

ANTTI MÄNNISTÖ

A STUDY OF HARDWARE ACCELERATION IN SYSTEM ON CHIP

DESIGNS USING TRANSPORT TRIGGERED ARCHITECTURE

Master of Science Thesis

Examiner: Prof. Jarmo Takala
Examiner and topic approved in the
faculty of Computing and Electrical
Engineering Council meeting
9th of March 2016

i

ABSTRACT

ANTTI MÄNNISTÖ: A Study of Hardware Acceleration in System on Chip De-
signs using Transport Triggered Architecture
Tampere University of Technology
Master of Science Thesis, 47 pages, 1 Appendix page
June 2016
Master’s Degree Programme in Electrical Engineering
Major: Embedded Systems
Examiner: Professor Jarmo Takala

Keywords: Transport Triggered Architecture, LTE, Fast Fourier Transform, FFT

Transport Triggered Architecture is a processor design philosophy where the datapath is

visible for the programmer and the program controls the data transfers on the path di-

rectly. TTA processors offer a good alternative for application specific task as they can

be easily optimized for a given application. TTA processors, however, adjust poorly to

dynamic situations, but this can be compensated with external hosting.

Fast Fourier transform is an approximation of the Fourier transform for converting time

domain data into frequency domain. Fast Fourier transform is needed in many digital

signal processing applications. One example of the usage of the transform is the LTE

network access schemes where the symbols transmitted over the air interface are con-

structed with the fast Fourier transform and again de-modulated as they are received.

The study makes use of Nokia Co-Processor as the host for TTA processor and proposes

alternatives for different architectures for the usage of the TTA processor inside a practi-

cal design where data is being moved over interconnections and memories. One proposed

architecture is selected for implementation and the construction of this architecture is dis-

cussed regarding implementing the needed hardware and software to run the Fourier ap-

plication on TTA with data being fetched and written back in system memory. Lastly, the

performance of the implementation is discussed.

ii

TIIVISTELMÄ

ANTTI MÄNNISTÖ: Tutkimus laitteistokiihdytyksestä järjestelmäpiireillä käyttäen
siirtoliipaistua arkkitehtuuria
Tampereen teknillinen yliopisto
Diplomityö, 47 sivua, 1 liitesivu
Kesäkuu 2016
Sähkötekniikan koulutusohjelma
Pääaine: sulautetut järjestelmät
Tarkastaja: professori Jarmo Takala

Avainsanat: siirtoliipaistu arkkitehtuuri, LTE, nopea Fourier-muunnos, FFT

Siirtoliipaistu prosessoriarkkitehtuuri on prosessorisuunnittelufilosofia, jossa datapolku

näkyy ohjelmoijalle ja ohjelma kontrolloi suoraan datapolun datasiirtoja. TTA prosessorit

tarjoavat hyvän vaihtoehdon sovellusspesifeille tehtäville, sillä ne voidaan helposti opti-

moida suoritettavalle sovellukselle. TTA prosessorit sopeutuvat kuitenkin huonosti dy-

naamisiin tilanteisiin, mitä voidaan kuitenkin kompensoida ulkoisella ohjauksella.

Nopea Fourier-muunnos on Fourier-muunnoksen approksimaatio datan muuntamiseksi

aikatasosta taajuustasoon. Nopeaa Fourier-muunnosta tarvitaan useissa digitaalisten sig-

naalien prosessointisovellutuksissa. Yksi esimerkki muunnoksen käytöstä on LTE-verk-

koon pääsy, jossa ilmarajapinnan yli lähetettävät symbolit konstruoidaan nopeaa Fourier-

muunnosta käyttäen ja edelleen demoduloidaan vastaanotettaessa.

Tämä tutkielma hyödyntää Nokian apuprosessoria ulkoisena ohjauksena TTA-prosesso-

rille ja ehdottaa vaihtoehtoja eri arkkitehtuureille TTA prosessorin käyttämiselle käytän-

nön piirissä, jossa data siirretään väylien ja muistien kautta. Yksi ehdotettu arkkitehtuuri

valitaan toteutettavaksi ja tämän arkkitehtuurin konstruointi käydään läpi koskien tarvit-

tavan raudan ja ohjelmiston toteuttamista Fourier sovelluksen ajamiseksi TTA:lla siten,

että data haetaan ja kirjoitetaan takaisin systeemimuistiin. Lopuksi käydään läpi toteutuk-

sen suorituskykyä.

iii

PREFACE

This thesis was done at Nokia Networks in Tampere, Finland, in spring 2016.

Many people at Nokia helped me with this thesis somewhere along the journey, and I

thank you all for the support and assistance. Special and warm thanks to Jari Heikkinen

for introducing me with the TTA processor and for providing me the first hand help,

advices and instructions. I also want to thank my examiner, Jarmo Takala, for the valuable

and irreplaceable comments and instructions regarding my work, and Lasse Lehtonen for

providing the TTA processor used in this study.

As one chapter ends, a new one begins.

Tampere 25.5.2016

Antti Männistö

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. FREQUENCY DIVISION MULTIPLEXING IN WIRELESS

COMMUNICATIONS .. 3

2.1 Fast Fourier Transform... 3

2.2 Long Term Evolution Standard .. 6

2.2.1 Overview .. 6

2.2.2 Frequency Division Multiplexing .. 8

3. PROCESSOR TEMPLATES .. 11

3.1 Transport Triggered Architecture... 11

3.2 Nokia Co-Processor.. 13

4. ARCHITECTURAL ALTERNATIVES .. 15

4.1 Single COP System: DMA Control over the System Interconnect 15

4.2 Single COP System: DMA Control over the Auxiliary Interface 21

4.3 Dual COP System... 25

4.4 Performance Comparison ... 26

5. IMPLEMENTATION ... 28

5.1 Top Level Design ... 28

5.2 COP Configuration ... 29

5.3 Auxiliary Units ... 29

5.3.1 Interfaces .. 29

5.3.2 Transaction Protocol .. 31

5.3.3 Datapath ... 33

5.3.4 State Diagrams ... 35

5.3.5 Buffers .. 37

5.3.6 TTA Control ... 38

5.4 TTA Processor.. 39

5.5 Memories .. 40

5.6 COP Software ... 41

6. RESULTS ... 45

7. CONCLUSION ... 46

REFERENCES .. 47

APPENDIX A: IMPLEMENTED TTA PROCESSOR ARCHITECTURE

v

ABBREVIATIONS

3GPP 3rd Generation Partnership Project

ALU Arithmetic logic unit

AMBA Advanced Microcontroller Bus Architecture

ASIC Application-specific integrated circuit

ASIP Application-specific instruction-set processor

AUT Auxiliary Unit Transceive block

AUX Auxiliary (refers to Auxiliary port)

COP Nokia Co-Processor

CPU Central processing unit

DFT Discrete Fourier transform

DIT Decimation-in-time

DIF Decimation-in-frequency

DMA Direct memory access

DSP Digital signal processing

EDGE Enhanced Data Rates for GSM Evolution

eNB Evolved-Node B

EPS Evolved Packet System

FFT Fast Fourier transform

FIFO First-in-first-out

FU Functional unit

GCU Global control unit

GERAN GSM EDGE Radio Access network

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

IC Interconnect

IFFT Inverse fast Fourier transform

IP Intellectual property

LSU Load-store-unit

LTE Long Term Evolution

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

QAM Quadrature amplitude modulation

R4SDF Radix-4 single-path delay feedback

RAM Random access memory

RF Register file

RISC Reduced instruction set computer

SC-FDMA Single Carrier Frequency Division Multiple Access

SoC System on chip

SR Shift register

TCE TTA-based Co-Design Environment

TDMA Time Division Multiple Access

TTA Transport Triggered Architecture

UMTS Universal Mobile Telecommunications System

UTRAN UMTS Radio Access Network

VLIW Very long instruction word

VHDL VHSIC hardware description language

VHSIC Very high speed integrated circuit

WCDMA Wideband Code Division Multiple Access

1

1. INTRODUCTION

Moore’s law for the amount of transistors inside integrated circuits has stayed accurate

for the last 40 years and systems on chip (SoC) contain more logic than ever. Although

Moore’s law is starting to gradually slow down as the manufacturing technologies are

reaching their lower limits, the complexity of microchips is not saturating. The number

of cores inside chips is increased and parallelism is utilized on higher levels, increasing

the complexity even if the technology stays the same.

With the ever increasing complexity, it’s getting harder to design products with no faults.

Humans make mistakes and these can potentially be carried all the way inside a product

released on the market in spite of all the testing and verifying done along with the design

process. This proposes a serious problem in hardware design, especially with application-

specific integrated circuits (ASIC); once the faulty chip has been manufactured it is im-

possible to erase the error from the hardware. Therefore, any kind of additional program-

mability being able to include inside the designs comes with great value, if the faults in

hardware can be bypassed.

Many algorithms in digital signal processing (DSP) are too heavy to be ran by software

on a general purpose processor, especially in applications with real-time or near real-time

requirements, and have to be executed on a separate hardware accelerators. Application-

specific instruction-set processors (ASIP) provide a tradeoff between the programmabil-

ity of a general purpose processor and the efficiency of hardware acceleration. ASIPs are

tailored for a specific application only and are usually not suitable for other tasks.

The Transport Triggered Architecture (TTA) concept offers an interesting choice for

ASIP implementations. In TTA, the datapath of the processor is exposed for programmer

and the program performs data transfers between logical units inside the processor. TTA

processors can be optimized for a specific task for high performance, with the benefit of

the possibility of being re-programmed for a new use case. TTA processors have the

drawback of being inefficient with non-predefined situations, such as interrupts and

memory accesses, where the exact timing of the operation is unknown.

In this thesis, the usage of a TTA processor in practical design is studied with compen-

sating the inefficiencies of TTA with Nokia Co-Processor (COP). The use case for this

dual processor approach, the fast Fourier transform (FFT) in Long Term Evolution (LTE

standard, is first introduced in Chapter 2. The two processors used in this study are pre-

sented in Chapter 3, and three proposed architectures for the implementation are discussed

2

in Chapter 4 regarding their performance. One of the presented architectures was imple-

mented and the design is presented in Chapter 5. The performance of the implemented

architecture is discussed in Chapter 6.

3

2. FREQUENCY DIVISION MULTIPLEXING IN

WIRELESS COMMUNICATIONS

In radio networks and signal processing, there is typically a need for transferring data

from time to frequency domain and vice versa. Information is modulated into the carrier

signals which are transmitted over the air interface as a function of time. Modulating

information into several frequencies at the transmit side and de-modulating the data at the

receive side demands a method for the time-frequency transform.

In this chapter, the discrete Fourier transform (DFT) algorithm of the famous Fourier

transform theorem is presented. As an example of the usage of the DFT in modern radio

networks, the Long Term Evolution functionality is shortly from the DFT perspective.

2.1 Fast Fourier Transform

The mathematical way for representing a continuous time domain function 𝑓(𝑡) in fre-

quency domain is the famous Fourier integral or Fourier transform

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞
, (2.1)

where 𝜔 = 2𝜋𝑓 is the angular frequency and 𝑗 = √−1 is the imaginary unit [1]. For dig-

ital applications, a discrete version of the transform in an algorithmic representation is

needed. The discrete Fourier transform is an approximation of the Fourier transform. The

DFT 𝑋(𝑘) for input sequence 𝑥(𝑛) presented in [2] is defined as

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0
 0 ≤ 𝑘 < 𝑁, (2.2)

where 𝑁 is the number of input samples and the coefficient 𝑊𝑁 = 𝑒−
𝑗2𝜋

𝑁 is commonly

referred as the twiddle factor.

In practical use, the number of the input samples 𝑁 of the DFT often becomes an issue.

The DFT sizes can easily be in the scale of 1000 input samples or larger. According to

(2.2), the amount of multiplications done in one DFT operation is 𝑁2, so with 1000 inputs

there are 1000 000 multiplications in a single DFT. From hardware point of view this

becomes problematic since multiplication units are very costly in area and speed in digital

designs.

Resolving the performance issues of the traditional DFT, the fast Fourier transform was

first introduced by Cooley and Tukey in 1965 [3]. Size 𝑁 DFT inputs can be split into

two 𝑁/2 even and odd sequences:

4

𝑥0(𝑛) = 𝑥(2𝑛), 𝑛 = 0, … ,
𝑁

2
− 1 (2.3)

𝑥1(𝑛) = 𝑥(2𝑛 + 1), 𝑛 = 0, … ,
𝑁

2
− 1. (2.4)

The DFT in (2.2) can then be re-written as

𝑋(𝑘) = ∑ 𝑥(2𝑛)𝑊𝑁
2𝑛𝑘 + ∑ 𝑥(2𝑛 + 1)𝑊𝑁

2(𝑛+1)𝑘
𝑁

2
−1

𝑛=0

𝑁

2
−1

𝑛=0 . (2.5)

Also

𝑊𝑁
2 = (𝑒−

𝑗2𝜋

𝑁)
2

= 𝑒
−

𝑗2𝜋
𝑁
2

= 𝑊𝑁/2 , (2.6)

so (2.5) assumes the form

𝑋(𝑘) = ∑ 𝑥0(𝑛)𝑊𝑁/2
𝑛𝑘 + 𝑊𝑁

𝑘 ∑ 𝑥1(𝑛)𝑊𝑁/2
𝑛𝑘

𝑁

2
−1

𝑛=0

𝑁

2
−1

𝑛=0 = 𝑋0(𝑘) + 𝑊𝑁
𝑘𝑋1(𝑘), 0 ≤ 𝑘 <

𝑁

2
.

 (2.7)

The terms 𝑋0(𝑘) and 𝑋1(𝑘) represent two 𝑁/2-point DFTs for input sequences 𝑥0(𝑛)

and 𝑥1(𝑛). The form in (2.7) is, however, for size 𝑁/2 only. Since 𝑋0(𝑘) and 𝑋1(𝑘) are

periodic and 𝑊𝑘+𝑁/2 = −𝑊𝑘, (2.7) can be expressed as

𝑋(𝑘 + 𝑁/2) = 𝑋0(𝑘) − 𝑊𝑁
𝑘𝑋1(𝑘), 0 ≤ 𝑘 <

𝑁

2
. (2.8)

The previous DFT decomposition is called decimation-in-time (DIT) and (2.7) and (2.8)

are referred as butterfly operations. The principle of 8-point DIF FFT is illustrated in

Figure 2.1. The 8-point DFT is split into two different 4-point DFTs for the even and odd

inputs. The grey boxes indexed 0…3 represent the twiddle factor multiplications and the

sum operations with.

With 𝑁 being the size of power of 2, the DFT can be constructed with log2 𝑁 stages

where each stage contains 𝑁/2 butterfly operations. This kind of DFT is referred as radix-

2 FFT since every DFT operation is done with 2-point operation. An example of 8-point

Radix-2 FFT is shown in Figure 2.2. The grey boxes indicate the butterfly operations for

each stage, with the number corresponding to exponent 𝑘 in 𝑊𝑁
𝑘.

The inputs are even-odd paired recursively first for all the 8 inputs, then again for the 4

inputs for the 2-point DFTs. The input sequence {𝑥(0), 𝑥(1), 𝑥(2), 𝑥(3), 𝑥(4), 𝑥(5),

𝑥(6), 𝑥(7)} is first decimated into {𝑥(0), 𝑥(2), 𝑥(4), 𝑥(6)} and {𝑥(1), 𝑥(3), 𝑥(5), 𝑥(7)}

(as was with the DFT in Figure 2.1) and then again into pairs {𝑥(0), 𝑥(4)}, {𝑥(2), 𝑥(6)},

{𝑥(1), 𝑥(5)} and {𝑥(3), 𝑥(7)}.

5

Figure 2.1. 8-point FFT [2, Fig. 19.4].

The idea behind the radix-2 algorithm can be extended to other radices as well. For ex-

ample radix-4 FFT is constructed with 4-point DFTs. With this approach the FFT size 𝑁

has to be a power-of-two.

Figure 2.2. 8-point Radix-2 FFT [2, Fig. 19.5].

Another approach for FFT would be Decimation-in-Frequency (DIF). The principle of

DIF is shown in Figure 2.3 for 8-point FFT. Rather than dividing the input into two 4-

point DFTs, the input is divided into four 2-point DFTs.

6

Figure 2.3. Decimation-in-Frequency for 8-point FFT [2, Fig. 19.9].

2.2 Long Term Evolution Standard

The 3rd Generation Partnership Project (3GPP) is a global initiative that provides technical

specifications and reports defining telecommunications standards [4]. These standards

cover cellular telecommunication network technologies e.g. radio access and the core

transport network.

The first basis for the LTE network technologies was described in the 3GPP Release 8

frozen in 2008 [5]. The Releases are updated constantly and most resent technical docu-

mentation can be found in Release 13 [6].

2.2.1 Overview

Ever since the first smartphones started taking over the mobile device markets, the

amount of mobile data traffic has expanded rapidly and keeps on rising. For example

Cisco forecasts the mobile data traffic to reach 30.6 EB per month until the end of this

decade [7]. The user demands for higher data rates have been growing along with the data

traffic and new technologies has to be taken into use for covering them.

The differences between the old and new radio network solutions are illustrated in Figure

2.4. The early standard Global System for Mobile Communications (GSM) was based on

circuit switching and carried real time services. With circuit switching, only low data rates

are possible and packet switching was needed to carry data more efficiently. General

Packet Radio Service (GPRS) was developed beside GSM to provide the IP-address based

packet switched solution and later the GSM/GPRS was improved with Enhanced Data

Rates for GSM Evolution (EDGE). The network access for these standards are based on

Time Division Multiple Access (TDMA) method. The access network is referred as GSM

EDGE Radio Access network (GERAN).

7

The third generation Universal Mobile Telecommunications System (UMTS) is based on

the GSM standard. The access network is referred as UMTS Radio Access Network (UT-

RAN). It emulates circuit switching technology for real time services and packet switch-

ing for IP based data traffic. The access technology is Wideband Code Division Multiple

Access (WCDMA) and it allows higher data rates compared to TDMA.

The Long Term Evolution network uses Orthogonal Frequency Division Multiple Access

(OFDMA). With LTE, a high order modulation, up to 64 Quadrature Amplitude Modu-

lation (QAM), and wide 20 MHz bandwidth are used for high data rates, achieving a

theoretical 300 Mbps rate in downlink and 75 Mbps in uplink direction. In LTE, there is

no separate circuit and packed switching functionality as with the older standards and,

therefore, no longer need to maintain two separate core networks because the Evolved

Packet System (EPS) of LTE is purely IP based.

The LTE access network is a base station network, shown in Figure 2.5. There is no

central controller, but the control has been divided between the base stations (evolved-

Node B, eNB) for speeding up the setup for the connections. The base stations are con-

nected together with so called X2-interface and to the core network with the S1-inter-

face.

Figure 2.4. From GSM to LTE [5].

8

Figure 2.5. LTE access network structure [5].

2.2.2 Frequency Division Multiplexing

As described in the previous section, different network standards use different kind of

access techniques for network accessing. In LTE, two multiple access modulation

schemes are used: the OFDMA in the downlink direction and the Single Carrier Fre-

quency Division Multiple Access (SC-FDMA) in the uplink direction, as described in [8].

Both are based on the functionality of Orthogonal Frequency Division Multiplexing

(OFDM) where the spacing of the subcarriers of the frequency band is arranged orthog-

onally, as illustrated in Figure 2.6. The frequency 1/𝑇𝑢 represents the modulation rate per

subcarrier. With the orthogonality the overlapping of the subcarriers can be removed.

In OFDM, the transmission bandwidth is divided into relatively large number of N or-

thogonal subcarriers. The principle is illustrated in Figure 2.7. The frequency axis repre-

sent the used 𝑁 subcarriers that are modulated with data symbols 𝑎𝑘
(𝑚)

, with 𝑘 indicating

the subcarrier and 𝑚 the index of the OFDM symbol the data is related to.

In OFDMA, each subcarrier carries information related to different data symbol and the

data is being sent for relatively long time. In SC-FDMA, however, each subcarrier carries

data related one data symbol only, i.e. one data symbol modulates all the subcarriers, and

the data is being sent for relatively short time. Referring again to Figure 2.7, with

OFDMA symbols being transmitted the subcarriers are modulated with different data

symbols 𝑎𝑘
(𝑚)

 and with SC-FDMA symbols all the subcarriers are modulated with the

same data symbol.

9

Figure 2.6. Orthogonal subcarrier spacing [8, Fig.3.2].

The FFT processing, described in section 2.1, is used with the OFDM symbols demodu-

lation. The principle is shown in Figure 2.8. The received time domain signal 𝑟(𝑡) is

sampled into 𝑁 inputs for the FFT operation with sampling rate 1/𝑇𝑠. The serial samples

are converted into parallel form for the FFT processing. The FFT engines are usually

implemented for the size 2𝑛 to achieve the benefits of the effective radix-n solution for

the operation, but this is not always the size exact size of the data being transmitted over

the air interface. The data is zero-padded into the 2𝑛-size form and the zeros are removed

after the FFT operation.

Figure 2.7. OFDM time-frequency grid [8, Fig.3.4].

The FFT is used on the receiver size in LTE but there is also inverse fast Fourier trans-

form (IFFT) used in the transmitter side for generating the OFDMA and SC-FDMA sym-

bols. The IFFT performs the opposite functionality relating the FFT, i.e. transforms data

from frequency domain to time domain. The principle of the OFDM symbol generation,

i.e. the data modulation is shown in Figure 2.9. The modulating data symbols 𝑎𝑘 are

transferred into parallel form and the IFFT operation is performed. The time domain for-

mat data is serialized and transferred for radio transmitter after converted into analog

form.

10

Figure 2.8. OFDM demodulation [8, Fig.3.7].

Figure 2.9. OFDM modulation [8, Fig.3.6].

11

3. PROCESSOR TEMPLATES

Transport Triggered Architecture offers an interesting alternative for completely fixed

hardware solutions inside SoCs due to its benefits, such as flexibility and programmabil-

ity. The resources available inside the TTA processor can be very easily be allocated for

new tasks when in need just by loading new program image to the instruction memory of

the processor.

Transport Triggered Architecture can be, however, inefficient as a standalone, general

purpose processors, because for example interrupt handling is very difficult due to the

structure of TTA. In general, the platform is not good with dynamic solutions, but these

drawbacks are possible to compensate with external control

In this chapter, the Transport Triggered Architecture is shortly introduced for demonstrat-

ing its possibilities and weaknesses inside SoC. Also, the Nokia Co-Processor is presented

as a proposal for the host processor for TTA.

3.1 Transport Triggered Architecture

The Transport Triggered Architecture was first presented by Corporaal [9] in 1995 as an

alternative for the Very Long Instruction Word (VLIW) architecture. VLIW processors

represent a good platform for ASIPs, but their complexity considering the datapath in-

creases rapidly as the application becomes complex, especially with the register file by-

passing logic. Transport Triggered Architecture provides solution for this complexity.

The design philosophy behind TTA is to extend the responsibility of parallel execution

of processor further towards the program code. In traditional processor machine code, the

program determines which operation is executed, but with TTA, the program only deter-

mines the transports on the bus that triggers the executions.

The basic principle of the architecture is presented in Figure 3.1. It consists of functional

units (FU) connected to each other through a network of buses forming an interconnect

(IC). The FUs can in principle be any kind of logical units, but the interface towards the

IC is the same: each FU is associated with one triggering port, indicated with the cross

boxes in Figure 3.1, one operand port and one result port. Typical TTA processor con-

tains at least arithmetic logical unit (ALU), register file (RF) and load-store-unit (LSU)

for the normal central processing unit (CPU) operation. The instruction fetch and decode

is done by global control unit (GCU). The timings of the individual FUs can vary and are

not dependent on each other. When data is written to FU’s trigger port, it launches the

execution inside the FU. When the trigger arrives, the FU assumes the operand port data

to be present too. After the fixed time the specific operation takes, the FU provides result

on the corresponding port.

12

Figure 3.1. Example architecture of TTA processor. Functional units are connected

together with 3 buses.

With TTA, the program code is responsible for the correct timing between the data FU

operations. Depending on the IC, multiple transports are possible to execute in a single

clock cycle. In the traditional assembly code of a processor the machine command deter-

mines the operation, as shown with the add command below.

add r3, r1, r2 //Add r1 and r2, and store the result in r3

With the command the source and target registers r1 and r2 are provided and the proces-

sor stores the result in the destination register r3. With TTA, the program determines only

the data transfers. The TTA format for the same add command is shown below.

r1 -> ALU.operand //r1 contents to ALU operand port
r2 -> ALU.trigger //r2 contents to ALU trigger port
ALU.result -> r3 //Result to r3

The amount of multiple data transfers possible depends on the number of buses in the IC.

With the example architecture in Figure 3.1 a total of three transfers are possible to exe-

cute in a single clock cycle. The possible transfers between two FUs are determined by

the bus connections. This is why the TTA is good choice for ASIPs: the processor can be

configured and optimized for a specific functionality by determining the optimum amount

of buses and connections. The best performance is achieved by connecting all the FUs

together, but this makes the IC relatively complex.

The instruction width of the processor is determined by the IC. One command has to

contain information of all the transfers. For the three bus configuration, three move slots

are included inside the command. These slots specify the destination and source IDs of

the sockets on the bus network. There is also a guard bit involved with every slot that is

used for conditional statements. The instruction contains also space for immediate deliv-

ering. Therefore, with very complex IC the width of the instruction expands as well.

13

As the IC becomes complex, the interrupt handling gets difficult. In worst case scenario,

the whole processor state has to be saved somewhere for resuming the operation after the

interrupt has been handled. This applies to all dynamic situations in TTA. Therefore, TTA

is not very convenient for acting a general purpose processors.

The poor dynamic situation handling can be, however, compensated with external host-

ing. TTA processors are often implemented with a global lock that can be used for stalling

the whole processor. The host locks the TTA processor whenever it detects a possible

hazard condition and released it when the operation can be continued. From the TTA

processor’s perspective, the operation is static and no preparations for the dynamic situa-

tions are needed on TTA side.

3.2 Nokia Co-Processor

The Nokia Co-Processor is a configurable Harvard architecture [10] reduced instruction

set computer (RISC) processor. The generalized high level architecture is shown in Figure

3.2. COP has separate instruction and data memories. COP has two Advanced Microcon-

troller Bus Architecture (AMBA) interfaces [11], one for configuration and one for ac-

cessing the system interconnect. For interrupt based communication COP has the Excep-

tion, Done and Attn ports. The Exception port is asserted when any kind of fault occurs

inside COP. The Done port assumes values according to the internal thread state of COP

and the Attn port can be used for waking up threads in an external interrupt.

Figure 3.2. Co-Processor, high level architecture.

COP has one interesting extra feature, the Auxiliary port (AUX) with the relevant signals

shown in Figure 3.3. This port can be considered as an extension of ALU. There are

maximum of three data slots the size of the machine word of COP related to the Auxiliary

operations. These can be considered the source, target and destination registers of normal

ALU operation. Every operation is initiated with a tag and operation code and a result

with the same tag is expected to be delivered at some point.

14

Figure 3.3. Auxiliary port relevant signals.

The timing of one Auxiliary operation is shown in Figure 3.4. COP initiates the operation

with initiating signal and delivers the data with the same clock edge. The AUX unit has

a ready for command signal which it can use for stalling the operation. If the unit de-

asserts this signal, COP keeps on trying to initiate with the same data until the unit again

informs it is ready for command. The AUX unit provides the result data with the result

ready signal which is held high until COP acknowledges it. There is also information of

the operation to be executed and the index of the AUX unit the operation is targeted in-

volved with the initiation. The time between the initiate and the result assertions is not

the constant 3 cycles shown in Figure 3.4, but can vary with different operations.

Figure 3.4. Auxiliary operation timing.

Having the AMBA configuration port, COP is well suited as a co-operation control unit

since it can be easily hosted and configured for different operations. COP is especially

capable with memory transactions having the AMBA bus interface. The AMBA protocols

support bus widths up to 1024 and data can be moved as bursts instead of individual read

and write operations [12].

15

4. ARCHITECTURAL ALTERNATIVES

In VLSI circuits, there are typically several memory storages containing input and output

data consumed and produced by the intellectual property (IP) blocks inside the design.

Data is moved between the memories and the IP blocks through buses and interconnects.

This requires usually some direct memory access (DMA) units between the functional

blocks and the system memory or some other control logic with system memory interface.

With the COP-TTA architecture, all the control is abstracted outside the TTA processor

and the DMA responsibility is left for COP with no need for extra DMA accelerator in-

tegrated to the TTA processor. There are several ways this kind of architecture can be

constructed regarding the DMA transfers and other control, and in this chapter, three dif-

ferent architectures are proposed for implementation and performance for each is esti-

mated.

4.1 Single COP System: DMA Control over the System Inter-

connect

With the simplest architecture, one COP unit acts only as a DMA controller as shown in

Figure 4.1. The main system memory, COP and the TTA processor are all connected via

the system interconnect, through which all data traffic takes place.

With performing the DMA transfers, a separate slave module is needed between the TTA

processor and the interconnect for performing the AMBA protocol conversion suitable

for accessing the TTA. The slave module can be considered as an abstraction of the pos-

sible ways to connect the TTA processor to the interconnect and one solution is presented

in Figure 4.2. The slave module contains all the needed control, interfaces, buffering and

storage for the input and output data of TTA. Within this context, the storage is considered

as Random Access Memory (RAM), to which the TTA processor has interfaces from its

load-store unit LSU. The RAM is the storage from which the TTA processor fetches its

input data and to where it stores the results of its operation results.

For performance estimation, let 𝑇𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 indicate the execution time of a specific oper-

ation in units of time, ut. One unit of time, 1 ut, corresponds to the time period of one

clock cycle, assuming that the whole design works under one clock domain.

16

Figure 4.1. Proposed architecture for COP DMA control only, top level.

The timing of the RAM is illustrated in Figure 4.3 and is considered to be the same

throughout the analysis of this chapter. The timing for the RAM accessing from the slave

module’s memory control point of view is stated as

𝑇𝑊𝑟𝑖𝑡𝑒𝑅𝐴𝑀 = 1 𝑢𝑡 ; (4.1)

𝑇𝑅𝑒𝑎𝑑𝑅𝐴𝑀 = 1 𝑢𝑡 (+𝑎𝑑𝑑𝑟𝑒𝑠𝑠). (4.2)

Writing can be done in single clock cycle from the writer’s point of view since the data

and address are delivered at the same time. With reading there is one extra address cycle

for the first read, but after that the throughput can be considered 1 data item in a clock

cycle since the next read address is given at same time the data of the previous one is

being written.

The system memory is implemented as some type of RAM as well, but the access is ab-

stracted to the AMBA bus level. The transactions are done with the type of handshaking

signaling shown in Figure 4.4. The source block asserts VALID signal when the data it is

providing is ready and valid. The destination block asserts READY signal when it is ready

for accepting data. When these two signals are high at the rising edge of the bus clock

signal ACLK, the information exchange is done. The destination de-asserts the READY

signal when it has captured the data and the information no longer need to be kept valid

on the bus.

All data transactions on the bus involves separate address and data phases. The AMBA

interface signaling is divided into address and data channels for both write and read op-

erations. Each channel contains separate handshaking signals, so for every transaction

there is different address and data transfer handshakes.

17

Figure 4.2. Slave module.

Since the AMBA protocols support bursts as mentioned in Chapter 3, one address phase

can be followed by multiple data exchanges. Therefore, for single burst operation only

one address handshaking has to be issued for large amount of data. With the data phase

there is handshaking still done with every data element transferred. An example of the

handshaking signaling timing over the interconnect is shown in Figure 4.5. There can be

several blocks accessing the same system memory over the interconnect, so for example

with the address phase the exact moment when the system memory grants access by is-

suing the READY signal is unknown. This uncertainty related to the address phase is re-

ferred here as 𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐴𝑑𝑑𝑟𝑒𝑠𝑠, representing the average time the AMBA address phase

takes in system memory accessing in addition to the 1 cycle minimum handshaking. There

is also a delay with every data phase information exchange called 𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐷𝑎𝑡𝑎, which

represent the average time a data exchange takes.

Figure 4.3. RAM timing.

18

Figure 4.4. AMBA handshaking [12].

For performance estimations, let the system interconnect word size be 128 bits, which is

one of AMBA bus widths. This is also one of the generic word sizes COP can be config-

ured for. Let also the input and output samples the TTA processor operates with be 32-

bit wide, as well as the width of the RAM. With 128-bit word, a total of four 32-bit sam-

ples can be transferred on the bus at once. If considering bursts the length of 16, a total

of 64 samples can be transferred as a single transaction with one address phase. By in-

cluding one address phase with in every burst and the delay 𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐷𝑎𝑡𝑎 with every data

information exchange, the time for the system memory accessing in both writing and

reading directions can be stated as

𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐵𝑢𝑟𝑠𝑡16 = 𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 16𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐷𝑎𝑡𝑎. (4.3)

Figure 4.5. AMBA burst data phase timing example.

The slave module access timing is could be considered the same as in (4.3), but if the

slave module is however fully optimized for COP data writing and reading, the delays

related to the address and data phases can be considered to be constant. The buffering

shown in the block diagram of Figure 4.2 ensures that the module can accept data with

higher rate than it is able to write to the RAM. Therefore, one 64 sample write burst

towards the slave module can be executed with 1 clock cycle address phase and 1 clock

cycle data exchanges and the time is

19

𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝑆𝑙𝑎𝑣𝑒64 = 𝑇𝑆𝑙𝑎𝑣𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑃ℎ𝑎𝑠𝑒 + 16𝑇𝑆𝑙𝑎𝑣𝑒𝐷𝑎𝑡𝑎𝑃ℎ𝑎𝑠𝑒 = 1𝑢𝑡 + 16𝑢𝑡 = 17𝑢𝑡,

 (4.4)

where the terms 𝑇𝑆𝑙𝑎𝑣𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑃ℎ𝑎𝑠𝑒 and 𝑇𝑆𝑙𝑎𝑣𝑒𝐷𝑎𝑡𝑎𝑃ℎ𝑎𝑠𝑒 correspond to the address and data

phase delays. The data phase timing of the writing of the slave module is illustrated in

Figure 4.6. With the buffering implemented inside the module it can accept 4 samples on

every clock cycle although the RAM is accessed slower. The RAM writing starts imme-

diately after the module has received the first samples. 𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝑆𝑙𝑎𝑣𝑒64 is the time that

COP experiences when writing towards the slave module. As seen from Figure 4.6, the

RAM is written much slower. The time COP experiences for the samples to be written in

the RAM is

𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝑆𝑙𝑎𝑣𝑒𝑅𝐴𝑀64 = 𝑇𝑆𝑙𝑎𝑣𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑃ℎ𝑎𝑠𝑒 + 1𝑢𝑡 + 64𝑇𝑊𝑟𝑖𝑡𝑒𝑅𝐴𝑀 = 66𝑢𝑡, (4.5)

where the one extra clock cycle represents the capturing of the first RAM write address.

Figure 4.6. Slave write operation data phase timing.

In the opposite direction, the address phase of the slave module reading can be considered

constant, as was with the writing. But the RAM reading forms a bottleneck in the read

flow because only one sample can be read in a clock cycle from the RAM after the first

RAM address has been written. The timing of the slave module reading data phase is

shown in Figure 4.7. Reading 4 samples from the RAM takes 4 clock cycles as indicated

by 𝑇𝑅𝑒𝑎𝑑𝑅𝐴𝑀4 in the figure. There are still two extra cycles in the beginning of the burst

for capturing the read address and writing it for the RAM. The timing for the 64 result

samples read can therefore be stated as

𝑇𝐶𝑂𝑃𝑅𝑒𝑎𝑑𝑆𝑙𝑎𝑣𝑒64 = 𝑇𝑆𝑙𝑎𝑣𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑃ℎ𝑎𝑠𝑒 + 2𝑢𝑡 + 64𝑇𝑅𝑒𝑎𝑑𝑅𝐴𝑀 = 67𝑢𝑡, (4.6)

where the term 𝑇𝑅𝑒𝑎𝑑𝑅𝐴𝑀 is the RAM reading time stated in (4.2).

20

Figure 4.7. Slave read operation data phase timing.

The timing can be expanded to 64𝑁 samples as well. For calculating the full operation

time of 64𝑁 samples including the TTA processor operation time, 𝑇𝑇𝑇𝐴, (4.5) and (4.6)

for 64𝑁 samples can be stated as

𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝑆𝑙𝑎𝑣𝑒𝑅𝐴𝑀64𝑁 = 66𝑁𝑢𝑡 (4.7)

and

𝑇𝐶𝑂𝑃𝑅𝑒𝑎𝑑𝑆𝑙𝑎𝑣𝑒64𝑁 = 67𝑁𝑢𝑡. (4.8)

The full 64𝑁 size operation time can then be written as

𝑇64𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠,𝑆𝑙𝑎𝑣𝑒𝐴𝑟𝑐ℎ

= 𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐵𝑢𝑟𝑠𝑡16 + 𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝑅𝐴𝑀64𝑁 + 𝑇𝑇𝑇𝐴 + 𝑇𝐶𝑂𝑃𝑅𝑒𝑎𝑑𝑆𝑙𝑎𝑣𝑒64𝑁 + 𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐵𝑢𝑟𝑠𝑡16

2𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 32𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐷𝑎𝑡𝑎 + 133𝑁𝑢𝑡 + 𝑇𝑇𝑇𝐴. (4.9)

One more interesting measure is the part of the overall operation time

𝑇64𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠,𝑆𝑙𝑎𝑣𝑒𝐴𝑟𝑐ℎ is the part that COP is occupied with the data transfers. This time

can be stated with (4.4) expanded for 64𝑁 samples as

𝑇𝐶𝑂𝑃64𝑁,𝑆𝑙𝑎𝑣𝑒𝐴𝑟𝑐ℎ

= 2𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐵𝑢𝑟𝑠𝑡16 + 𝑁𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝑆𝑙𝑎𝑣𝑒64𝑁 + 𝑇𝐶𝑂𝑃𝑅𝑒𝑎𝑑𝑆𝑙𝑎𝑣𝑒64𝑁

= 2𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 32𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐷𝑎𝑡𝑎 + 84𝑁𝑢𝑡. (4.10)

21

4.2 Single COP System: DMA Control over the Auxiliary Inter-

face

With the second proposed architecture, the data traffic between COP and the TTA pro-

cessor is arranged through the Auxiliary interface of COP, described in Chapter 3. The

top level block diagram of the architecture is shown in Figure 4.8. This architecture re-

quires separate Auxiliary unit that converts the data on the AUX port suitable for the TTA

processor.

Figure 4.8. One COP and AUX interface, top level.

The block diagram of the needed AUX unit is shown in Figure 4.9 with the COP and TTA

interfaces. The block contains all the needed control towards the AUX interface, buffering

and data storing, as was with the slave module in the previous section. The storage is

modeled as RAM also with this architecture.

The data rate at which COP can operate the system memory over the AMBA bus is the

same as was with the previous architecture. The timings with the 128-bit COP architecture

and bus data width for 64 sample read and write are the ones described in (4.3).

22

Figure 4.9. Auxiliary unit.

As described in Chapter 3, the Auxiliary port of COP can deliver maximum of 3 data

items the size of the processor’s machine word in 1 clock cycle. Each command, with

which the 3 data items are delivered, expect a result as was indicated already in Chapter

3. To get the best throughput possible the commands should be pipelined as shown in

Figure 4.10. The result of the previous operation initiated is sent at the same time the

current operation is being read.

Figure 4.10. AUX port write timing.

In the opposite direction, 1 data item can be read in a clock cycle as a result for one

initiated operation. If considering only a single command, it would take 2 cycles to read

1 item. The reading can be pipelined the same way as the writing as shown in Figure 4.11

to get the 1 result item per clock cycle rate.

23

Figure 4.11. AUX port read timing.

With 128-bit architecture, a total of 12 samples can be delivered in a single clock cycle.

On the opposite direction, 4 samples can be delivered for COP also in a single cycle, if

the operations are pipelined. Considering the same 64 sample operation as in the previous

section, a total of 5 writes the size of 12 samples and 1 write the size of 4 samples are

needed for delivering 64 samples. From COP’s perspective the time for this operation is

𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝐴𝑈𝑋64 = 5 ∗ 1𝑢𝑡 + 1𝑢𝑡 = 6𝑢𝑡. (4.11)

As was with the pervious architecture’s slave module writing time 𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝑆𝑙𝑎𝑣𝑒64, this

is also the time that COP experiences with writing the Auxiliary unit without the RAM

access time being concerned. If the Auxiliary unit is constructed in the same manner as

was the slave module, as shown in Figure 4.9, COP does not have to wait before initiating

a new AUX write as the buffer of the AUX unit ensures the fluent data flow and the

pipelining can be done.

The AUX unit can start writing the RAM when the first 3 data items are received and 1

clock cycle capturing delay. Therefore, the time for COP to write the 64 samples all the

way to the RAM is

𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝐴𝑈𝑋𝑅𝐴𝑀64 = 1𝑢𝑡 + 64𝑇𝑊𝑟𝑖𝑡𝑒𝑅𝐴𝑀 = 65𝑢𝑡. (4.12)

The timing of the 64 results reading can be analyzed in the same manner as the reading

with the previous architecture. The RAM reading forms a bottleneck also with this archi-

tecture, and if the RAM reading is started with the first initiated command, the pipelining

cannot be done with the same rate as in Figure 4.11 but with similar manner as was in

presented in the previous section. The AUX port read timing with the RAM included is

presented in Figure 4.12. There are the same 2 cycle delay before the first sample is read

as was in Figure 4.7. For every 4 samples there is a 4-cycle delay. There are also 2 extra

cycles due to the data capturing and RAM write addressing. Therefore, the time is

𝑇𝐶𝑂𝑃𝑅𝑒𝑎𝑑𝐴𝑈𝑋64 = 2𝑢𝑡 + 64𝑇𝑅𝑒𝑎𝑑𝑅𝐴𝑀 = 66𝑢𝑡. (4.13)

24

The AUX accessing times in (4.12) and (4.13) can be expanded for the same 64𝑁 size

operation as with the previous architecture. Since there are no separate access phases, no

extra cycles for the data capturing are needed after the first one in writing direction, so

the 64𝑁 input samples timing over the AUX writing all to way to the RAM is

𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝐴𝑈𝑋𝑅𝐴𝑀64𝑁 = 1𝑢𝑡 + 64𝑁𝑇𝑊𝑟𝑖𝑡𝑒𝑅𝐴𝑀 = 1𝑢𝑡 + 64𝑁𝑢𝑡. (4.14)

In the reading direction, the two extra cycles are present only with the first read and after

that the RAM accessing speed limits the data rate, so the time can be stated as

𝑇𝐶𝑂𝑃𝑅𝑒𝑎𝑑𝐴𝑈𝑋64𝑁 = 2𝑢𝑡 + 64𝑁𝑇𝑅𝑒𝑎𝑑𝑅𝐴𝑀 = 2𝑢𝑡 + 64𝑁𝑢𝑡. (4.15)

Figure 4.12. AUX port read with RAM timing.

The full 64𝑁 size operation can be stated as

𝑇64𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠,𝐴𝑈𝑋𝐴𝑟𝑐ℎ =

𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐵𝑢𝑟𝑠𝑡16 + 𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝐴𝑈𝑋𝑅𝐴𝑀64𝑁 + 𝑇𝑇𝑇𝐴 + 𝑇𝐶𝑂𝑃𝑅𝑒𝑎𝑑𝐴𝑈𝑋64𝑁 + 𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐵𝑢𝑟𝑠𝑡16

= 2𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 32𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐷𝑎𝑡𝑎 + 1𝑢𝑡 + 64𝑁𝑢𝑡 + 2𝑢𝑡 + 64𝑁𝑢𝑡 + 𝑇𝑇𝑇𝐴

= 2𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 32𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐷𝑎𝑡𝑎 + 3𝑢𝑡 + 128𝑁𝑢𝑡 + 𝑇𝑇𝑇𝐴. (4.16)

If the time COP is occupied with the AUX writing as in (4.11) is expanded for the 64𝑁

samples as well, the time COP occupied time of the full operation can be stated as

𝑇𝐶𝑂𝑃64𝑁,𝐴𝑈𝑋𝐴𝑟𝑐ℎ

= 2𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐵𝑢𝑟𝑠𝑡16 + 𝑁𝑇𝐶𝑂𝑃𝑊𝑟𝑖𝑡𝑒𝐴𝑈𝑋64𝑁 + 𝑇𝐶𝑂𝑃𝑅𝑒𝑎𝑑𝐴𝑈𝑋64𝑁

= 2𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 32𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐷𝑎𝑡𝑎 + 6𝑁𝑢𝑡 + 2𝑢𝑡 + 64𝑁𝑢𝑡

= 2𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 32𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐷𝑎𝑡𝑎 + 2𝑢𝑡 + 70𝑁𝑢𝑡. (4.17)

25

4.3 Dual COP System

One option for the design is to use two COP units instead of one. With this approach, the

first COP is configured as the inputs provider for the TTA processor and the second for

the output reading to the system memory. With this architecture, the TTA processor in-

terface can be implemented with either of the previously presented ways, as a slave device

accessible over the interconnect or as a CPU extension of the AUX interface. The timing

values calculated in the previous sections are valid for the two COP architecture also. The

top level block diagram of two COP architecture with the Auxiliary port as the interface

towards the TTA processor is presented in Figure 4.13. For this approach the AUX unit

operation has to be split in two.

The two COP approach provides better performance for the design. The total throughput

stays the same as with the single COP architecture, but the time each COP is occupied

reduced dramatically. The COPs processing times over one 64𝑁 samples operation are

𝑇𝐶𝑂𝑃𝐶𝑜𝑚𝑚𝑎𝑛𝑑 = 𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 16𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐷𝑎𝑡𝑎 + 6𝑁𝑢𝑡 (4.18)

and

𝑇𝐶𝑂𝑃𝑅𝑒𝑠𝑢𝑙𝑡 = 2𝑢𝑡 + 64𝑁𝑢𝑡 + 𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 16𝑁𝑇𝑆𝑦𝑠𝑀𝑒𝑚𝐷𝑎𝑡𝑎 . (4.19)

26

Figure 4.13. Two COP and AUX units, top level.

4.4 Performance Comparison

With the AMBA bus timings being the same for both of the proposed single COP unit

architectures, the 64N sample operation timings in (4.9) and (4.16) differ by

𝑇𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐹𝑢𝑙𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 133𝑁𝑢𝑡 − 3𝑢𝑡 − 128𝑁𝑢𝑡 = 5𝑁𝑢𝑡 − 3𝑢𝑡. (4.20)

and it can be stated that the Auxiliary unit architecture is faster due to its ability for larger

data delivering at a time.

One more interesting comparison between the two architectures is the COP operation

time presented in (4.10) and (4.17). The difference between the times is

𝑇𝐶𝑂𝑃𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 84𝑁𝑢𝑡 − 2𝑢𝑡 − 70𝑁𝑢𝑡 = 14𝑁𝑢𝑡 − 2𝑢𝑡. (4.21)

The AUX unit architecture is clearly better from this perspective as well. The reason why

the COP occupied part of the whole operation time is interesting is that as a general RISC

processor COP can perform other functionality as well while not transferring data, rather

than acting only as a DMA controller. This functionality can be related to the task being

processed on the TTA processor or something else. This time is referred as slack time and

it can be stated as

𝑇𝐶𝑂𝑃𝑆𝑙𝑎𝑐𝑘,𝑆𝑙𝑎𝑣𝑒𝐴𝑟𝑐ℎ = 𝑇64𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠,𝑆𝑙𝑎𝑣𝑒𝐴𝑟𝑐ℎ − 𝑇𝐶𝑂𝑃64𝑁,𝑆𝑙𝑎𝑣𝑒𝐴𝑟𝑐ℎ = 49𝑁𝑢𝑡 + 𝑇𝑇𝑇𝐴

 (4.22)

and

27

𝑇𝐶𝑂𝑃𝑆𝑙𝑎𝑐𝑘,𝐴𝑈𝑋𝐴𝑟𝑐ℎ = 𝑇64𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠,𝐴𝑈𝑋𝐴𝑟𝑐ℎ − 𝑇𝐶𝑂𝑃64𝑁,𝐴𝑈𝑋𝐴𝑟𝑐ℎ = 1𝑢𝑡 + 58𝑁𝑢𝑡 + 𝑇𝑇𝑇𝐴.

 (4.23)

The operation time of the TTA processor is application specific and can be left out when

comparing the slacks. Different slack times are listed in Table 4.1 with different values

of 𝑁 with the TTA processing time left out. It can be seen that with 4096-size operation

the difference with the slack is in the scale of hundreds of clock cycles.

Table 4.1. 64N-size operation COP slack times without TTA processing delay.

N Operation size (num-
ber of samples)

Slack, Slave module archi-
tecture (ut)

Slack, AUX unit architec-
ture (ut)

1 64 49 59

2 128 98 117

4 256 196 233

8 512 392 465

16 1024 784 929

32 2048 1568 1857

64 4096 3136 3713

28

5. IMPLEMENTATION

Of the three proposed architectures, the one described in section 4.2 was selected for im-

plementation. In addition to DMA control it was in high interest to demonstrate the usage

of the Auxiliary port of COP in practice. The single COP architecture was chosen over

the two COP design for simplicity reasons and to demonstrate the power and usefulness

of COP as an independent control unit.

The implementation had three steps: designing and building the missing hardware be-

tween the Auxiliary unit and the TTA processor, integration of all of the building blocks

together as one design and developing software for COP to run the use case application.

All the functional hardware in the design was implemented with Very High Speed Inte-

grated Circuit (VHSIC) hardware description language (VHDL).

5.1 Top Level Design

Detailed top level architecture of the design is shown in Figure 5.1. All the used blocks

and memories are shown on a block level abstraction.

Figure 5.1. Single COP design, top level.

The Auxiliary Unit was split into two independent functional blocks, the Command and

the Result block. The internal structure of these blocks is described in detail in section

29

5.3. Arbitration between these blocks is done by ready-made Auxiliary Unit Transceive

block (AUT).

5.2 COP Configuration

For the architecture selected for implementation, COP was configured for 128-bit ma-

chine word size. With this word size, a total of 12 32-bit samples can be delivered through

the Auxiliary unit towards the TTA processor and 4 32-bit samples read back with one

Auxiliary command.

COP was configured for 4 separate threads. The register space of COP was split between

the threads so that each holds 32 general purpose registers. The Auxiliary port was con-

figured to support 2 units. The arbitration between the AUX units was done with the AUT

which can be used for chaining the Auxiliary units as illustrated in Figure 5.2. The AUT

unit reads the Unit signal when COP initiates new command and based on the value of

the signal the AUT unit forwards the Initiate signal to the right AUX unit.

Figure 5.2. AUX units chaining with AUT units.

5.3 Auxiliary Units

The basis for the AUX units was to design a generic interface between COP and TTA

processor. With this in mind it was reasonable choice to split the one unit into two. For

example in the two COP design both COPs would be wrapped up with just one of the

AUX units. The two blocks are referred as Command and Result block. This section de-

scribes the main structure and operation of the blocks.

5.3.1 Interfaces

There are differences with the memory and the TTA control interfaces between the two

AUX units, but towards COP both interfaces are similar, as illustrated in Figures 5.3 and

5.4. Both blocks work under single clock and reset domain.

30

Figure 5.3. Command block interfaces.

Both the blocks have interface towards TTA. The Command block uses the interface to

initiate TTA processor operation with the TTA_initiate and TTA_op_out signals. The

TTA_done and TTA_op_in signals in the interface are there for the internal bookkeeping

of the initiated and ready operations on the TTA processor. The TTA_done signal is also

forwarded to the Attn port of COP. More of the usage of the Attn port with this imple-

mentation is described in section 5.6.

The opcode was designed to carry the base address of the input data towards TTA and the

base address of the results towards the Result bock. For simplicity reason it was used with

this design only to carry the opcode for the operation initiated i.e. the index of the memory

segment where the data is located.

The only signal used in the TTA control interface of the Result block is TTA_op_in that

delivers opcode for the base address. Rest of the interface is used mainly for bookkeeping

information of the initiated and ready operations on the TTA processor, as was with the

Command block. The Result block does not issue any result reads without the correspond-

ing commands coming first from COP.

The TTA memory interfaces are similar in both blocks, except for the direction of the

memory access. The RAM signals are the basic address A, chip select CS, data D, write

enable WE and bit select BS. The Command block is used only for writing input data and

the Result block for reading the results, so only the write data signal D needed to imple-

ment in the Command block and the read data signal Q in the Result block.

There is also a memory interface for the TTA instruction memory writing in the Com-

mand block. This was implemented because no external configuration port was placed on

the TTA processor for accessing the memory.

31

Figure 5.4. Result block interfaces.

5.3.2 Transaction Protocol

To transfer the data between COP and TTA processor as efficiently as possible, a simple

protocol was constructed for the Auxiliary unit data transfers. For example in the writing

direction, the Command block needs addresses for the input samples it receives and the

information when it has received all the samples and the TTA processor can be released

for operation. Data is usually transferred in large chunks at a time, so it is more practical

to handle the data transfers as a transactions initiated with base address and number of

read/write operation rather than include this information in every Auxiliary command.

The commands implemented with the AUX blocks are listed in Tables 5.1 and 5.2 with

the related description, parameters and result. The command itself is delivered with the

AUX port’s Operation signal. The parameters are transferred with the data signals DataA,

DataB and DataC. The parameters can be data or information of some kind. COP hard-

ware expect a result for every initiated command, so the command block has to provide

one. There is, however, not any relevant data given, except with the Init command there

is message for errors. The rest of the results do not have to contain any data and no valid

information is sent as a result with the Command block. This is why the results in the

Tables 5.1 and 5.2 are set as Discarded except for the Init command.

Table 5.1. Command block commands.

Command Description Parameters Result

Init Initiate new write transaction Base address, Number

of samples to be written

Error message if no

room for samples

APartial Delivery of 1-3 sample Data Discarded

AFull Delivery of 4 samples Data Discarded

ABCFull Delivery of 12 samples Data Discarded

IMemWrite Write word to TTA IMEM Data, address Discarded

32

The write transaction with Command block works as follows: transactions are initiated

with the Init command. Two parameters are delivered for Command block with the com-

mand with the data signals DataA and DataB: the base address for TTA input memory

writing and the number of samples to be written. The Command block captures these

values into variables NumOfWrites and Addr. If there is space in the TTA input memory

for this amount of samples and the address is in the allowed range, the Command block

sends all zeros as result for COP. This acts as response for the initiate command. If either

of the parameters violates the allowed conditions, all ones is send as error message.

After the transaction initiation, the Command block can start accepting input data. It is

on the Command block’s responsibility to do all the buffering and memory address up-

dating after the Init command so that the software on COP can perform the AUX writing

fluently. If the Command block needs to stall the transaction for some reason, it de-asserts

the ready for command signal and gives no results for COP before the transaction can be

continued. This way COP pauses its instruction execution and waits before it continues

the writing. From software point of view the data is provided with registers and received

in a register and there is always the ID number of the Auxiliary unit delivered with the

commands (the Unit parameter). Pseudo code example for the Command block writing

looks as follows:

ldi r1, NumOfSamples //The number of samples
ldi r2, Address
ldi r3, 0
aux Unit, Init, r1, r2, r3 //Initate with the parameters
breq r3, ERROR //Check for errors
aux Unit, ABCFull, r4, r5, r6 //Registers r4-r6 contains write data
aux Unit, ABCFull, r7, r8, r9
aux Unit, AFull, r10, r11, r12 //Only r10 contains data

The command block has one extra command, IMemWrite, listed last in Table 5.1. This

command is used to write to TTA instruction memory. For simplicity reasons and the fact

that the instruction word length of the TTA processor is most probably not divisible with

the power of two (42 bits in this implementation), the TTA instruction memory writing is

not implemented as transaction. Instead, the instruction memory address and the data to

be written are provided with the data signals DataA and DataB.

The Result block read transaction is initiated with the Init command, as was with the

Command block. Similar error response is related to the read initiation as was with the

Command block, which is issued if initiation is done when no result data is available on

the TTA output memory. With the results Init operation only the number of reads is de-

livered for the Result block. It is on the Result block’s responsibility to do the bookkeep-

ing for the locations of the ready data in the TTA output memory. The bookkeeping is

done according to the TTA interface signaling.

33

The number of the reads is stored in variable NumOfReads. After the Init command COP

starts issuing AUX port commands and the read samples are provided as result for each

command. Pseudo code example for the read transactions is listed below.

ldi r1, NumOfReads //Number of reads
ldi r2, 0
ldi r3, 0
aux Unit, Init, r1, r2, r3 //Initiate with the parameter
breq r3, ERROR
aux Unit, Read4, r1, r2, r3 //Read 4 command
st r3, SysMemAddr //Store the result data (the read data)
aux Unit, Read4, r1, r2, r3 //Read command
st r3, SysMemAddr //Store the result data (the read data)

The code execution stalls with the Auxiliary command if the Result block de-asserts the

ready for command signal. The system memory store operations are therefore not exe-

cuted before the previous AUX read result is given.

The Result block has one extra command, ReadyCount, as listed in Table 5.2. This com-

mand was implemented for the COP to be able to inquire new results. This feature was

not in fact taken in use in the final implementation because the assertion for new data was

done through the COP Attn port.

Table 5.2. Result block commands.

Command Description Parameters Result

Init Initiate new read transaction Number of samples to

be read

Error message if no

results available

Read1 Read 1 sample None Result sample

Read4 Read 4 samples None Result samples

ReadyCount Get the number of ready re-

sult groups

None Count of ready result

groups

For either of the blocks, no distinct stop command for the transaction was needed, because

both blocks observe the NumOfWrites and NumOfReads variables and operate on the

memories according to these. The transactions can, however, be stopped simply by initi-

ating new transaction with the Init command.

5.3.3 Datapath

Data can be delivered for Command block and read back from Result block in various

chunks of samples. The TTA input and output memories are accessed with only one sam-

ple per clock cycle, so input data slicing and result data wrapping into 128-bit form is

needed.

As shown in Figure 5.5, the datapath of the Command block can be separated into four

stages. The incoming data from the Command stage is captured on the Capture stage.

34

According to the Auxiliary command parameters, the control logic decides how many

samples are sliced and inserted to buffer on the Buffer stage. At the RAM stage the data

from the buffer is written to RAM if there are samples in the buffer. The control logic

takes care of the buffer accessing pointers updating and the RAM writing. More about

the buffer implementation is described in section 5.3.5.

Figure 5.5. Command block datapath.

The datapath of the Result block, shown in Figure 5.6, is very much like reversed datapath

of the Command block. However, there is no separate capture stage and the data read

from RAM is inserted into the buffer immediately on the next stage after the RAM stage.

The buffer itself is implemented with the same principle as the buffer inside the Command

block, but the data form inside the buffer is different. The Command block’s buffer holds

the data in the 32-bit sample size form, but inside the Result block the samples are ar-

ranged in 128-bit AUX port result form. The control logic is responsible for inserting the

data into the right 128-bit slot and into the right position within this slot. The data is

delivered for COP at the result stage.

35

Figure 5.6. Result block datapath.

5.3.4 State Diagrams

The control over the Command block datapath was constructed with a separate processes

for the command port, buffer and RAM control functionalities. These are be illustrated as

state diagrams, shown in Figure 5.7.

The control over the data capturing on the AUX port is illustrated in Figure 5.7a. The

process observes the Initiate signal and if a new command is initiated when the Command

block’s status is ready for command, the data along with the tag of the operation is cap-

tured. The results for the commands are given according to the state diagram in 5.7b. This

process observes the same conditions as the previous one. The result state is kept if there

is a new initiation and the block is ready for the command. If there is initiation with the

block not being ready, or no initiation, the process performs waiting and no results are

given for the initiated commands. If COP tries to initiate when the Command block is not

ready, it keeps on trying the initiation with the same data and tag until the block is signaled

ready and the data can be captured.

The signaling of the Command block’s status of being ready for a new command is con-

trolled by the state diagram in 5.7c. The ready for command signal is kept high if there is

space in the buffer. If the buffer becomes full the signal is de-asserted until there is again

space in the buffer.

The RAM writing is controlled by the state diagram in 5.7d. When the Init command is

issued at the AUX port and accepted, the control enters the waiting state. This state is

held until there is something to be written in the buffer. If the buffer empties during trans-

action the control enters the waiting state. When all the samples indicated by the NumOf-

Samples variable is written, the control returns to waiting for a new transaction initiation.

36

Figure 5.7. Command block state diagrams with a) capture b) ready for command

c) result d) RAM control.

The Result block control state diagrams are shown in Figures 5.8 and 5.9. The RAM

reading is started immediately after the initiation of a new transaction. The memory con-

trol can be viewed with three states. The first one in 5.8a observes the initiations and if

there is an Auxiliary command with new transaction initiation, the control moves to the

RAM addressing state. The addressing is done NumOfReads times starting from the base

address the Result block has saved after the TTA processor has issued operation done.

The data capturing control in 5.8b moves to the read RAM state with one clock cycle

behind the addressing. The two processes are operating with pipelined manner. Both state

diagrams will enter the waiting state if the memory accessing is externally stalled. The

stalling is controlled by the state diagram in 5.8c by observing the state of the buffer. If

the buffer becomes full, the RAM reading is stalled.

The results are provided for the initiated commands similar way as with the Result block.

In the state diagram in 5.9a result is only provided when there is a new initiation on the

AUX port and the block is ready for it. The state diagram in 5.9b shows the ready for new

command control. If the buffer is empty and there is no data to provide as a result for

AUX command, the block holds the ready signal down.

37

Figure 5.8. Result block RAM reading related state diagrams with a) addressing b)

read data capturing c) buffer control.

Figure 5.9. Result block state diagrams related to a) result b) ready for command

control.

5.3.5 Buffers

The buffers needed in the datapaths were implemented as generic length first-in-first-out

(FIFO) buffers, as shown in Figure 5.10. The number of data slots, N, corresponds the

buffer depth. Free slots are shown as white and the occupied ones with the darker color.

The buffer is accessed through variables AddPointer and GetPointer. These variables are

updated when the buffer is written or read. The amount of available data slots in the buffer

equals to the buffer depth, denoted by N in the figure. The BufferSpace variable is updated

with respect to the pointer variables.

Empty buffer configuration at reset is shown in 5.10a. The AddPointer points to the be-

ginning of the buffer and the GetPointer to the last slot. When new data is written to the

buffer, the AddPointer is increased by the amount of samples written and the GetPointer

is moved to point to the first value. The buffer state after three samples written is shown

in 5.10b.

38

Figure 5.10. Buffer operation with a) buffer empty b) buffer filled with 3 samples c)

buffer filled with 2 samples.

When data is read from the buffer, the GetPointer is increased by the amount of the sam-

ples read. 5.10c shows the buffer state after the 5.10b state when one sample has been

read.

The buffers accessing is constructed in a way that more than one data sample can be

written to the buffer per clock cycle, a maximum of 12 samples at a time with the Com-

mand block. The read access rate of the Command block buffer is still only 1 sample per

clock cycle because of the TTA input memory is cannot be written faster. The memory

accessing restricts the Result block buffer access also to 1 sample per clock cycle.

5.3.6 TTA Control

The control over the TTA processor is implemented with the TTA control interface,

shown in Figure 5.3. The Command block initiates a new operation with TTA_initiate and

TTA_op_out signals. The generic width TTA_op_out signal is used as opcode for the TTA

processor to deliver the information where the new data is located on TTA input memory.

The opcode was designed to deliver the exact base address of the data, but for this imple-

mentation only the data segment index is passed to TTA.

The TTA control interface signal glock controls the global locking of the TTA processor.

The lock is released when a new operation on TTA is initiated and reserved when TTA

39

ihas finished execution. With this implementation the TTA program code halts after fin-

ishing execution so the need for the global locking was not necessary when the TTA is

done operation.

5.4 TTA Processor

The TTA processor used in this implementation was provided by Tampere University of

Technology, Department of Pervasive Computing. It was designed and generated with

the Department’s TTA-based Co-Design Environment (TCE) toolset [13].

The used architecture is presented in Appendix A. The interconnection network between

the functional units was constructed with 5 data buses. In addition to the decoder and

global control units, the architecture contains ALU, 32-bit register file of 8 general pur-

pose registers, Boolean register of 2 slots, load-store unit and separate load and store units

for the TTA input and output memory accessing.

The blocks considered as special function units are the Request, Resp and R4FFT units.

The Request and Resp are considered as input-output units and they perform all the func-

tionality towards outside. The Request unit is responsible for observing the TTA_initiate

and TTA_op_out signals and launching a new operation on the TTA. The Resp unit asserts

the TTA_done signal and provides the operation code for the Result block with

TTA_op_out when TTA is done with the FFT.

The FFT functionality was implemented inside the R4FFT unit as a radix-4 Single-Path

Delay Feedback (R4SDF) decimation in frequency FFT, described in [14], and for 4096-

point size. The basic principle is illustrated in Figure 5.11 for 64-point FFT. The inputs

are read in serial form and the shift registers (SR) are used for delaying. With the radix-

4 DIF approach, the input is divided into 𝑁/4 size groups, so for 64-point FFT into groups

of 16 samples. The butterfly operation of the stage 2 can be started when the first 48

samples have been read into the 16-word SRs. On stage 1, the same is principle is applied

for groups of 4 samples and for 1 samples at stage 0. With the 4096-point implementation

there are six stages with 1024-depth SRs on the stage 5.

The size of the program code for this TTA implementation was 28 lines, with 42-bit in-

structions. Since the main functionality was inside one SFU, most of the program func-

tionality concerned only the data transfers between the R4FFT unit and the LU and SU.

40

Figure 5.11. Principle for 64-point Radix-4 SDF [2, Fig. 19.7].

5.5 Memories

The memories used in the design are listed in Table 5.3. The TTA input and output mem-

ories and the TTA instruction memory were implemented as dual port and others as single

port memory. All memories are single clock memories. The FFT engine implementation

on TTA has also internal data storages acting as memories but these are not considered

as external RAM.

Table 5.3. List of used memories.

Command Width (bit) Depth

COP DMEM 128 256

COP IMEM 32 1024

TTA Input MEM 32 12288

TTA Output MEM 32 12288

TTA DMEM 32 256

TTA IMEM 42 128

All the widths of the memories are fixed for the 32-bit complex valued FFT use case,

except the COP data memory and TTA instruction memory widths. The COP data

memory width is set according to the machine word of the processor, so the 128-bit width

is due to this particular implementation. The TTA instruction memory width is deter-

mined by the processor architecture and the 42-bit instruction width was generated with

this FFT implementation.

The depths of the memories are all selected for this exact implementation. The data and

instruction memories could have been set to other depths as well, but these were consid-

ered suitable for the processors to operate. The TTA input and output memory depths

were selected so that they can each contain three 4096 sample data segments. The seg-

ments are indexed to match with the TTA operation code. This was for ensuring uninter-

rupted data flow between COP and TTA so that COP could still operate on the memories

if TTA is for some reason interrupted, and vice versa.

41

5.6 COP Software

The COP software was written in assembly. Functionality was split into four separate

threads to simplify the code and to demonstrate the potential of COP multithreading. The

threads’ program images were allocated to the instruction memory of COP with equal

spacing so that from the 1024 size memory space 256 sized spaces were reserved for each

thread. One thread was configured as the main thread with system privileges like the

permission to spawn other threads as well. The flowchart of the main thread is shown in

Figure 5.12. The main thread sleeps most of its lifetime. The thread is awaken if there is

an attention request in the Attn port of COP. The threading mechanism is built for sup-

porting the system privileged threads to be synchronized with the Attn port.

With this implementation two kind of attention requests exist. The TTA_done signal at-

tached to the Attn port and every time a new TTA operation is ready, the port is asserted.

Another request is the external new data request indicating a new input data availability

in the system memory.

Pre-defined load and store base addresses are configured in COP’s data memory in system

startup. With this implementation 6 memory locations for both the input and result data

was reserved from the system memory and the base addresses of these are stored in fixed

COP data memory locations. The data memory allocation for the addressing is shown in

Figure 5.13. The loading and storing threads are configured for reading the base addresses

for system memory reading and writing from the fixed memory locations, indicated with

the names Loading base address and Storing base address in Figure 5.13. The main

thread updates these locations before spawning the threads and performs bookkeeping of

the addresses to be configured next.

If new data is asserted to be available, the main thread performs its configurations and

spawns first the acknowledgement thread. This thread contains no functionality, but its

visibility outside COP is used as a confirmation signal that COP has received the info of

the new operation. The acknowledging is completed with the COP Done port that reflects

the threads awake as shown in Figure 5.14. All threads have personal ID number related

to them and the indexes of the Attn port bits corresponds to the IDs of the threads.

After the acknowledgement, the main thread spawns the loading thread and resumes sleep

status. If the attention request was indication TTA operation done, the main thread again

performs its configuration, spawns the storing thread and resumes sleep.

42

Figure 5.12. Main thread operation.

The operation of the loading thread is illustrated in Figure 5.15. When the thread is

spawned it loads the Loading base address from data memory fixed location for the sys-

tem memory reading. Because this implementation was fixed for 4096-point FFT, the

number of input samples to be read is hard coded inside the thread source but this could

have been provided the same way as the base address. After the thread has the base ad-

dress and the number of reads stored in its registers, the thread initiates a new AUX trans-

action the size of 4096. The thread then starts reading the system memory 64 input sam-

ples at a time as a single AMBA burst. When the 64 samples are read, a total of five AUX

writes are done with 12 samples delivery and one write with 4 samples delivery for the

total 64 samples. This is repeated until all the 4096 samples are delivered and the thread

resumes sleep state.

The TTA_done signal is assigned to the Attn port of COP. When the TTA processor in-

forms operation to be completed, the main thread wakes up and checks which attention

request was concerned. With the TTA done request the main thread performs the base

address configuration, i.e. loads the next Storing base address to the fixed data memory

location and spawns the thrad.

The storing thread operation is shown in Figure 5.16. After being spawned the thread

loads the base address for system memory writing and initiates a new 4096 sized read

transaction on the Result block. After 16 reads are done for getting 64 samples from the

TTA output memory, COP writes the samples to the system memory starting according

to the base address. This is repeated until the whole 4096 results are written and the thread

resumes sleep state.

43

Figure 5.13. Base address allocation in COP data memory. The addresses for load-

ing and storing are allocated in the COP data memory in pairs, indicated with the

dashed lines. When the main thread configures loading or storing threads, it writes

address information of one pair in the Loading base address and Storing base ad-

dress memory slots for the threads to use.

Figure 5.14. Done port operation. In a) all the threads are suspended b) thread with

ID no. 0 is in running state c) threads with ID nos. 0, 2 and 3 are in running state.

44

Figure 5.15. Loading thread operation.

Figure 5.16. Storing thread operation.

45

6. RESULTS

The design was simulated under a test bench written is SystemVerilog. 32-it complex

valued input data was generated with Matlab into a file and written in the system memory

model used in the simulation. The test bench generated interrupts to the Attn port of COP

to initiate new operation. After finished, the result data was read from the system memory

and written into a file. Matlab Fourier operation was used for verifying the results.

The separate operational latencies are listed as cycle counts in Table 6.1 for one 4096-

point FFT operation. The full operation took 17892 cycles. The average delay the system

memory model created for the AMBA bus accessing was, for 64 samples, around 60 cy-

cles. By including the 8243 delay of the TTA processor, the theoretical latency for one

operation in (4.16) can be calculated to be 20 278 cycles. This is greater than the simu-

lated full operation latency, because the theoretical value did not consider the Result block

reading the TTA output RAM while COP was writing the previous results to the system

memory. With the effective buffering inside the Result block, almost every time COP

initiated a new read command, the data was already available and was given immediately

as the result for the initiating command. Therefore, the timing was limited basically only

by the AMBA bus delay.

COP is free from the whole 4096 size operation for 8 299 cycles. This is approximately

46% of the total operation time. This time can used for providing new inputs to the TTA

input memory or reading the results from a previous FFT.

Considering the 71.4µs LTE symbol duration for 2048-point FFT, the performance of the

4096-point FFT used in this implementation gives some estimation of the usefulness of

this design. For example, with 600 MHz clock frequency the latency for one 4096-point

FFT operation is ~13.7µs and for the whole operation ~29.8µs. Although the 2048-point

FFT is the largest size for most of the processing LTE, the 4096-point FFT is still needed

for example with the 7.5 kHz subcarrier spacing.

Table 6.1. 4096-samples operation performance.

Operation Time (cc)

Full operation 17 892

COP input delivery for Command block buffer 4 578

Input delivery for TTA input RAM 4 634

COP output read time 5 015

TTA operation 8 243

COP free of operation 8 299

46

7. CONCLUSION

In this thesis, the usage of a TTA processor as a hardware accelerator inside a practical

design was demonstrated. The drawbacks of the TTA platform, concerning especially the

system memory accessing, were compensated by using the Nokia Co-Processor’s good

DMA properties and external attention requests handling. Also, to demonstrate the usage

of the Auxiliary port of COP, the data transferring between COP and the TTA processor

was implemented with the AUX command and result mechanism by constructing suitable

hardware between the AUX port and the TTA processor.

The usefulness of COP and its AUX port were proved. COP is capable with the DMA

operations and can very well be used as a standalone control unit. The Auxiliary port

offers a suitable choice for data transferring, as it is capable of delivering data approxi-

mately three times faster towards external blocks than the AMBA bus.

The implementation offers a programmable solution for hardware acceleration. Although

the TTA FFT functionality was implemented as one fixed size FFT inside a single func-

tional unit, the flexibility of the design could be increased by diversifying the functional-

ity inside the single FFT FU into several individual FUs and letting the program control

these for the FFT algorithm operation. This way a different sizes of FFT (the sizes of

power of 4 with the radix-4 implementation) could be achieved by using the same build-

ing the 4096-point FFT was built on.

The synthesis part of the implementation was not managed to carry in this study with the

time margin of the thesis, and, therefore, no area estimations were presented. As there

were two processors and lot of memory space involved, the area could form a problem if

the design size is a valuable resource. If the design is, however, considered taken into a

multimillion transistor implementation, the area might not be problem, and the design

proposes a good, robust, programmable solution for hardware acceleration in SoC de-

signs.

47

REFERENCES

[1] A. Papoulis, The Fourier Integral and its applications, McGraw-Hill book com-

pany Inc. New York, 1962, p.1

[2] F. Gebali, “The Fast Fourier Transform,” in Algorithms and Parallel Computing,

John Wiley & Sons, 2011

[3] Cooley, James W; Tukey, John W. "An algorithm for the machine calculation of

complex Fourier series". Math. Comput. vol.19, pages 297–301, 1965

[4] About 3GPP. [Online]. Available: http://www.3gpp.org/about-3gpp, accessed

2016-05-10

[5] 3GPP LTE. [Online]. Available: http://www.3gpp.org/technologies/keywords-

acronyms/98-lte, accessed 2016-05-10

[6] Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and

modulation. [Online]. Available: http://www.3gpp.org/DynaReport/36211.htm,

accessed 2016-05-10

[7] Global Mobile Data Traffic, 2015 to 2020. [Online] Available:

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-net-

working-index-vni/mobile-white-paper-c11-520862.html, accessed 2016-05-23

[8] “OFDM Transmission,” in 4G: LTE/LTE-Advanced for Mobile Broadband, Sec-

ond Edition, Academic Press, 2014

[9] H. Corporaal, “From VLIW to TTA,” in Transport Triggered Architectures: De-

sign and Evaluation, Ph.D. dissertation, Delft Univ. Tech., Sept. 1995.

[10] “Introduction,” in The Essentials of Computer Organization and Architecture,

Fourth Edition, Jones and Bartlett Learning, 2015

[11] AMBA Specifications. [Online]. Available: http://www.arm.com/products/sys-

tem-ip/amba-specifications.php, accessed 2016-05-12

[12] AMBA® AXI™ and ACE™ Protocol Specification, Nokia Sharenet D503756349.

Limited availability.

[13] TTA-Based Co-Design Environment. [Online]. Available: http://tce.cs.tut.fi/, ac-

cessed 2016-05-22

[14] A. M. Despain, "Fourier Transform Computers Using CORDIC Iterations," in

IEEE Transactions on Computers, vol. C-23, no. 10, pp. 993-1001, Oct. 1974.

http://www.3gpp.org/about-3gpp
http://www.3gpp.org/technologies/keywords-acronyms/98-lte
http://www.3gpp.org/technologies/keywords-acronyms/98-lte
http://www.3gpp.org/DynaReport/36211.htm
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html,%20accessed%202016-05-23
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html,%20accessed%202016-05-23
AMBA%20Specifications.%20%5bOnline%5d.%20Available:%20http:/www.arm.com/products/system-ip/amba-specifications.php
AMBA%20Specifications.%20%5bOnline%5d.%20Available:%20http:/www.arm.com/products/system-ip/amba-specifications.php
http://tce.cs.tut.fi/

48

APPENDIX A: IMPLEMENTED TTA PROCESSOR ARCHITEC-

TURE

