
LASSE HEIKKILÄ
HIGH EFFICIENCY IMAGE FILE FORMAT IMPLEMENTATION

Master of Science thesis

Examiner: Prof. Petri Ihantola
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 4th of May 2016

i

ABSTRACT

LASSE HEIKKILÄ: High Efficiency Image File Format implementation
Tampere University of Technology
Master of Science thesis, 49 pages, 1 Appendix page
June 2016
Master’s Degree Programme in Electrical Engineering Technology
Major: Embedded systems
Examiner: Prof. Petri Ihantola
Keywords: High Efficiency Image File Format, HEIF, HEVC

During recent years, methods used to encode video have been developing quickly.
However, image file formats commonly used for saving still images, such as PNG and
JPEG, are originating from the 1990s. Therefore it is often possible to get better
image quality and smaller file sizes, when photographs are compressed with modern
video compression techniques.

The High Efficiency Video Coding (HEVC) standard was finalized in 2013, and in
the same year work for utilizing it for still image storage started. The resulting
High Efficiency Image File Format (HEIF) standard offers a competitive image data
compression ratio, and several other features such as support for image sequences
and non-destructive editing.

During this thesis work, writer and reader programs for handling HEIF files were
developed. Together with an HEVC encoder the writer can create HEIF compliant
files. By utilizing the reader and an HEVC decoder, an HEIF player program can
then present images from HEIF files without the most detailed knowledge about
their low-level structure.

To make development work easier, and improve the extensibility and maintainability
of the programs, code correctness and simplicity were given special attention. In
addition to automatic testing also static code analysis and dynamic analysis were
employed.

The developed software proved to be reliably functioning and of sufficient quality. It
has been successfully used to e.g. demonstrate HEIF features in several international
technical organization meetings such as MPEG.

ii

TIIVISTELMÄ

LASSE HEIKKILÄ: Korkean hyötysuhteen kuvatiedostoformaatin toteutus
Tampereen teknillinen yliopisto
Diplomityö, 49 sivua, 1 liitesivu
Kesäkuu 2016
Sähkötekniikan koulutusohjelma
Pääaine: Sulautetut järjestelmät
Tarkastajat: Prof. Petri Ihantola
Avainsanat: High efficiency image file format, HEIF, HEVC, kuvatiedostoformaatti

Videokuvan pakkaamiseen käytettävät menetelmät ovat kehittyneet viime vuosina
nopeasti, mutta yksittäisten kuvien tallentamiseen yleisesti käytetyt kuvatiedosto-
muodot, kuten PNG ja JPEG, ovat peräisin 1990-luvulta. Valokuvien pakkaamises-
sa on usein mahdollista saavuttaa varsinaisia kuvatiedostomuotoja pienempi tiedos-
ton koko ja parempi kuvanlaatu, kun pakkausmenetelmänä käytetään nykyaikaisia
videokuvaa varten kehitettyjä koodausmenetelmiä.

Standardi HEVC-videonkoodausmenetelmästä julkaistiin 2013, ja samana vuonna
alkoi työ sen hyödyntämiseksi myös kuvatiedostojen kanssa tarkoituksena julkaista
korkean hyötysuhteen kuvatiedostomuodosta HEIF-standardi. Tehokkaan pakkauk-
sen lisäksi se tarjoaa monipuolisia ominaisuuksia kuten useiden kuvien tallentamisen
samaan tiedostoon ja mahdollisuuden muokata kuvia ennen niiden esittämistä.

Tässä diplomityössä kehitettiin standardin mukaisia tiedostoja kirjoittavaa ohjel-
maa, sekä tehtiin toteutus rajapinnalle minkä avulla on mahdollista lukea HEIF-
tiedostoja. Kehitystyön sujuvuuden ja ohjelmien ylläpidettävyyden takaamiseksi
ohjelmakoodin selkeyteen ja virheettömyyteen kiinnitettiin erityistä huomiota. Li-
säksi laadun varmistamiseksi hyödynnettiin automaattisen testauksen lisäksi laajalti
sekä käännettyjen ohjelmien dynaamista analyysia että ohjelmakoodin staattista
analyysia.

Kehitetty ohjelmisto osoittautui toimivaksi ja laadultaan riittäväksi. Sitä on käy-
tetty onnistuneesti HEIF-kuvatiedostojen ominaisuuksien esittelemiseen eri yhteyk-
sissä.

iii

PREFACE

This thesis was made about the first public implementation of a new image file
format standard, the High Efficiency Image File Format. It has been an interesting
and very educational experience. I hope this thesis has been able to provide some
useful information for the project, and helps to develop it further.

I would like to thank my instructor and examiner Assistant Professor (tenure track)
Petri Ihantola for his patient supportive guidance, and numerous helpful remarks
and ideas.

I am truly grateful to people at Nokia Technologies for letting me to participate in
the project and for allowing me to write my thesis about the topic. I want to thank
especially Emre Aksu and Miska Hannuksela for their support and highly valued
comments.

Furthermore, I would like to thank Juha Simola for the advice he gave and especially
for pushing to get the thesis eventually done. I want to thank Masha particularly
for the essential encouragement and help she gave me during this project.

Pirkkala, 23.5.2016

Lasse Heikkilä

iv

TABLE OF CONTENTS

1. Introduction . 1

1.1 Need for the research . 2

1.2 Objectives . 2

1.3 Scope of the thesis . 3

1.4 Structure of this thesis . 3

2. Digital images . 4

2.1 Raster and vector images . 4

2.2 Compression . 6

2.3 Metadata . 7

2.4 Multi-picture features . 8

2.5 Image file formats . 8

2.6 Current raster image formats . 10

3. High Efficiency Image File Format standard 14

3.1 Standard development . 14

3.2 ISO Base Media File Format . 15

3.3 High Efficiency Video Coding . 16

3.4 HEIF overview . 17

3.4.1 High-level structure . 18

3.4.2 Image items . 19

3.4.3 Image sequences . 21

3.4.4 Structural format and brands . 23

3.5 Use cases . 23

4. Implementation . 26

4.1 Development practices . 26

4.1.1 Testing . 27

v

4.1.2 Continuous integration . 29

4.1.3 Program analysis . 29

4.1.4 Coding practices . 32

4.2 Architecture and design . 33

4.2.1 Background . 34

4.2.2 Box handling . 34

4.2.3 File writer . 35

4.2.4 File reader . 38

5. Evaluation and discussion . 40

5.1 Code metrics . 40

5.2 Changes in code . 44

5.3 Compliance with standards . 46

6. Conclusion . 48

Bibliography . 50

APPENDIX A. An HEIF writer example input 53

vi

LIST OF ABBREVIATIONS AND TERMS

API Application Programming Interface
ASCII American Standard Code for Information Interchange
AVC Advanced Video Coding, H.264
BPG Better Portable Graphics
CD Committee Draft
Codec Coder-decoder
Decoder An algorithm to convert compressed image to an uncompressed form
DIS Draft International Standard
Encoder An algorithm to convert uncompressed image to a compressed form
FDIS Final Draft International Standard
FITS Flexible Image Transport System
Framebuffer Portion of memory holding the full bitmapped image that is sent to

the display
GIF Graphics Interchange Format
H.265 Recommendation ITU-T H.265, HEVC
HEIC HEVC Image File Format
HEIF High Efficiency Image File Format
HEVC High Efficiency Video Coding, H.265
HTML HyperText Markup Language
IEC International Electrotechnical Commission
IFF Interchange File Format
ISO International Organization for Standardization
ISOBMFF ISO Base Media File Format
ITU International Telecommunication Union
ITU-T ITU Telecommunication Standardization Sector
JPEG Joint Photographic Experts Group
JSON JavaScript Object Notation
LZW Lempel–Ziv–Welch, a data compression algorithm
MP4 MPEG-4 Part 14, a multimedia format
MPEG Moving Picture Experts Group
PICT A graphics file format by Apple
PNG Portable Network Graphics
RIFF Resource Interchange File Format

vii

RLE Run-length encoding
TGA Truevision TGA, a raster graphics format
TIFF Tagged Image File Format
VIDTEX A telecommunication client software
VP8 A video compression format developed by Google
VP8L Lossless version of VP8
WebP An image format, currently developed by Google
WWW World Wide Web
XML Extensible Markup Language
XMP Extensible Metadata Platform

.

1

1. INTRODUCTION

The first known digital computer image was created in 1957 when researchers in the
United States at National Bureau of Standards scanned a photograph to memory
of an electronic computer [19]. The operation turned a 44 mm by 44 mm pho-
tograph into a 176 by 176 grid of black or white squares [17]. A single image of
very modest quality by modern standards consumed more than half of the storage
capacity of the computer [16]. Ways to compress image data to help this were not
investigated until much later, because storage capacity was so expensive that storing
large quantities of images was considered unrealistic. Even observing the image in
the computer memory needed special arrangements. To be able to see the image
without first having to print it time-consumingly, a staticizer device was connected
to the computer memory and to an oscilloscope which then functioned as a display.

The processing power and storage capacity of computers was increasing quickly.
In 1964, NASA (National Aeronautics and Space Administration) used computer
processing to enhance the quality of images sent by a spacecraft from the Moon. In
the late 1960s and early 1970s digital images were already being used in the fields
of medical technology, remote sensing, and astronomy. [7]

Nowadays digital images are everywhere. The globally connected Internet has made
transfer and consumption of images effortless. On the other hand, the availability
of affordable electronics such as digital cameras, and mobile phones equipped with
digital cameras, has made capturing and storing digital images available for masses
of consumers.

Because of differences in computer system designs and implementations an image
stored in a native format of some computer would most likely be beyond recognition
if it was retrieved and presented by another just slightly different computer. Detailed
standardized descriptions of image data storage are needed, as computer systems do
not have inherent understanding about the interpretation of images or image data.
Standardized image file formats are needed to make it possible to store, archive, and

1.1. Need for the research 2

interchange digital images in a convenient and reliable way.

1.1 Need for the research

Nowadays several different image file format standards are widely supported. How-
ever, most of these file formats date back to the 1990s or even 1980s. Some simple-
seeming features, such as saving multiple images to a single file or versatile features
for saving auxiliary data to the same file, are missing from several popular image
file formats. [9]

The High Efficiency Image File Format standard (HEIF), developed by the Moving
Picture Experts Group (MPEG) since 2013, supports a full set of features which
are needed for modern digital image applications. Perhaps equally importantly,
image storage space requirements can be greatly reduced by employing modern
highly efficient techniques to compress image data. For instance, this can result in
better perceived image quality, reduced storage costs, and faster loading times when
transferring images in networks to the end users.

1.2 Objectives

An implementation capable of writing and reading HEIF files was needed to support
standard development efforts. For example, creating complicated image files for
compliance testing would be unreasonably slow and error-prone to do manually.
Working reader and writer implementations may also be used for demonstrating
and promoting the new file format standard.

Work carried out in this thesis consists of implementing an HEIF image file reader,
and further development of an HEIF writer application. Today these created pro-
grams already form a basis for several applications and for the promotional website1

owned by Nokia Technologies, to demonstrate HEIF features and benefits.

Additionally, an objective is to examine if it was possible to improve and maintain
good code quality in an environment which required fast progress and standard
drafts used as the basis for the development were still changing. Most of the time
there was no possibility to organize code reviews to get continuous peer feedback,

1http://nokiatech.github.io/heif/

http://nokiatech.github.io/heif/

1.3. Scope of the thesis 3

so continuous integration and automatic testing and analysis tools were extensively
used in order to mitigate code quality deterioration. The result is examined by using
several software metrics extracted from the source code version control history and
by assessing changes which were done to the public source code after the first release.

1.3 Scope of the thesis

The thesis is about HEIF image file format and implementation of programs which
write and read HEIF files. One central part of HEIF is HEVC (High Efficiency Video
Coding) standard, which is employed by HEIF to compress image data to smaller
storage space. However, as HEIF and aforementioned programs mostly operate on
higher level, details about HEVC are mostly omitted.

The run-time performance of written software is not analyzed, as implemented com-
ponents present only one part in complete image writing and reading process. The
most computationally expensive operations are related to compressing and decom-
pressing image data, which is not directly related to the file format handling itself.

1.4 Structure of this thesis

This thesis is structured as follows. Chapter 2 discusses digital images and related
concepts. Chapter 3 describes the High Efficiency Image File Format standard
history, standards it is based on, and its structure. Chapter 4 summarizes the
work and how it was done. These are then evaluated and discussed in Chapter 5.
Conclusions are made in Chapter 6.

4

2. DIGITAL IMAGES

The word image commonly refers to a two-dimensional artifact that can reproduce
the visual appearance of physical objects or visualize concepts or artificial data.
Digital images use numerical binary data, formed from ones and zeroes, to describe
image content. The earliest digital images were created in the 1920s when telegraph
printers were used to transmit images for long distances, but for computer use they
arrived later in the 1950s. [19]

2.1 Raster and vector images

Digital images can be roughly categorized into pixel based raster images and geom-
etry based vector images. The way image data is saved is fundamentally different,
and in most use cases it is relatively straightforward to decide, which type of digital
image is the better choice.

Since the 1960s vector graphics has used mathematical models of geometrical prim-
itives, for instance polygons, circles and lines, to represent images. This makes it
possible to scale an image independently from the resolution of the display medium,
meaning vector images do not have a fixed native resolution for representing them.
This is very desirable for example in the computer-aided design or manufacturing
applications, or with graphics which needs to be scalable. An example of latter is
an icon in a graphical user interface which has to adapt to different sized monitors.
Figure 2.1 represents a vector image of a line. The line is described by its parame-
ters: width, and start and end points. One way to store such information could be
a text file with content "line width=1; line from 0,0 to 20,20;".

On the contrary, a raster image consists of a grid of usually square, round or rect-
angular dots, also called pixels, each of which is designated a color. Figure 2.2
represents a simple black-and-white raster image. Storage could be a 2-dimensional
5x5 array of bits, where 0 signals a gray square and 1 is a black square. From the

2.1. Raster and vector images 5

Figure 2.1 An example of a vector image. A possible way to store such an image could
be "line width=1; line from 0,0 to 20,20;"

Figure 2.2 An example of a raster image. Storage could be a 2-dimensional 5x5 array of
bits, where 0 signals a gray square and 1 is a black square: [0 0 0 0 1; 0 0 0 1 0; 0 0 1 0
0; 0 1 0 0 0; 1 0 0 0 0].

top-left corner to right and down this could be expressed as a matrix: [0 0 0 0 1; 0 0
0 1 0; 0 0 1 0 0; 0 1 0 0 0; 1 0 0 0 0]. A sufficient amount of dots with many enough
color options close to each other can create an impression of a continuous tone image.
This suits very well for representing content such as photographs. Raster images
are often referred to also as bitmap images. HEIF operates with raster images only.

A raster image is characterized by its dimensions, width and height, which are
expressed in pixels. Information amount needed to describe the properties of each
pixel is called bit depth. Usually, each pixel has information about its intensity
(gray-scale images) or color, sometimes also transparency. Bit depth normally varies
from 1 bit of two-colored, often black-and-white, images to 64 bits, while a typical
example is a 24-bit true color image where each of red, green and blue component
has 8 bits of data. This means 16,777,216 or 224 possible color variations.

Represented graphical objects are difficult or impossible to map back to individual
pixels, making editing possibilities limited. Having said that, the described scene

2.2. Compression 6

complexity, the image content, does not affect image handling.

2.2 Compression

The way data is typically stored in a raster image is simple: a two-dimensional
array holds descriptions of regular sized dots. Therefore the size of raw image data
is directly dependent on the resolution (in this context width and height) the image
has. High resolutions, especially combined with high bit depths, can easily result in
data sizes handling of which imposes a challenge even for modern computing devices,
not to mention transferring such images via mobile networks.

Size of a raw uncompressed image data can be calculated in the following way:

size = width × height × bitdepth/8

Where size is image data size in bytes, height image height in pixels, width image
width in pixels, and bitdepth bits per pixel.

To mitigate issues related to excessive file sizes many raster image formats use some
compression method to reduce file size. This results in savings with storage costs,
faster data transmission times, and in less bandwidth needed to transfer images.
For modern computer systems, compression rarely presents a significant computa-
tional overhead. Low-power embedded systems such as digital cameras can rely on
hardware implementation of encoding or decoding algorithms as needed.

When a compression algorithm is lossless, it is possible to reconstruct original data
perfectly. With a lossy compression algorithm some of the original data is lost
irrecoverably. Lossy compression often offers a better compression ratio by relying
on the inability of human senses to notice the discarded information.

Even though image formats are often classified as lossy or lossless, nothing prevents a
usually lossless format encoder from manipulating the input image in a lossy manner
in order to improve the compression ratio. A utility named pngquant1, for instance,
claims to reduce normally losslessly compressed PNG (Portable Network Graphics)
file sizes often as much as 70%. As the extra processing happens on the encoder
side this approach also retains compatibility with existing decoders.

1https://pngquant.org/

https://pngquant.org/

2.3. Metadata 7

Lossless encodings used by image file formats include run-length encoding (RLE),
Huffman coding, and Lempel–Ziv–Welch (LZW) coding. RLE is a simple compres-
sion method employed by several older image file formats such as PCX (PiCture
eXchange), Truevision TGA (Truevision Graphics Adapter) and VIDTEX. Huffman
encoding is used as a part of the widely used JPEG (Joint Photographic Experts
Group) encoding in addition to lossy compression scheme. LZW is used by TIFF
(Tagged Image File Format) and GIF (Graphics Interchange Format) image file
formats.

JPEG compression is a lossy or lossless compression method although most imple-
mentations support only the lossy mode. JPEG works well with continuous-tone
grayscale and color images, but does not suit so well for black and white images.
In the lossy mode compression factor is adjustable, so the balance between image
degradation and amount of data can be adjusted. [21]

2.3 Metadata

Metadata, data about data, is auxiliary data stored with an image which describes
e.g. properties, content or characteristics of the image. Metadata can be useful
for an application or database systems even if they are not able to understand the
format of the actual content. Examples about metadata are work title, description,
copyright status, photograph shooting location, and creation and modification dates.
File systems are able to provide some further metadata such as aforementioned time
stamps, but here only metadata embedded in the file itself is considered. Several
standards have been created to make metadata handling easier.

Exif (Exchangeable image file format) is a widely adopted standard used by digital
still cameras for saving images, sound, and metadata tags. It originates from Japan
Electronics and Information Technology Industries Association. Exif uses JPEG
ISO/IEC 10918-1 for saving compressed images, but uncompressed images are stored
using TIFF Rev. 6.0. Also Exif metadata structure originates from TIFF. However,
Exif specifies more tags, such as camera system specific private tags like focal length
and aperture value. [14]

Extensible Metadata Platform (XMP) is an ISO standard 16684-1 "for the defini-
tion, creation, and processing of metadata that can be applied to a broad range
of resource types." [12] The standard describes XMP data model, serialization and

2.4. Multi-picture features 8

core properties. The data model describes the structure of statements that XMP can
make about resources. The serialization defines how the data model can be saved
as XML. Core properties are items that can be used within several file formats and
domains of usage. One example of XMP use cases is carrying licensing information.
Embedding XMP is standardized for numerous file formats including audio, image
and video formats, and HTML (HyperText Markup Language).

2.4 Multi-picture features

Saving several images to a single file can be desirable e.g. for storing a smaller
thumbnail image along the primary image, keeping a pair of stereo images together,
or for storing animations and time-lapse photography. Usually, it is desirable to still
mark one image as a primary image, which represents the main image resource in
the file and can act as the cover image of the file if needed.

Images might have timing data connected to them. For example, short repeating
animations are a typical use case for timed image files. Recently emerged cinema-
graphs2 combine still images with some subtle movement, further dissolving border
between video and still image.

2.5 Image file formats

The need to store digital images has caused a wide array of image file formats to
be developed. For a long time hardware or application specific file formats were the
only option, as hardware resources were limited and systems were not significantly
interconnected. In early digital paint systems storing images for later use could have
been done simply by storing frame buffer memory to disk [23]. Figure 2.3 represents
this situation.

Diversity of image file formats made interchanging image files more difficult although
this was not much of a problem when computer systems capable of representing
graphics were rare, and used mostly for research purposes. Coupling a file format
tightly to hardware or software might make implementation and execution faster,
but can severely impact the interchangeability of the resulting files. Apple PICT

2https://en.wikipedia.org/wiki/Cinemagraph

https://en.wikipedia.org/wiki/Cinemagraph

2.5. Image file formats 9

Input image

Store framebuffer

Image file

Load framebuffer

Render image

Figure 2.3 A simplified framebuffer saving diagram.

is an example of a badly interchangeable format, as it was mostly a wrapper for
operating system specific QuickDraw API drawing instructions.

One early example of an image file format which was designed to be interchangeable
is Flexible Image Transport System (FITS), designed for astronomy use. Devel-
opment started in the late 1970s and the format was published in 1981. FITS
supports multi-dimensional data arrays, which can carry basically any kind of data.
The header of a FITS file is in human-readable ASCII (American Standard Code for
Information Interchange) format, which enables the convenient access of metadata.
[26] Use of FITS is not limited only to the field of astronomy. It is an interesting
alternative to be used in the long-term preservation of images, as format versions are
backward and forward compatible, FITS allows no references outside the file itself,
it supports multiple images in the same file, and has no support for features such
as encryption or access control. As there is a proposal for making it also an ISO
standard, it could become widely used format in digitization projects by libraries
and archives. [2]

As microcomputers became more common, CompuServe recognized a need to dis-
tribute images in their online service to different microcomputer platforms and in-

2.6. Current raster image formats 10

troduced VIDTEX in 1981. The RLE-encoded black-and-white image file format
supported resolutions 128×96 and 256×192, and soon the format received support
from third party applications too. [28]

One of the earliest standardized image file formats was Computer Graphics Metafile
(CGM) in ISO/IEC 8632 which was published in 1987. CGM essentially wraps
streamed Graphical Kernel System (GKS) operations, offering storage for vector
graphics, but also for raster graphics. Many features of the format made it difficult
to implement. [27]

Other early attempts to help interchangeability were made for instance by game
developer Electronic Arts by documenting their generic container file format Inter-
change Format Files (IFF) type IFF Interleaved Bitmap (ILBM) in 1985. All IFF
files consist of chunks, starting with a 4-byte ASCII type field, followed by a 4-byte
length field, and then a type-dependent data. This makes extending the format
possible, as readers can skip unknown chunks. Basically the same approach is used
by HEIF.

2.6 Current raster image formats

Common raster image formats currently include GIF, PNG, TIFF and JPEG. Newer
formats include WebP and BPG (Better Portable Graphics), which can be consid-
ered as rivals of HEIF because they, too, rely modern video encoding techniques to
achieve good compression levels.

Graphics Interchange Format - GIF

GIF was introduced by CompuServe in 1987 as the successor of the RLE-based
image format used in VIDTEX. In 1989, GIF was updated to support animations
and transparency. GIF features lossless compression and image blocks with 256
colors from the 24-bit palette. These features made GIF a good choice for the lossless
storage of graphics with limited amount of colors. Lossless LZW compression enables
preserving sharp edges in images. Usually, GIF is not a good option for storing
photographs because of the limited number of colors available for image blocks it
consists of.

However, the LZW compression method was patented, which slowed down 3rd party

2.6. Current raster image formats 11

support development. Last relevant patents expired in 2004, but by this the techni-
cally superior newer PNG format had already gained popularity.

Portable Network Graphics - PNG

In 1995 CompuServe proposed the PNG as a replacement for the GIF, with intent
to create a patented-free alternative for it [19]. The first PNG specification was
released in 1996. Compared with GIF, PNG provided better compression, as well as
offers better true color support and an optional alpha channel transparency [30]. On
the 3rd of March 2004, the ISO/IEC 15948:2004 standard for PNG was published.
PNG superseded GIF as the most popular lossless image format on the WWW in
early 2013 [6].

Tagged Image File Format - TIFF

TIFF files can be used for storing both photographs and graphics. It was originally
created in mid-1980s to become a common image format for storing scanned images.
Lossless compression support makes it possible to use TIFF files for image archiving
and preservation purposes. Even though TIFF is currently public domain, its varied
implementations can cause compatibility problems so that applications are able to
access only files of a certain kind. [19]

Joint Photographic Experts Group - JPEG

Abbreviation JPEG, Joint Photographic Experts Group, is often used to refer to
several image formats which use a compression defined by the group. The JPEG
issued the first JPEG standard in 1992 when it was also approved as ITU-T Rec-
ommendation T.81, and in 1994 as ISO/IEC 10918-1 standard [29]. Common image
formats using this compression are JPEG/JFIF (JPEG File Interchange Format)
and JPEG/Exif. Both formats are widely supported.

JPEG 2000 became international standard ISO/IEC 15444-1 in December 2000 [15].
It defined state-of-the-art compression techniques based on wavelet technology and
a basic file format called JP2. Standard part 12 describes an ISO base media file for-
mat (ISOBMFF) based storage, with a text identical to ISO/IEC 14496-12 (MPEG-4

2.6. Current raster image formats 12

Part 12). Motion JPEG and Motion JPEG 2000, file formats for motion sequences,
are also extended from ISOBMFF.

JPEG 2000 has notably higher computational resource requirements than JPEG
[5]. The intention was to replace the original 1992 JPEG standard, but JPEG 2000
is not backwards compatible, and in early 2016 support is still missing from most
WWW browsers3 and several popular graphics applications.

JPEG XR (JPEG eXtended Range) was originally developed by Microsoft. Image
coding specification standard ISO/IEC IS 29199-2 was published in 2009. The tar-
get was to keep high image quality while requiring low computational and storage
resources [5]. JPEG XR is not compatible with JPEG/JFIF. In 2013, Microsoft
released an open source JPEG XR library under the BSD license, but still in early
2016 only Microsoft web browsers support the format4, making JPEG XR an in-
compatible option to be used in WWW pages.

WebP

WebP image format was introduced by Google in 2010. In the beginning it used
lossy intra-frame coding of the VP8 video format. Later releases added lossless
VP8L compression, transparency, color profile, animation support and metadata
storage. Google claims WebP images using lossless compressed are 26% smaller in
file size compared to PNGs, and files with lossy compression are 25-34% smaller in
size compared to JPEG images at equivalent perceived quality. As container format
WebP uses Resource Interchange File Format (RIFF) which originates from IFF.

Google has released WebP format as open-source with a BSD-style license. In early
2016, some web browsers have a native WebP support (Google Chrome, Opera).
Some graphics software have native support as well.

Better Portable Graphics - BPG

BPG has been developed by programmer Fabrice Bellard since 2014. The developer
states BPG is intended to replace the JPEG image format when quality or file size is

3http://caniuse.com/#feat=jpeg2000
4http://caniuse.com/#feat=jpegxr

http://caniuse.com/#feat=jpeg2000
http://caniuse.com/#feat=jpegxr

2.6. Current raster image formats 13

an issue. BPG uses HEVC encoding, but it only supports a subset of the Main 4:4:4
16 Still Picture Profile, Level 8.5. Because of trade-offs for simplicity and required
storage space, used bitstreams are not HEVC-compliant as such. BPG enables both
lossy and lossless compression. Also features like support for animations and various
metadata are present. [4]

14

3. HIGH EFFICIENCY IMAGE FILE FORMAT

STANDARD

The High Efficiency Image File Format (HEIF) is a new image file format standard
for storing raster images, image sequences and related metadata. The standardiza-
tion effort started soon after the High Efficiency Video Coding (HEVC) standard
was finalized, when it was realized that HEVC had good compression performance
also with still pictures, and could be used e.g. with digital cameras if it was pos-
sible to save photographic metadata to the same file [10]. However, HEIF is not
restricted to storing HEVC encoded images only, but it can contain other encoded
bitstream formats as well. As HEIF is built on existing ISO Base Media File Format
(ISOBMFF) and HEVC standards, these are presented briefly before proceeding to
HEIF structure and features in more detail.

3.1 Standard development

The first version of HEVC video compression standard was finalized in January 2013
[10]. MPEG requirements documents for storing HEVC compressed still images and
image sequences were ready in August 2013. Working draft ISO/IEC CD (Com-
mittee Draft) 23008-12 "High efficiency coding and media delivery in heterogeneous
environments Part 12: Image File Format" was published early in 2014 San José
MPEG meeting. It presented an ISOBMFF based way to store HEVC compressed
single images, image collections, image sequences, and related metadata.

In July 2014 MPEG Sapporo meeting ISO/IEC DIS (Draft International Standard)
23008-12 "Carriage of Still Image and Image Sequences" was published. FDIS (Final
Draft International Standard) was published in the February 2015 MPEG meeting
in Geneva. This draft added to the standard derived image items, e.g. image grids
and rotated images. The standard was then refined and a public review period was
held from April to June 2015.

3.2. ISO Base Media File Format 15

2013 2014 2015 2016

HEVC standard finalized

Requirements gathering done

Fundamental design decisions done

Draft published

Final draft published

Public review period

Writer & reader published

Thesis work starts

Figure 3.1 Timeline of the High Efficiency Image File Format development and thesis
work [10].

The timeline of events related to thesis work and HEIF development is presented
in Figure 3.1. On the time of writing this in May 2016, the editing of the final
specification for publication is ongoing.

3.2 ISO Base Media File Format

The ISO Base Media File Format (ISOBMFF), defined in standard ISO/IEC 14496-
12 - MPEG-4 Part 12, is a structural, media-independent definition for the storing
time-based media such as audio and video. It also has support for untimed data.
[22]

ISOBMFF is based on Apple’s QuickTime file format although on a low level a
rather similar structure was already present in IFF files by Electronic Arts. Among
others, ISOBMFF is used by the JPEG 2000 image file format and several video
formats such as MP4 (MPEG-4 Part 14), and 3GP (3GPP file format). Figure 3.2
presents ISOBMFF relationship to several file formats including HEIF.

The type of an ISOBMFF-based file is identified at the beginning of it. A file
may conform to one or several so-called brand definitions. A brand defines what
specifications the file follows. A single major brand indicates the best usage of the
file. A file reader can then check if it supports the file, before processing it further.
[22]

ISOBMFF defines box-structured files. This means that data is arranged to subse-
quent boxes. Boxes are allowed to contain another boxes, which may be mandatory
or optional. The header of each box contains information about the type of the
box, and the size of the box. This makes it possible for reader programs to skip
unnecessary or unsupported boxes if needed.

3.3. High Efficiency Video Coding 16

Figure 3.2 Relationship between ISO Base Media File Format and various other file
formats. Arrows point to the specification which is based on the other one. Adapted from
[22], HEIF included by the author.

Four-character ASCII codes are used to to identify various entities inside a file such
as box types. These four-byte codes are commonly referred to as FourCC or 4CC
and are marked with bold font in this text.

3.3 High Efficiency Video Coding

High Efficiency Video Coding (HEVC) video compression standard was developed by
ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Pictures Expert
Group (MPEG) in their Joint Collaborative Team on Video Coding (JCT-VC). It is
also known as ITU-T Recommendation H.265. The goal was to reduce required bi-
trate of high-resolution videos to about half, when comparing with equivalent visual
quality video encoded with Advanced Video Coding (AVC, ITU-T Recommendation
H.264) standard. HEVC was the third video coding standard developed by ITU-T
and ISO/IEC as a joint project. Tests indicated that HEVC met its goal, and that
it performs especially well with high-resolution video. [20]

HEVC supports both intra and inter-coding of images. Decoding an intra frame

3.4. HEIF overview 17

(i.e. an image) in video is possible without information about any other frames. On
the other hand, decoding an inter-coded frame requires first decoding one or several
other frames, as inter coding relies on information from them.

Several comparisons have been done about using HEVC intra coding for compressing
still images. In subjective evaluation HEVC compression was on average 16% more
efficient than JPEG 2000 4:4:4, and 43% more efficient than JPEG, while perceived
quality remained similar [8]. In an objective quality test measuring peak signal-to-
noise ratio, HEVC performance was superior as well [10]. According to the results,
on average HEVC was 58% more efficient than JPEG, 40% more efficient than JPEG
XR and 31% more efficient than JPEG 2000.

As a video coding standard, HEVC has also advanced inter-coding support. The idea
of inter-coding is to use temporal redundancy between neighboring frames in order
to enable a higher compression rate. Advanced motion compensation helps with
determining reoccurring areas, even if their location changes. This can make the
storage of image bursts and animations very efficient, as subsequent images might
share a big part of their content. Tests suggest, that when comparing inter-coding
with intra coding, the efficiency of inter-coding can be even tens of times better,
and ratios like two to three times better can occur for natural content [10].

3.4 HEIF overview

HEIF is based on ISOBMFF standard and it enables the storage of image data
encoded according to HEVC standard. Being based on ISOBMFF makes HEIF very
flexible in comparison with several other image file formats. HEIF has been designed
to store one or several images, and image sequences. An elementary difference
between images and image sequences is that an image sequence can contain also
timing information and that they are allowed to use HEVC inter coding. On the
contrary, images and image collections have no time structure, and only intra coding
is allowed.

Saving information about images and image sequences in an HEIF file is done in
different ways. Still images, called image items, are stored as ISOBMFF items.
Timed, and untimed but interrelated, image sequences closely follow the composition
of MP4 video tracks. Difference between images and image sequence storage is a
fundamental part of HEIF, so it is described briefly after presenting the high-level

3.4. HEIF overview 18

moov - Movie Box

trak - Track Box 1

trak - Track Box 2

trak - Track Box n

mvhd - Movie Header Box

...

meta - Meta Box

mdat - Media Data Box 1

mdat - Media Data Box 2

mdat - Media Data Box n

...

ftyp - File Type Box

Figure 3.3 A stylized presentation of an HEIF file structure when images and image
sequences are present.

structure of the file format. Finally, there are some example use cases and a feature
comparison with other image file formats.

3.4.1 High-level structure

An HEIF file always starts with a mandatory File Type box ftyp. It describes
the type of the file and compatibility information as brands. Information about
metadata, single images and derived images are stored to a Meta box meta. If the

3.4. HEIF overview 19

file includes image sequences, a Movie box moov is present. It then contains Track
boxes, one for each image sequence. Figure 3.3 shows a stylized presentation of an
HEIF file box structure on root-level. Also the location of image sequences, stored
as Track boxes inside a Movie box, is displayed.

Both single images and image sequences can use separate Media Data mdat boxes
for the storage of the payload image data. As many as needed Media data boxes can
be included in a file. This makes it possible to refer to the same image data from
both image and image sequence. However, this is not the only option allowed by
ISOBMFF. For example, storing image data inside a Meta box is possible as well.

3.4.2 Image items

If one or several images are stored to an HEIF file, a single file root-level meta box
will be present. It holds information about images, called image items, and possibly
also the actual coded image data. In case several images are saved in an HEIF this
way the result is called an image collection.

Every image item, and other items such as a derived image item and a metadata
item, is assigned an individual identifier number. Information about numbered
items is saved to several contained boxes inside the meta box. Figure 3.4 shows
this simplified Meta box structure. Most central boxes are briefly described here.

Item Information box iinf contains entries for each item present in the meta box.
Entries contain, for example, the human-readable symbolic names, and type identi-
fiers of items.

Item Location box iloc makes finding item data possible. Primarily, it describes
the locations, offsets and sizes of item data. Item data can be also fragmented into
several extents.

Item Reference box iref enables creating directional links from an item to one or
several other items. Item references are extensively used by HEIF. For instance,
thumbnail images are recognized from a thumbnail type reference which links from
the thumbnail image to the master image.

Handler box hdlr tells the metadata type. For HEIF, it is always ’pict’. Primary
Item Reference pitm allows setting one image as the cover or primary item. Data

3.4. HEIF overview 20

Information box dinf and dref contain information about where the data is located,
as ISOBMFF allows it be located even outside the file.

meta - Meta Box

hdlr - Handler Reference Box

iloc - Item Location Box

iinf - Item Information Box

pitm - Primary Item Box

dinf - Data Information Box

dref - Data Reference Box

iprp - Item Properties Box

ipco - Item Property Container Box

ipma - Item Property Association

iref - Item Reference Box

Figure 3.4 Simplified structure of a Meta box in an HEIF file.

Item Properties box iprp makes it possible to assign properties to image items.
It contains two boxes. Item Property Container box ipco contains property data,
which are then associated to items by ipma Item Property Association. Properties
are classified to be either descriptive or transformative.

Examples of descriptive properties are ispe which describes spatial extents of an
image, and auxC which describes the type of an auxiliary image (an alpha mask or
a depth map). These provide information about the image.

3.4. HEIF overview 21

An example of a transformative property is image rotation, irot. Transformative
properties tell to a player program how the image should be modified before pre-
senting it. This allows some non-destructive editing, like complex crop-and-rotate
operations.

A versatile feature of HEIF is support for derived images. Derived images can
be created either by assigning transformative properties to an image, by identity
derivation, or by creating a derived image item like an image grid or image overlay
from other image items. Identity derivation means that for example both the original
and a rotated version of an image can be presented for the user. An image grid would
then allow the creation of a third image which presents these two images next to
each other.

Pre-derived coded images are images which have been derived from one or several
other images. Unlike derived images, pre-derived images are simply a way to link
an image to another image or images it has been derived from. Information about
the type of a pre-derivation is not necessarily present in the file. An example of a
pre-derivated image is an high-dynamic-range image which has been derived from
several images which were photographed using different exposure times.

3.4.3 Image sequences

Image sequences are saved as ISOBMFF tracks, trak boxes. HEIF image sequences
are differentiated from video tracks by a different handler type ’pict’ in the Handler
Box which is contained in every Track Box. Figure 3.5 shows how one trak box is
contained in a moov, and the most central boxes contained by the trak.

In the moov a mandatory Movie Header box mvhd defines certain media-independent
information which is relevant to the entire presentation. This includes data such
as modification and creation time stamps and length of the presentation. Track
Header box tkhd contains information about the individual track, such as its iden-
tifier. Track Reference box tref allows tracks to reference another tracks in the
presentation. In HEIF image sequences, thumbnail tracks are linked to the track for
full-sized images by using tref. Media box mdia contains several boxes that declare
information about the media data. This includes Media Header box mdhd which
includes information characteristic to the media in a track, and Media Information
box minf. Further, the minf contains Data Information box dinf that declares

3.4. HEIF overview 22

the location of the media information in a track, and a Sample Table box stbl that
contains information of every single sample, here image, on the track.

moov - Movie Box

mvhd - Movie Header Box

tref - Track Reference Box

tkhd - Track Header Box

edts - Edit Box

trak - Track Box

hdlr - Handler Reference Box

mdhd - Media Header Box

mdia - Media Box

stbl - Sample Table Box

dinf - Data Information Box

minf - Media Information Box

Figure 3.5 Simplified structure of a Movie box in an HEIF file.

For tracks inter prediction in HEVC bitstream is allowed. Therefore decoding an
image in an image sequence may depend on the data of other images in the sequence.
Usage of this kind of prediction can significantly reduce the amount of stored data.
However, if wanting to view only one such image, the data of all images it is depend-
ing from must be first retrieved and decoded. This is more complicated than just

3.5. Use cases 23

retrieving, decoding and showing only a single image, and especially in a case when
dependencies are plenty this also results in inferior performance. A programmer
needs to also consider the fact that image sequence decoding order is not necessarily
the same as the presentation order.

Image sequences can optionally contain an Edit box edts with an Edit List box
elst inside it. An edit list can be used to manipulate the presentation time-line
of images. It is possible to add empty time, prolong display time of an image, or
rearrange or repeat sections of several images.

3.4.4 Structural format and brands

In addition to specifying the encapsulation of HEVC encoded images, the HEIF
specification also defines a structural format, which can be used to derive other
codec-specific image formats. The name HEVC Image File Format (HEIC) can be
used when referring specifically to the specified HEVC-coded image encapsulation
in an HEIF file. [10]

The HEIF standard specifies several brands. These are mif1, msf1, heic, heix, hevc,
and hevx. The file name extension recommended for the first two is .heif while
others could use .heic. The first two are also so-called structural brands. These
impose certain requirements on compliant players, but do not specify an image
coding format. Others are HEVC-specific brands. [10]

The storage of image sequences in a way resembling video tracks makes it possible to
create so-called dual-brand files. As a result, a dual-branded HEIF file containing
an image sequence could be also played back using a regular multimedia player
program, which then could interpret image sequence parts of an HEIF as regular
video tracks. The image media data itself does not need to be duplicated, so the file
size overhead from this is modest.

3.5 Use cases

Flexibility of HEIF makes it an intriguing alternative for the most common image
file formats currently used in WWW and, for instance, to photography use. Table
3.1 summarizes features and characteristics of HEIF and several other image file
formats.

3.5. Use cases 24

HEIF JPEG
/Exif PNG GIF

(89a) WebP JPEG XR
/ TIFF

JPEG XR
/ JPX BPG

Formats and
extensibility
Base container
file format

ISOBMFF TIFF - - RIFF TIFF - a -

Lossy
compression

HEVC JPEG No No VP8 Yes Yes HEVCb

Lossless
compression

HEVC TIFF
Rev 6.0

Yes Yes c VP8L Yes Yes HEVCb

Extensible to
other coding for-
mats

Yes Yes d No No No Yes d Yes e No

Additional
metadata formats

Exif, XMP,
MPEG-7

Exif - - Exif,
XMP

Exif,
XMP

JPX, (XMP)f Exif,
XMP

Extensible to
other metadata
formats

Yes No No No No No
Yes
(XML-
based)

Yes

Other media
types (audio,
text, etc.)

Yes Audio g No No No No Yesh No

Multi-picture
features
Multiple images
in the same file

Yes No i No Yesj Yes j No Yes Yes k

Image sequences
/ animations

Yes No No Yes Yes No Yes Yes

Inter coding Yes No No No No No No Yes
Derived images
Multiple-of-90-
degree
rotations

Yes Yes No No No Yes Yes No

Cropping Yes No No No No No Yes No
Tiling/overlaying Yes No No No Yes No Yes No
Extensible to
other editing
operations

Yes No No No No No No No

Auxiliary picture
information
Transparency
(alpha plane)

Yes No Yes No l Yes Yes Yes Yes

Thumbnail image Yes Yes No No No Yes Yes Yes

Table 3.1 Summary of features of certain image file formats. Adapted from [9] with some
modifications.

aJPX is a box-structured format compatible with ISOBMFF. However, only the File Type box
is common in JPX and ISOBMFF.

bHEVC Main 4:4:4 16 Still Picture profile, Level 8.5, with additional constraints
cPossibly lossy color quantization is applied. The color-quantized image is losslessly compressed.
dTIFF as a container format facilitates extensions to other coding formats.
eEncapsulation of JPEG-2000 and JPEG-XR have been specified for JPX container. Mappings

for other codecs could be similarly specified.
fJPX (ITU-T T.800 and T.801) specifies an own metadata schema, but is capable of carrying

an XML formatted metadata, such as XMP.
gPCM, µ-Law PCM and ADPCM encapsulated in RIFF WAV
hJPX can contain media complying with ISOBMFF (or derivatives thereof). No accurate syn-

chronization between JPX animations and other media.
iCan be enabled through the MP extension
jOnly for animations and tiling/overlaying
kOnly for animations, thumbnails, and alpha planes. Non-timed image collections not sup-

ported.
lA palette index for fully transparency can be specified

3.5. Use cases 25

Lossy HEVC compression makes HEIF a competitive alternative for JPEG, as bet-
ter quality images or smaller data amounts resulting in faster loading times could
be achieved. Support for lossless compression and alpha channel support enable
HEIF to often be a valid alternative for PNG images. The old GIF format has still
remained in some use because it supports animations unlike JPEG and PNG. HEIF
supports animations, along efficient encoding and true-color support.

For medical and different archive usages, some of the most valued features are often
lossless compression, and flexible metadata content. Both of these are present in
HEIF.

26

4. IMPLEMENTATION

This chapter describes the practices used during the development, and the archi-
tecture of the implemented HEIF reader and writer software. Section 4.1 about de-
velopment practices outlines methods used for testing, continuous integration, code
and program analysis, and coding practices. Architecture and design is described
in Section 4.2. The main points are given about the background of the developed
programs, about the current design, and how they function.

4.1 Development practices

Development work was carried out in an agile manner, having resemblance to several
aspects of the agile manifesto1, but no any single software development methodol-
ogy such as Extreme programming (XP) or scrum was followed to the letter. For
instance, the typical size of the development team would had been unusually small
even for scrum [18]. However, this kind of approach is not exceptional as customiza-
tion and modification of agile methods have been found in many cases [13]. One
of the main priorities, matching well with the agile methodology, was to achieve
a high degree of tolerance to changes because standard drafts were still evolving
during the development. Tasks such as adding new features, major refactoring and
applying updates from changed specifications were divided into sprints. New code
was integrated into version control frequently, and builds and tests were automated.

The work described here was carried out as a part of a development team. The thesis
author worked as the main software developer of the team for approximately seven
months. The core responsibilities were setting up and maintaining the continuous
integration server, automatic testings setup, static code analysis setup, documenta-
tion, code refactoring and quality improvements, and adding new features as defined
and prioritized by the project lead. Eventually, the resulting code base contained
code from seven developers although amounts of contributions varied.

1http://agilemanifesto.org/

http://agilemanifesto.org/

4.1. Development practices 27

4.1.1 Testing

To make fast progress possible, automated testing setup was done early in the
project. This allowed developers to have confidence that changes done did not
break existing functionality. A cross-platform unit testing library Google Test2 was
selected as the testing framework. Along small unit tests, Google Test can be used
to perform medium sized integration tests. This enabled convenient automatic end-
to-end testing, from HEIF file generation to comparing a H.265 output bitstream
from the reader to the input bitstream of the writer. Figure 4.1 shows the ter-
minal output of Google Test after successfully running a part of tests. A separate
XML-formatted report was used to integrate Google Test with Jenkins.

Figure 4.1 Google Test example output.

Having an extensive test suite also enabled the execution of extensive dynamic pro-
gram analysis. This is important for good results, because dynamic analysis reveals
problems only on execution paths which are actually ran.

2https://github.com/google/googletest

https://github.com/google/googletest

4.1. Development practices 28

Unit tests

Unit tests were used to verify functionality when developing especially complicated
pieces of code. A unit test type approach was also used in cases where the writer sup-
port for certain HEIF file structures was not planned, but when the reader support
was required for compatibility reason.

Integration tests

Majority of test cases were larger integration tests, which followed a pattern of
feeding a pre-made input configuration and encoded bitstream or bitstreams to the
writer, loading the resulting HEIF file with the reader, and then using the reader
API to verify that content corresponds to expected structure.

When reasonable, in addition to this the HEIF file was also fed to a separate reader
application which then dumped H.265 bitstreams to the file system. By comparing
these outputs with input bitstreams bitwise, it was made sure that integrity of
decoder configuration and other data was retained.

As no time-consuming decoding or encoding was needed during tests, it was possible
to create, read and analyze tens of HEIF files in a few seconds. This made it
convenient to run a full set of tests as often as needed.

Code coverage

Code coverage is a measure which tells how big part of the source code a test suite
executes. Code coverage analysis was done to verify the test suite really executed
code as assumed. A special build type was created for this, as this kind of analysis
requires the instrumentation of built executables in a way which is not needed during
normal operation or development, and prevents the usage of compiler optimization
making execution slower.

Again, open-source alternatives were selected as suitable tools were readily available.
The GNU Compiler Collection (GCC) includes a tool named gcov which creates
reports about how many times each line of a source file has been executed. However,
the plain output of gcov for a project of this size is not easy to interpret. To help with

4.1. Development practices 29

this, a graphical front-end LCOV has been made as a part of the Linux Test Project.
LCOV parses gcov output and creates a report in HTML format for easy data
exploration and interpretation. These reports were used to interactively identify
locations where code coverage lacking and improvements were needed. Unexpectedly
missing code coverage in some location can be a strong indicator of a bug either in
the test or in the code itself.

4.1.2 Continuous integration

Most changes to code were integrated into the version control mainline on a daily
basis although few bigger features were first developed in separate branches before
integrating them. Jenkins3, an open source continuous integration tool, was set up to
a server. With some help from several plug-ins and scripts, it automatically checked
out changes from version control, built the source code, ran tests and generated a
report about it, built documentation, and ran static code analysis. The Jenkins
system was used to compile the source code by using both GCC and Clang C++
compilers. This made it possible to catch more issues, as these compilers produce
different diagnostics messages. Clean builds were required also because both com-
pilers were used during development and for final build targets. For instance, the
used code coverage tool chain required GCC to be used as the compiler and Clang
was needed by Emscripten build target which was used to generate JavaScript code.

The advantage of the setup was to be able to quickly catch changes which broke the
build, if the testing a developer had done was not complete. Such setup also helps
catching mistakes like incomplete commits to version control, i.e. if a developer did
not commit all necessary modified or added files to the version control. Running
automated tests and static analysis helped catching several problems in code quality.

4.1.3 Program analysis

Program analysis is generally classified to static and dynamic analysis. Static anal-
ysis is performed without executing the program while dynamic analysis is done
to a running program. Major objectives for analysis are program correctness and
optimization. In this work both were utilized.

3https://jenkins.io/

https://jenkins.io/

4.1. Development practices 30

In general, static analysis tools are not precise, and might generate false positives
and false negatives. On the contrary, dynamic tools are precise, but require a com-
prehensive set of tests to make sure all wanted code is actually executed. The
number of required test cases would become huge when the application has several
complex components. A combination of both static and dynamic analysis can help
to detect more flaws with higher precision. [1]

Static code analysis

Static analysis uses source code as its input without needing to compile or execute
the code. This means that analysis covers also execution paths those would not
be executed during automatic testing, or maybe not even during normal software
operation.

A variety of static code analysis tools were employed during development. Level
of interaction with them varied from near real-time continuous involvement of the
checker of an integrated development environment (IDE) to a single time test of
some analyzers.

C++11 version of the C++ programming language was used, which limited selection
of available tools as some analyzers still support only C++03 or older standards.
Only free-to-use tools were considered and tested. This excluded otherwise inter-
esting commercial products like Coverity4 by Synopsys and PC-Lint5 by Gimpel
Software.

Cppcheck6 analyzes C and C++ code. The developer of it underlines that the
intention is to have no false positives, and that the tool does not detect syntax errors.
Findings are classified as either error, warning, style, performance, portability, or
information. Especially performance and style type were considered helpful during
development, as such information was not available from other sources.

The Clang Static Analyzer7 is a part of the Clang LLVM compiler front-end project.
It is a static source code analysis tool for finding bugs in programs written with C,
C++, and Object-C. The Clang Static Analyzer uses several different checkers.

4http://www.coverity.com/
5http://www.gimpel.com/html/pcl.htm
6http://cppcheck.sourceforge.net/
7http://clang-analyzer.llvm.org/

http://www.coverity.com/
http://www.gimpel.com/html/pcl.htm
http://cppcheck.sourceforge.net/
http://clang-analyzer.llvm.org/

4.1. Development practices 31

For example, core checkers examine code for structures like division by zero, the
addresses of stack memory escaping the function, dereferencing of null pointers,
and assigning uninitialized values. This analysis was performed by the continuous
integration server running Jenkins. Each build was analyzed and an HTML report
generated.

OCLint8 is a static code analyzer for inspecting C, C++ and Objective-C code. It is
also based on Clang. Developers report it is able to e.g. find possible bugs, identify
unused, redundant or complicated code, and recognize some bad coding practices.

Run-time program analysis

Run-time program analysis executes a program in a controlled environment where
e.g. the memory accesses of the code can be closely monitored. This can slow down
program execution significantly.

Run-time analysis is also unable to catch any errors which do not reside on that
particular specific execution path. On the other hand, if anomalies are found there
is no chance of false positive findings, and it is guaranteed that checked type issues
were not encountered during execution when using given inputs.

Valgrind9 is a tool suite which contains several debugging and profiling tools. During
development the Memcheck tool of Valgrind was extensively used to check for com-
mon C++ memory management problems. These include issues such as accessing
memory which should not be accessed, using undefined values, an incorrect freeing
of heap memory, making precarious memory allocations, and memory leaks.

Even though C++11 features for automatic pointer management were extensively
utilized in source code, especially the usage of uninitialized variables, and memory
leaks were identified during development.

Usage of uninitialized variables is able to cause undefined behavior. A symptom of
this could be for example a test case failing in a random seeming manner. There-
fore, instead of continuing development problems of this kind were fixed as soon as
possible. Memory leaks might originate from the simple neglect of freeing reserved

8http://oclint.org/
9http://valgrind.org/

http://oclint.org/
http://valgrind.org/

4.1. Development practices 32

memory, or be a symptom of a design issue. Latter situation might be reasonable
to fix on a better time.

Eclipse CDT C++ parser

Most of time Eclipse CDT IDE was used for development. The included C++ parser
enables the IDE to provide features such as code navigation, search, and content
assist.

This is not actual code analysis, but near real-time syntax highlighting and checking
accelerates development, as code has already been "proofread" before it has been
even compiled. To assist a developer even further, Eclipse also present so-called
Quick Fixes for problems it has identified.

4.1.4 Coding practices

The programming language used in the project was C++11 version of C++. C++11
was a major upgrade over C++98/03. It has several new features for performance
and convenience, such as range-for loops, automatic type deduction, lambda func-
tions and move semantics [25]. As a result, C++11 makes it possible to write
simpler code, and the C++11 standard library is easier to use, when comparing it
with earlier C++ standards.

Using C++11 made use of several different development environments straightfor-
ward. The chosen CMake10 cross-platform build management software made switch-
ing to different environments simple. Further, building C++11 code for different
target environments is relatively easy. Supported targets were Linux, Windows,
Android, and JavaScript environment. Latter enabled using the reader code to be
embedded in WWW pages. This build was made possible by Emscripten11 source-
to-source compiler which integrated into the CMake build system.

Today programming is often team-based activity, where reading code written by
others is a necessity. Easily readable code will be an advantage, at the latest,
when the code will be extended and maintained. Clear writing style also tends to

10https://cmake.org/
11http://kripken.github.io/emscripten-site/

https://cmake.org/
http://kripken.github.io/emscripten-site/

4.2. Architecture and design 33

compensate some inherent complexity of code. Readability is especially important
with languages like C++ which have plenty of potentially hazardous features. [24]

Programming style guidelines were adapted from Geotechnical Software Services
C++ Programming Style Guidelines12 with some modifications. These guidelines
consider things relating to appearance, such as white space usage, line length and
variable naming, but also to code structure (e.g. no assignment operations inside
branching condition).

4.2 Architecture and design

Along the HEIF reader and writer, several other components are required to com-
plete the toolchain for storing and presenting HEIF image files. Figure 4.2 shows
how different components are related when saving an image to a file, and then load-
ing and rendering it. The writer and reader described in this chapter are highlighted
with a dashed line.

Figure 4.2 A simplified diagram about components used to save and load an HEIF file.

A separate H.265 encoder is needed for the creation of the compressed image data,
which is then used as an input to the HEIF writer. Several input bitstreams like
this can be present. Each bitstream can contain one or several images. In addition
to these, a configuration file is required to describe the wanted structure and several

12http://geosoft.no/development/cppstyle.html

http://geosoft.no/development/cppstyle.html

4.2. Architecture and design 34

other aspects of the file to be generated. The writer then outputs a single HEIF file.
Later, a player application can use the HEIF reader to acquire information about
the contents of the file. Based on this information, the player can then retrieve the
wanted image data and use a separate decoder component to decompress it to a
presentable form. Before rendering the image or images, the player should apply
transformation as possibly specified in the file. Information about them can be
retrieved using the reader.

4.2.1 Background

Earlier prototypes of the HEIF reader and the writer were used as a starting point
for development although they were completely rewritten. One limitation had been
a strong separation between the handling of images and image sequences, which
prevented from storing both to the same file. Also features such as Exif metadata
storage and properties were missing, and the reader was implemented as an appli-
cation, not as an API. Thus the usability of it was limited.

However, the low-level handling of ISOBMFF boxes had been implemented in a
modular way, so it was possible to utilize a considerable amount of code. Also
code for HEVC bitstream parsing was already present. Despite some modifications
done to increase robustness and to optimize code, reusing these made development
significantly easier.

4.2.2 Box handling

Both the HEIF reader and the writer employ common code for the handling of
ISOBMFF boxes. On the lowest level writing and reading of ISOBMFF is handled
by BitStream class. It provides facilities for handling different sized integers, strings,
etc.

Boxes defined by ISOBMFF and HEIF are modeled by the classes of Common mod-
ule. As a rule, box classes have at least code for saving and loading (serializing
and deserializing) the box in question. Possible boxes contained by boxes are also
handled here. This makes it possible to serialize or deserialize contents of even the
whole root-level meta box with a single method call.

Several methods are offered to inserting data to box classes. The complex meta class

4.2. Architecture and design 35

offers convenience methods for inserting items and properties, as these operations
concern several nested boxes. Handling all related operations at once reduces the
possibility of programming errors. Some simple box classes might offer just plain
setters and getters.

4.2.3 File writer

Figure 4.3 presents core classes of the HEIF writer application and their rela-
tionships. The description of the file to be written is read from a JSON file by
WriterConfig class to an internal data structure defined in IsoMediaFile. This
arrangement makes it possible to later use the HEIF writer directly as a part of a
bigger C++ program without having to create external configuration files.

FileWriter

FileMaker

IsoMediaFileWriterApp

WriterConfig

Figure 4.3 Central classes of HEIF writer.

A simple HEIF file writer description can be found in Appendix A. First the general
section is parsed. This contains the output file name, brands, and optionally the
primary item of the file is identified.

Then the actual image file content array is parsed. One content unit always includes
one master section, and optionally thumbnails of different sizes, derived image de-
scriptions, metadata and properties of images. It is possible to reference entities
inside the same content rather flexibly, in order to be able to create complex derived
images.

Based on the read configuration FileWriter creates needed writer classes. Each
writer class handles only a single well-scoped part of file data generation, such as a

4.2. Architecture and design 36

single thumbnail or auxiliary image section.

Classes derived from MetaWriter are in charge of adding content to the root-level
metadata box. Classes deriving from TrackWriter write content to the root-level
Movie Box, each of them creating a new Track box. Along TrackWriters and most
MetaWriters MediaWriter-derived classes are created. These are responsible for
writing the actual encoded payload data, or non-HEIF specific metadata which is
given as input and stored as is. Figure 4.4 shows how FileWriter uses abstract
MetaWriter, TrackWriter and MediaWriter base classes to fill the file content.

FileWriter

TrackWriter

+writeTrack(): std::unique_ptr<TrackBox>

MetaWriter

+write(inout meta:MetaBox*)

MediaWriter

+write(): MediaDataBox

Figure 4.4 FileWriter uses abstract MetaWriter, TrackWriter and MediaWriter base
classes to assemble file content.

ISOBMFF standard defines how many certain type boxes can be present in the root
level, or as boxes contained by other boxes. This means an HEIF file can hold zero
or one root-level Meta boxes, and zero or one root-level Movie boxes. To cope with
this, different writer classes do not directly write output to a file, but add data to
classes presenting the nested box structure of the file. At the end of the writing
process, contents of these box classes are serialized to the output file.

FileWriter then handles the actual file writing in a dual pass manner. First writ-
ers participating in the creation of Meta and Movie box are called, but resulting
bitstreams are discarded. Only their sizes are saved for calculating box offsets in
the file. Thereafter the same writers are called again, now supplied with correct
box offsets. Offsets are needed to express exact image data locations in Media data
boxes which are located at the end of the file.

Meta box writers are presented in Figure 4.5. Writers derived from RootMetaImageWriter
handle writing of encoded image items. Other classes handle various operations from

4.2. Architecture and design 37

MetaWriter

EntityGroupWriterMetadataWriter MetaDerivedImageWriterMetaPropertyWriter PrimaryItemWriter

RootMetaImageWriter

AuxiliaryImageWriter ImageMasterWriter ImageThumbsWriter

Figure 4.5 Meta box writer classes.

TrackWriter

TrackAltrepWriter TrackMasterWriter TrackThumbsWriter

Figure 4.6 Track box writer classes.

setting up the Primary Item box of the Meta box to creating derived image items
with associated properties.

Track box writers are presented in Figure 4.6. These create filled Track boxes,
which can then be inserted into the root-level Movie box of the file. This structure
of a trak box is presented in Figure 3.5. Information about images, in this context
samples, is contained in several other boxes contained by the Sample Table box stbl.
This includes e.g. details about locations, sizes, and types of every sample.

Media data box writers are presented in Figure 4.7. ImageMediaWriter objects are
created as pairs of Track and Meta writers. Their function is basically to dump the
input video bitstream without decoder configurations to a Media data box. Some
derived image items such as image grid and image overlay contain data which is
located in a Media data box. For those cases MetaDerivedImageWriter creating
that data can give it to a corresponding DerivedItemMediaWriter for writing to
Media data box.

4.2. Architecture and design 38

MediaWriter

DerivedItemMediaWriter ImageMediaWriter MetadataMediaWriter

Figure 4.7 Media Data box writer classes.

HEIF reader

HEIF reader interface

ISOBMFF box handling

use

H.265 parser

Figure 4.8 Core components of the HEIF reader.

4.2.4 File reader

HEIF reader was implemented as a C++ API, so it could be utilized by players and
other applications. A simple reader application was written to use the API, mainly
to function as a tool for writer testing. Additionally it was employed by some
applications for HEIF demonstration. Figure 4.8 presents HEIF reader components
in all its simplicity.

The input HEIF file is parsed box-by-box. Three types of root-level boxes are
handled while others, including Media Data boxes, are ignored. Media Data box
contents should be considered as binary blobs until it is given an interpretation by
information from another boxes which could identify it as encoded image data, for
instance.

First, the File Type box ftyp is checked to be present and to contain supported
compatible brands.

4.2. Architecture and design 39

Meta box contains information about image items and other items, the primary
resource of the file, item protection scheme and item properties. If the parsing of
all contained boxes is successful, the reader fills its internal and exposed reader
API data structures with information about the file. This makes the serving of
subsequent API calls faster and more robust, as possible later surprises caused by
broken file structure can be avoided.

Movie box moov is handled in a manner similar to meta. The Movie header box
mvhd, which contains common information about all tracks, and then individual
Track boxes trak with sub-boxes they contain are read. Again, after successful
parsing, information is extracted from the boxes to be filled to both internal and
exposed reader API data structures.

A created reader instance must be first initialized by providing it either an input
stream or a file name. During initialization, the reader parses the input, and fills
data structures as described earlier.

After a successful initialization, a data structure describing file content can be
requested from the API. The data structure contains information about possible
moov, trak and meta boxes in the file. As an example, this information includes
details about every image of image sequences, the relationships of image items, and
what kind of features are present in the file (derived images, thumbnails, etc.) This
helps the player to request wanted type of data using subsequent API calls.

For example, if a root-level meta box is present, the player could then request a
list of master image item identifiers in it. A master image, as defined by the HEIF
specification, is an image that is stored as an item, and that is not a thumbnail
image or an auxiliary image. When master item identifiers are known, the player
could then request item data and related H.265 decoder configurations, combine
those and pass the result to a H.265 decoder. Before presenting decoded images on
display, the player should still verify if some essential properties are mapped to the
master images, and apply those as needed.

40

5. EVALUATION AND DISCUSSION

The software resulting from this work has performed without issues as a part of sev-
eral internal demonstration applications and the promotional HEIF website, having
successfully demonstrated the features of HEIF. It has also been used as a basis for
building other features in another projects. The developed code was released to a
public source code repository1.

In Section 5.1 the work is evaluated by its code quality, reflected in certain software
metrics. Analysis about fixes which have been done to the published source code
since its release is done in Section 5.2. As the reader and writer constitute a certain
type of an HEIF reference implementation, the standard compliance of the result is
discussed in Section 5.3.

5.1 Code metrics

Being able to evaluate software quality is important, as inadequate quality can
degrade usefulness of a software product. Software quality can be defined as the
degree to which software possesses a desired combination of quality attributes [11].
Examples of quality attributes are dependability, performance, maintainability, and
safety. The quality attribute maintainability was chosen for closer examination,
because it gives a good general impression about how easily new features can be
added, and errors can be found and corrected.

IEEE defines software metrics as "A function whose inputs are software data and
whose output is a single numerical value that can be interpreted as the degree to
which software possesses a given attribute that affects its quality." [11]

Metrics used to determine the degree of maintainability were number of lines of
codes, lines of comments, code coverage, and static analysis warnings. Certain

1https://github.com/nokiatech/heif

https://github.com/nokiatech/heif

5.1. Code metrics 41

0 200 400 600 800 1000

0

5000

10000

15000

20000

25000

Commit #

Lines of code

Lines of comments

Figure 5.1 Lines of code and comments.

commits, meaning a set of changes done by a developer, in the source code version
history were faulty i.e. an attempt to build the software after applying those stopped
to a build system error or a compiler error. Analysis reports generated from such
commits were discarded.

The presented metrics are generated from the internal source code repository main
branch. The timeline is represented by generated running numbers assigned to each
commit. These running numbers do not necessarily correspond to the moment when
the commit in question was added to the code repository, because the project used
git version control system which allows a rather flexible manipulation of history. In
some points code was also developed in parallel by several developers, before being
added to the common mainline.

Most analysis here concentrates to time before commit #800, as around that point
the code was publicly released. Most active involvement by the thesis author also
predates that point.

Code and comment lines of the project were counted using cloc2 tool. Only C++
source files and headers were taken into account. External libraries, build system

2https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc

5.1. Code metrics 42

files and test code were omitted from inspection. The result can be seen in Figure
5.1. The code base was growing steadily before stabilizing around the commit #560.
Some single refactoring was able to reduce code line number over 700 lines which
presented approximately 4% of the code size at the time. Adding new features
around the commit #820 caused a significant jump in the graph.

A lot of documentation effort was concentrated relatively near the first public release.
This can be seen as quick growth a bit before the commit #800. The approach
of doing commenting and coding in batches is recommended in order to reduce
burden of constant context switching when alternating between the natural and
the programming language [24]. The approach did not seem to have any significant
downsides, as the code base was relatively small, and the public API was thoroughly
commented since the first versions.

0 200 400 600 800 1000
0

50

100

150

200

Commit #

OCLint P2 warnings
High cyclomatic complexity
Npath complexity

Figure 5.2 Trend of OCLint static analysis violations of priority level 2. Parts of high
cyclomatic complexity and NPath complexity violation messages are presented also sepa-
rately.

Figure 5.2 shows OCLint static analysis priority level 2 violations trend during the
project. Priority level 2 violations were selected for closer inspection, as the most
serious priority level 1 violations were not present in the project, and less severe pri-
ority 3 violations on big part are related to coding style conventions, several of which
were left undefined by the project coding style documentation. Priority 2 violations

5.1. Code metrics 43

are potentially problematic findings, such as empty if or for statements, complicated
methods, and bitwise operations in conditionals. These could be thought as poten-
tial problems or as structures which might harm the maintainability of the code.
Having said that, in some cases these violations tell more about the nature of the
code in question than are an alarm sign.

No analysis messages were suppressed or turned off in the source code or configura-
tion. In addition to the OCLint default settings, maximum allowed violation limits
were raised so that full analysis would be done always.

Also, Figure 5.2 differentiates violations about especially high cyclomatic complex-
ity and NPath complexity in methods. Cyclomatic complexity is calculated based
on decision points in a method. NPath complexity considers also nested conditional
statements and boolean expressions with many parts. Both complexity metrics are
also included in the priority 2 violations trend. Cyclomatic complexity metrics is es-
pecially interesting because of their influence on code testability and maintainability
[3]. The figure shows that amount of complexity violations remained rather constant
during the project. Most of these are originating from video bitstream parser code.

High cyclomatic complexity is characteristic of parser code, so this is not alarming.
Violation suppression could be considered in order to prevent these messages from
polluting logs and causing developers to ignore them completely.

The test coverage trend presented in Figure 5.3 is based on data generated by
tools gcov and LCOV. The code coverage was determined by the percentage of code
lines executed during a full test suite run. LCOV also outputs function coverage
percentages, but one line methods like setters, getters and automatically generated
functions make those numbers possibly misleading. The plot starts from the middle
of version history because test setup was changing during the project. This made the
afterward comprehensive collection of code coverage data unfeasible, as numerous
manual modifications to early code would have been needed to successfully execute
tests and code coverage analysis.

The plot shows, that the code coverage target of 80% was achieved and sustained
until the addition of some experimental new code which caused a temporary drop
around in #820, before corresponding test cases were added. The plot has several
jumps because in most cases tests were added in batches.

5.2. Changes in code 44

0 200 400 600 800 1000
40

50

60

70

80

90

Commit #

Test coverage [% of lines]

Figure 5.3 Code coverage trend during the project.

Aforementioned metrics are combined in Figure 5.4. OCLint violations here are
shown as relative to number of lines of code. Greatest changes occur at the beginning
of project, possibly because changes were then relatively greater and the amount of
code was smaller. Perhaps surprisingly, increases in code coverage do not seem to
correlate with this OCLint message frequency. Having said that, it looks like the
development-stage code added around the commit #820 caused the warnings to
code ratio change rather significantly simultaneously with code coverage.

Figures presented here use commit dates to form serial numbers which define the
timeline. This might distort observations as sizes of commits might vary consider-
ably, as seen as jumps in Figure 5.1. Alternatively, calendar time could have been
used but that has its own problems. For instance weekends and vacation seasons
would then distort graphs. The usage of the same analysis tool for metrics extrac-
tion and for irregular analysis runs during the development can also have an impact
to the results.

5.2 Changes in code

Several changes were committed to the public source code repository after the initial
release. These were analyzed and classified at Table 5.1 to program logic fixes,

5.2. Changes in code 45

0 200 400 600 800 1000
0

20

40

60

80

100

120

Commit #

Test coverage [% of functions]
Lines of code x1000
Lines of comments x1000
Warnings / 10 000 loc

Figure 5.4 Code metrics combined.

adding new features and fixes related to the compliance with the HEIF and the
ISOBMFF specifications. Every change was assigned to the single closest matching
category, based on the commit message attached to the change. Changes classified
here are not directly mapping to commits, because a single commit might have
contained several changes.

Seven changes were identified to relate to specification compliance. In some cases the
interpretation of the specification done during the development was not correct, or
was incomplete. Some changes were related to changes in the standard specification.
For example, in one occasion a change in the HEIF specification had remained
unnoticed.

Also seven changes were related to adding new features which were missing from the
first released version. These could be considered as project management decisions.

Three changes were made to fix errors in program logic. These were programming
errors related to corner cases, and apparent mistakes during development.

5.3. Compliance with standards 46

Change Logic fix New feature Compliance fix
#1 x
#2 x
#3 x
#4 x
#5 x
#6 x
#7 x
#8 x
#9 x
#10 x
#11 x
#12 x
#13 x
#14 x
#15 x
#16 x
#17 x
Total 3 7 7

Table 5.1 Classification of code changes done to the public repository after the initial re-
lease. Changes are ordered from the oldest to the newest when the identification of chrono-
logical order was possible.

5.3 Compliance with standards

This HEIF implementation is the first public implementation of the HEIF standard.
Therefore no reference implementation existed for compliance checking or bench-
marking. Despite the whole HEIF standard was not implemented, the result was
still complex enough to impose challenges when trying to verify if created files were
exactly as intended.

The ISOBMFF and HEIF standard compliance of created HEIF files was verified by
comparing the implementation with both specifications. Further, several HEIF files
created by the writer were given as input to independent viewer and analysis tools.
ISOBMFF compatibility was frequently checked with isoviewer3 which interprets
the contents of ISO 14496-12 and other MP4 files. Several tests were also made
with on-line MP4Box.js / ISOBMFF Box Structure Viewer4.

HEVC bitstream integrity, after storing and retrieving it from an HEIF file, was
3https://github.com/sannies/isoviewer
4http://download.tsi.telecom-paristech.fr/gpac/mp4box.js/filereader.html

https://github.com/sannies/isoviewer
http://download.tsi.telecom-paristech.fr/gpac/mp4box.js/filereader.html

5.3. Compliance with standards 47

checked depending on the exact situation. This was done either by comparing it
bitwise with the original bitstream, or by inspecting it with hevcesbrowser5 tool
for analyzing HEVC bitstreams. The idea was to verify that any compliant HEVC
decoder should be able to decode the result correctly.

Despite these procedures, several deficiencies in standard compliance were later iden-
tified. These included issues such as writing a box erroneously twice, using a wrong
version of a box definition, filling entries to a box in wrong order, locating a con-
tained box into a wrong parent box, and deriving a box from a wrong type of a
box.

Reasons for several issues related to standard compliance were likely caused by the
fact that the automated tests used both the self-written writer and the reader. In
cases when the same mistake was present in both components no fault was triggered.
Understandably, generic tools for ISOBMFF parsing did not identify HEIF-specific
structures either, and were either not targeted for automated compliance testing.

Using a hex editor to compare an HEIF file byte-by-byte with extensive specifications
in compliance verification purpose is not feasible. Experience seems to show that
with even with the help of ISOBMFF-level tools it is hard to be sure that generated
files are completely correct and comply with all specifications.

The verification process should be automated, so it could be integrated as a part of
the automated tests. This could become easier also because the conformance testing
of the HEIF specification will start soon. A set of files generated by the HEIF writer6

are proposed to become conformance files to help testing other readers and writers.

Furthermore, to help mitigate mistakes from specification interpretation it could be
investigated if it was possible to convert relevant parts of specifications to a machine-
readable form, and use it as an input to a separate compliance validation program,
or possibly use it as an input to generate one. Another approach would be to use
automatically generated code already in the writer code. However, this would then
reduce redundancy which could otherwise help catching inconsistencies.

5https://github.com/virinext/hevcesbrowser
6https://github.com/nokiatech/heif_conformance

https://github.com/virinext/hevcesbrowser
https://github.com/nokiatech/heif_conformance

48

6. CONCLUSION

In this work, the first public implementation of the High Efficiency Image File
Format was created. The implementation consists of a writer application for creating
HEIF files and a reader API which can be used to access the files created. A
significant part of this work was setting up and maintaining facilities for continuous
integration, and improving code quality. The implementation has already been
successfully used to demonstrate the features of HEIF in several contexts including
MPEG meetings, and for creating a set of conformance candidate files which are
proposed to become official test material.

Evaluation of the work shows that it was possible to improve and maintain sufficient
software quality during the project. Several code metrics were extracted from the
source code repository version history. The metrics show that eventually the written
test cases achieved a high code coverage of over 80%. This did not only mean that
most of the code was automatically tested, but it also enabled the extensive dynamic
analysis of programs. Several problems were quickly diagnosed and fixed thanks to
it. When the violations found by static analysis were related to the amount of code,
it can be seen that the frequency of violations decreased and stabilized before the
first public release.

The combination of dynamic and static analysis seemed to supplement each other
like expected, as static analysis logs were completely free of most serious class find-
ings. In order to achieve better code quality it could have been beneficial to inte-
grate static analysis into the continuous integration system in an earlier phase of
the project, and use more extensive analysis. Static analysis messages about video
bitstream parser code should be suppressed so less false alarms would be present. An
automatic reporting of quality issues to developers would further enhanced the ef-
fectiveness of the analysis. Now the used process did not provide real-time feedback
for developers about changes in static analysis results.

Automatic processing of the HEIF and ISOBMFF specifications on the box-structure

6. Conclusion 49

level could be considered, as it seems that manual checking of files by using existing
tools and by reading specifications is error-prone. Basic machine-readable repre-
sentation of specification structures and parsing it would probably be feasible to
implement. This would make it possible to automatically analyze generated HEIF
files, and enable a better decoupling of testing and the actual application code.

The HEIF is a very competitive image file format by its features and compression
efficiency. However, the extensive feature set might also become a burden if sup-
porting it turns out to be impractical, and applications with incomplete feature sets
appear and cause compatibility issues which frustrate users. Having said that, the
usage of ISOBMFF brands can ease this as they define a minimal player operation
and therefore guarantee a minimum set of interoperability.

50

BIBLIOGRAPHY

[1] A. Aggarwal and P. Jalote, “Integrating static and dynamic analysis for de-
tecting vulnerabilities,” in 30th Annual International Computer Software and
Applications Conference (COMPSAC’06), vol. 1, Sept 2006, pp. 343–350.

[2] S. Allegrezza, “Flexible image transport system: a new standard file
format for longterm preservation projects?” July 2012. [Online]. Available:
https://www.vatlib.it/moduli/Allegrezza_EWASS2012.pdf

[3] H. H. Ammar, T. Nikzadeh, and J. B. Dugan, “Risk assessment of software-
system specifications,” IEEE Transactions on Reliability, vol. 50, no. 2, pp.
171–183, Jun 2001.

[4] F. Bellard, “BPG specification,” 2014-2015, [Online; accessed 4-February-2016].
[Online]. Available: http://bellard.org/bpg/bpg_spec.txt

[5] F. Dufaux, G. Sullivan, and T. Ebrahimi, “The JPEG XR image coding stan-
dard [standards in a nutshell],” Signal Processing Magazine, IEEE, vol. 26,
no. 6, pp. 195–199, 204–204, November 2009.

[6] M. Gelbmann, “The PNG image file format is now more popu-
lar than GIF,” Jan. 2013, [Online; accessed 15-May-2016]. [Online].
Available: http://w3techs.com/blog/entry/the_png_image_file_format_is_
now_more_popular_than_gif

[7] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2001.

[8] P. Hanhart, M. Rerabek, P. Korshunov, and T. Ebrahimi, “Subjective evalua-
tion of HEVC intra coding for still image compression,” in Seventh International
Workshop on Video Processing and Quality Metrics for Consumer Electronics
- VPQM 2013, 2013.

[9] M. M. Hannuksela, E. B. Aksu, J. Lainema, and V. K. Malamal Vadakital,
“Overview of the high efficiency image file format,” 2015, [Online; accessed
4-February-2016]. [Online]. Available: http://phenix.int-evry.fr/jct/doc_end_
user/documents/22_Geneva/wg11/JCTVC-V0072-v1.zip

https://www.vatlib.it/moduli/Allegrezza_EWASS2012.pdf
http://bellard.org/bpg/bpg_spec.txt
http://w3techs.com/blog/entry/the_png_image_file_format_is_now_more_popular_than_gif
http://w3techs.com/blog/entry/the_png_image_file_format_is_now_more_popular_than_gif
http://phenix.int-evry.fr/jct/doc_end_user/documents/22_Geneva/wg11/JCTVC-V0072-v1.zip
http://phenix.int-evry.fr/jct/doc_end_user/documents/22_Geneva/wg11/JCTVC-V0072-v1.zip

BIBLIOGRAPHY 51

[10] M. Hannuksela, J. Lainema, and V. Malamal Vadakital, “The high efficiency im-
age file format standard [standards in a nutshell],” Signal Processing Magazine,
IEEE, vol. 32, no. 4, pp. 150–156, July 2015.

[11] IEEE, “IEEE standard for a software quality metrics methodology,” IEEE Std
1061-1998, Dec 1998.

[12] ISO, “Graphic technology — Extensible metadata platform (XMP) specification
– Part 1: Data model, serialization and core properties,” International Organi-
zation for Standardization, Geneva, Switzerland, ISO 16684-1:2012, 2012.

[13] S. Jalali and C. Wohlin, “Agile practices in global software engineering - a sys-
tematic map,” in 2010 5th IEEE International Conference on Global Software
Engineering, Aug 2010, pp. 45–54.

[14] JEITA, “Exchangeable image file format for digital still cameras — Exif ver-
sion 2.3,” Japan Electronics and Information Technology Industries Association,
Tokyo, Japan, JEITA CP-3451C, 2012.

[15] JPEG, “Overview of JPEG 2000,” [Online; accessed 15-May-2016]. [Online].
Available: https://jpeg.org/jpeg2000/

[16] R. A. Kirsch, “SEAC and the start of image processing at the national bureau
of standards,” IEEE Annals of the History of Computing, vol. 20, no. 2, pp.
7–13, Apr 1998.

[17] R. A. Kirsch, L. Cahn, C. Ray, and G. H. Urban, “Experiments in
processing pictorial information with a digital computer,” in Papers and
Discussions Presented at the December 9-13, 1957, Eastern Joint Computer
Conference: Computers with Deadlines to Meet, ser. IRE-ACM-AIEE ’57
(Eastern). New York, NY, USA: ACM, 1958, pp. 221–229. [Online]. Available:
http://doi.acm.org/10.1145/1457720.1457763

[18] A. Mundra, S. Misra, and C. A. Dhawale, “Practical scrum-scrum team: Way
to produce successful and quality software,” in Computational Science and Its
Applications (ICCSA), 2013 13th International Conference on, June 2013, pp.
119–123.

[19] F. Nack, Encyclopedia of Database Systems. Boston, MA: Springer
US, 2009, ch. Image Metadata, pp. 1362–1368. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-39940-9_1521

https://jpeg.org/jpeg2000/
http://doi.acm.org/10.1145/1457720.1457763
http://dx.doi.org/10.1007/978-0-387-39940-9_1521

Bibliography 52

[20] J. R. Ohm and G. J. Sullivan, “High efficiency video coding: the next frontier in
video compression [standards in a nutshell],” IEEE Signal Processing Magazine,
vol. 30, no. 1, pp. 152–158, Jan 2013.

[21] D. Salomon and G. Motta, Handbook of Data Compression. London:
Springer London, 2010. [Online]. Available: http://dx.doi.org/10.1007/
978-1-84882-903-9_11

[22] D. Singer, “ISO Base Media File Format,” 2011, [Online; accessed 1-May-
2016]. [Online]. Available: http://mpeg.chiariglione.org/standards/mpeg-4/
iso-base-media-file-format

[23] A. Smith, “Digital paint systems: an anecdotal and historical overview,” Annals
of the History of Computing, IEEE, vol. 23, no. 2, pp. 4–30, Apr 2001.

[24] D. Spinellis, “Reading, writing, and code,” Queue, vol. 1, no. 7, pp. 84–89,
Oct. 2003. [Online]. Available: http://doi.acm.org/10.1145/957717.957782

[25] Standard C++ Foundation, “C++11 Overview,” [Online; accessed 14-May-
2016]. [Online]. Available: https://isocpp.org/wiki/faq/cpp11

[26] D. C. Wells, E. W. Greisen, and R. H. Harten, “FITS - a flexible image transport
system,” Astronomy and Astrophysics, Supplement, vol. 44, p. 363, June 1981.

[27] Wikipedia, “Computer Graphics Metafile,” 2014, [Online; accessed 4-
February-2016]. [Online]. Available: https://en.wikipedia.org/w/index.php?
title=Computer_Graphics_Metafile&oldid=640192792

[28] ——, “VIDTEX,” 2015, [Online; accessed 4-February-2016]. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=VIDTEX&oldid=694445047

[29] ——, “JPEG,” 2016, [Online; accessed 4-February-2016]. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=JPEG&oldid=700084745

[30] ——, “Portable Network Graphics,” 2016, [Online; accessed 4-February-2016].
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Portable_
Network_Graphics&oldid=698339104

http://dx.doi.org/10.1007/978-1-84882-903-9_11
http://dx.doi.org/10.1007/978-1-84882-903-9_11
http://mpeg.chiariglione.org/standards/mpeg-4/iso-base-media-file-format
http://mpeg.chiariglione.org/standards/mpeg-4/iso-base-media-file-format
http://doi.acm.org/10.1145/957717.957782
https://isocpp.org/wiki/faq/cpp11
https://en.wikipedia.org/w/index.php?title=Computer_Graphics_Metafile&oldid=640192792
https://en.wikipedia.org/w/index.php?title=Computer_Graphics_Metafile&oldid=640192792
https://en.wikipedia.org/w/index.php?title=VIDTEX&oldid=694445047
https://en.wikipedia.org/w/index.php?title=JPEG&oldid=700084745
https://en.wikipedia.org/w/index.php?title=Portable_Network_Graphics&oldid=698339104
https://en.wikipedia.org/w/index.php?title=Portable_Network_Graphics&oldid=698339104

53

APPENDIX A. AN HEIF WRITER EXAMPLE

INPUT

1 {
2 "general":
3 {
4 "output":
5 {
6 "file_path" : "funny_cats.heic"
7 },
8 "brands":
9 {

10 "major" : "mif1",
11 "other" : ["mif1", "heic", "hevc"]
12 }
13 },
14

15 "content":
16 [
17 {
18 "master":
19 {
20 "file_path" : "funny_cats.h265",
21 "hdlr_type" : "pict",
22 "code_type" : "hvc1",
23 "encp_type" : "meta"
24 }
25 }
26]
27 }

Input configuration 1 An example of an HEIF file description for the writer appli-
cation in JSON format. Encapsulation type meta makes this a single image item, or
an image sequence in case the input bitstream contains several images.

	Introduction
	Need for the research
	Objectives
	Scope of the thesis
	Structure of this thesis

	Digital images
	Raster and vector images
	Compression
	Metadata
	Multi-picture features
	Image file formats
	Current raster image formats

	High Efficiency Image File Format standard
	Standard development
	ISO Base Media File Format
	High Efficiency Video Coding
	HEIF overview
	High-level structure
	Image items
	Image sequences
	Structural format and brands

	Use cases

	Implementation
	Development practices
	Testing
	Unit tests
	Integration tests
	Code coverage

	Continuous integration
	Program analysis
	Static code analysis
	Run-time program analysis
	Eclipse CDT C++ parser

	Coding practices

	Architecture and design
	Background
	Box handling
	File writer
	File reader

	Evaluation and discussion
	Code metrics
	Changes in code
	Compliance with standards

	Conclusion
	Bibliography
	APPENDIX A. An HEIF writer example input

