
IMPROVING IP BLOCK DESIGN FLOW PRACTICES
LAURI JUHOLA

Master of Science thesis

Examiner: Prof. Timo D. Hämäläinen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 4th April 2016

i

ABSTRACT

LAURI JUHOLA: Improving IP block design flow practices
Tampere University of Technology
Master of Science thesis, 69 pages
May 2016
Master’s Degree Programme in Electrical Engineering
Major: Embedded Systems
Examiner: Prof. Timo D. Hämäläinen
Keywords: IP design, hardware design, System-on-Chip (SoC) design

Digital systems are really complex and, thus, their design is not straightforward either. Big
part of the actual design work is done by designing IP (Intellectual Property) components,
re-using them and integrating them. This thesis focuses on IP development flow at Nokia
Solutions & Networks (NSN). The goal is to identify working habit related issues and their
importance, and provide some easily implementable actions to improve the situation.

This thesis includes a literature study of the common flow issues and solutions. The issues
could be categorized in the following way: inefficient communication, finding correct
documents/files, unclear documentation, unclear code, scripting, version control, software
tool related problems including computational platforms and IT support. The field of
IP design is not studied widely so software development was used as a reference when
applicable. After the most common issues were identified, 7 employees of NSN were
interviewed to get more specific information and find out the impact of different issues.
The issues with most impact were: IT related issues, unclear documentation, finding
correct documents and tool related problems.

As a conclusion, action points were suggested to improve the situation with most im-
portant issues. Since there were already ongoing actions to improve IT and unclear docu-
mentation, the point of focus became finding correct documents and tool related problems.
Based on the more specified results from the interviews the following actions were sug-
gested: link library with short descriptions for different kinds of documents and locations
(especially for not-design-related documents such as tool instructions and guidelines) and
more comprehensive tool training and instructions. Additionally, the need for script train-
ing and guidelines came up in most of the interviews, so that is also recommended.

ii

TIIVISTELMÄ

LAURI JUHOLA: IP-lohkon suunnitteluvuon käytäntöjen parantaminen
Tampereen teknillinen yliopisto
Diplomityö, 69 sivua
Toukokuu 2016
Sähkötekniikan koulutusohjelma
Pääaine: Sulautetut järjestelmät
Tarkastaja: Prof. Timo D. Hämäläinen
Avainsanat: IP-suunnittelu, System-on-Chip-suunnittelu

Digitaaliset järjestelmät ovat erittäin monimutkaisia, kuten on myös niiden suunnittelu,
joka perustuu suurelta osin IP-lohkojen (Intellectual Property) suunnitteluun, uudelleenkäyt-
töön ja integrointiin. Tässä diplomityössä keskitytään Nokia Solutions & Networks:in
(NSN) IP-kehitykseen. Tavoitteena on selvittää työtapoihin liittyviä ongelmia, niiden ke-
skinäinen tärkeysjärjestys ja antaa helposti toteutettavia parannusehdotuksia.

Työ koostuu kirjallisuusselvityksestä liittyen yleisiin työtapaongelmiin ja niiden ratkaisui-
hin. Yleisempiä ongelmia olivat tehoton kommunikaatio, oikeiden dokumenttien/tiedos-
tojen löytäminen, epäselvä dokumentaatio, epäselvä lähdekoodi, skriptaus, versionhallinta
sekä työkaluohjelmistot mukaanlukien laskentapalvelimet ja IT-tuki. IP-kehityksen tuot-
tavuutta ei ole tutkittu kovin laajasti, joten vertailukohtana käytettiin ohjelmistokehitystä.
Kun yleisimmät ongelmat oli selvitetty, 7 NSN:n työntekijää haastateltiin tarkempien ti-
etojen saamiseksi sekä eri ongelmien vaikuttavuuden arvioimiseksi. Eniten vaikutusta
koettiin olevan seuraavilla epäkohdilla: IT-tuki ja laskentapalvelimet, epäselvä dokumen-
taatio, oikeiden dokumenttien löytyminen ja kehitysohjelmistoihin liittyvät ongelmat.

Lopuksi ehdotettiin käytännön toimintoja merkittävimpiin ongelmiin tilanteen parantamiseksi.
IT-tukeen ja laskentapalvelimiin sekä epäselvään dokumentointiin oli jo kiinnitetty huomiota,
joten ne jätettiin pois. Seuraavia toimia ehdotettiin tehtäväksi: linkkikirjasto eri doku-
mentteihin ja esim. ohjelmistokohtaisiin linkkikirjastoihin sekä enemmän koulutusta ja
ohjeistusta työkalujen käyttöön. Lisäksi tarve skriptikoulutukselle ja -ohjeistukselle tuli
esille useimmissa haastetteluissa, joten myös sitä suositellaan.

iii

PREFACE

I would like to use this opportunity to thank my colleagues and especially those who
agreed to be interviewed. The open and accepting atmosphere made it easy to locate the
issues and think about possible solutions.

A special thank goes to my supervisors Dr.Tech. Erno Salminen and Prof. Timo D.
Hämäläinen: I don’t believe that all the Master’s thesis writers have the privilege to work
with so experienced supervisors. I hope that I have managed to transfer even a fraction
of your experience on to the pages of this thesis. Not to forget that without you two this
wouldn’t have been possible in the first place. My line manager Vesa E. Lahtinen helped
also a lot with choosing the topic and handling the company bureaucracy connected to the
Thesis.

Additionally, I would like to thank my family and friends, for not only encouraging sup-
port during the stressful parts but also for insightful discussions of productivity, lean and
other related topics. In this category the special thank goes to my girlfriend Petra, who,
in addition to all the discussions and input she gave, also had to live with me while I was
writing my thesis.

Tampere, 18.5.2016

Lauri Juhola

iv

LIST OF ABBREVIATIONS AND SYMBOLS

AD/DA Analog-to-digital/digital-to-analog
ASIC Application specific integrated circuit
DDR Double data rate
FIR Finite impulse response
FP Function point
FPGA Field programmable gate array
HLS High-level synthesis
IC Integrated circuit
IP Intellectual property
LOC Line of code
MAC Media access control
NSN Nokia Solutions and Networks
SoC System-on-chip
RTL Register transfer level
UART Universal asynchronous receiver/transmitter

v

TABLE OF CONTENTS

1. Introduction . 1

2. Introduction to digital systems . 3

2.1 Integrated circuit, IC . 3

2.2 System-on-chip, SoC . 4

2.3 Implementing digital systems . 5

2.4 Levels of digital system abstraction . 6

2.5 Digital system design flow . 8

2.6 Design automation and high level synthesis (HLS) 9

3. Intellectual Property (IP) components . 11

3.1 The concept of IP . 11

3.2 Re-use . 11

3.2.1 General design re-use . 12

3.2.2 General IP re-use . 13

3.2.3 Hardware re-use special considerations 15

3.3 IP-XACT meta-data format . 17

4. Designer productivity . 18

4.1 Measuring designer productivity . 18

4.2 Factors affecting productivity . 18

4.2.1 Technical factors . 21

4.2.2 Soft factors . 22

5. IP design flow issues . 24

5.1 Inefficient communication . 24

5.2 Finding correct files and documents . 25

5.3 Unclear documentation . 27

5.4 Unclear code . 29

vi

5.5 Scripting . 29

5.6 Version control . 31

5.7 Issues with tools . 33

5.8 Summary of the issues . 35

6. Solutions to general issues . 37

6.1 General person-to-person communication 37

6.2 Making files easier to be found . 38

6.3 Documentation readability . 41

6.3.1 Motivation to write . 41

6.3.2 Text . 41

6.3.3 Abbreviations and acronyms . 43

6.3.4 Figures and tables . 44

6.3.5 Visual bookmarks . 46

6.3.6 Documentation scope . 46

6.3.7 Conclusion on documenting . 47

6.4 Code clarity . 48

6.4.1 Naming and structure . 48

6.4.2 Improvement practices . 50

6.4.3 "Hello world" examples . 51

6.4.4 Conclusions of code clarity . 51

6.5 Scripts . 52

6.5.1 Different scopes of scripts . 52

6.5.2 Good script writing practices . 53

6.5.3 Conclusion on scripts . 55

6.6 Managing the EDA tools . 56

7. Interview results and action points . 58

7.1 Conducting interviews . 58

7.2 Results . 59

vii

7.3 Conclusions and possible actions . 61

8. Conclusions . 63

1

1. INTRODUCTION

Modern integrated circuits (IC) are very complex. As an example, System-on-Chip (SoC)
used in XBOX One game console contains 8 processor cores and 5 billion transistors [15].
Figure 1.1 shows a typical case of a SoC chip on a circuit board. The design teams consist
of tens to hundreds of engineers and design times are measured in months or years. There-
fore, SoC design is often based on re-usable building blocks called intellectual property
(IP) components or blocks. Such IP components speed up the design, reduce the risks,
make schedules more predictable, and ease division of work [66]. However, designing
and using them is not always as straightforward as envisioned in literature. This thesis
seeks to identify the issues that cause time waste and frustration in the IP design process
at Nokia Solutions and Networks (NSN) and provide low effort solutions for them.

Figure 1.1 Illustration of a typical SoC on a circuitboard. [27]

For example, finding the right files, reading unclear code or trying to fix broken scripts
can cause many issues. Although some issues sound very trivial, they seem to be difficult

2

to solve. Additionally, these difficulties cause a lot of time waste and designer frustration
in practice.

The research for this thesis is conducted in three phases. Firstly, a literature study is
conducted to find out commonly known issues and solutions for them. After that, IP
designers are interviewed to map which of the issues concern NSN and what is their
impact on work. Based on these sources a list of issues with greatest impacts is gathered.
After that, it is figured out how issues can be affected with reasonable effort and some
realistic action points are suggested. Organization level process or hierarchy changes are
out of the scope of this thesis.

This thesis is structured as follows. Chapter 2 introduces the basic digital design concepts
and Chapter 3 provides more details about IP components, their re-use and other related
topics. Chapter 5 outlines the common issues based on in literature observations. Chap-
ter 6 seeks solutions for revealed common issues. After that, Chapter 7 introduces the
outcomes of interviews and suggested action points. The thesis is concluded by Chapter
8.

3

2. INTRODUCTION TO DIGITAL SYSTEMS

Modern digital systems are complex, widespread, and usually well hidden from the end
user. Thus, the presence of digital systems is not always obvious; they can be found
from space rockets and cars as well as washing machines and toys. This chapter seeks to
explain the basic terms and concepts of digital systems. The focus of this thesis lies on
one specific type of digital system design unit, intellectual property (IP) and that concept
is explained in more detail in Chapter3.

2.1 Integrated circuit, IC

In the heart of a modern digital system lies one or more integrated circuits (IC). They are
complex electronic systems where the components are manufactured on a single silicon
chip. This means that notably less discrete components are needed and, thus, this tech-
nology enables having a great number of components on a very small area. This makes it
possible to manufacture very complex systems, for example, microprocessors. Figure 2.1
illustrates how IC chips physically appear. The picture on the left hand side shows how a
chip is packaged to be attached to the circuit board and to the rest of the system. On the
right hand side one can see a chip inside a package, namely the actual silicon die and the
fine bonding wires that connect its I/O pins to pads on the package. There are also other
types of packages, however, generally ICs are inside the black rectangles on the circuit
board.

Figure 2.2 shows two circuit boards from mobile phones. The upper one is from an old
model and the one below from a modern version. The functionality is almost equal be-
cause the newer is targeted to markets in developing countries. However, the amount of
discrete components is significantly smaller in the modern version. This is due to the
higher level of integration. Integration means that more and more differing functional
blocks are manufactured on the same chip thus reducing the amount of chips and external
components needed. Additionally, tighter integration often allows higher frequencies and

4

Figure 2.1 On the left, there is an IC in a package that can be soldered onto a circuit board.
[43] On the right, one can see how the IC approximately looks like when the plastic cover of the
package is removed. [46] The silicon chip and the pattern on its surface are clearly visible.

Figure 2.2 The upper circuit board is from an old phone model and under it is a modern ver-
sion with similar functionality. [9] The comparison of the two phones clearly demonstrated how
integration has led to a greatly smaller amount of components.

reduces power consumption. Since the price goes down with increased level of integra-
tion, highly integrated ICs are the trend in modern day semiconductor design [9].

2.2 System-on-chip, SoC

ICs that contain multiple functionally different digital blocks are named system-on-chip
(SoC). A good example of an SoC is a microcontroller that has not only the processor but

5

Figure 2.3 Example of an SoC from XBOX One that has different functional blocks on a single
silicon chip. [30]

also multiple peripherals, as UART block or AD/DA converters, on the same chip. It is
also possible that SoC has multiple processors, see for example [67]. Figure 2.3 shows
the physical layout of an SoC used in XBOX One. In this case different functional blocks
can be clearly seen as separate areas on the chip. Also the complexity of the system is
visible.

2.3 Implementing digital systems

One more aspect to consider about digital systems and SoCs is their final implementation
technique. Currently, all the systems are more or less ICs: logic circuits manufactured on
a silicon chip. However, the division goes further and there are roughly two categories:
processors and additional logic. A good example could be an Atmega microcontroller
chip: on the same chip there is a processor and some peripherals [7]. The peripherals
can be thought to be additional logic that doesn’t process any information but takes care
of some kind of more simple routine-like tasks, such as interface protocols or AD/DA
conversions.

The categorization of processors is a somewhat complicated topic and, in addition, not
crucial for understanding the topics of this thesis. Thus, it is not addressed further here.
The division of external logic is also not straightforward. However, there are two com-
monly used types for implementing logic: application specific IC (ASIC) and field pro-
grammable gate array (FPGA). ASIC logic is hardwired on the silicon and the structure

6

cannot be changed after manufacturing, whereas FPGA logic is configurable.

2.4 Levels of digital system abstraction

Due to the complexity of modern digital systems, many different levels of abstraction are
used during the design. The levels can be roughly divided into the following 4 gategories:

1. Algorithm level

2. Register transfer level (RTL)

3. Gate level

4. Transistor level

Figure 2.4 clarifies the division. The algorithm level describes the functions the design
should execute. It does not dictate in detail how the design is implemented in the logical
or physical level and usually does not consider the timing. Algorithm model usually
also provides a golden reference for design verification. Register transfer level (RTL)
describes the logic functionality of the bit level with clock cycle accuracy. It is a mixture
of logic description and state machines. However, the RTL level design does not consider
the physical implementation, hence it is mostly technology independent. Sometimes,
however, the final implementation technology has to be considered already in RTL code,
for example when the code instantiates technology-specific memories or interfaces.

The gate level describes the actual logic gates used to implement the logic and, conse-
quently, it is technology dependent. Transistor level shows how the gates are actually
implemented with transistors on silicon. If the design is implemented with FPGA tech-
nology, the gate level is mapped to the programmable logic elements of FPGA instead of
transistors.

There is a trend in digital system design to strive for higher level of abstraction in the
design process. Then, the creation of lower level models could be automatized with elec-
tronic design automation (EDA) tools. The design process automatization is discussed
further in Section 2.6.

7

1.

2.

3.

4.

Algorithm level:
C/C++C/Matlab is often
used for algorithm level
design.

RTL level:
The logic of the design is
described with some
hardware description
language, for example
VHDL or Verilog. Usually
RTL design is simulated
extensively, since RTL level
is clock cycle and bit
accurate.

Gate level:
The RTL design is mapped
to gate level depending on
the final implementation
technology.

Transistor level:
Finally, the physical
layout of transistors is
derived from gate level.

Figure 2.4 Different levels of digital design abstraction. [44, 68, 36]

8

2.5 Digital system design flow

The basic design flow of a digital design can be roughly divided into 3 steps:

1. Specification

2. Implementation

3. Verification

Specification means deciding what is the function of the respective design entity and how
it is connected to the rest of the design. Implementation means the actual coding part of
the design when the design is described in RTL writing by hand or by instantiating IP
blocks. Verification ensures that the implementation works according to the specification.
The design steps are not distinct but more or less overlapping. For example, the specifi-
cation might change during the design process and both implementation and verification
must adopt to the change. Equally, some parts can be verified already before the whole
implementation is finished.

Specification Implementation Verification

Figure 2.5 The design flow of a digital system. It is important to remember that the steps are
somewhat overlapping. [44]

Usually, the design is not done by only one person but within teams. There are many ways
to divide the work. However, considering the expertise each step requires, engineers ofter
have their own designated areas. This all means that a lot of information has to be commu-
nicated during design handovers. Additionally, there is a current trend of dividing work
between different engineers in a more flexible manner: for example, a person implement-
ing the design is also supposed to do simple preliminary verification. This increases the

9

need for effective communication since now it is not only information about the design
that has to be transferred. Also information about the tools and other not design specific
thing has to be communicated.

2.6 Design automation and high level synthesis (HLS)

The studies [14, 42] have shown that higher level of abstraction in programming languages
results in higher designer efficiency. This is also true in hardware design: higher level
models can be created more efficiently than lower level models. For example, the change
from gate level design to RTL level design brings great efficiency improvements. [14, 66]
In addition, some of the design work in the lowest levels is quite repetitive and tedious
to do by hand. Thus, it could and should be automated. Higher level models are also
often easier for human designer to understand and, thus, to create and modify. These
are the reasons for developing electronic design automation (EDA) tools that automatize
the transition to lower level model. However, the gap between the original design and
the final physical implementation increases with an increasing level of abstraction [11].
Thus, more elaborate and complicated EDA tools are required to derive the lower level of
design and, still, there is a need for an engineer to do some fine tuning.

Currently RTL is the de-facto industry standard for hardware design [66]. However, RTL
design still requires people who know some RTL logic description languages, such as
VHDL or Verilog. In addition, logic description languages are difficult to write due to
the exactness, that could be partially automated. These are the reasons for developments
in the field of high level synthesis (HLS): EDA tools that automatically create RTL level
code from higher level programming languages such as C or Matlab code.

The biggest issues with high level synthesis are the incompatibility with current design
flows and sometimes insufficient traceability. The design flow can be changed, despite the
fact that the change requires a lot of effort. Traceability, on the other hand, might be more
difficult to improve. Traceability means the ease of tracing the effects of code changes in
the final design. It is especially important when the design is being optimized: one has to
be able to know which changes are effective and which not. Of course, the effects can be
seen after running the flow to the end. However, that requires time and computing power
which cost money. Thus, HLS is currently only partially competitive with the traditional
RTL level.

It is also possible that the designs created with higher level of abstraction loose in per-

10

formance to those described originally at RTL level. Additionally, the coding style of,
for example C, might affect the final results. This means, that even though a higher level
language can be used, some special training and considerations are still needed.

All in all, it seems that HLS is the current trend in digital design. Many different tools
are being develop: Catapult-C, Vivado, Synphony C Compiler, Simulink, just to mention
a few. [62] The development has been fast in recent years and it is ongoing. Time will tell
how big a part of RTL level design can be replaced by high level synthesis and how big
tradeoffs are included.

11

3. INTELLECTUAL PROPERTY (IP) COMPONENTS

This chapter discusses the essence of intellectual property in more detail. IP is first dis-
cussed on an introductory level. Then, the concept of re-use is introduced since it plays
an important role in the modern day IP design. In addition, re-use also changes quite
significantly the design requirements and, consequently, affects the design itself. The
concluding section covers one more important aspect of IPs: information packaging with
IP-XACT.

3.1 The concept of IP

IP can be understood as a design entity or a basic functional building block of a digital
system. IP can be, for example, a processor, memory controller, interface logic, and ac-
celerator functions, see [3, 39] for examples. It is also possible that an IP contains smaller
sub-blocks that are IPs themselves. These similar blocks can be used in many designs,
thus, time consuming and error prone constant re-design is not necessarily needed.

A good analogy might be Lego bricks [66]. They differ in style and size depending on
where they are supposed to be used and one block can be used in multiple places. The
blocks have a clear, often standardized interface to other blocks, such as AMBA AXI [6]
(or the lumps in Lego bricks). Figure 3.1 shows an artistic conceptual picture of an SoC
containing many different IPs.

3.2 Re-use

Design re-use means that the the same design unit is used in multiple designs. The re-
use is supposed to save design time since the units are designed and verified/tested only
once. In an ideal case the units would not need to be modified at all but just more or less
be connected to other re-used units. Naturally, this is not always the case. This section
discusses the different aspects of design re-use. First the discussion is on a general level

12

Figure 3.1 A conceptual picture of an SoC containing many separate IP blocks. Many of the
IP blocks, for example UART peripheral, are relatively common and thus using them as reusable
blocks greatly reduces design time. [18]

and can be partially applied also to the field of software development. In the end the focus
is moved to IPs and the special considerations of re-use in hardware designs.

3.2.1 General design re-use

The re-use itself can be roughly divided into blackbox and whitebox reuse. Blackbox
means that the user does not see what kind of logic the block contains but only the spec-
ification and connection interface. Whitebox (or glass-box) re-use is the case when the
source code is visible and modifiable by the user.

In an ideal world, blackbox reuse would be the perfect case: there is no need to do any
changes to the design which saves design time and, thus, money. Also the design could
remain as a secret and the company espionage would not need to be considered that much.
However, the blackbox re-use has its drawbacks. Experience has shown that it is very
difficult to make documentation that has good enough coverage. This means that a lot of
time and effort is used for communicating the details. Strict blackbox re-use also tends
to lead to non-optimized design because the usage and environment of the design might
change. In addition, debugging blackbox design units is rather challenging: it is difficult

13

to find out if a bug is in the design or if the design is used wrong.

Sometimes the case is such that the re-use is supposed to happen in a blackbox manner
but the code is whitebox. This might be found for example in companies that develop
designs for their own use and not for sale. One of the limiting factors in this case is,
again, design time. Making code general, configurable or easily modifiable is not easy.
In addition to that, the design engineer cannot make too many assumptions with general
code, for example that the address bus is always wider than the data bus. This complicates
the design further. If the source code itself is supposed to be modified, the code has to
be well structured and commented. Again, this increases the time needed for design.
Additionally, one has to remember that also the verification becomes more complicated
with increasing configurability.

It is also worth remembering, that re-use is not always intentional. It is possible that old
design code is partially copy-pasted ad-hoc just because it seems to fit the purpose and
someone remembers that such code exists. This kind of re-use is sometimes encouraged
since it saves time and effort compared to starting from scratch. However, relying the
whole re-use scheme on this is not advisable. This is due to the innate randomness of
the method and, thus, problems arising from following the versions, for example, for
bug fixes. Additionally, since the design is not designed for re-use, it might include
some unwanted optimizations or some other former application spesific structures that
complicate the re-use.

3.2.2 General IP re-use

For hardware design, IPs are quite ideal for re-use. This is due to the fact that IPs are
mostly designed in RTL level that is essentially independent of final implementation tech-
nology. Figure 3.2 represents the ideal process of IP re-use: the IPs are designed as seem-
ingly separate blocks and stored in an IP library. Then, IPs are taken from the library for
different design in an as-needed basis in a blackbox or hard manner.

Even though blackbox/whitebox terms are used with IPs too, it is more convenient to
describe the IP re-use by hard, firm and soft. Soft means that the source code is visible
and possibly even supposed to be changed in some parts. A hard block is quite close to the
blackbox: the thing that can be designed is where the block is situated on the final chip,
for example, a double data rate (DDR) memory controller. It has such a complicated and
strict timing that it is better not to touch it when it is working and it is not configurable.

14

IP-Library

Integration

Tool

SoC 2

SoC 1

Figure 3.2 A visualization of ideal IP re-use: the IPs are designed separately and the actual
designs are then put together by simply connecting IP from the library. [52]

Firm is somewhere between soft and hard, for example a gate level netlist that can then be
integrated to the rest of the design more easily than a transistor level design. Another good
example of firm IP is the NIOS processor provided for Altera FPGAs: the source code is
not visible at all but the processor is highly configurable [4]. It is also interesting to note
that before being synthesized to an FPGA, the processors does not physically exist.

Figure 2.4 clarifies the division between soft, firm and hard. Usually soft blocks are
delivered as RTL code (part 2). Gate level netlists (part 3) do not allow source code
modifications but, on the other hand, allow final implementation modification. Thus, they
can be viewed as firm blocks. Finally, transistor level layouts (part 4) are not modifiable
and, consequently, can be interpreted as hard blocks. The algorithm model (part 1) can be
seen as part of documentation and should be delivered with all different types.

To avoid confusion in the naming in this thesis, the blackbox/whitebox terms are used
when speaking about re-use in broad manner. Soft/hard re-use are reserved hardware for
discussing IP re-use. In addition, the term glass re-use is not used but whitebox re-use.

Occasionally, when delivering designs to a third party, it is in the best interest of the design
company to give no information at all about the design internals. In these cases the IPs
can be encrypted.

15

There has also been discussions of platform re-use based design [47]. Platform is the next
level of abstraction up from IPs. There are two different interpretations of what platforms
are. The firs one understands platform as a subsystem consisting of 5-15 IPs that are
connected to each other. Then, when re-use occurs, it will be used as a base for design:
something might be added, something removed and something modified. However, more
design data is included in platform re-use than with just single IP re-use. The second
interpretation understands that a platform is simply the IP library. All in all, further dis-
cussion is out of the scope of this thesis. An interested reader can find out more from
[47].

3.2.3 Hardware re-use special considerations

The re-use of software and hardware/IPs are not exactly the same. This is due to many
reasons: IPs have to work well with other IPs, hardware technology changes, and has
to be considered in IP design. Moreover, IPs can have the same functionality with very
different types of variably optimized designs.

IPs are seldom used alone. They are usually connected to other IPs and some may require
software drivers. In addition, the usage of IPs is not planar: one IP can include several
other IPs with some additional logic. Thus, changes in one block quite often affect also
other blocks and, in the case of very hard re-use, the changes might even make the block
unusable. An example of this could be an IP that performs a change from 24 bit number
to 18 bit and does the needed rounding. If this type of general IP is changed, some user
blocks might not handle the change well and quite surprising effects may arise.

The hardware technology changes very rapidly and, still, the design cycle for an ASIC
might be two years. Thus, when a decision is made to use design time for facilitating re-
use, one has to predict the future trends. What if some new bus protocol is implemented?
What if the old standard of making memories changes and, thus, also the interface? Doing
really hard IPs inside a company for future re-use includes a high risk. Then, on the other
hand, if IPs are designed for sale, there are always copyright aspects that support hardness.
Additionally, designing IP for sale has higher volume of re-use.

Generality and/or malleability of the design also affects the area, speed and power con-
sumption of the final IC. The effects can be estimated already in the design phase. How-
ever, this estimation supposes that there are both versions, not-for-re-use and for-re-use,
available. The effects may vary based on what kind of re-usability is considered in the

16

code. For example, good commenting and descriptive signal names do not affect perfor-
mance. On the other hand, some structures are more reader-friendly than others and these
can already result in different final result. The same can happen with a lot of parameters.
Also the used EDA tools and final implementing technology might change the effects of
coding style.

The generality does not affect only the properties of the final implementation but also the
properties of the IP, such as quality, verifiability, testability and characterizability [23].
Figure 3.3 visualizes this effect: the more there are changeable parameters and the more
general the design is the harder it is to verify the design and the lower the quality etc. For
example, in theory the verification has to be done for all the possible combinations. The
amount of combinations rises exponentially as the amount of parameters increases. Thus,
verification gets a lot more difficult which lowers the expected quality.

Figure 3.3 The effects of IP generality to its properties. For example, having many parameters
makes it hard to predict the silicon area and timing beforehand (characterizability). [23]

All in all, re-use is a rather complicated topic with many variations and tradeoffs. Writing
good, re-usable code takes more time and effort than writing code that just fulfills the
design specifications. On the other hand, not needing to write all the code from scratch
saves a lot of time. Then, the generality might also have impacts on performance. Because
of all this, it is not an easy task to measure what kind of re-use saves the most money and
time. Thus, the decision about how re-usable a design should be and on which level the
re-use should be is to be made cautiously and with careful consideration of all the different
aspects.

17

3.3 IP-XACT meta-data format

IP-XACT is an XML-based standardized methodology for capturing information about
IPs [8]. It is used to capture metadata about the design, such as interfaces, memory map-
ping and file lists. Even though the IP-XACT code is somewhat clear for a human reader,
it is supposed to be read by machines. Using IP-XACT makes design flow automation
much easier because it is automatically created and, usually, automatically read. This
reduces the human error to minimum. It can be also used as basis for automatic script
creation for simulation and synthesis. Since IP-XACT is standardized, it can also greatly
simplify transferring information between design teams or companies.

Figure 3.4 Kactus2 is an open source IP-XACT integration tool developed at Tampere University
of Technology. This screenshot clearly shows how the IPs can be used as abstraction. Left pane
shows the IP library and right panes how they are connected and configured (the blue boxes).[52]

The real value of IP-XACT becomes clear in the integration phase when different IP
blocks are connected together. Figure 3.4 is a screenshot from the Kactus2 tool developed
at Tampere University of Technology. It represents nicely the concept of IPs as design
entities that can be connected together to create the final design. However, integration
phase is out of the scope of this thesis.

18

4. DESIGNER PRODUCTIVITY

The whole idea of improving design flow is to improve designer productivity. With other
words, smooth design flow is one of the many factors affecting productivity. Thus, dis-
cussing productivity in general is useful in the scope of this thesis and helps to perceive
the big picture. Finding references of hardware designer productivity has proven to be dif-
ficult. Thus, this chapter relies strongly on software productivity research and the results
are accommodated to hardware design as applicable.

4.1 Measuring designer productivity

The simplest way to measure productivity is to compare the consumed inputs to the pro-
duced outputs [10]. Measuring human labor productivity in a factory environment has a
long history. However, designer productivity is different from this traditional case since
defining inputs and outputs in not straightforward [10].

Two commonly used metrics are lines of code (LOC) per hour or function points (FP)
per hour. Both of these have valid arguments supporting and opposing them and there is
no commonly agreed standard. [22] For example, measurement based on LOC is rather
trivial to fool by writing a lot of non-optimized code to appear effective.

4.2 Factors affecting productivity

Factors affecting designer productivity can be roughly divided into technical and soft fac-
tors. Technical factors can be fractionated further to development environment, process
and product aspects. The soft factors include company and team culture, individual de-
signer characteristics, physical working environment and project properties. [57] This
is not the only way to categorize factors [57, 10]. However, the categorizations are often
done to fit software purposes and this seemed the most appropriate for the IP development
point of view.

19

Figure 4.1 Comparison of different factors that affect software designer efficiency [10]. Clarifi-
cations are added in order to demonstrate the connections to hardware design.

Figure 4.1 shows the results from a study about software productivity [10]. The affecting
factors division is not completely consistent with the one used in this thesis. However,
one can get the idea and the figure has some connection clarifications added. The number
connected to each factor means the coefficient of project duration. For example, if the
programmers are not familiar with the used programming language, the development time
might increase by 1.20x or if the software tools are not optimal the time might increase by
1.65x. It is worth noting that the most important factors are the team’s overall capability
and design’s general complexity. The study is 30 years old but the issues with software
development seem to have remained unchanged [57, 10, 16].

Figure 4.2 gives another aspect of productivity factors in software design. It does not
only tell the negative effect of different factors but also the positive effects. The interest-
ing observation is that the numbers are not always symmetrical. For example, if staff is
experienced it might increase the productivity by 65%. However, should the staff be inex-
perienced, the productivity could decrease with 90%. From this one can interpreted that
having qualified staff is important but the effect cannot be increased by over-educating
the staff. Additionally, by looking the total numbers at the bottom one can see that the
decreases total more than the increases, thus, it is easier to decrease productivity than

20

Figure 4.2 Comparison on the positive and negative factors for productivity. It is worth noting
that the factors are not symmetrical, for example the positive effect of high management experience
is lower than the negative effect of management inexperience. [24].

increase it.

In hardware design the two single most influential productivity improvements have been
the development of EDA tools and IP-block re-use [29]. On the other hand, to further
improve the re-use is one of the concurrent challenges.

The following two subsections discuss the technical and soft factors in more detail. How-
ever, deep analyzes are out of the scope of this thesis. An interested reader is encouraged

21

to find out more from, for example, [57] [10] [16].

4.2.1 Technical factors

The most important technical factors for the IP development include tools, design unit
complexity, amount of re-use, documenting and development practices and processes. It
is vital for productivity to acknowledge the different factors. However, many of them are
already discussed elsewhere is this thesis and, thus, are omitted from here. Tool related
issues and solutions can be found in Sections 5.7 and 6.6, respectively. The design unit
complexity refers to the concept of IP that is discussed in Chapter 3. Additionally, re-use
is also addressed already in Section 3.2 and documentation in Sections 5.3 and 6.3.

Based on author’s personal experiences, processes and modern development practices
seem often to be despised by technical engineers and scientists. They are seen as an un-
necessary bureaucratic load and means for managers to infer one’s "real" work. However,
there is a sensible reason behind many of these activities. For example, with processes
the company management tries to minimize the effects of different personalities and skill
sets by defining the way how things are supposed to be done. In addition to the common
clarifying effect, this also decreases the quality fluctuations.

Processes are not only about the design flow but the scope is much wider. There are
processes for specifications, documentations, and different human resource related topics,
just to mention a few. Also the synchronization of different processes is important. For
example, implementation and verification should be synced in order to achieve smooth
flow.

Even though processes are important, the processes themselves should be sensible. After
all, processes exist to facilitate designer work and not the opposite. Designers do not
exist for the processes. Additionally, it is important to remember that everything cannot
be completely controlled by processes and trying to achieve total control only leads to
unnecessary complexity and general disgust against even the word process.

Modern development practices, such as scrum and lean, have been shown to increase
productivity. There are comprehensive methodologies for lean product development. [35]
However, the methods in such an extensive scale affect rather high level processes and,
thus, are not discussed further in this thesis. An interested reader should refer to [35] or
[54] for more information.

22

Figure 4.3 A kanban board used in project flow management. [59]

Nevertheless, already quite simple, low level tools, such as visual work flow boards, in-
crease productivity [35, pp. 81–114]. Figure 4.3 shows a typical kanban board used for
project flow management. This kind of visual presentation makes the complex design
tasks more manageable and, consequently, reduces the overall chaos. From the board it
is easy to see quickly the present state of flow and identify possible bottlenecks. When
usage of visual workflow is combined with short duration and frequent stand up meetings,
the effect can be enhanced [35]. Proper management also ensures that there is no unnec-
essary idle and that multitasking is minimized. Multitasking is a very inefficient way to
work [5].

4.2.2 Soft factors

Many of the soft factors concern rather humane aspects, such as team and company culture
or individual designer capabilities [57]. The comprehensive discussion of these is left out
from this thesis. However, here is a short summary: people should enjoy their work in all
the levels and know what to do in order to be productive. Further reading can be found
from [57] or [56], for example. Also schedule is part of the soft factors. However, it is
rather related to the process level planning and, thus, left out of this thesis.

The work environment is a vital productivity factor [33]. Design work needs intensive

23

focus and minimizing the distractions is important [31]. The modern trend to use open
office premises has been proven to be harmful for productivity since it is often filled
with discussions and other distracting stimuli [40]. Nevertheless, the cost effectiveness,
malleability, and team work synergy benefits suggest that the trend is not changing. There
are various solutions for improving the possibilities of concentrated work, such as silent
work rooms or commonly agreed rules to avoid loud discussions. However, the silver
bullet is yet to be found.

Background noises are not the only type of distraction. Distractions can be anything from
constantly appearing new emails or instant chat program message notifications to unnec-
essarily frequent meetings or people just appearing to your desk to chatter. Minimizing
these can be achieved, for example, with shutting the chat and email programs down and
somehow signaling to one’s coworkers that unnecessary bothering should be avoided.

Additionally, it should be ensured that the designers work is physically comfortable. For
example, physical discomfort or pain can easily harm concentration levels and, thus, de-
crease productivity [50]. Work comfort has quite often been taken care of by ergonomic
workstations, correct lighting and preventive occupational healthcare. Naturally it is not
enough to provide services but also encourage people to use them when needed and pro-
mote a healthy lifestyle in general. It is also suggested [25] that taking a nap in the middle
of the working day might improve productivity.

Modern design work is done in teams. Considering this from the productivity point of
view, some aspects arise: how many members does the team have and how are the people
located geographically. Team sizes should not be too large or too small [60]. The closer
the other team member is located to you the more efficiently you can communicate and,
consequently, the more productive the team work will be [13, p. 39]. The communication
in general is discussed in more detail in Sections5.1 and 6.1.

24

5. IP DESIGN FLOW ISSUES

From a high level perspective, IP design flow might seem straightforward: specify the
design, design it, and verify it. Then, integrate the IPs to obtain a functional SoC. Of
course, things are not that simple. The steps are overlapping and large amounts of really
specific information has to transferred from person to person and tool to tool. In addition,
the process relies heavily on EDA tools and includes many steps that are automated with
scripts. Problems are lurking around everywhere.

This chapter seeks to identify the most common issues of IP design flow. The reader must
remember that many of the themes are more or less interdependent of each other. For
example, tool versions affect scripts and, generally speaking, unclear documentation is a
part of inefficient communication. The issues are divided by issue type and not related to
any specific step in design process.

5.1 Inefficient communication

Modern IP development projects are large and complicated. They are done in teams of
many people and co-operation between teams is frequent. Additionally, the teams are
often located in different geographical locations and in different timezones. Many of the
tasks are automated by tools or scripts. Moreover, the different phases of the same design
are usually done by different people. The amount of people and handovers, in addition
with design complexity, create a huge amount of information that needs to be transferred.
Consequently, many of the design flow issues are connected to information flow issues.

The channels and means for communication are versatile: speaking, computer chats,
emails, and official documentation, just to mention a few. Then, in addition, there are
ways to deliver information that are not so obvious, for example, comments in code or
self explanatory code. Some parts of communication are controlled, such as official doc-
umentation. Thus, they can be affected via better processes. However, the most frequent
part, person-to-person communication, is not controlled. This is a huge challenge for

25

solving communication issues.

Information transfer can fail in many ways. Things are not understood at all or misun-
derstood. It is also possible that the correct information is available but transferred in an
inefficient way. This wastes time. Sometimes the intention of the communication is not
clear. This can be seen, for example, in writing self explanatory code; it takes more time
and effort to write self explanatory code and if the developer thinks that his/hers only goal
is to have a functional program, then the extra effort might feel useless. However, if the
intention is understood, that is the code is easily understandable and, thus, re-usable, the
extra effort could be justified.

Occasionally the problem with communication effectiveness is not in the information de-
livery format itself but rather in finding the essential information from the cornucopia. For
example, already badly written documentation can be further worsened if the document
contains a lot of non-essential information.

5.2 Finding correct files and documents

Finding correct files and documents has proven to be difficult, even one of the most frus-
trating issues [16]. The problem is caused by different factors. The most obvious one
is the sheer amount of files due to the complexity of the projects, including the official
documentation, scripts, and the actual design files. However, there is more to this: the
files are usually stored in many different systems, e.g. Windows/Unix, version repository,
intranet, document management system, bug database, team wiki, home directory, and
project disk. The decision of which system to use can be based on various official guide-
lines or simply personal preferences. In addition, the search functions might be limited
or nearly useless in these systems. Consequently, a lot of effort is needed to find a person
who knows where something can be found.

Figure 5.1 represents a typical situation where the amount of files is big, for example tens
of thousands of files for a large ASIC project. These files are stored in different systems,
there is an excessive amount of folders, and the design engineer does not know how to
start and how they link together. The left side depicts the in-house information, such as
workstations, intranet, and emails. The right side shows the necessary 3rd party back-
ground information, such as basic theory and user manuals. Usually there are no proper
links between systems, as they are tedious to maintain, especially regarding versions, and
the terminology often differs. Moreover, the bottom left corner includes informal notes

26

that are on designer’s desks or shelves and the most difficult part: tacit knowledge. The
term refers to such information that is hard to transfer, but something that experienced
designers "just know".

3
rd

 p
ar

ty

Wikipedia

Web forums

Course notes

User guides

In
-h

o
u

se

Windows

Intranet
Email

Tacit
knowledge

UNIX

Notebooks, whiteboards

?

Figure 5.1 A typical design engineer confused by files. [21]

In addition to the official and needed files, there are always a lot of extra files stored as
well. Some of them might be generated by tools and put to version repository accidentally
or because the person putting them there has not really understood what the file is for. This
lack of understanding also applies to legacy files: when one does not really know what,
for example, an old script is used for, it is saved just to be on the safe side. Humans have
limited ability to handle information [31] and, thus, finding correct files in a folder with
a lot of extra files takes inevitably more time. Some files need modifications in order to
be used in a different environment and, occasionally, the file name might suggest such
action even though the file should just be removed. This creates confusion. Another
related problem is the creation of default folders which remain unused. This is usually
done automatically in order to have a generic folder structure with different designs.

Once the file is found, it is often important to be able to compare files with each other.
This is relatively easy for purely textual files like source code. However, tools like Excel
and Word are also widely used. Comparing two Word files is not too straightforward.
Also schematic drawings are notoriously difficult to compare.

27

The importance of storing files logically and having clear folder structures is highlighted
in re-use concept. If designs are revisited after a long time or in a very different loca-
tion, it can be really difficult to find and contact a person with insights to it, sometimes
even impossible. In addition to this, storing extra files for extended periods might not be
efficient.

5.3 Unclear documentation

Written documentation is the most used official way of transferring information at NSN.
Writing good, understandable documentation is difficult and needs a lot of effort. Tolstoi’s
Anna Karenina principle [61] can be applied to documenting: all the good documents are
good in the same way but all the bad documents are bad in their own special way. Thus,
writing bad documentation is much easier than writing good.

It is well known that good quality documentation is vital for efficient knowledge transfer
and low quality documentation is likely to cause problems in the future, especially if
the design is planned to be re-used. The re-use also sets some additional challenges for
documentation since usually the design is not re-used alone but with, for example, parts of
the verification environment. In this case, the documentation should contain information
of how the environment is run and what should happen if everything works out well.

One colleague who is working with technical documentation put this issue quite nicely
by saying that her job is "to translate documents from Engineer to English". Far too
often documentation is unclear and sometimes it creates more confusion than explains
things. The problem with documentation quality is, in the author’s opinion, due to 3 main
reasons: lack of time, lack of motivation, and lack of skills. The design engineers do not
have time to write well, do not want to write well, or do not know how to write well. It is
also possible that there is any combination of these three.

The project schedule allocations for document writing are sometimes too low. Still, there
is no time during the most hectic design phase when the details are fresh in memory and,
thus, writing documents would be the easiest. Then, after the design is close to ready, a
new design steps in and, again, no time for proper documenting.

In addition to the lack of time, many design engineers find documentation to be more
of a burden, a necessary evil, than actual part of their work [16]. Figure 5.2 visualizes
this. It shows the design flow adapted to the designer mindset where designing is the

28

main focus, the "real" work, and documentation excessive controlling of one’s work. It
doesn’t help the situation that documentation is not only written for designers and users
but also for quality auditions. This means that the official documentation needs to follow
certain formality such as ISO-9000 [28]. This formality itself doesn’t make the text bad,
of course. At most it adds some rather useless chapters from the colleague reader point
of view. However, sometimes it seems that people resist writing good documents because
of this formality. They feel like they are only writing the documents for the reviewers.
Engineers seem to have quite poor understanding about quality topics in general, which
adds to the general resistance against documenting.

IDEA Specification VHDL Synthesis Chip

Simulation

Documentation

Figure 5.2 The design flow from the designer point of view. The solid line represents the "real"
work of a VHDL designer and dotted line the documentation that is often seen as excessive bu-
reaucracy.

The general lack of writing skills has to be considered, too. Even though technical writing
is a difficult topic, it is something that can be learned. However, in order to actually
learn something people need to have the willingness to learn. Conclusively, the above
mentioned motivation issues also become important here.

The writing of documents is not the only aspect that takes time in documenting. The
reviews can also be rather painstaking. It is also possible, that due to the organizational
reasons, one person is burdened with too much reviews. This might lower the quality of
the reviews and make them even useless.

29

5.4 Unclear code

Martin Fowler, a British programming expert, once wrote [65]: "Any fool can write code
that a computer can understand. Good programmers write code that humans can under-
stand.". Code readability has a big impact for design quality, re-usability and designer
efficiency [31, 34]. It is also shown that software developers actually use more time
searching for correct spot in code and reading code than actually writing it [31].

Re-use highlights the importance of clear code. At NSN there is a lot of soft IP re-use.
This means that the code is most probably used again at some point. Since technology
develops, modifications are often necessary and, thus, code is also modified by other
designers.

Even if the code is not designed to be re-used, the importance of clear code remains. First
of all, not all the re-use is intended and the code can be re-used without prior planning.
Second, the code is not read only by designers but also by many others: back-end design-
ers, verification engineers, FPGA prototype designers, and even the ones writing software
that use the IP. Thus, the effort invested in clear code is likely to pay back already in the
first time of use.

Code can be unclear in many different ways. For example, signal/variable naming might
not be sensible, commenting might not cover enough or it can cover unnecessarily much,
or code might not be structured well. Using methods of object oriented programming has
proven to be efficient [41]. However, hardware description languages, such as VHDL,
do not have many of these features. Despite that, VHDL is not unclear by definition and
following certain rules of thumb already provides great improvements.

The reasons behind the lack of clarity are similar to unclear documentation with some
differences. Code is the main product of designer’s work and it has to be done. Still,
writing clear code usually includes following official guidelines or at least giving a lot
thought for something else than pure functionality. This, again, results in resistance.

5.5 Scripting

Scripts are widely used in IP design and also cause problems. Most of the scripts are
intended to work as-is or with minor modifications, but quite often they don’t and it is
not clear what modifications are actually needed. Thus, a lot of time is wasted with bad
scripts even the scripts would be functional per se.

30

Scripts suffer from many of the same issues as code. However, scripts also have their own
peculiarities. Scripts are not compiled but interpreted, and hence all errors are detected at
runtime. The syntax of scripts is often really strict [2] and UNIX shell script languages
that are almost the same but not really [55], these complicate fast visual identification of
the problematic spots.

Broken paths within scripts are common cause for problems. Scripts often refer to shared
folders or environmental variables and long concatenated paths are not rare. This makes
understanding the dependencies difficult. Another thing, which constantly breaks scripts,
are wrong tool settings. Tool switches can be strongly version dependent and, thus, scripts
might get outdated every time some tool version is changed.

When scripts inevitably stop working, the user is usually in trouble. Scripts are often
poorly documented and the help is not done properly. Additionally, since the errors hap-
pen at run time, the failing script might have done something and is then just frozen in
some strange state. If error messages appear, they are usually worse than those of com-
pilers.

The following example illustrates a few common problems in scripts: insufficient header,
unclear variable naming, no printing of messages and long distance between variable
declaration and actual usage. In addition, there is a typo in the path (should be: work) that
will break the script.

#!/usr/binExampleShell

#############################

Version: new

#############################

set PATH_1=$BASE_DIR/../../$USER/workk/foo/vhdl

.

... 100’s of lines in between

.

cp PATH_1/source_1.vhd source_1.vhd

Problems with scripts are sometimes caused because they are planned only for one’s per-
sonal use to start with. Then, suddenly, some colleague needs to do the same job and
asks for help. The script is shared and then the new user makes some modifications and

31

possibly shares the script further. This leads to a situation where there is a collection of
undocumented scripts that is a terrible mess.

One must also remember, that when a design is re-used, also scripts are usually re-used
and it is possible that the environment changes considerable. This is likely to cause prob-
lems if scripts are written in unclear style and possible modifications are not considered.

5.6 Version control

During IP development, version control is used almost daily by the designer. It enables
effective sharing of information, tracking changes, and reverting to old versions if bugs
creep into the code. Figure 5.3 visualizes the version control dependencies and usage.
It shows different version types with different colors, dependencies with arrows, and ad-
ditional information about reasons for some versions. As one can see, the system gets
complex rather easily and, thus, the utilization of version control is not problem free.

Some of the issues with version control are similar with other IP development issues. For
example, insufficient, unclear, or missing commit messages are in the same category with
unclear documentation or code. Version control is also linked to the file finding issues.
Too often designers include unnecessary files to version control that cause confusion later.
This can happen by accident or by lack of knowledge. Additionally, the opposite is pos-
sible too: not including files in version control when they should be there. For example,
scripts can be easily forgotten to be included or updated, and the only copy resides in the
designer’s personal directory.

Some file formats have proven to be difficult for traditional, text based version control
systems [49]. These include, for example, frequently used Word, Excel, or pdf files. The
problems are related to the large size of the files and difficulties in comparing different
versions. Thus, every version has to be stored as a whole and not only the changes to
older versions.

The version control itself also contains some fundamental issues [20]. For example, how
to solve merging of two files that have changed a lot or to decide which branch to choose.
Additionally, there are hazardous occasions when someone has modified an old tag. A tag
is meant to be a frozen release, so that error reports and synthesis reports, bug fixes, and
documentation can refer to a known set of files. Changing the content of tagged version
leads to extremely harmful mismatching copies depending on when codes are checked.
Thus, it should never be done, no matter how well one knows what one is doing.

32

Figure 5.3 A visualization of version control. [19]

Many of these version control issues within one company can be managed with proper
processes, guidelines and project management. However, some issues are related with
sharing information with collaborators or customers. When there is proprietary informa-
tion included and everything is not for sharing, more caution is needed. However, this
thesis concentrates on IP development process inside the company and, thus, this last
aspect is out of the scope of the thesis.

33

5.7 Issues with tools

IP design relies heavily on different tools. The code is written with some text editor,
preferably supporting VHDL, the code is simulated with sophisticated EDA software and
usually some trial synthesis is run. In addition to that, there might be some usage for
additional linting or other code analysis tools. EDA tools are an important technical
productivity factor. Fighting with tools causes frustration and a lot of resistance against
trying new ones. On the other hand, proper tools increase productivity [10, 24, 57].

Re-use is a common situation for tool problems to emerge. The related scripts are likely to
be outdated and some of the created files may not be compatible any more with different
tools or tool versions. However, the re-use specific tool problems usually arise only once
in the each respective project and, in the case of strict black box re-use, they might not
arise at all.

Many of the EDA too issues originate from licenses. EDA tool licenses are expensive.
The cost might be tens of thousands of euros per one user per one year. Hence, com-
panies only invest in a limited number of them. This might cause unnecessary waiting,
especially without proper license management system. Additionally, licenses themselves
don’t always work and the license error message tend to be unclear. These problems might
be impossible to solve without the help of the IT department or the vendor. Communica-
tion with 3rd party vendors can be time consuming and frustrating. Additional issues are
caused by the variety of offered licenses, for example for evaluation purposes that might
be restricted in design size or time usage, or academic vs. commercial institute.

Another problem with licenses is that some companies only give a Windows possibility
whereas others only for Linux. This interrupts the work flow and forces the designer to
unnecessarily copy files between systems. Also some unexpected problems may arise
with using two different operation systems: once the writer used around two hours for
debugging a script’s error message that seemed to come from nowhere. In the end, with
the help of colleagues, the reason was discovered: at some point the code file had been
edited in Windows environment and, consequently, all the line endings were automatically
changed. A quick dos2unix command fixed everything.

EDA tool vendors make an understandable effort to maximize their business. One way
to achieve that is to offer a huge variety of special software for many different purposes.
These specialized programs can offer extra features useful for designing. However, this
offering also has a darker side. By dividing features to different tools rather than provid-

34

ing less but more comprehensive versions the customer company is forced to buy more
expensive tools. This division also wastes the designers time, because design has to be
transferred from one tool to another.

Another method the vendors use to improve their business is trying to create so called
vendor lock [64]. Vendor lock means that the customer is, more or less, forced to use
tools only from one vendor. The lock can created by using, for example, vendor specific
file formats and by not providing proper import-export functions. Even though extreme
cases are rare, the tools from different vendors tend not to work well together. These
things have been tried to fix with standards, such as IP-XACT [8]. However, quite often
vendors try to make their own extensions to standards that can be compared to the vendor
specific file formats.

In addition to the vendor lock aspirations, the EDA companies often try to ensure that the
programs are not used without licenses. This has lead to, for example, node locking. In
modern agile development world, this makes things rather difficult if a license if tied to
the certain network card MAC address.

If problems arise with proprietary tools, the user can rarely do much. It depends a lot on
the company but sometimes the support is not too good. User sends a ticket through some
reporting system and then just waits which is waste of time.

Different tool versions have also proven to be problematic. Occasionally the files gener-
ated by earlier version are not compatible with newer versions. The versions may also
differ in the switches used to specify the program functions in command line. This affects
scripts and can cause surprising errors that are difficult to debug. Even if the tools used in
a single project could be harmonized, different departments of the company are likely to
have version differences. This is due to the difficulties of switching from one version to
another. Additionally, it is rare that one tool or version fits for all purposes.

Many of the EDA tools are used through different computational facilities. Consequently,
also they have an effect in the smoothness of tool usage. Unnecessary waiting in queues
is often wasted time from the designer point of view as is slow computation, too [10].

There are also many smaller issues with tools. The following list gives some good exam-
ples:

• Unclear and non-informative error messages

35

• False warnings that complicate especially the analysis of log files

• Different text editors may break indentations that work nicely in some other

• Automatically generated names can be so long that some tools cannot handle them
anymore

• Many tools do not accept all the characters, for example, in the file names

• Tools may require admin rights to the computer which may not be possible because
of company policies

Figure 5.4 shows an example of non-informative error message that the author got while
writing this thesis. It came when trying to save a version with comments in a pdf-software.
The message is clear: there is a problem in the file name. However, there is no information
about how to fix the name: is it too long, does it contain wrong characters, what are the
actual wrong characters etc. In the end, the accepted name was thesis.

Figure 5.4 A typical example of a non-informative error message. The name is wrong but there is
no hint why it is not accepted.

Even if everything else is working well, the tools themselves can be difficult to use or
otherwise worthless. Poor usability decreases productivity [10, 24] and causes common
frustration. The same applies for remote computational facilities. The usability issues can
rise from strange operating logic or badly designed graphical user interface, for example.

5.8 Summary of the issues

The most common issues of the IP design flow can be categorized in the following way:

36

• Inefficient communication

• Finding correct files/documents

• Unclear documentation

• Unclear code

• Scripting issues

• Problems with version control

• EDA tool related problems (including IT-support and computational platforms)

Some of the issues are a bit overlapping and, for example, unclear code problems have a
lot in common with script related problems.

37

6. SOLUTIONS TO GENERAL ISSUES

This chapter discusses solutions for IP design flow practice issues. The focus is on so-
lutions that might be implementable rather easily, for example, by paying a bit more
attention or following simple guidelines. Organization level process or hierarchy changes
are out of the scope of this thesis.

The division of the sections follow loosely the division of issues in the previous chapter.
Some of the topics are discussed in more detail than others. This is due to the fact that
some issues have more low level enhancement opportunities than others. The space given
for different topics does not reflect the importance of the topic.

6.1 General person-to-person communication

Unlike written documents, person-to-person communication happens mostly in an infor-
mal, spontaneous, and ad-hoc manner. It is strongly affected by one’s personality. Trying
to improve such communication might be difficult since feedback is easy to take too
personally. Still, it is worth the effort to try to enhance and encourage richer person-to-
person communication, it might not be effective with all the individuals but the overall
effect should be positive. This could be done by different kind of trainings or guidelines.
Further discussion of these is out of the scope of this thesis.

Sometimes the problem in information sharing is not about how information is shared
but, more or less, about what information is shared. Sharing unnecessary information
might cause overflow hiding the important bullet points underneath. On the other hand,
not having enough information lowers the quality and ends up wasting everyone’s time.
One solution of this could be simple check-lists of information that needs to transferred,
for example, between implementation and verification.

The better people know each other the easier the communication becomes and the thresh-
old for asking help or express one’s opinion decreases. These are important aspects of

38

teamwork. Also, the commonly used teleconference calls get more efficient if one has
met the other person face-to-face at least once. Thus, the company should pay some at-
tention to team building and to make people familiar with colleagues working on different
sites if they work in the common project. Moreover, common, project barrier breaking
coffee breaks could be encouraged.

There are also other methods for lowering communication threshold. Intranet and chat
program profiles should always include pictures and finding people could be enhanced
with office seating maps.

The comfort of using a certain information channel affects the easiness of communicating.
Some people like to talk face-to-face, some to chat via a program, and some to write
emails. Also timing is critical: people seem to receive information better when they
actually have to need for it. These aspects can be considered by everyone. However, these
are really important from team leader point of view should they want to communicate
better with their team.

Physical distance effects how the people communicate. It is easier to take contact with
someone sitting next to you than in another office space. The effect is further amplified
when the city or even country is changed. The writer’s personal experience supports
this idea. It has also been noticed by Robert P. Colwell, the head architect of Intel’s
Pentium 4 processor. At Intel they actually even went that far that they designed the
seating arrangement based on the processor final floorplan. [13, p. 39] Some part of the
physical distance effect can be explained by not knowing the people personally or cultural
differences. However, it still exists even in smaller scale and should be considered when
making design team allocations and local seating plans.

Additionally, people distance matters in communication. This means adding intermediate
people between the actual communicating parties. This effect is already known from
the children’s broken phone game in which the whispered message changes completely
during the round. This has already been noticed in software industry where designers are
often in direct contact with customer.

6.2 Making files easier to be found

Reducing the number of files eases file browsing. Therefore, the amount of files should be
reduced if possible. This can be achieved by periodically going the files through during

39

design and check if all the files are actually relevant and up-to-date. After that unnecessary
files should be deleted. If deletion seems too permanent, legacy folders can be created in
order to store, for example, old scripts that might be needed but are not vital for everyday
work. Then the files would be out of sight, thus, decreasing confusion. The same should
be done with special care before handovers because the other designer might not know
which files are important and which not. Extra care should also be considered when
placing files in version control.

Also too complicated folder structures should be avoided. Empty folders should not be
generated just for generality purposes. If default folder structures are really needed, the
situation should be clarified somehow. Figure 6.1 shows an example of graphical solution
from Kactus2 tool. Default sections are created based on IP-XACT schema, however, the
ones actually containing information are written in bold text. This idea can be extended
to folders which clarifies situation a lot. Additionally, the compulsory fields are marked
with yellow and possible errors with red.

In addition to the folder structure and amount of files, the file names also have an effect for
finding files. The names should be descriptive and follow some format consistently. For
example, if design specification of a FIR filter is named projectx_firfilt_design_spec.doc,
the verification plan should be projectx_firfilt_verif_plan.doc and not be verif_plan_FIR.FILT-
projectx.doc. To further ease the file navigation, one should always use the filename ex-
tension, such as .vhd, .txt or .pptx. The filename extension enables also simple double
click opening of the most of the files.

The filenames and folder structures should be thought already in the beginning of the
project before it gets too much out of hand. Making changes to folder structures and
even filenames that are in version control is time consuming and may lead to difficult
situation. An example of this kind of situation is tree conflict in Subversion SVN that is
almost impossible to solve. However, not everything can be known in the early phase and,
therefore, this should not be overdone but allow some flexibility.

Sharing files by email, chat programs or other unofficial ways is a sure way to chaos. Files
should always be stored in an official, common system and, then, only the link should be
shared. In addition, the link should be included in the file headers. By sharing only the
links and emphasizing the link usage, one can ensure that the file is backed up and that
people can easily bu sure that they have the latest version. Also, additional document list
files with links can be created if needed.

40

Figure 6.1 Bolding is one way to help designers distinguish which options have information and
which not. The figure is from Kactus2 tool [51]. The reader can see also other ways to enhance
clarity with color usage.

Figures can be used to ease file navigation, too. If one has a Powerpoint presentation, it is
more informative to not only show the link but also attach a screen capture of the location
in the respective system. Additionally, the version control ID numbers and other relevant
information can be highlighted in the figures. This helps especially with clumsy user
interfaces that this kind of software too often has. On the other hand, also good solutions
exist, for example the SVN web interface.

Occasionally, the issue is not finding a specific file but, moreover, knowing if a file should
be found. For example, one might want to know if there is already a script for compiling
all files or if it should be created. Another thing is to know if some file needs to be
modified after tool updates or similar changes. An additional readme.txt file could be
added that includes all the vital metainformation about the other files. The information
about how the file should be modified can be included in the header of the file itself.
Additionally, using standardized packaging methods, such as IP-XACT, help to solve this

41

aspect.

6.3 Documentation readability

Documentation is a really widely studied topic [26, 58] and mostly out of the scope of
this thesis. However, in this section some aspects will be discussed in a quite general
manner. Few experience based "food-for-thought" type of ideas are presented instead of
exhaustive guidelines.

The section is divided in separate subsections covering different aspects of writing. First,
the motivation to write is discussed so that it would not be considered just as a necessary
evil. Then, the content of documents is addressed, subdivided into text, abbreviations,
and figures and tables. Additionally, the concept of visual bookmarks is introduced and
document scope is discussed. In the end, the documenting part is concluded in its own
subsection.

6.3.1 Motivation to write

The reasons for writing documentation are clear, at least. They should be cleared also
for the writer so that he/she finds producing good quality documentations useful and im-
portant. In other words, the writer should consider documentation as actual information
sharing and not just bureaucratic burden.

Motivational issues are rather complicated psychological phenomena and, thus, out of
the scope of this thesis. However, their importance should be acknowledged and some
strategic moves done to change the situation. As a rule of thumb one could think that the
harder people are pushed the more they will push back. At least if they do not understand
or agree with the reasons of pushing. Also making rules that cover everything is not
possible.

6.3.2 Text

It has been shown [26] that the style of written text affects how easily the reader can
receive the message. This style includes everything: chapter division, used words, and
sentence structure, just to mention few. The following quotations give an example of a

42

typical piece of scientific text and then another piece that contains the same information
but is formulated in a better way.

Original text [12]:

Review of each center’s progress in recruitment is important to ensure that
the cost involved in maintaining each center’s participation is worthwhile.

Improved text:

Review the recruitment process to ensure cost-effectiveness.

As one can easily see, shorter sentence and the use of active voice makes it clearer. In the
following list some good rules of thumb are presented. Some of the rules are based on
experience some are extracted from [26]:

• Avoid long sentences

• Avoid using perplexing (=complicated) words

• Avoid using unnecessary acronyms and abbreviations

• Avoid using passive

• Place the already known in the beginning of the document/section and the new in
the end of the document/section

• The verb should be as soon as possible after the grammatical subject

Another good documentation habit is to write summaries. The essential information is
often scattered in a large amount of text, thus, summaries enable fast information acqui-
sition when there is no need for deeper understanding or just quick recap if the reader is
already familiar with the material. Numbered lists, bullet lists or tables usually fit this
purpose well.

In conclusion, engineers must to pay attention and focus in order to write good text. Of
course, it can become almost automatic with experience but that needs a lot of work.
One important aspect of writing is that people are blind for their own mistakes. The
writing skills are best improved with writing a lot and getting good, constructive feedback.

43

Different quality processes include documentation reviews. However, the focus of these
reviews might be more on the technical content and details but not that much on the
quality of the text. Hence, the reviews ensure that all the needed information is in the
documents somehow but not that it is communicated in a good manner. Thus, additional
informal style reviews are advised.

6.3.3 Abbreviations and acronyms

Let us start with fictional yet representative example:

PWAA is very common in FTC. Occasionally PWAA are about the IU
factor. In addition to IU practical problems include the fact that TLAs are HP
and DG, especially apparent in TT and create TCs. It does not help if one
uses ETLAs. In conclusion, PWAA is common in FTC and it appears in the
form of HP, DG, TC, and IU especially in the case of TT...1

Abbreviations are used to avoid repeatedly writing long words or combinations of words.
Sometimes they may improve readability. However, quite often they don’t since under-
standing abbreviations and, especially, acronyms is not straightforward. It takes time
from the reader to learn what the seemingly random combinations of letters mean. This
reduces the reading speed, causes confusion, and they get easily forgotten. Additionally,
they make the text unaesthetic by creating clutter. Not to forget, that acronyms are often
hard to pronounce. This is highlighted in the modern day multinational working environ-
ment where accents are diverse and teleconferences frequent.

The same acronym can mean multiple things in the different context. This complicates
the search for the correct meaning, especially if one is not familiar with the context. For
example, in telecommunication PA is used for power amplifier. However, it can also mean
personal assistant, public address system, synthetic polyamides, or Pamela Anderson, just
to mention a few [63].

1Acronym explanations for readers not familiar with the topic: PWAA (Problem with Abbreviations
and Acronyms), FTC (Field of Telecommunication), IU (Impossible to Understand), TLA (Three Letter
Acronym), HP (Hard to Pronounce), DG (Difficult to Guess), TT (Phone Conversation, before telephone
talk), TC (Text Clutter), ETLA (Extended Three Letter Acronym).

44

Nevertheless, some terms are really long and writing them all the time is not really effec-
tive. This means acronyms and abbreviations cannot be discarded completely. Consider-
ation should be used and if a shortening of the term is really necessary and what are dif-
ferent options. The abbreviations are easier to understand if more letters from the source
are included. For example, downlink decimation filter could be abbreviated to DDF. A
better option would be dl_dec_filt, since dl is already established abbreviation for down-
link. When used in speech, one could simply say the whole word. Saying the whole word
is further encouraged because in English the pronunciation of letters depends heavily on
the surrounding letters. For example in the case of decimation, the "c" is pronounced in
the original word as "s" but in abbreviation dec as "k". Thus, if the abbreviation is clear
in written form it might not be clear anymore when said out loud.

If abbreviations are necessary, established abbreviations are a good choice. Of course,
there can be only a limited number of these and one must really carefully consider the
audience and think if the abbreviations are also clear for them. Sometimes it might be
a good idea to create a commonly agreed list of abbreviations. For example, in signal
naming address could always be shortened as addr, channel as ch, read as rd and so on.
The list of agreed abbreviations must be easily available for all the users.

Figures, tables, and signal names in code are exceptions for the rule to vigorously avoid
abbreviations. There is simply not always enough space use full terms. Nevertheless, the
explanation should included somewhere, for example in figure caption or legend.

If abbreviations and acronyms are used, they should be always explained at least when
first introduced. This is self evident in scientific articles and different types of theses.
However, this is often forgotten in technical documents and presentations, and code files.

6.3.4 Figures and tables

Good figures make documents much more understandable [48]. For example, compli-
cated digital system’s structure and timing can be presented much better using visual in-
formation than text. Additionally, figures can be used as visual bookmarks as mentioned
in Subsection 6.3.2. Although figures can clarify things, they can also make things more
complicated and even misleading.

Figure 6.2 shows a good example that captures the structure and functionality of a system
that executes a mathematical function. The system is completely imaginary and probably
not realistic.

45

Source

Function

F(x)=tanh(x^2+3t

sin(4y*freq)) Destination

Data_in Data_out

Figure 6.2 A visualization of an imaginary system. Note that the figure doesn’t only show the
structure but also functionalty of the system

Making high quality figures is time consuming and the figures have to be updated and
maintained. However, the figure quality can be improved already by following some sim-
ple guidelines. Additionally, one must remember that the factors that make high quality
pictures is also very situation dependent. Also the importance of feedback cannot be
underestimated.

The following list itemizes some common rules for drawing good figures:

• Follow western reading order: left-right and top-down

• Do not use red for highlighting important details, use it for showing undesired as-
pects

• Show only the essential and situation appropriate information

• Remember to visualize functionality, not only structure

Tables are useful for capturing textual and numerical information. Table 6.1 provides
some simple guidelines that clarify the tables considerably [53, pp. 26–27]. In the upper
section there are more generic guidelines and in the lower section some advice how to
format the table.

As always, reviews can be used in improving table and figure quality. It does not take too

46

Table 6.1 Basic table guidelines

Guideline Example#1 Example#2
Ordering First things first -
Categories Split into e.g. 3-5 lines -
Link to text Reference and exaplantion -
Number to right w/ thousand separators 5 175
Text to the left Like this -
Nothing is centered - -
Bounding lines Not around every cell -

much time to show one’s figure to a colleague and ask how clear it is for he/she and then
think about improvements.

6.3.5 Visual bookmarks

When people read documents, they quite often have to return to a certain spot. Thus, the
document should include visual bookmarks to help browsing the text in a fast pace. Visual
bookmarks comprehend something that breaks the monotonic text blocks with something
different, for example, a figure, a separate list of things, a code block, or a table. This
precipitates the finding of information since people seldom remember page numbers but
often remember things such as "It’s was right next to that picture". Experience has shown
that every second or third page is a good pace for the visual bookmarks.

The idea of visual bookmarks can be extended from documenting to, for example, Pow-
erpoint presentations. Quite often companies and institutions have a template that is used
in every presentation. When people then need to find a certain presentation it might take
time since one has to read the titles in order to know what it is about. If there was a
picture in the title slide, the correct slide could be found much faster, since people tend
to remember to figures. Figure 6.3 clarifies this idea. It is rather extreme and a lot can be
achieved already by simply adding some related figure next to the title.

6.3.6 Documentation scope

When writing documentation one must always remember the target audience. Describing
everything in the document does not serve any purpose; the reader can be expected to
check some details from the code. For example, the port widths are in this category.

47

Figure 6.3 An example of using visual bookmarking with Powerpoint slides. On the left the
same monotonic template is always used which makes it hard to identify individual presentations
quickly. On the right more elaborate backround is added and the presentations can be identified
by a quick look. [32]

Also the level on which things are discussed should be adjusted. If information is too
specific, it is possible that most of the readers cannot extract anything from the document.
On the other hand, if the documentation is completely on Wikipedia level, why is the
document existing in the first place. One must also remember, that low level details are
often troublesome to keep updated.

When it comes to documentation of the same topic but for different audience, one should
decide whether to reduce the amount of files by making documents more comprehensive
or enhance the finding of relevant information by making more but very specialized doc-
uments. This issue can also be solved partially with software. For example, FrameMaker
has a conditional text option which enabled to writer to write everything in one document
and then easily choose which parts to forward to which person [1].

6.3.7 Conclusion on documenting

There are some things to keep in mind when writing documents:

• The text is written for the reader

48

• The reader is likely to know less about the subject than the writer

• Do not overestimate the reader’s background knowledge

• Do not underestimate the reader’s ability to absorb new information

• Remember to use visual bookmarks

• Write summaries

• Unexplained abbreviations and acronyms complicate the text unnecessarily

• Good figures and tables make documents much clearer

• Naming in the text, figures, tables and design itself needs to be consistent

• Feedback is important part of improving all aspects of documentation

In the end, the question is not only about designer skills but also about time allocations.
If the documents need to be written in a hurry, the quality goes down accordingly. Some-
times time is given but in the same time new design tasks are pushed in and designer
might prioritize the design.

When thinking about documentation, it is strange that in the era of Youtube and Facebook
the official information sharing is still based on printable documents. This was under-
standable 50 years ago but concurrently the technology enables much more intuitive and
more user friendly solutions, such as, html-documenting or videos. Maybe something
better could be developed from this point of view.

6.4 Code clarity

This section is divided in 4 subsections: naming and structure, improvement practices,
"Hello world" examples and conclusions. Naming and structure focuses on explaining
how clear VHDL code could be written. Improvement practices is more about how to
implement the clear structures in daily work. "Hello world" examples introduces a method
for facilitating easy re-use and other kind of design transfers. In the end, conclusion
gathers most relevant information together.

6.4.1 Naming and structure

High quality code should be self explaining and even self documenting [17, 34]. In
VHDL, this is achieved with careful division of entities and processes, proper naming,

49

and good commenting. The naming should be descriptive and consistent. Abbreviations
are usually needed. They should follow the commonly agreed naming conventions and
be explained. Capital letters should be avoided at least in signal names but they might be
useful with generics. [37]

Readable code is not only about the naming of different pieces but also about the visual
appearance of the code. Indentations make code clearer. The assignments <=, =>, and
other operators should be aligned. Also the length of one line should not be too long.
[37] This is especially easily achieved with VHDL because dividing one long line to two
shorter ones is rather easy.

The code should also be structured in a clear way [34]. For example, it affects clarity
if some condition is implemented with separate if-clauses or with if-elsif-else structure.
The following code example elaborates the above mentioned case. One must remember
that the coding style cannot be chosen completely freely because it might affect the later
implementation of the code.

a) Four separate if-clauses (not good)

if (MODE = 1 and CHOICE = 0) then

next_state_r <= wait;

end if;

if (MODE = 1 and CHOICE = 1) then

next_state_r <= run;

end if;

if (MODE = 2 and CHOICE = 0) then

next_state_r <= run;

end if;

if (MODE = 2 and CHOICE = 1) then

next_state_r <= wait;

end if;

b) Mutually exclusive if-else branches (good)

if (MODE = 1) then

if (CHOICE = 0) then

next_state_r <= wait;

50

else

next_state_r <= run;

end if;

else

-- MODE = 2

if (CHOICE = 0) then

next_state_r <= run;

else

next_state_r <= wait;

end if;

end if;

Further improvements to code readability can be achieved by separating functionally dif-
ferent code segments within on file from each other by empty lines. Additionally, instan-
tiations can be organized in the same order in code as they are in block diagrams. It is
also important to avoid including too many entities or functions in the same file.

6.4.2 Improvement practices

Linter tools are also handy when it comes to checking that coding style is good. Robert
Colwel described a situation in his book [13, p. 42] where they were trying to decide
common coding style together with many experienced programmers. After following
the fighting for some time, Colwell realized that the agreement cannot be reached. He
started thinking about the solution and, at some point, he figured out that there might
be one. He reasoned, that during their studying and working life, computer engineers are
conditioned to take feedback from computer without getting angry about it. This is mostly
due to the endless compiler errors. Thus, Colwell created his own linter tool that actually
implemented his vision of good coding. The other engineers accepted the solution without
resistance. Apparently, when the criticism comes from computer, it is easier not to take
personally.

If code quality needs to be improved, reviews are a very useful tool. In addition to pro-
viding a valuable way to get feedback, code reviews often reveal bugs in the design. It is
of paramount importance that the reviews are done already in early design phase, so that
the code can actually be changed.

51

6.4.3 "Hello world" examples

The easiness of IP reuse can be accomplished by using "Hello world" examples. It refers
to an easy startup script that, for example, runs a simple test case. Also some low level
documentation is provided to show how simulation should be running. With this kind
of example the user knows that he/she has all the files and the basic settings are correct.
When the user then starts to do modifications the inevitable debugging becomes easier
with the knowledge that basic things are working.

Figure 6.4 shows an example of this kind of easy startup. As one can see, very little space
and user time is used with this method to give a lot of information and clarity.

Figure 6.4 One possible way to do easy "Hello world" startup for an IP [45].

"Hello world" examples should be done in a very late phase of design when no more
changes are expected. When used correctly it can even substitute a part of official docu-
mentation.

6.4.4 Conclusions of code clarity

The following list gathers thing so be considered with clear code:

• Pay attention to the division of entities and processes

• Name everything wisely

• Remember to comment

• Code structure matters

All in all, as a rule of thumb, company guidelines should be followed. If company guide-
lines are just not good one should try to change the situation or think if his/ hers ideas

52

are actually any better. There is a difference between personal opinions and facts that
actually have proven effect on code clarity. However, the amount of guidelines has to
be small enough that following them does not get too complicated. "Don’t sweat on the
small stuff", as they say.

6.5 Scripts

Improving the scripts is an effort that is likely to pay back. Most of them are written
in-house which enables straightforward deployment of improvements compared to, for
example, proprietary tools. Good scripts have a lot in common with good code, for exam-
ple commenting and variable names. In this section the focus is on script specific aspects,
such as path concatenations and error messages.

6.5.1 Different scopes of scripts

Scripts can be thought to be used in two different purposes: automation and abstraction.
Automation means that one uses scripts to do a series of simple tasks one could do also
by hand separately. The abstraction means that the script is used to allow someone per-
form a task one would not be able to perform oneself. In this case, the script is written
by someone else and it, in a way, creates a level of abstraction from the user point of
view. However, also other classifications are existent. For example, one could think that
automation type of script doesn’t use parameters whereas abstracting one uses. However,
the first system is utilized in this thesis.

Scripts have naturally quite different requirements depending on their purpose and lifes-
pan. For example the commenting is not that crucial, if a script is most probably going to
be used only in a certain project by a certain individual. However, if the scripts is redis-
tributed it should be modified to suit this new scope. Additionally, if the use seems to ex-
tend beyond a few designers, version control utilization should be considered. One must
be careful when creating guidelines because designers feel that sharing a script causes
them a lot extra work

There is also one aspect against the heavy use of abstraction scripts: the more people use
scripts the less they learn to do things themselves. On the other hand, experience has
shown that debugging a borrowed script is a great teacher.

53

6.5.2 Good script writing practices

There are some common guidelines good scripts should follow. For example, a header
should be included and not only a pro forma header but a good, updated header. Too often
one sees such a header that it is there only because it has to due to guidelines or company
policies.

Another good common practice is to make the script give informative prints such as how
it is progressing. For example, "Step 4/5, reference files are created.". This makes the
almost evident debugging easier. The script could also inform the user with prints if some
task has a bit longer execution time. With that print it is much easier to know if the
execution is stuck or not.

Sometimes it is useful to have a summarizing print. For example, "2 files were added
to IP-XACT.", i.e., to confirm what user expects to happen. If there should have been
more than 10 files, this should raise some suspicion. Probably many other types of good
prints can be thought of, too. One must also remember that the visual appearance of prints
affects the clarity. Thus, indentations and other similar methods should be deployed.

However, should prints help debugging and give the user ideas of the script operation,
they can also be useless and even cause disturbance from more important things. At least
when the script is used many times a day. To help with this, there could be an additional
switch to disable the prints partially or even completely. It depends on the script how
many levels of verbosity is appropriate.

Following example illustrates a helpful and informative set of script execution prints:

>>./run_test.csh -verbose

1/5 Checking that needed files exist

2/5 Compiling files

..

Compilation completed successfully!

3/5 Running elaboration (this may take several minutes)

25% of the elaboration completed

50% of the elaboration completed

75% of the elaboration completed

20 files added to filelist.

Elaboration successfully completed!

54

4/5 Saving files...

Filelist saved!

5/5 Task completed. Exiting.

Naturally, a good script has a help print. However, this is usually implemented by using
only one switch, for example, –help. Multiple switches could be enabled. In addition,
help print is also something that should be kept updated and that should be designed
carefully and with time.

Log files are also an option for showing and storing information of script execution. The
information stored in log files should be considered carefully. Some tag words, such as
warning and error, can be used to facilitate search and the words should be told to the
user. The visual appearance of log files is also important.

The experience has shown that many of the issues with scripts are connected to the broken
paths. Thus, each script should automatically check if environmental variables are set cor-
rectly and that the paths and files actually exist and can be accessed. The existence check
could also be done for the referred files. Occasionally, paths are created by concatenation
of many parts. This complicates the debugging greatly since it is difficult for human eye
to detect errors in very long strings to find the root cause. In addition, the error can be
really small, just one letter extra/missing or wrong in wrong case.

Even though the broken paths are almost inevitable, the debugging can be made a lot
easier. Should a path be broken or a file non-existing, the script could tell how broken the
path is, for example, that 80% of the path is ok. The script could also do guessing about
the correct path with autofill feature.

This kind of elaborate scripting might be too complicated for some designers. It is pos-
sible that the most difficult parts could be in some common folder and individual user
could call them from there. Of course, environment changes would break this and, to fix
it, the scripts would need to actually check if the common script exists. Of course, some
designers could be just provided with training.

Broken paths are not the only headache, but sometimes a path directs to an existing but
old version of the design. This is difficult to detect in the early phase if the user has both
versions in his/her personal folder. One way to do check this would be manually renaming
the folder containing the old design. After this the path will be broken if it directs to the
old version.

55

Once there was a case, where a script was used to create another script that would package
an RTL design with IP-XACT. To collect the file names, it just took the content of the
whole folder without checking. As expected, this caused issues: once the folder contained
temporary files created by Emacs, ending .vhd.̃ It took long time to find the root cause.
The same could happen with temporary backup files, such as design_old.vhd.

Sometimes scripts assume that the user makes some changes before using the script.
These changes could be described already in the header. If some variables need to be
set, they could be located already in the very beginning of the script. One could also use
environmental variables that are defined outside the script so that the setup can be the
same for all the scripts. A good place for defining this kind of variables is, for example,
the script that sets the tools and licenses.

Making the script ask for user input is not a good way to increase abstraction. It is true,
that then the user doesn’t need to modify the script itself. However, such script is difficult
to run in automatic batch mode. This greatly limits the use.

6.5.3 Conclusion on scripts

The following list summarizes some good script writing practices. It should be considered
especially if the script is used by multiple designers:

• Proper header is very important

• The coding style of scripts is also important

• Prints make following the execution easier

• Prints can be enabled with a switch if they are not always needed

• Log files are also useful

• Paths and file existence should be checked

Additionally, the most commonly used scripts should be regarded as tools in a workshop.
This means proper maintenance and some kind of catalogue of them.

An interested reader can find more information of scripts from, for example, [2] or [55].

56

6.6 Managing the EDA tools

Problems caused by using proprietary tools can be affected by changing the tool. The tool
can be changed to another proprietary tool or to an open source alternative. If another
proprietary tool is chosen, it is likely that similar problems emerge. Open source solutions
are not that straightforward either. First, there is no alternative for all the tools. Second,
if an alternative exists, the support might not be on the needed level. However, with
the money saved from licenses the company could already finance its own support and
development for the open source tools.

The open source tools are not completely free from license issues; the issues are just dif-
ferent from proprietary ones. For example, some licenses do not allow use for commercial
purposes and some dictate, that if the code is used as a part in a bigger project, the whole
project needs to be complete open, too. [38] This might not be what the company wants.

If the decision is to use proprietary tools, there are things a company can do to enable
smooth usage. A real time information of license usage is a good example. If one re-
ally needs a license quickly one can ask a colleague if his/hers task can wait and, thus,
he/she can free the license. Sometimes the program is just forgotten open. To solve this,
automatic emails can be send to users that seem to reserve licenses for a long time.

Controlling the choice of used tool and tool versions is easy, at least in principle. The
company could just dictate which tools and versions to use in which project. The tools
can be set automatically in some project management software or by a common tool
setup script. However, considering the resistance every dictation causes, unnecessarily
comprehensive policies should be avoided. Additionally, same people usually work in
several projects which complicates this.

Occasionally the problem is not the unwillingness to use correct software or version but
rather the difficulties in finding the information. This is related to the common issues in
information flow. Moreover, the naming of tool environment scripts might be inconsistent.
This complicates the designers search for the correct version.

Companies should really think carefully which tools to buy. With some tools the problems
are clear but benefits questionable. Also people that work with tool everyday should be
asked about opinions. The marketing personnel from the vendors are good and decision
makers busy and distant from floor level design; there is usually 1–2 organization levels
between the important decision makers and the actual users that understand the best what

57

is needed. This is a bad combination.

58

7. INTERVIEW RESULTS AND ACTION POINTS

This chapter describes the interviews. They were conducted in order to find out more
about the issues at NSN and also to provide some idea of their impact to actual work.
The first sections describes the interviews. After that the results are discussed. The last
section focuses on the possible actions.

7.1 Conducting interviews

Seven IP developers were interviewed based on volunteering, thus, the sample group
might not be statistically representative. Yet, the interviews were also about figuring
out possible issues and, thus, it was good to let people speak if they wanted to. The inter-
viewed group contained both male and female members and three different nationalities.
The work experience in the field ranged from 1.5 to 25 years.

The interviews were quite loosely structured and were based on informal discussion. The
author wrote down things that came up during the discussion and sometimes asked ad-
ditional, elaborating questions. Thus, the interviews were not always identical. The du-
ration of a single interview was between 30 minutes and 1 hour. In general, the more
experienced the interviewee the longer the interview.

The topics that were discussed in all the interviews were: inefficient communication,
finding correct documents, version control issues, unclear documentation, unclear code,
tool related problems, IT related issues (computational platforms and IT support), and
script re-use related problems. The interviewees were also asked to rate the impact in
scale 1–4 where 1 means that there is no impact at all and 4 that there is a big impact.

Before the interviews, a summarizing presentation was delivered about the most common
issues. The presentation raised some discussion and the results of the discussion were
taken into account when designing the interview topics. Most of the interviewed people
participated in this presentation.

59

Not all the gathered information is published here, since it contains information that is
company confidential. However, the results in the following section contains most of the
most essential aspects and notations.

7.2 Results

Figure 7.1 represents the result of the interviews. It is derived directly from the inter-
view data. The maximum score only came up twice in the scoring; once for inefficient
communication and once for IT related issues. The minimum score come up more fre-
quently: the only two items that did not get one at all were IT related issues and unclear
documentation.

Figure 7.1 Reported average impact of each issue. Colors denote 3 categories that can be seen
partially interdependant.

The interviewee also had a lot of comments for different topics. The following part will
give short summaries of the comments.

Inefficient communication: Person-to-person communication is working well and it is
easy to find the correct person for asking a specific question. However, some of the
interviewees felt that the communication overhead was quite big and people should spend
more time reading documents instead of asking. On the other hand, it was also mentioned

60

that some understand things generally better through discussions than reading. The impact
of this aspect was evaluated to be average.

Finding correct documents: Finding documents had an average impact score. Doc-
uments were usually found by asking others for the link or following links from other
documents. This means that the search of documents increases the communication over-
head. However, people don’t need to look for new documents too often and saving links
of the needed documents was found to be a good way to handle this issue.

Unclear documentation: Unclear documentation was the second biggest issue. It was
felt that documents were mostly done for process purposes and they were not clear; they
didn’t contain relevant information in simple format. However, many of the interviewees
felt that the situation is currently being paid attention and that it is getting better all the
time.

Unclear code (VHDL): Issues with VHDL clarity did not have much impact. There were
some complaints about the lack of clarity in computer generated codes. Actually, during
the writing of this thesis before the interviews, the NSN coding guidelines were updated
and clarified which got a lot of positive feedback and might have an effect for the low
impact score.

Script re-use related problems: Script issues scored average and higher than code clar-
ity. Within the scripts a clear division could be seen based on the experience level of the
interviewee. The people with long experience mostly wrote the scripts themselves and
did not have much issues with re-use. The new people, on the other hand, were asking
for script training or guidelines and had problems with re-use. It was also suggested that
scripts could be gathered in a centralized manner and to have more commenting and such
things to enhance re-use.

Version control issues (fundamental usability): Version control was the most problem
free area. Three issues were specifically named: getting access rights quickly, manag-
ing the versions of supporting common blocks or verification environments, and changes
made to tagged releases.

Tool related problems: Tool related problems scored average. The most important single
issue with tools was the lack of simple instructions. The user guides provided by EDA
companies are usually really comprehensive whereas the everyday use quite limited. Also
the need for more trainings came out as a conclusion.

61

IT related issues (computational platforms and IT support): IT related issues had the
highest score. Because of the heavy computation included in the IP design, the impact of
even small issues is big and might prevent working entirely, for example server crashing
momentarily. It was felt that the issues were not solved quickly enough and that the used
ticket system was complicated.

7.3 Conclusions and possible actions

Corrective actions should focus on the items with most impact: IT related issues, un-
clear documentation, finding correct documents or tool related problems. It is also worth
considering, that even though the script problems did not score high, the need for script
training and guidelines came up in many of the interviews.

The base for the actions described here can be found from the Chapter 6. When thinking
about possibilities, the author has considered especially two things: the ease of imple-
mentation and other ongoing actions at NSN. The ease means that no big process level
changes are needed but that solutions concentrate on actions that can take place on the
team level. The other ongoing actions mean different kind of projects that aim to same
kind of improvements as this thesis. Some of the projects have started during the making
of this thesis. This thesis could be used as a reference to further highlight the importance
of these actions.

The two biggest issues, IT and unclear documentation, have already been widely noticed
and many different actions are ongoing to make some corrections. Planning some new
actions while the effects of previous ones are not clear would be rather useless. Thus, the
focus should be placed on finding correct documents, tool related problems and inefficient
communication.

Finding correct files: One rather straightforward action for easing the search of docu-
ments could be some kind of link library. There are several different link libraries at the
moment for different projects but it could be useful to have one library that contains links
and descriptions of different libraries. Also links for not-design-related documents, such
as tool instructions and different guidelines could be added. The library should be regu-
larly updated and some easy broken link reporting system should be added. It is possible
that such library already exists and in that case it should maybe be more advertised.

Tool related problems: Most of the tool related problems were connected with bad or
missing low level instructions and lack of training. This means that instructions should

62

be written and trainings held. More research would be needed to get prioritized list of
different tools requiring this. When writing the instructions and preparing the trainings
one should consider carefully the guidelines for clear documentation. Bad training is as
good as no training at all.

Inefficient communication: With communication the highlighted area was communica-
tion overhead. It could be improve with better processes and using better development
practices. However, those are out of the scope of this thesis. The author’s suggestion is
to wait until some results from better documentation and file finding are available and see
if these affect communication overhead. After that it can be decided if more actions are
needed.

Scripts: Due to the demand that came up in the interviews, some script training, template
and guidelines could be developed.

63

8. CONCLUSIONS

During the literature study, the following common sources for issues were identified: in-
efficient communication, finding correct files/documents, version control usage, unclear
documentation, unclear code, EDA tool usage and IT in general, and scripting. Based
on these results 7 employees of NSN were interviewed. The interviews showed that the
biggest issues at NSN are related to IT support, document clarity, finding correct docu-
ments and EDA tool usage.

Since there are a lot of ongoing actions at NSN related to IT and documentation clarity,
the author decided to focus on improving document search and EDA tool usage. The
recommended actions are creating a functional library for document links and providing
training and better instructions for EDA tools. The need for script training and guidelines
was mentioned in most of the interviews and, thus, they are also recommended to be
arranged. Additionally, this kind of interviews should be organized periodically to follow
how improvements are working and to see if new issues are arising.

64

BIBLIOGRAPHY

[1] Adobe, “Adobe framemaker homepage,” 2016. [Online]. Available: https:
//www.adobe.com/products/framemaker.html

[2] I. D. Allen, “Unix/linux shell script programming conventions and style,”
2013. [Online]. Available: http://teaching.idallen.com/cst8177/13w/notes/000_
script_style.html

[3] Altera, “Altera ip components,” 2016. [Online]. Available: https://www.altera.com/
products/intellectual-property/overview.html

[4] ALTERA, “Nios ii processor overview,” 2016. [Online]. Available: https:
//www.altera.com/products/processors/overview.html

[5] American Psychological Association, “Multitasking: Switching cost,” 2006.
[Online]. Available: http://www.apa.org/research/action/multitask.aspx

[6] ARM, “Amba specification,” 2016. [Online]. Available: http://www.arm.com/
products/system-ip/amba-specifications.php

[7] Atmel, “Atmega328p datasheet,” 2015. [On-
line]. Available: http://www.atmel.com/images/
atmel-8271-8-bit-avr-microcontroller-atmega48a-48pa-88a-88pa-168a-168pa-328-328p_
datasheet_complete.pdf

[8] B. Bailey and M. Grant, ESL Models and their Application, 1st ed. Springer US,
2010.

[9] J. Blau, “Talk is cheap,” Spectrum, IEEE, vol. 43, no. 10, pp. 14–15, 2006.

[10] B. W. Boehm, “Improving software productivity,” Computer, vol. 20, pp. 43–57,
1987.

[11] M. Casale-Rossi, “The heritage of mead & conway: What has remained the same,
what has changed, what was missed, what lies ahead,” Proceedings of the IEEE, vol.
102, pp. 114–119, 2014.

[12] K. Cobb, “Scientific writing lecure 1 slides,” 2008. [Online]. Available:
web.stanford.edu/~kcobb/writing/lecture1.ppt

https://www.adobe.com/products/framemaker.html
https://www.adobe.com/products/framemaker.html
http://teaching.idallen.com/cst8177/13w/notes/000_script_style.html
http://teaching.idallen.com/cst8177/13w/notes/000_script_style.html
https://www.altera.com/products/intellectual-property/overview.html
https://www.altera.com/products/intellectual-property/overview.html
https://www.altera.com/products/processors/overview.html
https://www.altera.com/products/processors/overview.html
http://www.apa.org/research/action/multitask.aspx
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.atmel.com/images/atmel-8271-8-bit-avr-microcontroller-atmega48a-48pa-88a-88pa-168a-168pa-328-328p_datasheet_complete.pdf
http://www.atmel.com/images/atmel-8271-8-bit-avr-microcontroller-atmega48a-48pa-88a-88pa-168a-168pa-328-328p_datasheet_complete.pdf
http://www.atmel.com/images/atmel-8271-8-bit-avr-microcontroller-atmega48a-48pa-88a-88pa-168a-168pa-328-328p_datasheet_complete.pdf
web.stanford.edu/~kcobb/writing/lecture1.ppt

65

[13] R. P. Colwell, The Pentium Chronicles. John Wiley & Sons, Inc, 2006.

[14] P. Coussy, M. Meredith, D. D. Gajski, and A. Takach, “An introduction to high-level
synthesis,” IEEE Design & Test of Computers, no. July, pp. 8–17, 2009.

[15] CPU World, “AMD XBox One specifications.” [Online]. Available: http:
//www.cpu-world.com/CPUs/Jaguar/AMD-XBox%20One%20APU.html

[16] R. A. Crabtree, N. K. Baid, and M. S. Fox, “Where design engineers spend/waste
their time,” Department of Industrial Engineering, University of Toronto, Tech. Rep.,
1993.

[17] Cunningham & Cunningham, Inc, “Self documenting code,” 2014. [Online].
Available: http://c2.com/cgi/wiki?SelfDocumentingCode

[18] A. D. day, “Psoc.” [Online]. Available: https://armdeveloperday3rd.files.wordpress.
com/2012/11/psoc.png

[19] V. Driessen, “Vizualisation of version control,” 2010. [Online]. Available:
http://nvie.com/posts/a-successful-git-branching-model/

[20] M. Ernst, “Version control concepts and best practices,” 2016. [Online]. Available:
https://homes.cs.washington.edu/~mernst/advice/version-control.html

[21] D. FIlippov, “Computer user,” 2016. [Online]. Available: https://blog.jetbrains.com/
pycharm/2013/06/vim-as-a-python-ide-or-python-ide-as-vim/

[22] M. Fowler, “Cannotmeasureproductivity,” 2003. [Online]. Available: http:
//martinfowler.com/bliki/CannotMeasureProductivity.html

[23] D. D. Gajski, A. C.-H. Wu, V. Chaiyakul, S. Mori, T. Nukiyama, and P. Briacaud,
“Essential issues for ip reuse,” ASP DAC, no. January, pp. 37–42, 2000.

[24] A. P. Goldberg, “Producing production quality software,” 2005. [Online].
Available: http://www.cs.nyu.edu/artg/Producing_Production_Quality_Software/
Fall2005/lectures/Lecture-14-GroupPractices.pdf

[25] J. R. Goldschmied, P. Cheng, K. Kemp, L. Caccamo, J. Roberts, and P. J. Deldin,
“Napping to modulate frustration and impulsivity: A pilot study,” Personal and In-
dividual Differences, pp. 164–167, 2015.

[26] G. Gopen and J. Swan, “The science of scientific writing,” American Scientist, 1990.

http://www.cpu-world.com/CPUs/Jaguar/AMD-XBox%20One%20APU.html
http://www.cpu-world.com/CPUs/Jaguar/AMD-XBox%20One%20APU.html
http://c2.com/cgi/wiki?SelfDocumentingCode
https://armdeveloperday3rd.files.wordpress.com/2012/11/psoc.png
https://armdeveloperday3rd.files.wordpress.com/2012/11/psoc.png
http://nvie.com/posts/a-successful-git-branching-model/
https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://blog.jetbrains.com/pycharm/2013/06/vim-as-a-python-ide-or-python-ide-as-vim/
https://blog.jetbrains.com/pycharm/2013/06/vim-as-a-python-ide-or-python-ide-as-vim/
http://martinfowler.com/bliki/CannotMeasureProductivity.html
http://martinfowler.com/bliki/CannotMeasureProductivity.html
http://www.cs.nyu.edu/artg/Producing_Production_Quality_Software/Fall2005/lectures/Lecture-14-GroupPractices.pdf
http://www.cs.nyu.edu/artg/Producing_Production_Quality_Software/Fall2005/lectures/Lecture-14-GroupPractices.pdf

66

[27] A. Hesseldahl, “System on chip,” 2012. [Online]. Available: http://allthingsd.com/
20120102/global-chip-sales-down-on-thailand-flooding/

[28] ISO, “Iso-9000 standard,” 2015. [Online]. Available: http://www.iso.org/iso/home/
standards/management-standards/iso_9000.htm

[29] ITRS, “Itrs report 2005, design,” ITRS, Tech. Rep., 2005. [Online]. Available:
http://www.itrs2.net/itrs-reports.html

[30] D. James and C. Young, “Xbox one soc,” 2013. [Online]. Available:
http://www.chipworks.com/about-chipworks/overview/blog/inside-xbox-one

[31] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study
of how developers seek, relate, and collect relevant information during software
maintenence tasks,” IEEE Transactions on Software Engineering, vol. 32, pp. 971–
987, 2006.

[32] K. Kortesuo, “Organisaatio, anna väljyyttä otsikkodioihin,” 2016, in Finnish.
[Online]. Available: http://eioototta.fi/kategoria/diaesitykset/

[33] S. Y. Lee and J. L. Brand, “Effects of control over office workspace on perceptions of
the work environment and work outcomes,” Journal of Environmental Psychology,
vol. 25, pp. 323–333, 2005.

[34] R. C. Martin, “Uncle bob’s clean code tutoria videos part 1.” [Online]. Available:
[Nokiainternal]

[35] R. Mascitelli, Mastering lean product development, 1st ed. Technology Perspec-
tives, 2011.

[36] B. Mehta, “Adder transistor level layout,” 2001. [Online]. Available: http:
//pages.cs.wisc.edu/~bsmehta/555/project/layout_fulladder.png

[37] NOKIA, “Vhdl coding guidelines,” 2016. [Online]. Available: [Nokiainternal]

[38] Open Source Initiative, “Licenses & standards,” 2016. [Online]. Available:
https://opensource.org/licenses

[39] OpenCores.org, “Opencores ip components,” 2016. [Online]. Available: http:
//opencores.org

http://allthingsd.com/20120102/global-chip-sales-down-on-thailand-flooding/
http://allthingsd.com/20120102/global-chip-sales-down-on-thailand-flooding/
http://www.iso.org/iso/home/standards/management-standards/iso_9000.htm
http://www.iso.org/iso/home/standards/management-standards/iso_9000.htm
http://www.itrs2.net/itrs-reports.html
http://www.chipworks.com/about-chipworks/overview/blog/inside-xbox-one
http://eioototta.fi/kategoria/diaesitykset/
[Nokia internal]
http://pages.cs.wisc.edu/~bsmehta/555/project/layout_fulladder.png
http://pages.cs.wisc.edu/~bsmehta/555/project/layout_fulladder.png
[Nokia internal]
https://opensource.org/licenses
http://opencores.org
http://opencores.org

67

[40] J. H. Pejtersen, H. Feveile, K. B. Christensen, and H. Burr, “Sickness absence asso-
ciated with shared and open-plan offices – a national cross sectional questionnaire
survey,” Scandinavia jounal of work, environment & health, vol. 37, pp. 376–382,
2011.

[41] J. L. Popyack, “Object oriented programming: Advantages of oop,” 2015. [Online].
Available: https://www.cs.drexel.edu/~introcs/Fa15/notes/06.1_OOP/Advantages.
html?CurrentSlide=3

[42] L. Prechelt, “An empirical comparison of c, c++, java, perl, python, rexx, and tcl for
a search/string-processing program,” Fakultät für Informatik Universtät Karslruhe,
Germany, Tech. Rep., 2000.

[43] A. Raschka, “Pic18f8720 microcontroller,” 2006. [Online]. Available: https:
//commons.wikimedia.org/wiki/File:PIC18F8720.jpg

[44] Raymond, “Modelsim wave view,” 2010. [Online]. Available: https://fftonde3.files.
wordpress.com/2010/07/wave_20100713_result.jpg

[45] E. Salminen and T. D. Hämäläinen, “Teaching system-on-chip design with fpgas,”
fPGAWorld 13, September 10-12, Copenhagen, and Stockholm.

[46] I. Sameli, “Intel 8742,” 2003. [Online]. Available: http://www.flickr.com/photos/
biwook/153056995/

[47] A. Sangiovanni-Vincetelli, “Quo vadis, sld? reasoning about the trends and chal-
lenges of system level design,” Proceedings of the IEEE, vol. 95, no. 3, pp. 467–506,
2007.

[48] SHIFT, “Studies confirm the power of visuals in elearning,”
2014. [Online]. Available: http://info.shiftelearning.com/blog/bid/350326/
Studies-Confirm-the-Power-of-Visuals-in-eLearning

[49] Stackoverflow, “Version control for docx and pdf,” 2011. [Online]. Available:
https://stackoverflow.com/questions/3298525/version-control-for-docx-and-pdf

[50] W. F. Stewart, J. A. Ricci, E. Chee, D. Morganstein, and R. Lipton, “Lost productive
time and cost due to common pain conditions in the us workforce,” The journal of
the American Medical Association, vol. 290, pp. 2443–2454, 2003.

[51] “Kactus2 memory visualisation,” Tampere University of Technology, Department
of Pervasive Computing. [Online]. Available: http://funbase.cs.tut.fi/#kactus2

https://www.cs.drexel.edu/~introcs/Fa15/notes/06.1_OOP/Advantages.html?CurrentSlide=3
https://www.cs.drexel.edu/~introcs/Fa15/notes/06.1_OOP/Advantages.html?CurrentSlide=3
https://commons.wikimedia.org/wiki/File:PIC18F8720.jpg
https://commons.wikimedia.org/wiki/File:PIC18F8720.jpg
https://fftonde3.files.wordpress.com/2010/07/wave_20100713_result.jpg
https://fftonde3.files.wordpress.com/2010/07/wave_20100713_result.jpg
http://www.flickr.com/photos/biwook/153056995/
http://www.flickr.com/photos/biwook/153056995/
http://info.shiftelearning.com/blog/bid/350326/Studies-Confirm-the-Power-of-Visuals-in-eLearning
http://info.shiftelearning.com/blog/bid/350326/Studies-Confirm-the-Power-of-Visuals-in-eLearning
https://stackoverflow.com/questions/3298525/version-control-for-docx-and-pdf
http://funbase.cs.tut.fi/#kactus2

68

[52] “Hardware design view of kactus2,” Tampere University of Technology, Department
of Pervasive Computing, 2016. [Online]. Available: http://sourceforge.net/projects/
kactus2/

[53] Tampereen teknillinen yliopisto, “Opinnäytetyön kirjoittaminen tampereen teknil-
lisessä yliopistossa,” 2014.

[54] S. Torkkola, Lean asiantuntijatyön johtamisessa. Talentum, 2015.

[55] Ubuntu, “Ubuntu manuals: checkbashisms.” [Online]. Available: http://manpages.
ubuntu.com/manpages/xenial/en/man1/checkbashisms.1.html

[56] Vincit, “Vincitin blogi.” [Online]. Available: https://www.vincit.fi/blog/

[57] S. Wagner and M. Ruhe, “A systematic review of productivity factors in software
development,” State Key Laboratory of Computer Science, Institute of Software,
TU München, Tech. Rep., 2008.

[58] R. Waller, “What makes a good document?” University of Reading, United King-
dom, Tech. Rep., 2011.

[59] R. Wetzel, “Kanban board system,” 2013. [On-
line]. Available: http://sites.psu.edu/ryanwetzelleadership/2013/06/13/
leadership-communication-strategy-kanban-board/

[60] S. A. Wheelan, “Group size, group development, and group productivity,” Small
Group Research, vol. 40, pp. 247–262, 2009.

[61] Wikipedia, “Anna karenina principle,” 2016. [Online]. Available: https:
//en.wikipedia.org/wiki/Anna_Karenina_principle

[62] ——, “High-level synthesis,” 2016. [Online]. Available: https://en.wikipedia.org/
wiki/High-level_synthesis

[63] ——, “Pa,” 2016. [Online]. Available: https://en.wikipedia.org/wiki/Pa

[64] ——, “Vendor lock-in,” 2016. [Online]. Available: https://en.wikipedia.org/wiki/
Vendor_lock-in

[65] Wikiquote, “Martin fowler,” 2014. [Online]. Available: https://en.wikiquote.org/
wiki/Martin_Fowler

http://sourceforge.net/projects/kactus2/
http://sourceforge.net/projects/kactus2/
http://manpages.ubuntu.com/manpages/xenial/en/man1/checkbashisms.1.html
http://manpages.ubuntu.com/manpages/xenial/en/man1/checkbashisms.1.html
https://www.vincit.fi/blog/
http://sites.psu.edu/ryanwetzelleadership/2013/06/13/leadership-communication-strategy-kanban-board/
http://sites.psu.edu/ryanwetzelleadership/2013/06/13/leadership-communication-strategy-kanban-board/
https://en.wikipedia.org/wiki/Anna_Karenina_principle
https://en.wikipedia.org/wiki/Anna_Karenina_principle
https://en.wikipedia.org/wiki/High-level_synthesis
https://en.wikipedia.org/wiki/High-level_synthesis
https://en.wikipedia.org/wiki/Pa
https://en.wikipedia.org/wiki/Vendor_lock-in
https://en.wikipedia.org/wiki/Vendor_lock-in
https://en.wikiquote.org/wiki/Martin_Fowler
https://en.wikiquote.org/wiki/Martin_Fowler

69

[66] R. Wilson, “Socs: Ip is the new abstraction,” 2011. [Online]. Available:
http://www.edn.com/electronics-news/4368295/SOCs-IP-is-the-new-abstraction

[67] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-chip (mpsoc)
technology,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systmes, vol. 27, no. 10, pp. 1701–1713, 2008.

[68] W. Zhang, “Adder gate level schematic,” 2001. [Online]. Available: http:
//esd.cs.ucr.edu/labs/tutorial/adder_sch.jpg

http://www.edn.com/electronics-news/4368295/SOCs-IP-is-the-new-abstraction
http://esd.cs.ucr.edu/labs/tutorial/adder_sch.jpg
http://esd.cs.ucr.edu/labs/tutorial/adder_sch.jpg

	Introduction
	Introduction to digital systems
	Integrated circuit, IC
	System-on-chip, SoC
	Implementing digital systems
	Levels of digital system abstraction
	Digital system design flow
	Design automation and high level synthesis (HLS)

	Intellectual Property (IP) components
	The concept of IP
	Re-use
	General design re-use
	General IP re-use
	Hardware re-use special considerations

	IP-XACT meta-data format

	Designer productivity
	Measuring designer productivity
	Factors affecting productivity
	Technical factors
	Soft factors

	IP design flow issues
	Inefficient communication
	Finding correct files and documents
	Unclear documentation
	Unclear code
	Scripting
	Version control
	Issues with tools
	Summary of the issues

	Solutions to general issues
	General person-to-person communication
	Making files easier to be found
	Documentation readability
	Motivation to write
	Text
	Abbreviations and acronyms
	Figures and tables
	Visual bookmarks
	Documentation scope
	Conclusion on documenting

	Code clarity
	Naming and structure
	Improvement practices
	"Hello world" examples
	Conclusions of code clarity

	Scripts
	Different scopes of scripts
	Good script writing practices
	Conclusion on scripts

	Managing the EDA tools

	Interview results and action points
	Conducting interviews
	Results
	Conclusions and possible actions

	Conclusions

