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This thesis introduces Nokia Co-processor (COP) and universal veri�cation method

(UVM) based veri�cation environment for it. COP scales from a very small one

threaded 32-bit processors up to a 128-bit and 16 threaded processors. COP alone

can be used for example as a direct memory access accelerator, but by adding

hardware accelerators, the COP can turn into a very e�ective engine for many

di�erent applications.

COP is a legacy IP from Nokia's previous system on chip (SoC) organization. Re-

cently is has been updated to accommodate the needs of SoCs nowadays. Due to

major changes, COP's legacy veri�cation environment became unusable. Thus, a

proper veri�cation environment had to be developed.

A proper veri�cation environment is crucial for IP blocks, as it proves that block

meets the set requirements. An IP block cannot be taken to new SoC designs if it

is not properly veri�ed.

During this thesis project a new UVM based COP veri�cation environment was

created and it is introduced in this thesis. The environment has lots of veri�cation

IP's (VIP) and some of them are third party VIP's. Many of the parts are developed

for this particular veri�cation environment, such as: COP C++ reference model,

COP instruction generator, Auxiliary unit VIP and COP assertion module.

COP veri�cation environment is created and lots of test cases are done. The veri�-

cation is not completely done yet, though. More features must be covered to achieve

veri�cation closure.

Most important result of developing a new veri�cation environment for COP is that

Nokia Co-processor is adopted to be used in new SoC designs and COP related

development and research projects can be initiated.
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Tämä diplomityö esittelee Nokia Co-prosessorin (COP) ja sille tehdyn UVM-pohjaisen

varmennusympäristön. COP skaalautuu helposti pienestä yhden säikeen 32 bittis-

estä prosessorista 128 bittiseen, 16 säikeiseen prosessoriin. Pelkkä COP soveltuu

erittäin hyvin esimerkiksi datasiirtimeksi, mutta COP:in saa muokattua helposti

monenlaiseen käyttöön lisäämällä kiihdytinyksikköjä.

COP on peräisin Nokian edellisestä järjestelmäpiiriorganisaatiosta ja sitä on päivitetty

vastaamaan nykyisten järjestelmäpiirien tarpeita. COP:in vanha varmennusymäristö

ei toimi muutosten takia ja vaatisi suuria muutoksia. Tästä syystä oli selvä tarve

uudelle kunnolliselle varmennusympäristölle.

Varmennusympäristö on erittäin tärkeä IP-lohkoille, koska varmennuksella pyritään

todistamaan, että lohko vastaa sille annettuja vaatimuksia. IP-lohkoa ei voida ottaa

käyttöön uusiin järjestelmäpiireihin, jos varmennusta ei ole suoritettu.

COP:ille kehitettiin uusi varmennusympäristö tämän diplomityöprojektin aikana ja

diplomityö esittelee kyseistä varmennusympäristöä. Ympäristö sisältää runsaasti

kolmannen osapuolen varmennus-IP:itä. Monet muista tämän varmennusympäristön

osista on tehty tätä ympäristöä varten. Niistä esimerkkinä COP C++ referenssi-

malli, COP käskygeneraattori, kiihdytin VIP ja COP assertiomoduuli.

COP ei ole vielä täysin varmennettu vaikka COP varmennusympäristö ja paljon

testejä on jo tehtynä. Uusia testejä pitää vielä tehdä, ennen kuin testien kattavuus

on riittävällä tasolla, että varmennus voidaan todeta valmiiksi.

Varmennusympäristön tekemisen tärkein tulos on, että Nokia Co-prosessori on voitu

ottaa mukaan uusien järjestelmäpiirien kehitykseen ja COP:iin liittyvä kehitystyö on

mahdollista.
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1. INTRODUCTION

This Master's thesis is done for Nokia Networks in Nokia's Tampere site. Nokia

started again, after many years a system on chip (SoC) organization which started

designing new SoC designs basically from scratch. There was some legacy compo-

nents from the old SoC organization but those were outdated in many cases.

There was Nokia Co-processor (COP) amongst the legacy components. To accom-

modate to the needs of today's SoC architectures, for example bus interfaces of the

COP were changed to ARM Advanced Microcontroller Bus Architecture (AMBA)

compatible interfaces.

A legacy COP veri�cation suite was outdated as well. It was not possible to compile

the veri�cation suite with latest versions of register-transfer level (RTL) simulation

tools even though many makes and versions was tried out. The changes in the bus

interfaces would have also impacted major changes to the legacy COP veri�cation

suite.

A problem is that there is no readily available solution for veri�cation of the updated

COP version. Some of the functionality can be veri�ed with an old simulator version

and other functionality in integration veri�cation at SoC top level. It is evident, that

it can be only a temporary solution which does not work in long term.

COP needs a veri�cation environment which can verify all the functionality of the

processor. The veri�cation environment shall support further development of new

features to the COP, development of COP peripherals as well as other COP re-

lated activities such as software development and high-level programming language

compiler development.

In this thesis, a general idea of SoC designs and justi�cation for using SoC concept

is provided in Chapter 2.

About Veri�cation concepts, methods and reasoning why veri�cation is needed is

discussed in Chapter 3.

Reduced Instruction Set Computing (RISC) processors are introduced in a Chapter

4. The chapter is also introducing the Nokia Co-processor.



2

Universal Veri�cation Methodology (UVM) test environment creation for COP pro-

cessor is explained in Chapter 5.

Results and further development and improvement ideas are introduced in Chapters

6 and 7.
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2. SYSTEM ON CHIP

A system on chip (SoC) is an integrated circuit (IC) which contains an entire elec-

tronic system such as a computer or a more specialized device. Typically SoC

designs include central processing unit (CPU), memory, hardware accelerators, in-

puts/outputs (I/O), and other components on a single chip (see Figure 2.1). In

addition to digital components, it is possible to have on-chip mixed-signal compo-

nents such as analog-to-digital (ADC) and digital-to-analog (DAC) converters and

phase-locked-loops (PLL). [3]

High-speed bus interconnect

Bus bridge

Low-speed bus interconnect

CPUDMA RAM

DDR 

Memory 

controller

Peripheral 

subsystem

DDR 

Memory

I/O

PLL

GPIO

Bus bridge

.

.

.

. .

. . .

.

.

Boundary 

scan

Power 

Management

Figure 2.1: Typical SoC block diagram

There are clear bene�ts of �tting large system inside one chip. For example, price of

end product is reduced as there is no multiple chips to be sourced, assembled, and
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their supporting circuitry such as clocking, power, �ltering is not needed. Printed

circuit board (PCB) for the design can be also smaller.

Other bene�ts come from close proximities of each component. The inter-component

latencies are smaller and clock frequencies can be higher. Higher clocking frequency

improves performance of the system.

SoC's can be made either on Field-Programmable Gate Arrays (FPGA) or on Appli-

cation Speci�c Integrated Circuits (ASIC). FPGA is a re-programmable chip whereas

ASIC cannot be modi�ed after it is fabricated. In order to make changes, such as

bug �xes, to ASIC hardware, a new design spin must be done. One ASIC design

spin costs a lot of time and money.

FPGA supports quicker time-to-market but there are limitations with maximum

clock frequencies, power consumption and price. For example, it is not possible to

make competitive mobile phones with FPGA SoC's due to all of these limitations.

ASIC's must be used in that kind of most demanding applications. Comparison

between ASICs and FPGAs can be found in Section 2.3.

2.1 SoC Technology Evolution

Silicon foundries keep on shrinking the physical dimensions of silicon structures

that can be realized on an IC. The circuit capacity and performance are increased

by the shrinkage. Moore's Law states that the number of logic gates which can be

integrated in single chip doubles in every 18 months. As more logic gates are added

to the devices, the productivity related issues are also present. Increasing demand

for productivity a�ects both design and veri�cation. [3]

The tendency that productivity increase of design engineers can not keep up with the

speed of IC evolution, is called design productivity gap (Figure 2.2). IC technologies

evolve to smaller logic gates which permits more and more gates into a single chip.

New methodologies are needed to help the designers.

Similar productivity gap is between design complexity and veri�cation. Methodol-

ogy improvements and re-using are keys to get the gap smaller.
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Gates/Hour Gates/Chip
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Figure 2.2: Design Productivity Gap

Adding more and more engineers is not a viable option in long term. The design

teams can not be expanded too large. At some point the overhead of the needed

coordination between each designer approaches the point where design team's head

count increase does not increase productivity.

Hierarchical design helps to �ght the overhead of large design teams. The design

is split into small, possibly re-usable blocks and each block has a designated design

engineer who is responsible for the block. The hierarchical design (for example in

Figure 2.3) consist of layers within the design. Top level is for connecting subsystems

and blocks. Subsystems have connections of blocks within the subsystem. When

looking the design in one level, the visibility is restricted. With hierarchical design

�ow, the whole SoC design can be partitioned into meaningful functional subsystems

which gives good abstraction.
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Top
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IP IP

IP IP

Subsystem 2

IP IP

IP

Subsystem 3

IP

IPIP

IP

IP IP
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Figure 2.3: Hierarchical design example

Design reuse integrates pre-existing blocks with newly created blocks. This aides

the development in two ways. First, since one or more of the blocks have been

pre-designed, the amount of original design work is reduced. Secondly, since pre-

designed blocks have been pre-certi�ed or validated, they can be viewed as black

boxes and need not be revalidated. [3]

Di�cult challenges related to the shrinkage of the silicon structures are related

to timing closure, capacity and physical properties [3].The timing closure means

the process where the design is changed to meet the timing requirements. Timing

requirements are tighter when the clock speeds are higher.

As it is possible to integrate tens and hundreds of millions of gates onto a single

IC, it introduces signi�cant capacity challenges to many of the tools in the design

�ow. To manage this level of complexity, the design systems must adopt hierarchical

design and design reuse as solutions. [3]

2.2 SoC Development

SoC development cycle (Figure 2.4) starts by collecting customer requirements. The

customer can be in the same company or external. General speci�cations and ar-

chitecture documentation can be created after the requirements are collected. The
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requirements should not restrict the implementation too tightly into one speci�c

way of implementation. It is up to the architect which kind architecture the design

will have.

General 

Specifications 

and Architecture

High Level Chip 

Design

Physical Circuit 

Design

HDL 

Implementation

Fabricated Chip

Customer 

Requirements

Functional 

Verification
Fixes to 

RTL

Figure 2.4: Chip Design Process

Components on the SoCs are called IP blocks. IP blocks are developed separately

and allow re-usability. General purpose IP blocks can be re-used in more specialized

IP blocks, subsystems and design top level. When the same IP block is used in

multiple projects, there is no extra veri�cation e�ort needed.

HDL implementation includes IP block design and veri�cation as well as top level

integration and top level veri�cation. There might be additional layers of hierarchies

or subsystems which are integrated and veri�ed separately before top-level work.

Functional veri�cation gives feedback about quality and maturity of an IP to the

design engineer. When the veri�cation is ready and design is ready, the �ow proceeds

to physical circuit design. It includes placing of the components, their connections

and so on. Then SoC is ready for fabrication. There is also veri�cation involved in

physical circuit design and testing in prototyping phase of fabricated chip.
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Figure 2.5: Abstraction layers of the design �ow [1]

As shown in the Figure 2.5, there are two aspects in the design �ow: logical design

and physical design. The design �ow starts with logical design which describes how

the design shall work. The design is entered into a SoC design system. Outcome of

this phase is a design entry.

Second phase in logical design is a logic synthesis where hardware description lan-

guage and synthesis tools produce a netlist. The netlist is a description about logic

cells and their connections. This is where physical design starts to come into play.

It is still related to logical design as well. System partitioning is needed if the design

is so large that it has to be split on more chips than one.[4]

To verify that the timing requirements are met, a physical layout, netlist has to be

created. The delays are calculated from the layout. Depending on the distances of

IP the bocks the lengths of their connections vary. As the reference clock frequencies

get higher, the timing requirements get more di�cult to achieve. If the requirements

are not met on the �rst time, more optimizations need to be done on either layout

or in IP blocks.
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Tape-out is the �nal result of the design cycle, a spin. The tape-out means that the

layout of the SoC design is sent to IC manufacturer.

Then there is a lead time the IC manufacturer needs for producing sample chips

after the tape-out. First, a batch of samples are created for testing of the SoC and

for prototyping. If there is no fatal bugs found during testing and prototyping in

the SoC design, no re-spin of design cycle is needed and the SoC is good to go for

higher volume production.

2.3 SoC Economics

In addition to technology limitations of FPGAs, there is also economical aspect

which supports ASICs (in certain cases) for SoC usage. FPGAs are relatively cheap

to design (Non-Recurring Engineering (NRE)) and the time-to-market is quicker.

A drawback is a high part cost. In high volume production, the part cost is where

most of the savings can be made, because once happening design cost is divided

with large number of parts.

A Figure 2.6 shows that it is possible to �nd a number of parts when FPGA be-

comes as costly as ASIC, and ASIC is cheaper after that number. The number is

called break-even volume. Depending of the intended volume of a product is can be

estimated whether the design should be made on an FPGA or an ASIC.

0

500000

1000000

1500000

2000000

2500000

3000000

0 100ASIC FPGA Number of parts

Cost
of
parts

Break-even
volume

↘

FPGA is cheaper ← → ASIC is cheaper

Figure 2.6: Break-even volume
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Costs can be divided in two categories. Fixed and variable costs. Fixed costs

are there even with one produced SoC unit so �xed costs are initial values in an

example Figure 2.6 on both lines. Variable costs are depending on number of sold

parts. There is also third category of indirect design costs. They are lead time and

time-to-market.

Fixed part costs include of non-productive work such as trainings of design personnel

for usage of the design tools, programming languages, methodologies and design

�ows as well as SoC project related productive work. There is also hardware and

software (EDA system) costs as �xed cost. Cost of salaries depend on the number

of engineers and their productivity.

Variable part costs are proportional to the number of the sold parts.

Cost of time-to-market can be seen as loss of pro�t during the time before the prod-

uct is available in market. Competitors might have sold their alternative products

to possible customers. Those customers may not buy other similar product from

di�erent producer again in the near future. The e�ect of weak time-to-market is

shown in Figure 2.7. Loss of being late in market is the area between the lines of

weak and strong time-to-market. Total sales of late arriving products are expected

to be lesser compared to a product which is available in timely manner. [5]

Time

Feasibility Growth Maturity Decline End of life

€
Weak

Strong

Figure 2.7: Time-to-market

E�ect to the cost of lead time is similar as with time-to-market and it contributes

as part of time-to-market. Lead time means the time needed for an ASIC factory

to produce chip. Lead time is a latency from the time when the SoC design is given

to the ASIC factory to the time when the fabricated chips arrive from the factory.

Normal lead time is 4 to 8 weeks. FPGAs does not have similar lead time as ASICs

have.
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The technology selection is a trade-o� between many factors. The optimum selection

is not always easy to �nd. Table 2.1 shows where di�erent technologies are good at.

FPGA ASIC

Tailored Masks 15 or more

Area Best ( smallest )

Speed Best ( fastest )

Power Best ( minimal )

NRE Cost Best ( smallest )

Per-part Cost Best ( smallest )

Design cost Best ( easiest )

Time-to-market Best ( shortest )

Table 2.1: Summary of SoC technologies [2]

In general, FPGAs are better for prototypes and low volume products as there is

low NRE, large part cost and small lead time. ASICs are better for large volume

products because of high NRE, small product cost and large lead time. [2]
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3. VERIFICATION

3.1 Introduction

The ultimate reason for veri�cation is to ensure that the design meets the functional

requirements as speci�ed in functional speci�cations [3].

SoC development cycle (Figure 2.4) starts by collecting customer requirements. It

does not matter whether the customer is in the same company or is it external.

The general speci�cations and architecture can be created after the requirements

are collected. Veri�cation �ow (Figure 3.1) can start as soon as the speci�cation

and architecture documentation is available.

Functional 

Specification

Create 

Verification Plan

Develop 

Verification 

Environment

Debug HDL and 

Environment

Run Regression 

Test

Debug 

Fabricated 

Hardware

Perform Escape 

Analysis

HDL 

Implementation

Fixes

to

HDL

Plan Review

Tape Out Readiness

Lessons

Learned

Figure 3.1: Veri�cation Cycle
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According to Rashinkar et al [3], the veri�cation of a SoC devices takes usually 40

to 70 percent of total development e�ort for the design. In time-to-market, the

veri�cation plays a very signi�cant role.

Veri�cation work must be well planned and organized. Otherwise it is impossible

to say and prove that the veri�cation is ready. Features to be veri�ed shall be

stated clearly and completeness of the veri�cation needs to be tracked as well as

implementation errors of the design. If either one of two, veri�cation or design, is

not ready, the design can not be considered as ready for the tape-out.

The state space of the SoC designs is so huge today that exhaustive veri�cation

of everything is not possible. Formal veri�cation of whole design is not possible.

Regardless of these truths, the designs need to tape-out and there must be some

criteria to be used to determine when the veri�cation is done. [1]

As in Albin's paper [1], some of these criteria can be for example:

• 40 billion random cycles without �nding a bug

• directed tests in veri�cation plan completed

• source and/or functional coverage goals met

• diminishing bug rate

• a certain date on the calendar reached

The hardware design of a SoC can't be altered after tape-out. If there is a bug, the

system may not boot or the usage can be somehow otherwise limited. Each spin

you have to make changes to the design and having a new tape-out is going to cost

a lot. Naturally the wasted time during re-spin impacts to time-to-market as well.

In order to make a functional device, all the parts which are intended to be used

must work correctly. How can we ensure everything works? It is easy to answer.

Everything has to be veri�ed before tape-out. It depends on the application how

do we de�ne �the everything� and what exclusions do we allow. The scope of the

veri�cation must be set clearly to veri�cation strategy and plan documents.

The needed amount of work and money is reduced when the design bugs are found

early. Sooner the better. Best is that all the design bugs are found in IP veri�cation.

IP veri�cation must have 100% coverage. When veri�cation closure for an IP is
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done, the IP is proven bug free. Integration and system level veri�cation are done

on subsystem or top level veri�cation.

IP designers can perform lint (static checking for source code) checking and formal

checking of the block before making releases to revision control system. That ensures

some quality of the design before the veri�cation. Top level integration can bene�t

from lint checking and formal checking.

A formal veri�cation is a great way to verify that the design works with any stimuli

as intended in small designs. With many programmable devices, such as processors,

formal veri�cation is too complex as the functionality depends on the program code

run on the processor. More information about formal veri�cation in Section 3.2.

According to Albin [1] there are two methods to manage increasing complexity:

divide-and-conquer and abstraction. A very common way is to use divide-and-

conquer method by utilizing block level veri�cation. Each IP block has a standalone

test environment where the functional veri�cation is easy to do.

Computer-Aided Design (CAD) tools allow translation from RTL down to mask

data to be checked routinely and reliably. That's one of the reasons why currently

most of the integration and veri�cation work is done in a very low abstraction level

(RTL, see Figure 2.5).

There are methods to check veri�cation environment quality. One way is to use fault

injection to check if the test bench is able to �nd the generated bugs. For example

Synopsys Certitude can be used for veri�cation quali�cation. [6]

3.2 Formal Veri�cation

Formal veri�cation can prove, in a mathematical sense, that two representations are

equivalent. Formal veri�cation software can tell how the representations di�er if

they are not equivalent. This can be used when translating from behavioral model

to structural model of a design.[4]

Formal veri�cation methods do not require test benches for veri�cation and they

promise theoretically fast veri�cation time and 100 percent coverage. The �avors of

formal veri�cation are Theorem Proving Technique, Formal Model Checking, Formal

Equivalence Checking.[3]

The theorem proving technique shows that the design meets the functional require-

ments by allowing user to create proof of the design behavior using theorems. [3]
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Formal model checking veri�es behavioral properties of the design. A model checking

tool compares the design behavior to a set of logical properties de�ned by the user.

The properties de�ned are directly extracted from the design speci�cations. Formal

is good for verifying complex control structures, such as bus arbiters, decoders,

processor-to-peripheral bridges and so on.[3]

Formal model checking does not require any test benches or vectors. When tool

�nds an error, it generates a complete trace from initial state to the state where the

speci�ed property failed. [3]

Formal equivalence checking is a method to prove equivalence of two di�erent views

of the same logic design. It uses mathematical techniques to verify equivalence of

a reference design and a modi�ed design. These tools can verify equivalence of

RTL-to-RTL, RTL-to-Gate and Gate-to-Gate implementations. Since equivalence

checking tools compare the target design against the reference design, it is critical

that the reference design is functionally correct. [3]

Any of the previously mentioned formal veri�cation methods does not take timing

into account. Timing veri�cation must be done in separate timing analysis tool.

Formal model checking uses a lot of computing resources, so usage of it may be

limited to small designs only. Another potential problem is that some of the de-

sign issues and bugs might not be detected if the design speci�cations and other

de�nitions are not set correctly to the veri�cation tool.[3]

3.3 Dynamic Veri�cation

Dynamic veri�cation is a veri�cation method where directed or random stimuli is

given to the design under veri�cation. Usually dynamic veri�cation is done by using

RTL simulator.

Dynamic veri�cation is available in two �avors: randomized and directed tests.

Directed tests use �static� stimulus. The result is the same on every simulation

run. Directed testing is needed for example for verifying IP block's con�guration

sequences. The con�guration values are dictated by the veri�cation engineer who

made the test case.

Random tests use randomized stimuli. In many cases there are some limits for values

which are used as stimulus. The values need to be constrained somehow. This is

where a new term �Constrained random� comes into play. With constraints the

random values can be generated in such a way that they follow the rules de�ned by

the veri�cation engineer.
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In both, randomized and directed, tests the design under veri�cation is connected

to a test bench. The test bench provides the necessary signals such as clock, reset

and other signals to the design under veri�cation (DUV). Simpli�ed block diagram

of the DUV and test bench relation is captured in Figure 3.2.

Design Under Verification

Test Bench

Input

(stimuli)

Output

(response)

Figure 3.2: Test bench connected to the design under veri�cation

It is good to use a test bench which apply stimuli (input), capture response (output)

and compare the result with a golden reference which is known to give valid response

for given stimuli (as in Figure 3.3). In directed tests the stimuli is always the same

and the golden reference response is always the same. In randomized tests the

stimuli is generated by the test bench.

Self-Checking Test Bench

Design Under VerificationInput

(stimuli)

Output

(response)

Expected 

Output

Compare Results

Golden Reference Model

Figure 3.3: Self-checking test bench connected to DUV

When random stimuli is used, the output values are random as well and thus cannot

be known beforehand. Some kind of a reference model is needed for generating valid

reference output values. The reference model is considered to be perfect, that is

why it is called Golden Reference Model.

Depending the DUV, there may be con�guration registers which must be con�gured

before using the DUV. The con�guration can be made by constraining the random-

ness of the con�guration values. There may be some con�guration values which
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must be inside a given range. In that case, constrained random input can be used

instead of dictated values.

3.4 Veri�cation Quali�cation

Qualication is needed, because it is not usually possible to completely verify designs

using simulations. Therefore, the correctness of the design can be assumed if the

testbench can be trusted. Di�erent coverage metrics and mutation analysis methods

are applied to measuring if enough veri�cation has been done. [6]

There are number of methods to measure the quality of veri�cation environment:

• Number of passed tests in veri�cation plan

• Code coverage

• Bug rate

• Functional coverage

• Test review

• Manual bug injection

None of the previous are actually objective measures of veri�cation environment's

quality. Number of passed tests does not address the question of checker's correct-

ness. Code coverage shows the activated source code lines of DUV, but it does not

tell whether action in the line propagated to any of the DUV's outputs. Functional

coverage is very similar, but it emphasizes checking the executions of important

functionalities speci�ed in the veri�cation plans. Test reviews are time consuming

and subjective measures of quality.[6]

Test bench's quality can be checked by injecting bugs manually to the design and

checking that test bench can detect them. This kind of manual work does not cover

all meaningful cases in sensible time.[6]

Mutation-based quali�cation is quite a new approach to validate veri�cation envi-

roment's checkers. It provides tools for automatical bug injection and veri�cation

environment quali�cation.

In mutation-based quali�cation tool generate arti�cial bugs (mutations) to the de-

sign. Tool replaces, injects or removes expressions and variables from the code or
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design. Before tests are run with the design, their correctness has to be checked

by running them with unaltered design. If tests fail, they have to be �xed before

continuing with mutation analysis.[6]

New coverage metric is the percentage of detected injected bugs after applying the

method for all tests. If all mutations are not detected, the veri�cation engineer

should consider changing the existing test cases or adding new ones.[6]

The mutation-based quali�cation seems to be good addition to traditional veri�ca-

tion environment quality measurements as it gives feedback on potential �aws of

checkers as soon as �rst test had been entered into veri�cation system.

3.5 SystemVerilog

SystemVerilog is a combination of Verilog (IEEE Std 1364-2005 Verilog Hardware

Description Language) programming language and SystemVerilog extensions (IEEE

Std 1800-2005 SystemVerilog Uni�ed Hardware Design, Speci�cation, and Veri�ca-

tion Language) to the Verilog. The SystemVerilog was de�ned in two separate IEEE

standards which were merged in 2009 to one standard (IEEE Std 1800-2009 Sys-

temVerilog - Uni�ed Hardware Design, Speci�cation, and Veri�cation Language).

The reason for merging two standards was to provide one information source for

users about syntax and semantics of the SystemVerilog. [7]

SystemVerilog includes support for modelling hardware at behavioral, register trans-

fer level (RTL) and gate-level abstraction levels. SystemVerilog has also support for

writing test benches using object-oriented programming.

SystemVerilog Direct Programming Interface (DPI) is an interface which can be

used to interface SystemVerilog with foreign programming language. DPI-C is an

interface for C language. DPI-C example can be found from Subchapter 5.4.1.

3.6 Universal Veri�cation Methodology

Universal Veri�cation Methodology was developed because the veri�cation engineers

needed uni�ed veri�cation framework to enable e�cient development and reuse of

veri�cation environments and veri�cation IPs (VIP). Simulation tool vendors had

their own methodologies which were not directly compatible with each other's.

A standards organization for electronic design automation (EDA) and IC manufac-

turing, Accellera Systems Initiative, decided to establish the UVM in 2009. Open
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Veri�cation Methodology from Cadence and Mentor was chosen as a base where

the UVM is built on. UVM is created in co-operation between several companies

in veri�cation industry. Nowadays Mentor Graphics, Synopsys, Cadence and Aldec

are co-operating in UVM development.

UVM is built on Open Veri�cation Methodology (OVM) which is combination of Ad-

vanced Veri�cation Methodology (AVM) and Universal Reuse Methodology (URM).

UVM has also some concepts of e Reuse Methodology (ERM) and some concepts

and code of Veri�cation Methodology Manual (VMM). [8]

UVM family tree is shown in Figure 3.4. It can be seen that UVM consists of parts

or ideas from many veri�cation frameworks.

Universal 

Verification 

Methodology 

(UVM)

Open Verification 

Methodology 

(OVM)

Advanced 

Verification 

Methodology 

(AVM)

Universal Reuse 

Methodology

(URM)

e Reuse 

Methodology

(eRM)

Verification 

Methodology

Manual

(VMM)Reference 

Verification 

Methodology

(RVM)

Figure 3.4: Family tree of the Universal Veri�cation Methodology

Universal Veri�cation Methodology is built using of SystemVerilog programming

language. It promotes reuse by providing collection of SystemVerilog classes which

can be used as a common base for every test bench. The base classes are extended

with needed methods. Some of UVM provided base classes and their relations are

shown in Figure 3.5.
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uvm_void

uvm_transaction

uvm_object

uvm_report_object

uvm_sequence_item

uvm_sequence_base

uvm_sequence

uvm_component

uvm_testuvm_envuvm_agentuvm_monitoruvm_scoreboarduvm_driveruvm_sequencer

uvm_phase

Figure 3.5: UVM class relationships

UVM provides base for environment con�guration, phasing, sequencers and sequence

items to mention few. As UVM test benches are composed from reusable veri�ca-

tion IPs, it is also possible to use third party VIP's in the test bench to speed up

the veri�cation test bench development. The most important bene�t for UVM is

that IP veri�cation environment (if designed wisely) can be included and re-used in

subsystem or SoC top level.

3.6.1 UVM Agent

Figure 3.6 shows an UVMAgent (or VIP) which is con�gured as active. It means, the

agent has driver fuctionality. The driver receives transaction items from sequencer

and translates them to pin-level activity.
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Agent

Analysis 

component
monitor

driversequencer

config

transactions

to subscriber

Analysis port

Pin level 

interface 

(virtual 

interface)

(is_active = UVM_ACTIVE)

Figure 3.6: UVM Agent con�gured as active

Passive agent is only for monitoring and for creating transaction items from pin level

activity. Analysis ports are used to perform non-blocking broadcasts of connected

components' transactions. Other components such as scoreboard or coverage moni-

tor can be set as subscribers for analysis ports.

The agents sequencer can be controlled from outside with virtual sequencer. One

virtual sequencer can handle complex sequencing with multiple active agents.

3.6.2 Example UVM Environment

In the following example, there is DUV with two separate interfaces (Figure 3.7).

One veri�cation IP (agent) is instantiated for each interface. Predictor is a reference

model of DUV behavior. Stimulus is given with virtual sequencer as transaction

items to the agents. Agents communicate with DUV via their interfaces.

Agents monitor and translate the activity on interfaces to transaction items. The

items are then transmitted to scoreboard and coverage monitor as needed. The

items are compared to predicted and results analyzed.
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Test bench top

UVM Test

UVM Environment

Agent2

Sequencer

Monitor Driver

Scoreboard

Predictor

Agent1

Sequencer

MonitorDriver

Design Under Verification

Interface1 Interface2

Virtual 

sequencer

Config

Agent1_config

Agent2_config

Coverage Monitor

Figure 3.7: UVM veri�cation environment example

The design under veri�cation and its SystemVerilog interfaces are instantiated in

UVM veri�cation environment example's Test bench top SystemVerilog module.

The interfaces are assigned to appropriate ports of DUV and they are added to

uvm_con�guration_db. After that, UVM Test class is called.

UVM Test con�gures and creates the UVM Environment. UVM Environment con-

�gures the agents according the con�guration given by UVM Test. The SystemVer-

ilog interfaces assigned to DUV are given to agent con�guration. The UVM Envi-

ronment class con�gures Scoreboard and Predictor classes. Scoreboard is con�gured

as subscriber for agents analysis ports. New test cases can be added by extending

test base class.

It is possible to create hierarchical environments where there is several environments
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within other environments. For example, at SoC top level veri�cation, the UVM

environment contains all subsystem veri�cation environment classes, and subsystem

environments contain IP level environments. To promote re-usability, the lower level

environments should provide convinience methods to ease the con�guration in higher

level environment.

3.6.3 UVM Register Abstraction Layer

UVM Register Abstraction Layer (RAL) can be generated from IP-XACT model

of the register or memory layout of the design under veri�cation (DUV). UVM

RAL can be used with bus master agents which transforms RAL accesses to bus

transactions. The UVM RAL enables usage of UVM built in register tests such as

bit bash test and reset test. The reset test checks the default values of the registers.

Bit bash test toggles all bits of all registers.

IP-XACT standard describes an eXtensible Markup Language (XML) schema for

documenting intellectual property (IP) used in development, implementation, and

veri�cation of electronic systems. The schema provides a standard method to docu-

ment IP that is compatible with automated integrating techniques and a standard

method (generator) for linking tools into a system development framework. The

standard is independent of any speci�c design processes. It does not cover behavio-

ral characteristics of the IP that are not relevant to integration.[9]

3.7 Processor Veri�cation

Processor is a central component in SoCs. Usually there is either control CPU,

digital signal processor (DSP), application speci�c instruction set procesesor (ASIP),

co-processor or set of many processors.

The design and veri�cation e�ort of a custom CPU core is signi�cant and its bene�ts

over an o�-shelf CPU core must be justi�ed [10]. Typically the costs associated to

the veri�cation of a processor are very high [11], and costs of failed veri�cation and

re-spin even higher.

For example in 1994, Doctor Thomas R. Nicely discovered a bug in Intel's Pentium

processor's �oating point unit (FPU) during mathematical research. Nowadays,

the bug is known as Intel FDIV bug and it a�ected wrong decimal results during



24

complex calculations. In response of the discovery, Intel announced recall of the

�awed processors. In 1995, Intel announced �a pre-tax charge of 475 million dollars

against earnings, ostensibly the total cost associated with replacement of the �awed

processors�.[12]

The requirement to support legacy software and/or a high level programming lan-

guage is a driving factor when selecting a CPU core for many applications. This

requirement typically limits designer �exibility to a set of binary compatible cores

with available software tools.[10]

The processor veri�cation can be done in theory using formal or simulation-based

methodologies. As formal methodology is good forsmall blocks[11], it can be used for

veri�cation of arithmetic-logical unit and other sub-blocks. However, formal cannot

be used for complete processor veri�cation, as formal methods does not take timing

into account. At some point of processor veri�cation, simulation based veri�cation

must be taken into use.

A processor presents a unique veri�cation challenge, particularly one with pipeline,

jumps, branches, multi-cycle instructions, and hazards[13], [10]. The chosen veri�-

cation methodology needs to:

1. have quick ramp up time

2. randomly generate instructions

3. steer randomly generated instructions into interesting corner cases

4. use functional coverage to stop the test bench once functional coverage is

obtained[10]

A simpli�ed processor veri�cation environment example is shown in Figure 3.8. The

Figure is generalized version of a �gure in Becvar's and Tumbush's paper [10] which

presents veri�cation environment of CPU core and hardware accelerator unit for

image processing application.
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Figure 3.8: Processor veri�cation environment

If the hardware accelerator is omitted, the needed veri�cation components for simulator-

based veri�cation are:

1. Agents

(a) RAM agent

(b) Firmware agent

2. Scoreboard

(a) Transaction models

(b) Predictors

(c) Checkers

3. Environment

RAM agent monitor RAM interface and provide transaction items of each RAM

access to the Scoreboard. The Firmware agent is used for generating instructions to

the DUV. The generated instuctions are also given to the Scoreboard.
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To create a golden model or predictor requires a designer's level of knowledge about

the DUV and can take very long term to create. Only model as low level as absolutely

necessary. [10]

For processor veri�cation, a random program generator is needed. The random

generated program can be written to instruction memory before execution of the

program or instructions can be generated during the simulation and by injecting the

instructions to instruction bus. Kamath [11] suggests following programming rules

to follow:

1. The generator must produce existing instructions with valid (legal) arguments

2. The target address of a branch instruction must be a valid program location

3. A number of branches or subroutine calls must not create an in�nite loop

4. After a call to subroutine there must be a return from subroutine

5. A software loop must have a branch back to the loop start

6. No attempts to pop elements from an empty stack or push elements on a full

stack

Kamath suggested programming rules are valid for random program generator which

generates instructions and stores them to instruction memory before execution. If

generated instructions are injected to the instruction bus on-the-�y, instruction can

be di�erent even if the instruction is �fetched� from the same address as earlier in

the same test. Therefore, with on-the-�y injection, there is no need to worry about

in�nite loops or invalid program locations.
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4. RISC PROCESSORS

4.1 RISC

The early computer systems were hard coded to perform speci�c tasks. Later, the

computer systems handled more tasks which were executed according to instructions

fetched from a memory. The instructions determined the function and parameters

used by the computer. An instruction listing, a program was made for that speci�c

computer and was not portable. The program was written in a machine language or

assembly. Later on, compilers and better programming languages were developed

to support program compilation for di�erent target processors. [14]

Basically, there are two kinds of computer architectures: Complex Instruction Set

Computing (CISC) and Reduced Instruction Set Computing (RISC). An idea of

CISC is that hardware performs given task faster than a software, so amount of run

instructions is reduced. RISCs trusts in the quick execution of small instructions.[15]

A performance equation (Equation 4.1) is one approach to calculate performance of

a processor in a manner the performance can be compared between processors [15].

The same program is run on two processors and the used time on both processor

shows which one is better on that speci�c program. The performance equation can

be also used for comparing CISC and RISC processors.

time
program

= time
cycle

× cycles
instruction

× instructions
program

(4.1)

In CISC, a complex algorithm is compressed to a single instruction. In early days

of computers, memory was expensive, so it was worth of it to compress the program

size. CISC processors have only one bus for accessing both instructions and data so

they have von Neumann architecture (Figure 4.1). Using only one bus is a bottleneck

as instruction and data cannot be accessed concurrently and it is is di�cult to

implement pipelining e�ectively.
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Figure 4.1: Harvard vs. von Neumann architecture

Execution of CISC instruction may take lots of clock cycles and decoding may have

side e�ects, such as fetching data from memory before the execution is completed[15].

Completion of simplest instructions takes many clock cycles due to a complex in-

struction decoding. Decoder is part of the paradox of CISC: even though algorithms

run faster on the hardware than on software, the decoder of CISC processor is more

complex and thus slowing execution speed down. Higher amount of logic gates

contributes also to higher power usage[14].

An acronym RISC stands for Reduced Instruction Set Computing. The word �re-

duced� does not mean that an amount of executed instructions is reduced. Instead, a

single RISC instruction contains less functionality than one CISC instruction. Thus,

more RISC instructions needs to be executed in order to perform a same algorithm

as with a CISC instruction. With RISC processor one instruction contributes less,

the software is responsible of more complex functionality.[15]

In contrast to CISC, RISC utilizes harvard architecture which have separate buses

for instruction and data memories. The RISC's memories do not have to share same

speci�cations. For example, instruction memory can be read-only type and the data

memory read-write type memory.

RISC reduces the number of cycles spent on each instruction by having small number

of simple instructions in its instruction set. Due to less time consuming instruction

decoding the reference clock speed can be greater than for a CISC processor with

complex decoding.
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RISC Bene�t

Uniform instruction format Less decoding

Simpler design Faster clocking

Simpler design Less power / clock cycle

General purpose registers Less memory accesses

Harvard architecture: separate data and instruction bus Pipelining

Separate memory load/store and arithmetic operations Simpler design

Most operations are done in same amount of clock cycles Predictable

The operations are usually performed in one clock cycle Predictable

Table 4.1: Bene�ts of RISC architecture

RISC architecture bene�ts can be seen from Table 4.1. If both RISC and CISC

processors are running with the same reference clock freequency, it depends on

complex/simple instruction ratio needed by CISC processor whether one speci�c

program is faster or slower than RISC processor. So for more fair comparison, the

benchmarking should be made with intended clock rates which are supported by the

silicon technology to be used for the target design.

4.2 Nokia Co-Processor

4.2.1 Overview

Nokia Co-Processor (COP) is a highly con�gurable RISC processor which is eas-

ily scalable from small machine word size to a large machine word size. Internal

functional blocks of the COP are shown in Figure 4.2.



30

COP

Fetch and 

Control Unit Register Fetch 

Unit

Arithmetic/Logic 

Unit

Load/Store Unit

R0

R1

...

Rn

CR0

CR1

...

CRn

A_TP...

I_TP...

Attention

Exception

Done

AUC AUR

Slave 

config port 

(AHBLite)

Instruction 

fetch port 

(AXILite)

Data 

memory 

interconnect 

(AXI3)

Local data 

memory

Auxiliary Unit 

command / response

. .

..

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

. .

Figure 4.2: COP Microarchitecture

Some features of the COP:

• Relatively large architectural register space (max 64 general registers / thread)

• Generic word length (32 / 64 / 128 bits)

• Byte�addressing memory semantics with support for byte, short (16 bits), long

(32 bits) operands in addition to native machine word.

• Simple interlocked instruction execution pipeline (address, fetch, decode, exe-

cute).

• Asynchronous execution of memory references and auxiliary arithmetic/logical

operation.

• Hardware support for �ne�grained multithreading.

• Support for additional, possibly application�speci�c, arithmetic/logic process-

ing units through an Auxiliary Unit interface.

COP is a little endian �xed-length instruction word load-store machine which has

relatively large architectural register space (64 addressable registers / thread).
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Instruction word length is typically 32 bits. At the moment the software development

is done in assembly language, but compiler project is on-going.

The instructions use byte-addressing memory semantics which supports byte, short

(16-bit), long (32-bit) operations in addition to native machine word. The machine

word length is scalable in 32 ≤ 2n ≤ 128 bits. It is also possible to con�gure COP

with smaller machine word length than 32 bit, when many of instructions which are

intended to be used with wider data size, becomes unusable.

As other RISC processors, the COP is based on harvard architecture so it has

separate instruction and data buses. The COP has simple interlined execution

pipeline (address, fetch, decode, execute).

The COP supports multithreading. It can be con�gured to have up to 16 threads.

There is support for additional, possibly application speci�c, arithmetic/logical pro-

cessing units through an Auxiliary Unit interface. Instruction set contains AUX

instructions which can be used for writing data, controlling, and reading data from

an Auxiliary Unit.

The COP has an attention port which can be used as interrupt like signaling. At-

tention signals can trigger for example DMA transfer or other prede�ned function.

Nowadays COP has ARM AMBA compatible interfaces (Table 4.2).

Interface Use

AHB-Lite Slave Module con�guration

AHB-Lite Master Instruction memory communication

AHB-Lite Master Local data memory communication

AXI4 Master Main interconnect connection

Table 4.2: COP interfaces

4.2.2 History

The COP development started in 2000's at Nokia Mobile organization.

COPs have been in use as standalone DMA engines (as in Figure 4.3). A plain COP

without auxiliary units is an ideal engine for DMA usage as it have a small footprint

and it have the necessary memory load and store operations in its instruction set.

COPs have also been used as a cryptography engines.
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Figure 4.3: COP application example

Sometimes COP have been included in the designs as a backup so it can be taken into

use if workarounds are needed for certain hardware bugs. It can be programmed

to perform needed algorithms after tape-out even though hardware modi�cations

cannot be made anymore.

COP can initiate multiple operations on buses, it sustains latency. With multi-

threading, COP can change context when thread execution stalls for waiting read

response.

4.2.3 Legacy COP Veri�cation Test Bench

Back in the years when the old COP was developed and used in Nokia, a VHDL test

bench (called legacy test bench) was created. While studying the legacy test bench,

the legacy test cases were run and coverage was gathered. The coverage results were

very good. A drawback of the legacy test bench was that it used old bus interfaces

which are not compatible with later AMBA bus interfaces.

Another drawback is that the legacy test bench is not compatible with simulator

software used nowadays. Latest versions of available simulators were not able to

compile and run the legacy test bench and the test cases successfully. One problem

is also that the legacy test bench is very complex. It is di�cult to update by
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veri�cation engineers who are using SystemVerilog as programming language for

other test benches.

During studies on the legacy test bench, it proved to have good toggle, FSM and

line coverage. Almost everything is checked within the legacy test bench.

One drawback is that the legacy test bench was made with one bus architecture

in mind, so it is not easily re-usable with other bus architectures. The legacy test

bench is complex to learn and update. It is also di�cult to re-use as it does not

have much in common with current veri�cation environments at Nokia.

Another small detail, which can cause trouble is that the veri�cation test bench was

made by the same person who has designed the processor. There is possibility that

some design issues are duplicated to the veri�cation test bench.

A problem is that there is no readily available solution for veri�cation of the updated

COP version. Some of the functionality can be veri�ed with an old simulator version

and other functionality in integration veri�cation in SoC top level with the latest

simulator version. It is evident, that it can be only a temporary solution which does

not work in long term.

The COP needs veri�cation environment which can verify all functionality of the

COP. The veri�cation environment shall support further development of new fea-

tures to the COP, development of COP peripherals as well as other COP related

activities such as software development and high-level programming language com-

piler development.

A need of development of new COP test bench or test suite was evident when

the decision of further usage and development of COP was made. The new COP

veri�cation environment is presented in the Chapter 5 .
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5. NOKIA CO-PROCESSOR VERIFICATION

SUITE

The COP Veri�cation process is explained in this chapter. At �rst, strategy doc-

ument (Section 5.1), then veri�cation plan document (Section 5.2) are presented.

After that, the implementation of the test bench is explained in high level (Section

5.3).

5.1 Veri�cation Strategy

A veri�cation strategy describes the design under veri�cation (DUV) on high level

and decisions regarding the veri�cation project of an IP block, a subsystem or a SoC

depeding of the scope of the strategy. It also describes which veri�cation methods

are to be used. Veri�cation strategy document is written before implementation of

a test bench.

At Nokia SoC development, the veri�cation strategy document has for instance

following chapters:

1. Introduction

2. Released documents

3. Veri�cation targets

4. Issue tracking

5. Regression management

6. Releasing practices

In addition to those chapters, test environment is also presented in high level without

constraining too much the test environment implementation.
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The introduction chapter contains basic information about the DUV. In this case it

contains almost all the same content as in Nokia Co-processor Overview subchapter

4.2.1.

Released documents chapter introduces reader to design speci�cations and other

useful documents regarding the DUV. Information (such as hyperlinks) where the

referred documents can be found, are listed in references chapter.

In the Veri�cation Strategy document, veri�cation targets chapter shows the deci-

sions what the targets for veri�cation activity are. Veri�cation targets chapter is

split into coverage targets, test case targets, veri�cation quali�cation targets, un-

veri�ed con�gurations/features. In COP case the main target is to verify that RTL

implementation of COP core ful�lls requirements set in COP Design Speci�cation

and the COP core instruction functionality is following COP Programming Guide.

For COP veri�cation, all external interfaces are selected to be veri�ed. The interfaces

are listed in Table 5.1.

Port name Protocol

Con�guration port AMBA AHB Lite slave

Status outputs Output

Attention request Input

Auxiliary unit port AUX Command & Response

Clock reference Input

Asynchronous reset Input

Local data memory AMBA AXI Lite / RAM

Instruction memory AMBA AXI Lite / RAM

AXI 3 Lite master AMBA AXI 3

Table 5.1: External interfaces to be veri�ed

The Coverage targets are shown in Table 5.2. The aim is to get 100% coverage result

with exclusions. An initial target is to get same coverage as with legacy COP test

bench.
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Coverage targets

Line

Toggle

Statement

Expression

Feature: instruction set

Table 5.2: Coverage targets

Other targets for the COP veri�cation are listed in Table 5.3. In that table functional

tests with data bus width con�guration of 8, 32, 128 bit. As said in COP overview

chapter (Chapter 4.2), with 8 bit machine word width, the instructions with other

than byte semantics are not allowed to be used.

Target Comment

Instruction set functionality All instructions

8bit, 32bit, 128bit machine word width

Thread FSM

LSU FSM

CPU FSM

Use case: data transfer

Use case: AUX port hardware acceleration functionality

Table 5.3: Other targets

Issue tracking chapter describes how bugs and issues are tracked during the process.

The issue tracking is very important tool to track which bugs are �xed and which

are still potentially present. It gives visibility to outside of the design project about

maturity of the design. Issue tracking ensures that all reports of �xed bugs will be

closed as soon as they are veri�ed and the design proved to be working right. In

COP case, Attlassian Jira software is used as issue tracking.

Regression management chapter tells how regression testing is managed and im-

plemented. The regression system can have some subset of tests for design sanity

checking. There is also need for running complete list of test cases in order to track

the veri�cation maturity and status. Each test case is back annotated to a veri�-

cation plan so that regression results show which test cases are passing and which

ones are failing. For COP IP veri�cation a Nokia made, XLS �le and Perl script

based regression management was selected.
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Releasing practices chapter gives guidelines when and how releases of the test en-

vironment are done. The chapter tells what revision control system is used. Other

practices of naming convention can also be described. It also describes how the

veri�cation environment can be fetched from the revision control system and taken

into use. COP IP veri�cation uses subversion revision control. Veri�cation releases

are done for each COP design release to provide clean code base for each design

release if old design versions are taken into use and needed to be veri�ed.

Veri�cation quali�cation is done using Synopsys Certitude tool. The tool uses mu-

tation analysis to inject the design with arti�cial faults and checks how well the

veri�cation environment activates, propagates and detects the faults. Certitude

computes metrics based on the numbers of di�erent fault statuses. The targets are

Certitude's default scores:

• Activation score: activate faults / all faults = 95 %

• Propagation score: propagated faults / activated faults = 80 %

• Detection score: detected faults / propagated faults = 95 %

Also two most important injected fault types (output stuck and reset stuck faults)

shall be 100 % detected.

5.2 Veri�cation Plan

The IP veri�cation process is split to small veri�cation tasks in order to ease the

veri�cation process. Veri�cation plan describes each veri�cation task. Each test case

should return pass/fail status. The statuses are back annotated to the test plan in

such a manner that test creation status and IP quality can be easily checked.

Feature list:

• List of all features which need to be veri�ed

• Features can refer to requirements of the design

• Feature veri�cation can be divided to sub-tasks

• Easier to read than plain list of test cases
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Not much e�ort was spent for creating feature list for this veri�cation plan as test

case listing of legacy test bench was available. Old test cases were taken and some

new test cases added to cover known issues in the design. Snippet from COP veri�-

cation plan can be seen in Figure 5.1. Non-legacy test bench test cases are related

to changes in memory interfaces.

Figure 5.1: Veri�cation plan example

List of test cases have column for test case name, which is added as soon as the

creation of the test case is on-going and test name is known. Test case is described

in more detail, in next column. Test pass criteria, implementation status and other

information is also for each test case in their own columns.

5.3 Veri�cation Environment

The COP veri�cation environment (Figure 5.2) is programmed in SystemVerilog

language and by using UVM classes as a base. An exception to SystemVerilog is

COP C++ model which is written in C++ language and it has C wrapper for DPI-C

usage. The COP is instantiated in the top level and all needed VIPs and agents are

connected to the COP via SystemVerilog interfaces.



39

UVM test bench

COP

Config Port
Instruction TCM 

Port

Attention

Component 

Status

Clock Reference

Asynchronous 

Reset

AXI master port

Data TCM Port

Instruction cache 

control and 

status

Synopsys

AHB master VIP
AHBLite

Synopsys

AXI slave VIP
AXI3

Clock Generator 

VIP

GPIO VIP

GPIO VIP

GPIO VIP

GPIO VIP

RAM IF Agent
Generic Memory 

wrapper

Auxiliary Unit
Auxiliary Unit 

VIP
Command & response

Generic Memory 

wrapper
RAM IF AgentRAM IF

AXI Lite 2 MEMAXILite RAM IF

UVM RAL
Scoreboards (connected 

to VIP’s analysis ports)

Instruction 

generator

Instruction 

decoder

Functionality 

checker

AXI Monitor

Figure 5.2: UVM Test Bench

The functionality checking is done by instantiating SystemVerilog assertion module

and connecting its interface to COP wrapper module's interface. The reference

model keeps track on the internal register state and performs the same operations

as the RTL version of the COP. The reference model's register values are checked

every time they are visible in any of the COP outputs.

When the veri�cation strategy was written, all needed Nokia in-house developed

AMBA VIP's were not available. The unavailability of some in-house VIPs lead

into the decision that all needed AMBA VIP's are taken from Synopsys AMBA

suite. As long as veri�cation environment has one VIP from Synopsys AMBA suite,

one Synopsys license is needed. There is no extra cost of having more than one

Synopsys VIP.

Needed AMBA VIPs are AHB Lite master and AXI slave. AHB Lite master is

connected to COP's Con�guration Port. Synopsys AHB Lite master is used with

UVM RAL model of COP con�guration registers. Adapter function is needed to

transform RAL operations to AHB Lite master's sequence items. An example of

the adapter was found from Synopsys' SolvNet.
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Synopsys AXI slave is connected to COP's AXI master port interface. The VIP can

be used with all COP supported read and write modes. Synopsys' AMBA Suite has

built-in AXI protocol checker which is enabled.

Top block has interface for connecting the TB and the DUT. As the processor design

is written in VHDL, it needs to be instantiated in a SystemVerilog wrapper module

before it can be connected to UVM test bench.

SystemVerilog assertions are part of functionality checking. The assertions describe

how each COP's ports shall behave. Assertions are speci�ed inside a SystemVerilog

module to which the interfaces are given as a parameter.

Functionality checker includes SV assertions and C++ COP model which is con-

nected to the test bench via DPI-C. More about C++ model and DPI-C in Sub-

chapters 5.4 and 5.4.1.

One Synopsys' AXI monitor is added for instruction memory AXI lite bus protocol

checking.

5.3.1 UVM Test Bench Top Level Module

On the top level of the test bench there is a SystemVerilog module. All components

related to the test environment are instantiated in this module.

The design under veri�cation and veri�cation IP's plus supporting logic are instanti-

ated. VHDL components need a SystemVerilog wrapper module which instantiates

the VHDL component. Interfaces are declared and given to each module and inter-

module connections are made in the top level module.

When the interfaces are created they need to be added as virtual interfaces to UVM

con�guration database.

An UVM test package is also declared at top level module. The test package contains

a base test and test case speci�c �les. More about UVM tests in subchapter 5.3.2.

In addition to COP instance, few VHDL components are instantiated on top level.

SystemVerilog wrappers and interfaces were made for them:

• Local memories ( instruction and data )

• AXI Lite to generic RAM interface adapter
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• One delta cycle delay component for clock signal

Memory wrappers are instantiated to hide any RAM memory speci�c port naming

or functionality changes. The memory wrapper is used to hide technology speci�c

signals. Generic memory wrapper looks same whether there is generic or silicon

technology speci�c RAM models in use.

AXI Lite to Generic RAM component translates AXI signaling to generic RAM

wrapper compatible signaling.

SystemVerilog modules made for this environment and instantiated at top level were:

• ByteStrobe2BitStrobe conversion

• RAM bus multiplexer (2 to 1)

• COP assertion module

• Auxiliary unit VIP

COP has byte strobes at local memory bus interfaces, but interface of RAM wrapper

bus has bit strobes. ByteStrobe2BitStrobe conversion module shown in Algorithm

1.
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Algorithm 1 Byte strobe to Bit strobe conversion

` i f n d e f _BYTESTROBE2BITSTROBE_SV

` d e f i n e _BYTESTROBE2BITSTROBE_SV

module by t e s t r ob e2b i t s t r ob e ( ram_if ram_if_m , ram_if ram_if_s ) ;

a s s i gn ram_if_s .CK = ram_if_m .CK;

a s s i gn ram_if_s .A = ram_if_m .A;

a s s i gn ram_if_s .D = ram_if_m .D;

a s s i gn ram_if_s .CS = ram_if_m .CS ;

a s s i gn ram_if_s .CS_N = ram_if_m .CS_N;

a s s i gn ram_if_s .WE = ram_if_m .WE;

a s s i gn ram_if_s .WE_N = ram_if_m .WE_N;

a s s i gn ram_if_s .WRENZ = ram_if_m .WRENZ;

a s s i gn ram_if_s .WRENZ_N = ram_if_m .WRENZ_N;

a s s i gn ram_if_m .Q = ram_if_s .Q;

a s s i gn ram_if_s .PW = 4 ' h0 ; // t i e d to zero

//Byte s t robe to b i t s t robe conver s i on .

always @(ram_if_m .WRENZ) begin

fo r each (ram_if_m .WRENZ[ u ] ) begin

ram_if_s .BS [ u∗8 +: 8 ] = (ram_if_m .WRENZ[ u ] ) ? 8 'hFF : 8 ' h0 ;

end

end

endmodule

` end i f //_BYTESTROBE2BITSTROBE_SV

RAM bus multiplexers are instantiated between COP and both local memories.

Multiplexer has select signal for choosing either memory model or instruction gen-

erator. For example, in the instruction memory's bus the multiplexer is used for

injecting generated instructions to COP's execution.

COP assertion module is connected to COP ports via SystemVerilog interface. The

assertion module contains SystemVerilog assertions which for example describe the

protocol of local data memory interface and local instruction memory. The need for

assertions was found during mutation based veri�cation environment quali�cation.
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Auxiliary Unit VIP is created for functional veri�cation of COP's AUX instructions

and auxiliary unit command and response port. Auxiliary Unit VIP monitors the

auxiliary unit command port and depending on the command, it generates response

to auxliary unit response port. More about Auxiliary unit VIP in Chapter 5.3.5.

5.3.2 UVM Tests

Base test is a class which is extended by each test class. It contains the basic

con�guration of UVM environment and methods used by the tests.

Many test cases are used to verify that the veri�cation environment and COP are

set up properly. Sanity tests include con�guration register accesses and test that all

memories are accessible.

UVM has built-in methods to verify registers for which a register abstraction layer

(RAL) is generated. UVM built-in tests are easy to take into use in early phase of

test bench development.

For sanity checking, there is a veri�cation �rmware which can be used for checking

that the veri�cation environment and COP are set up properly. During a test, the

�rmware and reference data are uploaded to the COP's instruction memory and

data memory, respectively. The COP is con�gured, and a thread is started. During

the execution of the veri�cation �rmware, all COP supported access sizes and burst

lengths are used for moving the reference data to di�erent places in the external

memories. Always, the destination of previous transferred block is used as a source

for next transfer. Thus, after the last transfer, only the last written data block is

needed to be compared against the reference. The test returns pass status when all

data is checked as passed.

Instruction set tests run a subset of instructions in all threads and by accessing

all available registers for each thread. The checking is automatic if instruction

functionality for the given instruction is created in the COP reference model.

Implementation of new instruction tests mean adding new instruction decoding and

implementation functions to the COP reference model. Instruction generator must

be updated with an information on how to form a new instruction. A new UVM

test must be added which generates instructions to an instruction queue.

Most of instruction set tests follow same form:

1. Select instruction injection via instruction memory bus
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2. Initialize COP's registers with random values

3. Generate instructions with randomized parameters and store them to an in-

struction queue

4. Give the instruction queue to a sequence which gives instructions to COP

processor and COP model

5. Start the COP instruction execution sequence

6. The COP ports are monitored during the execution of the sequence and the

responses are compared with COP reference model's responses. In case of any

mismatch, an error report is generated and error count increased.

7. After the sequence stops, COP physical registers, exception and fault registers

are read and compared with COP model's registers.

8. Pass/Fail status is given in the end of simulation. Pass status is given if there

were no errors (error count == 0) during the test.

All tests shall return pass or fail status because the status information is needed

while back-annotating regression results to the veri�cation plan.

5.3.3 Instruction Generator

Instruction generation is an essential part of processor veri�cation test bench as

it is used for creating stimuli for the processor under veri�cation. For this test

bench an instruction generator SystemVerilog function was made. The purpose of

the instruction generator is to generate valid instruction words with randomized

parameters. Depending on the instruction type there are di�erent parameters to

randomize.

COP has �xed length (32 bit) instruction words. Instruction pre�x �eld length

varies depending on number of needed bits for other parameters. An instruction

which needs less bits for other parameters can have longer instruction pre�x.

Each instruction word can contain multiple bit �elds which determine the properties

of each instruction (see an example of an instruction word from Table 5.4). Instruc-

tion pre�x determines the type of the instruction. Each instruction pre�x is unique

and it is used for decoding the rest of the instruction word. Similar instructions are

grouped under the same instruction pre�x.
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Pre�x Subtype Dest Source Immediate

Assembly addi r5, r10, 20

Binary 000 00110 000101 001010 000000010100

Comments Register-immediate ADD

Size (bit) 3 5 6 6 12

Table 5.4: ADDI (Add immediate) instruction

In an ADDI example (Table 5.4) instruction pre�x is 3 bit long and subtype is 5 bit

long so there is 24 bits left for determining the functionality of ADDI instruction.

It is split in the manner that any of 64 logical registers can be used as destination

and source of the values. A 12 bit long �eld for immediate value is available.

Subtype �eld value is reusable as there are many variations of instructions. For

instance in COP, there is number of ADD operation types: Register-immediate,

Register-register scaled and Register-register vector. All of those have their own

instruction pre�xes but subtype �eld values are exactly same.

Instructions with Register-immediate pre�x instruct the arithmetic logical unit (ALU)

to execute their function with value from source register and immediate value. Result

is then stored to destination register. Register-register scaled instructions execute

functions with two source registers. An immediate operand which determines scal-

ing of second source register (number of shifts to the right). Register-register vector

instruction can be used to avoid using loops while there is need to perform same

operation multiple times a row.

5.3.4 Usage of Instruction Generator

The instruction generator is a function which can be called from the test. It can be

used calling the following function:

func t i on l o g i c [ 3 1 : 0 ] i n s t ruc t i on_gene ra to r (

i n s t ruc t i on_t i n s t r u c t i on ,

i n t param1 = 0 ,

i n t param2 = 0 ,

i n t param3 = 0 ,

i n t param4 = 0 ,

i n t param5 = 0 ) ;
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The instruction generator returns generated instruction value. If there are illegal

parameters, the function noti�es with an UVM_ERROR message.

There is a maximum amount of instruction parameters within the function proto-

type. Only those which are non-zero, needs to be speci�ed in the function call.

For example, a halt instruction, which does not have any parameters, can be called

easily with an enumerated type instruction_t such as:

inst ruct ion_queue . push_back ( in s t ruc t i on_gene ra to r ( HALT ) ) ;

There are two use cases for instruction generator:

1. The instructions can be written to instruction memory in the beginning of the

simulation by writing them via con�guration port (AHB Lite).

2. Instructions can be generated �on the �y� by injecting the instruction words

to bus.

In both cases the instruction words are given to the COP C++ model every time

the instruction is fetched by the real COP.

There is a bus multiplexer which is used to decide whether the instructions are in-

tended to be fetched from instruction memory or from instruction generator. Mul-

tiplexer has select signal which can be toggled from the test.

When COP C++ model is used, the generated instructions are also given to COP

model. COP model keeps track on the expected addresses in the instruction bus.

Addresses on the instruction memory are compared to the reference model generated

reference addresses.

5.3.5 Auxiliary Unit VIP

Auxiliary Unit VIP (AUX VIP) was created because there was need for an auxiliary

unit model for generating needed AUX responses in order to verify COP's AUX

instructions.

One of Nokia's in-house developed VIPs was taken as starting point for Auxiliary

Unit VIP development. Original functionality is removed and simple �nite-state

machine (FSM) added in place.

The auxiliary unit VIP supports all auxiliary unit commands given from COP's

auxiliary unit command port and responds to them via auxiliary unit response port.

AUX VIP is instantiated at COP test bench top level module and con�gured in

UVM environment class' method.
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5.4 Co-Processor C++ Model and DPI-C

COP C++ model is a software written as part of this Master's thesis project. Main

purpose of COP model is to serve as reference model against which the RTL rep-

resentation of the COP is veri�ed. The functionality is added while creating test

cases to the veri�cation environment. New instructions are added to the instruction

decoder of the COP model and instruction generator as soon as there is need for

them in tests.

The COP model consists of several �les. Cop_model.cpp and Cop_model.h are the

most important ones. The internal functionality of COP is created in them. The

COP model utilizes some queue classes which are used for storing the output port

states. COP model also uses COP disassembler to print the instructions in assembly

language representation to a simulator log while software is being run in the COP

during simulation. COP disassembler was also implemented as part of this thesis

project.

There is also a shell script which is needed for making a C header from COP VHDL

generic value listing. That generic value listing describes the instruction encoding

and decoding, internal register addresses and so on. Because COP is highly con-

�gurable through generics, it is crucial to have the VHDL generics and COP C++

model aligned. In case there is something changed in the COP design, it is translated

to the C++ model without an e�ort.

As DPI-C does not support C++ language as such, C wrapper had to be created.

More technical details about DPI-C, C wrapper and C++ usage is given in Chapter

5.4.1.

COP model development

As in making of any reference model, the internal functionality of the modelled

design has to be taken into account. COP modelling is not an exception. The COP

C++ model work started by studying the functionality of the COP.

Before a thread in COP can be spawned, the COP shall be con�gured properly.

Con�guration of the COP model is made via con�guration port access methods.

Implementation of COP model started by creating the con�guration register model

and making access methods for it.

There are some special registers such as an ID register which behave di�erently than

any other register in the COP. The contents of the ID register is associated with an
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array of COP speci�c values such as component ID code, and some VHDL generic

values which have been used for creating that particular component. Other generics

which can be read via the ID register are values such as total number of physical

registers and maximum number of threads which are con�gurable while instantiating

the COP to a SoC design.

The ID register is associated with a pointer which is incremented after each ID

register read operation. Write to the ID register changes the value of the pointer.

Each read returns a value of the array item pointed by the pointer value and then

increments the pointer. All ID register array's values can be thus read by applying

consecutive reads to one address. An example of ID register contents shown with

pointer values in Table 5.5.

Pointer value Name

0 Sync word 0

1 Sync word 1

2 Component ID

3 Some parameter

... ...

Table 5.5: ID register content

There are also some set-clear type registers such as Acknowledge-exception. The

COP noti�es the programmer with exceptions, in some cases COP exception causes

fault condition which triggers an interrupt request for host processor. Host processor

can clear exception state by accessing either acknowledge or exception register.

In addition to con�guration registers, there is also general purpose registers which

are con�gurable to be thread speci�c or register access areas assigned for threads

can be overlapping in a way that threads can communicate through them.

Physical register model contains all general purpose registers. The total number of

general purpose registers is de�ned by generic values while instantiating the COP

model. A thread can see only logical registers which are assigned for them. Thus,

there is need for threadwise logical register to physical register mapping.

Instruction speci�c methods and an instruction decoder which calls the instruction

speci�c methods were created. The instruction speci�c methods implement the sim-

ilar functionality as COP, access reference register models and creates transactions

to queues which are used as reference for comparing the behavor of COP.
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For quick checking of the instructions added to the COP model, a testing application

which instantiates and con�gures the processor model was created. It reads stimuli

from a hex �le and gives the instructions from it to the COP model. For testing

purposes, a �le containing assembly language instructions, was created. It is also

easy the check the COP C++-model's disassembler against a known reference in

the �le.

COP model usage

In order to use COP model, it has to be instantiated in the intended use environment.

If the model is used in C or C++ environment, it can be instantiated without any

wrappers. When the model is used in SystemVerilog environment, DPI-C and C

wrappers are needed. The wrapper contain functions for accessing COP model's

methods and are provided with the C++ model.

In SystemVerilog environment instantiation of the COP model, a chandle (like C

pointer) to the new COP model instance is created. The chandle must be provided

as a parameter for each COP model's method access function.

Create method of COP model calls initialize() method which initializes all reg-

ister values and clears queues. The COP is then ready for con�guration. The

con�guration is similar as with accessing UVM register abstraction layer. All the

same con�gurations shall be written to the COP model as to �the real COP� in order

to get comparable behavior.

When the COP model is con�gured, thread execution can start. The COP model

instance can take instructions as soon as a thread is spawned. Execution is triggered

by calling method execute( uint32_t instruction ).

The execute methods calls COP disassembler's disassemble( uint32_t instruction

)method. If the instruction is valid, the disassembled instruction is printed in COP's

assembly language. An error count is incremented and noti�cation about non-valid

instruction is given if there is no disassembler function for given instruction.

After disassembling, the execute method calls instruction_decoder( uint32_t

instruction ) method. The instruction decoder decodes the instruction's type

�eld and passes the instruction for further analysis to appropriate decoder method.

All parameters are then extracted from the instruction and all the symptoms related

to that particular instruction is written to registers and when needed, written to

output queues. Also an instruction pointer is updated depending on the executed
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instruction. If the instruction format of the given instruction is not valid, an illegal

instruction fault �ag is raised as it would be raised in �the real COP�.

There are also methods for accessing the output queues. It comes handy while

verifying the instruction set because then COP written data values can be checked

against reference model's output queue values.

5.4.1 C++Model Integration to UVM test bench with DPI-C

DPI-C does not support directly C++ programming language, but it supports C

language. Because C++ classes and methods can be accessed from C program, a

C wrapper with access functions for C++ class methods can be created. In the

following example, a method is provided for accessing C++ class' methods through

C functions within SystemVerilog in UVM environment.

Please note, the following example has only essential parts from DPI-C, C++ model,

C wrapper and Make�le. The example does not have all the necessary �les to

compile, but it can be used as reference.

A C++ class header used in the following example is shown in an Algorithm 2.

There is only a constructor for object and one access method called method() in

order to keep the example as simple as possible.

Algorithm 2 Example_class.h �le

//Example_class . h

c l a s s Example_class {

pub l i c : Example_class ( ) {} ;

int32_t method ( int32_t value ) ;

}

To create a C wrapper for a C++ model there is two headers to be added. First, a

SystemVerilog DPI-C header called "svdpi.h" and a C++ model's class header. See

Algorithm 3 on the next page. The svdpi.h is provided with UVM.

C++ compiler shall use C linkage for functions. Extern �C� is used for forcing C

linking. Object instantiation is made via C function which returns a pointer to the

created object. The pointer is given to SV variable of type chandle. Chandle is

passed in every C++ model method call.
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Each C++method access function shall take the object pointer value as a parameter.

Methods are called via the object pointer : instance->method( input );

Algorithm 3 Example C wrapper

#inc lude " svdpi . h"

#inc lude "Example_class . h"

extern "C" {

void ∗ new_instance ( ){

re turn new Example_class ( ) ;

}

int32_t call_Example_class_method (

Example_class ∗ in s tance ,

int32_t value ){

re turn ins tance−>method ( value ) ;

}

} /∗ extern "C" ∗/

DPI-C imports:

Object creation function shall return chandle (pointer) for created object as in Al-

gorithm 4. Chandle is needed for accessing the methods of the object.

Algorithm 4 DPI-C SV �le snippet 1

/∗ Class i n s t a n t i a t i o n ∗/
import "DPI−C" func t i on chandle new_instance ( ) ;

Accessing a method from SystemVerilog can be done via a function shown in Algo-

rithm 5.

Algorithm 5 DPI-C SV �le snippet 2

import "DPI−C" func t i on i n t call_Example_class_method (

input chandle ins tance ,

i n t va lue

) ;
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Now imported C functions can be used in SystemVerilog code. Algorithm 6 how the

object is instantiated and instance's method can be used in .sv code.

Algorithm 6 DPI-C provided object instantiation in SV

in t input_value ;

i n t output_value ;

chandle example_class_instance0 ;

input_value = 7 ;

example_class_instance0 = new_instance ( ) ;

output_value = call_Example_class_method (

example_class_instance0 ,

input_value ) ;

Compilation of C++ reference:

Variable initialization in a Make�le is shown in Algorithm 7. Use g++ with -c �ag

to create unlinked object �les.

Algorithm 7 Make�le Variable initialization

###−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
### DPI C and C++ f i l e s

###−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MODEL_DIR = . . / sw/cpp_model_dir

CPP_FILE = Example_class . cpp

DPI_C_FILE = Example_class_wrapper_dpi . c

DPI_O_FILE = Example_class . o Example_class_wrapper_dpi . o

INC_OPT = −I . −I$ (VCS_HOME)/ inc lude −I$ (MODEL_DIR)

COMP_OPT = −c

Compilation of Example_class C/C++ �les is shown in Algorithm 8 on the following

page.
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Algorithm 8 Make�le: Compilation of example class C/C++ �les

###−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
### EXAMPLE CLASS

###−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
example_class_cpp : #$ (CPP_FILE)

g++ $ (INC_OPT) $ (COMP_OPT) $ (MODEL_DIR)/ $ (CPP_FILE)

example_class_wrapper_dpi_c : #$ (DPI_C_FILE)

g++ $ (INC_OPT) $ (COMP_OPT) $ (MODEL_DIR)/ $ (DPI_C_FILE)

After the object �les are created, they can be included to simulator compilation.

Vcs elaboration command example shown in Algorithm 9.

Algorithm 9 Make�le: VCS elaboration

###−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
### Elaborate

###−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e l abo ra t e : example_class_wrapper_dpi_c example_class_cpp

${VCS_HOME}/ bin / vcs ${VCS_OPTS} $ (DPI_O_FILE) \

+l i n t=TFIPC−L +l i n t=PCWM ${TOP_LIB} . ${TOP_NAME} \

−o ${EXE_DIR}/${EXE_NAME}



54

6. RESULTS

The reason, why not �nal results are not presented in this Master's thesis is that

veri�cation closure is not achieved yet. This have been such a long project that

allocated time for Master's thesis have almost been used twice.

Following subchapters present results of the COP veri�cation environment develop-

ment such as veri�ed features and found bugs. In the last subchapter, the spent

e�ort is estimated.

6.1 Veri�ed Features

In veri�cation planning phase, the list of test cases was prioritized to three categories.

The most important features were selected as high priority. Those features addressed

register model, exceptions, faults, and external interfaces.

Veri�ed Priority 1 features:

1. Con�guration register accesses

• ID register test

• Read and write tests (bit bash)

• Reset value test

2. Local instruction memory accesses

• Read and write accesses via con�guration port

• COP instruction fetch

3. Local data memory accesses

• Read and write via con�guration port

• COP read and write accesses by using COP's load and store instructions
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4. Physical register accesses

• Read and write via con�guration port

• COP thread access to physical registers

5. External memory accesses

• COP read and write access by using COP's load and store instructions

� All access sizes: 8bit, 16bit, 32bit, and machine word

� All burst lengths: 1, 2, 4, 8, 16

• Memory bus protocol compliancy

6. Auxiliary unit command and result port

• All AUX instructions

• Auxiliary unit responses

7. Exceptions and faults

• Some exception and fault tests are not implemented yet

Priority 2 and 3 features are still to be veri�ed. Most of Priority 2 and 3 cases

are arithmetic-logical instructions. The reason why arithmetic-logical unit (ALU)

speci�c test cases have lower priority is, that the arithmetic-logical unit is not up-

dated, the legacy test bench's tests can be trusted. There is also jump and branch

instructions to be veri�ed. High number of ALU instructions are already imple-

mented to COP C++ reference model, but instruction generation and tests are not

implemented.

6.2 Bugs

Bugs found while setting up the UVM environment:

• In very early testing with UVM RAL and con�guration port default values,

following design issue was found:

� Data_n register generation was coupled with thread generation. If num-

ber of threads is low, there is possibility that not enough registers are

not generated for con�guration register bank for data_n. For example, 2

threads and 128bit machine word width should have generated four 32bit

data registers. Only two 32bit registers was generated due to design issue.
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• IP-XACT bugs:

� IP-XACT which is the source for RAL and C-header generation, had

mistakes. They were discovered by using RAL model.

∗ Wrong width of the RAL generation for couple of registers lead to

port/signal mismatch error in analysis of the test bench

• Register aliasing bug

� Occurs when misusing the register model with odd numbered thread.

� Writing to a logical register outside allocated register range.

∗ No exception triggered. Register addess gets aliased. Write succeeds.

Bugs found while setting up COP C++ Processor Model:

• Instruction fetch bug

� COP was trying to initiate write to instruction memory while fetching

commands

� Caused glitch to instruction bus

� VIA to AXILite component problem

• Store posted triggers COP protocol exception

� COP protocol fault

� Problem in COP's internal PSI to AXI conversion

� There is no posted writes in AXI 3 protocol, but COP supports posted

writes. COP does not expect response, but AXI slave gives the response

• Documentation improvements to COP Programming Guide

There are other bugs, found in SoC top level veri�cation which are not included in

this list. The �xes are con�rmed by running test cases in this veri�cation environ-

ment.
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6.3 Spent E�ort

The veri�cation project of COP IP was started at June 2015 with two veri�cation

engineers who had no previous experience of setting up UVM test benches. During

the time there have been activities for previous and new projects on-going for both

engineers. Summer vacations and paternity leave took place in July-August 2015

timeframe.

Veri�cation strategy and plan reviews were held in August 2015.

It took 3 to 4 months to get the veri�cation environment up with all third-party and

Nokia in-house VIP's. By mistake, an old broken version of Synopsys AMBA Suite

was used in the beginning of veri�cation environment set up, which caused delay.

An estimate of monthly spent e�ort is shown in Table 6.1 (R: Review, V: Vacation,

PL: Paternity leave). As both of veri�cation engineers were making test bench for

�rst time, the learning and problem solving took time.
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Veri�cation Strategy 1 0,5 0,5R

Veri�cation Plan 0,5 R

Environment 0,5 1,5 1 1

Quali�cation 0,5

Reference model 0,5 0,5 0,5 0,5 0,5 0,5 0,5

Test cases 0,5 0,5 1,5 1,5 0,5 0,5 0,5 0,5

Overlapping project 1 0,5V 0,5PL 1 1 1 1

Table 6.1: Estimate of spent e�ort

Calculated from Table 6.1, overall 16,5 man-months have been spent for creating

the UVM test suite for COP.

As there is no data available for how long it took to develop COP design, it is hard

to compare the design e�ort to the veri�cation e�ort. I suppose, the veri�cation has

taken already longer than the design e�ort of the COP. So, the veri�cation e�ort is

going to be much higher than 50% of overall design+veri�cation e�ort.

For processor reference model creation, the designer level knowledge is needed and

the needed e�ort for reference model implementation can be very similar to the
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design implementation. In addition to reference model, the veri�cation environment,

checkers, test cases, and veri�cation components has to be created.
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7. CONCLUSIONS

Importance of proper veri�cation environment is huge for IP blocks. An IP block

cannot be taken into use for new system on chip designs if it is not veri�ed properly.

It is possible to purchase veri�ed IP blocks, but they are expensive and cannot be

customized as freely as in-house designs. It is also good that there is continuity for

each in-house developed IP block on the SoC designs. The development stays active

and knowledge about each IP block stays at high level.

The chapter 4 introduced RISC processors in general and Nokia Co-processor. There

are various reasons why it is good to have Nokia Co-processor IP available. First

of all, it is very versatile. It scales well from very small footprinted, one threaded

32-bit processors up to 128-bit and 16 threaded processors. COP alone can be used

as direct memory access accelerator, but adding hardware accelerators, the COP

can turn into a very e�ective engine for di�erent applications.

The COP IP is a legacy IP from Nokia's previous SoC organization. Bus interfaces of

that were updated to be ARM AMBA compatible as part of the SoC development.

Nokia Co-processor had a legacy veri�cation environment which become mostly

outdated when the external bus interfaces were changed. The veri�cation of COP

instruction set was done in the legacy veri�cation environment, but bus interface

functionality was veri�ed in SoC top level veri�cation for that speci�c SoC.

Nokia Co-processor needed proper veri�cation environment before it can be taken

into new designs with con�dence.

The new UVM based veri�cation environment can be seen as an enabler for many

activities:

1. Usage in new SoC designs

• COP can be taken into use for new SoC's with con�dence

2. COP high-level programming language compiler development (output assem-

bly language and binary validity)
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3. Auxiliary unit development

4. Further development of the COP

5. Software development

• There was no environment available for COP software development

• COP disassembler can be used for debugging

COP veri�cation environment was introduced in chapter 5. The environment has

lots of veri�cation IP's (VIP) and some of them was third party VIP's. Many of the

parts was developed for this particular veri�cation environment:

• COP C++ reference model

• DPI taken into use with the reference model

• COP instruction generator

• Auxiliary unit VIP

• COP assertion module

The COP veri�cation environment is completed and lots of test cases have been

done. The veri�cation is not completely done yet, though, but the main features

have been veri�ed. More features must be covered in order to get veri�cation closure.

Most important result of having the veri�cation environment for the COP is that

Nokia Co-processor has been taken into use for new SoC designs and the development

around COP is currently very active. Other results are shown in Chapter 6.

7.1 Further Development

The COP development and development activities around COP are currently very

active. Thus, there are new features to be added to the veri�cation environment.

One �improvement� would be replacing the Synopsys' AMBA suite VIPs completely

with Nokia's in-house VIPs. All the needed in-house developed VIPs were not

available at the time when the COP test environment project was started. Now all

Synopsys VIP's used in COP veri�cation have an alternative implementation which

doesn't require Synopsys' licenses, making veri�cation environment costs smaller.
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There are still many test cases to be done to cover all of the functionality of the

COP before veri�cation closure can be done.

It would be good to study other DPI use cases. It is possible to use shared code

at driver software development and prototyping. Another DPI use case can be at

SoC top level veri�cation. It might be possibile to speed up simulation by executing

co-simulator tests with DPI interface and UVM bus master VIP so processor model

is not needed.



62

REFERENCES

[1] K. Albin, �Nuts and Bolts of Core and SoC Veri�cation,� 2000. [Online]. Avail-

able: https://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-2004/

papers/2001/dac01/pd�les/16_2.pdf

[2] Tampere University of Technology. TKT-1426 Lecture 3: FPGA and

ASIC. (2010). [Online]. Available: http://www.tkt.cs.tut.�/kurssit/1426/S10/

Lectures/TKT-1426_lect_4b.pdf

[3] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-chip Veri�cation. Kluwer

Academic Publishers, 2001.

[4] M. J. S. Smith, Application-Speci�c Integrated Circuits. Addison-Wesley, 2005.

[5] IBM. IBM Global Business Services. The perfect product launch.

(2006). [Online]. Available: http://www-935.ibm.com/services/at/bcs/pdf/

scm-perfect-prod-launch.pdf

[6] S. Rahkonen, �Mutation-Based Quali�cation of Module Veri�cation Environ-

ments,� Master's thesis, Tampere University of Technology, 2016. [Online].

Available: http://urn.�/URN:NBN:�:tty-201512111824

[7] �IEEE Standard for SystemVerilog�Uni�ed Hardware Design, Speci�cation, and

Veri�cation Language,� IEEE Std 1800-2009, pp. 1�1285, Dec 2009.

[8] Accellera. Accellera Systems Initiative Inc. Universal Veri�cation Methodology

(UVM) 1.2 Class Reference. (2014, 6). [Online]. Available: http://accellera.org/

images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf

[9] �IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating,

and Reusing IP within Tool Flows,� IEEE Std 1685-2014, 2014.

[10] M. Becvar and G. Tumbush, �Design and Veri�cation of an Image Processing

CPU using UVM,� 2013. [Online]. Available: http://www.tumbush.com/

published_papers/DVCon_13_Tumbush_paper_�nal.pdf

[11] A. G. K. Kamath, �Automatic Veri�cation of Microprocessor designs using

Random Simulation,� 2012, Master's Thesis, Uppsala University. [Online].

Available: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179273

[12] T. R. Nicely. Pentium FDIV �aw. (2011, 9). [Online]. Available: http:

//www.trnicely.net/pentbug/pentbug.html

https://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-2004/papers/2001/dac01/pdffiles/16_2.pdf
https://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-2004/papers/2001/dac01/pdffiles/16_2.pdf
http://www.tkt.cs.tut.fi/kurssit/1426/S10/Lectures/TKT-1426_lect_4b.pdf
http://www.tkt.cs.tut.fi/kurssit/1426/S10/Lectures/TKT-1426_lect_4b.pdf
http://www-935.ibm.com/services/at/bcs/pdf/scm-perfect-prod-launch.pdf
http://www-935.ibm.com/services/at/bcs/pdf/scm-perfect-prod-launch.pdf
http://urn.fi/URN:NBN:fi:tty-201512111824
http://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
http://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
http://www.tumbush.com/published_papers/DVCon_13_Tumbush_paper_final.pdf
http://www.tumbush.com/published_papers/DVCon_13_Tumbush_paper_final.pdf
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179273
http://www.trnicely.net/pentbug/pentbug.html
http://www.trnicely.net/pentbug/pentbug.html


63

[13] S. Billava and S. M. Hondwadkar, �A framework for veri�cation of

Program Control Unit of VLIW processors,� 2014. [Online]. Available: https:

//dvcon-india.org/sites/dvcon-india.org/�les/archive/2014/proceedings/

dv-papers/D2M2-3-1-DV_Framework_for_Veri�cation_VLIW_Paper.pdf

[14] J. Berezinski. Northern Illinois University. System architecture 463 - lecture

notes - chapters 4 & 6 - instruction set architecture - risc/cisc. (2016). [Online].

Available: http://faculty.cs.niu.edu/~berezin/463/lec/05/risc01.html

[15] C. Chen, G. Novick, and K. Shimano. Stanford University. RISC vs.

CISC. [Online]. Available: http://cs.stanford.edu/people/eroberts/courses/

soco/projects/risc/risccisc/

https://dvcon-india.org/sites/dvcon-india.org/files/archive/2014/proceedings/dv-papers/D2M2-3-1-DV_Framework_for_Verification_VLIW_Paper.pdf
https://dvcon-india.org/sites/dvcon-india.org/files/archive/2014/proceedings/dv-papers/D2M2-3-1-DV_Framework_for_Verification_VLIW_Paper.pdf
https://dvcon-india.org/sites/dvcon-india.org/files/archive/2014/proceedings/dv-papers/D2M2-3-1-DV_Framework_for_Verification_VLIW_Paper.pdf
http://faculty.cs.niu.edu/~berezin/463/lec/05/risc01.html
http://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
http://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/

	Introduction
	System on Chip
	SoC Technology Evolution
	SoC Development
	SoC Economics

	Verification
	Introduction
	Formal Verification
	Dynamic Verification
	Verification Qualification
	SystemVerilog
	Universal Verification Methodology
	UVM Agent
	Example UVM Environment
	UVM Register Abstraction Layer

	Processor Verification

	RISC Processors
	RISC
	Nokia Co-Processor
	Overview
	History
	Legacy COP Verification Test Bench


	Nokia Co-Processor Verification Suite
	Verification Strategy
	Verification Plan
	Verification Environment
	UVM Test Bench Top Level Module
	UVM Tests
	Instruction Generator
	Usage of Instruction Generator
	Auxiliary Unit VIP

	Co-Processor C++ Model and DPI-C 
	C++ Model Integration to UVM test bench with DPI-C


	Results
	Verified Features
	Bugs
	Spent Effort

	Conclusions
	Further Development

	References

