loops" [3, see 

Huang&Shah 1999]. The LQG method is a suitable technique for assessing the control-

ler performance because it minimizes the process output variance and takes the input 

variability also into account [1]. Control performance assessment techniques based on 

user-specified benchmarks and model-based benchmarks have also been developed. In 

addition, multivariate MVC techniques have been proposed. [6] 

Besides researchers, also plants are interested in the assessment of controllers. Because 

the performance of the control system and the nominal efficiency usually degrade after 

the implementation, the investment of a new control system does not pay itself back as 

quickly as expected. In 2008, Bauer and Craig published a survey focused on the eco-

nomic performance assessment of APC and both control system suppliers and users 

were interviewed to get a view of the role of the control performance assessment in 

general. Also several APC solution providers and the usage and recognition levels of 

different APC solutions were rated. [4] Many of the major APC suppliers provide a tool 

for performance monitoring and assessment of the control system. Some of the tools are 

based on web-based monitoring and some suppliers provide regular diagnostics and 

auditing services. Some of the available tools are not designed for assessing the perfor-

mance of the APC systems but the plant's lower control loops in the distributed control 

systems (DCS). The more detailed operational principles of these performance assess-

ment tools are not available. [9-11] 

Control performance assessment techniques have been studied in 2012 by Janne 

Oksanen in his master's thesis "Performance Assessment of the Multivariable MPC 

Controller" [12]. The aim of his thesis was to develop a reliable and accurate application 

for computing the technological and economic performance of the MPC controller. He 

has done a wide research of different performance assessment techniques in order to 

select suitable methods for the application designed and applied to the experimental part 

of his work. The first selected method was based on an analysis of historical process 

data and the second was a model-based design-case approach. The methods were ap-

plied for computing the technological and economic performance indices and various 

simulation cases were used to examine the operation of the developed application. Sev-

eral applications, proprietary of Neste Jacobs, were used in the work. The software in-

cluded NAPCON Controller, ProsDS simulator, NAPCON calculation frame, Display 

Viewer, and Database Server and Explorer.  
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1.2 Known challenges 

Since the model predictive control is the selected multivariable control method in many 

process industries, there are many researches about assessing the performance of MPC. 

Many performance assessment techniques can easily be applied when monitoring a uni-

variate process. These techniques are not applicable to multivariable processes because 

of the relatively complicated process delay structure which is needed for the creation of 

the complete interactor matrix that the minimum variable control techniques require. In 

addition to the complexity of a multivariable controller performance assessment, MPC 

involves model errors, constraints, optimal target settings, disturbance changes and con-

troller tuning. The performance monitoring of MPC is mostly an unsolved problem be-

cause of the MPC complexity. [3, p. 22; 8] 

Though this particular subject was recently in 2012 studied by Oksanen [12] and the 

created application worked as designed, there are a couple of deficiencies in his work 

that need to be solved. One problem was related to the historical benchmarking. When 

the simulations included an unknown disturbance, the historical benchmark did not re-

act as supposed and became biased. Other improvement to earlier application is related 

to the generalization of the implementation and deployment of the performance assess-

ment tool. In particular, the economic performance is usually very case-specific. A sim-

ple solution to generalize the attainment of economic performance is required. 

1.3 Aim of this work 

The aim of this thesis is to implement a tool for assessing the technological and eco-

nomic performance of a multivariable, model-predictive controller which is in this case 

NAPCON Controller developed by Neste Jacobs. This thesis focuses on the perfor-

mance assessment of the controller and it does not cover the diagnosis phase of the con-

trol performance monitoring. 

This work is a continuation to the master's thesis of Janne Oksanen done in 2012. He 

has done a research of control performance assessment techniques and selected the most 

suitable for the application developed in his work. In this work, a research of the recent 

control performance assessment methods is carried out and the recently published con-

trol performance assessment techniques are introduced. They are compared to the meth-

ods selected in Oksanen's work and considered, if they would assess the performance of 

the controller more suitably. In addition, solutions to problems such as the biasing of the 

historical benchmark are tried to be found.  

In addition, this work needs to consider aspects related to the automation system, the 

industrial network and the information technology in order to create a software imple-

mentation of the performance assessment tool for multivariable, model-predictive con-

troller. Measurement data from the field is involved for assessing the controller's per-
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formance and therefore discussion about automation communication protocols as well 

as information modelling aspects is required. User interfaces and their basic design 

principles are studied for delivering the received information clearly.  

Testing of the tool is carried out with various simulations and assessment of an actual 

MPC controller's performance. The function of the performance assessment tool is ex-

amined with simulated process data and thereby the operation of the tool is verified. 

1.4 Content of the work 

The literature part of this work includes Chapters 2 and 3. First in Chapter 2, the model 

predictive control is presented. The basic principle is explained and the subjects affect-

ing the performance of MPC are presented. In Chapter 3, the performance assessment of 

MPC is discussed. The performance assessment technologies are introduced generally 

and recent publications and their results are presented. Control performance assessment 

methods based on historical and design-case benchmarking are introduced more thor-

oughly. 

Chapters 4 and 5 introduce the aspects that are to be considered before the implementa-

tion part of this work, when designing the performance assessment tool. Chapter 4 pre-

sents the automation information technology aspect of the work which is required in 

order to implement the performance assessment tool. Communication protocols in au-

tomation and OPC UA information modelling are introduced besides the different au-

tomation levels and data transfer from the plant to the actual controller. In order to pre-

sent the received performance information clearly, graphical user interfaces (GUI) and 

their basic design methods are studied. In Chapter 5, aspects related to the general func-

tionality of the program are introduced. The current status of the subject is presented 

along with the required development. In addition, the selected performance assessment 

techniques and their advantages and disadvantages are shortly discussed. 

The experimental part of this work consists of Chapters 6, 7 and 8. Chapter 6 contains 

the implementation part of the work. The software environment related to the thesis is 

introduced along with the new object types, the performance calculation application and 

the graphical user interface. The test environment, the test arrangements and the ob-

tained test results are presented in Chapter 7. In Chapter 8, the feasibility of the perfor-

mance assessment tool and the reliability of the test results are concluded. Finally, the 

future aspects are discussed in Chapter 9 and the essential content and results of the 

work are summarized in Chapter 10. 
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2. MODEL PREDICTIVE CONTROL 

Advanced process control (APC) has been adopted by the operating plants in order to 

meet a variety of challenges, such as the focus on environmental protection and the 

price pressure of raw materials, which the process industries have to meet nowadays in 

order to be competitive [1]. The development of model predictive control (MPC) in the 

1970s has been a major innovation and since then MPC has been regarded as the most 

popular advanced multivariable control strategy [2].  

Generally, MPC can be referred to as a class of control algorithms which predict the 

future process outputs based on the process model and compute a sequence of future 

inputs attempting to optimize the future process behaviour. At each control interval, the 

calculation is repeated and only the first input of the computed control sequence is ap-

plied to the system. [13] MPC executes control actions that often enable an improved 

process performance that even an experienced operator cannot achieve [14].  

A model predictive controller is part of a multi-level control hierarchy in modern pro-

cessing plants [13]. A general plant control hierarchy and approximate control intervals 

are presented in Figure 2.1. 

 

Figure 2.1. General control hierarchy and approximate control intervals [15]. 
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At the top of the control structure, there is an optimization level which controls the 

plant-wide planning and scheduling and determines optimal steady-state settings, such 

as target and limit values. The optimization interval varies from hours to days. The in-

formation is delivered from the optimization level to a model predictive controller. The 

decisions from upper level functions to targets and limits in MPC are not constant, and 

they will change over time based on priorities and economic objectives. The control 

interval of the MPC can be generally expressed in minutes. Below the MPC is the regu-

latory control level in a cascade arrangement. Typically, the manipulated variables of 

the MPC are the set points of lower level basic controllers, such as PID controllers, 

which are part of the plant's distributed control system (DCS). The sampling period of 

the DCS is typically expressed in seconds and thus it executes at a shorter sampling 

interval than the MPC. [13; 15] 

The way that MPC solves the process control problems has brought MPC wide popular-

ity, especially in oil refining and petrochemical industries. MPC is the only control 

methodology that is developed in industry and accordingly, it has affected the industrial 

control engineering significantly. The methodology of MPC has various advantages 

when compared to other control techniques. For example, it is possible to be used to 

control a great variety of processes and its basic formulation allows extension to multi-

variable processes with almost no major modifications. Also operational and economic 

criteria can be taken into account in the formulation of objective function. [3, pp. 97-99] 

The basic principle of the control methodology of MPC is presented in Section 2.1. 

There are different control objectives that can be considered for determining that the 

MPC is performing well. Since the controller performance can deteriorate due to vari-

ous causes the subjects associated with the performance of MPC are discussed in Sec-

tion 2.2 along with the control objectives. 

2.1 Basic principle 

The basic methodology of a model predictive controller is characterized by a strategy 

referred to as a receding or moving horizon control, where the control action is attained 

by solving a finite horizon optimal control problem at each sampling instant. The opti-

mization is carried out based on a process model. As a result of the optimization, an 

optimal control sequence is obtained and the first control action is executed. [3, p. 97] 

The basic principle of the model predictive control strategy is illustrated in Figure 2.2.  
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Figure 2.2. The principle of model predictive control strategy, adapted from [3, p. 98]. 

The future outputs of the process are calculated using the process model and they are 

predicted over a prediction horizon P. The time interval when it is desired that the pro-

cess variable starts to follow the reference is defined by N. The predicted output values 

depend on the past inputs and outputs besides the future control actions. The future con-

trol actions are calculated over a control horizon M. A set of future inputs is obtained by 

solving the optimization problem. By minimizing the determined criterion, the future 

outputs are tried to keep as close as possible to the reference trajectory which defines 

the desired process outputs. The outputs aim to follow the reference trajectory during 

the time that is determined by N and P. If there are constraints involved, the model is 

nonlinear or the criterion is not quadratic, an iterative optimization method needs to be 

used. Otherwise an explicit solution can be attained. [3, pp. 97-100]  

After the determination of the future control actions, the first input of the set is applied 

to the system while the rest of the obtained control sequence is rejected. This is because 

at the next sampling instant the next value of the output is actually known and the calcu-

lation of the future outputs can then be repeated with knowledge of this new value. In 

addition, it is possible that the reference trajectory has changed over the following sam-

pling instants. The new control sequence is calculated with the new available infor-

mation, using the receding horizon strategy. [3, p. 98] 

Usually the optimization problem to be solved is an objective function which is mini-

mized. Generally, the objective function J for a multivariate model predictive controller 

can be expressed as 
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𝐽 = ∑[𝑌̂(𝑡 + 𝑗) − 𝑊𝑡(𝑡 + 𝑗)]
𝑇

𝑄[𝑌̂(𝑡 + 𝑗) − 𝑊𝑡(𝑡 + 𝑗)]

𝑃

𝑗=𝑁

 

 

 

        + ∑[𝛥𝑈̂(𝑡 + 𝑗 − 1)]
𝑇

𝑅[𝛥𝑈̂(𝑡 + 𝑗 − 1)] 

𝑀

𝑗=1

,    (1) 

where 𝑌̂(𝑡) is the vector of the predicted output values, 𝑊𝑡(𝑡) is the vector containing 

the reference trajectory and 𝛥𝑈̂(𝑡) is the vector of the changes in future input values. 

The weight matrices Q and R represent the relative importance of each output and input. 

[6] 

Usually there are constraints in the actual process that restrict the behaviour of con-

trolled or manipulated variables. Therefore the solution to the objective function in 

equation (1) is also restricted. In almost every actual model predictive controller the 

constraints are considered and the objective function in equation (1) is minimized sub-

ject to 

 𝑌𝑚𝑖𝑛(𝑡) ≤ 𝑌(𝑡) ≤ 𝑌𝑚𝑎𝑥(𝑡) , (2) 

 𝑈𝑚𝑖𝑛(𝑡) ≤ 𝑈(𝑡) ≤ 𝑈𝑚𝑎𝑥(𝑡) , (3) 

 𝛥𝑈𝑚𝑖𝑛(𝑡) ≤ 𝛥𝑈(𝑡) ≤ 𝛥𝑈𝑚𝑎𝑥(𝑡) , (4) 

where the input changes are computed as 

 𝛥𝑈(𝑡) = 𝑈(𝑡) − 𝑈(𝑡 − 1) . (5) 

Ideally the output constraints are direct to the actual output. However, the controller 

does not directly constrain the actual output due to the unpredictable disturbances. 

Models are therefore essential in MPC because only the predicted output can actually be 

constrained. [16, p. 108]  

2.2 MPC performance 

The main goal of the control systems is to maximize profits by transforming raw mate-

rials into products while the requirements, such as product quality, safety and environ-

mental specifications and operational constraints, are met. After a thorough implementa-

tion and tuning, the controller is usually performing as designed and required. Though 

the controller performs well initially, the performance can gradually or even abruptly 

decrease over time due to various causes, such as changed process conditions or dis-

turbances that limit the achievable performance. [3, p. 1; 6] The performance of MPC 

may also be limited due to model uncertainty as well as possible conservative tuning 

[2].  
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Although MPC usually automates some tasks that were previously handled by the oper-

ator, it is however required that the operator has confidence to the MPC system in order 

to allow the MPC to perform as specified. It is possible that the MPC is turned off if the 

control actions are not understood and then not switched back on anymore. Thus, hu-

man factor may have an effect on achieving the complete performance from the MPC. 

An operator, who trusts the MPC and knows how it is supposed to act and what the con-

trol objectives of the MPC are, is likely to keep the MPC running. Correspondingly, the 

operator is able to identify the situations where the MPC is underperforming. [14] 

2.2.1 Control objectives 

Determining the process variables and their interaction with each other is a major part of 

the MPC design and implementation [15]. Process inputs include manipulated variables 

which are the variables that the controller adjusts and disturbance variables that are not 

controllable. [13] To implement MPC successfully, the configuration of DCS regulatory 

controls is to be done thoroughly. As presented in Figure 2.1, MPC is in close coopera-

tion with the lower regulatory control level. The decisions related to the process input 

variables are made based on the expected constraints, qualitative knowledge of the ex-

pected disturbances and considerations of robustness. Additionally, the determination of 

the controlled variables of MPC is not straightforward and it cannot be done only based 

on the selection of the available measurements. The available measurements may not be 

sufficient and additional sensors would be required. In addition, every variable that 

would need to be controlled may not be available frequent enough. [15] In addition to 

the importance and priority of different variables, the variable types are to be deter-

mined. There may be ideal target values of manipulated or controlled variables which 

are tried to be reached if possible. Typically, there are also constrained variables in 

MPC that are not allowed to exceed specified limits. [13] 

In order to retain feasible control with constraints, there are two basic types of con-

straints that are used in industrial MPC technologies. Constraints of manipulated varia-

bles often represent physical limitations, such as valve position, that cannot be violated. 

They are referred to as hard constraints that should never be violated. Constraints of 

controlled variables do not usually represent that kind of hard physical limits and they 

often represent desired operation ranges instead. These constraints are treated as soft 

constraints for which some violation may be allowed. Typically, the violation is mini-

mized using a penalty in the objective function. Using a set point approximation is an-

other way to handle soft constraints. The operating principle of a set point approxima-

tion of a constraint is that it penalizes deviations above and below the constraint. [13; 

17] 

The soft constraint formulation is not always sufficient because then all the constraints 

are violated at some scale based on the relative weights. Some constraints are more im-

portant than others and they should not be violated. Therefore, priorities are often de-



10 

 

termined for constraints in order to satisfy the ones with higher priority values.  Howev-

er, the optimal operating points are usually located near the constraints, and when pos-

sible the variables are operated at the presence of the constraints. The degrees of free-

dom of the process are an essential part of optimizing the process operations. The opti-

mization is achieved by manipulating the degrees of freedom while satisfying the oper-

ating criteria. [13; 18] When the number between the controlled and manipulated varia-

bles is suitable and there are extra degrees of freedom available, optimization is possible 

and the process can be moved closer to an optimal operating point. When there are as 

many manipulated variables as controlled variables, a unique solution is attained. Some-

times some valves may become saturated or lower level control action is lost and there 

are more controlled variables than manipulated variables available. Then it is not possi-

ble to achieve all control objectives. [13]  

2.2.2 Controller tuning 

The performance of the controller may be limited due to inadequate controller tuning. It 

is possible that the controller tuning is left unchanged after the design and implementa-

tion, although there may be issues such as changes in the characteristics of the used in-

put product or modifications of operating points that decrease the controller perfor-

mance over time. [3, p. 9] Tuning of a model predictive controller is however not ad-

vised to be done on a day-to-day basis. To tune the MPC parameters, one needs to have 

good process knowledge besides a full understanding about the MPC control algorithm 

and the effect of the parameters to be tuned on the controller performance. Although, 

some of the variable constraint limits may be commonly changed in the daily opera-

tions, which can sometimes improve the controller performance. Nonetheless, under-

standing the interaction between constraints, process variability and objective functions 

is essential for constraint tuning. [2] 

Generally, there are many tuning parameters for a basic model predictive controller. The 

fundamental parameters of the MPC are the prediction horizon, the control horizon and 

the cost weights for set point tracking and input changes. There are also additional tun-

ing parameters that more advanced model predictive controllers have, for example pa-

rameters related to reference trajectories and output funnelling. The appropriate parame-

ter values for achieving the desired controller performance are not easy to find, although 

there usually is a clear description of how each parameter is meant to affect the MPC 

formulation. [14] In order to achieve a good control performance, some guidelines for 

appropriate values of MPC tuning parameters performance have been obtained based on 

experience of applying MPC to different processes. The guidelines provide only a basis 

for the tuning of a model predictive controller, and in practice the parameters are often 

determined by trial and error. Because the controller parameters depend on each other, 

this can be really time-consuming. [3, p. 100]  
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Selecting the weight factors of each input and output variable and determining the 

weighting matrices Q and R affect the operation of the controller. An aggressive control 

is received when the weighting of input changes is decreased and greater changes in 

input variables are allowed. Thus, a more aggressive control makes the control response 

faster. On the other hand, increasing the weights of inputs in weight matrix R makes the 

control more damped and conservative. It is possible to weight different controlled vari-

able errors with separate coefficients of each controlled variable in weight matrix Q. 

This enables that more important controlled variables, such as quality variables, can be 

emphasized with a greater weight factor. [3, p. 100] 

The time interval in which it is desired that the process output follows the reference 

trajectory is defined with N and P in equation (1). Typically value N is chosen to be 

zero. However, if the system contains any time delays there is no reason to determine 

the value of N smaller than the time delay. The prediction horizon P is usually chosen 

approximately the same as the output settling time. The control actions will be more 

aggressive with a smaller value of P. The length of control horizon M should be less 

than prediction horizon. Typically, the value is a one-half or one-third of the prediction 

horizon in a process with large time constants, such as chemical processes. The control 

is more aggressive with a large control horizon. In order to assure the stability of infi-

nite horizon MPC, the control horizon is supposed to be greater or equal when com-

pared to the number of unstable poles in the process. [3, p. 100] However, using the 

values of the prediction horizon and the control horizon for the controller tuning is not 

highly recommended because the system behaviour is quite insensitive to changes in 

both parameters over a wide range of values. Consequently, the weight matrices Q and 

R are preferred in the controller tuning to affect control performance. [19] 

2.2.3 Process modelling 

The fundamental part of MPC is the model, which generally consists of two parts: pro-

cess model and disturbance model. The success of using MPC depends greatly on hav-

ing reasonably adequate process models. Typically, a process model represents relation-

ship between input and output and a disturbance model is used to present either disturb-

ance or simply to approximate model-plant mismatch. [14; 16, pp. 103-104] The param-

eters of the model are practically never exactly known and a model-plant mismatch ex-

ists. For example, the time delay of the process may be time variant due to changing 

flow rates. Thus, the presence of a model-plant mismatch causes a difference between 

the designed and achieved performance. [20] There is awareness of the imperfection of 

models and it is possible to overcome some effects of poor models with feedback, but 

the feedback may be late to be truly effective [17]. 

Most industrial processes are inherently nonlinear. However, most industrial MPC ap-

plications use linear process models. The nonlinear processes can be approximated by 

fixed linear models but only near the operating point. The mismatch does not however 
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often cause much degradation in the performance of MPC. [17; 20] Besides changing 

operational objectives of the plant, there are various disturbances in the process and 

consequently the process variables do not always operate at the mean operating points 

[2]. A commonly used approach for applying a linear MPC to nonlinear processes is a 

gain scheduling technique which means that the process operations are divided into dif-

ferent operating regions. The process model parameters are determined for each operat-

ing region separately and as the process operations change, the MPC is updated to use 

the model parameters of the new region. [14] 

There are some difficulties related to the identification of the models besides types of 

used models. Usually in order to identify the process models, well designed experiments 

are run for collecting the data needed for the identification. However, a common prob-

lem with this approach is that the experiments may cause perturbation in the process. 

Sometimes some disturbance in the process is acceptable when the performance of the 

MPC is supposedly increased. In order to maintain a desired performance over time, a 

re-identification of models may also be required and therefore simple identification 

methods would promote the maintenance of the MPC. Using complex identification 

software and models may lead to disregard of the model adequacy. Although the use of 

simple model form does not provide the optimum process model, it reduces the risk of 

large model errors because of the possible user unfamiliarity with higher order models. 

[14] Usually, more complex models are more expensive to develop but they provide a 

more specific prediction of the process behaviour [13]. 
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3. MPC PERFORMANCE ASSESSMENT 

The main objective of control systems is to produce maximum returns while meeting 

the requirements, for example quality specifications of the product or safety and envi-

ronmental regulations. The control system is carefully designed and tuned, and after a 

thorough implementation the system usually performs at its nominal efficiency. Howev-

er, the performance of the control system usually decreases over the time although the 

control system performs well initially. The degradation can be a result of many different 

causes, such as changing process conditions, a change in the plant equipment or disturb-

ance characteristics, or lack of maintenance. [3, p. 1; 5; 6] 

Recently, there has been both academic and industrial interest in the development and 

application of techniques for analysing the performance of control systems [21]. The 

aim of control performance monitoring is to give procedures for evaluating the perfor-

mance of the control system and to provide information to the plant personnel of how 

the process is operating. The term monitoring refers to the action of detecting changes 

in a statistic that presents the control performance over time whereas the term assess-

ment means the action of evaluating the statistic at a certain point. However, both of the 

terms are used in a rather similar meaning in the literature. Control performance moni-

toring and assessment are essential to make sure that the process control is effective and 

that the specified performance targets and response characteristics are achieved by the 

controlled process variables. In addition, profitable and safe operation of the plant is a 

significant and desirable objective. [3, p. 11; 6] Along with other control systems, also 

an increasing interest in the performance monitoring and assessment of MPC has ap-

peared because of the popularity of the MPC in the processes. Although the monitoring 

of MPC has developed since the early applications, there is no consistent and standard 

solution to the MPC performance monitoring and benchmarking. [14]  

The performance of MPC can be evaluated from various aspects. First in this chapter, 

two different approaches for assessing the MPC performance are introduced. After that, 

the techniques for the performance assessment of MPC are presented. In Section 3.2.1, 

the ideas of basic control performance assessment methods are outlined generally. In 

Section 3.2.2, recent publications related to the control performance assessment tech-

niques are studied and some new techniques are introduced. Finally, the CPA tech-

niques selected and applied earlier in Oksanen's work [12] are presented. 
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3.1 MPC performance approaches 

The performance of model predictive control can be approached from different aspects. 

In order to get a complete presentation of both process and controller state and therefore 

more thorough results on control performance assessment, both technological and eco-

nomic performance of MPC needs to be considered. 

The technological performance of MPC concentrates on the functionality of the control-

ler, how well the controller meets the requirements that are given present, in history and 

in future. The economic performance presents the financial profit of the process based 

on the raw material and product prices. It can be considered that the economic perfor-

mance of the controller is at the desired level if the technological performance is as 

specified and the control objectives are met. [12] 

3.1.1 Technological performance 

The technological performance can be considered as how the controller itself is per-

forming according to the given requirements and control objectives as well as to con-

ventional control performance aspects, such as control robustness and process variabil-

ity. The technological approach is closely related to the appropriate controller tuning 

and adequate process models which determine the technological operation of the model 

predictive controller. Subjects that can be considered to be related to the technological 

performance of MPC are presented more closely in Section 2.2 where the MPC perfor-

mance is discussed.  

Robustness related difficulty is connected to the open-loop nature of the MPC optimal 

control problem and the indirect feedback that the receding horizon structure brings 

[17]. Control system is generally defined to be robust when the process stability is 

maintained and the determined performance specifications are achieved over an uncer-

tainty range. This means that a robust control system meets these requirements and 

specified performance criteria while process conditions change. [19]  

In the most industrial processes, uncertainty is a basic characteristic. Significant process 

disturbances may be due to several causes such as flow rate and temperature variations 

or feed quality fluctuations. The essential goal of the process control is to reduce the 

variability and thereby increase the operational performance. [22] Stochastic perfor-

mance criteria generally contain the variance of the controlled variable or control error 

and criteria that are directly related to process performance, product quality and energy 

or material consumption. [3, p. 4; 21] Figure 3.1 illustrates the reduction of the variance 

compared to the base case with the original variance. 
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Figure 3.1. The improvement when the variance is reduced and the process can be op-

erated closer to the specification limit, adapted from [4]. 

Improved control actions aim to reduce the variance of the quality variables or key pro-

cess variables. The decreased variance allows the mean operating value to be moved 

closer to the limit, such as a quality specification or an operation constraint, without an 

increase in the frequency of limit violation. [22] 

3.1.2 Economic performance 

The reduction of the process variability is essential also for the economic performance 

of MPC. For major industrial processes, the most valuable operating strategy is to oper-

ate as close to the limits as possible in order to improve the process profitability. When 

the operating point of the process can be shifted closer to the limit and the process can 

be operated in the new operating point, the economic benefit and the profit increase are 

realized by an increase in the throughput and production. If the quality of the product 

remains unchanged, the additional quantities can be sold at the same price. [4; 22] Fig-

ure 3.2 presents an example of the profit increase when the variance is reduced. 

 

Figure 3.2. The profit increase with reduced variance, adapted from [3, p. 5]. 
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Zhao et al. [22] have proposed that the expected economic performance is possible to 

calculate with the performance function 𝜗(𝑥) and the probability density function 𝑓(𝑥) 

of the quality variables, if the functions are available. The relationship between the 

steady-state economic performance and mean operating point is determined through this 

performance function. The expected performance can then be expressed as  

 
𝑃𝑒𝑐𝑜 = 𝐸[𝜗] = ∫ 𝜗(𝑥)𝑓(𝑥)𝑑𝑥

𝑥

 , 
 (6) 

where Peco is the expected performance, 𝐸[∙] is the expectation operator and x is the 

location of a quality variable. An economic performance objective function includes 

some key or quality variables which are functions of the operating conditions. For ex-

ample, consumption rate of raw materials and product rate can be considered as quality 

variables and the economic performance function can be developed based on the quality 

variables of the process which affect the economic performance. In general, the eco-

nomic performance function is expressed as  

 

𝜗 =  ∑ 𝑐𝑦
(𝑖)

𝑦𝑖

𝑃

𝑖=1

− ∑ 𝑐𝑢
(𝑗)

𝑢𝑗  

𝑀

𝑗=1

, 
 (7) 

where 𝑐𝑦
(𝑖)

 and 𝑐𝑢
(𝑗)

are respectively the economic performance coefficients of ith output 

and jth input variables. The economic performance coefficients can be for example the 

market prices or demands of products. [1; 22] 

Besides an increase in more valuable products, reduced variance of the controlled varia-

bles increases the quality consistency of the products and therefore the quality givea-

ways are also reduced. In addition, energy consumption is a major part of the economic 

performance of the process control. The energy consumption can significantly be re-

duced when the performance of the controller is as required and the appropriate process 

variables are adjusted and controlled. Reduced variability also improves the process 

stability and therefore ensures that the specifications of the product are met along with a 

safer process operation. [4] 

3.2 Performance assessment techniques 

The control performance can be specified by different criteria and an approach is to di-

vide the criteria to deterministic and stochastic performance categories. Deterministic 

performance criteria contain the traditional performance measures of controller in the 

case of deterministic disturbances, such as set point changes. The measures include for 

example rise time, settling time, control error, overshoot and offset from set point. [3, p. 

3] However, the inputs of a control system mostly vary at random and therefore the out-

puts of the performance measure will also be stochastic. Thus, statistical analysis tech-
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niques should be used for detecting changes in the controller performance. [6] The vari-

ance of the output error is the most widespread stochastic criterion considered for con-

trol performance assessment (CPA) because it usually is directly related to process per-

formance, product quality and profit. In many applications, it is efficient to use both 

deterministic and stochastic criteria, which is typical in the optimal and model predic-

tive control. [3, p. 4; 21]  

CPA techniques are generally based on the comparison of the current controller perfor-

mance and the ideal controller performance as a benchmark value, meaning that certain 

performance metrics are set in relation to what can be achieved by an optimal controller 

or a controller which has the desired properties. Consequently, this comparison is called 

the control performance index (CPI) which measures the performance of the controller. 

CPI is generally defined as 

 
𝜂 =

𝐽𝑜𝑝𝑡

𝐽𝑎𝑐𝑡
 , 

 (8) 

where Jopt  is the ideal, optimal or desired value for a given performance criterion, which 

typically is the variance, to be minimized and Jact is the actual value of the criterion de-

termined from the actual process data. When using perfect or optimal control as a 

benchmark, the control performance index is in the scale 0…1. Values close to 0 indi-

cate that the control performance is poor, whereas values close to 1 mean better control 

performance. When a more realistic or a less severe user-specified benchmark is used, it 

is possible that the performance index reaches values higher than 1, which indicates that 

the current controller performs better than required and Jact is smaller than Jopt with giv-

en performance criterion. [3, pp. 13-14; 21] 

3.2.1 CPA techniques in general 

Control performance assessment (CPA) is a relatively young field of research as major 

of the theory and applications were developed in the 1990's. Various CPA techniques 

have been proposed and many of them are based on the benchmarking technique pre-

sented earlier in equation (8) in order to deliver a metric for assessing the control per-

formance. Based on the type of the selected benchmarks, the stochastic CPA approaches 

can typically be classified into minimum variance control (MVC)-based and user-

specified benchmarking. In addition, advanced and model-based approaches of CPA 

methods, including linear quadratic Gaussian (LQG)-based and model predictive con-

trol (MPC)-based benchmarking, have been proposed. [3, p. 19; 21] 

The most commonly used metric for assessing the performance of a control system is 

MVC benchmark proposed by Harris [7] in 1989 and the MVC benchmark is therefore 

also known as the Harris index. Technique is based on the comparison of the perfor-

mances of the actual control and the minimum variance control. Thus, the performance 
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of the actual controller indicates how far the output variance is of the minimum variance 

which determines the theoretical lower bound benchmark. The MVC-based benchmark-

ing is easy to apply for assessing the control performance in a univariate case and the 

main reason for the popularity of the Harris index is its relative simplicity. Though, the 

application of the minimum variance benchmark in a multivariable process is not a sim-

ple task because of the interactor matrix which is required in the calculation of the MVC 

benchmark. The knowledge of the interaction between all variables including delay 

terms mean that the requirements and the computational burden of the technique in-

crease considerably. Methods for calculating the interactor matrix based on the Markov 

matrices and then using the MVC benchmark for multivariable controllers have been 

proposed along with other performance assessment techniques based on the minimum 

variance, which are known as generalized minimum variance control (GMVC)-based 

methods. For example, Huang et al. [8] proposed a method without the knowledge of 

the interactor matrix or Markov matrices. [3, p. 19, 163; 21] 

An alternative to the MVC benchmark was proposed by Huang and Shah in 1999 in 

their textbook "Performance Assessment of Control Loops" [3, see Huang&Shah 1999]. 

They proposed a LQG-based benchmark which is based on the LQG trade-off curve. 

The trade-off curve, also referred to as the performance curve, displays the controlled 

variable's minimal achievable variance against the variance of the manipulated varia-

bles. This achievable performance limit can be used as a CPA benchmark. When the 

controller operates near to this limit, it can be considered to be working close to the op-

timal performance. [6] LQG benchmark is equal to the MVC benchmark when the 

weights of the manipulated variables are set as zeros. The problem of using LQG 

benchmark is also similar to the MVC benchmark because the knowledge of the process 

and disturbance models or their relative information as Markov parameters is required. 

[21] 

Especially the performance assessment of model predictive controllers is a field of in-

terest because of the major role that MPC has as a multivariable controller [3, p. 21]. In 

the case of model predictive controllers, the drawback of LQG method related to the 

need of models for computing the performance curve is not a problem because the pro-

cess models are available. However, when the LQG method is applied to MPC envi-

ronment, it has been demonstrated by Julien et al. [23] that the performance curve of 

MPC is significantly above the LQG benchmark. In addition, the results for a univariate 

model predictive controller and the issues related to the interactor matrices in multivari-

ate cases remain unresolved. Another model-based approach for performance assess-

ment is a method proposed and recommended amongst other by Shah et al. [24]. The 

technique is called design-case benchmarking and it evaluates the controller perfor-

mance based on the criterion similar to the actual design objective. This performance 

value is compared to the actual performance. [25] The design-case benchmark is intro-

duced more detailed in Section 3.2.4. Also a performance measure similar to design-
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case benchmark has been proposed by Zhang and Henson [26]. Their technique com-

pares the expected and actual process performance. When controller actions are imple-

mented on the process model, the expected performance is attained.  

The benchmarking methods formerly presented compare generally the performance of 

the current controller with the benchmarks that are theoretically achieved. Then the ac-

tual control performance may seem low although the controller is working as specified. 

These more realistic and achievable performance indices are referred to as user-

specified benchmarks. It is often suitable to compare the current control performance to 

performance considered to be acceptable. This kind of performance assessment ap-

proach is referred to as historical benchmarking which is in the category of user-

specified benchmarks. [3, p. 20; 21] The historical benchmark technique is presented 

more detailed in Section 3.2.3. 

3.2.2 Recent CPA techniques 

Over the last few years since the work of Oksanen [12], some research has been done on 

control performance monitoring and assessment. Many of the recently proposed meth-

ods are based on the main techniques presented earlier. Methods based on the minimum 

variance approach have been proposed and a deficiency of the conventional methods 

has been presented. According to Li et al. [27] and Yan et al. [28], the existing methods 

do not provide a complete knowledge of the control performance when focusing on the 

comparison of traces or determinants of the output covariance matrices, and the results 

may be misleading. A method based on the dissimilarity analysis was proposed by Li et 

al. The technique is based on the analysis of the dissimilarity among the hyper-

ellipsoids which are defined by different covariance matrices. They proved that the ei-

genvalues of the transferred covariance matrices determined the similarity of the origi-

nal covariance matrices. A new control performance index 𝜂𝐷 that they proposed can be 

expressed as 

 
𝜂𝐷 = 1 −

∑ |𝜆𝑗
𝑎𝑐𝑡−𝜆𝑗

𝑚𝑣|𝐾
𝑗=1

𝐾
 , 

 (9) 

where the jth eigenvalues of transformed covariance matrices are 𝜆𝑗
𝑎𝑐𝑡 and 𝜆𝑗

𝑚𝑣and  K is 

the number of variables. If the actual control performance is close to the performance 

achieved with minimum variance control, the value of index 𝜂𝐷is close to 1. A similar 

control performance index was also proposed for historical benchmarking, which uses 

the difference of the eigenvalues of transformed data covariance matrix of reference 

period and monitoring period. [27] Yan et al. [28] have proposed a technique for multi-

variate CPA and control system monitoring which is based on a hypothesis test on out-

put covariance matrices. They proposed that the equality of the output covariance matri-

ces derived from the outputs of control system should be assessed with a hypothesis 

test. They also proposed a new index which is more sensitive to the changes in the mul-
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tivariate covariance structure of the control system. The statistic of the control perfor-

mance can be calculated through the proposed test.  

Techniques which indicate the potential improvement on the economic performance of 

the controller have also been represented. Cai et al. [1] and Duan et al. [29] have pro-

posed techniques to solve the problems related to the conventional LQG approach 

which takes both controlled and manipulated variables into account and is therefore a 

suitable basis for economic assessment. Cai et al. have proposed a design scheme where 

the idea is the integration of the economic performance design (EPD) using iterative 

learning control (ILC) and online MPC. The method is however designed for updating 

the desired operating condition and the tuning parameter for optimal MPC performance 

and not directly for assessing the control performance. An alternate, modified LQG 

benchmark for economic performance assessment of MPC has been proposed by Duan 

et al. They have presented that the achievable region of the control performance lies 

above the LQG performance curve and therefore there exists economic potential. Ac-

cording to Duan et al., the problem related to the conventional LQG benchmarking is 

related to the unbalanced distribution of the discrete points in performance curve, where 

points of lower part, representing the output variance, lie far away from each other lead-

ing to a less accurate benchmark. They proposed changing the LQG objective function 

into a new form  

 𝐽𝐿𝑄𝐺 = 𝐸[𝑌𝑇𝑄𝑌] + 𝑒𝜆𝐸[𝑈𝑇𝑅𝑈] ,  (10) 

where the weighting parameter 𝜆 is assumed to be a function of t. The proposed method 

rebuilds the discrete points and is assumed to give a more reliable assessment result 

than the conventional LQG benchmark. [29] 

Using the controller design objective as a benchmark assumes that the existing process 

model is valid. This is considered as a drawback by Sun et al. [30] who have proposed a 

method based on the model residual monitoring. The existing control performance as-

sessment methods do not provide direct information of the reasons behind the perfor-

mance degradation. The internal model is an important part of the MPC and it can there-

fore greatly affect the control performance. Sun et al. have proposed a model quality 

index (MQI) which is a minimum variance benchmark for the model residuals and is 

attainable from closed-loop data. They have stated that it would be beneficial to have an 

assessment method to provide model mismatch information using only closed-loop data. 

It is pointed that the model quality is directly related to the model residual and that a 

residual sequence resembling white noise usually indicates a good model. Sun et al. 

have demonstrated that the disturbance innovations 𝑒𝑜(𝑘) can be estimated from the 

residuals 𝑒(𝑘) and can be obtained from the closed-loop data. A model quality index 

with respect to the MPC control objective can be expressed as 
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𝜂𝑀𝑄𝐼 =

∑ 𝑒𝑜(𝑘)𝑇𝑄𝑒𝑜(𝑘)
𝑃𝑄𝑀𝐼
𝑘=1

∑ 𝑒(𝑘)𝑇𝑄𝑒(𝑘)𝐾
𝑘=1

 , (11) 

where Q is the weight matrix of the outputs and PQMI is the data length of performance 

index assessment. If the model quality index 𝜂𝑀𝑄𝐼 is close to 1, it means that the dis-

turbance innovations are close to the residuals and that the model is near perfect. The 

advantage of using a separate MQI is that it indicates how adequate the model is and 

therefore enables a more efficient control performance monitoring. [30] 

3.2.3 Historical benchmark 

When assessing the performance of the controller, the techniques based on the theoreti-

cal minimum benchmarks may seem unachievable and sometimes unrealistic. Therefore 

it is often reasonable to compare the current performance of the controller to a reference 

value achieved when the controller was performing as required. The actual MPC per-

formance can be measured using plant data when calculating the cost function expressed 

as 

 𝐽𝑎𝑐𝑡 = 𝐸𝑇(𝑡)𝑄𝐸(𝑡) + 𝛥𝑈𝑇(𝑡)𝑅𝛥𝑈(𝑡) ,  (12) 

where the controlled variable errors are defined as 𝐸(𝑡) = 𝑌(𝑡) − 𝑊𝑡(𝑡), control moves 

as 𝛥𝑈(𝑡), the weight matrix of control errors as Q and the weight matrix of control 

moves as R. Generally, the value of the cost function is a random variable due to the 

effect of disturbances and measurement noise. Accordingly, it is more suitable to meas-

ure the achieved performance of the controller as an average or expected value of the 

cost function, as presented in equation (13)  

 𝐽𝑎𝑐ℎ = 𝐸[𝐽𝑎𝑐𝑡(𝑡)] = 𝐸[𝐸𝑇(𝑡)𝑄𝐸(𝑡) + 𝛥𝑈𝑇(𝑡)𝑅𝛥𝑈(𝑡)] ,  (13) 

where 𝐸[∙] is the expectation operator. Controlled variable errors 𝐸(𝑡) and control 

moves 𝛥𝑈(𝑡) are computed from the plant data. [6] 

The value of historical benchmark Jhist is calculated similarly as in equation (13). The 

value is computed for the selected input and output data of the plant for a certain time 

frame when the controller is evaluated to be performing well and having a good re-

sponse according to the given criterion. [3, p. 76; 31] When monitoring the controller 

performance online, the performance index 𝜂ℎ𝑖𝑠𝑡 is computed at each sampling time. In 

equation (14), a moving horizon Pc is used for calculating the value of the achieved cost 

function Jach,hist. 
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𝐽𝑎𝑐ℎ,ℎ𝑖𝑠𝑡 =
1

𝑃𝑐
[∑(𝐸𝑇(𝑡 + 𝑗 − 𝑃𝑐)𝑄𝐸(𝑡 + 𝑗 − 𝑃𝑐)

𝑃𝑐

𝑗=1

+ 𝛥𝑈𝑇(𝑡 + 𝑗 − 𝑃𝑐)𝑅𝛥𝑈(𝑡 + 𝑗 − 𝑃𝑐))] , 

  

 

(14) 

where 𝐸(𝑡) is the vector of controlled variable errors at time t calculated from the plant 

data. Like in equation (8), historical performance index can be expressed as [6] 

 
𝜂ℎ𝑖𝑠𝑡 =

𝐽ℎ𝑖𝑠𝑡

𝐽𝑎𝑐ℎ,ℎ𝑖𝑠𝑡
  . 

 (15) 

It may be useful to use statistical monitoring for detecting statistically significant 

changes in the performance index. This can be done by monitoring the residuals be-

tween the values predicted by the model and the measured values. The historical per-

formance index 𝜂ℎ𝑖𝑠𝑡 is possible to represent by using an autoregressive model: 

 𝐴(𝑞−1)𝜂ℎ𝑖𝑠𝑡(𝑡) = 𝜀(𝑡) ,  (16) 

where 𝐴(𝑞−1) is monic polynomial and 𝜀(𝑡) is zero-mean, uncorrelated, Gaussian noise 

signal. For estimating 𝜂ℎ𝑖𝑠𝑡(𝑡), the equation (16) can be expanded as 

 𝜂ℎ𝑖𝑠𝑡(𝑡) = (𝑎1𝑞−1 + 𝑎2𝑞−2 + ⋯ + 𝑎𝑛𝑎𝑞−𝑛𝑎)𝜂ℎ𝑖𝑠𝑡(𝑡) + 𝜀(𝑡) ,  (17) 

where the estimates of coefficients 𝑎𝑖 are attained from the process data analysis. [6] 

In order to use a historical benchmarking technique, plant data needs to be collected 

during a time period when the controller is determined to perform as required. After the 

benchmark value is formed, the plant data is used for calculating the performance index 

at each sampling time. Therefore, historical benchmarks are suitable for assessing time-

varying and nonlinear processes because they do not require a process model or 

knowledge of process delays. Though, the historical benchmark approach requires ex-

pert a priori knowledge that the controller performance is at the desired level during the 

selected time period. When selecting the time period when the benchmark value is col-

lected, the selection may be too subjective and depend too much on the current perfor-

mance conditions. It is possible that the controller seems to work satisfactorily although 

the performance is inadequate when compared to other benchmarks. [3, p. 76; 6] 

3.2.4 Design-case benchmark 

The design-case benchmarking technique is a model-based method. The idea is to com-

pare the achieved control performance to the benchmark value which uses a criterion 

comparable to the actual design objectives of the model predictive controller that are 
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presented in the equation (1). The optimal control moves are calculated by the MPC 

controller by minimizing the equation (1). The value of the design objective function 

can be expressed as 

 

𝐽𝑑𝑒𝑠 = ∑[𝐸̂(𝑡 + 𝑗)]
𝑇

𝑄[𝐸̂(𝑡 + 𝑗)]

𝑃

𝑗=𝑁

 

 

 

             + ∑ [𝛥𝑈∗(𝑡 + 𝑗 − 1)]𝑇𝑅[𝛥𝑈∗(𝑡 + 𝑗 − 1)] ,

𝑀−1

𝑗=1

 (18) 

where 𝛥𝑈∗(𝑡) denotes the optimal control moves and 𝐸̂(𝑡) the predicted errors of con-

trolled variables. Respectively, the achieved value of the objective function is calculated 

using plant data and given by 

 

𝐽𝑎𝑐ℎ,𝑑𝑒𝑠 = ∑[𝐸(𝑡 + 𝑗)]𝑇𝑄[𝐸(𝑡 + 𝑗)]

𝑃

𝑗=𝑁

 

 

 

             + ∑ [𝛥𝑈(𝑡 + 𝑗 − 1)]𝑇𝑅[𝛥𝑈(𝑡 + 𝑗 − 1)] 

𝑀−1

𝑗=1

,    (19) 

where the control errors 𝐸(𝑡) and the control moves 𝑈(𝑡) are the measurement values 

of the output and inputs. The actual output may differ substantially from the predicted 

output due to various reasons, such as model structure's insufficiency, nonlinearities and 

uncertainty of modelling. The achieved values of inputs will deviate from the design 

values because of the receding horizon nature of the MPC law. The performance index 

𝜂𝑑𝑒𝑠 is given as a ratio of the design and achieved objective function, expressed as [24] 

 
𝜂𝑑𝑒𝑠 =

𝐽𝑑𝑒𝑠

𝐽𝑎𝑐ℎ,𝑑𝑒𝑠
 .  (20) 

If the achieved control performance is exactly the same as design requirements and the 

outputs and inputs are corresponding to the values given by the model, the performance 

index 𝜂𝑑𝑒𝑠 is equal to 1 [3, p. 101]. Generally, the performance index is however small-

er than one due to imperfect models, measurement noise or other uncertainties [6]. The 

main benefit of the design-case benchmarking approach is that it measures the differ-

ence of the actual controller performance from the designed performance. If the actual 

values deviate greatly from the values given by the model, a low performance index is 

received and therefore a low performance index is actually an indication of changes in 

the process or presence of disturbances. The controller calculates the design objective 

and only the plant data of measured inputs and outputs is required for computing the 

performance index, which makes the design-case benchmark a rather convenient tech-
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nique to use for assessing a constrained multivariable MPC. [6; 24; 31] On the other 

hand, when the design objective of the controller is used as a benchmark, it is assumed 

that the existing process model is adequate when the poor controller performance can be 

due to an invalid model itself [30]. 

For online monitoring, the design-case performance index can be computed using equa-

tion (19) with predicted control errors 𝐸̂(𝑡) and optimal control moves 𝛥𝑈∗(𝑡). Statisti-

cal monitoring of the design-case performance index 𝜂𝑑𝑒𝑠 is similar to the statistical 

monitoring of 𝜂ℎ𝑖𝑠𝑡 presented in Section 3.2.2. [6] 
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4. AUTOMATION INFORMATION TECHNOLOGY 

Process automation is nowadays applied to various plants to maximize production while 

meeting the product quality and safety requirements and making the process more eco-

nomical. Although the industries and the technologies of production vary, the main 

principles of automatic control are generic and can be applied to different environments. 

Process automation has changed significantly since it was first introduced in process 

industry. [32, p. 529] As the initial mechanical technologies were replaced with elec-

tronic systems, the influence could also be seen in the industrial control systems and 

networks. The industrial network connects the different automation levels and enables 

the data transferring both in machine-machine and human-machine interactions. Indus-

trial networking contains the implementation of communication protocols between field 

equipment, controllers, various software suites and also external systems. [33] 

It is important to understand the environment in which the solution is applied when de-

veloping software. In order to be able to assess the controller performance, plant data is 

required for the computations. This chapter gives an overview of subjects that are relat-

ed to the industrial networking and how data is transferred further from the field to be 

presented for example in a control room and at supervisory level for assessing the pro-

cess and control operations. First, the different automation levels of a typical process 

automation system are presented. After that, the communication protocols in automation 

are introduced generally to provide information of the communication layers between 

different automation levels, focusing on the communication between control and super-

visory level. The standardized fieldbus protocols are discussed along with OPC and 

OPC Unified Architecture standards. Next, the term information modelling in OPC UA 

is presented. Lastly, the aspects related to the presentation of information and human-

machine interaction is discussed and the basic design principles of a graphical user in-

terface are presented. 

4.1 Automation levels 

The development of automation technology has led to increased functions which are 

performed by automated equipment as a part of technical systems. As a result of the 

development of various automation functions, modern automation systems have a hier-

archical structure where each hierarchical level has different automation functions. The 

hierarchical structure is referred to as an automation pyramid. [34] Figure 4.1 illustrates 

an automation pyramid with different automation function levels and communication 
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layers. Usually, different physical media and protocols are used in different communica-

tion layers to connect the different automation levels [33]. 

 

Figure 4.1. Automation and communication levels, adapted from [35]. 

The first level of the automation pyramid is the device level which includes the meas-

urement devices and actuation equipment. Measurement devices, such as sensors and 

transmitters, are used to measure the process variables. Actuation equipment, for exam-

ple control valves, is used for implementing the calculated control actions. Evidently, 

the device level containing the measurement and actuation functions is a necessary part 

of an industrial control system. [32] 

Above the device level is the control level which consists of the machine controllers 

that compute the control actions that are delivered further to the lower level control ac-

tuators. The control actions are determined based on the calculations that take the meas-

urement signals into account. Basic regulatory control is achieved with standard feed-

back and feedforward techniques. More advanced process control techniques are ap-

plied to solve difficult process control problems, such as complex process interactions 

and constraints, when the standard process control techniques may not be adequate. The 

APC technologies are positioned above the basic regulatory control. APC and basic 

regulatory control form together the control level of the automation hierarchy. [32]  

The top two levels of the automation hierarchy pyramid include the plant and enterprise 

level control systems. Manufacturing execution system (MES) means the functions re-

lated to the operative control of the plant manufacturing which are integrated as one 
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system. The MES level is a link between the plant's process control systems and upper 

enterprise level system, collecting for example information of the process condition and 

actions and then delivering it to upper level enterprise resource planning (ERP) systems. 

Conversely, the production orders and status enquiries are examples of the information 

transferring from enterprise-wide ERP level to production levels through plant-wide 

MES level. [36] As the main task of the MES level is to collect and store information of 

the production events, also the provided information of the plant's control performance 

could be taken into account in the MES level decisions. 

4.2 Communication protocols in automation 

In order to provide access to data in different levels of an enterprise information system, 

there is a need of using different communication systems within the plant, control and 

device levels. Each different level has its own requirements related to the communica-

tion determined by the nature and type of the transferred information. Some of the per-

formance characteristics used to classify and to group specific network technologies are 

for example physical size of the network, number of supported devices, response time 

and sampling frequency. Real-time requirements depend on the type of exchanged in-

formation. Generally, process automation and data acquisition present soft real-time 

requirements, which means that no critical problems occur if deadlines are not met. [37, 

pp. 982-984] The higher levels of an automation network usually have lower time re-

quirements than the lower levels [33].  

The industrial networks have generally many hierarchy levels. Due to different require-

ments of each level, different communication protocols are used in different levels. The 

connection between instruments and controllers is for example at one level, interconnec-

tion of controllers at next one, human-machine interface above that and finally at the top 

level, the network for data collection and external communication is located. The devel-

opment in process automation and movement toward digital systems generated a need 

of new communication protocols to the field and between controllers. Commonly, these 

communication protocols are referred to as fieldbus protocols. Typically, fieldbus sys-

tems are used at the field level for collecting and distributing process data between sen-

sors or actuators and controllers. Controller networks are at the control level where data 

is transmitted between field devices and controllers as well as between controllers. [33; 

37, p. 985] 

4.2.1 Fieldbus protocols 

Fieldbus as a term covers many different industrial control protocols and they are wide-

ly used in plant automation. Fieldbus systems are standardized and the digital data 

communication standards for the use of Fieldbus IEC 61158 and 61784 contain differ-

ent Fieldbus concepts. One of them is the Foundation Fieldbus, which can be used ver-
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satilely in process automation applications. [37, p. 986; 38, p. 280] Foundation Fieldbus 

was developed by the American Fieldbus Foundation. The original Foundation Fieldbus 

is now referred to as Foundation Fieldbus H1 and it is used in lower level to usually 

connect field devices and host systems. Ethernet-based fieldbus Foundation Fieldbus 

HSE (High Speed Ethernet) was developed to address the need of Fieldbus Foundation's 

protocol suite for H2 level communications. It is completely compatible with the appli-

cation level H1 protocol, and the Foundation Fieldbus model carries out the communi-

cation tasks by using these two bus systems. [33; 38, p. 283] 

One of the most widely-used and largest fieldbus is the PROFIBUS (PROcess FIeld 

BUS), which is also included in the international standards IEC 61158 and IEC 61784. 

PROFIBUS can be used both in fast, time-critical applications and in complex commu-

nication tasks and it is in plant wide use both in factory and process automation sectors. 

There are different profiles that are defined for different applications within PROFI-

BUS, for example PROFIBUS Process Automation (PA) is designed especially to be 

used in hazardous environment. [33; 38, p. 289] An Ethernet-based adaption of PROFI-

BUS data models and objects is PROFINET, and it is defined in IEC 61158 and IEC 

61784. PROFINET uses remote procedure calls (RPC) and the distributed component 

object model (DCOM) besides modified ether types for real-time communication. [33]  

Another protocol that uses Ethernet as the transmission technology is MODBUS, which 

is an application layer messaging protocol. It is a protocol that is designed for cli-

ent/server communication between devices that are connected with different types of 

buses or networks. [37, p. 988] In addition, there are new, real-time Ethernet-based 

fieldbus protocols that the IEC has ratified and added to the 61158 and 61784 standards 

[33].  

4.2.2 OPC 

Open Platform Communications (OPC) provides a standardized interface for communi-

cation of industrial data. The OPC standard is maintained by the OPC Foundation which 

has defined a standardized interface between different level automation systems in the 

automation pyramid. The COM (Component Object Model) and DCOM technologies 

from Microsoft Windows are the base of classic OPC interfaces. OPC uses a client-

server model in the information exchange. An OPC server encases the source of process 

information like a device. The information is then available via its interface. The OPC 

server is connected to an OPC client that can access and consume the data. Client and 

server can be both applications that consume and provide the data. [33; 39] A typical 

use case of OPC clients and servers is presented in Figure 4.2. 
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Figure 4.2 Typical OPC client-server use case [39, p. 3]. 

Variants of the classic OPC have been developed to meet the different requirements of 

industrial applications. Figure 4.2 shows the interaction of different OPC specifications. 

The Data Access (DA) specification enables reading, writing and monitoring of varia-

bles that contain current process data. The DA interface is mainly used for moving real-

time data from PLCs, DCSs and other control devices to human-machine interfaces and 

other display clients. The Historical Data Access (HDA) provides functions to access 

stored data and retrieve historical archives. Besides read methods, OPC HDA defines 

methods for replacing, inserting and deleting data in the history database. The Alarm & 

Events (A&E) describes an interface that enables the reception of process alarm and 

event notifications to be transmitted from different event sources. [39, pp. 3-6] 

4.2.3 OPC Unified Architecture 

The OPC Unified Architecture (UA) is a communication protocol developed by the 

OPC Foundation and it was created to replace the COM dependent OPC specifications 

while keeping the desired communication features and performance. Additionally, the 

aim of OPC UA was to cover all requirements for platform-independent system inter-

faces with versatile modelling capabilities that enable the depiction of even complex 

systems. The most important requirement is the interoperability between systems from 

different vendors. It is also important to provide a reliable communication between dis-

tributed systems by robustness and fault-tolerance as well as redundancy. In addition, 

independence of platform and scalability are necessary in order to enable integrating of 

OPC interfaces directly into the systems that run on various platforms. An important 

requirement is high-performance in intranet environments, but also internet communica-

tion should be allowed through firewalls, and therefore the security and access control is 

another essential requirement. [39, pp. 8-9; 40] 
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Transport mechanisms and data modelling form the basis of the OPC UA. There are 

different transport mechanisms that are designed for different cases. The three main 

tasks for exchanging data between applications are data encoding, securing the commu-

nication and transporting the data. OPC UA data transport defines a binary TCP proto-

col for high performance intranet or internet communication along with mapping to ac-

cepted internet standards. The other fundamental component of OPC UA basis is data 

modelling, which defines the rules and base of information modelling in OPC UA. A 

consistent and integrated AddressSpace within an OPC UA Server is provided. OPC UA 

Server is allowed to integrate for example data and history into its AddressSpace. An 

example of OPC UA Server architecture is illustrated in Figure 4.3. The main objective 

of AddressSpace is to give a standard way for Servers to represent Objects to Clients. 

OPC UA Services provide Client an access to Server's AddressSpace. These Services 

are divided into different Service Sets. Each of them defines a set of related Services 

used to access a specific aspect of Server. [39, p. 10, 191; 41; 42]  

 

Figure 4.3. OPC UA Server architecture [41].  

OPC UA uses a similar client-server approach that is used in Classic OPC. UA Server is 

the application that exposes information to other applications and UA Client is the ap-

plication consuming information from other applications. However, when compared to 

Classic OPC there are more applications that will be both server and client in one appli-
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cation. The software layers of a typical OPC UA application are presented in Figure 4.4. 

[39, pp. 13-14] 

 

Figure 4.4. Software layers of OPC UA, adapted from [39, p. 14]. 

Generally, OPC UA application is a system that either exposes or consumes data via 

OPC UA. The software layers shown in Figure 4.4 can be implemented for example 

with C/C++, .NET or JAVA, which were first the only environments used for imple-

menting the OPC Foundation UA Stack deliverables. The OPC UA Application uses 

OPC UA Stack and an OPC UA Software Development Kit (SDK) for mapping specific 

functionality to OPC UA. The UA Stacks implement the communication channels 

whereas the OPC UA Server or Client SDK implements the common OPC UA func-

tionality part of the application layer. [39, p. 14] 

4.3 Information modelling in OPC UA  

In order to have a complete understanding of the significance of a simple measurement 

value, there may be a need for additional information about measurement time, engi-

neering units and the measurement range along with information about the current state 

of the device. This can be done with information modelling which allows keeping the 

devices themselves simple while the complicated part is realized in the middleware. 

[43] Classic OPC has a limited method for modelling of data which needed to be en-

hanced to provide a common, object-oriented model for all OPC data. The model needs 

to include an extensible system to enable offering of meta information and description 

of complex systems. Although it is an important requirement to enhance the modelling 

capabilities, it is also important to enable simple models with simple concepts. There-

fore the base model is kept simple and abstract but still extensible in order to enable 

models from simple to complex. OPC UA provides more powerful possibilities for ex-

posing the more detailed semantics of the provided data. [39, p. 9, 19]  

The basic idea of OPC UA enables the client to have an access to smallest pieces of data 

without understanding the entire model which is implemented with complex systems. 

The different layers of information models are illustrated in Figure 4.5. Only the infra-
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structure to model information is provided by the base OPC UA specifications. Exam-

ples of the provided base models are OPC UA for Devices (DI) and OPC UA for Ana-

lyzer Devices (ADI) which uses the OPC UA DI model as a basis. The OPC UA model 

defines for example concepts or the logical grouping of components, methods and pa-

rameters. Above the base specifications, information models for the domain of process 

information are defined. On top of them are specified information models of other or-

ganizations and additional vendor-specific information models. Vendors can use the 

base model and then extend it with specific information about their devices. [39, p. 11, 

19; 44] 

 

Figure 4.5. Layered architecture of OPC UA, adapted from [40]. 

There are some base principles of information modelling in OPC UA. OPC UA uses 

object-oriented techniques that include type hierarchies and inheritance so that the client 

can handle all instances of the same type in the same way. The type hierarchies enable 

the clients to work with base types and when necessary, to ignore more specialised in-

formation. OPC UA Server provides the type information which can be accessed with 

the same mechanisms that are used to access instances. The information models exist 

only on Servers. The information is possible to expose in various ways by providing 

different paths and ways of information organization in the full meshed network of 

nodes that are used to structure the AddressSpace. OPC UA allows supporting several 

hierarchies when exposing different semantics and references between nodes. In addi-

tion, OPC UA can be extended in different ways regarding the type hierarchies and ref-

erence types between nodes. [39, pp. 19-20, 30] In Figure 4.6, an example of OPC UA 

AddressSpace structured by Nodes is presented. 
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Figure 4.6. OPC UA AddressSpace, adapted from [41]. 

Real objects, such as physical devices or software objects, their definitions and their 

References to each other are represented in the AddressSpace as a set of Nodes. Nodes 

can be organized as the Server decides because References allow the hierarchical struc-

ture as well as a full mesh network or any possible organization. Often Clients are inter-

ested in only a specific subset of the available data and their burden is therefore tried to 

keep lighter by the View standard. A subset of Nodes and thus AddressSpace is defined 

by a View. Instances of object and variable types model real objects in the Ad-

dressSpace. [41; 45] Figure 4.7 provides an example of an Instance with a type defini-

tion. The graphical representation in OPC UA is also presented. 

 

Figure 4.7. Modelling in AddressSpace, adapted from [45].  

When a new Instance of a TypeDefinitionNode is created, OPC UA Server creates the 

same hierarchy of Nodes beneath the new Object or Variable. Nodes that are referenced 

by the TypeDefinitionNode without a ModellingRule do not appear in the instance. The 

information of TypeDefinitionNodes can be utilized by a Client for accessing Nodes that 

are in the instance hierarchy. [45]  

4.4 User interface design 

The main task of a user interface is to enable communicating information from the ma-

chine to the user as well as from the user to the machine. In any industrial control sys-

tem, information can be delivered from machine to people and this allows people to 
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control, monitor and record the system. Although the provided functionality and infor-

mation are important, it is equally important to consider the way in which they are giv-

en. [38, p. 351, 368] A good graphical user interface (GUI) provides situation awareness 

which consists of three levels. First level is that the needed data is provided and pre-

sented. However, raw data does not necessarily provide the user with relevant infor-

mation in order to understand how the system is actually operating, which is the second 

level of situation awareness. The third level is that the user is capable to predict what 

will happen in future and understands what the meaning of the information is in future. 

[46] 

A great amount of data is available for the users nowadays, and the way to present the 

data needs to be defined so that the information can be effectively processed. There are 

decisions that need to be made in order to enable an effective human-machine interac-

tion. When designing a GUI, the essential information and presentation way should be 

defined. In addition, how the information is organized and emphasized are issues that 

should be considered. [46] There are various principles that determine how the quality 

of GUI design can be improved. The structure principle means that the interface is or-

ganized in a meaningful and useful way. The things that are related are put together and 

unrelated things separated, so that there is a diversification between dissimilar things. In 

addition, the reuse principle defines that the need for users rethinking can be reduced by 

reusing internal and external components and behaviours. According to the simplicity 

principle, GUI design should allow clear communication and tasks to be done easily. 

The visibility principle defines that all information needed is visible. The confusion due 

to redundant and unneeded information should be avoided. The feedback principle out-

lines that GUI design should inform clearly about relevant information in which user is 

interested, such as changes of condition or state and errors. Additionally, the tolerance 

principle defines that GUI design should be tolerant and flexible so that undesired ac-

tions are not allowed and errors are prevented. [38, p. 369] There are also some main 

guidelines for graphical design. Presentation of raw data as numbers should be avoided 

and present values as information, such as trends and other graphic presentations. The 

presented information should be necessary. Use of flashing and spinning graphics is to 

be avoided along with bright and inconsistent colours. An effective user interface usual-

ly has a grey background and very limited use of colour which is generally used for 

alarming. [46] 
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5. DEVELOPMENT 

The aim of this thesis is to provide a tool that is suitable for the performance assessment 

of NAPCON Controller in various application environments. The performance assess-

ment tool is meant to be a new feature included in the existing controller software envi-

ronment. The usability of the tool is required to be simple and the provided information 

should be easily assimilated. The deployment of the performance assessment tool is 

required to be as automatic and generic as possible. Additionally, the operational data 

that is needed for performance calculation is received automatically from the database.  

The subject of the thesis has earlier been studied by Oksanen [12]. Although the appli-

cation that was designed worked mainly as planned, there were a couple of problems in 

the work that should be solved. In addition, a tentative outline for the presentation of the 

controller performance was designed but a concrete realization of the user interface has 

not been carried out earlier. First in this chapter, the current state of the performance 

assessment tool is presented and the required development aspects are introduced. After 

that, the selected performance assessment techniques and their advantages and disad-

vantages compared to other methods are shortly discussed. 

5.1 Current state 

As a result of the master's thesis of Oksanen, an application for computing the techno-

logical and economic performance of the constrained, multivariable MPC controller was 

produced. Methods based on historical and design-case benchmarks were used for as-

sessing the technological performance of the controller. The economic performance was 

calculated by utilizing the historical benchmarking method. The functionality of the 

application was tested with various simulation cases. 

The performance assessment application and the required calculations were pro-

grammed and built in the NAPCON calculation frame with C#. The main module of the 

application contained the performance calculation class and it was the core element of 

the entire application. Necessary calculations for main function of performance calcula-

tion were computed by supportive modules. The definition of the performance calcula-

tion application was executed with a text file defining the name of the controller, lists of 

the names of controlled and manipulated variables, and manipulated variable con-

straints. 

The functionality and the accuracy of the performance assessment application were ac-

complished by different simulation cases. Simulations were carried out with ProsDS 
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simulator, proprietary of Neste Jacobs. Each simulation case used benchmark values 

that were achieved during a steady state during which the control objectives and the 

process conditions were unchanged. The simulation cases included set point changes, 

unknown process disturbances, tuning parameter changes, constraint violations and a 

model-plant mismatch. The simulations showed that the application worked mostly as 

designed and it provided valuable information about the prevailing conditions of the 

controller. In addition, it was generally demonstrated that the economic performance is 

usually at an acceptable level if the technological performance is high.  

5.2 Selected performance assessment techniques 

There are different methods that can be used for assessing the performance of the multi-

variable MPC controller. Earlier in 2012 in his work, Oksanen decided on using histori-

cal and design-case benchmarks to achieve performance indices for the technological 

and economic performance of the controller. The combination of these methods con-

tained information of controller performance when history, present and future of the 

controller is considered. Also in this thesis, the historical and design-case techniques are 

utilized in the performance calculation application. They have earlier been studied with 

promising results and the methods are further studied with minor changes in this work. 

In practice, it is common to use a benchmark value extracted from historical data during 

time period when the controller is determined to perform well. The historical bench-

mark technique may however be too subjective and the controller may seem to be per-

forming well as the value of the benchmark relies on the determination done by experts. 

[25] As earlier mentioned, the historical benchmarking method was applied to the per-

formance assessment calculations in the work of Oksanen. The value of the historical 

benchmark value was continuously updated, which induced some problems in the per-

formance assessment of the controller. Problems appeared in the case where the un-

known disturbance caused an increase in the controller performance and therefore bias-

ing in the benchmark value. However, the historical benchmark is determined to remain 

constant in the literature. When the benchmark is constantly updated, it is ensured that 

the current performance is always compared to the best achievable value and the 

benchmark value does not rely on the performance during the time period decided by 

the professionals. Nevertheless, when a controller is brought into use in a new process, a 

proper examination of the controller behaviour is anyway required and the benchmark 

could be determined on the side. The historical performance index may be subjective 

and the results depend on the process and the controller, and therefore the results are not 

directly comparable with other controllers. However, it can be considered reasonable to 

compare the current performance to a value that is achievable with the assessed control-

ler.  
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The continuous update of the historical benchmark value adapted the benchmark to be 

suitable for controller configuration changes automatically. Now that the historical 

benchmark is once defined, the adequacy of the benchmark value can be considered if 

the controller configuration changes. In this work, the historical benchmark is decided 

to be updated automatically to a new value based on the individual variable benchmark 

values if at least one of the variable states changes. The individual variable benchmark 

values are collected during the time the historical benchmark search is on. As the 

benchmark is defined as a sum including the performance of the different variables, it is 

updated in a relation to the individual benchmark values. For example if one of the con-

trolled variables is left out of the control, its individual benchmark value is subtracted 

from the total sum. However, the configuration alteration usually changes the control 

objectives and the updated historical benchmark may not provide the best possible in-

formation of the controller performance. 

In order to provide a performance index that is more reliant on the controller definitions, 

the design-case performance index is computed alongside the historical performance 

index. The design-case benchmarking method evaluates the controller performance by 

comparing the achieved behaviour to the actual design objectives. The core element of a 

model predictive controller is naturally the process model. Thus, it is reasonable to uti-

lize a model-based approach of controller performance assessment. Design-case per-

formance index is suitable for indicating if something causes the process to behave not 

how the controller assumes. The design-case benchmarking method is slightly changed 

in this thesis when compared to the earlier work of Oksanen. Earlier, the benchmark 

value was compared to a value achieved by variance estimation over a future horizon 

and not by the value given by equation (19). Using this kind of approach provided an 

estimation of the future of controller's performance. In this work, the design-case 

benchmark method is applied as it is in literature proposed and its suitability is studied. 

Control performance assessment techniques are continuously developing and new 

methods are proposed. In Section 3.2.2, recently proposed CPA methods are introduced 

generally. However, the introduced methods are not applied in this thesis. Many of the 

new methods are based on the main performance assessment techniques and therefore 

the modifications have mainly the same features as the basis methods. As stated earlier, 

the application of methods based on minimum variance benchmarking in multivariable 

processes is not simple since they require the entire interactor matrix. Typically, it can 

be concluded that the calculation of more sophisticated and realistic benchmarks require 

more prior knowledge and data and they require more computational burden [25]. The 

historical and design-case performance indices provide versatile information of the con-

troller performance when utilized together. Both indices are based on the objective 

function which consists partly of control errors and partly of control moves. Basically, 

they describe how well the process variables stay at the target values and how much 
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control effort is required to achieve that performance. Neither of the methods requires 

much additional calculations and the computational burden of the performance assess-

ment program remains reasonable. The historical benchmarking technique is also appli-

cable to the economic performance assessment. When assessing the economic perfor-

mance of the controller, equation (7) can be applied to equation (14) and an economic 

performance index is achieved as a result. 
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6. IMPLEMENTATION 

When implementing a new application, the software environment, to which the new 

software is applied, needs to be taken into account. The role of the new software needs 

to be defined along with the interconnection with other components. The main goal of 

this work was to produce a reliable and informative tool that is suitable for assessing the 

performance of a multivariate MPC controller. In addition, it was required that the oper-

ation of the performance assessment tool does not affect the actual controller functional-

ity. The new tool was also required to be both adequate for the current database struc-

ture and easily applicable to various controller environments.  

The software environment, to which the performance assessment tool was applied, is 

first introduced in this chapter. After that, the new information model object types are 

presented. Two new object types were defined with OPC UA information modelling in 

order to provide a new structure for the OPC UA address space and thus allow the new 

calculated performance variables to be stored to the database. Lastly, the software im-

plementation of the performance assessment tool is presented, including the perfor-

mance calculation application and the graphical user interface. 

6.1 Software environment 

The performance assessment tool was applied to a software environment which includes 

various components. The general structure of the software environment related to the 

new performance assessment tool is presented in Figure 6.1. 
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Figure 6.1. Software environment structure, adapted from [47]. 

The NAPCON Suite software package includes several integrated modules that operate 

together, including NAPCON Controller and NAPCON Informer. NAPCON Controller 

is a multivariable, optimizing, multistep, model predictive controller with embedded 

constraint handling. The controller software is developed and designed by Neste Jacobs 

Oy. It normally operates on top of the basic regulatory control in the automation hierar-

chy. The controller can be used in Windows environment and there is a product family 

that supports the use of the controller software, including NAPCON Informer, a real-

time database and history database, and OPC UA interface to connect the controller 

with external systems, such as automation systems (DCS). The controller reads the pro-

cess measurements, control objectives and online tuning parameters from the database. 

After calculating the optimal manipulated variable values and predictions of controlled 

and predicted variables, controller writes the results to database. [47] Figure 6.2 illus-

trates the operation principle of NAPCON Controller. Besides different variable types, 

other significant aspects of the controller are represented. 
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Figure 6.2. Logical structure of NAPCON Controller, adapted from [47]. 

The logical structure of the controller includes control objectives, variables, various 

tuning parameters and different operator actions. Four different types of variables are 

used: manipulated (MV), controlled (CV), predicted (PV) and disturbance variables 

(DV). The nature of the control problem depends on the degrees of freedom. The con-

troller configures itself automatically if the numbers of CVs or MVs and thus the con-

trol problem characteristics change. The controller can be defined to have various objec-

tives, such as relative importance between different variables, which enables the con-

troller to perform adaptably in different control situations. [47] The priorities between 

the variables define the relative importance if all the control objectives cannot be satis-

fied. The MV constraints (MVC) have always higher priority than CVs and thus they 

are the first to be satisfied. All target CVs are controlled to their defined set points and 

constraint CVs between the defined limits if the degrees of freedom allow this. [48] 

The engineering interface of the controller is provided by NAPCON Information Man-

ager which enables operations including online tuning, model updating and controller 

reconfiguration, for instance. It also allows viewing the contents of the real-time process 

database and history database. [47] NAPCON Controller Faceplates are a part of the 

engineering interface of the controller and they give such a view to database variables 

that is based on the functionality of the controller rather than on the actual database 

structure. Their main purpose is to make the monitoring, tuning and troubleshooting of 

multivariable controller applications easier. 
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6.2 Created object types 

To provide a generic way for the performance calculation of every NAPCON Control-

ler, OPC UA address space structure needed to be extended and two new object types 

were defined in this thesis. A new performance calculation child object (NAP-

CON_PerfCalc) was defined for the object type of NAPCON Controller. The children 

of NAPCON_PerfCalc include properties which the performance calculation application 

computes and utilizes in these computations, along with the economic variable folders. 

The folders contain the economic variable objects (NAPCON_Eco) that define the eco-

nomic inputs and outputs of the process unit. Figure 6.3 illustrates the created object 

types of NAPCON_PerfCalc and NAPCON_Eco. 

 

Figure 6.3. Created object types of NAPCON_PerfCalc and NAPCON_Eco.  
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The new NAPCON_PerfCalc object type organizes different variables as its children. 

Most of the values of the variables are calculated in the performance calculation pro-

gram and derived from there to the OPC UA Server. PerfCalcState Boolean variable 

determines the switch for performance calculation whereas PerfCalcStatus enumerable 

variable indicates the status of the performance calculation. The status is defined to be 

OK, Initializing, Incomplete or Invalid. Switches for benchmark value searches are de-

fined with Boolean variables UpdateHistBenchmark and UpdateEcoBenchmark. Double 

variables, including performance indices, momentary values of performance indices, 

current profit and benchmark values, are computed by the performance calculation pro-

gram. The folders EcoInputs and EcoOutputs contain the economic variables that define 

the economic inputs and outputs of the process unit, such as steam usage, feed flow and 

output products.  

NAPCON_Eco object type has child variables that are used for defining the type, price 

and amount of the real process object. Type is an enumerable variable that indicates 

whether the object is an economic input or output of the process unit. Price variable 

defines the actual price of the economic object or it can alternatively be used as a rela-

tive factor if prices of the variables are not defined or available. Meas variable is de-

fined to have a non-hierarchical HasInput reference pointing to an actual DCS meas-

urement that indicates the amount of an economic object, such as feed's flow rate. 

6.3 Performance assessment tool 

The software related to the performance assessment tool was implemented with C# in 

.NET framework. The performance calculation application was implemented as a Win-

dows service which runs automatically in the background after installation and starting 

from the Windows Services. Functionality and structure of the performance calculation 

application as well as the user interface were designed to be generic so that the perfor-

mance assessment tool could be deployed as automatically as possible to a new control 

environment. The structure of the implemented performance calculation program was 

also designed so that the calculation is executed in small, logical functions, which 

would allow applying additional performance assessment techniques as part of the cal-

culation program subsequently. 

The presentation of controller performance was implemented in NAPCON Controller 

Faceplates, part of NAPCON Information Manager. A new faceplate type was deter-

mined for the NAPCON_PerfCalc object type to operate as the graphical user interface 

of the performance calculation program. 
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6.3.1 Performance calculation application 

The program that carries out the calculation required for performance assessment was 

implemented as a Windows service. The program solution includes a service class that 

creates a new instance of performance calculation handler class (PerfCalcHandler) 

when the service is started. The performance calculation handler checks the connection 

configuration and creates the connection to UA server based on the defined server's URI 

in the application's configuration file. OPC UA supports transferring data over network, 

which enables that the UA server is not necessarily on the same computer as the service. 

As a result of the query to the server, the handler receives nodes whose type matches the 

controller type. A new instance of performance calculation class is constructed per each 

controller node so that there are as many performance calculation (PerfCalc) instances 

as controllers defined on the UA server. The performance calculation service is required 

to be restarted if the number of the controllers on the server or the structure of the data-

base changes. The functionality of the program's start is illustrated in Figure 6.4. 

 

Figure 6.4. Start of the performance calculation application. 
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Variable nodes and related UA variables are resolved from the server when a new 

PerfCalc instance is constructed. The UA variables are connected to PerfCalc properties 

so that when the value of the property is changed, the UA variable in the database is 

also updated. In addition, child CV, MV, MVC and economic variable nodes of the cur-

rent main controller node are collected to separate lists and related objects are con-

structed when the instance is initialized. 

After constructing the PerfCalc instances, the performance calculation handler calls a 

method of PerfCalc that creates a timer and starts the performance calculation. Using 

separate timers for each PerfCalc instance allows the execution of performance calcula-

tion of separate controllers in parallel if there is more than one controller on the server. 

The timer calls the PerformanceCalculation function each time the timer interval has 

elapsed. The timer interval is set equal to controller's control cycle. The performance 

calculation is executed if the controller's control calculations and the performance calcu-

lation are on. The sampling instants are counted and each time the performance calcula-

tion is carried out, the sample count is increased by one. If all the calculation states are 

not true, the performance calculation is not performed and the states are checked again 

the next time the timer interval has elapsed. The timer along with the performance cal-

culation is stopped when the service is stopped. 

The general performance calculation functionality is illustrated in Figure 6.5. Each time 

the performance calculation is carried out, the current values of weighted and scaled 

control errors and control moves of CVs and MVs are computed for each variable. Ad-

ditionally, lists containing the history of these values are updated. These lists are uti-

lized for computing the historical benchmark value and the achieved values for histori-

cal and design-case indices. For constraint CVs, the control error is handled as a limit, 

and it is defined to be zero if the limit is not violated. Additionally, the sums of predict-

ed values for control errors and control moves over prediction and control horizons are 

computed. The lists containing the predicted sum values are utilized for calculation of 

the design-case benchmark value. The current value of each economic variable is also 

calculated based on the price and the measurement. After that, the current profit of the 

process unit can be computed based on the input and output variable values, and the 

history list holding the profit values is updated. In addition, the list containing CV and 

MV states is updated for comparing the current states and the states of the previous cal-

culation instant. The comparison is performed in order to register if there has been a 

change in the controller configuration.  
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Figure 6.5. General performance calculation functionality. 

Technological performance index is achieved by computing the historical and design-

case indices separately and then using the average value of these two indices for as-

sessing the overall technological performance of the controller. Both indices are limited 

so that they do not exceed the value of 1, and therefore also the overall technological 

index remains in the range of 0 to 1. If either of the indices would be allowed to exceed 

the value of 1, it would result as a misleading overall technological performance index. 

It is possible that the historical and design-case indices require different number of 

sampling instants before they can be computed normally. Technological performance 

index is set equal to the individual performance index that is first achieved until both of 

the indices can be calculated. As presented in equation (8), a performance index is com-

posed of a benchmark value and an achieved value. Both values are computed as an 

average value over defined horizons, which in this work depend on the controller dy-

namics and parameters so that the performance indices of different controllers could be 

as comparable and generic as possible. The achieved value for historical and economic 

performance indices is computed over a moving horizon with a length of half of the 

control horizon. It has been earlier discovered that the horizon for historical perfor-

mance benchmark value should be twice the horizon over which the achieved value is 

computed [12]. In this work, the historical benchmark is defined to require sampling 

instants the same number as the length of the control horizon is, whereas the design-

case benchmark depends on the lengths of prediction and control horizons as in equa-

tions (18) and (19) is stated. The economic performance index is computed in a similar 

way as the historical performance index and the horizons of the economic benchmark 
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and achieved values are equal as in the historical benchmark and achieved values. Be-

sides the average values over the defined horizons, momentary values are calculated 

both for technological and economic indices. The achieved historical and economic val-

ues at current sampling instant are compared to the benchmarks and the momentary 

performance indices are achieved. 

In the performance calculation program, the benchmark values for historical and eco-

nomic performance indices are not updated automatically to the best achievable value. 

These benchmark values are updated during the time period, when the process unit is 

performing well and the controller performance is at desired level according to the re-

quirements defined by the user. There are switches for benchmark searches that are 

switched on for the update of the benchmark values. When the benchmark values are 

suitable according to the professional experience, the switches are turned back off. Indi-

vidual benchmark values for each CV and MV are also collected when the historical 

benchmark search is on. They are utilized when at least one of the variable states chang-

es and thus the controller configuration changes. The historical benchmark value is re-

defined with relation to the variables included in the current controller configuration. 

The performance assessment tool includes a status variable that indicates the current 

status of the performance calculation program. The status is defined to Initializing when 

a PerfCalc instance is constructed after the service starting but there is not enough data 

to perform the actual performance calculations. If some performance index can be com-

puted but there is not enough sampling instants for all indices, the status is set to Incom-

plete. When the program has run long enough to compute all the performance indices 

normally, the status is set to OK. If the calculation cannot be computed normally for 

some reason, such as a connection problem or situations where the main controller cal-

culation state is false or the performance calculation service is stopped, the status is set 

to Invalid.  

6.3.2 Graphical user interface 

An outline for the graphical user interface of the performance assessment tool had been 

designed earlier. However, nothing concrete had been realized. In this thesis, the former 

outline was revised notably so that the user interface is suitable to be a part of NAP-

CON Controller Faceplates in the existing software environment. 

The implemented graphical user interface of the performance assessment tool is con-

nected to the database. Variable and parameter values are read from database and the 

user is also able to write new values to the database through the user interface. The GUI 

includes the indication of the performance indices as well as the performance calcula-

tion status. The user can determine with a switch whether the performance calculation is 

on or off. The user is also able to define with switches the time period when the bench-

mark values of the historical and economic performance indices are updated. The 
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change of parameter values, which define the prices of the economic variables, is possi-

ble through the user interface. The performance calculation GUI consists of two tabs 

which each share a header section including the object name and the state and status of 

the performance calculation. In Figure 6.6, the first tab of the performance calculation 

faceplate is presented. 

 

Figure 6.6. The main tab of the performance calculation user interface. 

At the main tab, the different performance index values are indicated besides the 

benchmark switches and the current benchmark values. Variable values are grouped 

based on their relations. The level of the performance index is indicated verbally next to 

the index value. The different index levels are presented in Table 1.  
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Table 1. Performance index levels. 

Value Level 

> 0.9 Excellent 

> 0.6 Good 

> 0.3 Fair 

≤ 0.3 Poor 

 

The second tab of the performance calculation user interface includes lists of economic 

variables, separated to economic inputs and outputs. The tab allows the user to see the 

economic variables of the unit at one glance. The outline of the tab is presented in Fig-

ure 6.7. 

 

Figure 6.7. The second tab of the performance calculation user interface. 

Variable names, current measurement values and price coefficients are presented. A 

more detailed description of the variable is available as a tooltip when the user holds the 

cursor on the variable name. 
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7. TESTING 

After the implementation, it is necessary to test the program and verify that it operates 

properly. Testing of the performance assessment tool can be done for example with real 

or simulated process data. In this thesis, the testing of the performance assessment tool 

was carried out in a simulation environment by assessing the performance of an actual 

MPC controller. The operation of the tool was examined with simulated process data to 

verify that the performance calculation program and the graphical user interface work as 

required. 

First in this chapter, the test process is introduced. The process unit, with which the per-

formance assessment tool was tested in this thesis, was a distillation unit included in the 

gasoline production of an actual oil refinery. After that, the test arrangements including 

various simulation cases are described. Finally, the test results achieved from simula-

tions are presented. 

7.1 Description of test process 

The test process unit of this thesis includes two distillation columns: a main column and 

a side stripper column. The main aim of the unit is to remove lighter hydrocarbon from 

the feed as a distillate so that the bottom product's flow rate is maximized while meeting 

the bottom product's quality requirements and minimizing the use of reboiler steam and 

the distillate flow rates. The feed of the unit comes from various units that are earlier in 

the production line. Due to various feed sources, there are a lot of feed fluctuations in 

the unit. [48] A piping and instrumentation diagram of the process unit is presented in 

Figure 7.1. Only the components included in the main APC strategy of the unit are pre-

sented in the diagram. 
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Figure 7.1. The test process, adapted from [48]. 

The aim of the APC is to stabilize the unit operations sufficiently so that the process can 

be operated closer to the limits. The APC strategy of the unit consists of upper and low-

er level controls. The controller aims to keep the separation of the main column stable 

and at the right level based on the analyser measurement and the temperature measure-

ment correlating the main column's dissolution potential. The APC also aims to keep the 

composition of the bottom product near to the target value and to minimize the over-

head flow rate and reboiler steam usage. In addition, the controller attempts to keep the 

overhead condenser operation, unit's pressure control and operation of columns in good 

operating ranges. [48] The controlled and manipulated variables (CVs and MVs) of the 

unit are presented in Tables 2 and 3. 
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Table 2. Controlled variables. 

Tag Unit Type Description 

AI-001 vol-% Target Composition of bottom product 

TC-005 °C Target Temperature of main column 

TC-004 °C Target Temperature of side stripper column 

CX_CALC w-% Maximum Calculated composition of distillate 

TCA-002VP rpm Maximum Condenser's speed of rotation 

FC-005 t/h Maximum Reflux flow 

TI-003 °C Minimum Overhead temperature of stripper column 

 

Table 3. Manipulated variables. 

Tag Unit Description 

HC-001 % Reflux ratio of main column 

FC-004 t/h Reboiler steam of main column 

FC-008 t/h Reboiler steam of side stripper column 

PCA-001 kPa Unit pressure 

TCA-002 °C Condensation temperature of overhead flow 

HCV-002 % Side feed valve's position 

T-005_T °C Temperature of main column (cascade) 

 

Besides controlled and manipulated variables, some disturbance variables of the unit 

have been determined for the control at the lower level of the controller functionality. 

The predicted impact of DVs can be compensated prospectively by MVs. The flow rate 

and temperature of the main feed along with the main column's side feed are handled as 

disturbance variables. In addition, the flow rate and temperature of the side stripper 

column's feed and the overhead temperature of the stripper column are determined as 

disturbance variables. [48] 
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7.2 Test arrangements 

The test environment of this work was a Windows virtual machine which included a 

simplified and dynamic simulator model of a process unit used in an earlier control re-

lated project, and an actual MPC controller. The operation of the implemented perfor-

mance assessment tool, including the performance calculation program and the graph-

ical user interface, was tested with various simulation cases in order to verify that the 

application works as required.  

The test simulator includes models between the CVs and MVs or DVs which have ear-

lier been determined. In this thesis, some fluctuation was added to the feed stream so 

that the simulations would model real process more suitably. Standard deviation was 

added to the process input variables. Standard deviation of the main feed was 0.2 t/h as 

the value for extra feed was 0.1 t/h. In addition, temperature of main feed had a standard 

deviation of 0.05 °C. The economic variables of the unit were defined and new NAP-

CON_Eco instances were created in the OPC UA address space. The values for meas-

urement variables were obtained with OPC UA references to APC related variables or 

measurements in DCS. The economic inputs of the unit included the main feed flow rate 

FI-001 and extra feed flow rates FI-009 and FC-002. In addition, the reboiler steam 

flow rates of both columns, FC-004 and FC-008, were defined as economic inputs. The 

economic outputs of the unit included the distillate flow rate FC-006 and the bottom 

product flow rates of both columns, FCA-003 and FC-007. The price coefficients of the 

economic variables were determined to be in a sensible relation to each other, but they 

did not present actual prices in this thesis and thus the computed profit and benchmark 

values were not presented in any currency. 

The purpose of the simulations was to study how the controller's performance reacts in 

different cases. The first case to be simulated was a steady state case where all the vari-

ables were included in the control calculations and the targets and limits of the CVs 

were left unchanged. The steady state case allowed examining how the controller per-

formance indices change in time when the control objectives were kept the same. The 

expectation was that the indices would change slightly due to the fluctuations on the 

process unit's inputs. 

The next simulated cases were changes in the set point of a target CV and in the limit of 

a constraint CV. The aim was to examine how the values of performance indices and 

economic profit react when the control objectives are changed. The set point of the 

composition of the bottom product was first decreased by 10 %. After the process re-

sponse had settled, the set point was then increased so that it was 5 % greater than the 

original set point value. Secondly, a case with a limit change of a constraint CV was 

simulated separately. This was carried out by decreasing the maximum value of the 

condenser's speed of rotation by 10 %. 
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The last simulation case included an unknown disturbance which in this content means 

that the controller does not have an internal model of the disturbance variable in ques-

tion. Thus, the controller is not able to include the effect of the disturbance variable in 

the control computations. The simulation was carried out by switching off a disturbance 

variable in the process unit's controller and then manipulating the DV. The main 

column's feed flow rate was selected to be the disturbance variable to be switched off. 

After the DV was switched off, a decrease of 10 % was done in the level of the main 

feed flow rate. After the process had stabilized, the flow rate was increased to a level 5 

% higher than the initial feed flow rate. The aim of this simulation case was to study 

how an unknown disturbance affects the performance indices and whether it is possible 

to detect presence of the disturbance with the performance application. 

7.3 Results 

The purpose of the simulations was to find out how well the MPC controller is working 

according to the implemented performance assessment tool. Different simulation cases 

were used to examine the reliability and accuracy of the calculated performance indices. 

All of the simulation cases were carried out so that the controller parameters were un-

changed and thus the controller tuning remained constant. The control horizon of the 

examined controller was 200 cycles and so the benchmark values for historical and eco-

nomic performance indices were computed as an average over a defined 200 cycle time 

period whereas the achieved values were obtained as an average over moving horizons 

of 100 cycles. The momentary performance indices were computed for the latest control 

cycle for indicating the direction to which the performance is likely heading. 

The start of each simulation case was kept as similar as possible and let the process sta-

bilize to a steady state before starting the simulation. All the CVs, MVs and DVs of the 

test process unit were included in the controller configuration. The benchmark values 

for the historical and economic performance indices were calculated over a steady state, 

during which the process was determined to be working as required. These achieved 

benchmark values were used in every simulation case of this thesis so that the results 

would be comparable with each other. The presented results of each case were also 

scaled and therefore the axes do not include the variable units. The scaling was done so 

that different simulation results would remain comparable. However, the scales of axes 

in the figures vary between different cases and the figures cannot be compared directly 

with each other. 
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7.3.1 Steady state 

In the steady state simulation, the control objectives were not changed and all available 

variables were included in the control calculations. The main input feed flow rate was 

kept at a constant level. The standard deviations of input feeds were the only variations 

in the process. Figure 7.2 presents the scaled measurement and set point values of bot-

tom composition AI-001 and the main column's temperature TC-005. 

 

Figure 7.2. The composition of the bottom product and the main column temperature in 

the steady state simulation. 

At the upper control level of the APC strategy, the composition of the bottom product 

AI-001 is handled as a target CV. The measurement is achieved from an analyser. The 

analyser cycle is equal to 40 control cycles of the current MPC. The main column's 

temperature is handled as a target CV at the lower level. It also operates in the process 

unit as an upper level MV having an effect on the bottom composition. As in Figure 7.2 

can be seen, there were no changes in the measurement AI-001 and it remained close to 

the set point value. There was a slight fluctuation in the main column's temperature 

measurement TC-005 due to standard deviations of process inputs.  

The APC strategy of the process unit includes the control of the overhead temperature 

as condenser's speed of rotation TCA-002VP, operated as a constraint CV. In Figure 

7.3, the measurement and limit of the condenser's speed of rotation are presented. The 

maximum value is achieved from the condenser's physical limit and its maximum speed 

of rotation. When the process is at a steady state, the condenser's operation point is 

shifted close to its maximum limit if possible.  
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Figure 7.3. The condenser's speed of rotation in the steady state simulation. 

The lower control level of the APC strategy includes the main column's reflux ratio HC-

001 and the reboiler steam flow rate FC-004, which both affect the main column's tem-

perature TC-005. Figure 7.4 shows how the reflux ratio and the reboiler steam of the 

main column react when the process is in a steady state. 

 

Figure 7.4. The reflux ratio and the main column's reboiler steam in the steady state 

simulation. 

The control of the process unit aims to keep the composition AI-001 close to the target 

value while minimizing the usage of the reboiler steam. When the process was in a 

steady state, the reboiler steam flow rate slowly moved closer to a level at which it 

stayed. As the reboiler steam flow rate stabilized, also the reflux ratio remained at a 

constant level. The steady state, during which the both examined MVs had settled and 

stayed close to a specific level, can be seen in Figure 7.4. 
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Figure 7.5 shows the scaled flow rate values of the main input feed FI-001, the distillate 

FC-006 and the sum of the bottom products FCA-003 and FC-007. The distillate and 

bottom product flow rates are presented in a relation to the main input feed level. The 

total bottom product amount is higher than the main input feed since there are two extra 

feeds in the process unit, which remained at a constant level in all simulation cases of 

the thesis and therefore are not studied more closely in the results of this thesis. From 

Figure 7.5 can be noticed that both distillate and bottom product flow rates remained at 

a constant level as there were no level changes in the main input feed.  

 

Figure 7.5. The main feed, distillate and bottom flow rates in the steady state simula-

tion. 

The performance indices related to the technological performance of the MPC controller 

are presented in Figure 7.6. As it was expected, there were not any notable changes in 

the performance indices and the overall technological performance remained close to 1. 

There was a slight fluctuation in the momentary technological performance index due to 

small temperature and level variations in the input feeds. 
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Figure 7.6. The technological performance in the steady state simulation. 

The economic performance of the controller was also at an excellent level during the 

steady state simulation. Figure 7.7 illustrates the economic performance index along 

with the momentary profit and the momentary economic performance index that is cal-

culated based on the profit. 

 

Figure 7.7. The economic performance in the steady state simulation. 

The momentary profit and thus the momentary economic performance varied slightly 

due to the variation in the process unit's input and output flow rates. The achieved value 

for economic performance index was calculated as an average over a 100 cycle moving 

horizon and as it remained close to the economic benchmark, the economic performance 

index stayed close to 1. 
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7.3.2 Set point change 

The second simulation case was a set point change. The set point of the bottom 

product's composition was first decreased by 10 % at sampling instant 90. After the pro-

cess had stabilized and the AI-001 measurement had reached the new target value, the 

set point was then moved to a point 5 % higher than the original target at sampling in-

stant 360. 

Figure 7.8 illustrates the measurement and target values of the bottom product's compo-

sition and the main column's temperature. It can be seen that after the AI-001 set point 

was decreased, the target value of TC-005 increased. The measurement of TC-005 

reached the new set point with a small delay. The AI-001 measurement responded more 

slowly to the set point change. At sampling instant 360, the set point of the AI-001 was 

increased. Similarly as in the first set point change at sampling instant 90, the target 

value and consequently the measurement value of TC-005 reacted and they decreased to 

a lower level. The measurement of AI-001 responded more slowly but gradually 

reached the new set point value. 

 

Figure 7.8. The composition of the bottom product and the main column temperature in 

the set point change simulation. 

In Figure 7.9, the condenser's speed of rotation during the set point change simulation is 

presented. There were not any notable changes in the level of TCA-002VP measure-

ment and it did not exceed the maximum limit. As the set point of AI-001 was de-

creased at sampling instant 90, TCA-002VP measurement slightly rose. After the set 

point of AI-001 was increased, TCA-002VP dropped to a lower level. 
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Figure 7.9. The condenser's speed of rotation in the set point change simulation. 

Figure 7.10 presents how the reflux ratio HC-001 and the main column's reboiler steam 

flow rate FC-004 reacted to the set point change of the composition AI-001. As the set 

point of AI-001 was decreased, the flow rate of the reboiler steam increased almost by 2 

%. Additionally, the reflux ratio increased slightly. After the set point of AI-001 was 

increased at sampling instant 360, both FC-004 and HC-001 dropped to levels lower 

than at the start of the simulation case. 

 

Figure 7.10. The reflux ratio and the main column's reboiler steam in the set point 

change simulation. 

The main input feed, distillate and bottom product flow rates of the set point change 

simulation are presented in Figure 7.11. There were no significant changes in the flow 

rates when compared to the steady state simulation. A slight decrease can be seen in the 

distillate flow rate FC-006 during the time period that the reflux ratio HC-001 was at a 

higher level. 
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Figure 7.11. The main feed, distillate and bottom product flow rates in the set point 

change simulation. 

The technological performance of the controller is presented in Figure 7.12. The devia-

tion between the set point and measurement values of target CVs had the greatest im-

pact on the technological performance of the controller. The level changes of the MVs 

also required more control moves than staying at a constant level, which also affected 

the performance indices. 

 

Figure 7.12. The technological performance in the set point change simulation. 

The momentary technological performance reacted instantly to the set point changes 

and consequently to the deviation of composition AI-001. Figure 7.12 shows that there 

were gradual changes in the momentary performance like in the measurement of AI-

001. The historical performance index reacted more quickly to the set point changes 

than the design-case index which has the achieved value calculated as an average over a 

longer time period than the historical performance index. The overall technological per-

formance remained however in the first 10 % set point change at a good level, and after 
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the bigger set point change it fell to a level around 0.7 before returning close or equal to 

1. 

The economic performance of the controller remained at an excellent level during the 

set point change simulation. Figure 7.13 illustrates the economic performance index 

besides the momentary economic performance index and profit.  

 

Figure 7.13. The economic performance in the set point change simulation. 

From Figure 7.13 can be seen that the momentary profit dropped after the sampling in-

stant 90 when the AI-001 set point was decreased. This set point change caused the 

main column's reboiler steam flow rate FC-004 to increase. Also the reflux ratio HC-

001 increased, which caused a minor reduction in the distillate flow rate FC-006. As 

FC-004 increased and FC-006 decreased, the relation of the economic input and output 

flows changed. The decrease of the momentary profit caused the momentary economic 

performance and moments later the economic performance to drop. After the sampling 

instant 360 when the AI-001 set point was moved to a higher value than the initial, the 

momentary profit moved also to a slightly higher level, due to which the economic per-

formance reached some sampling instants later a level that was higher than at the begin-

ning of the simulation case. 

7.3.3 Limit change 

The effect of a limiting constraint CV on the controller performance was tested. The test 

was done by decreasing the maximum limit of the overhead condenser's speed of rota-

tion TCA-002VP by 10 % at the sampling instant 150. The main input feed was kept at 

the initial level and other control objectives were also not changed. Figure 7.14 shows 

how the TCA-002VP measurement reacted to the limit change. The measurement start-

ed to go down quickly after the limit change. It reached the new limit in approximately 

30 cycles and remained after that near the maximum limit.  
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Figure 7.14. The condenser's speed of rotation in the limit change simulation. 

Figure 7.15 presents how the examined target CVs reacted to the limit decrease of TCA-

002VP. The set point of the main column's temperature TC-005 decreased after the limit 

was changed at the sampling instant 150. The measurement also dropped but it was too 

low when compared to the set point, which produced a constant deviation between the 

set point and measurement of the temperature. The measurement of the composition AI-

001 started to rise after a delay. At highest, there was a difference of approximately 35 

% between the composition measurement and set point. After that AI-001 measurement 

began to gradually decrease. However, the decreasing happened extremely slowly and 

the composition measurement did not reach the set point and thus a constant deviation 

remained during the end of the simulation. 

 

Figure 7.15. The composition of the bottom product and the main column temperature 

in the limit change simulation. 

Reactions of the reflux ratio HC-001 and the reboiler steam flow rate FC-004 to the 

limit change at sampling instant 150 are presented in Figure 7.16. Both reflux ratio and 
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reboiler steam flow rate decreased quickly after the limit change. HC-001 dropped 

slightly under 3 % whereas the decrease of FC-004 was approximately 10 %. By cutting 

down the reboiler steam flow rate, the overhead condenser's speed of rotation could be 

dropped under the new maximum limit. However, this impacted also on the main 

column's temperature TC-005, which in turn added the composition of the bottom prod-

uct.  

 

Figure 7.16. The reflux ratio and the main column reboiler steam flow rate in the limit 

change simulation. 

The main input remained at a constant level during the limit change simulation. The 

main feed flow rate is presented in Figure 7.17 along with the distillate and bottom 

product flow rates. Figure 7.17 shows that the distillate flow rate FC-006 went up after 

the limit change at the sampling instant 150 as the reflux ratio of the main column de-

creased.  

 

Figure 7.17. The main feed, distillate and bottom product flow rates in the limit change 

simulation. 
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The technological performance of the controller during the limit change simulation is 

presented in Figure 7.18. It can be seen that the momentary technological performance 

depended mostly on the deviations between the measurement and set point values of the 

target CVs besides the maximum limit's exceeding of the constraint CV. The momen-

tary technological performance dropped close to 0 as the maximum limit of TCA-

002VP was changed and the limit was exceeded. In addition, the change of the maxi-

mum limit caused the MVs to change their level which induced the achieved value of 

performance indices to deteriorate. However, the momentary technological performance 

went up quite quickly as the TCA-002VP measurement reached the new limit. The dif-

ference between the measurement and set point of the composition AI-001 started to 

grow gradually after the sampling instant 230, which induced gradual decreasing of the 

momentary technological performance. As the historical performance index is based on 

the average over a moving horizon, its behaviour was strongly related to the momentary 

technological performance. At first, the historical performance index dropped signifi-

cantly but it rose back to a good level after the sampling instant 250. Since the control 

error of AI-001 increased, the momentary technological performance index and thus the 

historical performance index went down. As presented in Figure 7.15, neither of the 

target CVs reached the set point over the end of the simulation, which induced the his-

torical performance to remain at a poor level. 

 

Figure 7.18. The technological performance in the limit change simulation. 

When the maximum limit of TCA-002VP was decreased, the design-case index dropped 

also instantly. The design-case performance stayed close to value 0.1 for 200 cycles. 

After that, the design-case index was computed using a benchmark value that included 

the changed control objectives. Although the examined target CVs did not reach their 

set points, the design-case performance index ran to 1 and stayed at the excellent level 

for the end of the simulation. As the overall technological performance is calculated as 
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the average of the historical and design-case indices, the controller's technological per-

formance remained good in spite of the poor historical performance index. 

The economic performance of the controller during the limit change simulation is pre-

sented in Figure 7.19. In addition, the momentary profit and momentary economic per-

formance are presented. 

 

Figure 7.19. The economic performance in the limit change simulation. 

After the limit was changed, the distillate flow rate FC-006 increased whereas the main 

column's reboiler flow rate FC-004 decreased, which changed the relation of economic 

inputs and outputs so that the momentary profit rose to a higher level. This caused the 

momentary economic performance and eventually the economic performance to be lim-

ited to value 1. 

7.3.4 Unknown process disturbance 

The last case to be simulated was an unknown process disturbance. When a DV is 

switched off, the controller is not able to include its effect in the control computations 

as it otherwise would be included as feed forward control. The simulation was carried 

out by switching the main input feed flow rate FI-001 off and then manipulating its lev-

el. First at sampling instant 90, FI-001 was decreased by approximately 10 %. After the 

process had stabilized, the main feed was raised to a level 5 % higher than initially. The 

main feed, distillate and bottom product flow rates are presented in Figure 7.20. 
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Figure 7.20. The main feed, distillate and bottom product flow rates in the unknown 

disturbance simulation. 

Figure 7.20 shows that the distillate flow rate FC-006 and the total bottom product flow 

rate as the sum of FCA-003 and FC-007 changed as the main feed level decreased or 

increased. There was a small delay from the main feed to the output flow rates. After FI-

001 was increased at sampling instant 350, the distillate flow rate FC-006 also rose. 

However, FC-006 slightly decreased after a while and then remained for the end of the 

simulation close to the initial level with unchanged main feed FI-001. 

The measurement and set point values of the composition AI-001 and the main column's 

temperature TC-005 are presented in Figure 7.21. After the decrease of FI-001, the main 

column's temperature TC-005 started to increase. After a while, TC-005 measurement 

returned to the set point. As a result, the measurement of the composition AI-001 dif-

fered from its set point by 5 %. After the process had settled and the level of FI-001 was 

increased at sampling instant 350, the temperature TC-005 dropped. Additionally, the 

set point of the main column's temperature decreased but it returned to the initial level 

after approximately 200 cycles. The measurement of TC-005 reached the set point for a 

while but then decreased to a 0.5 % lower level than the set point and a constant control 

error remained over the end of the simulation. The composition AI-001 increased grad-

ually and was at maximum 30 % higher than the set point after the increase in the main 

feed. After that, the AI-001 measurement eventually fell and returned close to the set 

point. 

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851

Fl
o

w
 r

at
e

 

FI-001 FCA-003 + FC-007 FC-006



68 

 

 

Figure 7.21. The composition of the bottom product and the main column temperature 

in the unknown disturbance simulation. 

Figure 7.22 presents how the condenser's speed of rotation reacted to the changes of the 

main feed level as the unknown process disturbance. During the simulation case, the 

maximum limit was not exceeded and TCA-002VP measurement remained under it. 

TCA-002VP was related to the level of FC-001 and it decreased as the main feed of the 

process unit dropped and rose as the main feed was increased. When FC-001 was at the 

higher level during the end of the simulation, the condenser's speed of rotation stayed 

very close to the maximum limit. Should the main feed have been higher, TCA-002VP 

maximum limit would likely have been exceeded and the control of the process would 

have been weakened. 

 

Figure 7.22. The condenser's speed of rotation in the unknown disturbance simulation. 

The reflux ratio HC-001 and the main column's reboiler steam flow rate FC-004 during 

the unknown disturbance simulation are presented in Figure 7.23. FC-004 started to 

decrease after the level of main feed FI-001 was lowered. From Figure 7.23 can be seen 

that FC-004 reached a minimum defined by the physical limit of the steam valve posi-
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tion and stayed after that at a constant level. The reflux ratio HC-001 stayed quite close 

to the start level when FI-001 level was decreased. After the level was increased at sam-

pling instant 350, the reboiler steam flow rate rose steadily. HC-001 decreased first for 

100 cycles but then started to rise to a higher level. 

 

Figure 7.23. The reflux ratio and main column's reboiler steam in the unknown disturb-

ance simulation. 

The technological performance of the controller during the unknown disturbance simu-

lation is illustrated in Figure 7.24. When the main feed was increased at sampling in-

stant 90, a control error of the main column's temperature TC-005 appeared. In addition, 

decrease of the reboiler steam flow rate FC-004 required more control moves than stay-

ing at a steady state, which increased the value of cost function determining the 

achieved value of computed performance indices. 

 

Figure 7.24. The technological performance in the unknown disturbance simulation. 
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As the control error of the main column's temperature TC-005 decreased, the momen-

tary technological performance index rose back close to value 1. Around sampling in-

stant 200, AI-001 measurement deviated from the set point causing the momentary 

technological performance to drop. The momentary technological performance rose as 

AI-001 measurement returned to the set point. The historical and design-case perfor-

mance indices decreased to about 0.9 after the first level change of FI-001. After sam-

pling instant 350, the momentary technological performance reacted again to the control 

error of TC-005. As the control error of bottom composition AI-001 increased, the mo-

mentary technological performance dropped to the poor level. The historical perfor-

mance was at lowest approximately 0.3 whereas the design-case index dropped to 0.4. 

After the measurement of AI-001 started to decrease and returned to the set point value, 

the momentary technological performance rose to excellent level. Also the historical 

and design-case performance indices and thus the overall technological performance 

index returned to a value slightly over 0.9. The performance indices did not reach the 

value 1 because a deviation between TCA-005 measurement and set point value re-

mained. 

The economic performance of the controller is presented in Figure 7.25 along with the 

momentary profit and the momentary economic performance index. After the main feed 

was decreased at the sampling instant 90, a significant increase in momentary profit can 

be seen in Figure 7.25. This is due to that although the main feed FI-001 was decreased, 

there was a small delay before the decrease could be seen in the process unit's outputs, 

which caused a sudden improvement in the momentary profit and thus in the momen-

tary economic performance. An opposite event appeared after the level of FI-001 was 

increased and the output flow rates stayed at the old level before rising higher, which 

caused the momentary profit and the momentary economic performance to drop mo-

mentarily.  

 

Figure 7.25. The economic performance in the unknown disturbance simulation. 
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The economic performance of the controller followed the momentary economic perfor-

mance index in outline as it was computed as an average over a moving horizon. As the 

momentary profit and the momentary economic performance decreased, the economic 

performance also dropped close to 0.96 after a while. Similarly after the increase of FI-

001 level, the economic performance went up to 1. The momentary profit reached such 

a high level that the momentary economic performance was limited to 1 after sampling 

instant 400 for over 200 cycles. This caused also the economic performance to be lim-

ited to 1. After this, the momentary profit returned to a lower level close to the bench-

mark value so that the momentary economic performance fluctuated around value 1. 

The economic performance remained at value 1 over the end of the simulation. 



72 

 

8. DISCUSSION ON RESULTS 

The implemented performance assessment tool was designed so that the deployment 

could be done as automatically as possible. The function of the performance calculation 

application as well as the structure of the user interface was designed to be general and 

suitable for assessing the performance of multivariable and model predictive NAPCON 

Controller. The deployment of the performance assessment tool required an update of 

the software environment including NAPCON OPC UA Server, so that the new object 

types could be created. Before the economic performance of the controller could be as-

sessed, the economic inputs and outputs of the test process needed to be defined along 

with their prices and references to available measurements. The structure of the updated 

OPC UA address space allowed the new economic variables to be added easily for the 

economic performance assessment of the controller. 

As the performance calculation was started and the calculations were on, the values of 

different variables related to the controller's performance were computed and updated to 

the database of the test environment. The start of the different simulation cases varied 

slightly since each simulation was carried out separately and the process stabilization 

point varied. However, the simulation results were scaled and same historical and eco-

nomic benchmark values were used so that the results of the different cases would be 

comparable with each other. Generally, the simulations showed that the achieved per-

formance indices responded as expected when there were changes in the process or con-

trol objectives, and correspondingly they remained at a constant level when the process 

conditions and the control objectives were kept unchanged. The different simulation 

cases showed that the technological performance of the controller decreased as the con-

trol errors of target CVs increased or the maximum limit of the examined CV constraint 

was exceeded. Additionally, the operating points of the examined MVs changed at the 

same time and more control moves were required than the historical benchmark defined 

or the controller prediction calculations presumed. This increased the achieved values 

defined by the cost functions of equations (14) and (19) and thus decreased the indices 

related to the technological performance of the controller. 

The momentary technological performance indicated the changes in the controller per-

formance instantly whereas the historical and design-case performance indices and thus 

the overall technological performance index reacted more slowly. This was due to that 

they were computed as an average over defined moving horizons. The horizon of the 

design-case index was determined based on the controller parameters and the achieved 

value was compared to the benchmark value that was earlier calculated of the control-

ler's variable predictions. The achieved and benchmark values of the historical perfor-
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mance index were computed over horizons dependent on controller parameters. The 

historical performance index would have reacted more quickly if the horizon, over 

which the achieved value was calculated, was defined shorter. In the limit change simu-

lation, the design-case performance index rose to 1 whereas the historical performance 

index remained at a poor level. This indicated that although there were control errors, 

which the historical benchmark value did not allow, the controller prediction calcula-

tions had adjusted to the new conditions. The controller calculations had taken into ac-

count that every control objective could not be satisfied and the design-case benchmark 

was also in accordance with that. Conversely, if a constant deviation between measure-

ment and set point values remained against the controller predictions, the design-case 

index would not reach value of 1. 

The results on the momentary profit, the momentary economic performance and the 

actual economic performance were also collected by the different simulation cases. The 

results showed that the selected methods provided a method to assess the economic per-

formance of a multivariable and model predictive controller. The simulations showed 

that the values of economic related variables depended on the measurements of the de-

fined economic inputs and outputs of the process. The effect could be seen on the con-

troller's economic performance if the relation between the process inputs and outputs 

changed. The changes were not so notable and the economic performance stayed at the 

excellent level in the different simulation cases. Although the economic performance 

remained excellent in the obtained results, the current economic performance assess-

ment method does not take quality product specifications into account. The composition 

of the bottom product deviated greatly in some simulation cases from the target value. 

At the worst, the output product could be worthless which would cause the economic 

performance of the controller naturally to decrease. 

Based on the achieved results, the selected control performance assessment methods and 

techniques provided a way to assess performance of a multivariable MPC both from 

technological and economic aspects. The basic ideas of the selected methods were gen-

erally quite simple and the performance calculations did not add the computational bur-

den too much. However, the simplicity of the selected control assessment techniques 

could also be seen as a disadvantage as they do not take everything into account. Alt-

hough the problem related to the possible biasing of the historical benchmark was 

avoided by the definition of the historical benchmark value from a user-defined time 

period, a new challenge appeared. A problem with the historical benchmark is related to 

the situation where the controller configuration changes. Then the earlier defined 

benchmark value would not necessarily be suitable for the new configuration as the con-

trol objectives could be different than initially.  
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The examined methods are based on a comparison between achieved and benchmark 

values which are obtained from a cost function. The cost function is computed as a sum 

of control errors and control moves. Using a total sum does not separate the different 

process variables and their individual performances. This could allow some variables to 

perform poorly while some others are outperforming the requirements, and the control-

ler would seem to be performing well according to the performance indices. 
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9. FURTHER STUDY 

The results of the different simulation cases showed that the implemented performance 

assessment tool worked properly and the controller's performance could be assessed 

based on the selected methods. Although the results were promising, further study on 

the application's functionality is required before it can be released as a finished product. 

The performance assessment application worked well at the tested simulation environ-

ment, but it should be also tested in a real process environment with actual process data. 

Additionally, deployment to various processes would be required to verify that the im-

plemented tool is general and suitable to assess performance of various controllers. 

Besides testing in different process environments, the results of performance calcula-

tions could also be collected from further test simulations. Especially the suitability of 

the historical benchmark in different controller configuration cases should be studied 

more. Now the historical benchmark is updated automatically to a new value based on 

the individual variable benchmark values which are collected during the time the histor-

ical benchmark search is on. Normally, the aim is that controller configuration includes 

all available variables in the calculations. However, it is possible that there are for ex-

ample two alternative controlled variables defined in the process unit and only either of 

them is included in the control calculations at a time. It is also possible that lower level 

control action is lost and therefore there are less manipulated variables available, which 

would cause the controller configuration and thus the control problem formulation 

change. 

The importance of separate variables was not specifically studied in this thesis and the 

weighting for performance assessment cost functions was done based on the available 

controller parameters. However, for example the relative importance of quality variables 

could be emphasized more from the performance aspect and extra variable coefficients 

could be included in the performance calculations. Nevertheless, this would require ad-

ditional work as the importance of the different variables on control performance was 

defined when the performance assessment tool was applied to a new environment. De-

fining the performance weights of different variables would require tailoring for differ-

ent process units and controllers. Besides the variable weighting, the individual perfor-

mance indices of variables could be studied for further examination and identification of 

controller's performance. 

NAPCON Controller structure contains different types of CVs and MVs. Currently, 

only the control moves of the manipulated variables are included in the performance 

calculations. Besides the required control moves, the state of an optimized MV could be 
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examined. Some optimized MVs are comparable to target CVs in a way and an error 

part of optimized MVs could be included in the objective functions forming both the 

achieved and benchmark values of performance indices. Unfortunately, the controller 

does not provide a direct way to implement this at the moment, and the application 

would not be that simple. 

The economic performance depends on the price coefficients and the amount of the 

economic inputs and outputs in the implemented performance assessment tool. In order 

to provide a more valid presentation of the controller's economic performance, also the 

specifications of the quality products should be taken into account. Additional coeffi-

cients and limits for quality variables could be defined. If a quality variable violated a 

defined limit, the economic performance would decrease according to the coefficients 

and at worst be zero if the provided output product was worthless. 

The implemented GUI in this thesis contained switches for performance calculation and 

benchmark update states. In addition, the calculated performance indices were presented 

as a number and the performance level was indicated verbally. In future, the presenta-

tion of the performance index as well as the level could be visualized so that the user is 

able to see more easily how the controller is performing. An alternative is using graph-

ical measurement bars that would have a colour code for the level indication. In addi-

tion, including trend views to the GUI of the performance assessment tool would allow 

the user to see at a glance how the controller performance has been recently. Currently, 

the history of the performance variables is stored to the history database and it can be 

studied with the trend tool of NAPCON Information Manager. The trend views could 

contain information of the MV constraints. If some MVC is limiting, this can affect the 

controller's performance. In this thesis, the performance indices were not manipulated 

based on active MVC limits but they could be used for flagging in the trend views, 

which would allow the user to see whether the controller performance has decreased 

due to a limiting MVC. Additionally, separate variable performance indices could be 

used in the control performance diagnosis phase after their further study. The infor-

mation could be included in the user interface for example as an alarm list containing 

variables which are performing poorly when compared to their benchmarks. A second 

alternative could be using the separate variable performance indices in trend views for 

flagging of the overall technological performance decrease. 

The functionality of the performance assessment tool does not currently take into ac-

count if the number of the controllers on the server or the database structure changes. At 

present, the performance calculation service needs to be stopped and then restarted if 

these kinds of alterations are carried out on the server. The restart of the application 

enables the re-initialization of the performance calculation object. However, the stop-

ping of the service is not highly preferred and an alternative solution would be benefi-

cial. A potential way to handle the change of the database structure is adding a switch 

for re-initialization of the performance calculation object. The switch would allow re-
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initializing the related performance calculation object of the controller. This requires the 

redefinition of the historical and economic benchmark values by the user, which would 

be a reasonable task while the database structure is altered. When the structure of the 

controller is changed, a proper examination of the controller behaviour is likely to be 

done and the benchmark values could then be determined on the side. Monitoring and 

handling of the number of the controllers could be implemented as a task of the perfor-

mance calculation handler object. 

After the functionality of the performance assessment tool is verified by different tests, 

the tool can be deployed to new environments as a part of the controller software to in-

dicate the controller performance. In this work, the controller tuning was kept un-

changed as the controller tuning parameters remained constant. The tool could also be 

used in the implementation phase of a new controller as the controller is tuned and suit-

able controller parameters are studied, after the operation of the performance assessment 

tool is proved to be as required. 
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10. SUMMARY 

APC technologies have been applied to various process environments in order to im-

prove for example product quality and yield. In many process industries, the most popu-

lar APC strategy is the model predictive control. MPC's ability to handle constrained 

problems can be considered as the most important feature when compared to other APC 

strategies. A control system normally operates at its nominal efficiency after design and 

implementation. However, the performance of the control system usually decreases over 

the time due to various causes. The aim of control performance assessment and moni-

toring is to ensure that control systems operate as required in order to secure effective 

process control as well as safe and profitable plant operations. 

The aim of this thesis was to design and implement a tool for performance assessment 

of a multivariable, model predictive controller. It was required that the structure of the 

tool was generic so that it would be suitable for different controllers and control envi-

ronments. It was also required that the operation of the performance assessment tool 

does not affect the actual controller functionality. In addition, the deployment of the 

performance assessment tool to a new environment was to be kept as simple and auto-

matic as possible. 

As the thesis was a continuation to the work of Janne Oksanen, who had done a wide 

research on various CPA methods, different CPA technologies alongside recently pro-

posed methods were introduced generally in this thesis. Historical and design-case 

benchmarking methods were studied more closely as they were selected to be utilized in 

the implemented performance assessment tool for the assessment of the controller's 

technological performance. Both of the selected methods are based on a comparison of 

an achieved value and a benchmark value, which are both calculated based on the cost 

function included normally in the MPC's optimization problem. The historical bench-

marking method is a user-specified method and the benchmark value is calculated over 

a time during which the controller is defined to be performing well by the user. The 

design-case benchmark provides a model-based approach for assessing control perfor-

mance, as the benchmark value is calculated of the controller predictions. In addition, 

the economic performance of the controller was assessed. 

After the selection of CPA methods, aspects related to the automation information tech-

nology were studied before the performance assessment tool could be implemented. As 

the automation hierarchy of a plant contains several different levels, also various com-

munication protocols are required in order to provide access to data between different 

automation levels. OPC UA is a communication protocol developed by the OPC Foun-
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dation and it provides a more effective way for information modelling than its precur-

sor. OPC UA based information modelling was required before the performance index 

values and the configuration parameters could be stored to the database. The software 

environment including UA server needed to be updated before the deployment of the 

performance assessment tool. In addition, the economic inputs and outputs of the test 

process were defined and related objects were created to the database. The implemented 

performance assessment tool included a performance calculation application as a Win-

dows service and a graphical user interface for the configuration of the performance 

calculations.  

The functionality of the implemented control performance assessment tool was tested 

with a simulator of a distillation unit and an actual MPC controller. Different simulation 

cases were used to verify the operation of performance calculation application. The re-

sults showed that the calculated performance indices responded as expected when the 

process conditions or control objectives changed. Correspondingly, the performance 

indices remained at a constant level when there were no changes in the process or con-

trol objectives. 

Improvement to both performance calculation application and graphical user interface is 

needed although the created performance assessment tool worked well. Additional sim-

ulation tests are also required to verify that the functionality of the tool is as desired in 

situations that were not included in the test cases of this thesis. In order to verify the 

generality of the performance assessment tool, testing with various processes is also 

required besides different simulation cases. After the tool is verified to work properly, it 

can be deployed to a real process environment as a part of the controller software for the 

assessment of the controller's performance. 
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