
ILARI VENÄLÄINEN
DESIGN AND IMPLEMENTATION OF A SYSTEM STATUS VIEW
OF AN AUTOMATION SYSTEM

Master of Science thesis

Examiner: Professor Kari Systä
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 4th May 2016

i

ABSTRACT

ILARI VENÄLÄINEN: Design and implementation of a system status view of an au-
tomation system
Tampere University of Technology
Master of Science thesis, 68 pages
June 2016
Master’s Degree Programme in Information Technology
Major: Software Engineering
Examiner: professor Kari Systä
Keywords: system status view of an automation system, Qt framework, QML

This thesis covers designing and implementing a next generation of a currently used sys-
tem status view of an automation system. The system status view is designed for a PC
application that is based on a Qt framework and used to configure and monitor an automa-
tion system. The system status view is used mainly for monitoring an automation system,
but some features for configuring the automation system are designed also. The currently
used system status view is implemented with Qt Widgets, but for the next generation view,
other user interface technologies provided by Qt are studied. Based on the study, another
user interface technology is chosen for the implementation of the system status view.

The thesis first introduces the related automation system with an example automation
system. The PC application is used to configure and monitor the example automation
system. After the background is described, requirements for the implementation of the
new system status view are specified, and the system view is designed based on the re-
quirements. The design uses object oriented programming methods and UML diagrams
as design tools. The design process will lead to a completed system status view that ful-
fils the specified requirements set for it. Last, the thesis process and further development
ideas are presented.

The implemented system status view has been put to use by the customer company of
Wapice Oy that ordered the work. More features than presented in this thesis for the new
system status view were ordered by the customer, and the design and implementation for
the features is done in the near future.

ii

TIIVISTELMÄ

ILARI VENÄLÄINEN: Automaatiojärjestelmän tilanäkymän suunnittelu ja toteutus
Tampereen teknillinen yliopisto
Diplomityö, 68 sivua
Kesäkuu 2016
Tietotekniikan koulutusohjelma
Pääaine: Ohjelmistotuotanto
Tarkastaja: professori Kari Systä
Avainsanat: automaatiojärjestelmän tilanäkymä, Qt-sovelluskehys, QML

Tässä työssä käydään läpi automaatiojärjestelmään liittyvän tilanäkymän seuraavan suku-
polven suunnittelu ja toteutus. Tilanäkymä suunnitellaan Qt-sovelluskehykseen perustu-
vaan PC-sovellukseen, jota käytetään automaatiojärjestelmän konfigurointiin ja monito-
rointiin. Tilanäkymää käytetään pääasiassa automaatiojärjestelmän monitorointiin, mutta
tilanäkymään suunnitellaan myös toimintoja, joiden avulla automaatiojärjestelmää voi-
daan konfiguroida. Olemassa oleva tilanäkymä on toteutettu Qt Widgets -käyttöliittymä-
teknologialla. Työssä tutkitaan myös muita Qt:n tarjoamia käyttöliittymäteknologioita, ja
toinen käyttöliittymäteknologia valitaan uuden tilanäkymän toteuttamiseksi Qt Widgets
-käyttöliittymäteknologian sijaan.

Aluksi työssä tutustutaan työhön liittyvään automaatiojärjestelmään esimerkkiautomaa-
tiojärjestelmän avulla. Esimerkkiautomaatiojärjestelmä konfiguroidaan käyttäen PC-so-
vellusta, ja sitä monitoroidaan PC-sovelluksen kautta. Taustakuvauksen jälkeen uuden ti-
lanäkymän vaatimukset määritellään ja tilanäkymä suunnitellaan vaatimuksiin perustuen.
Suunnittelutyössä hyödynnetään olio-ohjelmoinnin menetelmiä sekä UML-kaavioita, ja
lopulta suunnittelutyö johtaa toteutuneeseen tilanäkymään, joka täyttää sille asetetut vaa-
timukset. Viimeiseksi työssä käydään läpi työn kulku ja esitetään jatkokehitysideoita.

Wapice Oy:n asiakasyritys, joka tilasi työhön liittyvän toteutuksen, on ottanut uuden tila-
näkymän käyttöönsä. Asiakas on tilannut lisää toiminnallisuutta uuteen tilanäkymään, ja
niiden suunnittelu ja toteutus tullaan tekemään lähitulevaisuudessa.

iii

PREFACE

This master’s thesis was written for the Department of Pervasive Computing in Tampere
University of Technology (TUT). The thesis was written and the related work was imple-
mented during the years 2015 and 2016. The system status view introduced in the thesis
was ordered by a customer company of Wapice Oy in 2015, and the implementation of
the system status view was completed in the same year. However, minor bug fixes and
functionalities were implemented until March 2016. My co-workers at Wapice Oy created
the initial concept for the system status view, and after the implementation was started, it
became clear that by extending the concept, the task would be worth a thesis.

I would like to thank Otto Bothas (Wapice Oy) for guidance with the design and archi-
tecture of the system status view and Tommi Asp (Wapice Oy) for reviewing most of the
program code related to the system status view and for advising with the technologies
used to implement it. I would also like to thank the examiner of the thesis, Professor Kari
Systä (TUT), who provided a lot of useful information for the structure of the thesis and
guided me in the writing part of the thesis.

Tampere, 13.5.2016

Ilari Venäläinen

iv

TABLE OF CONTENTS

1. INTRODUCTION . 1

2. BACKGROUND AND ENVIRONMENT . 3

2.1 Currently used system status view . 7

3. GOALS OF THE THESIS . 10

3.1 Basic functionalities . 10

3.2 List view and multi-system support . 13

3.3 Usability and performance . 14

3.4 Support for CANopen devices . 15

4. SYSTEM DIAGNOSTICS . 17

4.1 States of the state machine . 17

4.1.1 Bootloader . 18

4.1.2 Initialization state . 19

4.1.3 Pre-operational state . 20

4.1.4 Operational state . 22

4.1.5 Test state . 22

4.1.6 Stopped state . 23

4.2 Diagnostics of CANopen devices . 23

4.3 CAN channel failure handling . 26

4.4 Transmitting states of the modules to the PC application 28

5. ARCHITECTURE AND DESIGN OF THE SYSTEM VIEW 30

5.1 Qt Quick, Qt WebEngine and Qt Widgets 30

5.2 Design of the system view . 33

5.2.1 Basic functionalities . 34

5.2.2 List view and multi-system support 38

5.2.3 Usability and performance . 40

v

5.2.4 Support for CANopen devices . 43

5.3 Architecture of the system view . 44

6. IMPLEMENTATION OF THE SYSTEM VIEW 47

6.1 Descriptions of C++ classes . 48

6.2 Descriptions of QML documents . 54

6.3 Showing the state transition of a module in the system view 58

7. EVALUATION . 61

7.1 Realized goals . 61

7.2 Future improvements . 62

8. CONCLUSION . 64

8.1 Thesis process . 64

BIBLIOGRAPHY . 66

vi

LIST OF FIGURES

2.1 Structure of the automation system . 6

2.2 Currently used system status view . 8

3.1 Initial UI design for the basic functionalities of the system view, part 1 . . 11

3.2 Initial UI design for the basic functionalities of the system view, part 2 . . 13

4.1 States of the state machine . 18

4.2 CAN and CANopen protocols presented with the ISO-OSI model 24

4.3 States of the NMT state machine . 25

4.4 Error states and state transitions in CAN protocol 27

5.1 Module level presentation of the grid view 35

5.2 States of the system in the status bar and their respective tooltips 37

5.3 List view presentation of the system view 38

5.4 System level presentation of the grid view 39

5.5 Additional states and their respective symbols used in system and module
group levels . 40

5.6 Module group level presentation of the grid view 41

5.7 Navigation in the system view . 42

5.8 Loading image used for animation when views are being constructed . . . 43

5.9 Architecture diagram of the system view 45

vii

6.1 Sequence diagram of the state transition of a CAN channel in the system
view . 53

6.2 Sequence diagram of the state transition of a module in the system view . 59

viii

LIST OF TABLES

5.1 Comparison of user interface technologies provided by Qt 32

6.1 Distribution of lines of program code of the system view implementation . 47

7.1 Set and realized goals of the thesis . 61

ix

LIST OF ABBREVIATIONS AND SYMBOLS

AC Air Conditioner
API Application Programming Interface
CAL CAN Application Layer [15]
CAN Controller Area Network [32]
CiA CAN in Automation [15]
CPU Central Processing Unit
CSS Cascading Style Sheets. Used to describe the presentation of Web pages.

[29]
DC Data Container
DLL Dynamic Link Library [11]
GUI Graphical User Interface
HAL Hardware Abstraction Layer [14]
HTML Hypertext Markup Language [2]
ID Identifier
IDE Integrated Development Environment
IOM Input/Output Module
ISO International Organization for Standardization
JS Javascript [30]
LED Light-emitting diode
LDU Local Display Unit
MCM Main Control Module
MG Module group, ModuleGroup
MOS The Meta-Object System [20]
MSV Microsoft Visual Studio
MVC Model-View-Controller [6]
MVD Mode-View-Delegate [21]
NMT Network Management [15]
OOP Object-oriented programming
OSI Open Systems Interconnection
PC Personal Computer
QML Qt Meta-object Language [16]
RAM Random Access Memory
SGML Standard Generalized Markup Language [2]

x

SV System view, SystemView
TUT Tampere University of Technology
UI User Interface
W3C World Wide Web Consortium [2]
XML Extensible Markup Language [2]

1

1. INTRODUCTION

Automation systems are widely used in the industrial field. Usually, an industrial automa-
tion system is a complex entity that consists of different physical devices that together
fulfil the requirement of the automation system. These physical devices can be used to
control and monitor other devices or machines by using electronics and software. In-
dustrial automation systems are commonly used in production plants and lines. If an
automation system is used in a production line, it is quite clear that the automation sys-
tem should be functional and complete the tasks assigned for it as long as it is running.
However, it is not always the case because the devices used in the automation system
might break or not work as intended. In these cases, the production line is most probably
not producing anything and the automation system cannot proceed its tasks. This causes
a company to lose money, and in some cases an automation system cannot provide its
desired functionality for the customer.

Automation systems can be controlled by PC applications, and nowadays many of the au-
tomation systems can be connected to the Internet. If an automation system is connected
to the Internet, it can be controlled and monitored from any location with an Internet con-
nection. An alternative way to control and monitor an automation system is from a device
that is particularly manufactured for this controlling and monitoring purpose. If a PC ap-
plication is used to monitor an automation system, it can be used to detect problems in the
automation system immediately. When a problem is detected in the automation system, it
should be fixed as soon as possible to prevent it causing any harm either to the company
or the customers using it.

The purpose of this thesis is to design and implement a system status view for an industrial
automation system. The system status view is a part of a PC application that is used to
configure and monitor the automation system. The automation system is similar to the
previously described automation systems. The customer, which is one of the Wapice
Oy’s customer companies, configures the functionality of the automation system with the
PC application. The end users who are using the automation system provided by the

1. INTRODUCTION 2

customer, monitor the automation system with the PC application. The system status
view is implemented as part of this PC application to monitor the underlying automation
system. The PC application has an existing system status view, but in this thesis a next
generation of that is implemented. The currently used system status view is only used for
monitoring the automation system, and in the new design, some options for configuring
parts of the automation system are introduced.

At first, the automation system discussed in this thesis is introduced, and an example
system is configured with the PC application. After that the currently used system status
view and its problems are introduced. When the currently used system status view is
familiar to the reader, the goals of the thesis are set and the idea of a next generation of
the system status view is discussed. After that the actual design and implementation of
the new system status view are discussed and lastly the results of the thesis are examined.
The thesis consists of eight main chapters with the following structure:

Chapter 1 introduces the contents of the thesis.

Chapter 2 introduces the PC application on a general level, and then the environment
where the automation system could be used is described with an example automation
system. Last, the currently used system status view and the problems it has are described.

Chapter 3 presents the goals of the thesis.

Chapter 4 covers the system diagnostics of the automation system that are related to the
new system status view.

Chapter 5 includes the design and architecture of the new system status view.

Chapter 6 describes the implementation of the new system status view.

Chapter 7 evaluates the realized goals of the thesis, and future improvements to the new
system status view are discussed.

Chapter 8 includes a conclusion of this thesis and describes the thesis process.

3

2. BACKGROUND AND ENVIRONMENT

The system status view is part of a PC application that is used for an industrial automation
system. The PC application is implemented using a Qt framework (discussed in Chapter
5), and it is a stand-alone program used in a Windows environment. The automation
system consists of different types of embedded devices. The embedded devices related to
this thesis are referred to as (hardware) modules or devices. The modules of this system
use Controller Area Network (CAN) [32] protocol for communication.

CAN is a bus network, which means that each node in the network is connected by a
single cable or twisted pair wire to the bus. A message transmitted by a node to a CAN
bus is received by all the other nodes that are connected to the same bus [8]. CAN is more
closely discussed in Sections 4.2 and 4.3.

The PC application is mainly used for two purposes: configuring and monitoring a specific
variation of the automation system. Configuring is done by selecting a set of modules for
the automation system and specifying what kind of tasks each module should execute
when the system is running. An automation system that is running can be monitored,
which means observing and adjusting it.

The PC application shows different kinds of views for configuring and monitoring an au-
tomation system. The views are constructed dynamically from XML files. The XML
files contain the data for constructing all the views shown in the PC application. XML
(Extensible Markup Language) is a standardized, text-based format for describing doc-
uments and data structures. XML is based on Standard Generalized Markup Language
(SGML), which was part of an IBM document-sharing project created in 1974, and later
became an ISO standard in 1986. Hypertext Markup Language (HTML), which describes
a document layout and display in a standardized way and is part of every Web browser
and website, was the first widely known adaptation of SGML. Even though SGML could
share documents and HTML could describe the layout for the documents, there was no
standardized format for describing and sharing data stored in the documents. Since the
standardized format for data did not exist, programmers parsed HTML documents in var-

2. BACKGROUND AND ENVIRONMENT 4

ious ways to fetch the required data. In 1998, World Wide Web Consortium (W3C) came
up with the first recommendation for standardized format to separate data from the docu-
ments and the format was named XML. The structure of XML can be quite complex, but
it is not intended to be read by a human-eye: XML parsers and other tools are used. [2]

An XML file that is related to a shown view in the PC application is read while initializing
the view. Retrieved data from the XML file may contain user access level information
related to the view, in addition to data used for constructing the view. A user has to login
when the PC application is started and after a successful login, the current user level is
accessible. Depending on the user level, some parts of the initialized view may be hidden
or the view might not be visible at all.

The views shown in the PC application can be divided into two categories: configuration
and monitoring views. Alternative names for these categories are respectively a configu-
ration side and a monitoring side. The main purpose of the configuration side is to show
the current XML configuration of an automation system. The XML configuration is a
description of the automation system that a user is currently configuring or monitoring.
The configuration side can be seen as an offline presentation of the automation system:
there is no interaction with a running automation system, and it is used to configure an
automation system. The views of the configuration side present the XML configuration
of an automation system. The views are used to inspect and modify the XML configu-
ration of the inspected automation system. During the login process, the user selects an
automation system that he/she would like to access. All user levels are granted with an
access to the monitoring side, whereas only some of the user levels have access also to
the configuration side.

There are two kinds of components related to hardware modules: system components and
application components. The system components are components that are essential to any
automation system where the PC application is used. For instance, a CAN handler is a
system component that processes messages received from a CAN bus by a module. The
application components fulfil the requirements of the automation system. It could be said
that the application components manage the behaviour of the automation system and the
tasks assigned to the automation system. Two kinds of parameters can be configured in
the PC application: system parameters and application parameters. These parameters are
used in their respective components: system and application components. The system
parameters are used to configure the system components that are commonly used within
the whole automation system. The application parameters are used to configure applica-

2. BACKGROUND AND ENVIRONMENT 5

tions that are executed by the modules. The values of these parameters are included in the
XML configuration file.

A system package includes a configuration binary file, which is generated from the XML
configuration file of the respective automation system, and application binaries for mod-
ules. The PC application generates the configuration binary from the XML configuration
before the system package is uploaded to the modules. The system package is uploaded
to the modules with the PC application via Ethernet or CAN by using a CAN adapter.
The applications of modules are started after the upload. If everything can be initialized
as configured in the XML configuration file, the modules are operational and will execute
tasks as configured.

After a successful upload, the PC application can be used to start monitoring the automa-
tion system. The views of the monitoring side are also constructed from XML files, but
the XML configuration cannot be modified on the monitoring side. The monitoring side
is used to interact with a running automation system, and it can be seen as an online
presentation of the automation system: the monitoring views show the system and the ap-
plication parameters of a running automation system in real time. After the upload both
the PC application and the automation system have the same configuration, and a connec-
tion to the system can be established by using Ethernet or by using a CAN adapter. When
the connection is established, neither the configuration side nor the monitoring side can
be used to modify the XML configuration. If the PC application is disconnected from the
system and the configuration is modified before re-connecting, an upload is required. The
upload is required to guarantee a compatible version of the XML configuration in both
the PC application and the automation system. When a system is running and the PC ap-
plication is connected to it, the monitoring side is used to observe the system. In practice
this means that a user monitors values, which are related to the system or the application
parameters, in different ways: using monitor views, trend views, a log view and custom
views. There is also an independent view for system status, which presents the current
state and status of the automation system to which the PC application is connected.

Figure 2.1 presents a high level structure of the previously described automation system.
The PC application is used to create a system package for an automation system, upload
it to the modules and to monitor the automation system. The modules of the automation
system are controlling other devices connected to them.

Now that the main parts used in the automation system are described, it is time to present
an example where the PC application is used to configure applications for modules by

2. BACKGROUND AND ENVIRONMENT 6

Figure 2.1 Structure of the automation system

designing a minimalistic air conditioner (AC) system. It is worth mentioning that the
AC system is not designed for real use and the responsibilities of the modules are simple
enough to make the example easier to follow. The AC system could be controlled by
a single module, but more modules are introduced to have a more generic automation
system where different types of modules exist. The modules and particles used by the
AC system are described next. The AC system consists of four air conditioners, and
each individual AC has one input/output module (IOM). The AC system also has a main
control module (MCM) and a local display unit (LDU). A total of six modules are used,
and all of them are connected to the same CAN bus. In addition, some thermal sensors in
areas where temperature is controlled and fans to adjust the temperature of the areas are
needed. A light-emitting diode (LED), which is used in the AC system, indicates if the
AC system is currently adjusting temperature.

IOMs are connected to thermal sensors and the data fetched from the sensors is trans-
mitted via CAN to the MCM. The MCM is connected to all the fans, and it controls the
speed of the fans based on the information received from IOMs. The MCM also con-
trols the LED that indicates the temperature is currently being adjusted. The local display
unit shows which areas are currently being adjusted, what the temperature value in each
thermal sensor is and what the state of the AC system is, i.e. is everything working as
configured.

Now that all the modules and fans have been set, connections to sensors, CAN and fans
are made, it is time to create an actual configuration and applications for the modules.
The application running in IOMs could be as simple as reading data periodically from

2.1. Currently used system status view 7

thermal sensors and converting read values to Celsius unit. After reading and converting
the values, they are transmitted to the MCM. An application programmed for the MCM
checks if there is a need to adjust corresponding fan speed to match the current tempera-
ture of the area to the configured value and controls some analogue output (e.g. current),
if necessary. If adjustments are made, the MCM also controls the global LED, indicating
that some fans are being adjusted. Meanwhile the application running in the LDU has re-
ceived the same information from IOMs as the MCM and displays it. In addition to this,
the MCM transmits information to the LDU about fans that are currently being adjusted.
The LDU has a mapping for fans to areas so that it can indicate which areas are being
adjusted.

After an application for each module in the system has been programmed, configuring of
the applications with the PC application can be started. System parameters are configured
to set used CAN channels and I/O pins used by modules, IP for Ethernet connection (to
the LDU), timeouts and various other parameters that are either optional or mandatory for
the AC system to be functional. Application parameters for the MCM are used to config-
ure thresholds for adjusting the speed of the fans. For the LDU, application parameters
are used to create the mapping of fans to areas. For the IOM, a time period for read-
ing thermal sensors and a unit for temperature readings is configured. The configuration
binary, which is generated from the XML configuration of the system, includes these sys-
tem and application parameters. After the parameters are configured, the system package
can be uploaded with the selected media to the modules. After a successful upload and
established connection to the system, a user can start monitoring the configured parameter
values and also change or adjust them at runtime. For example, the user is able to change
the thresholds, which controls the fans’ speed, in the MCM.

When the system is running and the PC application has established a connection to it, the
system status view is an easy way to see if the modules are in an operational state and
work as configured. The modules also have other states that are discussed thoroughly
in Section 4.1. One of the primary goals of this thesis is to enhance and improve the
currently used system status view to have more functionality in it.

2.1 Currently used system status view

Figure 2.2 presents the currently used system status view. It can be seen that the system
status view is rather simple, as it shows only three columns: name, state and status of a
module. Name represents the configured user interface (UI) name for a module, state is

2.1. Currently used system status view 8

one of the states discussed in Section 4.1 and status shows additional information of the
current state, if necessary.

Figure 2.2 Currently used system status view

The system status view does not provide any user interaction except that the size of the
view and column sizes can be adjusted. There is no need for more user interaction be-
cause the view is used only to monitor the state of a running automation system. The PC
application supports multi-system usage. When a user is logged in to multiple systems
simultaneously, a separate system status view needs to be opened for each system. There
is also a status bar for each system. The purpose of the status bar is to provide information
related to the currently active system in the PC application. For example, the status bar
shows if the PC application is connected to the active system. The user can only see one
status bar at a time: the status bar of the system that is being configured or monitored.
The status bar is also used to open the system status view: double-clicking an item that
shows “system” in the status bar opens the corresponding view for the system.

To summarize, the currently used status view shows only the basic information related to
the modules of the automation system, and there is not much left for the user to do. It
is worth mentioning that the user cannot easily recognize the automation system that a
status view represents because there is no additional information shown in the view. If
the user cannot distinguish the related system from module names, the easiest way is to

2.1. Currently used system status view 9

reopen the system status view. The functionalities of the existing system status view were
partly implemented by the author of this thesis in 2014.

10

3. GOALS OF THE THESIS

The initial concept for the next generation of the system status view including new visual
look and improvements was designed by the author’s co-workers. Goals related to the
initial concept, which was renewed for this thesis, are shown in Figures 3.1 and 3.2. The
figures present the initial UI design for the new system status view. From now on until
the end of this chapter, “(x)”, where x represents a number is used to reference a number
within the referenced figure.

3.1 Basic functionalities

The system status view should be opened by double-clicking a status bar item “system”
shown in Figure 3.1 (1). After the view is opened, it should show all the configured mod-
ules of the system (2). The name of the currently viewed system should be shown above
the modules. This more graphical interpretation of the system status view is referred to as
the grid view.

A system can have disabled modules (3), which means that a module is included in the
XML configuration, but it is not intended to be used. The purpose of disabling modules is
to quickly change the composition of the automation system for testing. The PC applica-
tion ignores the disabled modules when monitoring the system. Disabled modules should
be clearly shown in the system status view with a text, a symbol and a lighter image of the
disabled module. The system status view should allow enabling and disabling modules
used in the automation system. Because the view is not only showing the status of the
automation system, a more suitable name should be used: a system view. This naming
is used from now on for the view because it better describes the possibility to not only
monitor the automation system, but also to configure parts of it. Modules should be se-
lectable in the system view and after a module is selected, a user should be able to disable
or enable the module. It should be also possible to enable and disable all modules at once,
and buttons for these actions should be added.

3.1. Basic functionalities 11

Figure 3.1 Initial UI design for the basic functionalities of the system view, part 1

Chapter 2 explained that only some user levels have access to the configuration side of
the PC application. Enabling and disabling modules modifies the XML configuration of
the system, so these actions should be restricted and not shown for users who can only
access to the monitoring side of the PC application. Also, these users should not be able
to select modules in the system view.

If the PC application is not connected to the system, the system view could be used to see
an overview of the configured system. In addition to the modules, the configured CAN
buses (4) for the system should be shown. The number of CAN buses varies from two to
four in different systems, and the number depends on the automation system needs. The
maximum number of CAN channel connections for a module is module dependent, and
it varies from one to four. If a CAN channel of a module is connected to a CAN bus, the
connection should be shown.

CAN is used as a communication media within the automation system, so functional CAN

3.1. Basic functionalities 12

channels for each module are vital in order for the system to be functional. The cause for
a non-functional CAN channel is most likely a broken wire, a short circuit or a loosely
attached cable. In Figure 3.2, (4) illustrates a situation where all the CAN channels of
the module are not functional in one way or another and the state of the module is “not
found.” The state could be also presented as “offline” because the state cannot be known.

A non-functional CAN channel should be indicated in the UI with a different color. When
hovering over any non-functional CAN channel of a module, a tooltip should be shown.
The tooltip should include information about all the CAN channels that can be configured
for a module. If a CAN channel is not configured (it is not connected to any CAN bus in
the system), “<channel>: not configured” text should be shown. Alternatively, channels
that are not configured could be not shown at all. For a non-functional CAN channel,
“<channel>: Bus off / Error” text should be displayed. For a functional CAN channel
“<channel>: Normal” text should be shown. Because the number of CAN channels varies
in the modules, the CAN channels should be displayed in logical order from left to right
regardless of missing a connection to a CAN bus. The first configurable CAN channel
should be shown as the leftmost one.

Figure 3.2 presents more basic functionalities. The states of the modules are still to
be shown (1, 2, 8), but compared to the currently used system status view described in
Section 2.2 and shown in Figure 2.2, the states should be presented more visually: adding
an animation for some of the states (7) and a symbol to represent the state.

The current state of the system should be seen (8). The state of the system is composed
of all the current states of the modules in the system, and it is discussed more in Section
5.2.1. The current state of the system should also be indicated in the status bar with a
color and a tooltip. The state of the system is used to quickly see overall status of the
automation system, either from the status bar or from the view, if it is open. If the PC
application is connected to the system, the connection should be indicated in the system
view so that the user knows if it is possible to start monitoring the system that the system
view represents.

In the PC application, there is a separate upload dialog that is active when an upload is
ongoing. The upload dialog has a progress bar for each module configured in the system
and a lot of related log information on what is currently being uploaded or prepared to be
uploaded for a module.

In Figure 3.2, (6) presents an upload progress bar that should be shown in the grid view

3.2. List view and multi-system support 13

for each module. The currently used upload dialog should initially be hidden, but could
be opened for a closer inspection of the upload progress, if necessary.

Figure 3.2 Initial UI design for the basic functionalities of the system view, part 2

3.2 List view and multi-system support

The system view should support simultaneous usage of multiple systems. The view
should be optimized for four systems because it is the maximum number of systems mon-
itored with a single instance of the PC application. The limitation is a requirement by the
customer because there is no use case where more than four systems are used. However,
it should be kept in mind that this limitation may change in the future. All systems, in
which a user has logged in, should be easily seen from a single view.

When the system view is opened, the overall status for all logged in systems should be
shown. Each system should be presented as a button-like rectangle. To clearly indicate
the overall status of a system, the system rectangle should contain at least the following
items: whether the PC application connected to the system, the current state of the system
and the name of the system. To see more details of a specific system, a user should

3.3. Usability and performance 14

be able to navigate into the system by pressing the rectangle that represents the system.
When looking at more details, the currently viewed system should be clearly indicated
and navigating back to the system level should be possible. These transitions from the
system level to the module level and vice versa should be animated to look like zooming
in to a system or zooming out from a system in case of navigating from the module level
to the system level. The module level of the grid view is presented in Figure 3.2, and it
contains all the configured modules for the system.

The system view should provide the possibility to monitor the status of a system from a
list view. The currently used system status view is a list view, but as mentioned in Section
2.1 there is no multi-system support. In addition to the multi-system support, the new list
view should show more information in it.

The list view should also show the overall information of all logged in systems like de-
scribed for the grid view earlier. A button should be added to show only the overall
information of all logged in systems, and this should hide the information related to mod-
ules. In addition, it should be possible to easily switch between the list view and the grid
view.

It can be seen from Figure 2.2 that the color scheme of the list view could be improved.
The currently used colors are very bright, and there is no grouping for modules by their
type or any additional information besides the current states of the modules. The new
color scheme should be matched with the grid view.

3.3 Usability and performance

When considering the previously mentioned module level in Section 3.2, it is quite clear
that not too many modules with a graphical presentation fit in the system view. Figure 3.2
presents only nine modules, but in a real system there are usually 14–20 modules when
CANopen devices, which are introduced in Section 3.4, are added to the view. An easy
way to handle more modules is to add more height and width to the system view and fill
empty space on top and bottom so there would be a total of four rows instead of two rows
for modules. As the grid view contains a lot of graphics, a zoom functionality should be
added to the view. When the view is zoomed out, it should fit into a smaller area. While
when the view is zoomed in, the modules could be inspected more closely.

Another solution could be grouping the modules and adding one more level to the system-
module hierarchy. A single module group consists of all the modules of the same type

3.4. Support for CANopen devices 15

in the system. This module group level should be configurable at runtime in a way that
the modules that are grouped, can be selected from the view. A module group should
have the same functionalities as described for a system in Section 3.2 and it should be
presented like the system rectangle. Only the modules that belong to a module group
should be shown when the module group is clicked. Transitions to the module level of a
module group and from the module level to the module group level, should be animated
in the same way as the transitions to/from the system level. The system level should be
shown by default in the grid view and whenever a system is clicked the module level or
the module group level is shown. The module group level should show grouped modules
as system-like rectangles and other modules as presented in Figure 3.2. It should be
possible to select whether the module group level or the module level is active. The active
level should remain consistent when closing and re-opening the system view.

When a user is switching between the list view and the grid view, the sizes and positions
of the windows should be stored and restored. This small adjustment will make the view
more intuitive: if the list view is used on a secondary display and the grid view is used on
a primary display, switching between the views should always reposition the window on
respective display. The grid view is most likely reserving more space so it is important to
resize the system view according to the size of the previously used list/grid view.

As far as performance is concerned, the system view should open quickly, navigation
between different levels of the grid view and switching from the list view to the grid
view and vice versa should be fast. A simple loading animation should be shown while
constructing different parts of the system view. The animation indicates that the UI is not
frozen and the PC application has not crashed. Memory consumption should be measured
and it should be confirmed that there are no memory leaks, which should be a certainty in
any application.

3.4 Support for CANopen devices

The automation system provides support for CANopen devices. The CANopen devices
implement a CANopen protocol that is a communication network, and it is explained in
Section 4.2. The CANopen devices used in the automation system can be regarded as an
external system that is functioning on its own. The PC application cannot monitor the
CANopen devices directly. However, the CANopen devices can be connected to the same
CAN buses as other modules of the automation system. Then, a module is able to query
information from a CANopen device to receive the current state of the CANopen device.

3.4. Support for CANopen devices 16

After receiving the current state of the CANopen device, the module transmits it to the
PC application. The states of the CANopen devices are briefly introduced in Section 4.2.

Support for the CANopen devices should be added to the system view. The CANopen
devices or the states of the devices cannot be seen in the currently used status view. A
module, which is not a CANopen device, has to be connected to the same CAN bus as the
CANopen device in order to receive the current state of the CANopen device. The module
is then able to read the status of the CANopen device, and the PC application receives
the state information of the CANopen device from the module. The PC application is
used to configure the CANopen devices. The following information has to be configured
for a CANopen device in order to monitor it: a module that monitors the state of the
CANopen device and a Data Container (DC) code. DC codes are explained in Section
4.2, but briefly, the configured DC code for the CANopen device stores the value of the
state. The DC code is stored in the module and transmitted to the PC application. More
detailed explanation of the procedure is explained in Section 4.2. If the configuration for
a CANopen device is missing mandatory information required to monitor it, the system
view should indicate the missing information.

17

4. SYSTEM DIAGNOSTICS

Now that the environment of the automation system is covered in Chapter 2 and the goals
of this thesis were set in Chapter 3, system diagnostics and states of the state machine are
introduced. The state machine is a functional model that is executed by all the modules
in the automation system except CANopen devices. The whole process of sending and
receiving CAN messages inside the automation system or how messages are handled in
the PC application is not covered in this thesis because such implementation details are
beyond the scope of this thesis.

4.1 States of the state machine

A state machine makes it easier to ensure that a system where the state machine is used
is working as it should. In an embedded system, a state machine is a logical choice for
implementing functionality that changes whenever a mode of the system changes. The
state of a state machine is a condition that is related to both inputs and outputs: what kind
of input is required to move from State A to State B and what kind of output does the
system provide in the State B. [7]

This section covers the state machine running in each individual module. The function-
alities of the states are implemented by author’s co-workers, and this section and its sub-
sections are based on Laurikainen’s and other Wapice empolyees’ work [9]. The state
machine has a total of five states when excluding bootloader, which is not considered as
one of the states. The states are: initialization, pre-operational, operational, stopped and
test state. A state of the state machine can be also referred to as a state of a module, as it
is more intuitive when considering what kind of output the module provides in the state.
After modules are reset, the bootloader starts executing and starts the applications of the
modules. The default state of the state machine is the initialization state that is entered
immediately after the bootloader. The first three states are entered in respective order, and
each of the states enables more services of the module. The stopped state is entered if
a module encounters a hardware or a software failure. Failures are detected during the

4.1. States of the state machine 18

pre-operational, the operational and the test state. The test state is used to isolate some
components of the applications running in the modules for testing, and the state has to be
remotely controlled from the PC application.

Transitions between the states and ensuring that transitions between all the modules in the
automation system are synchronized is handled by the state machine. The state machine
models a life cycle of the automation system: if all the modules of the system are ini-
tialized and synchronized without errors, the automation system stays in the operational
state. The stopped state is entered in case of an error is detected and the state machine
remains in the stopped state until a reset is performed. The PC application receives log
messages of the state transitions and error logs if a state could not be entered. As men-
tioned earlier in Section 2.1 the current system status view shows these states. Figure
4.1 presents the states of the state machine and transitions between them after reset and
bootloader phases which are shown with dashed outlines.

Figure 4.1 States of the state machine

4.1.1 Bootloader

In general, a bootloader loads an operating system kernel and its supporting infrastruc-
ture into memory and begins kernel’s execution. In embedded systems, it is possible that
a microchip to be used in a system does not come with a prewritten firmware. Usually
the firmware would handle initializing Random Access Memory (RAM) timings in the
memory controller circuitry, clearing the processor caches, and setting sane default val-
ues to Central Processing Unit (CPU) registers. Programming a suitable bootloader can

4.1. States of the state machine 19

be done by porting an existing bootloder to fulfil the microchip and the operating system
requirements. There are many bootloaders for embedded systems which could be ported,
but U-Boot is the most flexible and most actively developed open source embedded boot-
loader available [4]. [31]

All the modules of the automation system have two bootloaders. The first one, called
bootloader one, is a custom U-Boot ported for a module. The primary purpose of the
bootloader one is to flash the second bootloader in a specific memory region of mod-
ule’s RAM. The first bootloader is executed only when the second bootloader needs to be
upgraded. It is very unlikely that an automation system in use by the end user requires
upgrading the second bootloader. The second bootloader is executed always when the
PC application uploads a system package that contains the application and configuration
binaries. In order to upload the system package to a module, which is not currently exe-
cuting the second bootloader, the module has to be first commanded to enter the second
bootloader by the PC application. If the binary files are corrupted, the module will remain
in the second bootloader and will require another upload to proceed further. An upload
is also required after modifying the XML configuration of the system in order to monitor
the system.

4.1.2 Initialization state

The initialization state is entered after a module has been reset and the bootloader has
started the application. In the initialization state the basic routines of the module are
executed. If an error is detected during the initialization state execution, causes for the
error are logged by the failing component to the PC application. Initialization statuses of
all the initialized components are stored in the state machine component of the module to
be used later in the pre-operational state.

The initialization state ensures that all constructors of application and system compo-
nents are called in addition to performing a post-initialization. The post-initialization is
an optional initialization routine that, for example, can be used to check allocated run-
time data for an application. These post-initialization functions are called only if normal
initialization for all components was successful, and the functions themselves may report
an initialization failure for the module. After all the initialization procedures have been
completed, the state machine logs the status of the initialization to the PC application and
enters the pre-operational state.

4.1. States of the state machine 20

4.1.3 Pre-operational state

The pre-operational state is entered automatically after the initialization state. The pre-
operational state uses information stored during the initialization state to handle the ac-
tual logging to the PC application. During the pre-operational state, the state machine
ensures the use of correct software and configuration versions for a module. The CAN
handler component, which was introduced in Chapter 2, sets CAN communication to a
pre-operational state that allows custom communication with the other modules in the au-
tomation system. Because of this, a module whose state machine is in the pre-operational
state is also aware of the other modules in the system and their current states. After ini-
tializing necessary data with the other modules in the system, the state machine performs
a state transition to the operational state if transition conditions are satisfied.

Each module has a hardware ID that is configurable with an ID jumper. A jumper is a
conductor used to bond two or more parts of an electrical circuit [10]. Jumper connections
are read while executing the second bootloader. Reading the jumper connections almost
immediately after a module is powered on allows applications to refer hardware IDs of
the modules as numbers. As mentioned in Section 3.3, modules of the same type forms a
module group. Every module group has a master module, which is discussed next.

The pre-operational state is divided into four phases: initialized, synchronization, prepa-
ration and ready. The initialized phase assigns previously mentioned master modules for
module groups in the system if those have not already been assigned. A master module
of a module group is responsible for synchronizing application and configuration binaries
to the other modules in the same group during the next phase of the pre-operational state.
Modules that are part of the system are taken into consideration when determining the
master module for a module group. A module with an ID that is not configured to be part
of the system is an illegal module. Illegal modules and modules that have failed during
the initialization state are not considered to be in the master module selection.

The master module of an LDU group is primarily performing application and configura-
tion synchronization during the next phase of the pre-operational state. The master of an
LDU group performs synchronization for all the modules in the system. However, if the
system does not have an LDU or it has failed or not powered on, the master module of
each module group performs the synchronization for the other modules in the same group.
A master module executing synchronization transmits information to all booting up LDUs
to prevent them to starting a synchronization procedure. Modules that are waiting for syn-
chronization stay in the synchronization phase until the synchronization is completed by

4.1. States of the state machine 21

the master module or a configurable timeout period is expired. If synchronization for a
module is not completed before the timeout, the module enters the stopped state and a
log message is transmitted. After the synchronization phase, possible failures that were
encountered during the initialization state are checked. In case of a failure, the state is
immediately transitioned to the stopped state and a log message is transmitted.

All hardware inputs and outputs of a module can be mapped to a specific data source.
Mapped data sources can be read or written with the PC application, and applications of
the modules can also utilize these data sources. In the preparation phase, all the hardware
inputs are read and outputs are written for the first time. Outputs are set to safe values to
prevent undefined behaviour in devices that are connected to output channels. In addition,
periodic reading of hardware inputs is enabled at this point.

After all the inputs are read and outputs are written, the state machine calls registered
callback functions that should be executed in the pre-operational state for the system and
application components. The callback functions are configured and registered with the
PC application and included in the configuration binary. These callback functions have
access to mapped data sources so they can perform more necessary initialization before
entering the operational state. The callback functions would return succeeded status if
the configured initialization routines were successful. The callback functions are called
periodically until all of them return succeeded status or a configurable timeout period is
expired. It is configurable if the state machine should enter the stopped state in case of
any of the callback functions return failure or the timeout has expired.

After all the previous phases have been completed successfully, a module enters the ready
phase. The purpose of the ready phase is to indicate to the other modules in the au-
tomation system that everything has been set up for the module and it is ready to enter
the operational state. The state machine provides a synchronized boot-up functionality,
where a module in the ready phase waits for the other modules to enter the same state and
phase. The synchronized boot-up functionality can be enabled or disabled, and a timeout
period for waiting the other modules can be set. The XML configuration has a list of
mandatory modules that are required by the automation system to be functional. The list
is configurable, and if a mandatory module is not ready after the timeout period, all the
modules enter the stopped state. If all the modules reach the ready phase, they enter the
operational state.

4.1. States of the state machine 22

4.1.4 Operational state

The operational state is entered either from the pre-operational or the test state. In the
operational state, the state machine provides all the configured services and a module
is expected to be fully functional. Applications programmed for a module are executed
only when the state machine has entered the operational state. Applications are executed
periodically and the period is configurable. After the execution of an application has
finished, the application waits for the next execution round.

Modules that store read or written data from hardware inputs or outputs are configurable.
Applications also have data that is used by the applications and/or monitored with the
PC application. Together, the hardware input/output data and the application data can be
called process data. The process data of a module is distributed to all the other modules in
the system which are configured to store the data. When entering the operational state, the
CAN communication state is set to an operational state in order to transmit and receive
CAN template messages. These template messages are used to distribute the process data
within the modules in the automation system. In the operational state, the PC application
is able to monitor all the process data used by the modules. The process data one wants to
monitor with the PC application is selected from the monitoring side of the PC application
after the PC application is connected to the system.

Usually, the operational state stays in execution from now on, if all the states before the
operational state were executed without errors. There are some cases that might cause the
state machine to exit the operational state. If a user wants the system to enter the test state,
it is possible only when the state machine is in the operational state. Transition to the test
state or the stopped state may also be requested by other modules in certain circumstances.
Also, if a module encounters a fatal hardware or a software error the module transitions
to the stopped state.

4.1.5 Test state

The test state is used for testing different parts of the system in an isolated environment.
Entering the test state has to be explicitly ordered by the state machine. The state machine
receives commands from the PC application, and the transition to the test state is only
possible if the state machine is in the operational state.

In the test state, all the tests selected by a user are executed and a transition back to

4.2. Diagnostics of CANopen devices 23

the operational state is requested. Executed tests are selected from the PC application
by selecting pre-programmed tests for a specific module. During a test execution, it is
possible that a critical system component is disabled or modified in a way that a module
cannot execute its tasks normally afterwards. In these cases, the state of a module is
treated as a non-recoverable state. If the non-recoverable state is entered, a transition
back to the operational state cannot be performed after all the tests are executed. Instead,
a transition to the stopped state is performed.

4.1.6 Stopped state

The stopped state is a failure tolerant state where only the critical system services are en-
abled. Services such as reading hardware inputs, writing hardware outputs and application
execution are disabled. A module in the stopped state can communicate with the other
modules in the system, and the process data can be accessed from the PC application. The
values of the process data are left in a state just before disabling the corresponding service
for modifying a single data element.

If the previous state before entering the stopped state is the test state, software can reboot
a module. If the stopped state is entered from any other state, the state machine remains
in the stopped state as long as a manual reboot is done or an upload is performed.

4.2 Diagnostics of CANopen devices

CAN is currently the leading serial bus1 protocol for embedded systems [32]. Originally
CAN was designed to be used in automobiles as introduced in 1986. After several years,
in 1992, industrial manufacturers and users established the CAN in Automation (CiA)
association. During its first years the association created a specification for CAN Ap-
plication Layer (CAL) which enabled easier usage of the CAN protocol for industrial
applications. However, CAL was impractical because as an application layer it required
other users to design a new profile to be able to use it. This led Bosch GmbH and var-
ious organizations to design a prototype for a new profile, which would become known
as CANopen, based on CAL to provide better embedded networking in production cells.
In 1995, CiA had completely revised the prototype and released the CANopen commu-
nications profile. The CANopen profile defines device, interface and application profiles,

1In a serial bus data is transferred bit-by-bit or more generally from one point to another [1]

4.2. Diagnostics of CANopen devices 24

in addition to a framework for programmable systems. An application profile is used
to specify all device interfaces used in a specific application. For example, lift control
systems and light railways were one of the first CANopen application profiles. [15]

The difference between CANopen and CAN protocols can be explained with the ISO-OSI
model. The CAN protocol covers the bottom two levels of the model: the physical layer
and the data link layer. The physical layer defines ranges of voltages and currents, the
types of cables and connectors that should be used and bit encoding. The data link layer
defines conditions for received messages that should be accepted by a node, mechanisms
for recovery management and flow management and CAN as a frame-based (message-
based) protocol. The CANopen protocol covers the top five layers (bottom-up): the net-
work, the transport, the session, the presentation and the application layers. The network
layer defines addresses for the nodes and routing between them. A delivered message in
the network layer might not be reliable, and the transport layer takes care of end-to-end
reliability. The session layer controls connections between nodes. The presentation layer
ensures that the data is encoded and represented as specified in the standard. The appli-
cation layer defines how CANopen devices are configured, transferred and synchronized.
Figure 4.2 presents the CAN and the CANopen protocols with the ISO-OSI model. [12]
[13]

Figure 4.2 CAN and CANopen protocols presented with the ISO-OSI model

The CANopen protocol specifies a Network Management (NMT) state machine that each
CANopen device must implement. Figure 4.3 presents the states of the NMT state ma-
chine. After a CANopen device is reset, the state machine enters the initialization state.
CAN and CANopen interfaces and the communication network are initialized in the ini-

4.2. Diagnostics of CANopen devices 25

tialization state. After that the pre-operational state, which is the first state of the three
major states, pre-operational, operational and stopped, is entered. State transitions be-
tween all the major states are possible. The details of the services provided by the state
machine in each state are omitted because CANopen devices are not in a crucial role in
the automation system. The states can be considered as the states of the other modules
described in Section 4.1: the operational state provides all the services described in the
CANopen protocol, the pre-operational state provides less services than the operational
state and the stopped state provides only the critical services. [15]

Figure 4.3 States of the NMT state machine

One of the critical services that are available in all the three major states is the heartbeat
service. Heartbeat is a low-priority status message transmitted periodically by CANopen
devices to CAN buses to which the CANopen devices are connected. The heartbeat mes-
sage contains the current state of the NMT state machine running in a CANopen device.
It was mentioned in Section 3.4 that the PC application is used to configure a module that
monitors a CANopen device. The monitoring module receives these heartbeat messages
from the CANopen device and stores the information. [15] The PC application is used
to select a Data Container code that is used for storing the information. DC codes are
an internal data storage mechanism to configure and monitor the mutual data of the PC
application and the automation system. A DC code is represented as an integer value of
four bytes where the first two bytes represent a code index. The code index is the index
to the vector where the data related to the DC code is stored. The third byte represents an
attribute ID that is the type of the value in the vector, for example, int, float and short int.
The fourth byte represents an offset that is used to retrieve data related to the attribute ID.
For example, int and float values are stored with different attribute IDs and the offset is
used to read the correct type of the value from the memory. New DC codes can be created
with the PC application. DC codes are made available for a module by including them
in the configuration binary used by the module. The PC application generates and adds

4.3. CAN channel failure handling 26

DC codes to the configuration binary. Now the PC application and the modules are aware
of the DC codes and the PC application is able to monitor and adjust the values of the
DC codes. Whenever the value of the DC code, which represents a state of a CANopen
device, stored in the module changes, the value is transmitted to the PC application. The
value is transmitted only if the monitoring module is in the operational state as described
in Section 4.1.4.

The CANopen devices used in the automation system implement the NMT state machine.
The PC application is able to receive the states of the CANopen devices from the mod-
ules that are monitoring the CANopen devices. Heartbeat monitoring has to be enabled
for a CANopen device from the PC application by modifying the XML configuration on
the configuration side of the PC application. After that, a module that stores a DC code
that represents the state of a CANopen device has to be selected. In the PC application,
new DC codes can be added to the XML configuration, and the DC codes can be moni-
tored when the PC application is connected to the system and the module that stores the
monitored DC code is in the operational state. In addition to this, both the module that
monitors a CANopen device and the CANopen device have to be connected to the same
CAN bus.

4.3 CAN channel failure handling

The CAN protocol specifies a fault confinement mechanism to detect defective nodes in a
network. If a faulty node is detected, the node is set in a passive or an off state to prevent
it affecting the CAN buses to which the node is connected. The protocol specifies three
states that are used to represent the current CAN state of a node: error active, error passive
and bus off. The CAN communication states mentioned in Section 4.1 are used internally
by the applications executed by the modules, and the states specified in the CAN protocol
are used by a CAN controller. All the modules of the system come with a hardware CAN
controller that is a separate microchip implementing the CAN protocol. [12]

Figure 4.4 presents the error states and the state transitions specified in the CAN protocol.
Nodes in the error active state are functioning properly, and they can transmit and receive
messages on the bus normally. Nodes in the error passive state are still able to transmit
and receive messages, but they might have a faulty behaviour on either the transmission or
the reception side. If a node in the error passive state transmits a message at the same time
as a node in the error active state, the message transmitted by the node in the error passive
state is delayed. This means that messages transmitted by a node in the error active state

4.3. CAN channel failure handling 27

have higher priority than messages transmitted by a node in the error passive state. Nodes
in the bus off state are most likely corrupted and cannot transmit or receive messages on
the bus. A state transition is performed according to the value of two integer counters:
transmit error count and receive error count. The counters represent the likelihood of a
faulty behaviour either on the transmission or the reception side. There are many rules
specified in the CAN protocol for incrementing and decrementing the counters, which are
not covered in this thesis, but as an example, the transmit error count is decreased by one
if a message is transmitted successfully. [12]

Figure 4.4 Error states and state transitions in CAN protocol

The system parameters of the CAN handler component have DC codes that are used the
same way with the CAN error states as the DC codes with the CANopen devices. A
DC code is selected for all the configured CAN channels of a module and the DC code
is included in the configuration binary used by the module. The application running
in a module can access the data related to the CAN error states of a CAN controller
through a Hardware Abstraction Layer (HAL)2. The error state of each CAN channel is
periodically read from the CAN controller through HAL, and the value is stored in the DC
code configured for that CAN channel. If the value is changed, the module transmits the
new value to the PC application. Because the PC application can be connected only to one
CAN bus at a time, the values have to be distributed to the other modules in the system
in order to always receive the information of a CAN error state transition. For example,
if the PC application is connected to CAN bus one and CAN channel one of an MCM
goes into the bus off state, CAN channel two of the MCM is used to distribute the value
to the other modules in the system. The PC application then receives the information of
the state transition from any other module transmitting it on CAN bus one.

2HAL is commonly used as an interface for applications that requires an access to a microcontroller and
its peripherals. The HAL encapsulates the underlying hardware in a way that the applications using the
HAL are still functional if the interface remains the same but the hardware is changed. [14]

4.4. Transmitting states of the modules to the PC application 28

4.4 Transmitting states of the modules to the PC application

The PC application receives and handles information of the state transitions in two differ-
ent ways depending on the communication type. Before the PC application can connect to
the system and start monitoring the system, the communication media has been selected.
An initial connection to the automation system is established after the communication
media is selected. The initial connection is referred to as a pre-connection to the au-
tomation system. Only the state information of the automation system is received when
the pre-connection is established. The PC application receives CAN messages from the
modules when CAN communication is used. A CAN message in the pre-connection state
contains the following information: an ID of the module (transmitter), current state of the
module and a timestamp of transmission. The CAN message is transmitted by each mod-
ule periodically every 100 milliseconds (ms), and it is called an alive message. The PC
application stores the information, and the timestamp is used to detect a module failure.
If a module that has been transmitting alive messages is not transmitting another alive
message within three seconds, it is treated as a failed module. If the state of the mod-
ule remains the same for two or more consecutive times, only the timestamp is updated.
Otherwise the state is further processed in the system view and it is discussed in Section
6.3.

All the states of the modules are transmitted as a single package when the PC application
uses Ethernet as a communication media. Each package is wrapped in a custom profile
that describes the contents of the package transmitted via Ethernet. This makes the han-
dling of the packages easier because both the PC application and the module are always
aware of the contents of the package. In addition, the PC application may be used to-
gether with a system that is not upgraded to the same version as the PC application. The
PC application then queries from the system (in this case from the LDU), what profiles are
supported by the system, and it uses the information to enable or disable profile-related
services in the PC application.

The profile for transmitting status information of the modules consists of IDs and the
current states of the modules. In addition, the profile contains header information to make
the transmitted package unique so it can be detected in the PC application. An LDU has
data structure for the states of all the other modules in the system, and it updates the
structure according to received alive messages. Every 500 ms, an LDU checks if one of
the states have changed. If a state has changed, the LDU transmits the states of all the
modules in the system to all listening clients. A client is a running software connected to

4.4. Transmitting states of the modules to the PC application 29

the LDU via Ethernet, like the PC application.

There are some reasons why an LDU transmits all the states in one package to all con-
nected clients in such long intervals. First, the size of the package is relatively small
since both the ID and the state of a module are encoded with one byte. If considering a
system that consists of 20 modules, the size of the package would be 40 bytes + the size
of the header. If only one state would be transmitted, the size of the package would be
two bytes + the size of the header. By adding only 38 bytes more, which is a relatively
small amount of data in Ethernet communication, the state information of the whole sys-
tem is provided for a client. Second, if a new client connects to the LDU, it does not
have the current states of the modules. When sending the first package to the new client,
all the state information is provided. If another type of PC application would implement
the same profile for the package in question, it is desirable to provide all the information
as one package without necessity to know how the information is used. Third, 500 ms
time period is quite infrequent, but it is frequent enough to update the UI appropriately.
A synchronous updating of a Graphical User Interface (GUI) and preventing flickering in
the GUI is achieved easily by using such a time period.

The custom profile for transmitting the states of the modules via Ethernet, and its related
functionalities were partly implemented by the author of this thesis. Also some modi-
fications to the PC application were programmed to handle alive messages received via
CAN.

30

5. ARCHITECTURE AND DESIGN OF THE SYSTEM
VIEW

This chapter discusses the architecture and the design of the system view. As mentioned in
Chapter 2, the PC application is based on Qt framework. Qt is a cross-platform application
development and user interface framework. Qt framework comes with Qt Creator, which
is a cross-platform Integrated Development Environment (IDE) used for application and
UI development [18]. Qt is implemented with C++ programming language [16], and
C++ is used by default for developing applications with the framework. C++ binding is
provided by the Qt Company, and other bindings such as Java, Lua, Python and Ruby are
provided by third parties [5]. Qt makes application development easier by providing pre-
built UI components, over 1000 high-level C++ classes with well documented Application
Programming Interfaces (APIs) and interactive UI designer as a part of Qt Creator [25].

Because the PC application is already utilizing Qt framework, using the framework for the
new system view would be a natural choice. In addition, the currently used system status
view is implemented with Qt framework, and the view is embedded as part of the PC
application. However, when designing a next generation implementation for the system
view, it should not be taken for granted to rely on the previous implementation. The
design process should rather be started from scratch.

5.1 Qt Quick, Qt WebEngine and Qt Widgets

This section compares the user interface technologies provided by Qt. User interfaces can
be programmed not only with C++, but also with Qt Meta-object Language (QML) [16].
QML is a markup language, similar to HTML, and it is composed of elements enclosed
with curly brackets (e.g. Rectangle{...}). A QML document is a file that contains one
or more of these QML elements that are also known as QML types. QML types can
be extended with JavaScript (JS), which is a dynamic scripting language used widely in
Web [30] [3]. In QML, user interfaces are built in a declarative way: a programmer

5.1. Qt Quick, Qt WebEngine and Qt Widgets 31

writes a QML document/type and describes what it should do instead of how it should
be done. Implementation of user interface benefits from the simplicity of compounding
QML documents and types together for desired functionality [28].

Qt Quick is a software module that supplies pre-written QML types for creating user
interfaces such as a rectangle with its own coordinate system and rendering engine. The
rectangle could have different states and contain some other QML types that could be
animated. Transition effects between the states and animations are a first-class concept in
Qt Quick, and it has been made easy for a developer to adopt using of them. To make user
interfaces even better, visual effects can be supplemented through specialized components
for particle and shader effects by applying them to QML types. [28]

In desktop environments, traditional user interfaces are implemented with Qt Widgets.
The widgets are GUI components, such as a button or a check box, that independently
interact with a user. The widgets provide native look and feel on different operating
systems, and the components are mostly used for static user interfaces. The widgets
do not adapt as well as Qt Quick for touch screens and highly animated modern user
interfaces. Traditional desktop-centric user interfaces, such as office applications, could
be approached with the Qt Widgets. [28]

Qt WebEngine is a Chromium-based layout engine. WebEngine makes it easy to embed
content from the Web, which would be normally viewed with a Web browser, into a Qt-
application on a platform which does not natively provide or support a Web engine. Qt
provides another software module, called Qt WebView, for showing Web content without
including a full web browser stack. WebView uses native APIs of platforms instead of
WebEngine for showing Web content. [26] [28]

Table 5.1 summarizes three previously mentioned user interface technologies. Table 5.1
is based on the table shown in the official Qt documentation Web site [28]. In Table 5.1,
X on a row means that a corresponding feature or component is provided by the respective
user interface technology, and (X) means that it is provided partially.

The currently used system status view is implemented with Qt Widgets. Table 5.1 is used
to decide whether or not the new system view should be implemented with Qt Widgets.
Qt WebEngine is excluded from decision making because it not only provides the least
features, but also there is no existing server from which to fetch data required by the
system view. It is possible to create Web content and store data locally, but it would serve
only the PC application and Web content usually implements the client-server model. If

5.1. Qt Quick, Qt WebEngine and Qt Widgets 32

Table 5.1 Comparison of user interface technologies provided by Qt

Feature Q
tQ

ui
ck

Q
tW

id
ge

ts

Q
tW

eb
E

ng
in

e

Comments
Used language(s) QML C++ HTML

JS CSS
JS

Native X X Qt Quick and Qt Widgets provide native
look and feel look and feel on Windows, Linux and OS

X.
Custom X (X) Qt Quick is better for UIs that do not aim
look and feel to look native.
Touch screen X X Qt Widgets usually require a mouse cur-

sor for good interaction, whereas Qt
Quick is designed with touch interac-
tion in mind. WebView component in
QWebEngine provides multi-touch ges-
tures for web content.

Standard industry X Qt Widgets have been developed over two
widgets decades. A lot of different kinds of wid-

gets are provided.
Rapid UI X (X) With Qt Quick, UI prototyping and devel-
development opment is fast.
Graphical effects X Qt Quick with particle system and shader

effects is very flexible. Qt Widgets have
very little to offer in this area.

the client-server model with Qt WebEngine would be implemented to show related data
as Web content, it would require considerably more work: the PC application should be
extended to communicate with a server that would store designated data for the system
view. On the other hand, such a server would be rather useful if it would also provide
data used by other components, like the trend and monitor views in the PC application.
By using an external server to fetch required data for a view, the implementation of the
GUI components would not be limited to use Qt framework at all: a Web client could be
used to retrieve data from the server and show related information with HTML, Cascading
Style Sheets (CSS) and JS.

5.2. Design of the system view 33

The first thing to consider, when comparing Qt Quick and Qt Widgets, is native and
custom look and feel features. Both of the technologies provide native look and feel in
Windows environment, but Qt Quick offers easier implementation for custom look and
feel. Chapter 3 discussed that a more graphical UI should be designed including custom
drawing, for instance, for CAN channels. In addition, if the new system view would be
adapted to any touch screen device, Qt Quick already provides support for these devices.
With Qt Widgets it would probably be necessary to re-factor the programmed code base
to separate the handling of touch events and mouse events, which would not be necessary
with Qt Quick.

When considering standard industry widgets, Qt Widgets have much to offer. However,
as mentioned in Chapter 3, the new system view is supposed to be a next generation view
where standard industry widgets are not required: more graphical interpretation of the
underlying automation system and user interaction should be provided. Sections 3.1 and
3.3 discussed that some of the UI elements and navigation in the system view should
be animated. As mentioned earlier, Qt Quick is more suitable for highly animated user
interfaces. Qt Quick also offers much more when it comes into graphical effects that could
be used to enhance the UI. Furthermore, rapid UI development encourages the use of Qt
Quick for fast development and UI prototyping. The UI is expected to change many times
during the implementation of the new view, so the faster it is to apply and test suggestions
based on internal or customer feedback, the better.

In conclusion, Qt Quick seems to offer more than Qt Widgets when it comes to fast
development, more graphical and highly animated modern UIs. Thus, Qt Quick is selected
as a user interface technology for the new system view.

5.2 Design of the system view

The system view component is realized as a dynamic link library (DLL). By using a DLL,
a program can be modularized: unused parts of the program are not loaded into memory
at all. This makes launching the application faster, the program consumes less memory
and the architecture of the program can be modularized. DLLs are loaded into memory
at runtime and multiple programs can use the same DLLs. The integration of the system
view component to the PC application is described next. [11]

The PC application uses Qt’s plugin architecture. In a Windows environment, these plug-
ins are created as DLLs and they can be thought of as software components that extend a

5.2. Design of the system view 34

related application. The plugin architecture provided by Qt is rather simple. For extending
an application with a plugin, the following steps are needed [19]:

1. Define an interface (in C++, a class with only pure virtual functions)

2. Use Q_DECLARE_INTERFACE macro to tell Qt’s MOS about the interface

3. Use QPluginLoader in the application for loading the plugin

4. Use qobject_cast for testing if the loaded plugin implements the interface

When the PC application is extended with the system view plugin, the previously de-
scribed procedure is followed. QPluginLoader is used to load the system view plugin
whenever it is required. For example, when the system view is opened for the first time,
the DLL that provides the system view functionalities is loaded. For other software com-
ponents that would use the functionalities provided by the system view plugin, the plugin
offers an ISystemViewController interface. The interface and its functionalities are dis-
cussed in Section 6.1.

To program a plugin that implements an interface the following steps are needed:

1. Declare a plugin that inherits from QObject and from the interface(s) the plugin
provides

2. Use Q_INTERFACES() macro to tell Qt’s MOS about the provided interfaces by
the plugin

3. Export the plugin using the Q_PLUGIN_METADATA() macro

4. Build the plugin and create a DLL of it

These steps are used when programming the actual implementation of the system view
plugin. Another benefit to using a plugin architecture is that the implementation of a
plugin can be re-factored or changed as long as the interface for it remains the same. [19]

5.2.1 Basic functionalities

The system view is opened by double-clicking a status bar item “system” shown previ-
ously in Figure 3.1. Figure 5.1 presents the module level of the grid view described

5.2. Design of the system view 35

in Section 3.2. Figure 5.1 presents the module level in a situation where the commu-
nication media is selected from the PC application and the pre-connection is established
to the automation system. It shows all the configured modules in the system. “View by
modules” button with an orange background indicates that the module level is active. It
is worth mentioning that the customer provided support with the graphics shown in the
design figures.

Figure 5.1 Module level presentation of the grid view

Disabled modules are shown with a lighter image of the respective modules and with
a “Disabled” text. In Figure 5.1, CANopen device WAGO 2 and MCM 6 are disabled.
MCM 4 presents a selected module. The selected module is shown with a transparent blue
color and there is an off button that disables the selected module. If a disabled module
is selected, the button shows “on” and pressing it enables the module. At top right, there
are buttons for disabling and enabling all configured modules in the system. If the PC
application is connected to the system, modules cannot be selected and the buttons ignore
mouse events. If a user has only access to the monitoring side, modules cannot be selected
and the buttons are hidden because the user does not have access right to modify the XML
configuration of the system, which enabling and disabling a module would do.

The configured CAN buses of the system are shown in the middle. A CAN bus shows a

5.2. Design of the system view 36

user configured name on it so that it is easier to recognize the bus. All the connections
from the CAN channels of the modules to the CAN buses of the system are drawn with a
narrow white line. MCM 1 has three CAN channels that are connected to a bus and the
fourth configurable, but no connected channel is shown as a small white circle. The circle
is barely seen on the module, but it is clearly seen on a full sized window. Both of the
CAN channels of IOM 5 are in an error state. If the mouse cursor is hovered over one
of the CAN channels, the following tooltip is shown: “CAN(1): Off state\n CAN(2): Off
state”, where \n is a line break. The state of the module is set to offline because the state
cannot be received by any other module or the PC application. If MCM 2 would have
the first two CAN channels in an error state, the first two lines of the tooltip would be
the same, but the following lines would be added to the shown tooltip: “CAN(3): Normal
\n CAN(4): Not connected”. Now the real state of the module would be shown because
there is still a working connection to a CAN bus and state information can be received.
The PC application cannot receive the state information of the CAN channels after the
pre-connection is established, and the figure was modified in order to describe the design
for the CAN channel errors at this point.

All the tooltips are animated when mouse cursor is moved on top of an element with
a tooltip. The tooltip animation is a simple scale and out elastic animation: the tooltip
begins to expand from the middle of the element, and when it reaches its full size, it
expands a bit more and then bounces back to full size. Whenever a mouse cursor is set
outside the element, the tooltip is hidden with an animation that scales the tooltip back
to zero in the middle of the element. An example tooltip is shown in full size where
the mouse cursor is in the figure. The same background is used for all shown tooltips,
and it always covers at least the element where it is shown. If a text does not fit in the
background of a tooltip, the background is expanded to fit the text inside it.

The current state of a module is shown as a text in the middle of the module image. Section
3.1 discussed that some of the states should be animated and a symbol to represent a state
should be added. As it can be seen, there is no room for such elements in a module
figure. Several static and animated symbols in different locations were tested, but this just
cluttered the module figure.

The state of a system is not shown in the module level, because there is no need for it.
The reason is that the module level is entered via system level where this information is
already shown. However, it could have been shown next to the name of the system or next
to the title. The status bar shows the current state of the system. Figure 5.2 presents the

5.2. Design of the system view 37

possible states of the system and their respective tooltips. The tooltip in the status bar is
not animated, because it is part of the existing status bar that uses Qt Widgets as a user
interface technology. The state of a system is composed of the states of the modules used
in the system. Modules that are disabled or in the offline state are not taken into account
when composing the system state. The state of the system is offline if all the modules are
disabled, the modules are in the offline state or the PC application has not established the
pre-connection to the automation system. If any of the modules in the system is currently
executing bootloader, the state of the system is bootloader. The state of the system is
stopped if at least one of the modules is in the stopped state and none of the modules is
executing bootloader. The starting up state is used if at least one of the modules is in
the initialization state or in the pre-operational state and none of the modules is in the
stopped state or executing bootloader. The state of the system is test state if none of the
modules are in the previously mentioned states and at least one of the modules is in the
test state. The state of the system is operational only if all the modules in the system are
in the operational state.

Figure 5.2 States of the system in the status bar and their respective tooltips

If the PC application is connected to the system, the connection is shown in the top left
corner as a symbol. The symbol shown in Figure 5.1 represents a disconnected sym-
bol. When it is hovered, tooltip shows “Disconnected” or “Connected” depending on the
connected status. The symbol for connected status is shown in Figure 5.3.

If an upload is ongoing, instead of an upload progress bar discussed in Section 3.1 and
shown in Figure 3.2, an animated symbol is shown next to the state text that shows
“Uploading” in this case. The upload symbol and the text can be seen in Figure 5.5.
The animation is done by moving the orange triangle from top to bottom and repeating
that infinitely. The currently used upload dialog is not hidden when the uploading begins,
and the system view cannot be used to open the dialog. It was decided that indicating an
ongoing upload in the system view is sufficient because the upload progress would still
be viewed from the currently used dialog.

5.2. Design of the system view 38

5.2.2 List view and multi-system support

The list view is the default view when opening the system view. Figure 5.3 presents
the list view with two systems. Modules are grouped in the list view and module group
name separates different types of modules. The same three columns are shown as in the
currently used system view, and they represent the same things as described in Section
2.1. The color scheme used matches with the grid view. Above the list of modules, there
is a rectangle that shows if the system is connected, the name of the system and the current
state of the system. There is no room to display the state of a system as a text, so a tooltip
is shown when hovering the state symbol. The border of the rectangle uses the same color
as the connected or disconnected symbol to improve user perception of whether the PC
application is connected to the system.

Figure 5.3 List view presentation of the system view

5.2. Design of the system view 39

The “Show only headers” button is used to resize the list view. When it is pressed, all the
module information is hidden by resizing the view to show only the rectangles presenting
the systems. Height of the window is always changed to a fixed value, but the width
depends on the number of logged in systems. The button goes to an active state once it is
pressed, and its background is changed to the same color as used in the connected symbol.
If a user resizes the view manually, the state is deactivated automatically. Another way to
deactivate the state is to press the button again which restores the size of the window to
the size before pressing the button.

The grid view can be activated from the top right corner. To activate the list view from the
grid view, the grid view has a button at the same location. System level is shown as the
default view in the grid view. Figure 5.4 presents the system level with four systems, as
it is the maximum number of simultaneously used systems, as described in Section 3.2.

Figure 5.4 System level presentation of the grid view

The system level shows the basic information of all systems to which a user has logged
in. The name of a system is shown in the top part of the system rectangle. The connection

5.2. Design of the system view 40

status and the current state of the system are shown with a text in the bottom part inside
another rectangle. The symbols for states are the same as in the list view, but hovering
over a symbol does not show a tooltip, because it is already shown next to the symbol
as a text. Other states that are not shown in Figure 5.4 and their respective symbols
are shown in Figure 5.5. An extra outline is added into a system rectangle if the PC
application has established a connection to the system. Example system 3 shows “Starting
up” state, which represents the starting up state described in Section 5.2.1. The symbol
next to the state is animated. The animation is a rotation animation where the orange
segment is rotated around. This indicates that the system is not ready and there are some
initialization, synchronization or other tasks to be performed in the automation system.

Figure 5.5 Additional states and their respective symbols used in system and module group levels

When a system is hovered, a shadow is used to make the rectangle look like a clickable
item. Example System 3 shows the used shadow. The shadow is shown as the innermost
border of the system borders. When a system is clicked, a transition to the currently
active level is performed. The transition animation expands the clicked system to match
the system view size and hides other systems at the same time. The module level is
shown by default. The module group level is shown if it has been previously selected for
the system. In Figure 5.1 there is a button at the bottom left of the view, and when it
is pressed, a transition back to the system level is performed. The transition animation
resizes the system back to the original size and then shows the other systems in the system
level.

5.2.3 Usability and performance

Section 3.3 discussed the handling of a large number of modules in different ways. In
Figure 5.1, some of the modules are placed above and some below the other modules.
The minimum width and height of the module level are calculated to fit 22 modules. It
was mentioned that in a real system the module count varies from 14 to 20, so some
extra modules can be added without extending the minimum size of the system view.
On the module level, modules are organized according to module groups. In the figure,

5.2. Design of the system view 41

this grouping can be seen on the right side, where all IOMs are close to each other. An
alternative approach would be to set IOM 5 above MCM 1 and MCM 3, and IOM 6 below
MCM 2 and MCM 4 but it is easier to view the same types of modules close to each other.

Zoom control buttons and a slider are shown at top left corner in the figure. A zoom-
out action is performed if the magnifying glass button with a minus sign is pressed. The
other button with a plus sign performs a zoom-in action. These buttons increment or
decrement the scale of the view by a fixed number. The slider is used to scale the view
with a floating number. If the scale of the view causes the view to exceed the size of
the window, horizontal and/or vertical scrollbar(s) appear. Another way to view different
content inside the view is to press and hold the mouse cursor in the background area and
then move the cursor. This is called flicking, and it is a widely used technique with touch
screens.

Figure 5.6 presents the module group level described in Section 3.3. “View by groups”
button is active and next to it, a button that opens a view used to select modules that should
be grouped. Below the module group selection view, there are two buttons that are used
to deselect grouped modules or to select all modules to be grouped.

Figure 5.6 Module group level presentation of the grid view

5.2. Design of the system view 42

Module groups are presented almost exactly like systems on the system level: only the
symbol for connected status is not shown, because it is not related to a module group. The
grid view enters the module level of the module group when a module group is clicked.
The transition is animated in the same way as the transition from the system level to the
module level described in Section 5.2.1. However, modules and other module groups
are hidden instead of other systems. The same button used for navigating back from the
module level to the system level is used to navigate back from the module level of the
module group. The transition back to the module group level is also like the transition
back to the system level, except modules and module groups are shown instead of systems.
Figure 5.7 summarizes the navigation in the system view. It should be noticed that
switching between the module level and the module group level is not possible when
the user has navigated onto the module level of a module group. This is prevented by
hiding the “View by modules” and “View by groups” buttons.

Figure 5.7 Navigation in the system view

All the content that a user has not previously seen is asynchronously created when the
user navigates in the system view. A loading animation is shown in the center of the
system view while the new content is being constructed. The loading animation is done
by rotating an image in GUI thread while the constructing of a new view is executed in
another thread. The loading image is shown in Figure 5.8.

5.2. Design of the system view 43

Figure 5.8 Loading image used for animation when views are being constructed

The window positions of the grid view and the list view are stored in a single QML
document. The document remains persistent in memory as long as the PC application is
running. When switching from the list view to the grid view, the size and position of the
list view is stored and a new size and position for the window are set according to the
previous values of the grid view. The same procedure is performed also when switching
from the grid view to the list view.

The performance of the system view is measured with profiling tools provided by Qt
Creator. If some functions in QML documents consume relatively too much time, these
functions are taken into closer inspection to find the cause. Execution times of the critical
functions are measured with QTimer class in C++ parts of the system view. To open the
system view fast, the system view plugin is loaded immediately after a user first logs in to
a system. Memory consumption is measured with the resource monitor provided by the
Windows operating system.

5.2.4 Support for CANopen devices

Figure 5.1 presents two CANopen devices, WAGO 1 and WAGO 2. WAGO 1 can be
partially seen behind the tooltip. If the PC application is not connected to a system, a
tooltip for a CANopen device shows “CANOpen devices can only be monitored when
connected to system.”

Section 4.3 explained that to be able to monitor a CANopen device, another module has
to be configured to monitor the heartbeat of the CANopen device. Also, a DC code that
stores the state of the CANopen device in a module has to be selected. When the PC ap-
plication is connecting to a system, the configuration of CANopen devices is checked. If
a module is not selected to monitor the heartbeat of a CANopen device, the tooltip shows
“Heartbeat monitoring is not enabled in configuration.” If a DC code is not selected, the
tooltip shows “Error code for heartbeat monitoring is not enabled in configuration.”

If a module that monitors the heartbeat of a CANopen device is not connected to the
same bus as the CANopen device, the CAN channel of the module is not in the error

5.3. Architecture of the system view 44

active state or the module is not in the operational state, the tooltip shows “Monitoring
module is in a non-operational state or disconnected from CAN bus.” If a CANopen
device is configured properly and the state of the CANopen device is received by the
PC application, the tooltip shows “Node in <state> state”, where <state> is one of the
following: stopped, pre-operational or operational. All the tooltips that are related to
CANopen devices or modules, are shown in the “Status” column in the list view.

5.3 Architecture of the system view

The system view is now designed at a general level. In the project, C++ classes use
letter C prefix before a class name, and interfaces use letter I prefix before an interface
name. All the related C++ classes and the interface of the system view are in Plug-
ins::GUI:SystemView namespace. Object-oriented programming (OOP) is used along in
Qt framework, and it is already used elsewhere in the project, so the methods described
in OOP concept are also used for the system view implementation.

To understand the architecture of the system view better, a well-known design pattern,
Model-View-Controller (MVC), that Qt framework utilizes is introduced. Model is used
to maintain the data, view is used to display the data maintained by the model and con-
troller is used to handle events that are usually triggered from the view and impact the
model in one way or another. The main idea in the MVC pattern is to keep the code
related to each of the components as separate as possible. [6]

In Qt framework and Qt Quick, a modified version of this traditional MVC pattern is
introduced. The pattern is called Model-View-Delegate (MVD), where the model and the
view parts are the same as described for MVC pattern. The delegate simply describes how
the data should appear in the view, and it can access both the model and the view directly.
[21] In a Qt application, communication between the different parts of the MVD pattern
is done with signal and handler event system of Qt. For example, if a view has a button
and it is clicked, a signal is emitted, and it is responded to through a signal handler that
could be in a related model or a delegate. The emitted signal triggers the corresponding
signal handler that is connected to the signal. This communication between objects is
made possible by Qt’s Meta-Object System (MOS). MOS also provides run-time type
information and a dynamic property system, and it is discussed more in Section 6.1. [20]
[27]

Figure 5.9 presents the architecture diagram of the system view. Four different pack-

5.3. Architecture of the system view 45

Figure 5.9 Architecture diagram of the system view

ages are shown: Qt-library, Interfaces, System view -model and System view -view. The
Qt-library package has one C++ class, QObject, and four QML types: ApplicationWin-
dow, Item, Rectangle and FocusScope. C++ classes that inherit QObject class are marked
with a superscript “1” and QML documents, which inherit any of the previously men-
tioned QML documents, with corresponding superscripts “2”, “3”, “4” and “5”. In the
diagram, the abbreviation SV stands for SystemView and abbreviation MG stands for
ModuleGroup. The interfaces package has two interfaces: ISVController and IVersion.
ISVController is the interface provided to other components in the PC application, and
it is the only way to access the system view plugin outside of the plugin itself. IVersion
interface is used to store version related information of a plugin that inherits it.

The “System view -model” package has five C++ classes: CSVController, CSVSystem,
CSVModuleGroup, CSVModule, CSVCANBus and CSVCANCh. CSVController class
is the main class that provides the ISVController interface to other components in the PC
application. CSVSystem class stores the data of a single logged in system required by
the view. CSVCANBus stores the data of a single CAN bus configured for the system
required by the view. CSVModuleGroup class contains the data of a single module
group composed of CSVModule classes, and CSVModule contains the data of a single

5.3. Architecture of the system view 46

module of the system. CSVCANCh class stores the data of a configured CAN channel
for a module.

Only the most important QML documents are included in the “System view -view” pack-
age. Qt Quick applications require a main document that is loaded first [3]. “main”
document is the main QML document, and it is loaded at first. SystemListView is the
main document for the list view, and it represents all logged in systems with other QML
documents, which are responsible for user interaction described in Section 5.2.2. System-
ListView uses CSVSystem classes received from CSVController class as a model.

SystemView is the main document for the grid view. SystemContent document is re-
sponsible for constructing the plain layout of the grid view and handling of different
events triggered via SystemView. System document presents the UI of a single logged
in system by using CSVSystem class as a model. CANBus document visualizes a sin-
gle configured CAN bus of the system by using CSVCANBus class as a model. If the
module group level described in Section 5.2.2 is active, MGContent document is loaded,
and if the module level is active, ModuleContent document is loaded. Both documents
handle their respective presentation of the levels. MGContent document uses Module-
Group and Module documents depending on the selected module groups to be shown.
ModuleGroup document presents a single module group that consists of the same type
of modules by using CSVModuleGroup class as a model. Module document handles
user interaction with a module and presentation of a single module by using CSVModule
class as a model. CANChannels document presents all the configured CAN channels
of a module or a module group. CANChannels document uses CSVCanCh classes as a
model. It should be noted that a ModuleGroup document aggregates also of a Module-
Content document. ModuleContent is loaded for ModuleGroup if a user navigates into
the module level of a module group.

47

6. IMPLEMENTATION OF THE SYSTEM VIEW

This chapter discusses the technical implementation of the system view. The implemen-
tation of the system view is divided into three parts: C++ classes, QML documents and
JavaScript files. The C++ classes provide the interface and its implementation used by the
other components in the PC application, and models for the QML documents. The QML
documents are using these models to declare the currently logged in systems and their
status information in the system view. In addition, the QML documents declare delegates
that are responsible for user interaction. The JavaScript files are used by QML documents
in order to asynchronously construct different parts of the system view, and to modify the
current layout of the system view.

Table 6.1 presents the distribution of the code base of the system view implementation
as lines of codes counted with the cloc program. Comment and code columns show
the number of lines programmed rounded to the nearest tenth. As can be seen on the
table, most of the code base consists of QML and JavaScript code. This is because the
related C++ code is providing only the models that are used by the QML/JavaScript code,
and the functionality of the system view is more focused in the UI. The program code
programmed for other plugins besides the system view plugin is omitted from the table.

Table 6.1 Distribution of lines of program code of the system view implementation

Language Files Comment Code
C++ Header 7 850 520
C++ 6 200 1550
QML 41 840 3530
JavaScript 4 130 610
Summary 58 2020 6210

Microsoft Visual Studio (MVS) is used by default as a development environment in the
project, and its compiler, MSBuild, produces the necessary DLL files for the PC applica-
tion. Even with Qt add-in for MVS, MVS does not handle QML files very well. Because

6.1. Descriptions of C++ classes 48

QML files are programmed for the system view, Qt Creator is used for development. An-
other reason to use Qt Creator is that it also provides debugging and profiling of QML
documents. Profiling simply means analyzing QML and JS execution in QML document
[22]. The QML documents and the JS files related to the system view were profiled sev-
eral times, and the profiling helped to detect performance problems in the program code
and the problems were fixed immediately. Qt Creator uses MinGW compiler by default,
but with some configuring, custom builds can be used. Qt Creator was configured to use
MSBuild with the same build flags and options as in the MVS environment.

The memory consumption of the system view was measured with the resource monitor
provided by the Windows operating system. The memory consumption tests were com-
prehensive, including stress tests and long-term tests. Some memory leaks, which were
related to the ownerships of instances of Qt classes, were found and fixed.

6.1 Descriptions of C++ classes

This section describes the responsibilities of the C++ classes related to the system view.
All the C++ classes, except ISystemViewController interface and CSystemViewCon-
troller class, represent a model that is used by QML documents. The models implement
the model described in the MVD pattern.

ISystemViewController interface

The ISystemViewController interface provides the public interface used by the other
software components in the PC application. The following main functionalities are pro-
vided by the interface: opening the system view, adding/removing a system to/from the
system view, updating the current state of a module, retrieving the current state of a mod-
ule/system and emitting a signal if the state of a system is changed. CSVController imple-
ments the interface, and the plugin is loaded with a static LoadExtensionObject function
call provided by the AddinManager class. AddinManager keeps track of loaded plugins,
and if the plugin is already loaded, it returns a pointer to it. Otherwise, a new instance
of the loaded plugin is created. This procedure is very close to the Singleton design pat-
tern, in which only one instance of a class exists in an application and it can be accessed
globally [6].

The system view is opened by double-clicking the corresponding status bar item. An
instance of CGUI class, which implements IGUI interface, receives the mouse event and

6.1. Descriptions of C++ classes 49

calls the function that opens the system view. Currently, there is no use case for opening
the system view without user interaction, but one possible scenario could be opening the
view automatically when an upload is started.

When a user logs in to a system, the system is added in CSVController. All added systems,
which are pointers to an interface ISystem, are stored in a QHash class member variable.
ISystems are used as keys for corresponding model classes, CSVSystem classes, which
are initialized at the same time. ISystem is used as a key in the hash to partly implement
the multi-system support described in Section 5.2.2. Because of the multi-system support,
all the functions declared in the ISVController interface, except opening the view, require
ISystem as a parameter. When the user logs out from the system, the system is removed
from CSVController, and if the system view is open when the user logs out from the last
system, the view is closed.

The ISVController interface declares an enumeration class, named STATE, that represents
the possible states of a module. The values of the enumeration class are used in the system
view plugin, and in other plugins that are interested in the current states of the modules.
Another enumeration class, named SYSTEM_STATE, is declared to represent the possible
states of a system. A value of the enumeration is used as a function parameter when
CSVController emits the state change of the system, or as a return value when other
plugins explicitly query the state of a system.

CSystemViewController class

The CSystemViewController class inherits and implements ISVController and IVersion
interfaces. The implementation of the IVersion interface provides only version informa-
tion related to the system view plugin. In addition to functionalities described previously
in the ISVController interface, CSVController is responsible for creating instances of
QQmlEngine and QQuickWindow classes. QQmlEngine is a C++ class that is responsi-
ble for interpreting QML documents and JavaScript files in run time. QQuickWindow is
a C++ class that is used as a base window for the system view. Another interesting class
that is used by QQmlEngine is QQmlIncubationController class. QQmlIncubationCon-
troller is a C++ class that is responsible for creating QML objects asynchronously in
run time. QQmlIncubationController can be inherited in order to create a custom con-
troller, or the default QQmlIncubationController provided by QQmlEngine can be used.
Normally, when a QML document is constructed, contents of the document are built in
the caller thread, but with the QQmlIncubationController, QML documents are built in
another thread to prevent the GUI from freezing. [3]

6.1. Descriptions of C++ classes 50

When CSVController receives information about a state change of a module, it converts
the state to STATE enumeration value. The function that converts the state returns also a
tooltip as QString, to be used with the state. The tooltip and the enumeration values are
then processed in the corresponding CSVSystem instance where the module belongs.

As has been discussed, the PC application is used also for configuring the underlying au-
tomation system and its modules. The configuration of the system is stored as an XML
file, and to update the configuration, the user has to trigger a saving procedure which does
the actual modifications to the XML configuration file. To update the system view accord-
ingly, a signal from the plugin that is responsible for doing the actual saving of the XML
configuration is connected to CSVController. When this signal is received, CSVCon-
troller deletes the corresponding model, CSVSystem, which is used by QML documents
and creates a new one. This is a coarse way to update the view, but it is much easier to im-
plement because CSVSystem initializes modules, CAN buses and other configurable parts
related to the system from scratch. The initialization procedure is described in CSVSys-
tem description. A more fine-grained way of updating an instance of CSVSystem would
be to signal only the modified parts of the configuration during the saving procedure, but
it would require more complex implementation. Because all the views used in the PC
application and the configuration are based on XML, it is not trivial to parse the changed
parts. Execution time on reconstructing an instance of CSVSystem was measured with
QTimer: in debug without compiler optimizations, reconstruction was executed in less
than 50 ms, which is relatively fast in comparison with the saving process that is executed
in five to seven seconds.

CSystemViewSystem class

The CSystemViewSystem class represents a model that is used by QML documents.
When an instance of CSVSystem is constructed, it retrieves the information of the related
system from the current XML configuration of the system by using XPaths1. During the
initialization process, modules, CANopen devices, CAN buses and the CAN channel con-
nections of the modules are read from the XML configuration with XPath queries. The
CAN buses of the system are initialized first: the name and the baud rate of the bus are
read from the XML configuration. For each CAN bus read from the XML configuration,

1XPath makes accessing an XML document easier. In practice, XPath provides a tool for a programmer
to locate XML content within an XML document. When considering locating data in an XML document,
XPath functions perform faster than functions that are reading the document sequentially because the XPath
functions know about the nodes in the document. The nodes are chunks of information encapsulated within
the XML document. [17]

6.1. Descriptions of C++ classes 51

an instance of CSystemViewCANBus class, which represents a configured CAN bus, is
created. After this, the modules of the system are initialized. During a module initializa-
tion, the name, the maximum number of CAN channels for the module and the data that
represents whether the module is enabled or disabled are read. All the CAN channels that
are configured for a module and connected to any CAN bus of the system are initialized
at the same time. The connection of the CAN channel to any CAN bus is checked with
an XPath query that contains the IDs of the configured CAN channel and the configured
CAN buses.

Qt provides a dynamic property system that is based on Qt’s Meta-Object System. In the
property system, Q_PROPERTY macro is used to declare variables in a class that inherits
QObject class. The variables behave like class data members, but they have additional
features accessible through the Meta-Object System. As an example property, one of the
properties declared in CSVModule class is presented next. [24]

{

Q_PROPERTY(bool enabled READ enabled WRITE setEnabled

NOTIFY enabledChanged)

signals:

void enabledChanged();

private:

bool m_bEnabled;

}

The READ accessor function, named enabled, is used to read the current value of the
property named enabled. The WRITE accessor function, named setEnabled, is used to
set the property value, and the NOTIFY signal, named setEnabled, is emitted whenever
the value of the property changes. The signal has to be emitted explicitly if the value
changes but if a MEMBER type is declared in Q_PROPERTY macro, the signal is emit-
ted automatically by MOS. The property system also declares many other types that could
be used with the Q_PROPERTY macro, but the types are optional and not used in the im-
plementation of the system view. [24] The value of the enabled property is changed from
the enabled/disabled buttons, as described in Section 5.2.1, by clicking the buttons. When
CSVModule instance receives the signal from Module document about the change, CSV-
Module emits its own signal. This signal is received by the CSVSystem instance where
the CSVModule belongs. The CSVSystem object then modifies the XML configuration

6.1. Descriptions of C++ classes 52

of the system to change the value of the node that represents the enabled/disabled state of
a module.

The CSVSystem class declares many properties that are used mainly by the System QML
document. For example, a boolean property declared in a similar way as the enabled
property, named configAccess, is used to represent the value of the user access right to
the configuration side of the PC application. The value is constant, and it is received
from another plugin of the PC application. The value of the property is used to hide, for
example, the buttons that represent enabling and disabling modules.

CSystemViewMG class

The CSystemViewMG class implements the model used by ModuleGroup QML docu-
ment. It represents a module group model, and it stores only the same type of config-
ured modules that the CSVModule class represents. While initializing an instance of the
CSVMG class, the CAN channels for the instance are constructed. The CAN channels of
CSVMG are composed of all the CAN channels of the CSVModule instances that are part
of the CSVMG instance in a way in which the first CAN channel of CSVMG represents
all the first CAN channels of the CSVModule instances.

For each CAN channel constructed for CSVMG instance, an instance of CSystemView-
CANCh class is created. CSVCANCh class represents a CAN channel for both the
CSVMG and the CSVModule classes. If an instance of CSVCANCh is used by an in-
stance of CSVMG, the instance of CSVCANCh stores the CAN channels of the CSV-
Module instances that represent the same CAN channel, for example, the first CAN chan-
nel. The most important properties declared in the CSVCANCh class are tooltip and state
properties. The value of the tooltip property, which is QString type, represents a single
row shown in the UI for the CAN channels, as described in Section 5.2.1 and shown
in Figure 5.1. The value of the tooltip of a CSVCANCh instance is set to non-empty
string if the value of the state property, which is an enumeration class with CH_OK and
CH_OFF values, is changed. For example, if an instance of CSVMG represents an MCM
module group and one of the first CAN channels of MCMs transitions to the bus off state,
the value of the state property of corresponding CSVCANCh is changed to the CH_OFF
value. Then, CSVCANCh emits a stateChanged signal that is received by another in-
stance of CSVCANCh, which represents the CAN channels of CSVMG, and the value
of the first CAN channel of CSVMG is also set to the CH_OFF value. The CSVMG
class and the CSVModule class have a property named canChTooltip, which represents
the tooltip of all the configured CAN channels of CSVMG and CSVModule instances,

6.1. Descriptions of C++ classes 53

shown in the UI. The tooltip is composed of all the tooltips of the respective CSVCANCh
instances, and if the tooltip of CSVMG or CSVModule is changed, canChTooltipChanged
signal is emitted to notify the UI about the change.

Figure 6.1 presents the sequence diagram when the state of a CAN channel of a module
changes to the bus off state. Before the value of the state is received by a CSVModule in-
stance, the PC application has to be connected to the system. In addition, the CSVSystem
instance has set the values of the CAN channels to be observed by calling setPeriodicUp-
date function of the communication plugin. The communication plugin commands the
automation system to transmit the values of the CAN channel states of a module, in or-
der to emit a signal to the CSVModule instance whenever the state of a CAN channel
is changed. The instance of CSVCANCh updates the corresponding tooltip of the CAN
channel, and emits the stateChanged signal that changes the color of the CAN channel in
the UI to red, as seen in Figure 5.1.

Figure 6.1 Sequence diagram of the state transition of a CAN channel in the system view

Another important property, named showInView, represents whether the module group
should be shown as a group or as individual modules in the UI. The value of the property
is changed from the UI, and it changes the layout of the UI, as discussed in Section 6.2.

CSystemViewModule class

The CSystemViewModule class represents a model used for CANopen devices and other
modules in the automation system. The most important properties declared in the class are

6.2. Descriptions of QML documents 54

name, moduleState, type and tooltip properties. Name represents the configured UI name
of the module, moduleState represents the current state of the module, type represents the
type of the module and tooltip represents the tooltip, which shows additional information
about the current state, shown in the UI.

6.2 Descriptions of QML documents

This section describes the QML documents of the system view. The QML documents im-
plement the view described in the MVD pattern. Only the most relevant QML documents
related to the system view are briefly described.

main document

The main document declares the switching functionality between the list view and the
grid view. In QML documents, properties are declared in a different way than in C++
header files. For example, the property that is presented next, named gListViewActive,
represents whether the list view or the grid view should be shown in the system view.
If the value of a property changes, Qt’s Meta-Object System emits a signal about the
change to components, which are connected to listen to the change. The prefix g before
the property names means that the properties can be accessed globally from other QML
documents that are included in the main QML document. In QML, all the properties
declared in a parent QML document are accessible from the QML documents that are
included in the parent QML document as QML types. [3]

{

...

property bool gListViewActive: true

property var gController: controller

property var gSystems: gController.systems

...

}

The previously presented controller property is called a context property, and it is stored
in the main document’s property named gController. An instance of QQmlEngine has
a root context that stores, for example, all the context properties set for it. The context
properties in the root context are available in all the QML documents that are executed

6.2. Descriptions of QML documents 55

by the QQmlEngine. The context properties provide an easy access to C++ objects from
QML documents, but before a custom C++ object can be used in QML documents, the
object has to be declared with a qmlRegisterType function call to the Qt’s MOS. The
context property, controller, is stored in the root context of the QQmlEngine used in the
system view with, engine->rootContext()->setContextProperty("controller", this), func-
tion call. The first parameter is the name that is used to refer to the context property in
QML documents, and the second parameter is the object to which it refers. [3]

The gSystems property introduces another core feature used in QML documents, called
property bindings. A property binding specifies a relationship between different object
properties. The gSystems property is bound to the gController.systems property, which is
declared in the header file of CSVController as a QVariantList type property. Whenever
the systems property changes in value, meaning a new system is added or an old system is
removed from the QVariantList type member variable container, an instance of CSVCon-
troller emits a signal about the change. Then, the QML engine re-evaluates the binding
expression and applies the new result to the gSystems property. If a property is bound to a
property that is declared in a QML document, the QML engine automatically re-evaluates
the binding expression without the explicit emission of a signal because the QML engine
monitors the property’s dependencies. [23]

The main document declares the functionality for the loading animation described in Sec-
tion 5.2.3. Program 6.1 presents the QML component that declares the loading animation
shown in the UI, while asynchronously constructing different parts of the system view.
The property visible of the Image type and the property running of the RotationAnima-
tion type are bound to a Boolean property, named gLoading, which is declared in the main
document. Whenever a QML component begins creating content asynchronously for the
system view, it changes the value of the property to true. Then, the image used in the
animation starts rotating and is visible. Whenever the creation of the content is finished,
the value of the property is set to false and the image is hidden and the rotation animation
stopped.

{

...

BusyIndicator {

anchors.centerIn: parent

style: BusyIndicatorStyle {

indicator: Image {

6.2. Descriptions of QML documents 56

visible: gLoading

source: "qrc:/SystemView/icons/loading"

RotationAnimation on rotation {

running: gLoading

loops: Animation.Infinite

duration: 2000

from: 0; to: 360

}

}

}

}

...

}

Program 6.1. QML declaration of the loading animation shown in the UI

SystemView and SystemContent documents

The SystemView document implements the zooming functionality in the grid view and
navigating back from the module level or the module group level. The zooming function-
ality is simply implemented with the ScrollView QML type that provides the scrollbars
used in the view. In addition, it includes the SystemContent document and modifies its
scale property by a fixed or a floating number depending on how the zooming is per-
formed, as described in Section 5.2.3. The navigation is implemented by declaring a
property named viewNavigateBackHandler that is a reference to a function that does the
actual hiding and revealing of the different UI elements in the view. When activating the
module level or the module group level, the value of the property is changed to the corre-
sponding function that hides and reveals the UI elements when navigating back from the
module level or the module group level. When the back navigation button is pressed, the
function that the property currently refers to is called.

The SystemContent document is responsible for constructing the System documents that
present the UI of currently logged in systems in the grid view. The instantiation of Sys-
tem documents is executed in the system.js JavaScript file where an instance is created by
calling systemComponent.incubateObject function. The systemComponent is a Compo-
nent type variable created with a Qt.createComponent("System.qml") function call, and
it represents a template used to instantiate System documents asynchronously. The other
functions in the system.js file are used to control the layout of the system level view.

6.2. Descriptions of QML documents 57

System, ModuleContent, Module, ModuleGroupContent and ModuleGroup documents

The System document declares the UI of a single logged in system shown in the system
view. It uses an instance of CSVSystem as a model and uses its declared properties
to show, for example, if the PC application is connected to the system and what is the
current state of the system. The System document has two Loader QML types: one for
declaring the module level of the system and one for declaring the module group level of
the system. The Loader QML type is the easiest way to dynamically load content in run
time. It serves as a placeholder for the content that can be created when, for example, an
event is triggered by a user via the UI. [3] When a user clicks on a system in the grid view,
the Loader for the module level is activated, and it loads the ModuleContent document.
The ModuleContent document asynchronously instantiates a Module document for each
module of the system in the same way as the SystemContent document instantiates the
System documents. The JavaScript file related to the ModuleContent document is named
module.js, and in addition to creating the instances asynchronously, it handles the layout
for the module level presentation. The Module document declares a single module of the
system, and it shows the properties declared in the CSVModule class in the UI.

When the “View by groups” button, which was described in Section 5.2.3 and shown in
Figure 5.6, is clicked, the Loader for the module group level is activated and it loads the
ModuleGroupContent document. The ModuleGroupContent document asynchronously
instantiates Module and ModuleGroup documents in the same way as ModuleContent
instantiates Module documents. The JavaScript file related to the ModuleGroupContent
document is named moduleGroup.js, and in addition to instantiating the documents asyn-
chronously, it handles the layout for the module group level presentation. By default, if a
module group consists of more than two modules, it is shown as a group, and an instance
of ModuleGroup document is created. If name of the module group or the checkbox next
to it, shown in Figure 5.6, is clicked, an instance of the ModuleGroup document is cre-
ated, if it did not already exist. The ModuleGroup document declares the UI of a single
module group in the same way as the System document declares a system. The Module-
Group document has a Loader that loads a ModuleContent document if the module group
is clicked.

SystemViewListView document

The SystemViewListView document declares the list view that is shown in the system
view. The document declares a Row QML type and fills the row by using a Repeater
QML type that is used to create similar items. The Repeater takes the number of cur-

6.3. Showing the state transition of a module in the system view 58

rently logged in systems as a model and uses a ColumnLayout QML type to show the
systems next to each other as presented in Figure 5.3. A single system is declared with
a ListViewSystemHeader document and a TableView QML type. The ListViewSystem-
Header document uses other smaller documents that declare a single UI element, like
the connected/disconnected element, in the system header shown in the Figure 5.3. The
model property of the TableView is bound to the gSystems[index].modules property that
is a QVariantList type member variable declared in the CSVSystem class. The instance
of TableView declares all the modules of a system as a list, and the rows shown in the UI
are styled with delegate documents, bound to delegate properties of the QML types used
in the TableView.

6.3 Showing the state transition of a module in the system
view

The system view is mainly used to monitor the current state of the automation system.
The process of a state transition of a module and transmitting the state information to the
PC application were described in Chapter 4. Figure 6.2 presents a sequence diagram of
processing the state transition of a module in the system view. The instance of the CGUI
class is connected to a communication plugin that emits a signal if the state of a module
is changed. The instance of CGUI calls updateStatusInfo(ISystem *sys, quint16 id, quint8
state) function provided by the ISVController plugin, and the instance of CSVController
class converts the state parameter to a value of STATE enumeration, which was described
in Section 6.1. The function that converts the value returns a tooltip as QString to be used
with the state. Then, the CSVController finds the instance of CSVSystem from the QHash
with the sys parameter, where the module belongs.

After the corresponding CSVSystem instance is found, CSVController calls setMod-
uleState(quint8 id, STATE state, const QString &tooltip) function of the CSVSystem in-
stance. The CSVSystem class has a QHash member variable for all the modules in a
system, and the CSVSystem instance finds the instance of CSVModule from the QHash
by id parameter and calls its function setState(STATE state, const QString &tooltip). If
the value of the m_eState, which represents the current state of the corresponding sys-
tem module, member variable of the CSVModule instance is changed, it updates the
member variables m_eState and m_sTooltip. First, the CSVModule instance emits the
stateChanged signal. The Qt’s MOS calls all the functions that are connected to the sig-
nal, and the QQmlEngine instance re-evaluates the values of the properties bound to the

6.3. Showing the state transition of a module in the system view 59

Figure 6.2 Sequence diagram of the state transition of a module in the system view

moduleState property, which is the property declared in the CSVModule representing the
current state of the module.

An instance of the Module document uses the moduleState property in states property,
which is a pre-defined QML property. The states property, which is declared in the Mod-
ule document, contains all the possible states for the module shown in the UI, wrapped
in State QML types. As an example, declaration of the bootloader state in the Module
document is shown in Program 6.2. Whenever the value of the moduleState property is
changed to ISystemViewController.BOOTLOADER value, the text and the color of the text
shown on the module in the UI are changed by the PropertyChanges objects. The state
of the Module document remains the same until the value of the moduleState property is
changed. The System and the ModuleGroup documents declare the states property sim-
ilarly to the Module document. The instances of the the ModuleGroup and the System
documents updates their respective UI elements once the QQmlEngine has re-evaluated
the properties changed in the instances of CSVMG and CSVSystem classes. The instance
of CSVMG is connected to the stateChanged signal emitted by CSVModule, and the
instance of CSVSystem is connected to the stateChanged signal emitted by CSVMG.

{

...

states: [

State {

name: "bootloader"; when: moduleObject.moduleState

=== ISVController.BOOTLOADER

6.3. Showing the state transition of a module in the system view 60

PropertyChanges{target: centerTxt; color: blColor}

PropertyChanges{target: centerTxt; text: blStr}

},

...

]

...

}

Program 6.2. Declaration of the bootloader state in the Module document

When the value of the m_eState member variable, declared in CSVSystem, is changed,
CSVSystem also emits stateChanged(SYSTEM_STATE state, ISystem*) signal, which is
connected to CSVController instance, and the CSVController directly emits its own signal
of the state change that matches with the declaration in the ISVController interface. The
signal emitted by CSVController is used by other plugins, such as the status bar, to receive
the changed state of a system.

61

7. EVALUATION

This chapter evaluates the set and realized goals of the thesis and discusses future im-
provements to the system view. Qt Quick user interface technology was chosen to im-
plement the next generation of the system status view, and it proved to be very mature
technology in terms of rapid UI development, ease of use and modern UIs. The customer
was satisfied with the outcome of this thesis, and internal feedback was very positive.

7.1 Realized goals

All the goals that were set in Chapter 3 were realized. During the development, the current
work was presented a few times for the customer to receive feedback, and the customer
also had different variations of the system view in internal use before the final release.
The current version of the system view was taken into use in December 2015. However,
minor bug fixes and functionalities were implemented until March 2016. Wapice’s em-
ployees had the system view in internal use for the whole implementation time, and a lot
of advisable feedback and suggestions were given by the co-workers in the same project.
Table 7.1 summarizes the set and realized goals of the thesis. The numbers shown in the
table reference the section where the goals were described.

Table 7.1 Set and realized goals of the thesis

Number Goal Realized
3.1 Basic functionalities Yes
3.2 List view and multi-system support Yes
3.3 Usability and performance Yes
3.4 Support for CANopen devices Yes

Some functionalities described in Chapter 3 were implemented a bit differently from what
was originally intended. The upload progress bar was replaced with an upload animation
just to indicate an ongoing upload in the system view, and the currently used upload dialog

7.2. Future improvements 62

is still shown to indicate the detailed upload progress. Also the connection status and the
state of a system shown in Figure 3.2 were separated as individual UI elements.

7.2 Future improvements

Currently, CPU and RAM usage are monitored with monitor windows that read the values
of the DC codes mapped to the related system parameters. Values of the CPU and RAM
usage of a module could easily be fetched by the system view in the same way as data is
fetched for CANopen devices. Interpretation of CPU and RAM usage could be as simple
as a percentage number, but also more advanced figures such as gauges could be used.

Section 5.2.1 explained that the system view can also be used to do some configuring of
the system. Enabling and disabling modules and the possibility to select a module were
implemented as an example to introduce the possible concept of using the system view
also for configuring the system. Because the system view already takes into account dif-
ferent user access rights by disabling provided functionalities related to the configuration
side of the PC application, it is quite straightforward to extend the configuration side of
the system view. The system view could be used to add, remove and configure modules,
to configure the CAN buses of the system and the CAN channel connections between
modules and CAN buses. There could be an extensible side bar shown when a module
is selected, and it would show all the configurable information of that specific module
that normally would be configured from the XML based views in the PC application. A
selected module could be deleted with a button that could be added next to the enable/dis-
able button of a module. Modules could be added by right-clicking the canvas where the
modules are currently shown. Making the CAN connections for a module could be as
easy as a drag-and-drop event from a non-existing CAN channel to a CAN bus.

The system view could be used to start the actual upload process to the system. As
mentioned in Section 7.1, the system view just shows an upload animation when the
upload progress is ongoing. The upload functionality could be re-factored and enhanced
to use the system view. Then the progress bars above/below modules would be a better
option than the currently shown animation, and if a module was clicked, it could show the
detailed information about the upload progress for the module.

When using the system view for monitoring the status of a system, it does not provide
enough information to do detailed diagnostics of modules that are not functional. Chapter
4 discussed that if a module encounters a failure from any source, a log message is sent to

7.2. Future improvements 63

the PC application. The log window is still the main window used to see why the system
is not working as configured. To improve the system view, some kind of middleware
component between the log window and a message handler could be implemented. This
component could parse diagnostics information and utilize the system view to show the
information directly as a module related information in the view. The log window can
easily be flooded with all the other log messages sent by the system, so it would be
necessary to parse only the critical information that informs the end user what is wrong
in the system.

Another interesting improvement could be to utilize 3D graphics. A system could be
presented as a 3D model that could show the actual automation system. This would
remove the need for the 2D navigation system that was implemented. A 3D model could
be viewed in different angles and the modules could be placed on the actual location in the
automation system, which would help the end user to locate a failed module immediately.

64

8. CONCLUSION

This thesis described a high level structure of an industrial automation system and ex-
plained the automation system diagnostics with a few detailed examples. The design
and implementation of the system view are comprehensively discussed and the realized
system view has been put to use by the customer.

The system view was designed and implemented during the autumn of 2015. The budget
set by the customer translates to around 600 hours of work, and the main purpose was
to make the basic functionalities work flawlessly and to provide an easily maintainable
code base for future work. One of the most challenging parts of the actual implementation
was to integrate the system view plugin with other plugins in the PC application. During
the development, several problems caused by using multiple QQmlEngines in one project
were encountered and solved.

8.1 Thesis process

The thesis process was started with the design and implementation of the system view.
The initial concept described in Chapter 3 was extended in the autumn of 2015, and a
proposal to the customer was presented. The customer set the budget, and after that, de-
signing and prototyping the system view was started. I saw this as a great opportunity to
improve my competence in C++/Qt/QML area, and I was really excited about the work.
It could be thought of as a mini-project required by the customer, and I could work inde-
pendently for the whole autumn. Obviously, my co-workers advised me in many things
in the early phases, but it was nice to realize that at the end of the implementation I could
share my knowledge of the things learned during the whole implementation process.

The writing process started in March 2016, and it set quite a strict schedule for the writing
part of this thesis. This schedule helped me to write the thesis intensively, but perhaps
there could have been some comparison to other existing automation systems that use
some sort of status monitoring. The most problematic part of the writing process was to

8.1. Thesis process 65

limit the scope and to discuss only the relevant parts of the automation system. In the end,
the thesis process was entirely successful: the design and implementation of the system
view is thoroughly described, and the diagnostics of the related automation system and
background of it are comprehensively discussed.

66

BIBLIOGRAPHY

[1] P. Aksoy and L. Denardis, Introduction to information technology in theory.
Boston, Mass, 2008, p. 80, ISBN: 9781423901402.

[2] B. Benz and J. Durant, XML Programming Bible. Wiley Publishing, Inc, 2003, pp.
3–7, ISBN: 0764538292.

[3] J. Bocklage-Ryannel and J. Thelin, Meet Qt 5, c© 2012–2014, Available: http://
qmlbook.github.io (accessed on 25.4.2016).

[4] DENX Software Engineering, Das U-Boot – the Universal Boot Loader, c© 2002–
2016, Available: http://www.denx.de/wiki/U-Boot (accessed on 4.4.2016).

[5] Digia Plc, Qt Language Bindings, c© 2016, Available: https://wiki.qt.io/Category:
LanguageBindings (accessed on 25.4.2016).

[6] A. Ezust and P. Ezust, Introduction to Design Patterns in C++ with Qt 4. Prentice
Hall, 2007, p. 361, 392, ISBN: 0131879057.

[7] J. Ganssle [editor], S. Ball et al., Embedded Systems: World Class Designs.
Newnes, 2007, pp. 247–249, ISBN: 9780750686259.

[8] Kvaser, CAN Protocol Tutorial, c© 2014, Available: https://www.kvaser.com/
can-protocol-tutorial/ (accessed on 17.4.2016).

[9] J. Laurikainen et al., State Machine, Technical Specification, Wapice, 2010–2016,
Wapice’s internal material.

[10] R. Loyd, Electrical Raceways & Other Wiring Methods. Delmar Cengage Learning,
2004, p. 51, ISBN: 9781401851835.

[11] Microsoft, What is a DLL?, c© 2016, Available: https://support.microsoft.com/
en-us/kb/815065 (accessed on 27.4.2016).

[12] M. Natale, H. Zeng, P. Giusto, and A. Ghosall, Understanding and Using the Con-
troller Area Network Communication Protocol. Springer-Verlag, 2012, pp. 1–13,
22–25, ISBN: 9781461403135.

[13] National Instruments, The Basics of CANopen, c© 2016, Available: http://www.ni.
com/white-paper/14162/en/ (accessed on 18.4.2016).

http://qmlbook.github.io
http://qmlbook.github.io
http://www.denx.de/wiki/U-Boot
https://wiki.qt.io/Category:LanguageBindings
https://wiki.qt.io/Category:LanguageBindings
https://www.kvaser.com/can-protocol-tutorial/
https://www.kvaser.com/can-protocol-tutorial/
https://support.microsoft.com/en-us/kb/815065
https://support.microsoft.com/en-us/kb/815065
http://www.ni.com/white-paper/14162/en/
http://www.ni.com/white-paper/14162/en/

BIBLIOGRAPHY 67

[14] R. Oshana and M. Kraeling, Software Engineering for Embedded Systems. Newnes,
2013, pp. 26–27, ISBN: 9780124159174.

[15] O. Pfeiffer, A. Ayre, and C. Keydel, Embedded Networking with CAN and CANopen.
Copperhill Media Corporation, 2008, pp. xv–xviii, 30, 83–85, 101, ISBN:
9780976511625.

[16] R. Rischpater, Application Development with Qt Creator. Packt Publishing, 2013,
pp. 7–9, 45, ISBN: 9781783282319.

[17] J. Simpson, XPath and XPointer. O’Reilly & Associates, Inc., 2002, pp. vii, 11–12,
ISBN: 0596002912.

[18] The Qt Company, The Framework & Tools, c© 2016, Available: http://www.qt.io/
qt-framework/ (accessed on 25.4.2016).

[19] The Qt Company, How to Create Qt Plugins, c© 2016, Available: http://doc.qt.io/
qt-5/qtwebengine-overview.html (accessed on 27.4.2016).

[20] The Qt Company, The Meta-Object System, c© 2016, Available: http://doc.qt.io/
qt-5/metaobjects.html (accessed on 5.5.2016).

[21] The Qt Company, Models and Views in Qt Quick, c© 2016, Available: http://doc.qt.
io/qt-5/qtquick-modelviewsdata-modelview.htmll (accessed on 5.5.2016).

[22] The Qt Company, Profiling QML Applications, c© 2016, Available: http://doc.qt.io/
qtcreator/creator-qml-performance-monitor.html (accessed on 27.4.2016).

[23] The Qt Company, Property Binding, c© 2016, Available: http://doc.qt.io/qt-5/
qtqml-syntax-propertybinding.html (accessed on 12.5.2016).

[24] The Qt Company, The Property System, c© 2016, Available: http://doc.qt.io/qt-5/
properties.html (accessed on 10.5.2016).

[25] The Qt Company, Qt Application Development, c© 2016, Available: https://www.qt.
io/qt-for-application-development/ (accessed on 25.4.2016).

[26] The Qt Company, Qt WebEngine Overview, c© 2016, Available: http://doc.qt.io/
qt-5/qtwebengine-overview.html (accessed on 25.4.2016).

[27] The Qt Company, Signal and Handler Event System, c© 2016, Available: http://doc.
qt.io/qt-5/qtqml-syntax-signals.html (accessed on 5.5.2016).

http://www.qt.io/qt-framework/
http://www.qt.io/qt-framework/
http://doc.qt.io/qt-5/qtwebengine-overview.html
http://doc.qt.io/qt-5/qtwebengine-overview.html
http://doc.qt.io/qt-5/metaobjects.html
http://doc.qt.io/qt-5/metaobjects.html
http://doc.qt.io/qt-5/qtquick-modelviewsdata-modelview.htmll
http://doc.qt.io/qt-5/qtquick-modelviewsdata-modelview.htmll
http://doc.qt.io/qtcreator/creator-qml-performance-monitor.html
http://doc.qt.io/qtcreator/creator-qml-performance-monitor.html
http://doc.qt.io/qt-5/qtqml-syntax-propertybinding.html
http://doc.qt.io/qt-5/qtqml-syntax-propertybinding.html
http://doc.qt.io/qt-5/properties.html
http://doc.qt.io/qt-5/properties.html
https://www.qt.io/qt-for-application-development/
https://www.qt.io/qt-for-application-development/
http://doc.qt.io/qt-5/qtwebengine-overview.html
http://doc.qt.io/qt-5/qtwebengine-overview.html
http://doc.qt.io/qt-5/qtqml-syntax-signals.html
http://doc.qt.io/qt-5/qtqml-syntax-signals.html

BIBLIOGRAPHY 68

[28] The Qt Company, User Interfaces, c© 2016, Available: http://doc.qt.io/qt-5/
topics-ui.html (accessed on 25.4.2016).

[29] W3C, HTML & CSS, c© 2016, Available: https://www.w3.org/standards/webdesign/
htmlcss.html (accessed on 26.4.2016).

[30] W3C, JavaScript Web Apis, c© 2016, Available: https://www.w3.org/standards/
webdesign/script.html (accessed on 26.4.2016).

[31] K. Yaghmour, J. Masters, G. Ben-Yossef, and P. Gerum, Building Embedded
Linux Systems: Edition 2. O’Reilly Media, Inc., 2008, pp. 273–277, ISBN:
9780596555054.

[32] R. Zurawski [editor], A. Valenzano, and G. Cena, Networked Embedded Systems.
CRC Press, 2009, pp. 15-1–15-38, ISBN: 9781439807613.

http://doc.qt.io/qt-5/topics-ui.html
http://doc.qt.io/qt-5/topics-ui.html
https://www.w3.org/standards/webdesign/htmlcss.html
https://www.w3.org/standards/webdesign/htmlcss.html
https://www.w3.org/standards/webdesign/script.html
https://www.w3.org/standards/webdesign/script.html

	INTRODUCTION
	BACKGROUND AND ENVIRONMENT
	Currently used system status view

	GOALS OF THE THESIS
	Basic functionalities
	List view and multi-system support
	Usability and performance
	Support for CANopen devices

	SYSTEM DIAGNOSTICS
	States of the state machine
	Bootloader
	Initialization state
	Pre-operational state
	Operational state
	Test state
	Stopped state

	Diagnostics of CANopen devices
	CAN channel failure handling
	Transmitting states of the modules to the PC application

	ARCHITECTURE AND DESIGN OF THE SYSTEM VIEW
	Qt Quick, Qt WebEngine and Qt Widgets
	Design of the system view
	Basic functionalities
	List view and multi-system support
	Usability and performance
	Support for CANopen devices

	Architecture of the system view

	IMPLEMENTATION OF THE SYSTEM VIEW
	Descriptions of C++ classes
	Descriptions of QML documents
	Showing the state transition of a module in the system view

	EVALUATION
	Realized goals
	Future improvements

	CONCLUSION
	Thesis process

	BIBLIOGRAPHY

